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Outline

• Background (CSP, propagation)
• Global constraints
• Decompositions
• Decomposability wrt AC or BC
• Non decomposability result
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Constraint network

• A set of variables
– X = {x1,..,xn}

• Their domains
– D(xi): finite set of values for xi

• Constraints
– C = {c1,…,ci,…}

ci specifies the combinations of
values allowed on the sequence
of variables X(ci)=(xi1,…,xiq)

ci ⊆ Z|X(ci)|

ci= {allowed tuples on X(ci)}
So, a constraint ci is defined

by any Boolean function
with domain Z|X(ci)|
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Solving a constraint problem
Function Solve(P)
 propagate(P)
 if empty domain then   return 0
  if P fully instantiated then   return 1
 select variable Xi and value v
 Xi:=v
 if Solve(P + {Xi=v}) then   return 1
 return Solve(P + {Xi≠v}

Efficient when propagate reduces
the search space a lot
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Propagate

D(x)={0,2,4}, D(y)={1,2,3},
D(z)={0,1,2,3,4,5,6,7,8,9}
x + y = z
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x+y=z
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 : arc consistency

D(x)={0,2,4}, D(y)={1,2,3},
D(z)={0,1,2,3,4,5,6,7,8,9}
x + y = z
y≠2
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x+y=z

Optimal algorithms for arc consistency: 
complexity in O(dr), where r is the number 
of variables of the  constraint and d is the
 size of the domains

Propagate
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Global constraints

• Constraints that can involve an arbitrary number of
variables
– Alldifferent(x1,..,xn) ⇔ xi ≠ xj   ∀i,j
– sum(x1,..,xn,K) ⇔ Σxi = K

• Frequent pattern in applications: useful to express
complex relations between variables
– Alldifferent : two courses cannot occur simultaneously
– Atleastk,v : at least two hostesses must speak japanese
– Stretch : no more than 5 working days; not morning after

night --> N N R R M M A A A A R N M M R R (nurse rostering)
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Why global constraints?
• Beyond their expressivity, they allow extensive propagation

 Global constraints have helped in solving open problems
– Sport league scheduling, etc.

• Global constraints are a specificity of CP
• Most (all?) CP solvers contain global constraints
• More than 300 global constraints in Beldiceanu’s catalog
• But generic arc consistency algorithms are in O(dr)…
 we have to implement an ad hoc propagator for every constraint

in the solver!
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Do we need 300 global
constraints?

• No!
• We can rewrite them in CNF (SAT solveurs)
• We can decompose them in ‘simpler’

constraints (e.g., fixed arity)

δk
X, DX

c 

X+Y, DX+DY

C sol(P)=sol(δk(P))[X]
|X(ci)| ≤ k, ∀ci ∈ C
|δk(c)| is polynomial



9

Why decompositions?

• Save the time of the designer of a solver

• SMT solvers:
– The SAT solver receives explanations from the

global constraints
 it is critical to have short explanations (see

yesterday’s invited talk)

• Inherently incremental
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Decompositions

• What can be expected from a decomposition?

• To express the same thing
 Semantic decomposition

• To allow the same propagation (e.g., arc consistency)
 Operational decomposition

[Bessiere & Van Hentenryck 2002]
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Semantic decomposability
(no extra variables)

• Alldiff

1,2,3,4 2,3

1,2,3,4 2,3

≠
≠

≠

≠

≠
≠

1,2,3,4

1,2,3,4

2,3

2,3

alldiff

Solutions of the CSP on the right are the same as 
the allowed tuples of the Alldiff on the left

x1

x2

x3

x4

x1 x3

x2 x4



12

Semantic decomposability
(extra variables)

• Atleastk,v

X1   X2   X3  ……         Xn-1     Xn
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Semantic decomposability
(extra variables)

• Atleastk,v

X1   X2   X3  ……         Xn-1     Xn

B0   B1   B2   B3  ……         Bn-1     Bn

 B0…Bn, D(Bi)={0,…,n}
 (xi=v & Bi=Bi-1+1)∨(xi≠v & Bi = Bi-1), ∀i
 B0 = 0, Bn ≥ k

Solutions of this CSP projected on the Xi’s 
are the same as the tuples allowed by Atleast
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Semantic decomposability
today

• Not discriminant:
– Any polynomial Boolean function can be decided by unit

propagation on a poly size CNF decomposition
[Jones&Laaser74]

– Any CNF can be expressed by constraints with fixed arity
(because UP on CNF ⇔ UP on 3CNF)

 Any global constraint is semantically decomposable
(though we don’t necessarily know the decomposition
--see Tuesday’s best paper talk)
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• AC-decomposition not only preserves the semantics
of the global constraint, but also the level of
propagation (i.e., arc consistency)

Operational decomposability
(AC-decomposition)

For any D’X ⊆ DX:  AC({c}) = AC(C)|X

δk

X, DX

c 

X+Y, DX+DY

C
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Example 1

• Alldiff

1,2,3,4 2,3

1,2,3,4 2,3

≠
≠

≠

≠

≠
≠

1,2,3,4

1,2,3,4

2,3

2,3

alldiff

This decomposition hinders propagation

1423
1432
4123
4132

x1

x3

x2 x4



17

Example 2
• Atleast

X1   X2   X3  ……         Xn-1     Xn

B0   B1   B2   B3  ……         Bn-1     Bn

 B0…Bn, D(Bi)={0,…,n}
 (xi=v & Bi=Bi-1+1)∨(xi≠v & Bi = Bi-1), ∀i
 B0 = 0, Bn ≥ k

This decomposition preserves
propagationAcyclic hypergraph 
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‘Chain-like’ AC-decomposition

• Many constraints can be decomposed as a
chain of ternary constraints that form a Berge-
acyclic hypergraph (AC preserved)

• E.g., Atmost, consecutive-1, lex,
stretch, regular



19

Taxonomy?
• Tools of computational complexity can help us

• c a global constraint on X(c)=(x1…xn)

– checker(c) ⇔ « is there a tuple in D(x1)×…× D(xn) satisfying
c ? »

• If checker(c) is NP-complete
then propagate c is NP-hard
then there is no AC-decomposition for c
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NP-hard constraints
• They can be detected by polynomial reductions…

and there are a lot!

• Examples:
– Nvalue(N,x1,..,xn)  (N = number of values used by x1,..,xn)
– Sum(x1,..,xn,K)

• This allowed to discover that some propagators are
not complete (they don’t prune all arc inconsistent
values)
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Relax propagation:
bound consistency (BC)

D(x)={0,2,4}, D(y)={1,2,3},
D(z)={0,1,2,3,4,5,6,7,8,9}
x + y = z
Suppose 2 removed from D(y)
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x+y=z
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BC-decompositions

• Several common constraints for which AC is
NP-hard allow BC-decompositions in ternary
constraints arranged as a chain (sum) or a
pyramid (Nvalue, see tomorrow’s talk)
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Warning: size of the ‘gadget’
Example: sum(x1,..,xn,K)

X1   X2   X3  ……         Xn-1     Xn

Y0    Y1    Y2    Y3     ……         Yn-1     Yn

 Yi=Yi-1+ Xi, ∀i

 Y0 = 0, Yn = K
 D(Yi)= ???

D(X1)={0,1,…9}; D(X2)={0,10,…90}; D(X3)={0,100,…900};
D(X4)={0,1000,…9000} . . .
 For AC, D(Y4) must contain 104 values  exponential size
 BC can use the interval domain [0,..,999]
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Until now we have:

• Constraints NP-hard to propagate
 no AC-decomposition
(sometimes a BC-decomposition)

• Constraints polynomial to propagate
 AC-decomposition when we find one

(atleast, stretch, etc.)
 And the others???
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Non AC-decomposability
result

• AC-decomposition for c
   ⇔ decomposition into CNF which computes AC

[Bessiere, Hebrard, Walsh 2003]
⇔ CNF checker (= decides if the constraint has a
solution tuple)

• CNF checker
 ⇒ monotone circuit of polynomial size

Theorem no poly-size monotone circuit⇒ no AC-
decomposition (and no CNF computes AC)
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Circuit complexity

• Classes of functions that cannot be computed by
monotone circuits of poly size [Rasborov 85, Tardos 88]

• Example:
– perfect matching
– Subsumed by  checker(alldiff)
[Knuth92, Regin94]

 alldiff has no AC-decomposition

• Other examples: gcc, Nvalue, etc.

x1∈1,2
x2∈1,2,3
x3∈3,4
x4∈3
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So what?

• Constraint programming cannot be
reduced to CNF (i.e., to SAT)

• Constraint programming cannot be
reduced to constraints with fixed arity
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Summary

• NP-hard constraints
– Use a lower level of consistency

• AC-decomposable constraints
– Use the decomposition (when we know it!)

• Constraints that are poly but non AC-
decomposable
– You must implement the poly algorithm :(
– …or use a lower level of consistency



29

 Canonical language?
• Idea: provide solvers with a set L of a few (a dozen?)

of global constraints that would encode all others
– AC(L)-decomposability of c:

 c can be decomposed into constraints of L
 No new propagator to implement!

• Examples:
– range + roots can easily express around 70 constraints in

the catalog (version with 214 constraints)
– slide (or Beldiceanu’s counter constraint [Beldiceanu et al.

2004]) expresses many others
– Extending the result in CP’10 best paper would help!
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