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Why quantum algorithms?

I Quantum algorithms as a change of perspective, i.e. view
physical structure as information processing

I Open question (Theoretical): What does this mean?

I What is the physical role of computational complexity?
I What structures lead to speedups?

I Open question (Applied): What can we do with it?

I How do we find useful quantum algorithms?

The CQM approach:

1. QM as an instance of general process theories in compact
closed categories

2. Leverage the general setting and diagrammatic calculus to
identify and exploit algorithmically useful structure



Overview

Quantum Algorithms: State of the Union

Blackbox algorithms in CQM: the old, the generalized, and the
new

Unitary Oracles
Deutsch-Jozsa algorithm
Hidden subgroup algorithms
Group homomorphism identification algorithm
Single-shot Grovers algorithm

Leveraging generality: other categories

Frontiers
Quantum machine learning and connections to NLP



Quantum Algorithms: State of the Union

Many different techniques are used in practice:

Quantum Fourier transform

Hamilton simulation

Phase estimation

Quantum walks

Topological quantum algorithms

Adiabatic optimization

Amplitude estimation

etc.
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I The quantum algorithm zoo
(http://math.nist.gov/quantum/zoo/) lists some 42 different
quantum algorithms
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I Three main categories: Algebraic/Number Theoretic,
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Quantum Algorithms: State of the Union

I The quantum algorithm zoo
(http://math.nist.gov/quantum/zoo/) lists some 42 different
quantum algorithms

I Only a handful show promise of exponential speedup
I Three main categories: Algebraic/Number Theoretic,

Approximation/Simulation, Oracular

I Open question: Is there a general theorem that tells us
when we can hope for exponential speedups from
quantum algorithms, and when we cannot?
[Aaronson and Ambainis 2014]
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Unitary Oracles

I Oracles are blackboxes with unknown internal structure.
I Most known quantum algorithms are constructed using

quantum oracles, the Deutsch-Josza algorithm, Shor’s
algorithm, Grover’s algorithm...

I Physical realizations of oracles place conditions on their
“unknown” structure. (Unitarity in the quantum case)

Main questions:
I What is the abstract structure of these oracles?
I Can we take advantage of this abstract setting to gain new

insights?



Unitary Oracles
The traditional Deutsch-Joza circuit is:
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Unitary Oracles
Here is its abstract structure:

f

m

s†

σ†

{0, 1}

F{0,1}N

|0〉

F{0,1}

|1〉

F{0,1}N

Oracle

Uf

σ

{0, 1}

Oracle

1√
|S|

1√
|S|

1√
2

f



Unitary Oracles
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Unitary Oracles

This is the oracle’s internal structure:

|x〉

|x〉

|y〉

|f (x) ⊕ y〉

Oracle

f

Theorem
Oracles with this abstract structure are unitary in general.



Categorical Quantum Information

View quantum information in the context of the dagger-compact
category FHilb

ψ is a state ψ : I → H

f is a linear map f : A → B.

f is the adjoint f † : B → A.

ψ φ is the composite state I → ψ ⊗ φ



Categorical Quantum Information

Definition: A special †-Frobenius algebra ( A, , ) obeys:
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Categorical Quantum Information

Definition: A special †-Frobenius algebra ( A, , ) obeys:

= =

= = =

= =

This represents the abstract structure of an observable or
generalized basis.



Complementary observables

Definition [Coecke & Duncan]: Two †-Frobenius algebras on the
same object are complementary when:

d(A) =



Complementary observables

Finite abelian groups give complementary observables in FHilb

I Copying

:: |g〉 7→ |g〉 ⊗ |g〉

:: |g〉 7→ 1

I Group multiplication

:: |g1〉 ⊗ |g2〉 7→
1

√
D
|g1 ⊕ g2〉

:: 1 7→
√

D|0〉



Classical Maps

Definition:
A classical map f : (A, , ) → (B, , ) obeys:

f
=

f f

f = f



Classical Maps

Definition:
A classical map f : (A, , ) → (B, , ) obeys:

f
=

f f

f = f

These are self-conjugate comonoid homomorphisms.
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Unitarity Theorem

I Three †-Frobenius algebras, ( , ◦, •)
I A pair are complementary ( and ◦)
I A classical map f : (A, , ) → (B, , )

Produce the unitary morphism:

√
d(A) f



Abstract proof of unitarity
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Unitary Oracles

I We have defined (diagrammatically) an abstract structure
required to make oracles physical.

I This lifts the property of unitarity for quantum oracles to the
more abstract setting of dagger monoidal categories.

I Can we take advantage of this abstract setting to gain new
insights? Yes.

Details in [Zeng & Vicary 2014]

Up next
I Quantum algorithms: The old, the generalized and the

new.



Quantum algorithms: old, generalized and new
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Deutsch-Jozsa Single-shot Grover Hidden subgroup



The Deutsch-Jozsa Algorithm
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The Deutsch-Jozsa Algorithm

I Blackbox function f : {0, 1}N → {0, 1} is balanced when it
takes each possible value the same number of times

00
01
10
11

0
1

Definition (The Deutsch-Jozsa problem)
Given a blackbox function f promised to be either constant or
balanced, identify which.
I Classically we require at most 2N−1 + 1 queries of f
I The quantum algorithm only requires a single query.
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Group Algebras

Recall the group multiplying observable:

G ⊗ G
m
−→ G

A one-dimensional representation G
ρ
−→ C is:

ρ†

=
ρ

ρ†

The adjoint C
ρ
−→ G is also copied on the lower legs.



CQM Deutsch-Jozsa
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σ(0) = 1 and σ(1) = −1
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CQM Deutsch-Jozsa

σ

1
|S| f

I Slide up σ†

I Pull σ† through the whitedot

I Neglect the right-side system

I Spider law for the black dot



CQM Deutsch-Jozsa
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σ

1
|S| f

Gives the amplitude for the input state
1√
|S|

∑
s |s〉 to be in the σ state

at measurement.

What if f is balanced?

σ

f = 0

so the system is never measured in σ.

What if f is constant?
Then

f =
x

⇒

σ
1
|S| f = x

σ

1
|S|

= ±1

So the system is always measured in σ.
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Notes CQM Deutsch-Josza

I Verify: Abstractly verify the algorithm

I Generalize:
I Abstract definition for balanced generalizes [Høyer 1999]

and [Batty, Braunstein, Duncan 2006]. See [Vicary 2013]
I The algorithm can be executed with complementary rather

than strongly complementary observables
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The Hidden Subgroup Problem

A sneaky function G
f
−→ X is promised to be constant on the

cosets of some normal subgroup H ⊆ G, and distinct
otherwise. f factorizes as

G G/H S ,
q s

ff

Definition
Hidden subgroup problem Given a sneaky f , determine the
subgroup H in O(log |G|) trials.

Shor’s algorithm, discrete logarithms, graph isomorphism are
cases
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ρ

Mat(n) S
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n

|G|

f

Results:

I Verify that measurement returns
irreps of G that factor G/H with probability
proportional to the square of rep’s dim.
[Vicary 2013]

I No reliance on strong compl.

I Investigating improvements of input



Comparing Algorithms
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The group homomorphism identification problem

I Definition. (Group homomorphism identification problem)
Given finite groups G and A where A is abelian, and a
blackbox function f : G → A promised to be a group
homomorphism, identify f .



The group homomorphism identification algorithm

Case: Let A be a cyclic group Zn.

f
G

A
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Prepare initial states

Apply a unitary map

Measure the left system
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The group homomorphism identification algorithm

f
A

G

σ
ρ

ρ

I ρ ◦ f is an irreducible representation of G.
I Choose ρ to be a faithful representation of A.
I Then measuring ρ ◦ f identifies f (up to isomorphism)
I One-dimensional representations are isomorphic only if

they are equal.



The group homomorphism identification algorithm

Homomorphism f : G → A

I We generalize with proof by induction via the Structure
Theorem. A = Zp1 ⊕ ... ⊕ Zpk

I Can identify the group homomorphism in k oracle queries.
I The naive classical solution requires a number of queries

equal to the number of factors of G rather than A.

See [Zeng & Vicary 2014]
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Grover’s Algorithm

Background:
I Grover’s quantum algorithm finds a single marked element

of a finite set in O(
√

N) trials, vs classical O(N).
I If exactly 1

4 of the elements are marked, it can find a
marked element in a single trial.

In [Vicary 2013]:
I Verification of the single-shot Grover’s algorithm.
I The CQM perspective highlights the structural role of the

group Z2.
I Changing the finite group gives ‘multicoloured’ quantum

search algorithms which achieve tasks that ordinary
Grover search cannot.
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Examples
The generalized single-shot Grover algorithm finds colours
whose ‘weighted phase’ doesn’t take twice the average value.

Suppose f : S → Z2 ' {R, G}, σ = (1,−1).
Essentially, red and green balls at ±1.

For one colour to take twice the average
value we require a 3:1 ratio.

Rarer colour returned in a single query.
Standard result from Grover theory.

NRNG

Now suppose f : S → Z3 ' {R, G, B}, σ = (1, e2πi/3, e4πi/3).
Red, green, blue balls at e2nπi/3.

For one colour to take twice the average
value we require a 4:1:1 ratio.

A rarer colour returned in a single query.
Cannot be done with ordinary Grover algorithm.

NR

NG

NB
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I We can verify and generalize Grover’s algorithm with the
CQM framework.
[Vicary 2013]



Concluding Grover’s

I We can verify and generalize Grover’s algorithm with the
CQM framework.
[Vicary 2013]

I Since Grover’s forms the basis for other quantum
subroutines, e.g. amplitude amplification, amplitude
estimation, and quantum minimization algorithms, etc. This
is an important building block.



Leveraging generality: other categories

I Relate Unitary Oracles to the resistor structure in
signal-flow calculus [Zeng & Vicary 2014]

I Define these algorithms in Rel

I We should think about computational speedup as a
property of a physical theory in much the same way that
we think about contextuality and non-locality.
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Successes
I Categorical quantum mechanics give a handle on the

abstract structure of quantum algorithms:
I To develop new quantum algorithms
I To investigate what structures in QM lead to speedups

Challenges
I Capture non-oracle algorithms within the framework
I Capture non-single-shot algorithms

Particular current work
I Capture new quantum machine learning algorithms
I Connect quantum algorithms to NLP through compact

categories
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The closest vector problem

Definition
Given vector s and a set of M vectors U = {~v0, ~v1, ...~vM−1} the
closest vector problem asks one to determine which vi has the
smallest inner product distance with s. We will assume that all
vectors are N-dimensional.

I Appears in clustering, text classification, phrase/word
similarity, sentiment analysis, etc.

I Classical algorithms for this problem have complexity
O(MN).
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A quantum algorithm for the closest vector problem
Definition (SWAP Test)

0 ψ φ

H

H

CSWAP

Hadamard Transform:

H ::|0〉 →
1
√

2
(|0〉 + |1〉)

|1〉 →
1
√

2
(|0〉 − |1〉)
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A quantum algorithm for the closest vector problem

Definition (SWAP Test)

0 ψ φ

H

H

CSWAP

Resulting state: 1
2 |0〉(|φ〉|ψ〉 + |ψ〉|φ〉) + 1

2 |1〉(|φ〉|ψ〉 − |ψ〉|φ〉),
Probability of measuring the left system to be zero is

1/2 − |〈φ|ψ〉|2/2.

Takeaway: In a single step we can encode the inner product of
two vectors.
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A quantum algorithm for the closest vector problem

qCVECT has the following steps:

1. Add ancillary qubits |i〉 (for indexing) and |ψi〉 (for the
SWAP test) and apply the SWAP test (without
measurement) for each pair (s, vi).

2. Perform coherent amplitude estimation to determine the
amplitude of the zero state for the ancillary qubits
|ψ0〉, |ψ1〉, .... This stores the distances estimates in a qubit
string without measurement. [Wiebe et. al. 2014]

3. Use the Dürr-Hoyer minimization algorithm to return the i
which minimizes

(
1 − |〈vi |s〉|2

)
.

The runtime is O(Me−1/2) and a slightly more complicated
version runs in almost O(

√
Me−1/2)
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Complexity Comparisons

I TIME: Classification tasks can be performed in runtimes
that are independent of the dimension of the meaning
space.

I SPACE: Exponential reduction in required space. An
N-dimensional classical vector requires log2 N qubits.
I DisCo becomes more attractive as large order tensors are

feasibly implemented
I Secrecy advantages. Classification task requires less

queries than are necessary to reconstruct the classifying
clusters.



Thanks!
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