Quantum algorithms in categorical quantum mechanics

William Zeng

Department of Computer Science University of Oxford

> 10 years of CQM October, 2014

> > ◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

 Quantum algorithms as a change of perspective, i.e. view physical structure as information processing

 Quantum algorithms as a change of perspective, i.e. view physical structure as information processing

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

• Open question (Theoretical): What does this mean?

- Quantum algorithms as a change of perspective, i.e. view physical structure as information processing
- Open question (Theoretical): What does this mean?
 - What is the physical role of computational complexity?

What structures lead to speedups?

- Quantum algorithms as a change of perspective, i.e. view physical structure as information processing
- Open question (Theoretical): What does this mean?
 - What is the physical role of computational complexity?

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- What structures lead to speedups?
- Open question (Applied): What can we do with it?
 - How do we find useful quantum algorithms?

- Quantum algorithms as a change of perspective, i.e. view physical structure as information processing
- Open question (Theoretical): What does this mean?
 - What is the physical role of computational complexity?

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- What structures lead to speedups?
- Open question (Applied): What can we do with it?
 - How do we find useful quantum algorithms?

The CQM approach:

- Quantum algorithms as a change of perspective, i.e. view physical structure as information processing
- Open question (Theoretical): What does this mean?
 - What is the physical role of computational complexity?
 - What structures lead to speedups?
- Open question (Applied): What can we do with it?
 - How do we find useful quantum algorithms?

The CQM approach:

1. QM as an instance of general process theories in compact closed categories

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Quantum algorithms as a change of perspective, i.e. view physical structure as information processing
- Open question (Theoretical): What does this mean?
 - What is the physical role of computational complexity?
 - What structures lead to speedups?
- Open question (Applied): What can we do with it?
 - How do we find useful quantum algorithms?

The CQM approach:

- 1. QM as an instance of general process theories in compact closed categories
- 2. Leverage the general setting and diagrammatic calculus to identify and exploit algorithmically useful structure

Overview

Quantum Algorithms: State of the Union

Blackbox algorithms in CQM: the old, the generalized, and the new

Unitary Oracles Deutsch-Jozsa algorithm Hidden subgroup algorithms Group homomorphism identification algorithm Single-shot Grovers algorithm

Leveraging generality: other categories

Frontiers

Quantum machine learning and connections to NLP

Quantum Algorithms: State of the Union

Many different techniques are used in practice:

Quantum Fourier transform

Hamilton simulation

Phase estimation

Quantum walks

Topological quantum algorithms

Adiabatic optimization

Amplitude estimation

etc.

Quantum Algorithms: State of the Union

- The quantum algorithm zoo (http://math.nist.gov/quantum/zoo/) lists some 42 different quantum algorithms
 - Only a handful show promise of exponential speedup
 - Three main categories: Algebraic/Number Theoretic, Approximation/Simulation, Oracular

▲□▶▲□▶▲□▶▲□▶ □ クタペ

Quantum Algorithms: State of the Union

- The quantum algorithm zoo (http://math.nist.gov/quantum/zoo/) lists some 42 different quantum algorithms
 - Only a handful show promise of exponential speedup
 - Three main categories: Algebraic/Number Theoretic, Approximation/Simulation, Oracular
- Open question: Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? [Aaronson and Ambainis 2014]

Oracles are blackboxes with unknown internal structure.

- Oracles are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm...

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

- Oracles are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm...
- Physical realizations of oracles place conditions on their "unknown" structure. (Unitarity in the quantum case)

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

- Oracles are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm...
- Physical realizations of oracles place conditions on their "unknown" structure. (Unitarity in the quantum case)

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

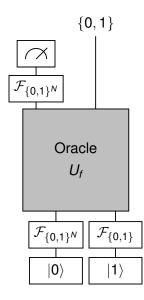
Main questions:

- Oracles are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm...
- Physical realizations of oracles place conditions on their "unknown" structure. (Unitarity in the quantum case)

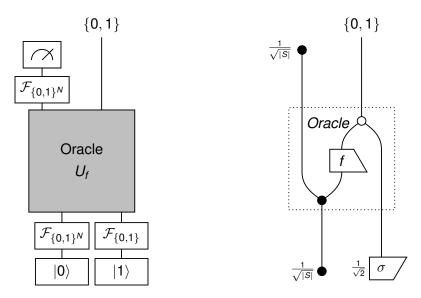
Main questions:

- What is the abstract structure of these oracles?
- Can we take advantage of this abstract setting to gain new insights?

The traditional Deutsch-Joza circuit is:

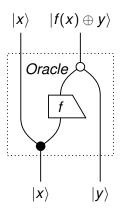


Here is its abstract structure:



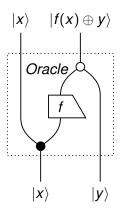
◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

This is the oracle's internal structure:



◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

This is the oracle's internal structure:

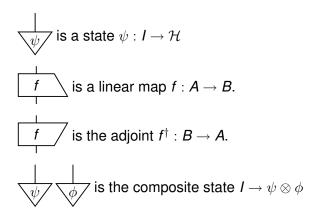


Theorem Oracles with this abstract structure are unitary in general.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

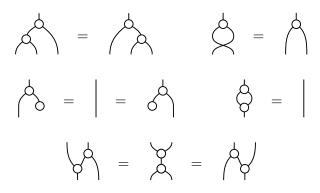
Categorical Quantum Information

View quantum information in the context of the dagger-compact category **FHilb**



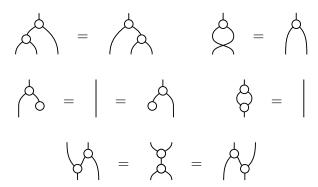
Categorical Quantum Information

Definition: A special †-Frobenius algebra (A, , ,) obeys:



Categorical Quantum Information

Definition: A special \dagger -Frobenius algebra (A, \land , \diamond) obeys:

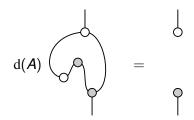


This represents the abstract structure of an *observable* or generalized basis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Complementary observables

Definition [Coecke & Duncan]: Two †-Frobenius algebras on the same object are complementary when:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Complementary observables

Finite abelian groups give complementary observables in FHilb

Copying

$$egin{array}{lll} ig \gamma ::: |m{g}
angle \mapsto |m{g}
angle \otimes |m{g}
angle \ \mathbf{arphi} ::: |m{g}
angle \mapsto \mathbf{1} \end{array}$$

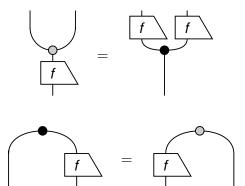
Group multiplication

$$\diamondsuit :: |g_1
angle \otimes |g_2
angle \mapsto rac{1}{\sqrt{D}} |g_1 \oplus g_2
angle \ \diamond :: 1 \mapsto \sqrt{D} |0
angle$$

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

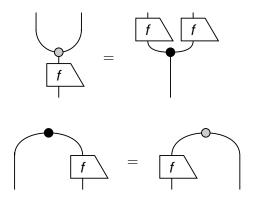
Classical Maps

Definition: A classical map $f : (A, \frown, \bullet) \to (B, \frown, \circ)$ obeys:



Classical Maps

Definition: A classical map $f : (A, \frown, \bullet) \to (B, \frown, \circ)$ obeys:



These are self-conjugate comonoid homomorphisms.

Unitarity Theorem

► Three †-Frobenius algebras, (•, ∘, •)

Unitarity Theorem

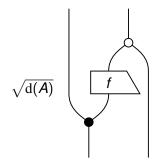
- ► Three †-Frobenius algebras, (•, ∘, •)
- ► A pair are complementary (• and •)

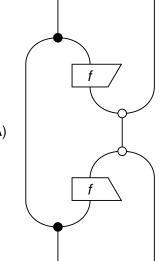
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Unitarity Theorem

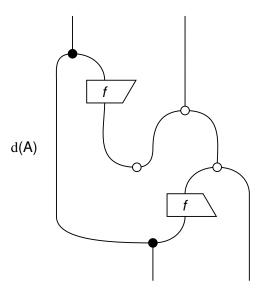
- Three †-Frobenius algebras, (• , \circ , •)
- ► A pair are complementary (• and •)
- ► A classical map $f: (A, \bigstar, \bullet) \to (B, \diamondsuit, \bullet)$

Produce the unitary morphism:

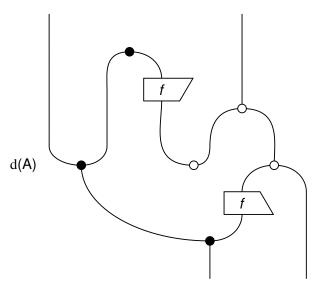


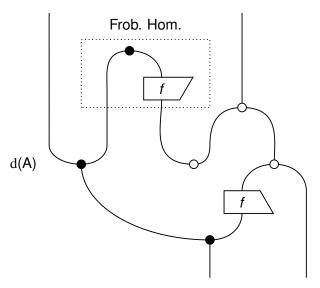


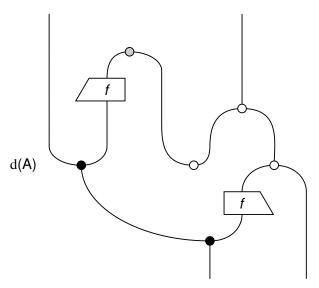
d(A)



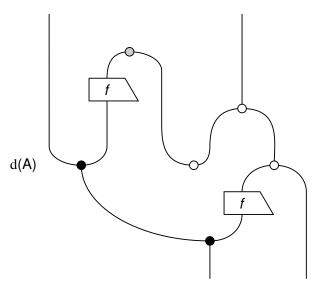
◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

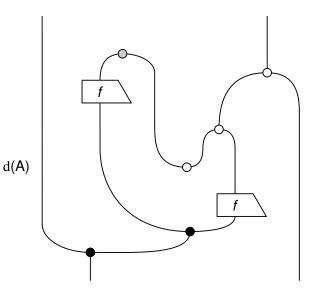


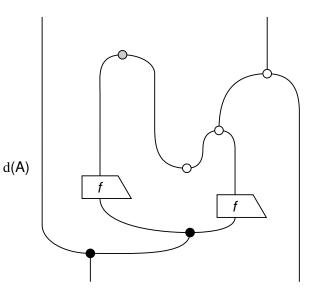


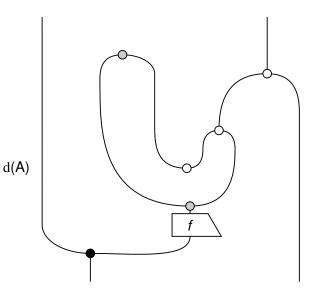


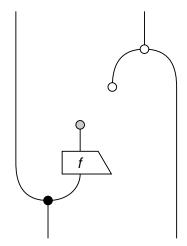
◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

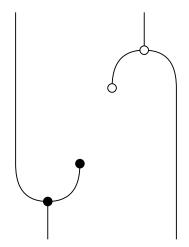












▲□▶▲□▶▲目▶▲目▶ 目 のへで

We have defined (diagrammatically) an abstract structure required to make oracles physical.

- We have defined (diagrammatically) an abstract structure required to make oracles physical.
- This lifts the property of unitarity for quantum oracles to the more abstract setting of dagger monoidal categories.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- We have defined (diagrammatically) an abstract structure required to make oracles physical.
- This lifts the property of unitarity for quantum oracles to the more abstract setting of dagger monoidal categories.
- Can we take advantage of this abstract setting to gain new insights?

▲□▶▲□▶▲□▶▲□▶ □ クタペ

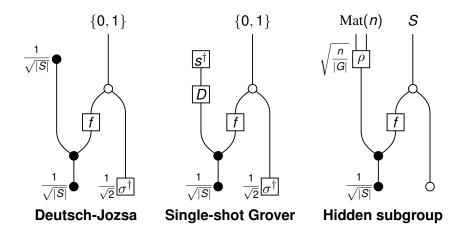
- We have defined (diagrammatically) an abstract structure required to make oracles physical.
- This lifts the property of unitarity for quantum oracles to the more abstract setting of dagger monoidal categories.
- Can we take advantage of this abstract setting to gain new insights? Yes.

Details in [Zeng & Vicary 2014]

Up next

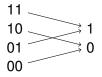
 Quantum algorithms: The old, the generalized and the new.

Quantum algorithms: old, generalized and new



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

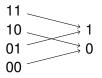
Blackbox function *f* : {0,1}^N → {0,1} is *balanced* when it takes each possible value the same number of times



・ロット (雪) () () () ()

3

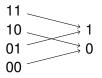
Blackbox function *f* : {0,1}^N → {0,1} is *balanced* when it takes each possible value the same number of times



Definition (The Deutsch-Jozsa problem)

Given a blackbox function *f* promised to be either *constant* or *balanced*, identify which.

Blackbox function *f* : {0,1}^N → {0,1} is *balanced* when it takes each possible value the same number of times



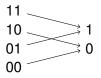
(日) (日) (日) (日) (日) (日) (日) (日)

Definition (The Deutsch-Jozsa problem)

Given a blackbox function *f* promised to be either *constant* or *balanced*, identify which.

• Classically we require at most $2^{N-1} + 1$ queries of f

Blackbox function *f* : {0,1}^N → {0,1} is *balanced* when it takes each possible value the same number of times

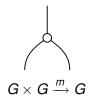


Definition (The Deutsch-Jozsa problem)

Given a blackbox function *f* promised to be either *constant* or *balanced*, identify which.

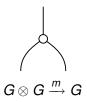
- Classically we require at most $2^{N-1} + 1$ queries of f
- ► The quantum algorithm only requires a *single* query.

Recall the group multiplying observable:



◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

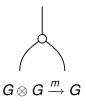
Recall the group multiplying observable:



◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

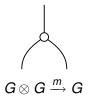
Recall the group multiplying observable:



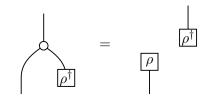
A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Recall the group multiplying observable:

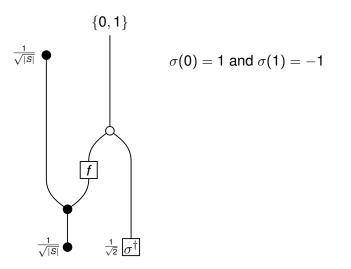


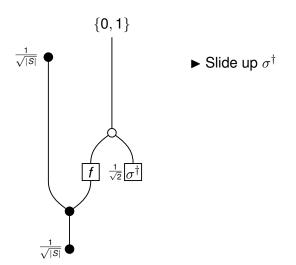
A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

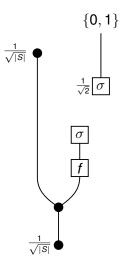


イロト 不得 とうき とうとう ヨ

The adjoint $\mathbb{C} \xrightarrow{\rho} G$ is also copied on the lower legs.



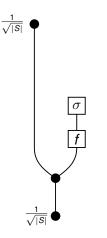




- ▶ Slide up σ^{\dagger}
- ▶ Pull σ^{\dagger} through the whitedot

ヘロト ヘロト ヘビト ヘビト

æ –



- \blacktriangleright Slide up σ^\dagger
- \blacktriangleright Pull σ^{\dagger} through the whitedot
- Neglect the right-side system

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

- ▶ Slide up σ^{\dagger}
- \blacktriangleright Pull σ^{\dagger} through the whitedot

- Neglect the right-side system
- Spider law for the black dot

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}}\sum_{s}|s\rangle$ to be in the σ state

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

at measurement.

Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}}\sum_{s}|s\rangle$ to be in the σ state

at measurement.

What if f is balanced?

so the system is never measured in σ .

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

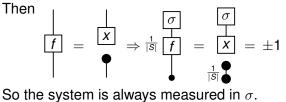
Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}}\sum_{s} |s\rangle$ to be in the σ state

at measurement.

What if f is balanced?

so the system is never measured in σ .

What if f is constant?



Notes CQM Deutsch-Josza

Verify: Abstractly verify the algorithm

Notes CQM Deutsch-Josza

- Verify: Abstractly verify the algorithm
- Generalize:
 - Abstract definition for balanced generalizes [Høyer 1999] and [Batty, Braunstein, Duncan 2006]. See [Vicary 2013]

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

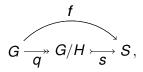
Notes CQM Deutsch-Josza

- Verify: Abstractly verify the algorithm
- Generalize:
 - Abstract definition for balanced generalizes [Høyer 1999] and [Batty, Braunstein, Duncan 2006]. See [Vicary 2013]
 - The algorithm can be executed with complementary rather than strongly complementary observables

▲□▶▲□▶▲□▶▲□▶ □ クタペ

The Hidden Subgroup Problem

A *sneaky* function $G \xrightarrow{f} X$ is promised to be constant on the cosets of some normal subgroup $H \subseteq G$, and distinct otherwise. *f* factorizes as

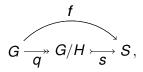


Definition

Hidden subgroup problem Given a sneaky f, determine the subgroup H in $O(\log |G|)$ trials.

The Hidden Subgroup Problem

A *sneaky* function $G \xrightarrow{f} X$ is promised to be constant on the cosets of some normal subgroup $H \subseteq G$, and distinct otherwise. *f* factorizes as

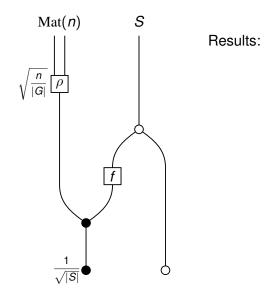


Definition

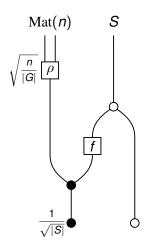
Hidden subgroup problem Given a sneaky f, determine the subgroup H in $O(\log |G|)$ trials.

Shor's algorithm, discrete logarithms, graph isomorphism are cases

CQM Hidden Subgroup



CQM Hidden Subgroup



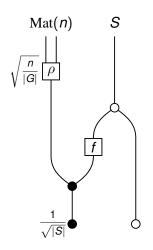
Results:

► Verify that measurement returns irreps of *G* that factor G/H with probability proportional to the square of rep's dim. [Vicary 2013]

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

3

CQM Hidden Subgroup



Results:

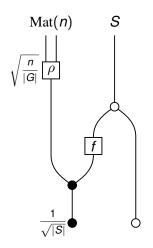
► Verify that measurement returns irreps of *G* that factor G/H with probability proportional to the square of rep's dim. [Vicary 2013]

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

3

► No reliance on strong compl.

CQM Hidden Subgroup



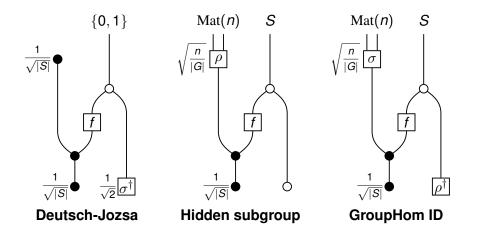
Results:

► Verify that measurement returns irreps of *G* that factor G/H with probability proportional to the square of rep's dim. [Vicary 2013]

- ► No reliance on strong compl.
- Investigating improvements of input

・ロット (雪) (日) (日) (日)

Comparing Algorithms

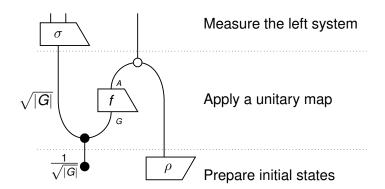


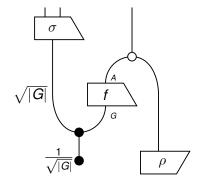
▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

The group homomorphism identification problem

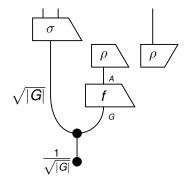
Definition. (Group homomorphism identification problem) Given finite groups *G* and *A* where *A* is abelian, and a blackbox function *f* : *G* → *A* promised to be a group homomorphism, identify *f*.

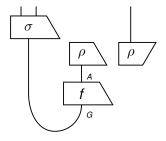
Case: Let *A* be a cyclic group \mathbb{Z}_n .

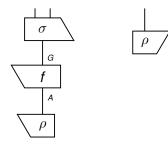


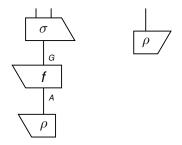


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙ > <



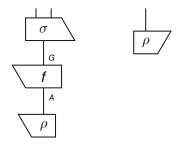






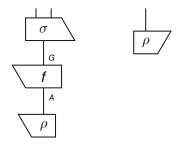
◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

• $\rho \circ f$ is an irreducible representation of *G*.

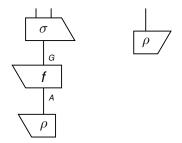


イロト イポト イヨト イヨト 二日

- $\rho \circ f$ is an irreducible representation of *G*.
- Choose ρ to be a faithful representation of *A*.



- $\rho \circ f$ is an irreducible representation of *G*.
- Choose ρ to be a faithful representation of *A*.
- Then measuring $\rho \circ f$ identifies f (up to isomorphism)



- $\rho \circ f$ is an irreducible representation of *G*.
- Choose ρ to be a faithful representation of *A*.
- Then measuring ρ ∘ f identifies f (up to isomorphism)
- One-dimensional representations are isomorphic only if they are equal.

Homomorphism $f: G \rightarrow A$

- ► We generalize with proof by induction via the Structure Theorem. A = Z_{p1} ⊕ ... ⊕ Z_{pk}
- ► Can identify the group homomorphism in *k* oracle queries.
- ► The naive classical solution requires a number of queries equal to the number of factors of *G* rather than *A*.

See [Zeng & Vicary 2014]

Background:

• Grover's quantum algorithm finds a single marked element of a finite set in $O(\sqrt{N})$ trials, vs classical O(N).

Background:

• Grover's quantum algorithm finds a single marked element of a finite set in $O(\sqrt{N})$ trials, vs classical O(N).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

If exactly ¹/₄ of the elements are marked, it can find a marked element in a *single trial*.

Background:

• Grover's quantum algorithm finds a single marked element of a finite set in $O(\sqrt{N})$ trials, vs classical O(N).

- If exactly ¹/₄ of the elements are marked, it can find a marked element in a *single trial*.
- In [Vicary 2013]:
 - Verification of the single-shot Grover's algorithm.

Background:

- Grover's quantum algorithm finds a single marked element of a finite set in $O(\sqrt{N})$ trials, vs classical O(N).
- If exactly ¹/₄ of the elements are marked, it can find a marked element in a *single trial*.

In [Vicary 2013]:

- Verification of the single-shot Grover's algorithm.
- ► The CQM perspective highlights the structural role of the group Z₂.

Background:

- Grover's quantum algorithm finds a single marked element of a finite set in $O(\sqrt{N})$ trials, vs classical O(N).
- If exactly ¹/₄ of the elements are marked, it can find a marked element in a *single trial*.
- In [Vicary 2013]:
 - Verification of the single-shot Grover's algorithm.
 - ► The CQM perspective highlights the structural role of the group Z₂.
 - Changing the finite group gives 'multicoloured' quantum search algorithms which achieve tasks that ordinary Grover search cannot.

Examples

The generalized single-shot Grover algorithm finds colours whose 'weighted phase' *doesn't* take twice the average value.

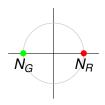
Examples

The generalized single-shot Grover algorithm finds colours whose 'weighted phase' *doesn't* take twice the average value.

Suppose $f : S \to \mathbb{Z}_2 \simeq \{R, G\}, \sigma = (1, -1)$. Essentially, red and green balls at ± 1 .

For one colour to take twice the average value we require a 3:1 ratio.

Rarer colour returned in a single query. Standard result from Grover theory.



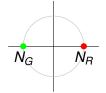
Examples

The generalized single-shot Grover algorithm finds colours whose 'weighted phase' *doesn't* take twice the average value.

Suppose $f : S \to \mathbb{Z}_2 \simeq \{R, G\}$, $\sigma = (1, -1)$. Essentially, red and green balls at ± 1 .

For one colour to take twice the average value we require a 3:1 ratio.

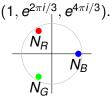
Rarer colour returned in a single query. Standard result from Grover theory.



Now suppose $f : S \to \mathbb{Z}_3 \simeq \{R, G, B\}$, $\sigma = (1, e^{2\pi i/3}, e^{4\pi i/3})$. Red, green, blue balls at $e^{2n\pi i/3}$.

For one colour to take twice the average value we require a 4:1:1 ratio.

A rarer colour returned in a single query. *Cannot be done* with ordinary Grover algorithm.



Concluding Grover's

 We can verify and generalize Grover's algorithm with the CQM framework. [Vicary 2013]

Concluding Grover's

- We can verify and generalize Grover's algorithm with the CQM framework. [Vicary 2013]
- Since Grover's forms the basis for other quantum subroutines, e.g. amplitude amplification, amplitude estimation, and quantum minimization algorithms, etc. This is an important building block.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Leveraging generality: other categories

- Relate Unitary Oracles to the resistor structure in signal-flow calculus [Zeng & Vicary 2014]
- Define these algorithms in Rel

We should think about computational speedup as a property of a physical theory in much the same way that we think about contextuality and non-locality.

Successes

Categorical quantum mechanics give a handle on the abstract structure of quantum algorithms:

Successes

Categorical quantum mechanics give a handle on the abstract structure of quantum algorithms:

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

To develop new quantum algorithms

Successes

- Categorical quantum mechanics give a handle on the abstract structure of quantum algorithms:
- To develop new quantum algorithms
- To investigate what structures in QM lead to speedups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Successes

- Categorical quantum mechanics give a handle on the abstract structure of quantum algorithms:
- To develop new quantum algorithms
- To investigate what structures in QM lead to speedups

Challenges

Capture non-oracle algorithms within the framework

Capture non-single-shot algorithms

Successes

- Categorical quantum mechanics give a handle on the abstract structure of quantum algorithms:
- To develop new quantum algorithms
- To investigate what structures in QM lead to speedups

Challenges

- Capture non-oracle algorithms within the framework
- Capture non-single-shot algorithms

Particular current work

Capture new quantum machine learning algorithms

Successes

- Categorical quantum mechanics give a handle on the abstract structure of quantum algorithms:
- To develop new quantum algorithms
- To investigate what structures in QM lead to speedups

Challenges

- Capture non-oracle algorithms within the framework
- Capture non-single-shot algorithms

Particular current work

- Capture new quantum machine learning algorithms
- Connect quantum algorithms to NLP through compact categories

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Definition

Given vector *s* and a set of *M* vectors $U = {\vec{v}_0, \vec{v}_1, ... \vec{v}_{M-1}}$ the *closest vector problem* asks one to determine which v_i has the smallest inner product distance with *s*. We will assume that all vectors are *N*-dimensional.

Definition

Given vector *s* and a set of *M* vectors $U = {\vec{v}_0, \vec{v}_1, ... \vec{v}_{M-1}}$ the *closest vector problem* asks one to determine which v_i has the smallest inner product distance with *s*. We will assume that all vectors are *N*-dimensional.

 Appears in clustering, text classification, phrase/word similarity, sentiment analysis, etc.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

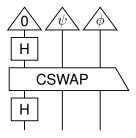
Definition

Given vector *s* and a set of *M* vectors $U = {\vec{v}_0, \vec{v}_1, ..., \vec{v}_{M-1}}$ the *closest vector problem* asks one to determine which v_i has the smallest inner product distance with *s*. We will assume that all vectors are *N*-dimensional.

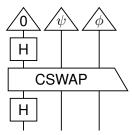
- Appears in clustering, text classification, phrase/word similarity, sentiment analysis, etc.
- Classical algorithms for this problem have complexity *O*(*MN*).

A quantum algorithm for the closest vector problem

Definition (SWAP Test)



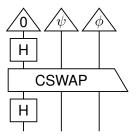
A quantum algorithm for the closest vector problem Definition (SWAP Test)



Hadamard Transform:

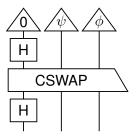
$$egin{aligned} H ::& |0
angle
ightarrow rac{1}{\sqrt{2}}(|0
angle + |1
angle) \ & |1
angle
ightarrow rac{1}{\sqrt{2}}(|0
angle - |1
angle) \end{aligned}$$

Definition (SWAP Test)



Resulting state: $\frac{1}{2}|0\rangle(|\phi\rangle|\psi\rangle + |\psi\rangle|\phi\rangle) + \frac{1}{2}|1\rangle(|\phi\rangle|\psi\rangle - |\psi\rangle|\phi\rangle),$

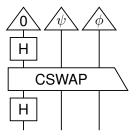
Definition (SWAP Test)



Resulting state: $\frac{1}{2}|0\rangle(|\phi\rangle|\psi\rangle + |\psi\rangle|\phi\rangle) + \frac{1}{2}|1\rangle(|\phi\rangle|\psi\rangle - |\psi\rangle|\phi\rangle)$, Probability of measuring the left system to be zero is

 $1/2 - |\langle \phi | \psi \rangle|^2/2.$

Definition (SWAP Test)



Resulting state: $\frac{1}{2}|0\rangle(|\phi\rangle|\psi\rangle + |\psi\rangle|\phi\rangle) + \frac{1}{2}|1\rangle(|\phi\rangle|\psi\rangle - |\psi\rangle|\phi\rangle)$, Probability of measuring the left system to be zero is

$$1/2 - |\langle \phi | \psi \rangle|^2/2.$$

Takeaway: In a single step we can encode the inner product of two vectors.

qCVECT has the following steps:

1. Add ancillary qubits $|i\rangle$ (for indexing) and $|\psi_i\rangle$ (for the SWAP test) and apply the **SWAP test** (without measurement) for each pair (*s*, *v*_i).

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

qCVECT has the following steps:

- 1. Add ancillary qubits $|i\rangle$ (for indexing) and $|\psi_i\rangle$ (for the SWAP test) and apply the **SWAP test** (without measurement) for each pair (*s*, *v*_i).
- Perform coherent **amplitude estimation** to determine the amplitude of the zero state for the ancillary qubits |ψ₀⟩, |ψ₁⟩, This stores the distances estimates in a qubit string without measurement. [Wiebe et. al. 2014]

A D M A

qCVECT has the following steps:

- 1. Add ancillary qubits $|i\rangle$ (for indexing) and $|\psi_i\rangle$ (for the SWAP test) and apply the **SWAP test** (without measurement) for each pair (*s*, *v*_i).
- Perform coherent **amplitude estimation** to determine the amplitude of the zero state for the ancillary qubits |ψ₀⟩, |ψ₁⟩, This stores the distances estimates in a qubit string without measurement. [Wiebe et. al. 2014]
- 3. Use the Dürr-Hoyer **minimization** algorithm to return the *i* which minimizes $(1 |\langle v_i | s \rangle|^2)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

qCVECT has the following steps:

- 1. Add ancillary qubits $|i\rangle$ (for indexing) and $|\psi_i\rangle$ (for the SWAP test) and apply the **SWAP test** (without measurement) for each pair (*s*, *v*_i).
- Perform coherent **amplitude estimation** to determine the amplitude of the zero state for the ancillary qubits |ψ₀⟩, |ψ₁⟩, This stores the distances estimates in a qubit string without measurement. [Wiebe et. al. 2014]
- 3. Use the Dürr-Hoyer **minimization** algorithm to return the *i* which minimizes $(1 |\langle v_i | s \rangle|^2)$.

The runtime is $\mathcal{O}(Me^{-1/2})$ and a slightly more complicated version runs in almost $\mathcal{O}(\sqrt{M}e^{-1/2})$

 TIME: Classification tasks can be performed in runtimes that are independent of the dimension of the meaning space.

- TIME: Classification tasks can be performed in runtimes that are independent of the dimension of the meaning space.
- SPACE: Exponential reduction in required space. An N-dimensional classical vector requires log₂ N qubits.

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

- TIME: Classification tasks can be performed in runtimes that are independent of the dimension of the meaning space.
- SPACE: Exponential reduction in required space. An N-dimensional classical vector requires log₂ N qubits.
 - DisCo becomes more attractive as large order tensors are feasibly implemented

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- TIME: Classification tasks can be performed in runtimes that are independent of the dimension of the meaning space.
- SPACE: Exponential reduction in required space. An N-dimensional classical vector requires log₂ N qubits.
 - DisCo becomes more attractive as large order tensors are feasibly implemented
 - Secrecy advantages. Classification task requires less queries than are necessary to reconstruct the classifying clusters.

Thanks!

CQM Algorithms References:

Vicary, The Topology of Quantum Algorithms arXiv:1209.3917

Zeng & Vicary Abstract structure of unitary oracles for quantum algorithms arXiv:1406.1278

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで