Fast Left Kan Extensions Using The Chase - Abstract

David I. Spivak and Ryan Wisnesky
Conexus AI

Abstract
We present a new algorithm for computing left Kan extensions based on the venerable “chase” algorithm from relational database theory. We show how our algorithm performs a breadth-first construction of an initial term model for a particular finite-limit theory associated with each left Kan extension, and we provide experimental data demonstrating our algorithm’s performance.

1. Introduction
Let C and D be categories and $F : C \to D$ a functor. Given a functor $J : D \to \text{Set}$, where $D \to \text{Set}$ (also written Set^D) is the category of functors from D to the category of sets, Set, we define $\Delta F(J) : C \to \text{Set} := J \circ F$, and think of ΔF as a functor from $D \to \text{Set}$ to $C \to \text{Set}$.

ΔF has a left adjoint, which we write as ΣF, taking functors in $C \to \text{Set}$ to functors in $D \to \text{Set}$. Given a functor $I : C \to \text{Set}$, the functor $\Sigma F(I) : D \to \text{Set}$ is called the left Kan extension (Carmody et al., 1995) of I along F. Left Kan extensions of set-valued functors always exist, up to unique isomorphism, but they need not be finite (i.e., $\Sigma F(I)(c)$ may have infinite cardinality for some object $c \in C$). In this paper we describe how to compute finite left Kan extensions when C, D, and F are finitely presented and I is finite, a semi-computable problem originally solved in Carmody et al. (1995) and significantly improved upon in Bush et al. (2003).

ΔF also has a right adjoint, ΠF, known as a right Kan extension and related to database joins along F (Schultz et al., 2017), making ΣF “the dual to join” in a precise sense. Among other things, left Kan extensions are used to enumerate the elements of finitely-presented categories; to construct semi-decision procedures for Thue systems; to compute the cosets of a group; and to compute the orbits of a group action (Carmody et al., 1995). We now describe our two particular motivating applications.

Our interest in left Kan extensions is motivated by their use in data migration (Schultz et al., 2017; Spivak and Wisnesky, 2015; Schultz and Wisnesky, 2017), where C and D represent database schemas, F a “schema mapping” (Haas et al., 2005) defining a translation from C to D, and I an input C-database (often called an instance) that we wish to migrate to D. Our implementation of the fastest left Kan algorithm we knew of from existing literature (Bush et al., 2003) was impractical for large input instances, yet it bore a striking operational resemblance to an algorithm from relational database theory known as the chase (Deutsch et al., 2008), which is also used to solve data migration problems, and for which efficient implementations are known (Benedikt et al., 2017).

In this paper, we formalize the above observation and show how to efficiently compute left Kan extensions by using a chase algorithm and experimentally demonstrate its time and space performance. Our algorithm and experiments are part of the open-source categorical query language CQL, available at http://categorical.info.
1.1. Performance in CQL

Scalability tests, for both time (rows/sec) and space (rows/mb of RAM) based on randomly constructed instances of the running example taken on a 13” 2018 MacBook Air with a 1.6ghz i5 CPU and 16gb RAM, on Oracle Java 11, are shown in Figure 1.1. Perhaps not as familiar as time throughput, memory throughput, measured here in rows/mb, measures the memory used by the algorithm during its execution as a function of input size; the periodic spikes in Figure 1.1 are likely do to the “double when size exceeded” behavior of the many hash-set and hash-map data structures [Sedgewick and Wayne, 2011] in our Java implementation. Memory throughput improves as the input gets larger, we believe, because the path-compressed union-find data structure of item 3 above scales logarithmically in space. Time throughput (rows / sec) gets worse as the input gets larger, we believe, because that same union-find structure scales linearly times logarithmically in time. Although performance on random instances may or may not be representative of performance in practice, our algorithm is fast enough to support multi-gigabyte real-world use cases, such as [Brown et al., 2019].

We expect chase engines designed by the database community to soon exceed the performance of our algorithm, at least for the left Kan extensions we encounter in data migration. The reason is that techniques based on indexing and statistical query optimization such as found in many SQL engines work well for computing right Kan extensions, which correspond to joins and selections and projections, and these same techniques tend to enable chase engine performance [Benedikt et al., 2017]. We hope that this paper encourages the development of chase engines using the fully deterministic (up to isomorphism) parallel chase strategy described above, and believe that the reduction of left Kan extensions to chases in general, rather than our new chase algorithm above, will be the longer-lived contribution of this paper.

Figure 1: Left Kan Chase Throughput, Pushout of Sets
References

URL http://www.cwru.edu/artsci/math/wells/pub/ttt.html

URL http://doi.acm.org/10.1145/3034786.3034796

URL http://dx.doi.org/10.1016/S0747-7171(02)00102-5

URL http://dx.doi.org/10.1006/jsco.1995.1027

URL http://doi.acm.org/10.1145/1376916.1376938

URL http://doi.acm.org/10.1145/1066157.1066252

URL http://doi.acm.org/10.1145/322186.322198

URL http://doi.acm.org/10.1145/2815072.2815075

2. Theory

In this section we describe the theory behind our chase-based left Kan algorithm.

2.1. Running Example

Our running example of a left Kan extension is a data integration problem that cannot be solved (for all input instances) with a single relational algebra query of fixed size: *quotienting a set by an equivalence relation*. In this example, the input data consists of amphibians, land animals, and water animals, such that every amphibian is exactly one land animal and exactly one water animal. We wish to compute all of the animals without double-counting the amphibians, which we can do by taking the disjoint union of the land animals and the water animals and then equating the two instances of each amphibian.

Our source schema C is the span $\text{Land}' \leftarrow \text{Amphibian}' \rightarrow \text{Water}'$, our target schema D extends C into a commutative square with new sort / terminal object Animal and no ’ marks, and the functor F is the inclusion:

Our input functor $I : C \rightarrow \text{Set}$, displayed with one table per object, is:

<table>
<thead>
<tr>
<th>Amphibian’</th>
<th>isAL’</th>
<th>isAW’</th>
</tr>
</thead>
<tbody>
<tr>
<td>gecko</td>
<td>lizard</td>
<td>salamander</td>
</tr>
<tr>
<td>frog</td>
<td>toad</td>
<td>newt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land’</th>
<th>Water’</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>fish</td>
</tr>
<tr>
<td>toad</td>
<td>salamander</td>
</tr>
<tr>
<td>human</td>
<td>newt</td>
</tr>
<tr>
<td>cow</td>
<td>dolphin</td>
</tr>
<tr>
<td>horse</td>
<td></td>
</tr>
</tbody>
</table>

Frogs are double counted as both toads and newts, and the left Kan extension equates them as animals. Similarly, geckos are both lizards and salamanders. We thus expect $5 + 4 - 2 = 7$ animals.

There are infinitely many left Kan extensions of I along F; each will be naturally isomorphic to the one below in a unique way; in other words the following tables are unique up to choice of names. The amphibians table of $\Sigma_F(I)$ is identical to that of I and is omitted:

<table>
<thead>
<tr>
<th>Land</th>
<th>isLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>gecko</td>
</tr>
<tr>
<td>toad</td>
<td>frog</td>
</tr>
<tr>
<td>human</td>
<td>human</td>
</tr>
<tr>
<td>cow</td>
<td>cow</td>
</tr>
<tr>
<td>horse</td>
<td>horse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>isWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish</td>
<td>fish</td>
</tr>
<tr>
<td>salamander</td>
<td>gecko</td>
</tr>
<tr>
<td>newt</td>
<td>frog</td>
</tr>
<tr>
<td>dolphin</td>
<td>dolphin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish</td>
</tr>
<tr>
<td>frog</td>
</tr>
<tr>
<td>dolphin</td>
</tr>
<tr>
<td>human</td>
</tr>
<tr>
<td>cow</td>
</tr>
<tr>
<td>horse</td>
</tr>
<tr>
<td>gecko</td>
</tr>
</tbody>
</table>
Because in this example F is fully faithful, the natural transformation $\eta_I : I \rightarrow \Delta_F(\Sigma_F(I))$, i.e. the unit of $\Delta_F \dashv \Sigma_F$ adjunction, is an identity of C-instances; it associates each source Land' animal to the same-named target Land and animal, etc. Informally, we might say that this left Kan extension only equates Animals, which are not part of schema C.

2.2. The Collage of a Functor

The collage [Garner and Shulman 2016] of a functor $F : C \rightarrow D$, written $\text{col}(F)$, is a canonical presentation of the category that “displays” F and which helps to axiomatize the natural transformation $\eta_I : I \rightarrow \Delta_F(\Sigma_F(I))$ associated with the left Kan extension of any instance I along F. To construct $\text{col}(F)$ we first take the disjoint union of C and D. We then add a generating morphism $\alpha_c : c \rightarrow F(c)$ for each object $c \in C$, and finally we add an equation $F(f) \circ \alpha_c = \alpha_{c'} \circ f$ for each generating morphism $f : c \rightarrow c' \in C$.

The evident inclusion functors $i_C : C \rightarrow \text{col}(F)$ and $i_D : D \rightarrow \text{col}(F)$ of C and D into $\text{col}(F)$ will be used several times throughout the paper. We will also make use of the following easy propositions:

Proposition 1. Let $F : C \rightarrow D$ be a functor. For objects $c \in C$ and $d \in D$, there is a bijection between hom-sets,

$$D(F(c), d) \cong \text{col}(F)(i_C(c), i_D(d)).$$

Proposition 2. Let $F : C \rightarrow D$ be a functor. The following are equivalent:

- the category of triples (I, J, f), where $I : C \rightarrow \text{Set}$, $J : D \rightarrow \text{Set}$, and $f : \Sigma_F(I) \rightarrow J$,
- the category of triples (I, J, f), where $I : C \rightarrow \text{Set}$, $J : D \rightarrow \text{Set}$, and $f : I \rightarrow \Delta_F(J)$, and
- the category of functors $\text{col}(F) \rightarrow \text{Set}$.

2.3. Finite Limit Theories

A finite limit theory [Wells 1994] consists of a finite set s_1, \ldots, s_k of sorts and a set p_1, \ldots, p_k of sorted relation symbols—together these form a signature—as well as a set \mathfrak{M} of formulæ, which we call axioms, each having the following form:

$$\forall(x_0 : s_0) \cdots (x_n : s_n). \phi(x_0, \ldots, x_n) \Rightarrow \exists!(x_{n+1} : s_{n+1}) \cdots (x_m : s_m). \psi(x_0, \ldots, x_m)$$

where ϕ and ψ are (possibly empty) conjunctions of

- assertions $x = x'$, for some variables of the same sort
- assertions $p(x, \ldots, x')$, for some variables of appropriate sort.
A pre-model \(I\) consists of a set \(I(s)\) for every sort \(s \in S\), a subset \(I(p) \subseteq I(s_{i_1}) \times \cdots \times I(s_{i_k})\) for every relation symbol \(p\) of arity \((s_{i_1}, \ldots, s_{i_k})\). A \(A\)-model is a pre-model that additionally satisfies every axiom of \(A\) in the obvious way.

Finite limit theories can be described using partial functions instead of relations and exists-unique quantifiers, in which case they are often called essentially algebraic theories (Wells, 1994), but we prefer the above definition because of its close connections to database theory.

2.4. The Finite Limit Theory of a Category

We now describe how to convert a category presentation—including that for the collage \(\text{col}(F)\) of any functor \(F\)—into a finite limit theory. To do so, consider the objects of \(C\) as sorts of the theory; convert each generating morphism of \(C\) to a binary relation symbol; and add combined totality-functionality conditions for each generating morphism, for example:

\[\forall (x : \text{Amphibian}). \exists!(y : \text{Land}). \text{IsAL}(x, y)\]

as well as the equations from \(C\)'s presentation\(^1\) Here are the three equations from \(\text{col}(F)\), one for the commutative square in \(D\) and two associated with \(F\); see Section 2.2.

\[
\begin{align*}
\text{IsAL}(x, y) \land \text{IsLA}(y, z) \land \text{IsAW}(x, y') \land \text{IsWA}(y', z') & \Rightarrow z = z' \\
\text{isAL}'(x, y) \land \alpha_{\text{Land}}(y, z) \land \alpha_{\text{Amphibian}}(x, y') \land \text{IsAL}(y', z') & \Rightarrow z = z' \\
\text{isAW}'(x, y) \land \alpha_{\text{Water}}(y, z) \land \alpha_{\text{Amphibian}}(x, y') \land \text{IsAW}(y', z') & \Rightarrow z = z'
\end{align*}
\]

2.5. Chasing Embedded Dependencies

By weakening the above requirement that every existential quantifier be unique, we obtain what category theorists call regular formulae (Wells, 1994) and database theorists call embedded dependencies (EDs) (Deutsch et al., 2008), where assertions of equality are called equality generating (EGDs) and assertions of membership are called tuple generating (TGDs). Given a set of EDs / regular theory \(\mathcal{A}\) and a pre-model \(\kappa\), to chase \(\kappa\) by \(\mathcal{A}\) is to construct a pre-model \(\text{chase}_\mathcal{A}(\kappa)\) such that:

1. \(\text{chase}_\mathcal{A}(\kappa)\) satisfies \(\mathcal{A}\) (i.e., is an \(\mathcal{A}\)-model).
2. there is a (possibly non-unique) morphism \(\kappa \to \text{chase}_\mathcal{A}(\kappa)\), and
3. for any model \(\kappa'\) satisfying the above two criteria, there is a possibly non-unique morphism \(\text{chase}_\mathcal{A}(\kappa) \to \kappa'\).

In the database theory literature, \(\text{chase}_\mathcal{A}(\kappa)\) is called a “universal solution” (Deutsch et al., 2008). Note that two such universal solutions to the same problem may have different cardinalities; database theorists often identify instances \(\kappa\) and \(\kappa'\) for which there exists morphisms \(\kappa \to \kappa'\) and \(\kappa' \to \kappa\) even if the morphisms do not compose to the identity, a notion called “homomorphic equivalence”. This deviation from traditional model-theoretic semantics is motivated by a need to distinguish input data from “null” or “missing” data constructed during data migration/integration, and is discussed further in the conclusion of this paper.

\(^1\) From now on, we will omit universal quantifiers and sorts when they can be inferred from context, but we will continue to make existential quantifiers explicit.
2.6. Chasing Finite Limit Theories

Universal solutions in the sense of database theory are not a tight enough solution concept to describe left Kan extensions. To obtain such a solution concept, we must appeal to the fact that all the existential quantifiers in a finite-limit theory are modally unique.

Theorem 3. Given a finite signature \((S, P)\) and finite set of axioms \(\mathcal{A}\), as in Section 2.3, for any pre-model \(\kappa\), there exists a pre-model \(\text{chase}_\mathcal{A}(\kappa)\) and morphism \(h : \kappa \to \text{chase}_\mathcal{A}(\kappa)\) with the following properties:

1. \(\text{chase}_\mathcal{A}(\kappa)\) satisfies \(\mathcal{A}\) (i.e., is an \(\mathcal{A}\)-model).
2. For any model \(\kappa'\) satisfying \(\mathcal{A}\) and any morphism \(h' : \kappa \to \kappa'\), there is a unique morphism \(g : \text{chase}_\mathcal{A}(\kappa) \to \kappa'\) such that \(g \circ h = h'\).

Proof. The proof uses the theory of sketches; see [Barr and Wells (2002)] and [Wells (1994)]. Note that understanding the proof is not required to understand our chase algorithm. Given the theory \((S, P, \mathcal{A})\) there is a category \(S_P\) and a set \(\mathcal{R}_P\) of limit cones such that the category of models for the sketch \((S_P, \mathcal{R}_P)\) is equivalent to the category of \(\mathcal{A}\)-models. Indeed, begin with the category with objects \(S \cup P\) and a morphism \(\phi \to s_i\) for each \(\phi \in P\) with arity \((s_1, \ldots, s_k)\) and \(1 \leq i \leq k\). Now form the free finite limit sketch on this category and add to the sketch a cone for each \(\phi\) that enforces the unique map \(\phi \to s_1 \times \cdots \times s_k\) to be a monomorphism. Finally, for each axiom

\[
\forall(x_0 : s_0) \cdots (x_n : s_n), \phi(x_0, \ldots, x_n) \Rightarrow \exists!(x_{n+1} : s_{n+1}) \cdots (x_m : s_m), \psi(x_0, \ldots, x_m)
\]

in \(\mathcal{A}\), the conjunctions \(\phi\) and \(\psi\) are given by pullbacks, say \(p\) and \(q\) which already exist in \(S_P\), and we finish by adding a morphism \(p \to q\). The resulting category sketch is \((S_P, \mathcal{R}_P)\), and it is tedious but not hard to show that the category of models of this sketch is equivalent to that of \(\mathcal{A}\)-models.

The theorem then becomes just a restatement of the fact that the category of models of a limit sketch \((S, \mathcal{A})\) is a reflective subcategory of the functor category \(\text{Set}^\mathcal{I}\); see [Barr and Wells (2002), Theorem 4.2.1]. Here \(\text{chase}_\mathcal{A}\) is the name of the reflection functor, and given \(\kappa \in \text{Set}^\mathcal{I}\), the map \(h\) is the unit of the reflection. \(\blacksquare\)

The properties above imply that the chase is a reflector, i.e. left adjoint to the inclusion of the category of \(\mathcal{A}\)-models into the category of pre-models. In other words, \(\text{chase}_\mathcal{A}(\kappa)\) is an initial object in the category of \(\mathcal{A}\)-models equipped with a map from \(\kappa\). We will next show that these universal solutions can be used to compute left Kan extensions.

2.7. Left Kan Extensions Using the Chase

To compute a left Kan extension \(\Sigma_F(I)\) using a chase algorithm (i.e., any algorithm that produces universal solutions to embedded dependencies), we consider \(I\) as a pre-model on the theory associated to \(\text{col}(F)\), compute \(\text{chase}_{\text{col}(F)}(I)\), and then project the part we are interested in. Our main theorem, up to abuse of notation, is:

Theorem 4. \(\Delta_{\mathcal{I}}(\text{chase}_{\text{col}(F)}(I)) \cong \Sigma_F(I)\).

Proof. Let \(J := \text{chase}_{\text{col}(F)}(I)\); it is a C-instance. By definition, \(I = \Delta_{\mathcal{I}}I\), so there is a map \(I \to \Delta_{\mathcal{I}}J\) and hence an induced map \(\Sigma_{\mathcal{I}}I \to J\) over \(I\). Also \(\Sigma_{\mathcal{I}}I\) contains \(I\), and by universality (Theorem 3(2)), there is a unique morphism \(J \to \Sigma_{\mathcal{I}}I\) over \(I\). By a standard argument, we have an isomorphism \(J \cong \Sigma_{\mathcal{I}}I\).
Now it suffices to show that $\Sigma F(I) \cong \Delta I \circ \Sigma c(I)$. This can be seen at a high-level of abstraction using profunctors, but at a hands-on level it follows from Proposition II which implies that colimit formula for both sides are the same:

$$\colim_{c \in C} I(c) \cong \colim_{c \in C} \colim_{d \in D} F(c, d) \circ I(c).$$

3. Practice

Although performant chase implementations exist (Benedikt et al., 2017), at the time of writing none of them were appropriate for CQL’s left Kan implementation. First, not all of them support all of finite limit logic (for example, systems based on TGDs would compute nine animals on our running example (Haas et al., 2005)). Second, many do not have any mechanism for reporting the “lineage” or “provenance” necessary for us to easily construct a term model, rather than a non-term model, as output. And finally, many are non-deterministic, attempting to trade predictability for speed. For these reasons, we built a deterministic chase algorithm specialized to left Kan extensions, resembling a parallel version of the algorithm in Bush et al. (2003).

3.1. Input Specification

The input to the categorical chase for a left Kan extension consists of:

- A finite set C, the elements of which we call source nodes
- For each $c_1, c_2 \in C$, a finite set $C(c_1, c_2)$, the elements of which we call source edges from c_1 to c_2. We may write $f : c_1 \to c_2$ or $c_1 \to f c_2$ to indicate $f \in C(c_1, c_2)$.
- For each $c_1, c_2 \in C$, a finite set $CE(c_1, c_2)$ of pairs of paths $c_1 \to c_2$, which we call source equations. By a path $p : c_1 \to c_2$ we mean a (possibly 0-length) sequence of edges $c_1 \to \ldots \to c_2$.
- A finite set D, the elements of which we call target nodes
- For each $d_1, d_2 \in D$, a finite set $D(d_1, d_2)$, the elements of which we call target edges from d_1 to d_2.
- For each $d_1, d_2 \in D$, a finite set $DE(d_1, d_2)$ of pairs of paths $d_1 \to d_2$, which we call target equations.
- A function $F : C \to D$.
- For each $c_1, c_2 \in C$, a function $F(c_1, c_2)$ from edges in $C(c_1, c_2)$ to paths $F(c_1) \to F(c_2)$ in D. We will usually drop the subscripts on F when they are clear from context.
- For each $c \in C$, a set $I(c)$, the elements of which we call input rows.
- For each edge $g : c_1 \to c_2 \in C$, a function $I(c_1) \to I(c_2)$.

8
The above data determines category C (resp. D), whose objects are nodes in C (resp. D), and whose morphisms are equivalence classes of paths in C (resp. D), modulo the equivalence relation induced by CE (resp. DE). Provided that for every two paths p_1 and $p_2 : c_1 \to c_2$ that are equivalent according to CE, the two paths $F(p_1)$ and $F(p_2)$ are equivalent according to DE, the above data determines a functor $F : C \to D$. This semi-decidable condition on F is checked by the CQL automated theorem prover at compile time (Schultz et al., 2017) and does not concern us here. Similarly, provided that $I(p_1)$ and $I(p_2)$ are equal as functions whenever paths p_1 and p_2 are provably equal according to CE, the above data determines a functor $I : C \to \text{Set}$. This condition on I is decidable and checked by CQL at runtime. Apart from checking this condition on I, the source equations CE are not actually used by any of the left Kan or chase algorithms we are aware of, including ours.

3.2. The Chase Step

Like most chase engines, our categorical left Kan chase runs in rounds, possibly forever, transforming a state until a fixed point is reached. Termination is undecidable, but conservative criteria based on the acyclicity of the “firing pattern” of the existential quantifiers exist (Deutsch et al., 2008). The state of a categorical chase for a left Kan extension consists of:

- For each $d \in D$, a set $J(d)$, the elements of which we call output rows. J is initialized by setting $J(d) := \bigsqcup_{c \in C} (I(c) \setminus D) I(c)$.
- For each $d \in D$, an equivalence relation $\sim_d \subseteq J(d) \times J(d)$, initialized to identity.
- For each edge $f : d_1 \to d_2 \in D$, a relation $J(f) \subseteq J(d_1) \times J(d_2)$, initialized to empty.
- For each $c \in C$, a function $\eta(c) : I(c) \to J(F(c))$. η is initialized to the co-product/disjoint-union injections from the first item, i.e., $\eta(c)(x) = (c, x)$.

Given a path $p : d_1 \to d_2$ in D, we may evaluate p on any $x \in J(d_1)$, written $p(x)$ resulting in (possibly empty) set of values from $J(d_2)$. Each round consists of the following actions, in the following sequence. The step names were chosen to be similar to those in (Bush et al., 2003).

1. **Action α:** make all edges total. For every edge $g : d_1 \to d_2$ in D and $x \in J(d_1)$ for which there does not exist $y \in J(d_2)$ with $(x, y) \in J(g)$, add a “fresh” symbol $\eta(x)$ to $J(d_2)$ and add $(x, \eta(x))$ to $J(g)$.

2. **Action β_D:** add all “coincidences” induced by D. The phrase “add coincidences” is used by the authors of (Bush et al., 2003) where a database theorist would use the phrase “fire equality-generating dependencies”. In this step, for each equation $p = q$ in $DE(d_1, d_2)$ and $x \in J(d_1)$, we update \sim_{d_2} to be the smallest equivalence relation also including $\{ (x', x'') | x' \in p(x), x'' \in q(x) \}$.

3. **Action β_F:** add all coincidences induced by F. This step is similar to the step above, except that the equation $p = q$ comes from the collage of F and evaluation requires data from η and I in addition to J.

4. **Action δ:** add all coincidences induced by functionality of edges. For every (x, y) and (x, y') in $J(f)$ for some $f : d_1 \to d_2$ in D with $y \neq y'$, update \sim_{d_2} to be the smallest equivalence relation also including (y, y').

5. Action γ: merge coincidentally equal elements. In many chase algorithms, including [Bush et al., 2003], elements are equated in place, necessitating complex reasoning and inducing non-determinism. Our algorithm is deterministic: step 1 adds all possible new elements, and the next steps add to \sim. In this last step, we replace every entry in J and η with its equivalence class (or representative) from \sim, bypassing the need for complex reasoning and allowing parallel replacement. It is also possible to maintain \sim as a list of pairs, and construct an equivalence relation all at once in this last step.

To see that this algorithm is equivalent to chasing with $\text{col}(F)$, note that each TGD or EGD in $\text{col}(F)$ is fired by one of the above actions, and that none of the above actions are taken that do not correspond to firing a TGD or EGD in $\text{col}(F)$. Completeness (that our algorithm terminates whenever a finite left Kan extension exists) is still an open question that we strongly suspect to be true. The algorithm of Bush et al. (2003) is complete; however there are theories in regular logic for which a parallel chase will diverge but a standard chase will converge (Deutsch et al., 2008), so the answer is not immediately obvious. In practice, the possible divergence of a parallel chase is tolerated because of the significant speed-ups possible compared to a sequential chase.

3.3. Example Chase Sequence

Recall that our source schema C is the span $\text{Land}' \leftarrow \text{Amphibian}' \rightarrow \text{Water}'$, our target schema D extends C into a commutative square with new sort / terminal object Animal and no ' marks, and the functor F is the inclusion:

The collage of F is:

Which, expressed as a finite limit theory over binary relation symbols, has combined functionality-totality conditions, for example:

$$\forall (x : \text{Amphibian}). \exists!(y : \text{Land}). \text{IsAL}(x, y)$$

and three implications, the first from D and the other two from F:

$$\text{IsAL}(x, y) \land \text{IsLA}(y, z) \land \text{IsAW}(x, y') \land \text{IsWA}(y', z') \Rightarrow z = z'$$
isAL′(x, y) ∧ α_{Land′}(y, z) ∧ α_{Amphibian}(x, y′) ∧ IsAL(y′, z′) ⇒ z = z′

isAW′(x, y) ∧ α_{Water′}(y, z) ∧ α_{Amphibian}(x, y′) ∧ IsAW(y′, z′) ⇒ z = z′

Our input functor \(I : C \to \text{Set} \), displayed with one table per object, is:

<table>
<thead>
<tr>
<th>Land′</th>
<th>Water′</th>
<th>Amphibian′</th>
<th>isAL′</th>
<th>isAW′</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>fish</td>
<td>gecko</td>
<td>lizard</td>
<td>salamander</td>
</tr>
<tr>
<td>toad</td>
<td>salamander</td>
<td>frog</td>
<td>toad</td>
<td>newt</td>
</tr>
<tr>
<td>human</td>
<td>newt</td>
<td>dolphin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>dolphin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The chase state is initialized to:

<table>
<thead>
<tr>
<th>Land</th>
<th>Water</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>fish</td>
<td></td>
</tr>
<tr>
<td>toad</td>
<td>salamander</td>
<td></td>
</tr>
<tr>
<td>human</td>
<td>newt</td>
<td></td>
</tr>
<tr>
<td>cow</td>
<td>dolphin</td>
<td></td>
</tr>
<tr>
<td>horse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next, we add new elements (Animal remains empty):

<table>
<thead>
<tr>
<th>Land</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>fish(isLA(lizard))</td>
</tr>
<tr>
<td>toad</td>
<td>fish(isLA(toad))</td>
</tr>
<tr>
<td>human</td>
<td>fish(isLA(human))</td>
</tr>
<tr>
<td>cow</td>
<td>fish(isLA(cow))</td>
</tr>
<tr>
<td>horse</td>
<td>fish(isLA(horse))</td>
</tr>
</tbody>
</table>

Next, we add coincidences. The single target equation in \(D \) induces no effect, because there are no Animals that can possibly be equated yet. The two naturality conditions for \(\alpha \) essentially state that isAL and isAW should be copies of isAL′ and isAW′, requiring the following equivalences:

\[\text{isAL(gecko)} \sim \text{lizard} \quad \text{isAW(gecko)} \sim \text{salamander} \]

\[\text{isAL(toad)} \sim \text{frog} \quad \text{isAW(toad)} \sim \text{newt} \]

And so we end round one with no Animals and:

<table>
<thead>
<tr>
<th>Land</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>fish(isLA(lizard))</td>
</tr>
<tr>
<td>toad</td>
<td>fish(isLA(toad))</td>
</tr>
<tr>
<td>human</td>
<td>fish(isLA(human))</td>
</tr>
<tr>
<td>cow</td>
<td>fish(isLA(cow))</td>
</tr>
<tr>
<td>horse</td>
<td>fish(isLA(horse))</td>
</tr>
</tbody>
</table>
Amphibian isAL isAW
gcko lizard salamander
frog toad newt

From here forward, the Amphibians table will not change, so we will not display it, and the naturality conditions on \(\alpha \) will always be satisfied. We begin the second round by creating nine new animals:

<table>
<thead>
<tr>
<th>Land</th>
<th>isLA</th>
<th>Water</th>
<th>isWA</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>isLA(lizard)</td>
<td>fish</td>
<td>isWA(fish)</td>
<td>isLA(lizard)</td>
</tr>
<tr>
<td>toad</td>
<td>isLA(toad)</td>
<td>salamander</td>
<td>isWA(salamander)</td>
<td>isLA(toad)</td>
</tr>
<tr>
<td>human</td>
<td>isLA(human)</td>
<td>newt</td>
<td>isWA(newt)</td>
<td>isLA(human)</td>
</tr>
<tr>
<td>cow</td>
<td>isLA(cow)</td>
<td>dolphin</td>
<td>isWA(dolphin)</td>
<td>isLA(cow)</td>
</tr>
<tr>
<td>horse</td>
<td>isLA(horse)</td>
<td></td>
<td></td>
<td>isLA(horse)</td>
</tr>
</tbody>
</table>

The single target equation in \(D \) induces the equivalences:

\[
isLA(\text{lizard}) \sim isWA(\text{salamander}) \quad isLA(\text{toad}) \sim isWA(\text{newt})
\]

for a final result of:

<table>
<thead>
<tr>
<th>Land</th>
<th>isLA</th>
<th>Water</th>
<th>isWA</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>isLA(lizard)</td>
<td>fish</td>
<td>isWA(fish)</td>
<td>isLA(lizard)</td>
</tr>
<tr>
<td>toad</td>
<td>isLA(toad)</td>
<td>salamander</td>
<td>isWA(salamander)</td>
<td>isLA(toad)</td>
</tr>
<tr>
<td>human</td>
<td>isLA(human)</td>
<td>newt</td>
<td>isWA(newt)</td>
<td>isLA(human)</td>
</tr>
<tr>
<td>cow</td>
<td>isLA(cow)</td>
<td>dolphin</td>
<td>isWA(dolphin)</td>
<td>isLA(cow)</td>
</tr>
<tr>
<td>horse</td>
<td>isLA(horse)</td>
<td></td>
<td></td>
<td>isLA(horse)</td>
</tr>
</tbody>
</table>

This is obviously uniquely isomorphic to the original example output:

<table>
<thead>
<tr>
<th>Land</th>
<th>isLA</th>
<th>Water</th>
<th>isWA</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>lizard</td>
<td>lizard</td>
<td>fish</td>
<td>fish</td>
<td>fish</td>
</tr>
<tr>
<td>toad</td>
<td>frog</td>
<td>salamander</td>
<td>lizard</td>
<td>frog</td>
</tr>
<tr>
<td>human</td>
<td>human</td>
<td>newt</td>
<td>frog</td>
<td>dolphin</td>
</tr>
<tr>
<td>cow</td>
<td>cow</td>
<td>dolphin</td>
<td>dolphin</td>
<td>human</td>
</tr>
<tr>
<td>horse</td>
<td>horse</td>
<td></td>
<td></td>
<td>cow</td>
</tr>
</tbody>
</table>

However, the actual choice of names in the tables is not canonical, as we would expect for a set-valued functor defined by a universal property, and different naming “strategies” are possible. In our categorical approach to data migration, we treat names not as values per se, but as meaningless identifiers, a choice elaborated upon in this paper’s conclusion.
3.4. Comparison to Previous Work

The authors of Bush et al. (2003) identify four actions that leave invariant the left Kan extension denoted by a state, and consider a run of the chase algorithm to be any “fair” sequence of these actions:

1. Action α: add a new element. This step is similar to our α step, except it only adds one element.
2. Action β: add a coincidence. This step is similar to our β_F and β_D, except it only considers one equation.
3. Action δ: delete non-determinism. This is similar to our δ step, except it only applies to one edge at a time. If $(x, y) \in P(g)$ and $(x, y') \in P(g)$ but $y \neq y'$, add (y, y') and (y', y) to \sim and delete (x, y') from $P(g)$. This process is “biased” towards keeping “older” values to ensure “fairness”.
4. Action γ: delete a coincidence. If $(x, y) \in \sim_d$ for some $d \in D$, then replace y by x in various places, and add new coincidences. In the first computational left Kan paper (Carmody et al., 1995), this action took an entire companion technical report to justify (Carmody and Walters, 1991); the authors of Bush et al. (2003) reduced this step to about a page. One reason this step is complicated to write in Bush et al. (2003) is because the relation \sim is not required to be transitive; another reason is that the way deletion is done in the “various places” depends on the particular place; and another is that deletion is done “in place.”

Similar to the algorithm in Bush et al. (2003), our algorithm generalizes to product categories, because left Kan extensions for product categories can be axiomatized as finite limit theories (where some symbols may have arity > 1). Readers porting the functionality from the CQL implementation in the next section to the sequential algorithm above should note that ensuring the fairness condition of action δ above requires making the path-compression strategy for \sim aware of the “age” of each output row.

3.5. Implementation in CQL

Our CQL implementation minimizes memory usage of the algorithm sketched above by storing cardinalities instead of meaningless identifiers and using lists instead of sets, and so a CQL left Kan chase state as benchmarked in this paper consists of:

1. For each $d \in D$, a number $J(d) \geq 0$.
2. For each $d \in D$, a list of length $J(d)$, where each element has the form (c, x, p), for some $c \in C$, $x \in I(c)$, and $p : F(c) \to d$.
3. For each $d \in D$, a union-find data structure [Nelson and Oppen, 1980] based on path-compressed trees $\sim_d \subseteq J(d) \times J(d)$ (Sedgewick and Wayne, 2011).
4. For each edge $f : d_1 \to d_2 \in D$, a list of length $J(d_1)$, each element of which is a number between 0 and $J(d_2)$.
5. For each $c \in C$, a function $\eta(c) : I(c) \to J(F(c))$.

From a theoretical viewpoint, the above state is more precisely considered as a functor to the skeleton [Barr and Wells, 1990] of the category of sets. The CQL implementation runs the Java garbage collector between rounds, uses “hash-consed” [Baader and Nipkow, 1998], tree-based terms, and uses strings for symbol and variable names.
4. Conclusion: Left Kan Extensions and Database Theory

We conclude by briefly summarizing how our use of the chase in this paper relates to its use in data migration and/or integration, which we refer to collectively as DMI (Doan et al., 2012). Readers not interested in DMI may safely skip this section.

In DMI, instances are assumed to hold two kinds of values: constants and (labelled) nulls. Constants are regarded as having inherent identity, such as numerals 1 or 2 or a social security number; nulls, sometimes called Skolem variables (Doan et al., 2012), can be created during many DMI tasks and are regarded as distinct from constants and “less meaningful”; they are considered up to isomorphism. In particular, in DMI, when an equality-generating dependency \(n = c \) is encountered, where \(n \) is a null and \(c \) a constant, then \(n \) is replaced by \(c \), and never vice-versa; moreover if \(c = c' \) is encountered for two distinct constants \(c \neq c' \) then the chase fails. Hence, from the DMI point of view, our instances in this paper are made entirely of nulls, and so our chases never fail (although they may diverge). The many consequences of adopting an unfailing, nulls-only chase procedure in the context of DMI are explored in Schultz et al. (2017); Spivak and Wisnesky (2015); Schultz and Wisnesky (2017).

Contents

1 Introduction 1
 1.1 Performance in CQL 2

2 Theory 4
 2.1 Running Example 4
 2.2 The Collage of a Functor 5
 2.3 Finite Limit Theories 5
 2.4 The Finite Limit Theory of a Category 6
 2.5 Chasing Embedded Dependencies ... 6
 2.6 Chasing Finite Limit Theories 7
 2.7 Left Kan Extensions Using the Chase 7

3 Practice 8
 3.1 Input Specification 8
 3.2 The Chase Step 9
 3.3 Example Chase Sequence 10
 3.4 Comparison to Previous Work 13
 3.5 Implementation in CQL 13

4 Conclusion: Left Kan Extensions and Database Theory 14