
ESORICS 2019, Luxembourg, September 2019

Automated Formal Analysis
of Side-Channel Attacks
on Probabilistic Systems

Chris Novakovic Dave Parker

University of Birmingham

2

Motivation

• Side-channel attacks
− potential leakage of secret data via e.g. time/power info
− side channel attacks increasingly viable

• Probabilistic systems
− information leakage is naturally expressed probabilistically
− security systems often employ randomisation or

operate in uncertain environments

• Automated verification techniques
− build on recent advances in techniques & tools

(probabilistic model checking & PRISM)
− meaningfully quantify the severity of potential attacks
− synthesise optimal attacks and analyse defences/trade-offs

3

Overview

• Probabilistic model checking
− discrete-time Markov chains
− partially observable Markov decision processes (POMDPs)

• The SCH-IMP language

• Automated side channel analysis
− via probabilistic model checking on POMDPs

• Tool support

• Examples and results

4

Probabilistic model checking

• Probabilistic model checking
− formal construction/analysis of probabilistic models
− “correctness” properties expressed in temporal logic
− e.g. trigger → P≥0.999 [F≤20 deploy]
− mix of exhaustive & numerical/quantitative reasoning

• Trends and advances
− improvement in scalability to larger models
− increasingly expressive/powerful model classes
− from verification problems to control/synthesis problems
− (i.e., synthesis of optimal strategies/policies)

0.5

0.1

0.4

5

Probabilistic models

• Models used here:
− discrete-time Markov chains
− partially observable Markov decision processes (POMDPs)

• Discrete-time Markov chains

− e.g. what is the probability of reaching s3?

s0

0.5

0.5

s2

s1

s5

s3

s4
0.3

1

0.7

6

Probabilistic models: MDPs

• Markov decision processes (MDPs)
− mix nondeterministic and probabilistic choice
− strategies (or policies) resolve actions based on history

• MDP model checking
− e.g. what is the maximum probability of reaching s3

achievable by any strategy?

s0

0.5

0.5
a

s2

s1

s5

s3

s4
0.3

1

b

1

b

1

c
c

f

f

f

0.7

7

Probabilistic models: POMDPs

• Partially observable Markov decision processes (POMDPs)
− an observation function limits what a strategy can observe
− strategies make the same choice in equivalent states

• POMDP model checking
− basic verification problems are undecidable
− but techniques exist to approximate optimal strategies
− and tool support is now available, e.g. PRISM-pomdps

s0

0.5

0.5
a

s2

s1

s5

s3

s4
0.3

1

b

1

b
1

c
c

f

f

f

0.7

o0

o12

o3

o45

8

The SCH-IMP language

• SCH-IMP: Simple imperative programming language, with:
− secret variables, probabilistic assignment, resource usage
− extension of CH-IMP [CSF’13] for information leakage

• Key language components:
− variables (finite-ranging)

• assigned via discrete probability distributions
• either “initial” (secret) or “regular” variables

− output statements + functions + basic control flow

9

The SCH-IMP language

• SCH-IMP: Simple imperative programming language, with:
− secret variables, probabilistic assignment, resource usage
− extension of CH-IMP [CSF’13] for information leakage

• Key language components:
− variables (finite-ranging)

• assigned probabilistically (via discrete probability distributions)
• either “initial” (secret) or “regular” variables

− output statements + functions + basic control flow

10

SCH-IMP example

• Simple example program

• Note:
− secret/non-secret variables declared with initial and new
− variable o is always set to 1, so no leakage via output

initial i := { 0→¼, 1→¼, 2→¼, 3→¼ };
function f(x) {

new o := 1;
if (x>0) { o := x/x };
output o;
return

};
f(i);
end

11

SCH-IMP: Resources

• Resource usage
− we focus here on just two: time and power consumption
− defined at the level of functions, not individual commands
− a resource function gives, for a subset of program functions,

a mapping from function arguments to discrete probability
distributions over time/power usage

initial i := { 0→¼, 1→¼, 2→¼, 3→¼ };
function f(x) {

new o := 1;
if (x>0) { o := x/x };
output o;
return

};
f(i);
end

f → {
(0) → { (5,7) → ½, (6,7) → ½ },
(_) → { (6,7) → ½, (7,7) → ½ }

}

12

SCH-IMP semantics

• Semantics for execution of a SCH-IMP program
− defined as a discrete-time Markov chain
− see the paper for a formal definition

• A SCH-IMP state is a tuple (F, I, t, p, ∆)
− F is the current command stack (+ associated variable values)
− I : Var→Val is the initial variables and their values
− t : ℕ is the total time elapsed so far
− p : ℕ is the power consumed so far
− ∆ : ℕ → ℕ × seq(Val) is an observation function defining,

for certain time points, the cumulative power consumed
and values that were output from the program

13

SCH-IMP semantics: Example

• Initial fragment
of semantics
for example

1: initial i := { 0→¼, 1→¼, 2→¼, 3→¼ };
function f(x) {
…

5: };
6: f(i);
7: end

f → {
(0) → { (5,7) → ½, (6,7) → ½ },
(_) → { (6,7) → ½, (7,7) → ½ }

}

state indices
line number

variable values
observations
time & power

Key:

14

Side channel analysis

• Attack model
− attacker has full access to program source code
− sees program outputs & power usage at fixed time points

• 3-phase process
− systematic construction of Markov chain model

• following SCH-IMP semantics (including optimisations)
− conversion to POMDP model

• encoding (side channel) attacker knowledge and choices
− solution of POMDP

• construct optimal strategy for maximising info leakage

15

POMDP construction

• POMDP extends Markov chain model of program
− observation function hides program internals
− attacker “guess” actions added
− (for now, these occur on termination)

• Example showing basic ideas:
− for secret variable i

− which POMDP strategy
maximises the probability
of reaching the success state?

i=?

0.5

0.5
init

i=1

i=0

guess0

guess1

guess1

guess0

16

POMDP construction

• Extended example
− incorporating time observations (t)

− optimal strategy can now use time observations

i=?

0.5

0.5
init

i=1

i=0

guess0

guess1

guess1

guess0
i=1
t=5

i=0
t=4

i=0
t=5

0.3

0.7
func

1

func

guess1
guess0

17

Tool support

• Prototype tool, including
− language parser and processor
− model construction via PRISM (model generator API)
− POMDP model checking via PRISM-pomdps
− source/binaries/examples available from:

www.cs.bham.ac.uk/research/projects/schimp/

• Sample of performance results for experiments

http://www.cs.bham.ac.uk/research/projects/schimp/

18

Case studies

• Three case studies considered for evaluation
− investigate severity/details/trade-offs of known side-channels

1. Covert information flow: the NRL pump
− network messages only sent from “low” to “high” hosts
− probabilistic network delays inserted to prevent deliberate

side-channel via delays in message acknowledgements
Our analysis:
− max m attempts to send a message
− ack delays h0, h1 for secret values 0, 1
− for a given m, we find ack delays

h0, h1 that maximise the probability
of a successful leak

− study trade-off between network
performance and security

[fix h0=2]

19

Case studies

2. Square and multiply algorithms
− more efficient implementation of modular exponentiation
− known power analysis side channel [Messerges et al.’99] since

multiply is more expensive and only needed for some bits
− we measure the increase in the probability of a successful

attack for a variety of different power usage schemes
− and verify that several alternative schemes indeed fix this

3. Anonymous communication networks: DC-net
− based on dining cryptographers protocol [Chaum’88]
− protocol successfully preserves anonymity of the sender
− study leakage due to timing of extra ops performed by sender

20

Conclusions

• Automated formal analysis of side channel attacks
− using an imperative probabilistic language SCH-IMP
− and building on probabilistic model checking of POMDPs

• Benefits
− meaningful quantification of attack severity

(and generation of the details of the worst-case attack)
− study of trade-offs involved in defending against attacks

• Limitations
− custom modelling language; scalability remains a challenge

• Future work
− optimising POMDP construction and analysis
− use POMDP to extend attack search (e.g. considering cost)
− more structured representation of strategies

