Global constraints and decompositions

Christian Bessiere

Univ Montpellier, CNRS

(joined work with E. Hebrard, B. Hnich, G. Katsirelos, Z. Kiziltan, N. Narodytska C.G. Quimper, T. Walsh)

Outline

- Background (CSP, propagation)
- Global constraints
- Decompositions
- Decomposability wrt AC or BC
- Non decomposability result

Constraint network

• A set of variables

 $- X = \{x_1, ..., x_n\}$

- Their domains
 - $D(x_i)$: finite set of values for x_i
- Constraints
 - $C = \{c_1, \dots, c_i, \dots\}$

 c_i specifies the combinations of values allowed on the sequence of variables $X(c_i)=(x_{i1},...,x_{iq})$ $C_i \subseteq Z^{|X(ci)|}$

 $c_i = \{allowed tuples on X(c_i)\}$

So, a constraint c_i is defined by any Boolean function with domain $Z^{|X(ci)|}$

Solving a constraint problem

```
Function Solve(P)
propagate(P)
if empty domain then return 0
if P fully instantiated then return 1
select variable Xi and value v
Xi:=v
if Solve(P + {Xi=v}) then return 1
return Solve(P + {Xi≠v}
```


Efficient when **propagate** reduces the search space a lot

Propagate

$$D(x) = \{0, 2, 4\}, D(y) = \{1, 2, 3\}, D(z) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 8\}$$

 $x + y = z$

Propagate: arc consistency

$$D(x) = \{0, 2, 4\}, D(y) = \{1, 2, 3\},$$

$$D(z) = \{0, 1, 2, 3, 4, 5, 8, 7, 8, 3\}$$

$$x + y = z$$

$$y \neq 2$$

$$x + y = z$$

$$224$$

Optimal algorithms for arc consistency: complexity in *O(d^r)*, where r is the number of variables of the constraint and d is the size of the domains 235

415

426

437

Global constraints

- Constraints that can involve an arbitrary number of variables
 - Alldifferent($x_1,...,x_n$) $\Leftrightarrow x_i \neq x_j \quad \forall i,j$

$$- \operatorname{sum}(x_1, ..., x_n, K) \Leftrightarrow \Sigma x_i = K$$

- Frequent pattern in applications: useful to express complex relations between variables
 - Alldifferent : two courses cannot occur simultaneously
 - $Atleast_{k,v}$: at least two hostesses must speak japanese
 - Stretch : no more than 5 working days; not morning after night --> N N R R M M A A A A R N M M R R (nurse rostering)

Why global constraints?

- Beyond their expressivity, they allow extensive propagation
 - → Global constraints have helped in solving open problems
 - Sport league scheduling, etc.
- Global constraints are a specificity of CP
- Most (all?) CP solvers contain global constraints
- More than 300 global constraints in Beldiceanu's catalog
- But generic arc consistency algorithms are in $O(d^r)$...
- we have to implement an ad hoc propagator for every constraint in the solver!

Do we need 300 global constraints?

- No!
- We can rewrite them in CNF (SAT solveurs)
- We can *decompose* them in 'simpler' constraints (e.g., fixed arity)

Why decompositions?

- Save the time of the designer of a solver
- SMT solvers:
 - The SAT solver receives explanations from the global constraints
 - it is critical to have short explanations (see yesterday's invited talk)
- Inherently incremental

Decompositions

- What can be expected from a decomposition?
- To express the same thing
 Semantic decomposition
- To allow the same propagation (e.g., arc consistency)
 → Operational decomposition

[Bessiere & Van Hentenryck 2002]

Semantic decomposability (no extra variables)

• Alldiff

Solutions of the CSP on the right are the same as the allowed tuples of the Alldiff on the left

Semantic decomposability (extra variables)

• Atleast_{k,v}

Semantic decomposability (extra variables)

• Atleast_{k.v}

- B₀...B_n, D(B_i)={0,...,n}
- $(x_i = v \& B_i = B_{i-1} + 1) \lor (x_i \neq v \& B_i = B_{i-1}), \forall i$
- $\bullet B_0 = 0, B_n \ge k$

Solutions of this CSP projected on the Xi's are the same as the tuples allowed by Atleast

Semantic decomposability today

- Not discriminant:
 - Any polynomial Boolean function can be decided by unit propagation on a poly size CNF decomposition [Jones&Laaser74]
 - Any CNF can be expressed by constraints with fixed arity (because UP on CNF ⇔ UP on 3CNF)
- Any global constraint is semantically decomposable (though we don't necessarily know the decomposition --see Tuesday's best paper talk)

Operational decomposability (AC-decomposition)

• AC-decomposition not only preserves the semantics of the global constraint, but also the level of propagation (i.e., arc consistency)

For any $D'_X \subseteq D_X$: $AC(\{c\}) = AC(C)|_X$

Example 1

This decomposition hinders propagation

Example 2

• Atleast

• $(x_i = v \& B_i = B_{i-1} + 1) \lor (x_i \neq v \& B_i = B_{i-1}), \forall i$ • $B_0 = 0, B_n \ge k$

This decomposition preserves propagation

'Chain-like' AC-decomposition

- Many constraints can be decomposed as a chain of ternary constraints that form a *Bergeacyclic* hypergraph (→AC preserved)
- E.g., Atmost, consecutive-1, lex, stretch, regular

Taxonomy?

- Tools of computational complexity can help us
- c a global constraint on $X(c)=(x_1...x_n)$
 - c checker(c) ⇔ « is there a tuple in D(x₁)×...× D(x_n) satisfying
 c ? »
- If checker(c) is NP-complete
 then propagate c is NP-hard
 then there is no AC-decomposition for c

NP-hard constraints

- They can be detected by polynomial reductions... and there are a lot!
- Examples:
 - Nvalue(N, $x_1,..,x_n$) (N = number of values used by $x_1,..,x_n$)
 - Sum(x₁,...,x_n,K)
- This allowed to discover that some propagators are not complete (they don't prune all arc inconsistent values)

Relax propagation: bound consistency (BC)

D(x)=
$$\{0,2,4\}$$
, D(y)= $\{1,2,3\}$,
D(z)= $\{2,1,2,3,4,5,6,7,8,9\}$
x + y = z
Suppose 2 removed from D(y)

BC-decompositions

 Several common constraints for which AC is NP-hard allow BC-decompositions in ternary constraints arranged as a chain (sum) or a pyramid (Nvalue, see tomorrow's talk)

Warning: size of the 'gadget' Example: sum(x₁,...,x_n,K)

•
$$Y_i = Y_{i-1} + X_i$$
, $\forall i$

•
$$Y_0 = 0, Y_n = K$$

•
$$D(Y_i) = ???$$

 $D(X_1) = \{0, 1, \dots, 9\}; D(X_2) = \{0, 10, \dots, 90\}; D(X_3) = \{0, 100, \dots, 900\}; D(X_4) = \{0, 1000, \dots, 9000\} \dots$

→ For AC, $D(Y_4)$ must contain 10⁴ values → exponential size

 \rightarrow BC can use the interval domain [0,...,999]

Until now we have:

- Constraints polynomial to propagate
 - → AC-decomposition when we find one (atleast, stretch, etc.)
 - ➔ And the others???

Non AC-decomposability result

• AC-decomposition for c

⇔ decomposition into CNF which computes AC [Bessiere, Hebrard, Walsh 2003]

⇔ CNF checker (= decides if the constraint has a solution tuple)

• CNF checker

 \Rightarrow monotone circuit of polynomial size

Theorem no poly-size monotone circuit⇒ no ACdecomposition (and no CNF computes AC)

Circuit complexity

• Classes of functions that cannot be computed by monotone circuits of poly size [Rasborov 85, Tardos 88]

- → alldiff has no AC-decomposition
- Other examples: gcc, Nvalue, etc.

So what?

- Constraint programming *cannot* be reduced to CNF (i.e., to SAT)
- Constraint programming *cannot* be reduced to constraints with fixed arity

Summary

- NP-hard constraints
 - Use a lower level of consistency
- AC-decomposable constraints

 Use the decomposition (when we know it!)
- Constraints that are poly but non ACdecomposable
 - You must implement the poly algorithm :(
 - ... or use a lower level of consistency

Canonical language?

- Idea: provide solvers with a set £ of a few (a dozen?) of global constraints that would encode all others
 - $AC(\pounds)$ -decomposability of c:
 - ightarrow c can be decomposed into constraints of \pounds
 - → No new propagator to implement!
- Examples:
 - range + roots can easily express around 70 constraints in the catalog (version with 214 constraints)
 - slide (or Beldiceanu's counter constraint [Beldiceanu et al. 2004]) expresses many others
 - Extending the result in CP'10 best paper would help!

Some references

Deriving Filtering Algorithms from Constraint Checkers N.Beldiceanu, M. Carlsson, T. Petit. Proceedings CP'04, Toronto CA, pages 107-122.

Global Constraint Catalogue: Past, Present and Future N. Beldiceanu, M. Carlsson, S. Demassey, T. Petit. Constraints 12 (1): 21-62 (2007).

The Problem of Compatible Representatives D.E. Knuth, A. Raghunathan. SIAM J. Discrete Math. 5(3): 422-427 (1992).

A Filtering Algorithm for Constraints of Difference in CSPs J.C. Régin. Proceedings AAAI'94, Seattle WA, pages 362-367. *To be or not to be...a global constraint* C. Bessiere and P. Van Hentenryck. Proceedings CP'03, Kinsale, Ireland, pages 789-794.

Local consistencies in SAT C. Bessiere, E. Hebrard and T. Walsh. Proceedings SAT'03, LNCS 2919, pages 299-314.

The Complexity of Reasoning with Global Constraints C. Bessiere, E. Hebrard, B. Hnich, T. Walsh. Constraints, volume 12(2), pages 239-259 (2007).

Range and Roots: Two Common Patterns for Specifying and Propagating Counting and Occurrence Constraints C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh. Artificial Intelligence, volume 173(11), pages 1054-1078 (2009).

Circuit Complexity and Decompositions of Global Constraints C. Bessiere, G. Katsirelos, N. Narodytska, T. Walsh. Proceedings IJCAl'09, Pasadena CA, pages 412-418.

Decompositions of All Different, Global Cardinality and Related Constraints C. Bessiere, G. Katsirelos, N. Narodytska, C.G. Quimper, T. Walsh. Proceedings IJCAI'09, Pasadena CA, pages 419-424.

SLIDE: A Useful Special Case of the CARDPATH Constraint C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh. Proceedings ECAI'08, Patras, Greece, pages 475-479. 31