
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Ensuring the Reliability of Your Model Checker:
Interval Iteration for Markov Decision Processes

Christel Baier1, Joachim Klein1, Linda Leuschner1,
David Parker2, and Sascha Wunderlich1 ?

1 Technische Universität Dresden, 01062 Dresden, Germany
2 School of Computer Science, University of Birmingham, UK

Abstract. Probabilistic model checking provides formal guarantees on
quantitative properties such as reliability, performance or risk, so the
accuracy of the numerical results that it returns is critical. However, recent
results have shown that implementations of value iteration, a widely used
iterative numerical method for computing reachability probabilities, can
return results that are incorrect by several orders of magnitude. To remedy
this, interval iteration, which instead converges simultaneously from both
above and below, has been proposed. In this paper, we present interval
iteration techniques for computing expected accumulated weights (or
costs), a considerably broader class of properties. This relies on an efficient,
mainly graph-based method to determine lower and upper bounds for
extremal expected accumulated weights. To offset the additional effort of
dual convergence, we also propose topological interval iteration, which
increases efficiency using a model decomposition into strongly connected
components. Finally, we present a detailed experimental evaluation, which
highlights inaccuracies in standard benchmarks, rather than just artificial
examples, and illustrates the feasibility of our techniques.

1 Introduction

Over the past twenty years, many algorithms, logics and tools have been devel-
oped for the formal analysis of probabilistic systems. They combine techniques
developed by the model-checking community with methods for the analysis of
stochastic models (see, e.g., [20,8,1]). A widely used model is Markov decision
processes (MDPs), which represent probabilistic systems with nondeterminism,
needed to model, for example, concurrency, adversarial behaviour or control.

Various model checking problems on MDPs are reducible to the task of
computing extremal (maximal or minimal) probabilities of reaching a goal state,
ranging over all schedulers [12,15,4,2]. Schedulers, also often called policies,
? The authors at Technische Universität Dresden are supported by the DFG through
the Collaborative Research Center SFB 912 – HAEC, the Excellence Initiative by the
German Federal and State Governments (cluster of excellence cfaed), the Research
Training Groups QuantLA (GRK 1763) and RoSI (GRK 1907) and the DFG-project
BA-1679/11-1. David Parker is part-funded by the PRINCESS project, under the
DARPA BRASS programme.

2 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

adversaries or strategies, represent the possible ways of resolving nondeterminism
in an MDP. So extremal probabilities correspond to a worst-case or best-case
analysis, for example, the maximal or minimal probability of a system failure.

Weighted MDPs, i.e., MDPs where rational weights are attached to the state-
action pairs, provide a versatile modelling formalism that allows reasoning about,
e.g., extremal values for the expected accumulation of weights until reaching a
goal state. These might represent worst-case or best-case scenarios for expected
costs (e.g., execution time, energy usage) or utility values. To compute schedulers
that maximize or minimize the expected accumulated weight, one can rely on
techniques that are known for stochastic shortest path problems [7,16].

The computation of extremal values for reachability probabilities or expected
accumulated weights until reaching a goal can be done using linear programming
techniques or iterative computation schemes. In the context of probabilistic model
checking, the latter are more common since they typically scale to the analysis
of larger systems. Common techniques for this are value iteration [6], policy
iteration [21] or mixtures thereof [29]. We focus here on value iteration which
relies on a fixed-point characterization e∗ = f(e∗) of the extremal probability
or expectation vector e∗ based on the Bellman equation [6] and computes an
approximation thereof by successive application of the fixed-point operator f .

In practice, a stopping criterion is required to determine when this iterative
approximation process can be safely terminated. For discounted variants of
expected accumulated weights, convergence is guaranteed and the discount factor
can be used to derive a safe stopping criterion ensuring that the computed vector
fn(z) is indeed an ε-approximation of the desired discounted expectation vector
e∗ for a given tolerance ε > 0. (Here, z stands for the starting vector.) For
the purposes of model checking, however, non-discounted variants are usually
preferred, in order to compute meaningful values for properties such as execution
time or energy usage, or indeed reachability probabilities, where discounting makes
little sense. For the non-discounted case, with some appropriate preprocessing
and model assumptions, convergence of value iteration can still be guaranteed as
the fixed-point operator f can shown to be contracting [7,16], but sound stopping
criteria are more difficult.

To check termination of value iteration, most practical implementations simply
terminate when the last two vectors fn−1(z) and fn(z) differ by at most ε with
respect to the supremum norm. This prevalent stopping criterion is currently
realized in widely used probabilistic model checkers such as PRISM [25], MRMC
[23] and IscasMC [19], as well as in other implementations such as the MDP
Toolbox [10]. However, recent results from Haddad and Monmege [18] have shown
that the results obtained from value iteration for reachability probabilities with
this naive stopping criterion can be extremely inaccurate. On our tests using a
simple example from [18], all three of the above model checkers fail. On a small
MDP with 41 states (see [3] for details), MRMC returns 0 and PRISM returns
∼ 0.1943 where the correct result should be 0.5.

So, [18] proposes a refinement of value iteration for computing maximal or
minimal reachability probabilities, called interval iteration. After some graph-

Interval Iteration for Markov Decision Processes 3

based preprocessing to ensure convergence, it relies on the monotonicity of the
fixed-point operator f and carries out the iterative application of f to two starting
vectors x and y such that fn(x) 6 e∗ 6 fn(y) for all n. Here, x is a lower bound
for the required probability vector e∗ and y is an upper bound. Thus, if all entries
of the vector fn(y)− fn(x) are smaller than ε, then both fn(x) and fn(y) are
sound ε-approximations of z. [18] does not report on experimental studies or
weights. So, it leaves open whether interval iteration is feasible in practice and
yields a reasonable way to ensure the reliability of the model-checking results.

Contribution. Inspired by the work of Haddad and Monmege [18], we present
an interval-iteration approach for computing maximal expected accumulated
(non-discounted) weights in finite-state MDPs with a distinguished goal state
final .3 The weights can be negative or positive numbers. To ensure the existence
of a deterministic memoryless scheduler maximizing the expected accumulated
weights until reaching final , we assume that the MDP is contracting in the sense
that the goal state will almost surely be reached, no matter which scheduler
or which starting state is selected.4 While the null vector x=0 and the vector
y=1 where all components have value 1 obviously yield correct lower resp. upper
bounds for any probability vector, the main problem for adapting the interval-
iteration approach to maximal or minimal expected accumulated weights is to
provide efficient algorithms for the computation of lower and upper bounds. We
provide here two variants to compute lower and upper bounds that are based on
bounds for the recurrence times of states under memoryless schedulers.

After presenting the foundations of the interval-iteration approach for ex-
pected accumulated weights (Section 3), we propose topological interval iteration,
which embeds the basic algorithm into a stratified approach that speeds up the
computation time by treating the strongly connected components separately
(Section 4). Sections 5 and 6 will report on experimental results carried out
with an implementation of the interval-iteration approaches of [18] for reach-
ability probabilities and our approach for maximal or minimal expectations
applied to MDPs with non-negative weights. Proofs omitted in this paper, as
well as further details on our experiments, can be found in the appendix of the
extended version [3], which is available together with our implementation at
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/.

Related work. Bell and Haverkort [5] reported on serious problems with the
precision of the implementations for computing steady-state probabilities in
continuous-time Markov chains. Wimmer et al. [31] revealed several problems

3 Analogous statements are obtained for minimal expected total weights by multiplying
all weights with −1, applying the techniques for maximal expected weights and finally
multiplying the result with −1.

4 Thanks to the transformations proposed in [16], this assumption is no restriction if the
weights are non-negative and the objective is to maximize the expected accumulated
weight. For reasoning about minimal expected accumulated weights in MDPs with
non-negative weights as well as for the general case, weaker assumptions are also
sufficient (see [16,7]). Interval iteration under such relaxed assumptions will be
addressed in our future work.

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/

4 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

with the implementations of model checking algorithms for Markov chains and
properties of probabilistic computation tree logic (PCTL). They identified several
sources of imprecise results, including numerical problems with floating-point
arithmetic and issues that are specific to symbolic BDD-based implementations,
and presented ideas for how such problems can be avoided.

Although [31] also identifies the widely used termination criterion for iterative
computation schemes as a potential source of inaccuracy, they do not provide a
solution for it. To the best of our knowledge, the paper by Haddad and Monmege
[18] is the first one which addresses the termination problem of iterative compu-
tation schemes for MDPs. However, [18] only considers extremal probabilities
and does not report on experimental studies. Prior to this, Brázdil et al. [9]
presented an extension of bounded real-time dynamic programming [27], which
also yields interval bounds for extremal probabilities in MDPs. The techniques
were extended to handle arbitrary MDPs and full LTL model checking, but
again focused on probabilities, not weights. We are not aware of any efficiently
realizable safe termination conditions of value iteration proposed for expected
(non-discounted) accumulated weights. The technique proposed here follows the
interval-iteration approach of [18]. While – after some appropriate preprocessing
– [18] can deal with 0 and 1 as lower resp. upper bound for the desired minimal or
maximal probabilities, efficient computation schemes for lower and upper bounds
for minimal or maximal expected accumulated weights are not obvious.

In fact, such bounds can also be interesting for different purposes. In the
context of planning, [27] presents an efficient algorithm to compute an upper
bound for the minimal expected accumulated weight until reaching a goal, which
they call Dijkstra Sweep for Monotone Pessimistic Initialization (DS-MPI).
This approach (which we consider in the experiments in Sec. 6) is designed for
MDPs where all weights are non-negative. As it relies on the idea to generate a
memoryless scheduler and an upper bound for its expected accumulated weight,
there is no straightforward adaption of the approach of [27] to compute an upper
bound for the maximal expected accumulated weight.

Lastly, computation of exact extremal reachability probabilities in MDPs was
also considered by Giro [17], where, by exploiting the special structure of the
linear programs that need to be solved for reachability probabilities, the use of
simplex or other generic exact linear program solvers is avoided.

2 Preliminaries

Throughout the paper, we assume some familiarity with basic concepts of Markov
decision processes (MDPs), see, e.g., [30,22]. We briefly explain our notations.

A plain MDP is a tuple M = (S,Act , P) where S is a finite state space,
Act a finite set of actions, and P : S × Act × S → Q ∩ [0, 1] a function such
that

∑
t∈S P (s, α, t) ∈ {0, 1} for all state-action pairs (s, α) ∈ S ×Act . If s ∈ S,

α ∈ Act and T ⊆ S then P (s, α, T) =
∑

t∈T P (s, α, t). We write Act(s) for the set
of actions α ∈ Act such that

∑
t∈S P (s, α, t) = 1. State s is called a trap state if

Act(s) is empty. A path inM is a sequence π = s0 α0 s1 α1 s2 α2 . . . that alternates

Interval Iteration for Markov Decision Processes 5

between states and actions such that αi ∈ Act(si) and P (si, αi, si+1) > 0 for all i
and such that π is either finite and ends in a state or infinite. π is called maximal
if π is either infinite or finite and π’s last state is a trap state. A (deterministic)
scheduler S forM, also called policy or adversary, is a function that assigns to
each finite path π ending in a non-trap state s an action in Act(s). S is called
memoryless if S(π) = S(π′) whenever π and π′ end in the same state. We write
PrSM,s, or simply PrSs , to denote the standard probability measure on maximal
paths induced by S, starting from state s. The notations Prmax

s (ϕ) and Prmin
s (ϕ)

will be used for the extremal probabilities for the event ϕ when ranging over all
schedulers. We often will use the LTL-like temporal modalities ♦ (eventually), �
(always), © (next) and U (until) to specify measurable sets of maximal paths.

A weighted MDP, briefly called MDP, is a tupleM = (S,Act , P,final ,wgt)
where (S,Act , P) is a plain MDP as above, final ∈ S a distinguished trap
state and wgt : S × Act → Q is a weight function that might have positive
and negative values. Throughout the paper, we suppose that M is contract-
ing in the sense that PrSs (♦final) = 1 for all states s ∈ S. Given a finite
path π = s0 α0 s1 α1 . . . αn−1 sn, the accumulated weight of π is wgt(π) =
wgt(s0, α0) + wgt(s1, α1) + . . .+ wgt(sn−1, αn−1). We write final to denote the
function that assigns to each finite path ending in final its accumulated weight.
Given a scheduler S for M, let ES

s (final) denote the expectation of final
under S for starting state s. We consider the value iteration for computing
ε-approximations for Emax

M,s(final), or briefly Emax
s (final), which is defined as

maxS ES
s (final) where S ranges over all schedulers. AsM is supposed to be

contracting, ES
s (final) is the expected total weight from s under S and there is

a deterministic memoryless scheduler S with Emax
s (final) = ES

s (final) [7,22].

3 Interval Iteration for Weighted MDPs

Throughout the paper, M = (S,Act , P,final ,wgt) is a weighted MDP as in
Section 2 satisfying PrSs (♦final) = 1 for all states s ∈ S and schedulers S, i.e.,
that the MDP is contracting. We start in Section 3.1 with a brief summary
of known fixed-point characterizations of the vector with maximal expected
accumulated weights that yield the foundations for the standard value iteration.
Sections 3.2 and 3.3 then present the details of the interval iteration and efficient
computation schemes for lower and upper bounds for the maximal expected
accumulated weights.

3.1 Value Iteration in Weighted MDPs

In what follows, we briefly recall known (and some simple) facts about the
foundations of the value iteration to compute maximal expected total weights
in MDPs. Let f : R|S| → R|S| denote the following function. Given a vector
z = (zs)s∈S in R|S| then f(z) = (fs(z))s∈S where ffinal(z) = 0 and

fs(z) = max
{

wgt(s, α) +
∑

t∈S P (s, α, t) · zt : α ∈ Act(s)
}

6 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

for all states s ∈ S \ {final}. The functions fn : R|S| → R|S| are defined
inductively by f0 = id, f1 = f and fn+1 = f ◦ fn for n ∈ N, n > 1. Let
e∗ = (e∗s)s∈S denote the vector with the maximal expected total weights for all
states, i.e., e∗s = Emax

s (final). For z = (zs)s∈S ∈ R|S| and z′ = (z′s)s∈S ∈ R|S|
we then write z 6 z′ if zs 6 z′s for all s ∈ S. Furthermore, ‖ · ‖ denotes the
supremum norm for vectors in RS . That is, ‖z‖ = maxs∈S |zs|.

The series (fn(z))n∈N converges to its unique fixed point e∗ monotonically
increasing if z 6 e∗ ∧ z 6 f(z) and decreasing if z > e∗ ∧ z > f(z) (see
[3]). This provides the basis for linear programming approaches to compute
the exact values e∗s and for the value iteration that successively generates the
vectors z, f(z), f2(z)f3(z), . . . and finally returns one of the vectors fn(z) as an
approximation of e∗. However, there are two problems:

(P1) How to find a starting vector z with z 6 e∗ ∧ z 6 f(z) or z > e∗ ∧ z > f(z)?
(P2) How to check whether ‖ fn(z)− e∗‖ < ε, given a tolerance ε > 0, a starting

vector z from (P1) and the first n+1 vectors z, f(z), . . . , fn(z) of the value
iteration?

Problem (P1). Problem (P1) is specific to the case of maximal or minimal
expectations, as (after some preprocessing to ensure the uniqueness of the fixed
point) the corresponding fixed-point operator f for reachability probabilities
guarantees that 0 6 z 6 1 implies 0 6 f(z) 6 1. For certain models with
syntactic restrictions, problem (P1) can be answered directly as the null vector
z = 0 is known to satisfy the conditions z 6 e∗ ∧ z 6 f(z) or z > e∗ ∧ z > f(z)
for monotonic convergence. Prominent examples are positive bounded MDPs
where each state s has an action α with wgt(s, α) > 0, or MDPs where all
weights are non-positive. In both cases, monotonic convergence of (fn(0))n∈N
can be guaranteed even for countable state spaces (see [30]). However, for MDPs
with negative and positive weights, it might be hard to find starting vectors
z that ensure monotone convergence, which requires to determine lower and
upper bounds for the maximal expected accumulated weight. To the best of our
knowledge, even for finite-state positive bounded MDPs, techniques to determine
an upper bound have not been addressed in the literature. Besides the algorithm
for lower bounds for MDPs with non-positive weights proposed in [27], we are not
aware of any technique proposed in the literature to find an appropriate starting
vector for the lower value iteration in weighted MDPs.

Example 3.1. To illustrate that there might be vectors z that do not lead to
monotonic convergence, e.g., with zs < e∗s < fs(z) or e∗s < zs < fs(z), even
when all weights are non-negative, consider the MDPM in Figure 1 with three
states s1, s2 and s3 = final and P (s1, α, s2) = P (s1, β, s3) = 1, P (s2, β, s1) =
P (s2, β, s3) = 1/2, wgt(s1, α) = 6, wgt(s1, β) = 1, while P (·) = 0 and wgt(·) = 0
in all remaining cases. Then, e∗ = (12, 6, 0). For the starting vector z = (0, 9, 0)
we have f(z) = (15, 0, 0), in which case zs = 0 < e∗s = 12 < fs(z) = 15 for
s = s1. Monotonic convergence can not even be guaranteed if the starting vector
z satisfies z 6 e∗ or z > e∗ as, for instance, z = (14, 10, 0) > (12, 6, 0) = e∗ but
f(z) = (16, 7, 0), i.e., e∗s = 12 < zs = 14 < fs(z) = 16 for s = s1. �

Interval Iteration for Markov Decision Processes 7

s1s2 s3

α
6 β 1

β

1/2

1/2

Fig. 1. Markov decision process of Example 3.1. Only non-zero probabilities and
weights (in bold) are shown.

Problem (P2). Many implementations of the value iteration terminate as soon
as ‖ fn(z)− fn−1(z) ‖ < ε for some user-defined tolerance ε > 0 and return the
vector fn(z). The problem is that fn(z) need not be an ε-approximation of the
vector e∗. This phenomenon has been first observed in [18] for value iteration to
compute (maximal or minimal) reachability probabilities in Markov chains or
MDPs. The following example is an adaption of an example provided in [18] for
reachability probabilities to the case of expected total weights and illustrates the
problem of premature termination potentially leading to serious imprecision.

Example 3.2. Let p ∈ Q with 0 < p < 1 and let C[p] be the Markov chain in
Figure 2 with state space S = {s0, s1, . . . , sn−1, sn} where sn = final , transition
probabilities P (si, si+1) = p, P (si, s0) = 1−p and weights wgt(sn−1) = p for
0 6 i < n and P (·) = wgt(·) = 0 in all other cases.5 Then, Prs(♦final) = 1
and expected total weight e∗s = 1 for s 6= final . Now consider p = 1/2 and the
tolerance ε = 1/2n. The value iteration finds 0 < fns (0)− fn−1s (0) = 1/2n+1 < ε
and therefore returns the vector fn(0), even though the difference between
fn(0) and the correct result e∗s is significantly larger than ε, i.e., e∗s − fns (0) =
1− (1/2n+1 + 1/2n−i) > 3/8 > ε. (See [3].) �

5 A Markov chain can be viewed as an MDP where Act is a singleton, say Act = {τ},
in which case we write P (s, t) rather than P (s, τ, t) and wgt(s) rather than wgt(s, τ).

s0 s1 sn−1 sn
p p p

1− p

1− p

1− p

p

Fig. 2. Markov chain of Example 3.2. Only non-zero probabilities and weights (in
bold) are shown.

8 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

3.2 Lower and Upper Value Iteration

Following the ideas of [18], we present an approach with two value iterations that
generate sequences of vectors in Q|S|: one that converges to the vector e∗ from
below (called lower value iteration) and one that converges to e∗ from above
(called upper value iteration). As soon as the vectors of the lower and the upper
value iteration differ by components by at most ε then ε-approximations of the
values e∗s have been generated. In this way, we avoid problem (P2).

Both the lower and the upper value iteration rely on a preprocessing to
determine starting vectors x = (xs)s∈S and y = (ys)s∈S with

xfinal = yfinal = 0 and xs 6 e∗s 6 ys for all s ∈ S \ {final} (*)

We then have fn(x) 6 e∗ 6 fn(y) for all n ∈ N and both sequences (fn(x))n∈N
and (fn(y))n∈N converge to e∗ (see [3]). Monotonicity does not hold in general
as fns (x) < fn−1s (x) < e∗s or e∗s < fn−1s (y) < fns (y) is possible (see Example 3.1).
However, with a slightly modified approach of the value iteration (see below)
the assumption x 6 f(x) or y 6 f(y) is irrelevant. This simplifies problem (P1).
The computation of starting vectors x and y satisfying (*) will be addressed in
Section 3.3.

Modified value iteration. We suggest a mild variant of the standard value
iteration where monotonicity is ensured by construction. Suppose we are given
vectors x and y satisfying (*). We define inductively vectors x(n) = (xns)s∈S and
y(n) = (yns)s∈S by x(0) = x, y(0) = y and for all n ∈ N and s ∈ S \ {final}:

x(n+1)
s = max

{
x(n)s , fs

(
x(n)

) }
y(n+1)
s = min

{
y(n)s , fs

(
y(n)

) }
and x

(n)
final = y

(n)
final = 0. Lemma 3.3 (see [3] for its proof) states the essential

properties of the lower and upper value iteration.

Lemma 3.3. Suppose (*) holds. Then:
(a) x(n) 6 e∗ 6 y(n) for all n ∈ N
(b) x(0) 6 x(1) 6 x(2) 6 . . . and lim

n→∞
x(n) = e∗

(c) y(0) > y(1) > y(2) > . . . and lim
n→∞

y(n) = e∗

Thanks to monotonicity, we can use a Gauss-Seidel-like iteration variant with
forward substitution that relies on an enumeration s1, s2, . . . , sN of all states
in S. The idea is to iterate values in sequence according to this enumeration.
Then, in each step, the already updated values of previous states can be re-used.
For this, we inductively define vectors x̃(n) = (x̃ns)s∈S and ỹ(n) = (ỹns)s∈S by
x̃(0) = x, ỹ(0) = y and for all n ∈ N and s ∈ S \ {final}:

x̃(n+1)
s = max

{
x̃(n)s , fs

(
x̃(n,i)

)}
ỹ(n+1)
s = min

{
ỹ(n)s , fs

(
ỹ(n,i)

)}
and x̃

(n)
final = ỹ

(n)
final = 0 where x̃(n,i) =

(
x̃
(n,i)
s

)
s∈S with x̃

(n,i)
sj being x̃(n+1)

sj for

j < i−1 and x̃
(n)
sj otherwise. The definition of ỹ(n,i) is analogous. Then, by

induction and using the monotonicity of f we get the monotone convergence to
e∗ from below (resp. above) for the sequence (x(n))n∈N (resp. (y(n))n∈N.

Interval Iteration for Markov Decision Processes 9

3.3 Computing Starting Vectors

The remaining problem is to find an efficient method for computing starting
vectors x and y such that (*) holds. For this, we first use the observation that, for
each memoryless deterministic scheduler S, the expected weight until reaching
final can be derived by multiplying the weights by the expected number of visits
to each of the states, as final is a trap state and is reached with probability 1:

ES
s (final) =

∑
t∈S

ζSs (t) · wgt(t,S(t)) (**)

where ζSs (t) denotes the expected number of times to visit t in the Markov chain
induced by S with starting state s and wgt(t,S(t)) is the weight for the action
that is selected by S in state t. Thus, if

ζ∗s (t) > max
S

ζSs (t) for all s, t ∈ S \ {final} (***)

where S ranges over all memoryless deterministic schedulers then we may start
the lower and upper value iteration with the following vectors x = (xs)s∈S and
y = (ys)s∈S . The components for the trap state are xfinal = yfinal = 0. For each
state s, let Rs be the set of states reachable from s. We then define:

xs =
∑
t∈Rs

ζ∗s (t) · wgtmin(t) ys =
∑
t∈Rs

ζ∗s (t) · wgtmax(t)

Here, for t ∈ S \ {final}, wgtmin(t) = minW (t), wgtmax(t) = maxW (t) where
W (t) = {0} ∪ {wgt(t, β) : β ∈ Act(t)} and wgtmin(final) = wgtmax(final) = 0.
Then, (*) follows from (**) and (***) as wgtmin(t) is non-positive and

ζ∗s (t) · wgtmin(t) 6 ζSs (t) · wgt(t,S(t)) 6 ζ∗s (t) · wgtmax(t)

for all states s, t ∈ S \{final} and all schedulers S. Moreover, ζSs (t) = 0 if t /∈ Rs.

Remark 3.4. For the special case of MDPs with non-negative weights, the starting
vector x obtained by our approach for the lower value iteration agrees with
the classical text-book approach (see, e.g., Sections 7.2.4 and 7.3.3 in [30]).
More precisely, as wgt > 0 implies wgtmin = 0, the lower value iteration for
approximating the maximal expected total weight will be started with x(0) = 0.
For computing approximations of minimal expected total weights, we switch from
wgt to −wgt and then apply the lower and upper value iteration. As wgt > 0
implies (−wgt)max = 0 the upper value iteration will be started with the null
vector y(0) = 0, which corresponds to the classical approach. �

We now present simple techniques to compute values ζ∗s (t) satisfying (***). If
M is acyclic then ζSs (t) 6 1 for all states s, t. Thus, for acyclic MDPs we can
deal with ζ∗s (t) = 1 for all states s, t. In the sequel, we suppose thatM is cyclic.

Lemma 3.5. Let S be a memoryless deterministic scheduler. Then, for all states
s, t ∈ S \ {final}:

ζSs (t) =
PrSs (♦t)

1− PrSt (©♦t)

10 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

As a consequence of Lemma 3.5 (see [3] for its proof) we get that to ensure (***)
we can deal with any value

ζ∗s (t) =
Prub

s (♦t)

1− Prub
t (©♦t)

where Prub
t (©♦t) < 1 is an upper bound for Prmax

t (©♦t) and Prub
s (♦t) an upper

bound for Prmax
s (♦t). One option to obtain appropriate values Prub

t (©♦t) and
Prub

s (♦t) is to apply the upper value iteration proposed in [18] for an arbitrary
number of steps. However, this requires individual computations for each state t,
which becomes expensive for larger models.

Then, there is a tradeoff between providing good bounds using sophisticated
techniques and the time (and memory) requirements to compute such bounds. In
what follows, we present two simple graph-based techniques to compute upper
bounds for ζ∗s (t). Both rely on the trivial bound 1 for Prmax

s (♦t), i.e., ζ∗s (t)
depends on s only implicitly by the choice of the set Rs, and compute an upper
bound for the maximal recurrence probabilities Prmax

t (©♦t).
Upper bound for maximal recurrence probabilities (variant 1). For
s ∈ S, we write Cs to denote the unique strongly connected component (SCC) of
M that contains s. 6 For t ∈ S \ {final}, let Xt denotes the set of all state-action
pairs (s, α) with s ∈ Ct (hence Cs = Ct) and P (s, α, Ct) < 1 and let

qt = max
{
P (s, α, Ct) : (s, α) ∈ Xt

}
pt = min

{
P (s, α, u) : s, u ∈ Ct, α ∈ Act(s), P (s, α, u) > 0

}
Note that the assumption Prmin

t (♦final) = 1 for all t ensures that Xt is nonempty.
Let q = maxt qt and p denote the minimal positive transition probability inM,
i.e., p = min{P (s, α, t) : s ∈ S, α ∈ Act(s), P (s, α, t) > 0}. Then, 0 < p 6 pt < 1
and 0 < qt 6 q < 1.

Lemma 3.6. Let S be a memoryless deterministic scheduler. Then, for all states
t ∈ S \ {final} (see [3] for the proof):

PrSt (©♦t) 6 1− p|Ct|−1
t · (1−qt) 6 1− p|Ct|−1 · (1−q)

Example 3.7. In the Markov chain C[p] of Example 3.2, we have PrC[p]si (©♦si) =
1− pn−i for i < n. If p 6 1/2 then p = psi , q = qsi = 1−p and |Csi | = n. Hence,
the bounds in Lemma 3.6 are tight for state s0. �

We now define the values ζ∗s (t) for variant 1 in two nuances (fine and coarse).
The fine variant is based on Prub

t (©♦t) = 1− p|Ct|−1
t · (1−qt) and Prub

s (♦t) = 1:

ζ∗s (t) =
1

p
|Ct|−1
t · (1−qt)

6 Here,M is viewed as a directed graph with the node set S and the edge relation →
given by s→ t iff there is some action α with P (s, α, t) > 0.

Interval Iteration for Markov Decision Processes 11

for s, t ∈ S \ {final}. For the final state we put ζ∗s (final) = 1. The coarse variant
is defined analogously, except that we deal with Prub

t (©♦t) = 1− p|Ct|−1 · (1−q).
Using Lemma 3.5 and 3.6 we obtain that (***) holds.

Example 3.8. We regard again the Markov chain C[p] of Example 3.2. For the
weight function wgt of C[p] given by wgt(s0) = 1 and wgt(si) = 0, we obtain
e∗0 = 1/pn and e∗i = 1/pn − 1/pi for i = 1, . . . , n (see [3]). The expected number
of visits for si is ζ

C[p]
s0 (si) = pi−n. As the states s0, . . . , sn−1 constitute an SCC,

the fine and coarse variant yield the same bound for the maximal recurrence
probability from state s0, namely ζ∗s0(si) = 1/pn for all i < n. Thus, the starting
vector y for the upper value iteration is (1/pn, 1/pn, . . . , 1/pn, 0) as s0 is reachable
from all states s 6= final . In particular, ys0 = e∗s0 is optimal. �

If the SCCs are large and their minimal positive transition probabilities are
small then the values ζ∗s (t) tend to be very large. Better bounds for the maximal
recurrence probabilities Prmax

t (©♦t) are obtained by the following variant.

Upper bound for maximal recurrence probabilities (variant 2). Let
S0 = {final}. We then define inductively Ti−1 = S0 ∪ . . . ∪ Si−1 and

Si =
{
s ∈ S \ Ti−1 : P (s, α, Ti−1) > 0 for all α ∈ Act(s)

}
The assumption mins∈S Prmin

s (♦final) = 1 yields that if Ti−1 is a proper subset of
S then Si is nonempty. Note that otherwise each state s ∈ S \ Ti−1 has an action
αs with P (s, αs, Ti−1) = 0. But then P (s, αs, S \ Ti−1) = 1− P (s, αs, Ti−1) = 1
for all states s ∈ S \ Ti−1. Let S be a memoryless deterministic scheduler with
S(s) = αs for all s ∈ S \ Ti−1. Then, PrSs (�¬Ti−1) = 1 for each s ∈ S \ Ti−1.
Hence, PrSs (♦final) = 0 for s ∈ S \ Ti−1. Contradiction. Thus, S = Tk for some
k 6 |S| and S is the disjoint union of the sets S0, S1, . . . , Sk. By induction on
i ∈ {0, 1, . . . , k} we define values dt ∈]0, 1] for the states t ∈ Si. In the basis of
induction we put dfinal = 1. Suppose 1 6 i 6 k and the values du are defined for
all states u ∈ Ti−1. Then, for each state t ∈ Ti we define:

dt = min
{ ∑

u∈Ti−1
P (t, α, u) · du,t : α ∈ Act(t)

}
where du,t = 1 if Ct 6= Cu and du,t = du if Cu = Ct. Recall that Ct denotes the
unique SCC containing t and that the values dt are positive as P (t, α, Ti−1) > 0
for all actions α ∈ Act(t). In the appendix of [3] we show:

Lemma 3.9. Prmax
t (©♦t) 6 1− dt for each state t ∈ S

Using Lemma 3.5 and Lemma 3.9, condition (***) holds for ζ∗s (t) = 1/dt.

Example 3.10. Again, consider the Markov chain C[p] of Example 3.2. For the
weight function given by wgt(s) = 1 for s 6= final , we obtain e∗i = (1 −
pn−i)/(pn(1−p)). With the first variant, we get the starting vector y for the
upper value iteration where ysi = n/pn for all states si with i < n. The sec-
ond variant generates the decomposition Si = {sn−i} for i = 0, 1, . . . , n. Then

12 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

ζ∗s0(si) = ζ
C[p]
s0 (si) as PrC[p]s0 (♦si) = 1 and Prsi(©♦si) = 1− pn−i (see Example

3.7). Thus, the computed bound for the expected times to visit si is the exact
value ζ∗s0(si) = dsi = pi−n. Here, index i ranges between 0 and n−1. Thus,
the second variant generates the starting vector y where ysi =

∑n−1
j=0 p

j−n =
(1− pn)(pn(1−p)) for all states si with i < n, which is optimal for i = 0. �

4 Topological Interval Iteration

To increase the efficiency of the value iteration, several authors proposed a
stratified approach that exploits the topological structure of the MDP [13,11,14].
In such a topological value iteration, for each strongly connected component
(SCC) a value iteration is performed, which only updates the values for the states
in this particular SCC. As the SCCs are computed in their topological order
from the bottom up, values for the outgoing transitions of the current SCC have
already been computed. For models with more than one SCC, this approach has
the potential to reduce the number of state updates that are performed, as it
avoids updating the values for every state in each iteration step.

To adapt such a topological approach to interval iteration, the main challenge
is to ensure that the computed upper and lower bounds for the states in a given
SCC S are suitably precise to allow their effective utilization during the interval
iteration computation in those SCCs containing states that can reach S and
thus potentially depend on its values. While we formalize our approach for the
setting of maximal expected accumulated weights, the presented approach can be
easily adapted to a topological interval iteration for the computation of extremal
reachability probabilities in the setting of [18].

Given a subset of states Q ⊆ S and, for each state q ∈ Q, an upper bound
uq and a lower bound lq for the value e∗M,q = e∗q , i.e., lq 6 e∗M,q 6 uq, we induce
two new MDPs that arise by discarding all transitions of the states q ∈ Q and
adding a new transition from q to a trap state with weight lq resp. uq. Formally,
we construct an MDP M↑ = (S,Act ′, P ′,final ,wgt↑) incorporating the upper-
estimate and an MDP M↓ = (S,Act ′, P ′,final ,wgt↓) incorporating the lower
estimate. We introduce a fresh action τ , i.e., Act ′ = Act ∪ {τ}, which is the only
action enabled in the Q-states and goes to final with probability 1, replacing
the original actions, i.e., P ′(s, α, t) = P (s, α, t) for all states s /∈ Q, α ∈ Act ,
t ∈ S and, for all states q ∈ Q, P ′(q, τ,final) = 1 and P ′(q, α, t) = 0 for all
α ∈ Act , t ∈ S. The MDPsM↑ andM↓ differ in their weight functions, with
wgt↑(q, τ) = uq and wgt↓(q, τ) = lq for q ∈ Q while the weights for the remaining
state-action pairs remain unchanged, i.e., wgt↑(s, α) = wgt↓(s, α) = wgt(s, α) for
all s ∈ S \Q and α ∈ Act . Intuitively, the τ transitions simulate the expected
weight accumulated on the path fragments from states q ∈ Q until final , replacing
it with the upper or lower bound, respectively. As Prmin

M (♦final) = 1, we also
have Prmin

M↑(♦final) = Prmin
M↓(♦final) = 1.

Lemma 4.1. With the notations as above (see [3] for the proof):

(a) e∗M↓,s 6 e∗M,s 6 e∗M↑,s for all states s ∈ S

Interval Iteration for Markov Decision Processes 13

(b) If |uq − lq| < ε for all q ∈ Q, then | e∗M↑,s − e
∗
M↓,s | < ε for all s ∈ S.

We are now interested in performing an interval iteration in the setting where
we are given a desired precision threshold ε and lower and upper estimates lq and
uq for a subset of states. Here, we assume that the bounds are within the desired
precision, i.e., that |uq − lq| < ε and that lq 6 e∗M,q 6 uq. As these estimates
will arise from the processing of previously handled SCCs, we can ensure that
the desired precision is indeed obtained. LetM↓ andM↑ be the two MDPs that
are induced by applying the transformation detailed above for the two estimates,
respectively. We now perform an interval iteration, but instead of performing
both iterations in the original MDPM, the iteration from above is performed in
M↑ and the iteration from below is performed inM↓ in an interleaved fashion.

Let xs and ys be lower and upper bounds for e∗M,s, i.e., with xs 6 e
∗
M,s 6 ys

for all s ∈ S, for example computed using the methods detailed in Section 3.3.
We obtain starting vectors x(0) (for the value iteration from below inM↓) and
y(0) (for the value iteration from above inM↑) by setting

x
(0)
s = xs − ε for s ∈ S \Q and x

(0)
s = ls for s ∈ Q

y
(0)
s = ys + ε for s ∈ S \Q and y

(0)
s = us for s ∈ Q

To ensure that x(0)s is indeed a lower bound for e∗M↓,s for the states s ∈ S \Q, we
subtract ε. Lemma 4.1 (b) together with Lemma 4.1 (a) yields e∗M↑,s−e

∗
M↓,s < ε,

and as e∗M↑,s is an upper bound for e∗M,s we have e∗M,s − e∗M↓,s < ε. Then, due
to the assumption that xs 6 e∗M,s, it is guaranteed that xs − ε 6 e∗M↓,s. For the
upper bound y(0)s similar arguments apply when adding ε to the upper bound
computed for e∗M.

The topological interval iteration for e∗M and precision ε now works as follows.
We first compute lower and upper bounds xs and ys for e∗M,s for all states inM
(see Section 3.3). We then apply standard algorithms to compute a topological
ordering C1, C2, . . . , Cn of the SCCs ofM. We then process each SCC according
to the topological ordering, from the bottom up. We maintain the set Q of states
that are contained in SCCs that have already been processed, as well as upper
bounds uq and lower bounds lq for these states satisfying uq − lq 6 ε. The order
of processing ensures that the successor states for all transitions that do not
lead back to the current SCC are contained in Q. Let Ci be the current SCC.
If it is a singleton SCC, i.e., containing just a single state s, we can derive us
and ls directly. In particular, for the final state we can set both values to 0. For
non-singleton SCCs, we consider the sub-MDPMi ofM containing the states
in Ci as well as all states not in Ci but reachable from Ci. The latter states are
all contained in Q. We then perform the interleaved interval iteration in M↓
andM↑ derived fromMi with the starting vectors derived from xs and ys and
the stopping criterion y

(n)
s − x(n)s < ε for all s ∈ Ci. Termination for Ci will

eventually occur as shown in [3]. Subsequently, we add all states s ∈ Ci to Q
and set ls = x

(n)
s and us = y

(n)
s . Having processed the SCC Ci, we proceed with

the next SCC in the topological order. Once all SCCs are processed, we return

14 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

the vectors (ls)s∈S and (us)s∈S , which contain lower and upper bounds for the
values e∗M,s with precision ε. The correctness of the output follows from repeated
application of the termination and correctness proof for individual SCCs (see
[3]).

5 Implementation

We have implemented the algorithms presented in this paper as an extension of
the PRISM model checker [25]. PRISM contains four major engines: an Explicit
engine and three other engines (Mtbdd, Hybrid, Sparse) that either partially
or fully rely on symbolic, MTBDD-based methods [28].

Interval iteration. Since the performance of the different engines varies across
benchmarks, we have implemented interval iteration for all four, extending the
existing value iteration based implementations for computation of (extremal)
expected accumulated rewards and reachability probabilities in MDPs. More
complex probabilistic model checking problems often use these as a basic building
block. Consequently, our interval iteration implementation is automatically used
there as well, for example in the context of LTL model checking. We also implement
interval iteration for discrete-time Markov chains (DTMCs), a special case of
MDPs, to facilitate further benchmarking. We assume non-negative weights
(rewards/costs), a limitation imposed by PRISM.

Our implementation supports, in addition to standard value iteration up-
dates, two other well known variants that are implemented in PRISM for the
standard value iteration approach as well: Jacobi-like updates (directly solving
self-loop probabilities) and Gauss-Seidel-like updates. The latter are limited to the
Explicit and Sparse engines due to the difficulty of a symbolic implementation.

To be able to apply interval iteration for the computation of maximal reach-
ability probabilities, we support the quotienting of maximal end components
as proposed in [18]. This is required to ensure that the upper value iteration
converges. Interval iteration for minimal expectations is currently only supported
for the Explicit engine and if the MDP after preprocessing is contracting (this
is always true for the special case of DTMCs).

Upper bound computation. For (extremal) reachability probabilities, the
upper bound (= 1) and lower bound (= 0) for the interval iteration is set directly.
For the (extremal) expected accumulated reward computation, we set the lower
bound to 0, and support variant 1 (coarse and fine) and variant 2 of the upper
bound algorithms of Section 3.3, computing a single upper bound for all states
(i.e., using Rs = S). For minimal expectations, we use the bound obtained for
Emax(final) from one of the variants, and can additionally obtain an upper
bound using the Dijkstra Sweep for Monotone Pessimistic Initialization (DS-MPI)
algorithm for obtaining upper bounds on the minimal expectations proposed in
[27], which we implemented for the Explicit engine.

Topological iteration. Lastly, we also implemented both topological value
iteration and topological interval iteration (see Sec. 4) in the Explicit engine.

Interval Iteration for Markov Decision Processes 15

Table 1. Results of the accuracy benchmarks, split into the instances with probability
and expectation properties and whether comparison was against exact or interval
iteration results. Note that instances with precision less than 10−3 are also included in
the count for 10−4, etc.

number of precision less than
instances 10−3 10−4 10−5 10−6

prob., vs exact results, absolute 87 - 3 12 25
prob., vs exact results, relative 87 - 3 9 21

prob., vs interval iteration results, absolute 97 - 1 1 9
prob., vs interval iteration results, relative 97 - 1 1 11

expect., vs exact results, absolute 41 2 5 10 20
expect., vs exact results, relative 41 2 6 12 20

expect., vs interval iteration results, absolute 69 - 3 9 13
expect., vs interval iteration results, relative 69 - 4 9 16

6 Experiments

We have carried out extensive experiments using the PRISM benchmark suite [26],
considering 294 model/property combinations in total. We give here an overview
of the results; further details can be found in the appendix of [3].

Accuracy. To gauge the prevalence of imprecise results due to early termination
of value iteration, we have compared the PRISM results for the benchmark
instances against an exact result (if available) or the result obtained by interval
iteration. We use ε = 10−6 and evaluate both absolute and relative mode.7
Comparing the interval iteration results against the exact results (where available)
demonstrated that the interval iteration results indeed have the expected precision.
We say that a value iteration result has a precision of less than 10−x if the
difference between the result and the reference value is larger than 10−x. When
the computations are done using relative termination checks, the precision is also
computed relatively. For absolute mode, the results of 67 of the 294 instances
were less precise than 10−6 (44 less precise than 10−5, 17 less than 10−4 and
2 less than 10−3, none of the benchmark instances had a precision of less than
10−2). Detailed statistics, for relative mode as well, can be seen in Table 1, which
shows the overall results of our accuracy check. A similar picture arises with the
relative termination check, however here the absolute imprecision is magnified
for values larger than 1.

The largest imprecision occurred for the “coin2.nm” model of the “consensus”
case study (with model parameter K = 16) and the “steps-max” expectation
property. The exact result for this instance is 3267. In absolute mode, the

7 In addition to the termination check relying on the supremum norm (absolute check),
probabilistic model checkers often support a relative check, where the criterion
requires |z′s−zs|/|zs| < ε to hold for all states s ∈ S, where z and z′ are the vectors
under comparison. This takes the magnitude of the individual values into account
and dynamically tightens the tolerance for values < 1 and loosens it for values > 1.

16 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

value iteration had the result 3266.9986814425756, while interval iteration had
3267.0000004994463. In relative mode, the imprecision is magnified in absolute
terms, i.e., the value iteration has the result 3262.69160811823 while interval
iteration yielded 3267.0016321821013. As can be seen here, interval iteration
yielded the expected precision, i.e., 6 correct fractional digits for absolute mode
and 6 correct first digits in relative mode. The second instance with precision of
less than 10−3 is for the same model but the “steps-min” property.

Overall, for the benchmark instances, the imprecision was not as grave as for
the example from [18]. However, in independent work on a simplified probabilistic
model of an error handler, inspired by [24], we encountered a non-artificial
model with probability results of 0.328597 (value iteration) vs 0.687089 (interval
iteration), with ε = 10−6. For details, see [3].

Quality of upper bounds and cost of interval iteration. In another
experiment, we were interested in (1) the quality of the upper bounds obtained
by the various heuristics and (2) in the impact of using interval iteration (II)
instead of value iteration (VI). Fig. 3 shows statistics for a comparison of the
variant 2 and the DS-MPI upper bound heuristics (for minimal expectations in
MDPs and expectations in DTMCs) for the benchmark instances using expected
rewards, ε = 10−6 and a relative termination check.

The upper plot shows upper bounds, compared to the maximal (finite) value
in the result vector. Clearly, no upper bound can be below that value. The
benchmark instances here are sorted by this maximal result value. The plot in the
middle then shows the increase in the number of iterations that are carried out
for interval iteration compared to value iteration, e.g., an increase of 2 signifies
that interval iteration required twice the number of iterations. Note that we count
the upper and lower iteration step as a single combined iteration. To simplify the
presentation, the plot in the middle omits a single data point, consisting of a 32-
fold increase from 5 to 159 iterations. The plot at the bottom of Fig. 3 shows the
corresponding increase in the time for model checking (including precomputations,
upper bounds computations and iterations). In this plot, instances where all
times are below 1 second are omitted due to their limited informative value.

Generally, an increase in the number iterations required for interval iteration
compared to value iteration can be due to the lower iteration requiring more
iterations to reach a precise result or due to the number of iterations required
by the upper iteration to converge from the initial upper bound. As can be
seen, the DS-MPI heuristic (where applicable) generally provides much better
upper bounds than variant 2, often by several orders of magnitude. However, for
the benchmark instances, the number of required iterations does not rise by a
similar factor, indicating a certain insensitivity to the quality of the upper bound.
Generally, the increase in iterations for interval iteration can be considered benign.
For the model checking times, a certain increase can be seen, which is to be
expected due to the additional work carried out. The largest relative increases
(on the left of the plot) are for instances where value iteration took less than 1
second, while in general the increases remain modest.

Interval Iteration for Markov Decision Processes 17

10
0

10
3

10
6

10
9

10
12

10
15

max result value upper bound, variant 2 upper bound, DS-MPI

 1

 2

 3

 4

 5

 6
increase in iterations, II (var. 2) vs VI

increase in iterations, II (DS-MPI) vs VI

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

increase in MC time, II (var. 2) vs VI increase in MC time, II (DS-MPI) vs VI

Fig. 3. Top: Maximal result value versus the upper bounds. Middle: Increase (2=double,
. . .) in the number of iterations. Bottom: Increase in model checking time. The x-axis
of the plots represents the model/property instances, sorted by maximal result value.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

N
u
m

b
e
r

o
f
m

a
tr

ix
/v

e
c
to

r
e
le

m
e
n
t
m

u
lt
ip

lic
a
ti
o
n
s

VI
VI (topo)

II
II (topo)

Fig. 4. Number of multiplication operations for (topological) value and interval iteration.
The x-axis of both plots represents the model/property instances, sorted by the number
of multiplication operations for plain value iteration.

18 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

In [3], we also evaluate the variant 1 heuristic. The bounds obtained using
this variant in general tend to be significantly larger and roughly half of the
benchmark instances had no variant 1 bound that could be represented as a
double-precision floating point number. However, there are instances where the
variant 1 and variant 2 bounds coincide and where the variant 1 computation is
faster. Additionally, we present and discuss similar experiments for the benchmark
instances using probability computations. For those, the increase in the number
of iterations (and model checking time) is even more limited due to the a priori
availability of a rather good upper bound of 1 for probabilities.

Topological iteration. Fig. 4 shows statistics of experiments comparing topo-
logical iteration against plain iteration. We considered the MDP benchmark
instances, using ε = 10−6 and absolute checks. As the topological approach does
not process all states in each iteration, we need a more fine grained measure of
the operations: The plot depicts the number of matrix element/vector element
multiplications, e.g., the operations P (s, α, t) · vt for MDPs and non-zero matrix
entries. The potential for the topological approach is clearly demonstrated, with
a reduction in the required multiplications often by an order of magnitude or
more. In general, such a reduction translates into a decreased running time as
well. Our experiments thus show that the known potential for topological value
iteration (see, e.g., [11]) transfers to topological interval iteration as well.

7 Conclusion

In this paper, we have shown that interval iteration is a viable approach to deal
with the potential termination criterion problems raised by [18], providing higher
confidence in the correctness of the results of probabilistic model checkers. In
particular, we have shown how the approach of [18] can be successfully extended
for the context of expected accumulated weights. Clearly, even those situations
where the results obtained using the standard value iteration termination cri-
terion (or some particular parameter setting) happen to be sufficiently precise
are rendered problematic in practice due to the absence of any precision guar-
antees. Even with interval iteration, the orthogonal question of the precision
of the underlying floating-point computations remains and could be addressed
by maintaining bounds on their precision. In future work, we intend to extend
the implementation, e.g., using the additional knowledge provided by interval
iteration in threshold problems. Additionally, the upper and lower iterations can
be carried out in parallel, reducing the performance impact.

We will also focus on extending our results for the setting of non-contracting
MDPs. In the case of non-negative weights, our implementation for maximal
expectations handles non-contracting MDPs thanks to the preprocessing proposed
in [16], while for minimal expectations the vector obtained using DS-MPI could
be used as an upper starting vector, as [7] establishes the unique fixed-point
characterization and convergence of value iteration under relaxed assumptions
even for general weights. For general weighted MDPs, checking finiteness of the
expected weight is more involved. Our results on lower and upper bounds for

Interval Iteration for Markov Decision Processes 19

expectations might also be interesting for different purposes, e.g., in the context
of planning as outlined in [27].

References

1. C. Baier, B. R. Haverkort, H. Hermanns, and J. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE Transactions on Software Engineering,
29(6):524–541, 2003.

2. C. Baier, J. Klein, S. Klüppelholz, and S. Wunderlich. Weight monitoring with
linear temporal logic: Complexity and decidability. In 23rd Conference on Computer
Science Logic and the 29th Symposium on Logic In Computer Science (CSL-LICS),
pages 11:1–11:10. ACM, 2014.

3. C. Baier, J. Klein, L. Leuschner, D. Parker, and S. Wunderlich. Ensuring the
reliability of your model checker: Interval iteration for Markov Decision Processes
(extended version), 2017. http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/.

4. C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

5. A. Bell and B. R. Haverkort. Untold horrors about steady-state probabilities: What
reward-based measures won’t tell about the equilibrium distribution. In Formal
Methods and Stochastic Models for Performance Evaluation, Fourth European
Performance Engineering Workshop (EPEW), volume 4748 of Lecture Notes in
Computer Science, pages 2–17. Springer, 2007.

6. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
7. D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems.

Mathematics of Operations Research, 16(3):580–595, 1991.
8. A. Bianco and L. de Alfaro. Model checking of probabilistic and non-deterministic

systems. In 15th International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 1026 of Lecture Notes in
Computer Science, pages 499–513, 1995.

9. T. Brázdil, K. Chatterjee, M. Chmelík, V. Forejt, J. Křetínský, M. Kwiatkowska,
D. Parker, and M. Ujma. Verification of Markov decision processes using learning
algorithms. In 12th International Symposium on Automated Technology for Veri-
fication and Analysis (ATVA’14), volume 8837 of LNCS, pages 98–114. Springer,
2014.

10. I. Chades, G. Chapron, M. Cros, F. Garcia, and R. Sabbadin. MDPtoolbox: a multi-
platform toolbox to solve stochastic dynamic programming problems. Ecography,
37:916–920, 2014.

11. F. Ciesinski, C. Baier, M. Größer, and J. Klein. Reduction techniques for model
checking Markov decision processes. In 5th International Conference on Quantitative
Evaluation of Systems (QEST), pages 45–54. IEEE Computer Society Press, 2008.

12. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

13. P. Dai and J. Goldsmith. Topological value iteration algorithm for Markov Decision
Processes. In 20th International Joint Conference on Artificial Intelligence (IJCAI),
pages 1860–1865, 2007.

14. P. Dai, Mausam, D. S. Weld, and J. Goldsmith. Topological value iteration
algorithms. Journal of Artificial Intelligence Research (JAIR), 42:181–209, 2011.

15. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science, 1997.

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV17/

20 C.Baier, J.Klein, L.Leuschner, D.Parker, S.Wunderlich

16. L. de Alfaro. Computing minimum and maximum reachability times in probabilistic
systems. In 10th International Conference on Concurrency Theory (CONCUR),
volume 1664 of Lecture Notes in Computer Science, pages 66–81, 1999.

17. S. Giro. Optimal schedulers vs optimal bases: An approach for efficient exact solving
of Markov decision processes. Theoretical Computer Science, 538:70–83, 2014.

18. S. Haddad and B. Monmege. Reachability in MDPs: Refining convergence of value
iteration. In 8th International Workshop on Reachability Problems (RP), volume
8762 of Lecture Notes in Computer Science, pages 125–137. Springer, 2014.

19. E. M. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang. ISCASMC: A web-based
probabilistic model checker. In 19th International Symposium on Formal Methods
(FM), volume 8442 of Lecture Notes in Computer Science, pages 312–317, 2014.

20. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:512–535, 1994.

21. R. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
22. L. Kallenberg. Markov Decision Processes. Lecture Notes. University of Leiden,

2011.
23. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The

ins and outs of the probabilistic model checker MRMC. Performance Evaluation,
68(2):90–104, 2011.

24. D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer. HAFT: hardware-
assisted fault tolerance. In 11th European Conference on Computer Systems (Eu-
roSys), pages 25:1–25:17. ACM, 2016.

25. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In 23rd International Conference on Computer
Aided Verification (CAV), volume 6806 of Lecture Notes in Computer Science, pages
585–591, 2011.

26. M. Z. Kwiatkowska, G. Norman, and D. Parker. The PRISM benchmark suite.
In 9th International Conference on Quantitative Evaluation of SysTems (QEST),
pages 203–204. IEEE Computer Society, 2012.

27. H. B. McMahan, M. Likhachev, and G. J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees.
In 22nd International Conference on Machine Learning (ICML), volume 119, pages
569–576. ACM, 2005.

28. D. Parker. Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham, 2002.

29. M. Puterman and M. Shin. Modified policy iteration algorithms for discounted
Markov decision problems. Management Science, 24:1127–1137, 1978.

30. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 1994.

31. R. Wimmer, A. Kortus, M. Herbstritt, and B. Becker. Probabilistic model checking
and reliability of results. In 11th IEEE Workshop on Design & Diagnostics of
Electronic Circuits & Systems (DDECS), pages 207–212. IEEE Computer Society,
2008.

	Ensuring the Reliability of Your Model Checker: Interval Iteration for Markov Decision Processes

