
Higher-Order Model Checking: An Overview
Luke Ong

University of Oxford

Abstract—Higher-order model checking is about the model
checking of trees generated by recursion schemes. The past
fifteen years or so have seen considerable progress in both theory
and practice. Advances have been made in determining the
expressive power of recursion schemes and other higher-order
families of generators, automata-theoretic characterisations of
these generator families, and the algorithmics and semantics
of higher-order model checking and allied methods of formal
analysis. Because the trees generated by recursion schemes are
computation trees of higher-order functional programs, higher-
order model checking provides a foundation for model checkers
of such programming languages as Haskell, F# and Erlang. This
paper aims to give an overview of recent developments in higher-
order model checking.

I. INTRODUCTION

Recursion schemes are a kind of simply-typed grammar for
generating possibly infinite ranked trees. A recursion scheme
is given by a finite system of equations, defining a finite set
of higher-order functions by mutual recursion. The order of a
recursion scheme is given by the highest type-theoretic order
of the functions defined by it. From a programming language
perspective, recursion schemes may be viewed as programs
(i.e. closed, ground-type terms) of the simply-typed lambda
calculus with recursion, constructed from a set of uninterpreted
function symbols. Higher-order model checking is the model
checking of trees generated by recursion schemes. The higher-
order model checking problem asks, given a recursion scheme
G and a correctness property ϕ, whether the tree generated by
G satisfies ϕ.

The early work in the 1970s on (tree-generating) higher-
order recursion schemes was mostly about questions of ex-
pressivity. The decision problem was first posed in the present
form by Knapik et al. [56], [54]. They considered recursion
schemes subject to a syntactic constraint called safety. Their
main result is that, when restricted to trees generated by safe
recursion schemes, the higher-order model checking problem
with respect to monadic second-order (MSO) properties is
decidable. However the general MSO higher-order model
checking problem was left open. In [73], Ong proved that
the modal mu-calculus model checking problem of trees gen-
erated by arbitrary order-n recursion schemes is n-EXPTIME
complete. Since MSO logic and the modal mu-calculus are
equi-expressive over trees, it follows that the MSO higher-
order model checking problem is decidable.

The last fifteen years or so have seen a growth of interest
in higher-order model checking from both the theory and
practice communities. Since the MSO decidability result [73],
which was proved using insights from game semantics [49], a
variety of semantic and algorithmic techniques and models of

computation have been employed to design higher-order model
checking algorithms, notably, intersection types [59], [64], col-
lapsible pushdown automata [45] and Krivine machines [84].
Algorithmic properties that refine and extend the decidability
of MSO model checking have also been introduced, such as
logical reflection [12], effective selection [15] and transfer
theorem [85].

Recursive schemes are a very expressive family of gener-
ators of trees: the trees that are generated at orders 0, 1 and
2 are respectively the regular trees, algebraic trees (i.e. those
generated by context-free tree grammars) and hyperalgebraic
trees. There have been advances in the understanding of the re-
lationship between higher-order families of generators. Hague
et al. [45] showed that order-n recursion schemes generate the
same class of trees as order-n collapsible pushdown automata.
More recently, Parys [79] proved the Safety Conjecture, thus
confirming the intuition that the safety constraint restricts the
expressive power of recursion schemes, or equivalently that
order-n collapsibile pushdown automata are more expressive
than order-n pushdown automata.

Recursion schemes are thus an appealing abstract model
for model checking higher-order programs: not only are they
highly expressive, the trees they generate also enjoy a rich
and decidable logical theory. In [59], Kobayashi introduced an
approach to the verification of safety properties of functional
programs by reduction to higher-order model checking. His
verification method is sound, complete and automatic for
a range of verification problems such as reachability, flow
analysis and resource usage for simply-typed recursive func-
tional programs generated from finite base types. Although
the worst-case complexity of higher-order model checking is
hyper-exponential, there have been remarkable advances in the
design of model checking algorithms. The time complexity of
state-of-the-art model checking algorithms, PREFACE [83] and
HORSATZDD [94], are fixed-parameter polynomial in the size
of the recursion schemes, and scale readily to many thousands
of rules.

This paper aims to provide an overview of higher-order
model checking, covering mostly theoretical developments.
Our treatment is far from a complete survey of the field:
in many places, we give no more than selected references
where the reader can find further details. We stress that the
bibliography is non-exhaustive. Nevertheless our hope is that
people will find the paper a useful introduction to this exciting
and challenging topic.

Outline: In Section II, we introduce two families of genera-
tors of infinite structures: recursion schemes and higher-order

pushdown automata. We discuss results about expressivity
and the relationships between the families, and the safety
constraint. Section III is about the model checking of recursion
schemes with respect to monadic second-order and related
correctness properties. We survey a number of topics about
the higher-order model checking problem: decidability proofs;
collapsible pushdown automata as generators of trees and
graphs, and their algorithmics; and the Safety Conjecture In
Section IV, we outline recent advances in the compositional
model checking of (higher-type) Böhm trees, and effective
denotational semantics of higher-order model checking. In
Section V, we give a quick overview of applications of
higher-order model checking to the verification of functional
programs. We conclude in Section V with a brief discussion
of open problems and further directions.

II. FAMILIES OF GENERATORS OF INFINITE STRUCTURES

A. Recursion Schemes

In higher-order model checking, recursion schemes are typi-
cally used as simply-typed grammars for constructing possibly
infinite term-trees or ranked trees. Types are defined by the
grammar A ::= o | A → B. By convention, arrows associate
to the right; thus every type can be written uniquely as A1 →
· · · → An → o, for some n ≥ 0. We define the order of a type:
ord(o) := o and ord(A→ B) := max(ord(A) + 1, ord(B)).
Intuitively the order of a type measures how deeply nested it
is on the left of the arrow.

Assume a countably infinite set Var of typed variables.
Let Θ be a set of typed symbols such as Var . Writing
s : A to mean s has type A, the set of applicative terms
generated from Θ is the least set containing Θ closed under
the application rule: if s : A→ B and t : A then s t : B. By
convention, application associates to the left; thus s1 · · · sn
means ((s1 s2)s3 · · ·)sn. Given a term s : A, we define
ord(s) := ord(A).

Definition 1. A higher-order recursion scheme (or simply
recursion scheme) is a tuple G = 〈Σ,N ,R, S〉 where
- Σ is a ranked alphabet of terminals viewed as tree construc-

tors i.e. each f ∈ Σ has an arity ar(f) ≥ 0, written f : ar(f)
by abuse of notation, and we assume f : o→ · · · o→︸ ︷︷ ︸

ar(f)

o.

- N is a set of typed non-terminals; and S : o ∈ N is a
distinguished start symbol of type o.

- R is a finite set of rewrite rules of the form F x1 · · · xn →
e where F : A1 → · · · → An → o, each xi : Ai, and e : o is
an applicative term generated from Σ ∪N ∪ {x1, · · · , xn}.

The order of a recursion scheme is defined to be the highest
order of its non-terminals. In the following we shall use
uppercase letters F,G,H , etc., to range over non-terminals,
lowercase letters f, g, h, etc., to range over terminals, and
ϕ,ψ, x, y, z, etc., to range over variables.

As a simply-typed formalism, recursion schemes may be
viewed as a subsystem of the λY-calculus [91], which is the
(pure) simply-typed lambda calculus augmented with fixpoint

combinators Y. Precisely there is a correspondence between
recursion schemes and ground-type λY-terms with free vari-
ables (corresponding to the terminals) of order at most one:
they define the same set of trees [84].

In general, recursion schemes define tree languages. In
this paper, we are mainly concerned with recursion schemes
that define trees. Hence, unless otherwise specified, recursion
schemes are assumed to be deterministic i.e. for each non-
terminal, there is at most one rewrite rule (whose left-hand
side is) headed by that non-terminal.

Informally the tree generated by a recursion scheme G, de-
noted [[G]], is the abstract syntax tree underlying the possibly-
infinite applicative term which is obtained from the start
symbol S by unfolding the rewrite rules ad infinitum.

Example 2 (Order-1 recursion scheme). Take the ranked al-
phabet Σ = {f : 2, g : 1, a : 0}. Consider the order-1 recursion
scheme G1 with rewrite rules:

S → F a F x→ f x (F (g x))

where F : o→ o. Unfolding from the start symbol S, we have

S → F a→ f a (F (g a))→ f a (f (g a) (F (g (g a))))→ · · ·

thus generating the infinite applicative term

f

a f

g f

a g f

g
...

a

f a (f (g a) (f (g (g a))(· · ·))).

Because the rewrite system is
Church-Rosser, it does not matter
which reduction strategy is used pro-
vided it is fair in the sense of not
neglecting any branch. The tree generated by G1 (as shown on
the right), [[G1]], is the abstract syntax tree of the infinite term.

Formally, given a recursion scheme G, the reduction relation
→G is defined by induction over the rules:

Fx1 · · ·xn → e is a rule in R
Ft1 · · · tn →G e[t1/x1, · · · , tn/xn]

t→G t′

s t→G s t′
t→G t′

t s→G t′ s

We write→∗G for the reflexive, transitive closure of→G . When
it is clear from the context, we omit the subscript from →G .

A Σ-labelled tree is a partial function t from {1, · · · ,M}∗
to Σ, where M := max {ar(f) | f ∈ Σ}, such that dom(t) is
prefix-closed; we assume that t is ranked: if t(w) = a and
ar(a) = r, then {i | w i ∈ dom(t)} = {1, · · · , r}. A (possibly
infinite) sequence π over {1, · · · ,M} is a path of t if every
prefix of π is in dom(t). Given a term t, we define a (finite)
(Σ ∪ {⊥})-labelled tree t⊥ by:

t⊥ :=

 f if t = f , a terminal
t⊥1 t
⊥
2 if t = t1 t2 and t⊥1 6= ⊥

⊥ otherwise

For example (f (F a) b)⊥ = f ⊥ b. Let v be the partial order
on Σ ∪ {⊥} defined by ∀a ∈ Σ.⊥ v a. We extend v to a
partial order on trees by:

s v t := ∀w ∈ dom(s).(w ∈ dom(t) ∧ s(w) v t(w)).

For example, ⊥ v f ⊥⊥ v f ⊥ b v f a b. For a directed
set T of trees, we write

⊔
T for the least upper bound of

elements of T with respect to v. We define the tree generated
by G, or the value tree of G, by [[G]] :=

⊔
{t⊥ | S →∗G t}. By

construction, [[G]] is a possibly infinite (Σ∪{⊥})-labelled tree.
For n ≥ 0, we write RecSchTreeΣ

n for the class of Σ-labelled
trees generated by order-n recursion schemes.

Example 3 (Order-2 recursion scheme). Take Σ =
{f : 2, g : 1, a : 0}, with rewrite rules:

f

g f

a g f

g g f

a g
...

g

g

a

S → F g
B ϕψ x → ϕ (ψ x)

F ϕ → f (ϕa) (F (B ϕϕ))

where B : (o → o) → (o → o) →
o → o and F : (o → o) → o. The
value tree, [[G2]] : {1, 2}∗ −→ Σ, is
shown on the right.

Historical remark: The precursor of higher-order recursion
schemes is program schemes. Much studied in the 1970s,
program schemes are a program calculus that separates control
structure and operations on data, thus providing a framework
for investigating the descriptive power of control structures and
program transformation. The idea of program schemes can be
traced back to the pioneering 1960 paper of Ianov [50], which
inspired early work in the cateogry-theoretic and algebraic
semantics of program schemes and related formalisms [35],
[89], fixpoint theory and induction principles [78], and the
question of decidability of equivalence of program schemes
[80], [67]. There is a large literature (for example [32], [72],
[24], [23], [44]) throughout the 1970s on the semantics of
program schemes, using a variety of approaches including
operational, denotational, algebraic and automata-theoretic. In
the late 1970s, Indermark, Damm and others [27], [29], [28],
[38], [39] studied program schemes that are constrained by
a family of simple types, as generators of hierarchies of
word and tree languages. For a survey of the early work, see
Courcelle’s handbook article [21].

B. The Hierarchy of Higher-Order Pushdown Automata

Higher-order pushdown automata were introduced by
Maslov [68], [69] as a generalisation of pushdown automata
and nested pushdown automata. Let Γ be a stack alphabet that
contains a distinguished bottom-of-stack symbol ⊥. An order-0
stack is just a stack symbol. An order-(n+ 1) stack is a non-
null sequence (written [s1 · · · sl]) of order-n stacks. We often
abbreviate order-n stack to n-stack, and write n-StackΓ for
the set of n-stacks over Γ. As usual, ⊥ cannot be popped from
or pushed onto a stack. (Thus an order-1 stack is a non-null
sequence [a1 · · · al] of Γ-symbols such that for all 1 ≤ i ≤ l,

ai = ⊥ if and only if i = 1.) We define ⊥k, the empty k-stack:
⊥0 := ⊥ and ⊥k+1 := [⊥k]. When displaying examples of
n-stacks, we omit ⊥ to avoid clutter.

The operations on 1-stacks, namely, pushZ1 with Z ∈ Γ \
{⊥}, pop1 and top1, are standard. For n ≥ 2, the following
operations are defined on n-stacks. Let 1 ≤ k < n, 2 ≤ k′ < n
and Z ∈ Γ \ {⊥}.

pushn [s1 · · · si−1 si] = [s1 · · · si−1 si si]

popn [s1 · · · si−1 si] = [s1 · · · si−1]

pushk′ [s1 · · · si−1 si] = [s1 · · · si−1 pushk′ si]

pushZ1 [s1 · · · si−1 si] = [s1 · · · si−1 push
Z
1 si]

popk [s1 · · · si−1 si] = [s1 · · · si−1 popk si]

topn [s1 · · · si−1 si] = si

topk [s1 · · · si−1 si] = topk si

For 1 ≤ k ≤ n, the operation popk is undefined on any n-
stack such that its top k-stack (or the n-stack itself, in case
k = n) has only one element. For example pop2[[⊥αβ]]
and pop1[[⊥αβ][⊥]] are both undefined. For n ≥ 0, we
define the set Opn of order-n stack operations:

Op1 := {pushZ1 | Z ∈ Γ \ {⊥}} ∪ {pop1}
n ≥ 2, Opn := {pushk, popk | 2 ≤ k ≤ n} ∪Op1.

Our aim in this subsection is to define higher-order push-
down automata as generators of possibly infinite ranked trees.
We first introduce a general notion of store system.

Definition 4. A store system is a tuple 〈Γ,StoreΓ,Op, top,⊥〉
where Γ is a (finite) store alphabet, StoreΓ is a set of stores
notionally generated from Γ, Op is a set of store operations
which are partial functions StoreΓ ⇀ StoreΓ, top : StoreΓ →
Γ is a read function, and ⊥ ∈ StoreΓ is the initial store.

For n ≥ 0, the tuple 〈Γ, n-StackΓ,Opn, top1,⊥n〉, which
we shall call the system of order-n stacks over Γ, is a store
system. Another example is the system of order-n collapsible
stacks, which we will introduce in Section III. The semi-
infinite tape (of a Turing machine) and the FIFO queue (of
a Minsky machine) are also examples of store system.

Fix a ranked alphabet Σ with m := max {ar(f) | f ∈ Σ}.
The branch language [20] of a Σ-labelled ranked tree t is a set
of finite and infinite words that represent its maximal paths (or
branches). Formally the branch language of t : dom(t) → Σ
consists of:

- infinite words (f1, d1)(f2, d2) · · · such that there exists
d1 d2 · · · ∈ {1, · · · ,m}ω with t(d1 · · · di) = fi+1 and di+1 ≤
ar(fi+1) for every i ≥ 0, and

- finite words (f1, d1) · · · (fn, dn) fn+1 such that there ex-
ists d1 · · · dn ∈ {1, · · · ,m}∗ with t(d1 · · · di) = fi+1 for
every 0 ≤ i ≤ n, di ≤ ar(fi) for every 1 ≤ i ≤ n, and
ar(fn+1) = 0.

For example, the branch language of the tree generated
by the recursion scheme G1 of Example 2 is {(f, 2)ω} ∪
{(f, 2)n (f, 1) (g, 1)n a | n ≥ 0}. It follows from the definition

that two ranked trees are equal if, and only if, they have the
same branch language.

Definition 5. (i) Let S = 〈Γ,StoreΓ,Op, top,⊥〉 be a
store system. A tree-generating S-automaton is a tuple A =
〈S, Q,Σ, δ, qI〉 where Q is a finite set of states, qI ∈ Q is the
initial state, Σ is a ranked alphabet, and

δ : Q×Γ −→ (Q×Op ∪ {(f, q1 · · · qar(f)) | f ∈ Σ, qi ∈ Q})

is a transition function. A configuration is either a pair
(q, s) where q ∈ Q and s ∈ StoreΓ, or a triple of the
form (f, q1 · · · qar(f), s) where f ∈ Σ and q1 · · · qar(f) ∈
Q∗. Let Σ be the label set {(f, i) | f ∈ Σ, 1 ≤ i ≤ ar(f)} ∪
{a ∈ Σ | ar(a) = 0}. We define the labelled transition relation
between configurations induced by δ:

(q, s)
ε−→ (q′, θ(s)) if δ(q, top s) = (q′, θ)

(q, s)
ε−→ (f, q, s) if δ(q, top s) = (f, q) and ar(f) ≥ 1

(q, s)
a−→ (a, ε, s) if δ(q, top s) = (a, ε) and ar(a) = 0

(f, q, s)
(f,i)−−−→ (qi, s) 1 ≤ i ≤ ar(f)

Let w be a finite or infinite word over the alphabet Σ. We say
that w is a trace of A if there is a possibly-infinite sequence
of transitions (qI ,⊥)

`1−→ γ1 · · ·
`m−−→ γm

`m+1−−−→ · · · such that
w = `1`2 · · · . We say that A generates the Σ-labelled tree t
just if the branch language of t coincides with the set of traces
of A.

(ii) In case S = 〈Γ, n-StackΓ,Opn, top1,⊥n〉, we refer to
a tree-generating S-automaton as an order-n pushdown tree-
generating automaton (PDA) (or simply order-n pushdown
tree automaton) and specify it by the tuple 〈Γ, Q,Σ, δ, qI〉. For
n ≥ 0, we write PushdownTreeΣ

n for the class of Σ-labelled
ranked trees generated by order-n tree-generating pushdown
automata.

Example 6. The tree of Example 2 is generated by the order-
1 pushdown automaton 〈{Z,⊥}, {qI , q1, q2},Σ, δ, qI〉 where δ
is defined as follows:

(qI ,⊥) 7→ (f, q1 q2) (q2,⊥) 7→ pushZ1 ; (f, q1 q2)
(q1,⊥) 7→ (a, ε) (q1, Z) 7→ pop1 ; (g, q1).

(q2, Z) 7→ pushZ1 ; (f, q1 q2)

Expressivity: We conclude this subsection with a number
of equi-expressivity results. It turns out that the class of trees
generated by higher-order pushdown automata may be defined
equivalently using two other methods, thereby underlying its
robustness as a collection of trees.

In [54], Knapik, Niwiński and Urzyczyn introduced the
class SafeRecTreeΣ

n of Σ-labelled trees that are generated by
order-n homogeneously typed recursion schemes satisfying a
syntactic constraint called safety. (Homogeneous types and
safety are defined in Section II-B.) They proved that for
every n ≥ 0, SafeRecTreeΣ

n = PushdownTreeΣ
n . Thus

SafeRecTreeΣ
0 are the regular trees; and SafeRecTreeΣ

1 are
those that are generated by order-1 pushdown automata.

At about the same time, Caucal [17] introduced a hierarchy
of trees and a hierarchy of graphs, which are defined by

mutual recursion via a pair of powerful functions: the function
from graphs to trees is the standard unravelling operation,
and the function from trees to graphs is given by inverse
rational mappings. The construction starts from level 0 of
the graph hierarchy, which consists of finite graphs. Since the
functions preserve the decidability of monadic second-order
(MSO) theories, all structures in each of the two hierarchies
have decidable MSO theories. In addition Caucal [17] showed
that SafeRecTreeΣ

n coincides with CaucalTreeΣ
n , which consists

of Σ-labelled trees that are obtained from the regular Σ-
labelled-trees (i.e. trees from PushdownTreeΣ

0) by iterating
n-times the operation of inverse deterministic rational mapping
followed by unravelling. To summarise:

Theorem 7. For n ≥ 0, SafeRecTreeΣ
n = PushdownTreeΣ

n =
CaucalTreeΣ

n .

C. Homogeneous Types and the Safety Constraint

Safety [54] is a syntactic constraint on the rewrite rules of
a recursion scheme. Roughly speaking, it specifies whether a
formal parameter of a rewrite rule may occur in a subterm of
the RHS of the rule, depending on the position of the subterm,
and the respective orders of the parameter and the subterm.

Definition 8. (i) A type A1 → · · · → An → o is
homogeneous if each Ai is homogeneous, and ord(A1) ≥
ord(A2) ≥ · · · ≥ ord(An). It follows that the base type
o is homogeneous. A term (or a rewrite rule or a recursion
scheme) is homogeneously typed if all types that occur in it
are homogeneous.

(ii) A rewrite rule F y1 · · · yk → t is safe if for each
subterm s of t that occurs in the operand position (i.e. as
the second argument) of an application, for every 1 ≤ j ≤ k,
if the parameter yj occurs in s then ord(s) ≤ ord(yj).

(iii) A recursion scheme is safe if it is homogeneously typed
and all its rewrite rules are safe.

For example, the order-2 rule

F ϕx y → f (F (F ϕy) y (ϕx)) a

where F : (o → o) → o → o → o and f : o → o → o,
is unsafe because the order-0 parameter y occurs in the
underlined order-1 subterm, which is in an operand position.
Note that it follows from the definition that order-0 and order-
1 recursion schemes are always safe. Safety may be regarded
as a reformulation of Damm’s derived types [28]; see de
Miranda’s thesis [33] for a proof of equivalence.

Remark 9. The definition of safe recursion schemes by
Knapik et al. [54] assumes that all types are homogeneous.
In an unpublished note [8], Blum and Broadbent have shown
that (i) homogeneity is a redundant condition for safety:
for generating ranked trees, homogeneously-typed safe recur-
sion schemes are equi-expressive as safe recursion schemes,
(ii) homogeneity is redundant in general i.e. homogeneously-
typed unsafe recursion schemes are equi-expressive as unsafe
recursion schemes.

What is the point of safety? Though somewhat unwieldy
as a syntactic constraint, safety does have a clear algorithmic
value. It is a well-known fact of symbolic logic and formal
systems such as the lambda calculus that capture-permitting
substitution is unsound. Therefore, when performing substitu-
tion, one must take care to avoid variable capture, for example,
by renaming bound variables. Remarkably, in safe recursion
schemes, it is a relatively straightforward consequence of
the definition that capture-permitting substitution is sound; in
other words, it is safe not to rename bound variables. It follows
that no fresh names are needed when computing the value tree
of a safe recursion scheme. Knapik et al. [54] used this fact
in their proof of the decidability of the MSO theories of the
value trees of safe recursion schemes.

In view of their algorithmic advantage (namely, space
efficiency), it is pertinent to ask if safe recursion schemes
are less expressive. The safe lambda calculus [9], [7] is a
formalisation of safety as a subsystem of the simply-typed
lambda calculus. Blum and Ong [9] showed that, using Church
numerals, the numeric functions representable by the simply-
typed safe lambda-terms are exactly the multivariate polyno-
mials. This should be contrasted with the classical result of
Schwichtenberg [88]: the numeric functions representable by
simply-typed lambda-terms are the multivariate polynomials
augmented with conditionals. For a systematic study of the
safe lambda calculus, including its expressivity, complexity,
(game) semantics and categorical characterisation, see Blum’s
doctoral thesis [7].

D. Maslov’s Pushdown Hierarchy of Word Languages

In the original 1974 paper [68], Maslov mentioned in
brief several formalisms that are equivalent to higher-order
pushdown automata. In a subsequent paper in 1976 [69],
he set out the details of one such formalism, called higher-
order indexed grammars. Using a key operation of “raising
a language to a power given by another language”, higher-
order indexed grammars generalise Aho’s indexed grammars
[5] (which are the order-2 indexed grammars) to all finite
orders; further, infinite-order indexed grammars define exactly
the recursively enumerable languages.

By viewing a word as a linear tree i.e. a tree with branching
factor at most one, we can use (nondeterministic) recursion
schemes as generators of finite-word languages. In [27], [28],
Damm studied a system of recursion schemes that are con-
strained by derived types. Damm and Goerdt [28], [30] showed
that, as generators of word languages, order-n safe recursion
schemes are equivalent to order-n pushdown automata, which
are in turn equivalent to order-n indexed grammars.

Theorem 10 (Maslov 1976, Damm 1982, and Damm &
Goerdt 1986). For each n ≥ 0, the following formalisms define
the same class of word languages:

(i) order-n pushdown automata
(ii) order-n indexed grammars

(iii) order-n safe recursion schemes.

The low-order languages of Maslov’s pushdown hierarchy
are well-known. The order-2 languages are indexed languages;
much studied in the 1970s and early 1980s ([47], [40], [77],
[34]), they remain of interest to computational linguistics.

Several basic properties of the pushdown hierarchy of word
languages were proved by Maslov [68], [69].

Theorem 11 (Maslov 1974). Let n ≥ 0.
(i) The emptiness problem for order-n PDA is decidable.
(ii) The order-n languages form an abstract family of

languages1.
(iii) Higher-order PDA define an infinite hierarchy of word

languages.

Much of what is known about the complexity of languages
recognisable by automata with higher-order stacks (and other
auxiliary memory) is due to Engelfriet. His seminal paper
[37] contains a wealth of results. We pick out a few that
underpin the algorithmics of infinite structures generated by
higher-order pushdown automata (PDA).

Theorem 12 (Engelfriet 1991). Let s(n) ≥ log(n).

(i) For k ≥ 0, the word acceptance problem of nondetermin-
istic order-k PDA with a two-way work-tape with s(n)
space is k-EXPTIME complete.

(ii) For k ≥ 1, the word acceptance problem of alternating
order-k PDA with a two-way work-tape with s(n) space
is (k − 1)-EXPTIME complete.

(iii) For k ≥ 0, the word acceptance problem of alternating
order-k PDA is k-EXPTIME complete.

(iv) For k ≥ 1, the emptiness problem of nondeterministic
order-k PDA is (k − 1)-EXPTIME complete.

Recent advances: Kartzow and Parys [53] established a
pumping lemma for the ε-closure of collapsible pushdown
graphs at each order. As a corollary, they constructed the first
examples that separate the orders of the collapsible pushdown
tree and graph hierarchies. Using a pumping lemma based on
an intersection type system for reasoning about the reduction
of λ-terms, Kobayashi [61] obtained an alternative proof of the
strictness of the hierarchy of trees generated by higher-order
recursion schemes (equivalently by collapsible pushdown tree
automata, thanks to Theorem 23).

Another significant development was the following [51].

Theorem 13 (Inaba and Maneth 2008). Every word language
of the Maslov Hierarchy is context sensitive.

By considering word languages in the image of iterated
composites of macro tree transducers, Inaba and Maneth [51]
show that languages of the Hierarchy are in nondeterministic
linear space (and so context sensitive) and NP-complete.

Are word languages generated by unsafe recursion schemes
also context sensitive? Thanks to [3], we know that for

1An abstract family of languages is a collection of languages closed
under union, concatenation, Kleene star, intersection with regular languages,
homomorphism and inverse homomorphism.

generating word languages, order-2 nondeterministic safe re-
cursion schemes are equi-expressive as order-2 unsafe recur-
sion schemes. The case of order 3 was recently settled by
Kobayashi et al. [63].

Theorem 14 (Kobayashi, Inaba and Tsukada 2014). The tree
languages generated by order-2 unsafe recursion schemes are
context sensitive. Hence order-3 unsafe word languages are
context sensitive.

Their proof uses intersection types to construct transforma-
tions of recursion schemes.

III. MODEL CHECKING RECURSION SCHEMES

What classes of infinite structures have decidable monadic
second-order (MSO) theories? One of the best known (and
first) examples of such a class are the regular trees as studied
by Rabin in a landmark paper in 1969 [82]. Muller and Shupp
[70] subsequently proved that the configuration graphs of
pushdown systems also have decidable MSO theories. In the
1990s, as finite-state technologies matured, researchers turned
their attention to software verification and hence infinite-
state model checking. A highlight was Caucal’s result [16]
that prefix-recognisable graphs (equivalently the ε-closure of
configuration graphs of pushdown systems) have decidable
MSO theories. Another concerned algebraic trees, which are
trees generated by context-free tree grammars. Courcelle [22]
showed that these trees have decidable MSO theories. In 2002,
work by Knapik et al. [54] and Caucal [17] significantly
extended and unified earlier developments.

Theorem 15 (Knapik et al. 2002 & Caucal 2002). For each
n ≥ 0, all trees in SafeRecTreeΣ

n = PushdownTreenΣ =
CaucalTreeΣ

n have decidable MSO theories.

We give an outline of the proof [54] which is by induction
on n. Given an order-(n+1) safe recursion scheme G, consider
an associated tree, call it iG, which is obtained by contracting
all the order-1 β-redexes in the rewrite rules of G. The tree
iG coincides with the tree generated by an order-n recursion
scheme Gα i.e. iG = [[Gα]]; further the MSO theory of the
original order-(n + 1) tree [[G]] is reducible to that of the
order-n tree [[Gα]] i.e. there is a computable transformation
of MSO sentences ϕ 7→ ϕ′ such that [[G]] � ϕ iff [[Gα]] � ϕ′

[54]. Thanks to the safety assumption, it is sound to contract
β-redexes using capture-permitting substitution i.e. without
renaming bound variables. It follows that one can construct
the tree iG using only the original variables of the recursion
scheme G. The same construction on an arbitrary recursion
scheme would require an infinite set of fresh variable names.

Some Key Questions: Assuming safety, recursion schemes
have decidable MSO theories, and their expressivity is charac-
terised by higher-order pushdown automata. Yet safety seems
an unnatural condition, both syntactically and semantically.
Is safety really essential for these desirable properties? We
consider a number of key questions.

Q1. MSO Decidability: Do trees generated by recursion
schemes have decidable MSO theories?

Q2. Automata-Theoretic Characterisation: Find a class of
automata that characterise the expressive power of recursion
schemes. Specifically, can higher-order pushdown automata be
so extended that they define the same class of ranked trees as
recursion schemes?

Q3. Graph Families: Is there a good definition of graphs
generated by recursion schemes? We expect the unravelling
of these graphs to coincide with the value trees of recursion
schemes. What theories of these graphs are decidable?

Q4. Expressivity: Does safety really constrain expressivity?
Are there inherently unsafe word languages / trees / graphs?

The rest of the section is devoted to these questions.

A. MSO Decidability

A first partial answer to Q1 was obtained by Aehlig et
al. [4]; they showed that all trees up to order 2, whether safe or
not, and whether homogeneously typed or not, have decidable
MSO theories. Independently, Knapik et al. obtained a slightly
stronger result [55]. The question was answered positively by
Ong [73].

Theorem 16 (Ong 2006). For each n ≥ 0 the modal mu-
calculus model checking problem for trees generated by order-
n recursion schemes (i.e. given an order-n recursion scheme
G and a mu-calculus formula ϕ, does [[G]] satisfy ϕ at the
root?) is n-EXPTIME complete.

Since MSOL and the modal mu-calculus are equi-expressive
over trees, it follows that these trees have decidable MSO
theories. In the following we sketch a proof of the theorem.

Thanks to Emerson and Jutla [36], we can reduce the
mu-calculus model checking problem to an alternating parity
tree automaton (APT) acceptance problem: Given an order-n
recursion scheme G and an APT B, does B have an accepting
run-tree over the generated tree [[G]]? The proof has two main
ingredients.

I. The first is a transference principle from the value tree
to an auxiliary computation tree, which is regular. Using game
semantics [49], we establish a strong correspondence between
paths in the value tree and traversals in the computation tree.
This allows us to prove that the APT B has an accepting run-
tree over the value tree if, and only if, it has an accepting
traversal-tree over the computation tree.

II. The second ingredient is the simulation of an accepting
traversal-tree by a certain set of annotated paths over the
computation tree: we construct a traversal-simulating APT,
B̂, as a recognising device for this set of paths.

Thus the APT B has an accepting run-tree over [[G]] if,
and only if (thanks to I), B has an accepting traversal-tree
over the computation tree λ(G) if, and only if (thanks to II),
the traversal-simulating APT B̂ has an accepting run-tree over
λ(G), which is decidable, because the tree λ(G) is regular.

Model Checking via Intersection Types

In [57], Kobayashi and Ong gave a different proof of
Theorem 16 that uses idempotent intersection types. They
exhibit a transformation that, given an alternating parity tree

automaton (APT) A, effectively constructs a type system KA
such that a recursion scheme is typable in KA if, and only
if, the tree it generates is accepted by the APT A. The model
checking problem is thus reduced to a type checking problem.
We present the type system KA as follows.

Definition 17. Fix an APT A = 〈Σ, Q, δ, qI ,Ω〉 where Q
is a set of states, qI ∈ Q is the initial state, δ : Σ ×
Q → B+({1, · · · ,M} × Q) is the transition map (where
M = max {ar(f) : f ∈ Σ}, and B+(X) is the set of positive
Boolean formulas over X), and Ω : Q→ {0, 1, · · · , p} is the
priority map. The (raw) intersection types are defined by:

θ ::= q | τ → θ

τ ::=
∧
{(θ1,m1), · · · , (θk,mk)} (written

∧k
i=1 (θi,mi))

where q ∈ Q and m ∈ {0, · · · , p} (the priorities of A).
We extend the priority map Ω of A to intersection types
by Ω(τ → θ) := Ω(θ). Henceforth we restrict ourselves to
intersection types that refine simple types. To capture these
types, we say that an intersection type τ (respectively, prime
intersection type θ) is well-formed if (i) τ :: κ (respectively,
θ ::pκ) for some κ, and (ii) for each subexpression of the form
(
∧k
i=1 (θi,mi)) → θ′, we have mi ≥ max(Ω(θ′),Ω(θi) for

each 1 ≤ i ≤ k; where the refinement relations, τ :: κ and
θ ::p κ, are defined by induction over the rules:

q ∈ Q
q ::p o

τ :: κ1 θ ::p κ2

τ → θ ::p κ1 → κ2

θi ::p κ (∀1 ≤ i ≤ n)∧n
i=1(θi,mi) :: κ

Typing judgements of the system KA have the form
Γ `A s : θ where the environment Γ is a set of bindings
x : (θ,m) with x ranging over Var (we assume N ⊂ Var).
Valid judgements are defined by induction over the following
rules. We write Γ, x :

∧k
i=1(θi,mi) as a shorthand for

Γ ∪ {x : (θ1,m1), · · · , x : (θk,mk)} where x is assumed not
to occur in Γ.

x : (θ,Ω(θ)) `A x : θ

{(i, qij) | 1 ≤ i ≤ n, j ∈ Ji} satisfies δ(q, a)
mij = max(Ω(qij),Ω(q)) (1 ≤ i ≤ n, j ∈ Ji)

∅ `A a :
∧
j∈J1(q1j ,m1j)→ · · · →

∧
j∈Jn(qnj ,mnj)→ q

Γ0 `A s :
∧
i∈I(θi,mi)→ θ Γi `A t : θi (∀i ∈ I)

Γ0 ∪
⋃
i∈I(Γi ⇑ mi) `A s t : θ

Γ, x :
∧
i∈I(θi,mi) `A t : θ I ⊆ J

Γ `A λx.t :
∧
i∈J(θi,mi)→ θ

where Γ ⇑ m := {F : (θ,max(m,m′)) | F : (θ,m′) ∈ Γ}.
Now given a recursion scheme G = 〈Σ,N ,R, S〉 (for each

F x1 · · ·xn → e in R, we write R(F) := λx1 · · ·xn.e.), we
define a parity game

G(A,G) = 〈VV, VR, (S, qI ,Ω(qI)), E,Ω
′〉

as follows.

VV = {(F, θ,m) | F : κ ∈ N , θ ::p κ}
VR = {Γ | ∀F : (θ,m) ∈ Γ.F : κ ∈ N ∧ θ ::p κ}
E = {((F, θ,m),Γ) | Γ `A R(F) : θ}
∪ {(Γ, (F, θ,m)) | F : (θ,m) ∈ Γ}

and the priority function Ω′ maps (F, θ,m) to m and Γ to 0.
We say that G is typable in KA if Player V has a winning
strategy for G(A,G).

The parity game G(A,G) may be understood intuitively as
follows. Player V (Verifier) tries to prove that the recursion
scheme is typable, and Player R (Refuter) tries to disprove it.
At a node (F, θ,m), Player V has to choose an environment
Γ under which R(F) has type θ. Player R then chooses a
binding F ′ : (θ′,m′) from Γ, and challenges V to show why
F ′ has type θ′, and then it is again V’s turn to choose an
environment Γ′ under which R(F ′) has type θ′. The play
either continues indefinitely or ends when one of the players
is unable to move. Player V wins a play if at some point,
she chooses the empty environment (so that R cannot choose
a binding), or if the play is infinite and satisfies the parity
condition: the largest priority occurring infinitely often is even.
The recursion scheme is typable if Player V has a strategy that
wins every play, regardless of Player R’s choice.

The main result in [57] is the following.

Theorem 18 (Kobayashi & Ong 2009). Given a ranked
alphabet Σ, there is an algorithm that, given an APT A,
constructs a type system KA such that for every recursion
scheme G, A accepts [[G]] if, and only if, G is typable in KA.

Example 19. Take Σ and G1 of Example 2, and take APT
A1 = 〈Σ, {q0, q1}, δ1, q0, {q0 7→ 2, q1 7→ 1}〉 where, for each
q ∈ {q0, q1}, δ1 : (q, a) 7→ true, (q, f) 7→ (1, q) ∧
(2, q), (q, g) 7→ (1, q1).

(i) Then A1 accepts a Σ-labelled tree t if, and only
if, in every path of t, a occurs eventually after g oc-
curs. Note that it has a unique infinite path labelled by
(ε, q0)(2, q0)(22, q0)(222, q0) · · ·, which satisfies the parity
condition.

(ii) Set θ = (q0, 2) ∧ (q1, 2) → q0. Then the following
judgements are valid:

F : (θ, 2) `A1
F a : q0

F : (θ, 2) `A1
λx.f x (F (g x)) : θ

A (positional) winning strategy for the parity game G(A1,G1)
is given by: (S, q0, 2) 7→ {F : (θ, 2)}, (F, θ, 2) 7→
{F : (θ, 2)}.

The standard typing for recursion can be considered a
degenerate case of our definition (using parity games), where
all the priorities are 0. In fact, our type system KA specialises
to Kobayashi’s system [59] when 0, or any even number, is the
only priority. An advantage of this model checking algorithm
is that it has an improved parameterised complexity: the time
complexity is polynomial in the size of the recursion scheme,
assuming that the types and the APT are fixed.

Other Proofs of the Decidability Theorem: Several other
proofs of Theorem 16 have been published.

In [45], Hague et al. give a proof by reducing the modal mu-
calculus model checking of recursion schemes to the problem
of solving parity games over the configuration graphs of
collapsible pushdown automata.

Salvati and Walukiewicz [84] give yet another proof of The-
orem 16. They consider trees generated by ground-type λY-
terms, and use Krivine machine as a model of computation.
Their proof is by reducing the problem of solving a parity
game over the configurations of a Krivine machine to that of
solving a finite parity game.

Complexity of Higher-Order Model Checking: As already
mentioned, the worst-case time complexity of the modal mu-
calculus model checking of order-n recursion schemes is
n-EXPTIME complete [73]. This is so even for safe re-
cursion schemes, and also for model checking with respect
to alternating trivial automata (i.e. APT that have an even
number as their only priority). However the complexity is
(n − 1)-EXPTIME complete with respect to deterministic
trivial automata. If the largest arity of the terminal symbols and
the size of the formula are both fixed, then the time complexity
is polynomial in the size of the recursion scheme [57]. Under
the same assumption, for the class of trivial automata, the
time complexity is linear in the size of the recursion scheme
[58]. For other results on the complexity of higher-order model
checking, we refer the reader to [65], [46].

B. Automata-Theoretic Characterisation

We aim to answer Q2 in this subsection. Collapsible
pushdown automata (CPDA) are a variant of higher-order
pushdown automata in which every symbol in the stack has
a link to a prefix of the stack. In addition to the higher-order
stack operations pushi and popi, CPDA have an important
operation called collapse, whose effect is to “collapse” the
stack s to the prefix indicated by the link from the top1(s).
The main result is that for every n ≥ 0, order-n recursion
schemes and order-n CPDA are equi-expressive as generators
of ranked trees.

Let Γ be a stack alphabet and n ≥ 1. An order-n collapsible
stack s is an order-n stack such that every non-⊥ symbol that
occurs in it has a link to a collapsible stack (of order k) situated
below it in s; we call the link a (k + 1)-link. Note that k is
necessarily less than n. We shall abbreviate order-n collapsible
stack to n-stack, whenever it is clear form the context. The
empty k-stack is defined as before. When displaying examples
of n-stacks, we shall omit ⊥ and 1-links (i.e. links to stack
symbols) to avoid clutter; thus we write [[][a b]] instead
of ⊥ a b

For n ≥ 2 the set Op†n of order-n operations on collapsible
stacks consists of the following four types of operations:

(i) popk for each 1 ≤ k ≤ n
(ii) collapse

(iii) pusha,k1 for each 1 ≤ k ≤ n and each a ∈ (Γ \ {⊥})
(iv) pushj for each 2 ≤ j ≤ n.

The operation popi is defined as before in Section II-B. Let
s be an n-stack and 2 ≤ i ≤ n. To construct pusha,i1 s, we first
attach a link from a fresh copy of a to the (i−1)-stack that is
immediately below the top (i−1)-stack of s, and then push the
symbol-with-link onto the top 1-stack of s. As for collapse,
suppose the top1-symbol of s has a link to a (particular
occurrence of) k-stack u in s. Then collapse s causes s to
“collapse” to the prefix s0 of s such that topk+1 s0 = u.
Finally, for j ≥ 2, the order-j push operation, pushj , simply
takes a stack s and duplicates the top (j − 1)-stack of s,
preserving its link structure.

Example 20. Take the 3-stack s = [[[a]] [[][a]]]. We
have (to avoid clutter, we only display the important links)

pushb,21 s = [[[a]] [[] [a b]]]

collapse (pushb,21 s) = [[[a]] [[]]]

pushc,31 (pushb,21 s)︸ ︷︷ ︸
θ

= [[[a]] [[] [a b c]]]

Then push2 θ and push3θ are respectively

[[[a]] [[] [a b c][a b c]]]

[[[a]] [[] [a b c]][[] [a b c]]] .

We have collapse (push2 θ) = collapse (push3 θ) =
collapse θ = [[[a]]].

As in the case of order-n stacks, the tuple
〈Γ, n-Stack†Γ,Op†n, top1,⊥n〉 is called the system of order-n
collapsible stacks, which is an abstract store system. We
shall use automata equipped with order-n collapsible stacks
to define word languages and trees, and (in Section III-C)
infinite graphs.

Definition 21. Let S = 〈Γ, n-Stack†Γ,Op†n, top1,⊥n〉 be
the system of order-n collapsible stacks over Γ. We refer
to a word-language S-automaton 〈S, Q,Σ,∆, qI , F 〉 as an
order-n collapsible pushdown word-language automaton, and
specify it as 〈Γ, Q,Σ,∆, qI , F 〉. Similarly we refer to a
tree-generating S-automaton 〈S, Q,Σ, δ, qI〉 as an order-n
collapsible pushdown tree-generating automaton, and specify
it as 〈Γ, Q,Σ, δ, qI〉.

Example 22 (Aehlig, de Miranda and Ong 2005). We define
the language U over the alphabet {(,), ∗} as follows. A U -
word is composed of 3 segments:

(· · · (· · · (︸ ︷︷ ︸
A

(· · ·) · · · (· · ·)︸ ︷︷ ︸
B

∗ · · · ∗︸ ︷︷ ︸
C

- Segment A is a prefix of a well-bracketed word that ends in
(, and the opening (is not matched in the (whole) word.

- Segment B is a well-bracketed word.
- Segment C has length equal to the number of (in A.

qI ,[[]]
(→ q1,[[][Z]]

(→ q1, [[][Z] [Z Z]]
(→ q1,[[][Z][Z]]

)→ q1, [[][Z][Z] [Z Z]]

(→ q1, [[][Z][Z] [Z Z] [Z Z Z]]

(→ q1, [[][Z][Z] [Z Z] [Z Z]]
∗→ q2,[[][Z][Z]]
∗→ q2,[[][Z]]
∗→ q2,[[]]

Fig. 1. The computation of the U -word (() (() ∗ ∗ ∗.

It is a consequence of the definition that every U -word has
a unique decomposition. For example, (() (() (()) ∗ ∗ ∗ is
in U ; its B-segment is underlined. For each n ≥ 0, the word
((n)n (∗n ∗ ∗ is in U , the respective B-segments are all empty.

The language U is recognisable by a deterministic order-
2 CPDA 〈{qI , q1, q2}, {(,), ∗}, {⊥, Z}, δ, qI , {q2}〉, where δ :
Q× Σ× Γ→ Op∗n ×Q is as follows:

(qI , (,⊥) 7→ (push2 ; pushZ1 , q1) (q1,), Z) 7→ (pop1, q1)

(q1, (, Z) 7→ (push2 ; pushZ1 , q1) (q2, ∗, Z) 7→ (pop2, q2)
(q1, ∗, Z) 7→ (collapse, q2)

The idea is that the pair (q1, Z) ∈ Q × Γ indicates that the
number of “(” read, minus the number of “)” read, is at least
one. Note that (q1,⊥) indicates a “stuck configuration” which
is reachable upon reading e.g. (). To illustrate, we present the
computation of the U -word (() (() ∗ ∗ ∗ in Figure 1. (In the
figure, we only display certain links.)

It follows from [3] that U is recognisable by a non-
deterministic order-2 pushdown automaton. This illustrates the
power of collapse.

The main result of this subsection is the following equi-
expressivity result [45].

Theorem 23 (Hague, Murawski, Ong and Serre 2008). For ev-
ery n ≥ 0, order-n recursion schemes and order-n collapsible
pushdown tree automata define the same class of Σ-labelled
trees.

Since the construction of the CPDA-transform in the
scheme-to-automata translation is based on game semantics
[49], Theorem 23 also gives an automata-theoretic charac-
terisation of innocent strategies. There are several machine-
theoretic representations of innocent game semantics in the
literature: PAM, the Pointer Abstract Machine of Danos et
al. [31], may be viewed as an implementation of linear head
reduction of lambda-terms; Curien and Herbelin [25], [26]
used abstract Böhm trees as the basis of a family of abstract

machines. Compared to these machines, the characterisation
by CPDA seems clearly syntax-independent: contrast, for
example, the type-theoretic notion of order with the order of
collapsible stacks.

Blum and Broadbent [8] recently proved that if the recursion
scheme G is safe, then the CPDA-transform, CPDA(G), does
not use collapse in its computation. In [15], Carayol and Serre
gave a syntactic proof of Theorem 23. Their scheme-to-CPDA
translation does not use game semantics.

C. Parity Games over CPDA Configuration Graphs

Definition 24. (i) Let S = 〈Γ,StoreΓ,Op, top,⊥〉 be a
store system. An S-transition system is a tuple 〈S, Q,∆, qI〉
where Q is a finite set of control-states, qI ∈ Q is the initial
state, and ∆ ⊆ Q× Γ×Q×Op is the transition relation. A
configuration is a pair (q, s) where q ∈ Q and s ∈ StoreΓ;
and (qI ,⊥) is the initial configuration. The transition relation
∆ induces a (labelled) transition relation between configura-

tions according to the rule: (q, s)
(q′,θ)−−−→ (q′, θ(s)) provided

(q, top(s), q′, θ) ∈ ∆. The configuration graph of an S-
transition system is a directed graph whose vertices are the
configurations, and edge-set is the induced transition relation.

(ii) In case S = 〈Γ, n-StackΓ,Opn, top1,⊥n〉, the system
of order-n stacks over Γ, we refer to the configuration graphy
of the S-transition system 〈S, Q,∆, qI〉 as an order-n push-
down automaton graph (order-n PDA graph).

(iii) In case S = 〈Γ, n-Stack†Γ,Op†n, top1,⊥n〉, the sys-
tem of order-n collapsible stacks over Γ, we refer to the
configuration graph of a S-transition system 〈S, Q,∆, qI〉 as
an order-n collapsible pushdown automaton graph (order-n
CPDA graph).

Example 25 (An undecidable CPDA graph). Take the order-2
CPDA graph with state-set {0, 1, 2}, stack alphabet {a, b,⊥}
and transition relation given by

{(0,−, 1, t), (1,−, 0, a), (1,−, 2, b), (2, †, 2, 1), (2, †, 0, 0)}

where − means any symbol, † means any non-⊥ symbol, and
t, a, b, 0 and 1 are shorthand for the stack operations push2,
pusha,21 , pushb,21 , collapse and pop1 respectively. We present
its configuration graph (with edges labelled by stack operations
only) in Figure 2.

Let G = 〈V,E〉 be the configuration graph of an S-
transition system A, and QE∪QA be a partition of Q, and let
Ω : Q→ {0, · · ·M − 1} be a priority function. Together they
define a partition VE ∪ VA of V whereby a vertex belongs
to VE if and only if its control state belongs to QE, and a
priority function Ω : V → {0, · · · ,M − 1} where a vertex is
assigned the priority of its control state. We call the structure
G = 〈G,VE, VA〉 an order-n CPDA game graph and the pair
G = 〈G,Ω〉 an order-n CPDA parity game.

Another consequence of Theorem 23 is that it gives new
techniques for model checking or solving games played on
infinite structures generated by automata. In particular it leads
to new proofs or optimal algorithms for the special cases that
have been considered previously [97], [93], [55]. Actually, the

0[[]]
t // 1[[][]] a //

b��
0[[][a]]

t // 1[[][a][a]] a //
b��

0[[][a][a a]]
t // 1[[][a][a a][a a]] · · ·

b��
2[[][b]]

1��

0

ii

2[[][a][a b]]

1��

0

jj

2[[][a][a a][a a b]] · · ·
1��

0

ll

2[[][]] 2[[][a][a]]

1��

0

ll

2[[][a][a a][a a]] · · ·
1��

0

ll

2[[][a][]] 2[[][a][a a][a]] · · ·
1��

0

ll

2[[][a][a a][]]

Fig. 2. A order-2 CPDA graph with an undecidable MSO theory

techniques of Walukiewicz [97] and Knapik et al. [55] can
be generalised to solve order-n CPDA parity games without
reference to Ong’s work [73]. Further they give effective
winning strategies for the winning player (which was not the
case in [55] where the special case n = 2 was considered).

Theorem 26 (Hague, Murawski, Ong and Serre 2008). The
problem of solving an order-n CPDA parity game is n-
EXPTIME complete. Furthermore one can build an order-n
collapsible pushdown transducer (i.e. automaton with output)
that realises a winning strategy for the winning player.

Remark 27. This result can be generalised to the case where
the game has an arbitrary ω-regular winning condition, and is
played on the ε-closure of the configuration graph of an order-
n CPDA graph. Consequently parity games on Caucal graphs
[17], [93] are a special case of this problem.

The Caucal graphs have decidable MSO theories [17]. Do
the configuration graphs of CPDA also have decidable MSO
theories?

Proposition 28 (Hague, Murawski, Ong and Serre 2008).
There is an order-2 CPDA whose configuration graph has
an undecidable MSO theory. Hence the class of ε-closure of
configuration graphs of CPDA strictly contains the Caucal
graphs.

For a proof, recall that MSO interpretation preserves MSO
decidability. Now consider the following MSO interpretation I
of the configuration graph of the order-2 CPDA in Example 25:

IA(x, y) = x
C−→ y ∧ x R−→ y IB(x, y) = x

1−→ y

with C = 1
∗
b a t b 1∗ and R = 0 t a 0 ∨ 1 0 t a 0 1.

With reference to Figure 3, note that for the A-edges, the
constraint C requires that the target vertex should be in the
next column to the right, while R specifies the correct row.
Observe that I’s image is the “infinite half-grid” which has an
undecidable MSO theory.

Decidability of first-order theories of CPDA graphs: While
order-2 CPDA graphs already have undecidable MSO theories,
Kartzow [52] has shown that first-order logic is decidable at
order 2. Surprisingly first-order logic ceases to be decidable
at order 3 and above [11].

Logical Reflection and Effective Selection: In [12] Broad-
bent et al. give the first characterisation of the winning regions

• A //

B
��

• A //

B
��

• A //

B
��

· · ·

• A // • A //

B
��

• A //

B
��

· · ·

• A // • A //

B
��

· · ·

• A // · · ·

Fig. 3. An infinite half-grid.

of order-n CPDA parity games: they are regular sets defined by
a class of automata. As a corollary, it is shown that recursion
schemes are reflective with respect to MSOL and modal mu-
calculus in the following sense.

Theorem 29 (Broadbent, Carayol, Serre and Ong 2010). There
is an algorithm that transforms a given property ϕ and a
recursion scheme G to a new recursion scheme Gϕ that reflects
ϕ, meaning that (i) [[Gϕ]] and [[G]] have the same underlying
tree, and (ii) the nodes that satisfy ϕ (and only those) have a
special label in [[Gϕ]].

Thus we may view Gϕ as a transform of G that can
“internally observe” its behaviour against a specification ϕ.

Carayol and Serre [15] have recently shown that the trees
generated by recursion schemes enjoy effective MSO selection,
a stronger property than logical reflection.

Theorem 30 (Carayol and Serre 2012). There is an algorithm
that transforms a given MSO formula ϕ(X) where X is a
second-order variable, and a recursion scheme G satisfying
[[G]] |= ∃X.ϕ(X), to a new recursion scheme Gϕ and a set U
of nodes such that (i) [[G]] and [[Gϕ]] have the same underlying
tree, and (ii) [[G]] |= ϕ(U), and (iii) the nodes from U (and
only those) have a special label in [[Gϕ]].

Thus the algorithm is a selector of a witness U of [[G]] |=
∃X.ϕ(X).

D. Does Safety Constrain Expressivity?

Plainly the hierarchy of trees generated by safe recursion
schemes is contained in the hierarchy of trees generated by
arbitrary recursion schemes. But is the containment strict? This

question was first raised by Knapik et al. [54] in 2002, and
their conjecture came to be known as the Safety Conjecture:
there are inherently unsafe trees. I.e. there is a tree, generated
by an unsafe recursion scheme, which is not generatable
by any safe recursion scheme. Central to the Conjecture is
the question of whether the syntactic constraint of safety
is also semantical; equivalently it concerns the expressive
power of the stack operation of collapse on higher-order
pushdown automata as tree generators. Though the Conjecture
was widely known (it was mentioned in [3], [55], [73] and
[45], among others) and considered important, virtually no
progress was made for nearly a decade. The Conjecture was
eventually proved by Parys [79] in 2012. He showed that there
is a word language (such as U in Example 22) recognised
by an order-2 deterministic collapsible pushdown automaton
which is not recognisable by any deterministic higher-order
pushdown automaton of any order. The following is then
obtained as a corollary.

Theorem 31 (Parys 2012). There exists a tree generated by an
order-2 RS (equivalently, by an order-2 collapsible pushdown
automaton), which is not generatable by any safe RS of any
order (equivalently, by any higher-order pushdown automaton
of any order).

IV. MODEL CHECKING HIGHER-TYPE BÖHM TREES &
COMPOSITIONAL HIGHER-ORDER MODEL CHECKING

This section is about recent developments in the model
checking of higher-type Böhm trees, compositional approaches
to higher-order model checking, and the related topic of model
checking by evaluation.

Like ordinary model checking, higher-order model checking
has mainly been a whole-program analysis, in both theory and
practice. This can seem surprising, since it contrasts with the
rôle of higher order as enabling modular structuring of pro-
grams. Hitherto, higher-order model checking algorithms can
analyse trees generated by recursion schemes (or equivalently
the Böhm trees of ground-type λY-terms with free variables
of order at most one), which are the computation trees of
ground-type functional programs that may contain higher-
order subterms. It is important to extend these algorithms to
model check the computation trees of higher-type functional
programs, which are trees with λ-binders i.e. higher-type
Böhm trees.

Compositional methods are typically guided and justified
by a denotational semantics. Since Böhm trees are themselves
models of the λ-calculus, we seek models that organise
themselves into a cartesian closed category. Further, these
models should be strategy aware, in the sense that they can
interpret not just Böhm trees, but also witnesses of correctness
properties of Böhm trees, namely, the accepting run trees
of alternating parity automata. Thus, in order to support
compositional higher-order model checking (and, in particular,
the model checking of higher-type Böhm trees) with respect
to ω-regular correctness properties, we need, in essence, a
cartesian closed category of parity games.

However the algorithmic analysis of Böhm trees seems
fraught with difficulties. The elegant theorems of “Rabin’s
Heaven” no longer hold: Example 32 presents a λY-definable
Böhm tree which has an undecidable MSO theory. Further-
more, Stirling’s alternating dependency automata [92], a model
of computation designed for the algorithmic analysis of Böhm
trees, have an undecidable emptiness problem [76].

Example 32. Let ∆ ` M :: (o → o) → o where ∆ = a ::
o, b :: o→ ((o→ o)→ o)→ o and

M = Y (λfo→(o→o)→o.λyo.λxo→o.b (x y) (f (x y))) a.

The Böhm tree of M , BT(M), is displayed in Figure 4. Notice
that in BT(M), infinitely many distinct names are required to
represent all variable bindings; furthermore each name occurs
infinitely often. When viewed as a graph, with back edges
representing variable binding, BT(M) has an undecidable
MSO theory [19].

λx1

b

x1 λx2

a b

x2 λx3

x1 b

a x3 λx4

x2

...

x1

a

Fig. 4. Figure of the Böhm tree, BT(M), of Example 32

A. Compositional Model Checking of Higher-type Böhm Trees

Tsukada and Ong [96] have recently introduced a compo-
sitional approach to the model checking of higher-type Böhm
trees with respect to a system of intersection types that refine
simple types. Parameterised by a finite set Q of base types, and
a winning condition 〈E,F,Ω〉 – an algebraic formulation of ω-
regular winning conditions, the intersection types are defined
by:

θ ::= q | τ → θ
τ ::=

∧n
i=1(θi, ei)

where n ≥ 0, q ∈ Q and ei ∈ E, the effect set. Note that
the intersection types are the same as those of Kobayashi and
Ong in Definition 17 [57], except that here they are generated
from a winning condition, as opposed to an alternating parity
automaton. A winning condition 〈E,F,Ω〉 is given by an
ordered ω-monoid [81],

〈E, ◦, ε,�E, F,�F, ~ : E× F→ F, π : Eω → F〉,

such that the monoid 〈E, ◦, ε〉 has left residuals (i.e. there is a
binary operation e\e′ such that e ◦ d �E e

′ ⇐⇒ d �E e\e′),
and Ω ⊆ F is a lower-closed subset of F; see [96] for the
definition. Every ω-regular winning condition (for example,
parity) corresponds to a winning condition 〈E,F,Ω〉, and vice
versa.

In [96] a notion of two-player game over Böhm trees, called
type-checking game, is introduced. Let U be a Böhm tree, θ
be an intersection type, and Γ be a finite partial map from
variables to intersection types such that dom(Γ) contains all
free variables of U ; we write Γ |= U : θ to mean “Verifier
has a winning strategy for the game that checks if U has type
θ under assumption Γ”. Type-checking games generalise the
standard property-checking games (e.g. parity games) which
are played over trees, to games which are played over trees
with binders.

Properties of the Type-Checking Game: We summarise the
key properties [96] as follows.

(1) The relation |= conservatively extends the MSO proper-
ties of Σ-labelled trees generated by recursion schemes [73],
or equivalently by ground-type λY-terms with free variables
of order at most one.

(2) Two-Level Compositionality [75]: If Böhm trees U and
V are composable, then the set of properties (i.e. intersection
types) of U ◦ V is completely determined by those of U and
of V . Furthermore if Γ |= U : θ and Γ |= V : θ′ imply
Γ |= U ◦ V : θ′′, then the winning strategies sθU of Γ |= U : θ
and sθ

′

V of Γ |= V : θ′ are composable, and yield a winning
strategy sθU ◦ sθ

′

V of Γ |= U ◦ V : θ′′.
(3) Effective Selection: If Γ |= BT(M) : θ then there

exists, constructively, a λY-definable winning strategy of
Γ |= BT(M) : θ.

(4) Transfer Theorem: A proof system for typing judge-
ments of the form, Γ ` M : θ, is introduced with proof rules
given in Figure 5, satisfying:

Γ `M : θ ⇐⇒ Γ |= BT(M) : θ.

Notation. In Figure 5, Γ′ � Γ is defined by pointwise extension
of a (decidable) subtyping relation θ � θ′, and e~Γ is defined
in terms of the semigroup action ~ : E × F → F of the ω-
monoid 〈E,F〉.

(5) Decidability of Type Checking λY-definable Böhm
Trees: It is decidable, given an arbitrary λY-term M , intersec-
tion type θ, and assumption Γ such that dom(Γ) contains the
free variables of M , whether Γ |= BT(M) : θ holds. Thanks to
the Transfer Theorem, the decidability of Γ |= M : θ follows
from the decidability of Γ `M : θ.

Example 33. With reference to the Böhm tree, BT(M), of
Example 32, consider the tree property ϕ = “in every branch,
there are only finitely many occurrences of bound variables”.
Let U be a Böhm tree of type (o → o) → o (for example,
BT(M)). Take the parity winning condition [96] consisting of
effects ordered as 2 ≺ 0 ≺ 1, and a single base type q. Then
U satisfies ϕ if, and only if, Γ � U : (((q, 1)→ q, 1)→ q, 0)
where Γ = a : (q, 1), b : ((q, 0)→ (((q, 1)→ q, 1)→ q, 0)→
q, 1). It is decidable whether a given U satisfies ϕ.

θ = θi & ε �E ei for some i where Γ(x) =
∧
i∈I(θi, ei)

Γ ` x : θ
Γ `M : τ → θ Γ ` N : τ

Γ `M N : θ

Γ, x : τ `M : θ

Γ ` λx.M : τ → θ

Γ′ � Γ Γ `M : θ θ � θ′
Γ′ `M : θ′

� BT(Y) : θ

Γ ` Y : θ

∀i ∈ I. Γ `M : (θi, ei)

Γ `M :
∧
i∈I(θi, ei)

Γ `M : θ
e~ Γ `M : (θ, e)

Fig. 5. Typing Rules for Type Checking Game

Cartesian Closed Category of Effect Arena Games: Given a
winning condition 〈E,F,Ω〉 and a finite set Q of ground types,
there is a cartesian closed category G(E,F,Ω) of effect arena
games. (In the proof that the category G(E,F,Ω) is well-defined,
the main technical lemmas are concerned with the preservation
of the winning condition by strategy composition.) A strategy-
aware two-level game model that can interpret intersection
types with effect annotations is then constructed from G(E,F,Ω).
The constructions are a straightforward adaptation of the two-
level constructions in [75].

The above list of properties of the type checking game are
proved semantically, by appealing to the two-level game model
[96].

On Transfer Theorem: In higher-order model checking, a
transfer theorem is a theorem stating that given a ranked
alphabet Σ, there is an effective transformation of FORM(Σ) (a
set of formulas over the vocabulary Σ) to FORM(Σ̂), ϕ 7→ ϕ̂,
such that for every closed ground-type λY-term M over Σ,
BT(M) satisfies ϕ if, and only if, M satisfies ϕ̂.

Salvati and Walukiewicz’s transfer theorem in [85] is actu-
ally stronger than the preceding statement, as the formula ϕ̂
is constructed for a certain infinite family of terms M . The
crux of their work lies in the MSO definability of the set of
(closed) λY-terms, {M ∈ Terms(Σ, T ,X) | BT(M) � ϕ},
for a given MSO formula ϕ, ranked alphabet Σ, a finite set
T of simple types, and a finite set X of variables, where
Terms(Σ, T ,X) is the set of closed λY-terms M over the
signature Σ such that all (bound) variables in M are from
X , and every subterm of M has a type in T . There are
earlier versions of transfer theorem in [73] (Theorem 16, as
encapsulated in the Transference Principle), and in [57] (see
Theorem 18).

B. Model Checking by Evaluating Effective Semantics

In recent work, Salvati and Walukiewicz have advocated
an approach to higher-order model checking via effective
denotational semantics of the λY-calculus. The first example
of such a (finite) semantics was given by Aehlig [2]; he
used the semantics to prove the decidability of higher-order
model checking with respect to trivial tree automata, which
are parity tree automata that have an even number as the
only priority (thus the acceptance condition is trivial). In [86],

Salvati and Walukiewicz studied the model checking problem
with respect to insightful trivial automata i.e. trivial automata
endowed with the ability to detect if a term has a head normal
form. (Aehlig’s [2] and Kobayashi’s [58] model checking
algorithms are for non-insightful trivial automata.) They show
that extremal (i.e. least or, dually, greatest) fixpoints in finitary
models of λY-calculus, which are built up from finite lattices
using monotone function spaces, capture precisely boolean
combinations of properties expressible in non-insightful triv-
ial automata. Thus to construct models for insightful trivial
automata, it is necessary to consider non-extremal fixpoints.

Building on [86], Salvati and Walukiewicz [87] have given a
type system for model checking the Böhm trees of ground-type
λY-terms with respect to formulas of weak MSOL (i.e. MSOL
with quantifications restricted to range over finite sets) or,
equivalently, weak alternating tree automata. The denotational
semantics underpinning the type system is obtained from the
finitary semantics of [86] by stratification according to the
ranks of the input weak alternating automaton, so that the
denotation of a term in stratum k captures the behaviour of
the term with respect to the automaton restricted to states of
rank at most k. The denotation of a fixpoint is then defined by
induction on the stratum levels: greatest fixpoint computation
on even levels, and least fixpoint computation on odd levels.
The (intersection) type system is related to the model in a
manner reminiscent of Abramsky’s domain theory in logical
form [1].

C. Linear Logic Models of Kobayashi-Ong Type System

Linear logic offers a powerful organisational principle for
semantics of (higher-order) computation. In recent work, Grel-
lois and Melliès have developed models of the type system
of Kobayashi and Ong [57] by adapting models of linear
logic [41]. In [42], they construct an infinitary variant of the
relational model of linear logic, based on a novel interpretation
of the exponential modality as the set of countable multisets.
The relational semantics is then extended with a notion of
priority given by an alternating parity tree automaton (APT).
In this extended model, a fixpoint operator is constructed using
a mixture of inductive and coinductive interpretations as regu-
lated by the priorities. The fixpoint operator satisfies some of
the fundamental equational properties of the fixpoint operators
in domain theory, such as (parameterised) dinaturality and
diagonality. In [43] they use results from [57] to show that
the denotation of a recursion scheme in this model contains
the initial state of a given APT if, and only if, the tree it
generates is accepted by the APT.

V. APPLICATIONS

In this section, we briefly discuss the application of higher-
order model checking to the verification of higher-order func-
tional programs.

Higher-order recursion schemes, or equivalently the λY-
calculus, are an appealing abstract model for model checking
higher-order programs. As we have seen in Section II, not
only do they have rich and decidable logical theories, they

accurately model higher-order control flow [45] and are highly
expressive. Indeed, in a precise sense, recursion schemes
are the higher-order analogue of Boolean programs, which
have played a successful rôle in the model checking of first-
order, imperative programs [6]. In an influential paper [59],
Kobayashi introduced a method for the verification of safety
properties of functional programs by reduction to the model
checking of recursion schemes with respect to trivial automata.
Techniques such as predicate abstraction [66] and CEGAR
[74] have been incorporated into the higher-order model
checking approach, enabling the safety verification of higher-
order programs that use infinite data domains and pattern-
matching algebraic data types.

In [58], Kobayashi presented a “practical” method for model
checking recursion schemes with respect to trivial automata
using an efficient type inference algorithm. A tool implemen-
tation of the algorithm, called TRECS, performs remarkably
well on a range of small but tricky examples, despite the hyper-
exponential worst-case complexity. There has been active
research in the development of higher-order model checking
algorithms in recent years. Kobayashi [60], and Neatherway,
Ramsay and Ong [71] have introduced algorithms, called
GTRECS and HORSC respectively, which are inspired by or
based on game semantics [73], [49]; Broadbent et al. [13] have
developed an algorithm C-SHORe that extends the saturation
method on pushdown graphs to a backward reachability anal-
ysis of CPDA graphs. In [14], a hybrid algorithm HORSAT
is proposed that (like TRECS) produces intersection type
certificates by a direct analyses of recursion schemes, but (like
C-SHORe) propagates information backwards by computing
pre-images via saturation, starting from target configurations.
However none of these algorithms can scale beyond recursion
schemes of several hundred rules. A breakthrough [83] was
achieved by a type inference method that employs a type-
directed form of abstraction refinement, and reasons simul-
taneously about acceptance by the property automaton and
acceptance by its dual. A prototype implementation of the al-
gorithm, called PREFACE, scales readily to recursion schemes
of several thousand rules. Recently two modifications were
made to HORSAT in [94] which significantly improved its
performance: linear-time collection of flow information using
a sub-transitive flow graph, and the use of zero-suppressed
binary decision diagrams for representing type information.

The framework of higher-order recursion schemes works
well for the model checking of simply-typed functional pro-
grams. In order to extend the analysis to programs of more
advanced type systems, Tsukada and Kobayashi [95] have
introduced an untyped version of recursion schemes and an in-
tersection type system that is equivalent to the model checking
of untyped recursion scheme (which is undecidable in general).
In a similar vein, motivated by the model checking of a
broader range of programs including object-oriented programs
and multithreaded programs, Kobayashi and Igarashi [62] have
introduced recursively-typed recursion schemes and a model
checking algorithm that is relatively complete with respect to
a recursive intersection type system.

VI. FURTHER DIRECTIONS

We conclude by discussing a number of open problems and
further directions.

a) Equivalence of Recursion Schemes: The Equivalence
of Recursion Schemes problem asks whether two given recur-
sion schemes generate the same tree. Perhaps the best known,
and probably the most challenging, open problem in higher-
order model checking is whether this problem is decidable.
This problem is recursively equivalent to the Böhm Tree
Equivalence of λY-Calculus problem, which asks whether the
Böhm trees of two given λY-terms are equal [19].

b) The Nondeterministic Safety Conjecture: There is a
nondeterministic version of the Safety Conjecture, which states
that there is a word language recognised by a nondetermin-
istic order-n collapsible pushdown automaton, which is not
recognised by any nondeterministic higher-order pushdown
automaton. Note that this problem is independent of Parys’
result (Theorem 31). For n = 2, the conjecture is actually
known to be false; however it is unlikely that the simulation
argument in [3] can be adapted to higher orders. The problem
is open for n ≥ 3.

c) Context Sensitivity of Unsafe Word Languages: Are
word languages generated by order-n collapsible pushdown
automata (equivalently, recursion schemes) context-sensitive?
As mentioned in the preceding, the answer is yes for n ≤ 3
[63].

d) Computing Downward Closures of the Maslov Lan-
guages: A famous result of Higman [48] states that the set
of finite words over a finite alphabet, partially ordered by
the subword ordering, is a well-quasi ordering. A corollary
is that the downward closure (with respect to the subword
ordering) of an arbitrary word language is regular. However
it is in general impossible to compute (representations of)
these closures. Zetzsche [98] has recently shown that indexed
languages have computable downward closures. It is natural
to ask whether his result extends to all orders of the Maslov
Hierarchy, and to those of the Unsafe Maslov Hierarchy.

e) Extensions of Higher-Order Model Checking: Another
challenge is to find useful extensions of the decidability of
higher-order model checking, in the sense of Theorem 16.
Several directions are possible. The first is to extend the
models. Is there a larger finitely-presentable class of Σ-labelled
trees, or of graphs, that have decidable MSO theories? Higher-
type Böhm trees ([96], as discussed in Section IV-A) are an
example of such a class. Larger tree classes (for example,
[95] and [62]) than those generated by higher-order recursion
schemes have been studied in the literature; though well-
motivated from a program verification perspective, they do
not have a decidable MSO theory. The second direction is
to extend the correctness properties. An intriguing question
is whether Theorem 16 extends to non-ω-regular properties.
For pushdown games, there are decidable winning conditions
which induce non-ω-regular sets of winning positions [10],
even those of arbitrary Borel complexity [90]. Can these
results be extended to PDA or CPDA graphs of higher or-
ders? In a related direction, solving pushdown ωB-games and

pushdown games with finitary parity and stack boundedness
conditions is decidable (and EXPTIME-complete) [18]. It
would be interesting to extend these results to games of higher
orders.

Acknowledgements: The author is grateful to Takeshi
Tsukada for helpful comments on the paper.

REFERENCES

[1] S. Abramsky, “Domain theory in logical form,” Annals of Pure and
Applied Logic, vol. 51, no. 1-2, pp. 1–77, Mar. 1991.

[2] K. Aehlig, “A finite semantics of simply-typed lambda terms for infinite
runs of automata,” LMCS, vol. 3, pp. 1–23, 2007.

[3] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong, “Safety Is Not a
Restriction at Level 2 for String Languages,” in FoSSaCS, 2005, pp.
490–504.

[4] ——, “The monadic second order theory of trees given by arbitrary
level-two recursion schemes is decidable,” in TLCA, 2005, pp. 39–54.

[5] A. Aho, “Indexed grammars - an extension of context-free grammars,”
J. ACM, vol. 15, pp. 647–671, 1968.

[6] T. Ball and S. Rajamani, “Bebop: A Symbolic Model Checker for
Boolean Programs,” in SPIN, 2000, pp. 113 – 130.

[7] W. Blum, “The safe lambda calculus,” Ph.D. dissertation, University of
Oxford, 2008.

[8] W. Blum and C. Broadbent, “The CPDA-transform of a safe recursion
scheme does not collapse,” 2009, in preparation.

[9] W. Blum and C.-H. L. Ong, “The safe lambda calculus,” LMCS, vol. 5,
no. 1, 2009.

[10] A.-J. Bouquet, O. Serre, and I. Walukiewicz, “Pushdown Games with
Unboundedness and Regular Conditions,” in FSTTCS, 2003, pp. 88–99.

[11] C. H. Broadbent, “On First-Order Logic and CPDA Graphs,” Theory of
Computing Systems, vol. 55, pp. 771–832, 2014.

[12] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre, “Recursion
schemes and logical reflection,” in LICS, 2010, pp. 120–129.

[13] C. H. Broadbent, M. Hague, O. Serre, A. Carayol, M. Hague, and
O. Serre, “C-SHORe: A Collapsible Approach to Verifying Higher-Order
Programs,” in ICFP, 2013, pp. 13–24.

[14] C. H. Broadbent and N. Kobayashi, “Saturation-Based Model Checking
of Higher-Order Recursion Schemes,” in CSL, 2013, pp. 129–148.

[15] A. Carayol and O. Serre, “Collapsible Pushdown Automata and Labeled
Recursion Schemes: Equivalence, Safety and Effective Selection,” in
LICS, 2012, pp. 165–174.

[16] D. Caucal, “On infinite transition graphs having a decidable monadic
theory,” in ICALP, 1996, pp. 194–205.

[17] ——, “On infinite terms having a decidable monadic theory,” in MFCS,
2002, pp. 165–176.

[18] K. Chatterjee and N. Fijalkow, “Infinite-state games with finitary con-
ditions,” in CSL, 2013, pp. 1–26.

[19] P. Clairambault and A. S. Murawski, “Böhm Trees as Higher-Order
Recursive Schemes,” in FSTTCS, 2013, pp. 91–102.

[20] B. Courcelle, “Fundamental properties of infinite trees,” TCS, vol. 25,
pp. 95–169, 1983.

[21] ——, “Recursive applicative program schemes,” in Handbook of Theo-
retical Computer Science, Volume B. MIT Press, 1990, pp. 459–492.

[22] ——, “The monadic second-order logic of graphs IX: machines and
their behaviours,” TCS, vol. 151, pp. 125–162, 1995.

[23] B. Courcelle and M. Nivat, “The algebraic semantics of recursive
program schemes,” in MFCS, 1978, pp. 16–30.

[24] B. Courcelle and J. Vuillemin, “Completeness results for the equivalence
of recursive schemes,” Journal of Computing and System Science,
vol. 12, pp. 179–197, 1976.

[25] P.-L. Curien and H. Herbelin, “Computing with abstract Böhm trees,” in
Fuji International Symposium on Functional and Logic Programming.
World Scientific, 1998, pp. 20–39.

[26] ——, “Abstract machines for dialogue games,” 2007, coRR
abs/0706.2544.

[27] W. Damm, “Higher type program schemes and their tree languages,”
Theoretical Computer Science, pp. 51–72, 1977.

[28] ——, “The IO- and OI-hierarchy,” TCS, vol. 20, pp. 95–207, 1982.
[29] W. Damm, E. Fehr, and K. Indermark, “Higher type recursion and self-

application as control structures,” in Formal Descriptions of Program-
ming Concepts, E. Neuhold, Ed. North-Holland, Amsterdam, 1978, pp.
461–187.

[30] W. Damm and A. Goerdt, “An automata-theoretical characterization of
the OI-hierarchy,” Information and Control, vol. 71, pp. 1–32, 1986.

[31] V. Danos, H. Herbelin, and L. Regnier, “Game semantics and abstract
machines,” in LICS, 1996, pp. 394–405.

[32] J. W. de Bakker and W. P. de Roever, “A calculus for recursive program
schemes,” in ICALP, 1972, pp. 167–196.

[33] J. de Miranda, “Structures generated by higher-order grammars and the
safety constraint,” Ph.D. dissertation, University of Oxford, 2006.

[34] J. Duske and R. Parchmann, “Linear indexed languages,” TCS, vol. 32,
pp. 47–60, 1984.

[35] C. C. Elgot, “Algebraic theories and program schemes,” in Symposium
on Semantics of Algorithmic Languages, 1971, pp. 71–88.

[36] E. A. Emerson and C. S. Jutla, “Tree automata, mu-calculus and
determinacy,” in FOCS, 1991, pp. 368–377.

[37] J. Engelfriet, “Interated stack automata and complexity classes,” Infor-
mation and Computation, vol. 95, pp. 21–75, 1991.

[38] J. Engelfriet and E. M. Schmidt, “IO and OI. 1,” Journal of Computer
and System Sciences, vol. 3, pp. 328–353, 1977.

[39] ——, “IO and 01. II,” Journal of Computer and System Sciences, vol. 16,
pp. 67–99, 1978.

[40] R. H. Gilman, “A shrinking lemma for indexed languages,” TCS, vol.
163, pp. 277–281, 1996.

[41] J.-Y. Girard, “Linear Logic,” Theoretical Computer Science, vol. 50, pp.
1–102, 1987.

[42] C. Grellois and P.-A. Melliès, “An infinitary model of linear logic,” in
FoSSaCS, vol. 9034, 2015, pp. 41–55.

[43] ——, “Tensorial logic with colours and higher-order model checking,”
Tech. Rep., 2015.

[44] I. Guessarian, Algebraic Semantics. Springer, 1981.
[45] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre, “Collapsible

Pushdown Automata and Recursion Schemes,” in LICS, 2008, pp. 452–
461.

[46] M. Hague and A. W. To, “The Complexity of Model Checking (Collapsi-
ble) Higher-Order Pushdown Systems,” in FSTTCS, 2010, pp. 228–239.

[47] T. Hayashi, “On derivation trees of indexed grammars: An extension of
the uvwxy-theorem,” Publ. RIMS Kyoto Univ., vol. 9, pp. 61–92, 1983.

[48] G. Higman, “Ordering by Divisibility in Abstract Algebras,” Proceed-
ings of the London Mathematical Society, vol. 2, pp. 326–336, 1952.

[49] J. M. E. Hyland and C.-H. L. Ong, “On Full Abstraction for PCF: I.
Models, observables and the full abstraction problem, II. Dialogue games
and innocent strategies, III. A fully abstract and universal game model,”
Information and Computation, vol. 163, pp. 285–408, 2000.

[50] Y. I. Ianov, “The logical schemes of algorithms,” Problems of Cyber-
netics, vol. 1, pp. 82–140, 1960.

[51] K. Inaba and S. Maneth, “The complexity of tree transducer output
languages,” in FSTTCS, 2008, pp. 244–255.

[52] A. Kartzow, “First-order logic on higher-order nested pushdown trees,”
ACM Trans. Comput. Logic, vol. 14, no. 2, pp. 1–42, 2013.

[53] A. Kartzow and P. Parys, “Strictness of the collapsible pushdown
hierarchy,” in MFCS, 2012, pp. 566–577.

[54] T. Knapik, D. Niwinski, and P. Urzyczyn, “Higher-order pushdown trees
are easy,” in FoSSaCS, 2002, pp. 205–222.

[55] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz, “Unsafe
grammars, panic automata, and decidability,” in ICALP, 2005, pp. 1–
26.

[56] T. Knapik, D. Niwiski, and P. Urzyczyn, “Deciding monadic theories of
hyperalgebraic trees,” TLCA, pp. 253–267, 2001.

[57] N. Kobayashi and C.-H. L. Ong, “A type theory equivalent to the
modal mu-calculus model checking of higher-order recursion schemes,”
in LICS, 2009, pp. 179–188.

[58] N. Kobayashi, “Model-checking higher-order functions,” in PPDP,
2009, pp. 25–36.

[59] ——, “Types and higher-order recursion schemes for verification of
higher-order programs,” in POPL, Jan. 2009, p. 416.

[60] ——, “A Practical Linear Time Algorithm for Trivial Automata Model
Checking of Higher-Order,” in FoSSaCS, 2011, p. 25.

[61] ——, “Pumping by typing,” in LICS, 2013, pp. 398–407.
[62] N. Kobayashi and A. Igarashi, “Model-Checking Higher-Order Programs

with Recursive Types,” in ESOP, 2013, pp. 431–450.
[63] N. Kobayashi, K. Inaba, and T. Tsukada, “Unsafe order-2 tree languages

are context-sensitive,” in FoSSaCS, 2014, pp. 149–163.
[64] N. Kobayashi and C.-H. L. Ong, “A Type System Equivalent to

the Modal Mu-Calculus Model Checking of Higher-Order Recursion
Schemes,” in LICS, 2009, pp. 179–188.

[65] ——, “Complexity of Model Checking Recursion Schemes for Frag-
ments of the Modal Mu-Calculus,” LMCS, vol. 7, 2011.

[66] N. Kobayashi, R. Sato, and H. Unno, “Predicate abstraction and CEGAR
for higher-order model checking,” ACM SIGPLAN Notices, vol. 46,
no. 6, pp. 222–233, Jun. 2011.

[67] D. C. Luckham, D. M. R. Park, and M. S. Paterson, “On Formalised
Computer Programs,” Journal of Computer and System Sciences, vol.
249, pp. 220–249, 1970.

[68] A. N. Maslov, “The hierarchy of indexed languages of an arbitrary level,”
Soviet Math. Dokl., vol. 15, pp. 1170–1174, 1974.

[69] ——, “Multilevel stack automata,” Problems of Information Transmis-
sion, vol. 12, pp. 38–43, 1976.

[70] D. E. Muller and P. E. Schupp, “The theory of ends, pushdown automata,
and second-order logic,” Theoretical Computer Science, vol. 37, pp. 51–
75, 1985.

[71] R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong, “A traversal-based
algorithm for higher-order model checking,” in ICFP, 2012, pp. 353–
364.

[72] M. Nivat, “On the interpretation of recursive program schemes,” Sym-
posia Mathematica, vol. 15, pp. 255–281, 1975.

[73] C.-H. L. Ong, “On Model Checking Trees Generated by Higher-Order
Recursion Schemes,” in LICS, 2006, pp. 81–90.

[74] C.-H. L. Ong and S. J. Ramsay, “Verifying higher-order functional
programs with pattern-matching algebraic data types,” Tech. Rep., 2011.

[75] C.-H. L. Ong and T. Tsukada, “Two-Level Game Semantics, Intersection
Types, and Recursion Schemes,” in ICALP, 2012, pp. 325–336.

[76] C.-H. L. Ong and N. Tzevelekos, “Functional Reachability,” in LICS,
2009, pp. 286–295.

[77] R. Parchmann, J. Duske, and J. Specht, “On deterministic indexed
languages,” Information and Control, vol. 45, pp. 48–67, 1980.

[78] D. M. R. Park, “Fixpoint induction and proofs of program properties,”
in Machine Intelligence, D. Michie and B. Meltzer, Eds., vol. 5, 1970.

[79] P. Parys, “On the Significance of the Collapse Operation,” in LICS.
IEEE, Jun. 2012, pp. 521–530.

[80] M. Patterson, “Equivalence problems in a model of computation,” Ph.D.
dissertation, University of Cambridge, 1967.

[81] D. Perrin and J.-E. Pin, “Semigroups and automata on infinite words,”
1995, pp. 1–28.

[82] M. O. Rabin, “Decidability of second-order theories and automata on
infinite trees,” Trans. Amer. Maths. Soc, vol. 141, pp. 1–35, 1969.

[83] S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong, “An Abstraction
Refinement Approach to Higher-Order Model Checking,” in POPL.
New York, USA: ACM Press, 2014, pp. 61–72.

[84] S. Salvati and I. Walukiewicz, “Krivine machines and higher-order
schemes,” in ICALP, 2011, pp. 162–173.

[85] ——, “Evaluation is MSOL-compatible,” in FSTTCS, 2013, pp. 103–
114.

[86] ——, “Using Models to Model-Check Recursive Schemes,” in TLCA,
2013, pp. 189–204.

[87] ——, “Typing Weak MSOL Properties,” in FoSSaCS, vol. 7794, 2015,
pp. 129–144.

[88] H. Schwichtenberg, “Definierbare funktionen im lambda-kalkul mit
typen,” Archiv Logik Grundlagen-forsch, vol. 17, 1976.

[89] D. S. Scott, “Outline of a Mathematical Theory Of Computation,” PRG
University of Oxford, Tech. Rep., 1970.

[90] O. Serre, “Parity Games Played on Transition Graphs of One-Counter
Processes,” in FoSSaCS, 2006, pp. 337–351.

[91] R. Statman, “On the Lambda-Y calculus,” Annals of Pure and Applied
Logic, vol. 130, no. 1-3 SPEC. ISS., pp. 325–337, 2004.

[92] C. Stirling, “Dependency Tree Automata,” in FoSSaCS, 2009, pp. 92–
106.

[93] T. Cachat, “Games on pushdown graphs and extensions,” Ph.D. disser-
tation, RWTH Aachen, 2003.

[94] T. Terao and N. Kobayashi, “A ZDD-Based Efficient Higher-Order
Model,” in APLAS, 2014, pp. 354–371.

[95] T. Tsukada and N. Kobayashi, “Untyped Recursion Schemes and Infinite
Intersection Types,” in FoSSaCS, 2010, pp. 343–357.

[96] T. Tsukada and C.-H. L. Ong, “Compositional Higher-order Model
Checking via omega-Regular Games over Boehm trees,” in CSL-LICS,
2014.

[97] I. Walukiewicz, “Pushdown processes: games and model-checking,”
Information and Computation, vol. 157, pp. 234–263, 2001.

[98] G. Zetzsche, “An approach to computing downward closures,” in ICALP,
2015.

