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We show that contrary to common belief in the DisCoCat community, a
monoidal category is all that is needed to define a categorical compositional
model of natural language. This relies on a construction which freely adds
adjoints to a monoidal category. In the case of distributional semantics,
this broadens the range of available models, to include non-linear maps
and cartesian products for instance. We illustrate the applications of this
principle to various distributional models of meaning.

1 Introduction

The DisCoCat model [Clark et al.; 2008, Coecke et al., 2010] applies category theory to
linguistics. The idea is to view the type-logical representation of grammatical struc-
ture [Lambek, 2008] as a morphism in a compact closed category, and use this mor-
phism to combine individual word meanings into sentence representations. This gives
an inherently compositional template for models of meaning which respect the gram-
matical structure by design. The flagship application of this idea is its interpretation it
in vector-based categories, as it makes it applicable to distributional semantics (hence
called the Distributional Compositional Categorical model). Distributional semantics
represent word meanings by computing co-occurence statistics of words across large
corpora [Schiitze, 1998], or more recently by training neural networks to learn word
embeddings [Mikolov et al., 2013]. The task of generalizing these representations
from words to larger syntactical units such as sentences is a challenging task, and the
promise of the DisCoCat approach is to tackle it with a categorical viewpoint.

The mantra of DisCoCat is that a model of meaning is given by a compact closed
category and a choice of word meanings in it [Coecke et al., 2010]. This definition is
flexible in that it encompasses both logical models of meaning and distributional ones,
depending on the concrete category chosen [Clark et al.; 2008]. However, the require-
ment to define a compact closed category is still a restricting one, as it rules out a wide
range of categories where objects do not always have adjoints. The general consensus
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in the community was that when it comes to vector-based models of meanings, Dis-
CoCat requires the semantics to be assembled out of linear maps only [Wijnholds and
Sadrzadeh, 2018, Lewis, 2019]. We show how to lift this restriction, by only requiring
the semantic category to be monoidal, and freely adding the caps and cups required for
the interpretation of the grammatical structure [Delpeuch, 2014]. We briefly present
these results in Section 2.

The bulk of this piece consists in showing how various models of meaning for-
mulated outside the DisCoCat framework can actually be recast in it, thanks to the
free addition of adjoints. Our aim is to understand why the DisCoCat community has
pushed itself in the narrow corner of linear models for such a long time, in a con-
text where the wider linguistics community has overwhelmingly embraced non-linear
models. By conducting this analysis, our hope is to encourage the wider applied cat-
egory theory community to confront their models with the actual practitioners in the
field targeted, and challenge any categorical dogma with their feedback.

2 Free autonomous categories

We recall a few useful definitions.

Definition 1. A monoidal category is a category C equipped with a symmetric bifunctor _ ®
C x C — C. This operation is furthermore required to have a unit I € C and to be naturally

associative.
A monoidal category is symmetric when its monoidal product is.

Definition 2. An autonomous (or rigid) category is a monoidal category such that any object A
has left and right adjoints, meaning that there are morphisms ¢ : AA@ A — 1, ¢, : A® Al — 1,
m:1—A® A and n, : 1 = A" ® A satisfying equations.

In a symmetric monoidal category, left and right adjoints are isomorphic. An au-
tonomous category that is also symmetric is called a compact closed category. An ex-
ample of such category is (Vect, ®, I), the category of finite-dimensional vector spaces
and linear maps, with the tensor product as monoidal structure.

Definition 3. A cartesian category is a category with all finite products. In other words it is a
symmetric monoidal category with a natural family of copying and discarding maps satisfying the

usual laws.

An example of cartesian category is (Vect,,0), the category of finite-dimensional
vector spaces and linear maps, with the direct sum as monoidal structure. Another
canonical example is (Set, x, {x}), the category of sets and functions equipped with the
(set-theoretic) cartesian product.

Proposition 1. If a cartesian category is also autonomous for the same monoidal structure, then

every object is isomorphic to the monoidal unit.
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Figure 1: Eliminating free caps and cups from a sentence meaning

In other words, cartesian and autonomous structures are incompatible.

Theorem 1. Any monoidal category (C, ® ,T) gives rise to a free autonomous category (L(C), (_,_),()).
The embedding functor F': C — L(C) is strong monoidal and faithful.

This means that it is possible to freely add caps and cups to any monoidal category.
To emphasize the different nature of the monoidal structures on both categories, we
use different notations for them. They are related by the embedding functor F which
is strong monoidal. Informally, the category L(C) is defined by taking formal string
diagrams annotated with morphisms of €. This result seems to known as folklore
in some communities. For the sake of rigour we provide a detailed construction in
Appendix A.

Morphisms in L(C) are of little use for semantics as they are formal objects. Luck-
ily, in the particular case where the domain and codomain are objects of C, we can
eliminate the formal caps and cups introduced to recover a morphism in €. This is
an equivalent of the normalization property of Preller and Lambek [2007] for our free
construction.

Theorem 2. The functor F' is full.

Proof. Let f € LC(F(A), F(B)) with A, B € C, we show that f € F(C(A, B)). If no formal caps
and cups occur in f, then it can be expressed as a vertical and horizontal composition of generator
morphisms from C, so it belongs to F(C(A, B)). Therefore we only need to show that all caps
and cups can be eliminated from a diagram whose boundaries do not contain any adjoints. As no
generator contains adjoints in their domain or codomain, the winding number of any wire in the
diagram f is null. For any unit occuring in f we can find a matching counit on the same wire,
such that the unit and counit can be cancelled together. This elimination property is shown as

Lemma 3.12 in Mimram [2014]. O

What fullness of F means is that any morphism in C* between objects coming from
C actually comes from C too. Because sentence meanings in DisCoCat are interpreted
as elements of the sentence space S, they are therefore morphisms in ¢*([1],[S]). By
fullness this means that they correspond to morphisms C(7, S) (and a unique one by




faithfulness). This means that sentence meanings are not formal objects: they belong
to the original semantic monoidal category.
The use of C* as a model of meaning is illustrated in Figure 1. The recipe is simple:

- define word meanings, using formal caps to produce elements of the types dic-
tated by the grammar;

- compose word meanings with the formal cups determined by the type reduction
witnessing the grammaticality of the sentence;

- eliminate the formal caps and cups in the resulting diagram. Proposition ?? guar-
antees that all formal caps and cups can be eliminated.

- you obtain an element of the sentence space in the original category ¢, which is
the representation of the sentence.

In the sequel, we illustrate the concrete use of this result, showing how it can expand
the range of models of meaning which can be formulated in the DisCoCat framework.
We also argue that it weakens the case for Vects,, which has so far been considered as
the canonical (if not only) semantic category suited for distributional compositional
semantics.

3 Some early evidence against tensors

Let us first recall how the DisCoCat model and its tensor-based interpretation came
into existence. The interest in the tensor product for distributional semantics was ini-
tially suggested by Clark and Pulman [2007], inspired by ideas from cognitive science.
The idea was that tensors can account for correlations between the meanings of some
words. This was demonstrated by a thought experiment called the pet fish problem
[Aerts and Gabora, 2005]. The idea was that the conjunction of two concepts is not
always best represented by the independent superposition of both concepts: there is
some interaction between the two concepts. It was reported that subjects found the
image of a guppy was neither a prototypical image of pet nor that of a fish. Inspired by
quantum mechanics, it was proposed to represent concepts in Hilbert space, such that
state entanglement could be used to model this phenomenon.

This quantum-inspired model of meaning became all the more motivated when the
connection to compact closed categories was made by Clark et al. [2008], Coecke et al.
[2010]. Indeed, vector spaces form a compact closed category if the tensor product is
used as monoidal structure, but this fails for other natural structures such as the direct
sum, as explained in the previous section. All this evidence, coming simultaneously
and independently from cognitive science and category theory, seemed to indicate in
an unambiguous way that Vectg was the natural category to develop distributional
compositional semantics.




A few difficulties with this proposal became soon clear, and the first one was the
high dimensionality of the word representations involved. Indeed, the number of pa-
rameters of word representations grows exponentially with the length of its gram-
matical type. This means for instance that ditransitive verbs such as give, which are
applied to a subject and two objects, would be represented by n3s parameters, where
n is the dimensionality of the sentence space and » that of the noun space. Paradox-
ically, this prohibitive cost was not seen as a fundamental problem of the model -
it somehow justified the absence of large-scale benchmarks against competing ap-
proaches. It also suggested that the model was more expressive or powerful, having
more parameters than other models: this expressivity was only waiting for the right
hardware (such as quantum devices) to be unleashed [Zeng and Coecke, 2016].

However, various attempts were made to learn the high-order word representations
suggested by the framework [Grefenstette et al., 2013, Kartsaklis and Sadrzadeh, 2014,
Grefenstette and Sadrzadeh, 2015]. Still, these experiments were only conducted for
simple syntactic structures such as adjective-noun or subject-verb-object patterns, far
from the coverage of arbitrary text generally expected in the field natural language
processing.

One of these approaches was that of Polajnar et al. [2014], where it was proposed
to restrict verb meanings to particular shapes, reducing the number of parameters to
learn. The intention was to stick to the DisCoCat framework using Vectg, but im-
pose further restrictions on the semantic spaces and word meanings to obtain more
tractable and effective models. Four approaches to model transitive verbs in subject-
verb-object sentences were compared:

(i) Tensor: the standard, unrestricted representation of transitive verbs as tensors
of type N ® N ® S, where N and S are sentence and noun spaces. The space
S is two-dimensional, the two truth values corresponding to orthogonal basis
vectors.

(ii) KKMat: the same approach, but collapsing S to a single dimension, the truth
value being represented by the norm of the vector.

(iii) SKMat: verbs are represented matrices in N @ S (where S is two dimensional
again). They are multiplied by the object vector seen as a diagonal matrix, and
then contracted with the subject vector.

(iv) 2Mat: verbs are represented by two N ® S tensors. They are multiplied with
the subject and object respectively to obtain two vectors in S, which are finally
concatenated into a four-dimensional vector.
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Figure 2: The four approaches to dimensionality reduction studied by Polajnar et al. [2014]

These four approaches, represented as string diagrams in Figure 2, were evaluated
on a task which consists in estimating the plausibility of a candidate sentence and the
best model overall was 2Mat. What the authors did not realize however was that unlike
the three other approaches, 2Mat cannot be formulated in Vectg since it involves
concatenating vectors, which is not a bilinear operation. In Vectg, any morphism
taking two arguments as inputs is necessarily bilinear in them, since it is a linear
map from the tensor product of their spaces. So there is no function ¢: S® S —
S @ S such that c(a ® b) = (a,b) for all a,b € S. The fact that the best performing
approach to dimensionality reduction in DisCoCat was a model that actually violated
the assumptions of DisCoCat could have been seen as a sign that the assumptions of
the model should have been revisited, but it actually went largely unnoticed in the
community.

The reason why the 2Mat model was allowed to slip out of Vectg is that it was
formulated in terms of function application rather than tensor contraction. These
two views are equivalent in a compact closed category such as Vectg but only when
the appropriate monoidal product ® is used to combine the arguments together. We
argue that thinking in terms of function application to design models of meaning is
much more intuitive than using tensor contraction, especially to linguists not trained
in quantum physics.

All the models proposed by Polajnar et al. [2014], including 2Mat, can be recast
as DisCoCat models in Set®, the free autonomous category on Set,, the category of
sets and functions with the cartesian product. In this setting, there are no tensors to
contract: meaning composition can only be thought of in terms of function application.
In fact, the models of meaning which can be formulated in Set?, are precisely all the
functional models directed by the grammar.




4 Further evidence against linearity

Beyond the requirement to use tensors to pair up the arguments of any morphism with
multiple inputs, Vect, also requires that morphisms to be linear. This requirement has
not been challenged much in the community either. This is perhaps because linearity
assumptions are pervasive in many fields of science; non-linear models can often be
reduced to linear ones via some transformation. In the particular context of Vects
however, there is little room for such adaptations. In this section, we show why this
might be a problem in its own right.

In linear algebra, an affine map is a map f : = — Az +b, where A4 is a linear map and
b is a constant vector. Affine maps are so similar to linear maps that the two notions
are often conflated: Ax + b is coloquially called a linear combination of the elements
of x. In fact, any affine map f : X — Y can be seen as a linear map f/: X +1 — Y,
where 1 is the one-dimensional vector space for the same field: f(x) = f/(x,1). With
this observation, it is possible to adapt the matrix calculus of linear maps to work for
affine maps.

However, this trick can sadly not be used to generalize Vectg to affine maps. The
product (A+1)® (B +1) is not equal to (4 ® B) + 1 for non-null spaces and there does
not seem to be a natural generalization of bilinearity to allow for constants. Affine
maps and tensor products just do not mix up well. This shows how stringent the
requirement to use Vectg is: even the seemingly innocuous addition of a constant
breaks the machinery down.

This vow to strict linearity is of course problematic in a context where neural net-
works have become the machine learning models of choice in natural language pro-
cessing, as these models crucially rely on nonlinearities to function. We will review
the possible interactions between DisCoCat and neural networks in the next section,
but let us first give linearity the benefit of the doubt: it could be that non-linearities
are needed to learn word vectors, but the resulting vectors could then be composed
linearily when deriving the representation of larger text units [Milajevs et al., 2014,
Sadrzadeh, 2017].

One of the seminal results that popularized neural word embeddings in linguistics
was that of Mikolov et al. [2013]. After learning word embeddings from text with a
simple model that is trained to guess a missing word in a fixed-length textual context,
they observe that the learned vectors satisfy some promising semantic properties. The

classical example of such a property is the fact that King — Man+Woman gives a vector
whose nearest neighbour is Wz This sort of relation between vectors, which arises
from the training process without being enforced directly by the learning objective,
invites to model predicates as additive functions.

This insight proved successful in a related problem, that of learning embeddings for
entities in a knowledge graph. A knowledge graph is essentially a directed multigraph




where edges are annotated with properties. These edges are seen as triples formed
by their source, predicate and target, each encoding a fact about the world, such as
the triple (Cantaloupe_Island_(song), composer, Herbie_Hancock) for instance. Graph
embeddings associate to each entity in the knowledge graph a vector in a finite-
dimensional vector space, computed solely from the knowledge graph itself. Such
embeddings are then useful to tackle various information retrieval tasks, such as com-
pleting the knowledge graph by adding missing triples. One of the popular approaches
to compute such embeddings is the TransE model [Bordes et al., 2013], which consists
in optimizing the learning objective that v(o) —v(s) ~ v(p) for each triple (s, p, o) (subject
- predicate - object).

Whether word vectors are learned from text or from a knowledge graph, it is there-
fore tempting to model predicates in a distributional compositional model by such
additive functions. For instance, the representation of the royal adjective could be a

function adding Queen —Woman to its argument. Sadly, this is again not a linear func-
tion but an affine one: it cannot be implemented in Vecy. Again, it is a perfectly valid
semantic representation in Set?, .

5 Recasting convolutional models in DisCoCat

Neural networks are popular to learn word vectors, but the dominant architectures to
learn these word vectors ignore grammar entirely: the networks are simply trained to
predict words in a text from their surrounding context, regardless of their grammat-
ical function [Mikolov et al., 2013]. Some of these models, such as the ones designed
to translate text between languages [Sutskever et al., 2014], make use of vector rep-
resentations for larger units of texts such as sentences: however, these vectors are
rarely designed to encode the full meaning of the textual unit, as the translation to
the target language relies on attention mechanisms which rely on the individual vec-
tors as well as the combined representation to produce the desired output [Bahdanau
etal., 2014]. As such, they do not fully address the problem of combining distributional
representations.

However, neural networks have also been applied in syntax-aware approaches which
construct sentence representations from word representations. In Socher et al. [2013],
a small neural network is applied recursively along the syntax tree of the sentence to
derive a vector representation of each node from that of its children. Lewis [2019] pro-
posed to recast this approach in the DisCoCat framework, which would give a similar
model driven from a pregroup-induced representation of the grammar instead. But
doing so required them to exchange the neural network for a tensor in order to for-
mulate the model in Vectgy. Choosing to formulate it in Set? instead lets us keep the
original, non-linear convolutional unit. In effect, this just amounts to swapping the
context-free grammar used by Socher et al. [2013] for a type-driven grammar such as a




pregroup grammar. In fact, a similar proposal was formulated by Krishnamurthy and
Mitchell [2013] earlier, using Combinatory Categorial Grammar instead of pregroup
grammar. This proposal also falls into the scope of DisCoCat, when implemented in
Set?, .

6 Conclusion

We have shown that contrary to common belief in the DisCoCat community, a monoidal
category is all that is needed to define a compositional model of meaning. In the case
of distributional semantics, this broadens the range of available models to include
non-linear maps and cartesian products. We hope this will encourage the community
to experiment with alternate models, which should be more amenable to competing
with the state of the art in natural language processing.
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A Constructing autonomous categories

A.1 ldea of the construction

Let C be a strict monoidal category. Our goal is to embed C in a “larger” category, L(C),
which will be autonomous. The embedding has to be functorial, so that the original
composition operations are retained.

The ¢ and » maps will be purely formal, which means that they will have no in-
terpretation in the original category. Our approach to define them consists in taking
diagrams seriously: the arrows of our autonomous category will be diagrams. To do
so, we adapt the definitions of Joyal and Street [1988], who defined the diagrams for
autonomous categories and proved their soundness and completeness. They assume
for simplicity that the links in the diagrams are piecewise linear and we follow their
choice.

Our construction is similar to that of Preller and Lambek [2007] who defined the
autonomous category freely generated by a category C, not assumed to be monoidal.
Taking into account the monoidal structure of C construction is important for the
linguistic applications mentioned in Section ??, as we need some compatibility between
the initial monoidal structure in ¢ and the monoidal structure of the larger category
L(C).
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A.2  Graphs

In this section, we summarize the definitions from Joyal and Street [1988] needed

to define our category L(C). Our goal is not to give the most general definition of

topological graphs, but only to define precisely the objects that we will manipulate.
A graph I' is a compact subset of R? together with a subset I'y C I" such that

(i) Iy is discrete and finite, its elements are called nodes;

(ii) I — 'y has a finite number of connected components called 1-cells and each of
them is homeomorphic to an open interval.

We denote by [p; q] the segment connecting two points p,q € R?. For all tuples of
points ¢t = (po, - .., p,) We define [po,...,pn] = [po,p1] U [p1,p2) U+ U [pn_1,pn]. The latter is
called a piecewise linear segment. The tuple ¢ is called reduced when thereisno 0 < i <
n such that p; € [p;_1,pi+1]. In this case, the p; for 0 < i < n are called singular points.
A parametrization of a reduced piecewise linear segment ~ : [0;1] — [po,...,pn] Such
that +(0) = po and ~(1) = p, is called a piecewise linear curve. The initial (respectively
terminal) segment of such a v is [po, p1] (respectively [p,_1,p,]). We denote by 7 the
reversed parametrization: y(t) = (1 — t).

A piecewise linear graph I' is a graph where the closure of any 1-cell is a piecewise
linear segment, and such that no initial or terminal segment is horizontal. The edges
of such a graph are the parametrizations of these closures, identified up to monotonous
reparametrization (hence a 1-cell gives rise to two edges, v and 7). The set of edges is
denoted by Edges(T"). In the rest of this paper, all graphs are assumed to be piecewise
linear.

Let v be an edge and z < y € [0;1] be preimages of consecutive singular points of
v([0;1]). The segment [y(z),~(y)] is directed top (respectively bottom) when the second
coordinate of «(y) is greater (respectively smaller) than that of 4(x). The last require-
ment of the definition of a piecewise linear graph implies that initial and terminal
segments of edges are either directed top or bottom. This allows us to define the in-
puts of a node x as the set of edges v such that (1) = z and the terminal segment of
v is directed bottom. Similarly, the outputs of z are the edges ~ such that v(0) = z and
the initial segment of ~ is directed bottom.

A graph T is between slices a« and b, where a < b are reals, when ' ¢ Rx[a;b], and such
that every node in R x {a} (respectively b) has one input and no output (respectively
one output and no input). These nodes included in R x {a, b} are called outer nodes and
the others are inner nodes. The set of inner nodes of a graph T" is denoted by Nodes(T').
The reason for this notation is that the outer nodes will not represent morphisms but
simply “gates”, i.e. inputs and outputs of the diagram. The outer nodes included in
R x {a} are called lower outer nodes and the other outer nodes are called upper outer
nodes. A regular slice is a ¢ € [a,b] such that 'y, NR x {c} = (. A unit graph is a graph
included in [0,1]? and between slices 0 and 1.
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Finally, we need to define the turning number p(v) of an edge ~. Informally, this is
the number of half-turns of the edge in the direct orientation, minus the number of
half-turns in the indirect orientation. We invite the interested reader to consult Joyal
and Street [1988] for a rigorous definition. The following examples should be enough
to grasp the idea:

S

Definition 4. A yankable graph is a graph between slices a and b such that for every edge v between

two inner nodes, p(y) = 0.

The reason for this additional requirement p(v) = 0 is that we will attribute a morphism
of C to each node in Section A.4. Informally, as the domain and the codomain of such
morphisms cannot contain adjoints, it is necessary that the links between them can be
yanked to a straight line.

Here are a few examples of yankable and not yankable graphs. The edges that make
the graphs not yankable are drawn with dotted lines.

A deformation of graphs I' to I is a regular deformation of polarised graphs be-

tween I' and I”, as defined in Joyal and Street [1988]. As it preserves the turning
number of edges, it preserves yankable graphs.

A.3  Occurrences and replacement

We define what an occurrence of a graph G, in a graph I' is, and what the substitution
of G* by G? in T" is. This will be useful to define an equivalence relation on graphs,
which will be required to define the autonomous category L(C) properly.

This notion is not needed to obtain the soundness and correctness results of Joyal
and Street [1988], so one could wonder why we introduce it while dealing with the
same objects. The reason is that the autonomous category we are constructing cannot
be completely free, as we have to retain the equalities holding in the original monoidal
category. This will enable us to define a functorial embedding in Section B.1.

Let t = (a,b,c,d) with @ < b and ¢ < d be reals. We define an homeomorphism
o ¢ (0,1 — [a,b] x [¢,d] BY ¢¢(z,y) = (a + (b — a),c + y(d — ¢)). Let G' and G? be unit

13



graphs, such that the outer nodes of G' and G? are the same. An occurrence of G!
in a graph I' ¢ R? is a quadruplet of reals ¢t = (a,b,¢,d), a < b and ¢ < d, such that
#:(G) = T'n ([a,b] x [e,d]), and such that no node of T' is included in the boundary of
[a,b] x [c,d]. We define I'[G! := G?]; = (T —¢:(G")) U (G?), with nodes (g — ¢ (G)) U (G3).

G! G*

One can check that I'l[G; = Gs]; is a piecewise linear graph. However, it is not
yankable in general. We will get this guarantee with the notion of valued graphs
introduced in the next section.

A.4  Valued graphs

In this section, we add valuations to the objects introduced in the previous section. This
consists in labelling the nodes and the edges with objects and arrows from a category,
in a consistent way.

Definition 5. A C-valued graph is a yankable graph I' with functions
vp : Nodes(T") — Mor(C) vy : Edges(T") — Ob(C) x Z
such that:
(i) vy € Edges(T), v1(3) = (A,n + p(7)) where (4,n) = v (7)
(ii) Va € Nodes(T"),Vy € Edges(T)

e if v(0) = 2 then vy () = (A, 0) for some A € Ob(C)
o if ¥(1) = 2 then vy (¥) = (A,0) for some A € Ob(C)

(iii) Vz € Nodes(T'),vo(x) : v1(71) @ - @ v1(Yp) = v1(01) @ - - - @ v1(dy)

where v1,...,7p and d1,...,d, are the ordered lists of the input and output edges of x, and

where v§(y) = (A,0) is identified with A for simplicity.

Informally, the value v () represents the domain of the edge v, and v, (7) represents
its codomain. The condition (i) states the relation between the two. Note that a valued
graph is always yankable, as the rotation number of an edge between two inner nodes
is 0 because of the requirements (i) and (ii).

The valuation of an upper outer node z is v;(y) where v is the only edge such that
v(0) = z. Similarly, the valuation of a lower outer node x is v;(¥) where v is the only
edge such that (1) = z. In both cases, we denote this valuation by v,(z). The domain
of a valued graph is the tuple (vy(z1),...,v(z,)) Where z; is the i-th upper outer node
of the graph. The codomain is defined similarly with the lower outer nodes.

14



We can define the replacement of the valued graphs G! by G? in the valued graph
I', when the domains and codomains of G! and G? are the same and the valuations of
the nodes of G* and I" agree.

Lemma 1. Let T’ be a valued graph and G', G? be valued unit graphs. Suppose that t is an
occurrence of G! in T, that the valuations of the nodes of I' and ¢;(G') are identical and that the
domains and codomains of G' and G? match. Then I'[G' := G?]; can be given a valuation, such
that it agrees with the valuation of I' on the nodes and edges included in T’ — ¢;(G*), and it agrees
with the valuation of ¢;(G?) on the inner nodes and edges included in ¢;(G?).

Proof. We admit that if v : [0,1] — I' is an edge and ¢ € [0, 1] is such that (¢) is not a singular
point of v([0,1]), then p(y) = p(V0,) + P(V[t.1))-

Up to a regular transformation, we can assume that the outer nodes of ¢;(G') are not singular
nodes in I'. Then, for every edge ~ in I, there is a series of ty < - -+ < t§ such that tg =0, tx =1,
and for 0 < i < k, y(t) is an outer node of ¢;(G'), and such that v((¢;,¢;11)) is either included
in ¢,(G) or in I — ¢ (G1).

v(to)
7(t2A7(t3)
v(t1)
v(ta)
¢:(G1)

Moreover, identifying temporarily v; and v, with their second projection, we have:

PV ito.t) = vb(¥(t1)) — v1(7)
for 0 <i<k—1, oVt t:021) = vo((ti1)) — v(y(t:))
Pt ,t]) = v1() = vp(Y(tk-1))
Now for any edge v in |G := G?];, we have such a decomposition and p(v) = S50 p(Y(t,.4:,1])-
If v((0,t1)) C T — ¢4(G?), we give 7 the valuation of the edge in I' starting on «(0) and whose

image includes v((0,t1)). If v((0,21)) C ¢+(G?), then similarly we give v the valuation from G2.

We can decompose the rotation number p(y) as follows:

k—1
p(v) = ZP(’YHti,tiH])
i=0
k—2
= up(y(t1)) —vi(y) + Z (o (v (tit1)) = vp(v(t:))) + v1(F) = vo(Y(tr-1))

=v1(y) — v ()
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Hence the condition (i) of the definition is satisfied. The two other conditions are directly inherited

from I' and GZ2. O]

A5  The category of valued graphs

Our autonomous category L(C) will be defined as the category of C-valued graphs. But
to do so, we need to define an equivalence relation to account for some equalities of
arrows from C. This consists in defining reduction rules based on replacement.

We will need to define some particular C-valued graphs. Instead of defining the
graph and the valuations separately, we choose to draw them, replacing the black
points representing our nodes by boxes containing the valuation of these nodes. The
valuations of the edges are dropped when they are clear from the context.

Forall feC(A1® - ®A,,Bi®---@By)and g€ C(B1®---®B,,C1 ®---®@C,) we define
the following graphs:

(A(l)a"'aA%) (A?7"'7A7OL)

Gi(f.9) =

(CY9,...,C% (097...,02)
Forall feCA1® - ®A4,,Bi®--®By)andgeC(Ci® - ®C,, D1 ®---® D,,) we define

the following graphs:

» “ipy s Sipo

N1Z

Gh(f,9) = fog]

i

(A9,...,A0.CY,....C9) A0 CY

(BY,...,B,DY,...,DY)

For A € C we define the following graphs:

(A) (A°)
G3(4) = [14] Gl (A) =
(A7) (A%)
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The generalized version of this last replacement pair (with multiple inputs and
outputs) will be a consequence of the three replacement pairs, as it can be obtained as
the n-fold product of identities.

Definition 6. Let A and B be two C-valued yankable graphs. We say that A reduces to B (denoted
by A < B) when A contains the sub-graph G = G;(f,g) for some f and g arrows of C (or
G = G3(X) for some X € Ob(C)), and B can be obtained by replacing this occurrence of G' by
G' = Gi(f,g) (or G5(X), respectively).

Another useful relation is " ~» I, which holds when there is a deformation of graphs
fromI' toI”. Finally we define the relation ~ as the reflexive, symmetric and transitive
closure of < U ~.

Definition 7. The category L(C) has:
o objects of the form (A}",..., Ay?) where A; € Ob(C) and n; € Z

e morphisms f : A — B, where f is an equivalence class under ~¢ of C-valued unit graphs

with inputs A and outputs B.

The composition and tensor product in L(C) are defined as in Joyal and Street [1991].
Let f € L(C)(A,B) and g € L(C)(C, D) be C-valued unit graphs. The morphism f® g €
L(C)(A @) C,B®rc) D) is defined by concatenating horizontally shrunken versions
of fand g:

f®g=00101()VUdi101)(9)

Let f € L(C)(A,B)and g € L(C)(B, C) be C-valued unit graphs, with B = (B}, ..., B,*).
We cannot simply stack the diagrams vertically to define the sequential composite
g o f, because the horizontal positions (us,...,u,) of the lower outer gates of f might
not match with the positions (vi,...,v,) of the upper outer gates of g. Hence we add
identity links between them:

fog= ¢(0,1,0,%)(f) U ¢(o,1,%,§)([4) U ¢(0,1,§,1)(9)

where L is the diagram with identity links between points (u;,1) and (v;,0) where u;
(respectively v;) is the abscissa of the i-th lower outer gate of g (respectively upper
outer gate of f).

This category is well defined because the composition is compatible with the relation
~c. In other words, the equivalence class under ~ of the vertical stacking of two
graphs does not depend on the choice of the two representatives. As it is also the case
for the horizontal concatenation, L(C) is also strict monoidal.
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The product on objects is the concatenation of lists, the unit object is the empty
list denoted by (), and the tensor product on arrows is the horizontal juxtaposition.
Formally, this product is different from the tensor product of C. But the rewrite rules
defined above provide a bridge between the two. If there are objects 4, B,C, D € C such
that A® B = C ® D, then the objects (A° B°) and (C°, DY) are isomorphic in L(C), with
the following isomorphism:

(A%, BY)
QA B,C,D = O‘;\}B,C,D = QC,D,A,B
(C°, DY)
(A%, B) (A°, B) (A%, B) (4% B)
lags
5 - - | -
(A% BY) (A% BY) (A%, BY) (A%, BY)

Proposition 2. For any monoidal category C, L(C) is autonomous.

Proof. For any object (A}",..., A,?), let us show that it has a left adjoint (Agp_l, . ,A?”_l). A
np+1 np+1

similar argument shows that it has a right adjoint (A" ", ..., A;"" 7).
We define the following morphisms:
e (Apr T ADTL AT LAY 5 () ne() = (AP, AR AT AT
€ = . ']7 =

We emphasize that these graphs are valid C-valued graphs and hence yankable: as they have no

inner nodes, the condition of Definition 4 and the condition (ii) of Definition 5 are vacuously

satisfied. They satisfy the yanking equalities (??), hence the category is autonomous. O

B Freeness of L(C) over C

What remains to do is to show that L(C) is the free autonomous category generated by
C. The first step is to show that € can be embedded functorialy in L(C). Then, assuming
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that C is autonomous, we define the value of a C-valued graph. Finally we show that

these two constructions are adjoint, hence the freeness of L(C).

B.1 Functorial embedding of the original category
We define a strongly monoidal functorial embedding of € in L(C).

Definition 8. Let F : C — L(C) be such that for all A € Ob(C), F(A) = (A°) and

(A%) (A% B 0

I
<]
~

F(f) = [f] HA,B = lagB A

(B%) (A® BY%) (1%)

As a consequence of the first rewrite rule of our relation <, F is a functor. Moreover,
it is strongly monoidal, with the natural isomorphism 4 5 : (4%, B°) — (A ® B°) and
the isomorphism X : () — (I°). The coherence equations translate into the following

equalities, which hold from the rewrite rules defined earlier:

B.2 Value of a valued graph

Given a C-valued graph, we cannot in general interpret this graph as an arrow of C,

because C is not always autonomous. But when C is autonomous, we can use the notion
of value v(I") of a valued graph I'. We briefly recall its definition, taken from Joyal and
Street [1988] and adapted to our terminology. We start with the definition of the value

of a graph in the monoidal case. To do so, we restrict our graphs further by requiring

that the edges are vertical, in the following sense.

Definition 9. A progressive graph is a graph I' such that for all edge 7y, the projection on the

second coordinate of v is injective.

As a consequence, the rotation numbers of edges are null in a progressive graph.

To define the value of such a graph, we decompose it into simpler slices.

Definition 10. A prime graph is a progressive graph with exactly one inner node, and such that

every edge in the graph is connected to it.

An invertible graph is a progressive graph with no inner node.
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An elementary slice is a progressive graph I' that can be decomposed as G1 ® - - - ® G,, where

for each 1 <1i < n, G; is prime or invertible.

Elementary \

slice

Prime Invertible Prime

graph graph graph

When these graphs are valued, we can give them a value »(I'). The value »(I") of a
prime graph T is the value of its unique inner node and the value of an invertible graph
is the identity of its domain (which is equal to its codomain). Finally, we define the
value of an elementary sliceI' = G; ® --- ® G,, by v(I') = v(G1) ® --- ® v(G,,), which is
independent of the decomposition.

Notice that any progressive graph I' can be written as I' = Gy o --- o G, where G;
are elementary slices. To define the value of progressive graphs, we need the follow-
ing lemma, whose proof is a direct consequence of Proposition 1.1 in Joyal and Street

[1991]).

Lemma 2. Let I' be a progressive graph. If ' = G1o0---0G, = G o+ oG} where the G; and G

are elementary slices, then v(Gy1)o---ov(Gp) = v(G) o+ ov(GY)

This defines the value of progressive graphs.

The value of general valued graphs is obtained by making the units and counits
explicit in non progressive edges. More precisely, given a valued graph I and € > 0
we define the progressive graph I'. by replacing each non progressive edge as follows.
First, horizontal segments are eliminated, using the following replacements (and their
upside-down counterparts):

NN W

Then, the singular points at turns are replaced by inner nodes with the appropriate
valuation. Let v be an edge and be z a singular point in « such that both of its adjacent
segments are above z. The case where they are both below is similar. Let a < b € [0, 1]
be such that [y(a),z] and [z,~(b)] are strictly included in the adjacent segments of z.
Finally let (A,p) = vi(y) and n = p + p(y)p,a]). As the category in which the graph is
valued is autonomous, 4 has an (n + 1)-fold right adjoint denoted by A+1) and there
is an associated counit e 441 : A™ @ A+ — T. We replace = by an inner node valued
by e m+1. The case for the unit is symmetric.
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v(a) v(b)

v(a) v(b)
v N ¥ /\ N
v(a) v(b)

"(a) 7(b)

Note that these transformations are different from the notion of replacement intro-
duced earlier in Section A.3. Here, we only show how to convert a valued graph into
a progressive graph, but do not identify them using an equivalence relation as for the
replacement pairs of Section A.3.

It is shown in Joyal and Street [1988] that for e small enough, »(T'.) is independent
of . We define #(T") := v(T) for such an e. This defines the value of C-valued graphs
when C is autonomous. They also show in their Theorem 4 that this value is invariant
under deformations of graphs. We state the following lemma for later use:

Lemma 3. Let f € Mor(L(C)) be a C-valued graph, where C is autonomous. There is a C-valued
progressive graph g such that o(f) = 9(g). Moreover, when f has no horizontal segment, g can be

obtained from f by replacing singular points by inner nodes.

In order to make © a strict monoidal functor, we need to prove the invariance of %
under replacement.

Lemma 4. Let f € Mor(L(C)) be a C-valued graph, where C is autonomous. Let (G!,G?) be a
replacement pair such that 9(G') = ©(G?). Let t be an occurrence of G in f. Then o(f[G' =

G2]t) - f’(f)-

Proof. Let f be a valued unit graph, and t = (a, b, c,d) be an occurrence of G* in f. As 9(f) is
invariant under deformation of f, we can assume that f contains no horizontal segment. Up to
another regular deformation, ¢ and d are regular slices. Hence f can be decomposed into graphs
f1, f2 and f3 with boundaries respectively (0,¢), (¢,d) and (d,1). We have f = f; o fy 0o f3 and
fIGY == G?|; = f1 0 fo[G' == G?|y o f3, where t' = (a,b,0,1). Similarly, fo can be decomposed
in the vertical slices g1, g2 and g3, with vertical boundaries respectively (0,a), (a,b), (b,1). We
have fo[G' = G?]; = g1 ® G? @ g3 hence v(f2[G! = G?;) = ¥(g1) ® 0(G?) ® ©(g3) Finally, as
9(GY) = 0(G?) and v(f) = ¥(f1) o ¥(f2) o ¥(f3), we have the required invariance. O

Hence, as ¢ is compatible with the two relations < and ~, it is compatible with ~¢. So
o : L(C) — C is defined and is a strict monoidal functor.

B.3 A pair adjoint functors

The objects introduced in our construction can be seen as part of an adjunction be-
tween a free and a forgetful functor. This will show that L(C) has the required categor-
ical properties to be called the free autonomous category generated by the monoidal
category C.
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Let Mon be the category of strict monoidal categories and strong monoidal functors
between them. We denote by Nom (as in autonomous) the category of autonomous
categories and strong monoidal functors between them.' Our construction L cor-
responds to a functor from Mon to Nom. To make L a functor, we need to de-
fine how it translates a strong monoidal functor f : ¢ — D to L(f) : LC — LD. Let
fiar,.ay  f(AL®--®A,) ~ f(A) ® - ® f(A,) be coherence isomorphism associated
to f (with p( : f(Ie) ~ Ip). We define L(f) by

L(f) (AT Apr) = (F(AD)™, o f(Ap)™)

(F,’UO,’Ul) = (F,’U67f0’l)1)

We cannot simply define v}, by f o vy as we have to compose with the coherence iso-
morphisms of f to ensure that the domain and codomain of the valuation match with
the product of the valuation of the incoming and outgoing edges. Let » be a node
and (A;,...,4,) (respectively (B,...,B,)) be the valuations of its input (respectively
output) edges. We define

Ué(x) = K(By,...,By) ° (fowo(x)) o .LL(_All,__,7Ap)

One can check that (T',v), f o v1) is indeed a D-valued graph and that L is a strict
monoidal functor.

We will show that this functor has a right adjoint R : Nom — Mon, the inclusion
functor. We define the unit for this adjunction by ne = F. : C — RLC where F is the
functorial embedding defined in Section B.1.

The counit e : LRC — C corresponds to the value functor introduced in section B.2.
It is defined on objects by (A7t,..., Ap*) — A" @...® AJ™) . In other words, the formal
product is sent to the actual product of the original category, and the formal adjoints
are sent to the actual adjoints. An arrow f, that is to say a C-valued graph, is sent to
its value v(f).

We now move on to the proof of the unit-counit equations, starting with (Re)o(nR) =
1. First, ngp) takes an arrow in an autonomous category, seen as a monoidal category,
and bundles it in a diagram. Then, Rep evaluates this diagram in D (which is possible
because D is actually autonomous), and the result is seen as an arrow in RD.

(A%)
fecaB) P 7] Blen)
(B°)

IRecall that these functors automatically preserve adjoints.
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Hence the composition of the two is the identity. Let us show the remaining equality:
(eL)o(Ln)=1y.

(L?])c = L(nc) : LC — LRLC
(ATY, . AR) = ((AD™, .. (AD)™)

The functor L(nc) applies n¢ to the valuations of the graph, and the result is composed
with the coherence morphisms so that the domains and codomains match with the
incoming and outgoing edges. Graphically, this consists in adding inner boxes in each
node, with morally the same inputs and outputs as the outer box it is contained in.
Then, e, (¢ evaluates the resulting graph in L(C).

Theorem 3. The following equality holds: (eL) o (Ln) =1y.

Proof. Let f be an arrow in LC. Up to a deformation described in Section B.2, we can assume
that it has no horizontal segment. As RLC is autonomous, we can apply Lemma 3 to Lne(f) €
Mor(LRLC): ©(Lne(f)) = 0(g) where g is progressive and is obtained from Lne(f) by replacing
singular points by inner nodes. But Ln¢(f) differs only from f by the valuations: the underlying
graph is the same. Hence the decomposition of g into prime and invertible factors given by Lemma 2
induces a decomposition of f, where the factors are not necessarily prime or invertible however.

We prove that 9(g) = f by induction on the number of factors in the decomposition of g. If ¢
is prime, let x be its unique inner node. There are two cases. If x is also an inner node in f, then
g is indeed mapped to itself, as shown in Figure 3. Otherwise, x corresponds to a singular point
in f and is labelled by a unit or a counit, and is mapped to itself as shown in Figure 4. If g is
invertible, it is mapped to itself as well.

Now for the general case, suppose that ¢ = g1 o go where g; and g, can be decomposed in
a smaller number of factors (the case g1 ® g2 is analogous). As noted earlier, this induces a
decomposition Lne(f) = hy o hy such that g; is the progressive version of h;. This induces in turn
a decomposition f = f1 o fo such that h; = Lne(f;). By induction, 9(g;) = f;. As ¥ is a strict

monoidal functor, we get 9(g) = f. O

The notion of adjunction helps us to relate our construction with that of Preller and
Lambek [2007] who describe the free autonomous category generated by a category.
Let L' : Cat — Mon be the free monoidal category functor, and R’ : Mon — Cat be
the corresponding forgetful functor. By composition of the adjunctions, Lo L’ is left
adjoint to R o R.

L L
/_\ /\
Cat 1 Mon 1 Nom
~_ ~_
R R
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€L(C)

(BY)™, e (BY)™)

Figure 3: Equality in the case of a prime diagram

(A", An+1) ((A%), (A%
AV AV
0 0 W (A", An+1)

(A0, (a0 V4
\<An,\A/n+1> g 0

0

0

Figure 4: Equality in the case of a counit
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The construction of Preller and Lambek corresponds to a free functor from Cat to
Nom, which is equivalent to L o L’ by uniqueness of the adjoint. Hence we just gave a
factorization of their free functor.

25



	Introduction
	Free autonomous categories
	Some early evidence against tensors
	Further evidence against linearity
	Recasting convolutional models in DisCoCat
	Conclusion
	Acknowledgements
	Constructing autonomous categories
	Idea of the construction
	Graphs
	Occurrences and replacement
	Valued graphs
	The category of valued graphs

	Freeness of L(C) over C
	Functorial embedding of the original category
	Value of a valued graph
	A pair adjoint functors


