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Abstract.
A cut ε-sparsifier of a weighted graph G is a re-weighted subgraph of G of (quasi)linear size that

preserves the size of all cuts up to a multiplicative factor of ε. Since their introduction by Benczúr and
Karger [STOC’96], cut sparsifiers have proved extremely influential and found various applications.
Going beyond cut sparsifiers, Filtser and Krauthgamer [SIDMA’17] gave a precise classification of
which binary Boolean CSPs are sparsifiable. In this paper, we extend their result to binary CSPs on
arbitrary finite domains.

1. Introduction. The pioneering work of Benczúr and Karger [4] showed that
every edge-weighted undirected graph G = (V,E,w) admits a cut-sparsifier. In par-
ticular, assuming that the edge weights are positive, for every 0 < ε < 1 there exists
(and in fact can be found efficiently) a re-weighted subgraph Gε = (V,Eε ⊆ E,wε) of
G with |Eε| = O(ε−2n log n) edges such that

∀S ⊆ V, CutGε(S) ∈ (1± ε)CutG(S),

where n = |V | and CutG(S) denotes the total weight of edges in G with exactly one
endpoint in S. The bound on the number of edges was later improved to O(ε−2n) by
Batson, Spielman, and Srivastava [3]. Moreover, the bound O(ε−2n) is known to be
tight by the work of Andoni, Chen, Krauthgamer, Qin, Woodruff, and Zhang [2].

The original motivation for cut sparsification was to speed up algorithms for cut
problems and graph problems more generally. The idea turned out to be very in-
fluential, with several generalisations and extensions, including, for instance, sketch-
ing [1, 2], sparsifiers for cuts in hypergraphs [10, 12], and spectral sparsification [16,
15, 14, 9, 13].

Filtser and Krauthgamer [8] considered the following natural question: which
binary Boolean CSPs are sparsifiable? In order to state their results as well as our
new results, we will now define binary constraint satisfaction problems.

An instance of the binary1 constraint satisfaction problem (CSP) is a quadruple
I = (V,D,Π, w), where V is a set of variables, D is a finite set called the domain,2 Π
is a set of constraints, and w : Π→ R+ are positive weights for the constraints. Each
constraint π ∈ Π is a pair ((u, v), P ), where (u, v) ∈ V 2, called the constraint scope,
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is a pair of distinct variables from V , and P : D2 → {0, 1} is a binary predicate. A
CSP instance is called Boolean if |D| = 2, i.e., if the domain is of size two.3

For a fixed binary predicate P , we denote by CSP(P ) the class of CSP instances
in which all constraints use the predicate P . Note that if we take D = {0, 1} and P
defined on D2 by P (x, y) = 1 iff x 6= y then CSP(P ) corresponds to the cut problem.

We say that a constraint π = ((u, v), P ) is satisfied by an assignment A : V → D
if P (A(u), A(v)) = 1. The value of an instance I = (V,D,Π, w) under an assignment
A : V → D is defined to be the total weight of satisfied constraints:

ValI(A) =
∑

π=((u,v),P )∈Π

w(π)P (A(u), A(v)).

For 0 < ε < 1, an ε-sparsifier of I = (V,D,Π, w) is a re-weighted subinstance Iε =
(V,D,Πε ⊆ Π, wε) of I such that

∀A : V → D, ValIε(A) ∈ (1± ε) ValI(A).

The goal is to obtain a sparsifier with the minimum number of constraints, i.e., |Πε|.
A binary predicate P is called sparsifiable if for every instance I ∈ CSP(P ) on

n = |V | variables and for every 0 < ε < 1 there is an ε-sparsifier for I with O(ε−2n)
constraints.

We call a (not necessarily Boolean or binary) predicate P a singleton if |P−1(1)| =
1.

Filtser and Krauthgamer showed, among other results, the following classification.
Let P be a binary Boolean predicate. Then, P is sparsifiable if and only if P is not
a singleton.4 In other words, the only predicates that are not sparsifiable are those
with support of size one.

Contributions. As our main contribution, we identify in Theorem 2.2 the precise
borderline of sparsifiability for binary predicates on arbitrary finite domains, thus
extending the work from [8] on Boolean predicates. Let P be a binary predicate
defined on an arbitrary finite domain D. Then, P is sparsifiable if and only if P does
not “contain” a singleton subpredicate. More precisely, we say that P “contains” a
singleton subpredicate if there are two (not necessarily disjoint) subdomains B,C ⊆ D
with |B| = |C| = 2 such that the restriction of P onto B×C is a singleton predicate.

The crux of Theorem 2.2 is the sparsifiability part, which is established by a re-
duction to cut sparsifiers. Unlike in the classification of binary Boolean predicates
from [8], we do not rely on a case analysis that differs for different sparsifiable predi-
cates but instead give a simpler argument for all sparsifiable predicates. The idea is
to reduce (the graph of) any CSP instance, as was done in [8], to a new graph via the
so-called bipartite double cover [5]. However, there is no natural assignment in the
new graph (as it was in the Boolean case in [8]). In order to overcome this, we define a
graph GP whose edges correspond to the support of the predicate P . Using a simple
combinatorial argument, we show (in Proposition 2.7) that, under the assumption
that P does not “contain” a singleton subpredicate, the bipartite complement of GP

is a collection of bipartite cliques. This special structure allows us to find a good
assignment in the new graph.

3Some papers use the term binary to mean domains of size two. In this paper, Boolean always
refers to a domain of size two and binary always refers to the arity of the constraint(s).

4Filtser and Krauthgamer use the term valued CSPs for what we defined as CSPs. We prefer
CSPs in order to distinguish them from the much more general framework of valued CSPs studied
in [11].
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In view of Filtser and Krauthgamer’s work [8], one might conjecture that P is
sparsifiable if and only if P is not a singleton. While it is easy to show that if
a (possibly non-binary and non-Boolean) predicate P is a singleton then P is not
sparsifiable (cf. Section A.4 in the appendix), our results show that the borderline
of sparsifiability lies elsewhere. In particular, by Theorem 2.2, there are binary non-
Boolean predicates that are not sparsifiable but are not singletons. Also, there are
non-binary Boolean predicates that are not sparsifiable but are not singletons (cf.
Section A.4).

We remark that the term “sparsification” is also used in an unrelated line of
work in which the goal is, given a CSP instance, to reduce the number of constraints
without changing satisfiability of the instance; see, e.g., [7].

2. Classification of Binary Predicates. Throughout the paper we denote by
n = |V | the number of variables of a given CSP instance.

The following classification of binary Boolean predicates is from [8].

Theorem 2.1 ([8, Theorem 3.7]). Let P : {0, 1}2 → {0, 1} be a binary Boolean
predicate. Let 0 < ε < 1.

1. If P is a singleton then there exists an instance I of CSP(P ) such that every
ε-sparsifier of I has Ω(n2) constraints.

2. Otherwise, for every instance I of CSP(P ) there exists an ε-sparsifier of I
with O(ε−2n) constraints.

We denote by
(
D
2

)
= {B ⊆ D : |B| = 2} the set of two-element subsets of D. For

a binary predicate P : D2 → {0, 1} and B,C ∈
(
D
2

)
, P |B×C denotes the restriction of

P onto B × C.
The following is our main result, generalising Theorem 2.1 to arbitrary finite

domains.

Theorem 2.2 (Main). Let P : D2 → {0, 1} be a binary predicate, where D is a
finite set with |D| ≥ 2. Let 0 < ε < 1.

1. If there exist B,C ∈
(
D
2

)
such that P |B×C is a singleton then there exists an

instance I of CSP(P ) such that every ε-sparsifier of I has Ω(n2) constraints.
2. Otherwise, for every instance I of CSP(P ) there exists an ε-sparsifier of I

with O(ε−2n) constraints.

The rest of this section is devoted to proving Theorem 2.2.
First we introduce some useful notation. We set [r] = {0, 1, . . . , r−1}. We denote

by XtY the disjoint union of X and Y . For any r ≥ 2, we define r-Cut : [r]2 → {0, 1}
by r-Cut(x, y) = 1 if and only if x 6= y.

Given an instance I = (V,D,Π, w) ∈ CSP(P ), we denote by GI the corre-
sponding graph of I; that is, GI = (V,E,w) is a weighted directed graph with
E = {(u, v) : ((u, v), P ) ∈ Π} and w(u, v) = w((u, v), P ). Conversely, given a
weighted directed graph G = (V,E,w) and a predicate P : D2 → {0, 1}, the cor-
responding CSP(P ) instance is IG,P = (V,D,Π, w), where Π = {(e, P ) : e ∈ E}
and w(e, P ) = w(e). Hence, we can equivalently talk about instances of CSP(P ) or
(weighted directed) graphs. Thus, an ε-P -sparsifier of a graph G = (V,E,w) is a
subgraph Gε = (V,Eε ⊆ E,wε) whose corresponding CSP(P ) instance IGε,P is an
ε-sparsifier of the corresponding CSP(P ) instance IG,P of G.

Case (1) of Theorem 2.2 is established by the following result.

Theorem 2.3. Let P : D2 → {0, 1} be a binary predicate. Assume that there exist
B,C ∈

(
D
2

)
such that P |B×C is a singleton. For any n there is a CSP(P ) instance
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I with 2n variables and n2 constraints such that for any 0 < ε < 1 it holds that any
ε-sparsifier of I has n2 constraints.

Proof. Suppose B = {b, b′}, C = {c, c′} and assume without loss of generality that

P |B×C
−1

(1) = {(b, c)}; that is, the support of P |B×C is equal to {(b, c)}. Consider a
CSP(P ) instance I = (V,D,Π, w), where

• V = X t Y , X = {x1, . . . , xn}, and Y = {y1, . . . , yn};
• Π = {πij = ((xi, yj), P ) : 1 ≤ i, j ≤ n};
• w are arbitrary positive weights.

We have |Π| = n2. We note that B and C may not be disjoint. We consider the family
of assignments Aij : V → B ∪ C for 1 ≤ i, j ≤ n such that Aij(xi) = b, Aij(x) = b′

for every x ∈ X \ {xi}, Aij(yj) = c, and Aij(y) = c′ for every y ∈ Y \ {yj}. Then, we
have

P (Aij(u, v)) =


P (b, c) = 1 if u = xi, v = yj ,

P (b, c′) = 0 if u = xi, v ∈ Y \ {yj},
P (b′, c) = 0 if u ∈ X \ {xi}, v = yj ,

P (b′, c′) = 0 if u ∈ X \ {xi}, v ∈ Y \ {yj}.

Therefore,

ValI(Aij) =
∑
π∈Π

w(π)P (Aij(π)) = w(πij) > 0.

Hence, if Iε = (V,D,Πε, wε) is an ε-sparsifier of I, we must have that πij ∈ Πε for
every 1 ≤ i, j ≤ n, as otherwise we would have

ValIε(Aij) =
∑
π∈Πε

wε(π)P (Aij(π)) = 0 /∈ (1± ε) ValI(Aij).

Therefore, we have Πε = Π and hence |Πε| = |Π| = n2.

The main tool used in the proof of Theorem 2.1 (2) from [8] is a graph transfor-
mation known as the bipartite double cover [5], which allows for a reduction to cut
sparsifiers [3].

Definition 2.4. For a weighted directed graph G = (V,E,w), the bipartite dou-
ble cover of G is the weighted directed graph γ(G) = (V γ , Eγ , wγ), where

• V γ = {v(0), v(1) : v ∈ V };
• Eγ = {(u(0), v(1)) : (u, v) ∈ E};
• wγ(u(0), v(1)) = w(u, v).

Given an assignment A : V → [r], we let A = (A0, . . . , Ar−1) be the induced
r-partition of V , where Aj = A−1(j). For a binary predicate P : [r]2 → {0, 1} and
an instance I = (V, [r],Π, w) ∈ CSP(P ), we define ValI(A) = ValI(A). Moreover,
for a weighted directed graph G and a binary predicate P , we define ValG,P (A) =
ValIG,P (A). We denote the set of all r-partitions of V by Partr(V ).

For any r-partition A = (A0, . . . , Ar−1) of the vertices of V , let A
(j)
i = {v(j) : v ∈

Ai}. Thus Aγ = (A
(0)
0 , A

(1)
0 , . . . , A

(0)
r−1, A

(1)
r−1) is a 2r-partition of the vertices of V γ .

We use an argument from the proof of Theorem 2.1 (2) from [8] and apply it to
non-Boolean predicates.

Proposition 2.5. Let P : [r]2 → {0, 1} and P ′ : [r′]2 → {0, 1} be binary pred-
icates. Suppose that there is a function fP : Partr(V ) → Partr′(V

γ) such that for
any weighted directed graph G on V and for any r-partition A ∈ Partr(V ) it holds



SPARSIFICATION OF BINARY CSPS 5

that

ValG,P (A) = Valγ(G),P ′(fP (A)),

where γ(G) = (V γ , Eγ , wγ) is the bipartite double cover of G. If there is an ε-P ′-
sparsifier of γ(G) of size g(n) then there is an ε-P -sparsifier of G of size g(n).

Proof. Given G = (V,E,w), let γ(G)ε = (V,Eγε , w
γ
ε ) be an ε-P ′-sparsifier (of size

g(n)) of the bipartite double cover γ(G) of G. Define a subgraph Gε = (V,Eε, wε)
of G by Eε = {(u, v) : (u(0), v(1)) ∈ Eγε } and wε(u, v) = wγε (u(0), v(1)). Note that
γ(Gε) = γ(G)ε and Eε ⊆ E.

Then, we have

ValGε,P (A) = Valγ(Gε),P ′(fP (A))

= Valγ(G)ε,P ′(fP (A)) ∈ (1± ε) Valγ(G),P ′(fP (A)) = (1± ε) ValG,P (A).

Hence Gε is also an ε-P -sparsifier of G of size g(n).

We now focus on proving Case (2) of Theorem 2.2. Assume that for any B,C ∈(
D
2

)
, P |B×C is not a singleton. Our strategy is to show that in this case the value of

a CSP(P ) instance under any assignment can be expressed as the value of a corre-
sponding CSP(`-Cut) instance (for some ` ≤ 2|D|) under the same assignment.

For an undirected graph G = (V,E) and a subset U ⊆ V , we denote the vertex-
induced subgraph on U by G[U ] and its edge set by E[U ]. For a possibly disconnected
undirected graph G, we denote the connected component containing a vertex v by
Gv = (V (Gv), E(Gv)). Finally, we denote the degree of vertex v in graph G by
degG(v).

Definition 2.6. Let G = (U tV,E) be an undirected bipartite graph. The bipar-
tite complement G = (U t V,E) of G has the following edge set:

E = {{u, v} : u ∈ U, v ∈ V, {u, v} /∈ E}.

The following property of bipartite graphs will be crucial in the proof of Theo-
rem 2.8.

Proposition 2.7. Let G = (U t V,E) be a bipartite graph with |U | = |V | = r,
r ≥ 2. Assume that for any u, u′ ∈ U and v, v′ ∈ V we have |E[{u, u′, v, v′}]| 6= 1.
Then, for any v ∈ U t V with degG(v) > 0, Gv is a complete bipartite graph with
partition classes {U ∩ V (Gv)} and {V ∩ V (Gv)}.

Proof. For contradiction, assume that there are u ∈ U and v ∈ V such that
{u, v} 6∈ E but u and v belong to the same connected component of G. Choose u
and v with the shortest possible distance between them. Let u = u0, u1, . . . , uk = v
be a shortest path between u and v in G, where k ≥ 3 is odd. We will show that
|E[{u0, u1, uk−1, uk}]| = 3, which contradicts the assumption that

|E[{u0, u1, uk−1, uk}]| 6= 1.

If k = 3 then the claim holds since we assumed that {u0, u1}, {u1, u2}, {u2, u3} ∈
E and {u0, u3} 6∈ E.

Let k ≥ 5. We will be done if we show that {u1, uk−1} ∈ E, as by our as-
sumptions {u0, u1}, {uk−1, uk} ∈ E and {u0, uk} 6∈ E. To this end, note that
{u0, uk−2} ∈ E as otherwise u0 and uk−2 would be a pair of vertices with the re-
quired properties but of distance k − 2, contradicting our choice of u and v. Thus,
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u0 u1

u2 u3

u4 u5

Fig. 1. Illustration of the proof of Proposition 2.7 for k = 5.

{u1, uk−1} ∈ E as otherwise we would have |E[{u0, u1, uk−2, uk−1}]| = 3, which con-
tradicts |E[{u0, u1, uk−2, uk−1}]| 6= 1. (See Figure 1 for an illustration of the case
k = 5.)

Case (2) of Theorem 2.2 is established by the following result.

Theorem 2.8. Let P : D2 → {0, 1} be a binary predicate such that for any
B,C ∈

(
D
2

)
we have that P |B×C is not a singleton. Then, for every 0 < ε < 1 and

every instance I of CSP(P ) there is a sparsifier of I with O(ε−2n) constraints.

Proof. Let I = (V,D,Π, w) be an instance of CSP(P ) with r = |D|. Without loss
of generality, we assume that D = [r]. Let G = GI = (V,E,w) be the corresponding
(weighted directed) graph of I, and let γ(G) = (V γ , Eγ , wγ) be the bipartite double
cover of G. Recall that for an assignment A : V → [r], we denote Ai = A−1(i). Thus,
A = (A0, . . . , Ar−1) forms an r-partition of V .

Our goal is to show the existence of a function fP : Partr(V )→ Part`(V
γ) (for

some fixed ` ≤ 2r) such that

(2.1) ∀A : V → [r], ValG,P (A) = Valγ(G),`-Cut(fP (A)).

Assuming the existence of fP , we can finish the proof as follows. Batson, Spiel-
man, and Srivastava established the existence of a sparsifier of size O(ε−2n) for any
instance of CSP(2-Cut) [3]. By [8, Section 6.2], this implies the existence of a sparsi-
fier of size O(ε−2n) for any instance of CSP(`-Cut). Consequently, by Proposition 2.5
and (2.1), there is a sparsifier of size O(ε−2n) for the instance IG,P = I.

In the proof of Theorem 2.1 (2) in [8], functions fP are given for any binary
Boolean predicate P with support size |P−1(1)| ∈ {0, 2, 4}. In what follows we give a
construction of fP for an arbitrary binary predicate P : [r]2 → {0, 1} with r ≥ 2 from
the statement of the theorem.

Although the bipartite double cover is commonly defined as a directed graph, in
this proof we will consider the undirected bipartite double cover γ(G) of G.5 We also
define an auxiliary graph GP = (V P , EP ), where

V P = {v0, v
′
0, . . . , vr−1, v

′
r−1},

EP = {{vi, v′j} : P (i, j) = 1}.

5We had defined the bipartite double cover as a directed graph. However, here it is easier to deal
with undirected graphs, as since `-Cut is a symmetric predicate, the direction of the edges makes no
difference. Furthermore, notice that by the way the bipartite double cover is constructed, removing
the direction does not turn the graph into a multigraph.
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Let ` be the number of connected components of GP , the bipartite complement
of GP . By definition, ` ≤ |V P | = 2r.

The desired function fP satisfying (2.1) corresponds to a map c : V P → [`] on
the vertices of GP with the following property:

(∗) ∀i, j ∈ [r]

{
{vi, v′j} ∈ EP =⇒ c(vi) 6= c(v′j)

{vi, v′j} /∈ EP =⇒ c(vi) = c(v′j).

We call such maps colourings. Indeed, the colouring c induces, for A, an assign-
ment Aγ : V γ → [`] of the vertices of γ(G) which satisfies

Aγ(u) = c(vA(u)) and Aγ(u′) = c(v′A(u))

and which, in turn, induces a partition {Ui}`−1
i=0 of V γ with Ui = (Aγ)−1(i). We define

fP (A) = (U0, . . . , U`−1). Now for any u, v ∈ V and for any assignment A : V → [r],
we have

P (A(u), A(v)) = 1 ⇐⇒ {vA(u), v
′
A(v)} ∈ E

P

⇐⇒ c(vA(u)) 6= c(v′A(v))

⇐⇒ Aγ(u) 6= Aγ(v′)

⇐⇒ `-Cut(Aγ(u), Aγ(v′)) = 1.

Moreover, by the definition of the bipartite double cover, we have w(u, v) =
wγ(u, v′) for all u, v ∈ V , implying that

ValG,P (A) = ValG,P (A0, . . . , Ar−1) =
∑

(u,v)∈E

w(u, v)P (A(u), A(v))

=
∑

(u,v′)∈Eγ
wγ(u, v′)`-Cut(Aγ(u), Aγ(v′)) = Valγ(G),`-Cut(A

γ)

= Valγ(G),`-Cut(U0, . . . , U`−1) = Valγ(G),`-Cut(fP (A))

as required.
While a colouring does not exist for an arbitrary bipartite graph, we now argue

that a colouring does exist if the auxiliary graph GP arises from a predicate P from
the statement of the theorem. Since for any B,C ∈

(
[r]
2

)
we have |P |B×C

−1
(1)| 6= 1,

GP satisfies the assumptions of Proposition 2.7. Therefore, the ` separate connected
components which form its bipartite complement GP are complete bipartite graphs.
We can assign one of the ` colours to each connected component to get a colouring
for the graph GP . We now show that this colouring satisfies (∗). (See Figure 2 for

an example of GP , GP , and the colouring with ` = 3 satisfying (∗) for a particular
predicate P on a four-element domain.)

Indeed, if {vi, v′j} ∈ EP then {vi, v′j} is not an edge in GP . Hence vi and v′j are

in different connected components of GP and thus vi and v′j are assigned different

colours. Similarly, if {vi, v′j} 6∈ EP then {vi, v′j} is an edge in GP . Hence vi and v′j
are in the same connected component of GP and thus are assigned the same colour.
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GP GP

Fig. 2. An example of GP and GP from the proof of Theorem 2.8. The (vertex) colouring

indicates the bicliques of GP .

3. Conclusion. For simplicity, we have only presented our main result on binary
CSPs over a single domain. However, it is not difficult to extend our result to the
so-called multisorted binary CSPs, in which different variables come with possibly
different domains. We discuss this in the appendix.

We have classified binary CSPs (on finite domains) but much more work seems
required for a full classification of non-binary CSPs. We have made some initial steps.

For any k ≥ 3, the k-ary Boolean “not-all-equal” predicate k-NAE : {0, 1}k →
{0, 1} is defined by k-NAE−1(0) = {(0, . . . , 0), (1, . . . , 1)}. Kogan and Krauthgamer
showed that the k-NAE predicates, which correspond to hypergraph cuts, are sparsi-
fiable [10, Theorem 3.1]. By extending bipartite double covers for graphs in a natural
way to k-partite k-fold covers (in Section A.3) we obtain sparsifiability for the class
of k-ary predicates that can be rewritten in terms of k-NAE. On the other hand, we
identify (in Section A.4) a whole class of predicates that are not sparsifiable, namely
those k-ary predicates that contain a singleton `-cube for some ` ≤ k. However,
most predicates do not fall in either of these two categories; that is, predicates that
cannot be proved sparsifiable via k-partite k-fold covers but also cannot be proved
non-sparsifiable via the current techniques. An example of such predicates are the
“parity” predicates (cf. Section A.5 of the appendix).

Acknowledgements. The authors thank all reviewers of the this paper and the
extended abstract [6].
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We say that an assignment A : V → ∪D∈DD is valid if each variable v ∈ V is
assigned a label that belongs to the intersection of the domains of all the constraint
predicates whose scope contains v. For a vector v ∈ V k and an assignment A : V →
∪D∈DD, we denote by A(v) the entry-wise application of A to v. Given a predicate
P : D(v1)× . . .×D(vk)→ {0, 1}, we say that a constraint π = (v, P ) is satisfied by
an assignment A if P (A(v)) = 1.

The value of an instance I = (V,D,Π, w) under assignment A : V → ∪D∈DD is
given by the total weight of the constraints satisfied by A:

(A.1) ValI(A) =
∑

π=(v,P )∈Π

w(π)P (A(v)).

For 0 < ε < 1, an ε-sparsifier of I = (V,D,Π, w) is a re-weighted subinstance
Iε = (V,D,Πε ⊆ Π, wε) of I such that for all valid assignments A of the variables in
V ,

(A.2) ValIε(A) ∈ (1± ε) ValI(A).

Given an instance I = (V,D,Π, w) ∈ CSP(P ) for a k-ary P , we will call the
corresponding hypergraph of I the weighted directed k-uniform hypergraph HI =
(V,E,w), where E = {v : (v, P ) ∈ Π} and w(v) = w(v, P ). Conversely, given a
weighted directed k-uniform hypergraph H = (V,E,w) and a predicate P : Dk →
{0, 1}, the corresponding CSP(P ) instance is IH,P = (V,D,Π, w), where D = {D},
Π = {(e, P ) : e ∈ E}, and w(e, P ) = w(e). Hence, we can equivalently talk about
instances of CSP(P ) or hypergraphs. Thus, an ε-P -sparsifier of a hypergraph H =
(V,E,w) is a partial subhypergraph6 Hε = (V,Eε ⊆ E,wε) whose corresponding
CSP(P ) instance IHε,P is an ε-sparsifier of the corresponding CSP(P ) instance IH,P

of H.

A.2. Multisorted Binary Predicates. The following result is a multisorted
extension of Theorem 2.2.

Theorem A.2. Let P : D × E → {0, 1} be a binary predicate, where D and E
are finite sets with |D|, |E| ≥ 2. Let 0 < ε < 1.

1. If there exist B ∈
(
D
2

)
and C ∈

(
E
2

)
such that P |B×C is a singleton then there

exists an instance I of CSP(P ) such that every ε-sparsifier of I has Ω(n2)
constraints.

2. Otherwise, for every instance I of CSP(P ) there exists an ε-sparsifier of I
with O(ε−2n) constraints.

An inspection of the proof of Theorem 2.3 reveals that the proof establishes
Case (1) of Theorem A.2. The proof of Theorem A.2 (2) is essentially identical to the
proof of Theorem 2.8. The main difference is that, using the notation from the proof
of Theorem 2.8, the bipartite double cover γ(G) = (V γ , Eγ , wγ) of G may contain
vertices of degree zero. Let Z = {vγ : degγ(G)(v) = 0} be all such vertices. Let
τ(G) = (V τ , Eτ , wτ ) be the subgraph of γ(G) induced by V γ \Z. Then, for any valid
assignment A : V γ → D ∪ E we have

(A.3) Valτ(G),P (A′) = Valγ(G),P (A),

6A partial subhypergraph is obtained by removing hyperedges while keeping the vertex set un-
changed.
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where A′ is the restriction of A to V τ . Working with τ(G) instead of γ(G), the rest
of the proof proceeds identically to the proof of Theorem 2.8, except for applying
Proposition 2.7 to bipartite graphs whose left part is D and the right part is E. This
last step is fine since the proof of Proposition 2.7 is not affected if the given bipartite
graph has parts of different sizes.

Remark A.3. For a fixed set Γ of predicates, we denote by CSP(Γ) the class of
CSP instances in which all constraints use predicates from Γ. Γ is often called a con-
straint language. Filtser and Krauthgamer considered sparsifiability of binary Boolean
CSPs of the from CSP(Γ), i.e., CSPs with multiple binary Boolean predicates [8, Sec-
tion 5]. Under the assumption that no two constraints act on the same list of variables,
any instance I of CSP(Γ) can be partitioned into disjoint CSP instances according to
the predicates in the constraints. By finding a sparsifier for each of these instances,
the union of the sparsifiers yields a sparsifier for I. Thus our main sparsifiability
result (Case (2) of Theorem 2.2 and its multisorted generalisation, Case (2) of Theo-
rem A.2) trivially extends to CSP(Γ) for any Γ that consists of predicates that do not
contain singleton subpredicates.

A.3. Hypergraph Covers. We generalise the notion of the bipartite double
cover for graphs from [5] in a natural way to that of a k-partite k-fold cover for
hypergraphs, as this will be useful in the proof of Theorem A.11. The case of k = 2
in the following definition corresponds to the bipartite double cover.

Definition A.4. For a weighted directed k-uniform hypergraph H = (V,E,w),
the k-partite k-fold cover of H is the weighted directed k-uniform hypergraph γ(H) =
(V γ , Eγ , wγ), where

• V γ = {v(0), v(1), . . . , v(k−1) : v ∈ V };
• Eγ = {(v(0)

1 , . . . , v
(k−1)
k ) : (v1, . . . , vk) ∈ E};

• wγ((v
(0)
1 , . . . , v

(k−1)
k )) = w(v1, . . . , vk).

Given an assignment A : V → [r], we let A = (A0, . . . , Ar−1) be the induced
r-partition of V , where Aj = A−1(j). For a predicate P : [r]k → {0, 1} and an
instance I = (V, [r],Π, w) ∈ CSP(P ), we define ValI(A) = ValI(A). Moreover, for
a weighted directed k-uniform hypergraph H and a k-ary predicate P , we define
ValH,P (A) = ValIH,P (A). We denote the set of all r-partitions of V by Partr(V ).

For any r-partition A = (A0, . . . , Ar−1) of the vertices of V , let A
(j)
i = {v(j) :

v ∈ Ai}. Thus Aγ = (A
(0)
0 , . . . , A

(k−1)
0 , . . . , A

(0)
r−1, . . . , A

(k−1)
r−1 ) is a kr-partition of the

vertices of V γ .
We use an argument from the proof Theorem 2.1 (2) from [8] and apply it to

non-binary, non-Boolean predicates.

Proposition A.5. Let P : [r]k → {0, 1} and P ′ : [r′]k → {0, 1} be k-ary predi-
cates. Suppose that there is a function fP : Partr(V )→ Partr′(V

γ) such that for any
weighted directed k-uniform hypergraph H on V and for any r-partition A ∈ Partr(V )
it holds that

ValH,P (A) = Valγ(H),P ′(fP (A)),

where γ(H) = (V γ , Eγ , wγ) is the k-partite k-fold cover of H. If there is an ε-P ′-
sparsifier of γ(H) of size g(n) then there is an ε-P -sparsifier of H size g(n).

Proof. Given H = (V,E,w), let γ(H)ε = (V,Eγε , w
γ
ε ) be an ε-P ′-sparsifier of

the k-partite k-fold cover γ(H). Define a partial subhypergraph Hε = (V,Eε, wε)

of H by Eε = {(v1, . . . , vk) : (v
(0)
1 , . . . , v

(k−1)
k ) ∈ Eγε } and by wε((v1, . . . , vk)) =
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wγε (v
(0)
1 , . . . , v

(k−1)
k ). Note that γ(Hε) = γ(H)ε and Eε ⊆ E.

Then, we have

ValHε,P (A) = Valγ(Hε),P ′(fP (A))

= Valγ(H)ε,P ′(fP (A)) ∈ (1± ε) Valγ(H),P ′(fP (A)) = (1± ε) ValH,P (A).

Hence Hε is also an ε-P -sparsifier of H of size g(n).

A.4. Non-Sparsifiability and Singleton Predicates. We identify two simple
sufficient conditions for a predicate not to be sparsifiable, namely the singleton `-
cube (Proposition A.7) and the unused label (Proposition A.9). We then use these
conditions to show that singleton predicates are not sparsifiable.

The idea of a singleton `-cube is essentially an `-ary singleton subpredicate with
Boolean domain.

Definition A.6. A k-ary predicate P : Dk → {0, 1} contains a singleton `-
cube for some 2 ≤ ` ≤ k if there exist subdomains {Dj = {dj0, d

j
1}}`j=1 ∈

(
D
2

)
,

indices {nj}`j=1 ∈ {0, 1}, and a permutation σ on {1, 2, . . . , k} such that there exist
x`+1, . . . , xk ∈ D which satisfy

P (σ(d1
n1
, . . . , d`n` , x`+1, . . . , xk)) = 1

and for all y`+1, . . . , yk ∈ D, for all ij ∈ {0, 1},

P (σ(d1
i1 , . . . , d

`
i`
, y`+1, . . . , yk)) = 1 =⇒ ij = nj for all j = 1, . . . , `.

Proposition A.7 (Singleton `-cube).
Let P : Dk → {0, 1} be a k-ary predicate which contains a singleton `-cube. Then,

there exists a weighted directed k-uniform hypergraph H = (V,E,w) with |V | = n such
that for every 0 < ε < 1 and for every partial subhypergraph Hε = (V,Eε, wε) of H
which satisfies (A.2), we have |Eε| = Ω(n`).

Proof. Let {Dj = {dj0, d
j
1}}`j=1 and {nj}`j=1 be as in Definition A.6. Without loss

of generality, assume that σ is the identity permutation.
Let H = (V,E,w) be a weighted directed k-uniform hypergraph on n = kq

vertices with V = V1 t . . . t Vk, |Vi| = q for i = 1, . . . , k, and E = {(u1, . . . , uk) :
ui ∈ Vi}. Notice that |E| = qk. Take an arbitrary hyperedge f = (v1, . . . , vk) ∈ E.
By construction, vj ∈ Vj for all j. Furthermore, pick some x`+1, . . . , xk such that
P (d1

n1
, . . . , d`n` , x`+1, . . . , xk) = 1.

Define the assignment

Af : V → D,


Af (vj) = djnj for j ≤ `,
Af (v) = dj1−nj ∀v ∈ Vj \ {vj} for j ≤ `,
Af (v) = xj ∀v ∈ Vj for `+ 1 ≤ j ≤ k.

Notice that P (Af (u1, . . . , uk)) = 1 ⇐⇒ uj = vj for all j ≤ `. Therefore, at
least one of the qk−` edges whose first ` variables are v1, . . . , v` must belong to Eε
for (A.2) to be satisfied. We repeat the same argument for all q` combinations of
vertices (v1, . . . , v`) ∈ V1 × . . .× V`. Thus |Eε| ≥ q` = Θ(n`), as k is a constant, and
|Eε| = Ω(n`) as required.

Example A.8. Let P : {0, 1}3 → {0, 1} be the ternary Boolean predicate defined
by P−1(1) = {(0, 0, 0), (0, 0, 1)}. Note that P is not a singleton. P contains a sin-
gleton 2-cube (e.g., on the first two coordinates) and thus it is not sparsifiable by
Proposition A.7.



SPARSIFICATION OF BINARY CSPS 13

Our second sufficient condition for not being sparsifiable is the idea of an unused
label. An unused label is an element of the domain which never appears in the tuples
that belong to the predicate’s support set.

Proposition A.9 (Unused label).
Let P : Dk → {0, 1} be a k-ary predicate with P−1(1) 6= ∅. Suppose that there

exists z ∈ D such that, for all x1, . . . , xk−1 ∈ D and for all permutations σ on
{1, 2, . . . , k}, P (σ(x1, . . . , xk−1, z)) = 0. Then, for every weighted directed k-uniform
hypergraph H = (V,E,w), for every 0 < ε < 1, and for every partial subhypergraph
Hε = (V,Eε ⊆ E,wε) of H which satisfies (A.2), we have |Eε| = Ω(|E|).

Proof. Let H = (V,H,w), 0 < ε < 1, and Hε = (V,Eε ⊆ E,wε) be as in the
statement. We will show that |Eε| = Ω(|E|).

Consider some tuple (a1, . . . , ak) ∈ P−1(1). By assumption, z does not appear in
any tuple which belongs to P−1(1) and therefore we must have aj 6= z for all j. Pick
a hyperedge f = (u1, . . . , uk) ∈ E and let U = {u1, . . . , uk}. Define the assignment
A : V → D by A(uj) = aj for j = 1, . . . , k and by A(v) = z for all v ∈ V \ U . Notice
that the aj may not necessarily be all distinct.

For d ∈ D, let δd be the number of times d appears in (a1, . . . , ak). Further define

M =
∏

d∈D,δd 6=0

δd!

There are ME ≤M hyperedges e in E (including (u1, . . . , uk)) such that P (A(e)) = 1.
Call these e1, . . . , eME

. Then

ValH,P (A) =
∑
e∈E

w(e)P (A(e)) =

ME∑
i=1

w(ei) > 0.

Since Hε is an ε-P -sparsifier of H, at least one of e1, . . . , eME
must be in Eε, since

otherwise we would have

ValHε,P (A) =
∑
e∈Eε

wε(e)P (A(e)) = 0 /∈ (1± ε) ValH,P (A).

Noticing that this argument holds for any hyperedge f ∈ E and that M ≤ k!, we have

|Eε| ≥
|E|
ME

≥ |E|
M
≥ |E|

k!
.

Therefore, we have |Eε| ≥ |E|/k! and thus |Eε| = Ω(|E|).
Notice that, if a k-ary predicate P has an unused label, then P contains a singleton

k-cube. For singleton predicates with a very specific support (consisting of the same
label), Proposition A.9 is directly applicable.

Proposition A.10. Let P : Dk → {0, 1} be a k-ary singleton predicate with
|D| ≥ 2 such that P−1(1) = {(a, a, . . . , a)} for some a ∈ D. Then, for every weighted
directed k-uniform hypergraph H = (V,E,w), for every 0 < ε < 1, and for every
partial subhypergraph Hε = (V,Eε ⊆ E,wε) of H which satisfies (A.2), we have
|Eε| = Ω(|E|).

Proof. By assumption, the support set of P is not empty and |D \ {a}| ≥ 1.
Notice that, for any z ∈ D \ {a}, any x1, . . . , xk−1 ∈ D, and any permutation σ on
{1, 2, . . . , k}, we have P (σ(x1, . . . , xk−1, z)) = 0. Thus, z is an unused label and, by
Proposition A.9, the claim follows.
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Since every singleton k-ary predicate P contains a k-cube, by Proposition A.7,
there exists a weighted directed k-uniform hypergraph H = (V,E,w) with |V | = n
such that for every 0 < ε < 1 and for every partial subhypergraph Hε = (V,Eε, wε)
of H which satisfies (A.2), we have |Eε| = Ω(nk). In particular, the k-ary singleton
predicate nOR : Dk → {0, 1} has this property, where nOr is defined by nOr−1(1) =
{(0, 0, . . . , 0)}. We use the concept of k-partite k-fold covers from Appendix A.3 (and
in particular Proposition A.5) to show that if any instance of CSP(P ) has a (small)
sparsifier then so does CSP(nOR), which establishes that singleton predicates cannot
be sparsifiable.

Theorem A.11. Let P : Dk → {0, 1} be a k-ary singleton predicate. If there is
an ε-P -sparsifier of size g(n) then there is an ε-nOr-sparsifier of size O(g(n)).

Proof. Without loss of generality, D = [r] and P−1(1) = {(a1, . . . , ak)}. Let
H = (V,E,w) be a weighted directed k-uniform hypergraph.

We will show the existence of a function fP : Partr(V ) → Partr(V
γ) such that

for any A ∈ Partr(V ) it holds that

ValH,nOr(A) = Valγ(H),P (fP (A)).

The statement of the theorem then follows by Proposition A.5.

Let APj =
⋃k
i=1A

(i−1)
(j−ai) (mod r). Define

fP (A0, . . . , Ar−1) = (AP0 , . . . , A
P
r−1).

Moreover, define an assignment A : V → D by A(v) = j ⇐⇒ v ∈ Aj . By definition,

ValH,nOr(A) = ValH,nOr(A0, . . . , Ar−1).

Define the assignment Aγ : V γ → D by Aγ(v(i)) = j ⇐⇒ v(i) ∈ APj . We have

Valγ(H),P (Aγ) = Valγ(H),P (AP0 , . . . , A
P
r−1) = Valγ(H),P (fP (A0, . . . , Ar−1)).

For a hyperedge e = (v1, . . . , vk) ∈ E, define γ(e) = eγ = (v
(0)
1 , . . . , v

(k−1)
k ). We have

nOr(A(e)) = 1 ⇐⇒ A(v1) = . . . = A(vk) = 0

⇐⇒ (v1, . . . , vk) ∈ A0 × . . .×A0

⇐⇒ γ((v1, . . . , vk)) = (v
(0)
1 , . . . , v

(k−1)
k ) ∈ A(0)

0 × . . .×A
(k−1)
0 .

Now, for i = 1, . . . , k,

A
(i−1)
0 ⊆ APj ⇐⇒ A

(i−1)
0 = A

(i−1)
j−ai (mod r) for some j ∈ [r]

⇐⇒ j = ai (mod r) ⇐⇒ j = ai (since 0 ≤ ai, j < r).

Therefore, assuming that nOr(A(e)) = 1,

A
(i−1)
0 ⊆ APj =⇒ (v

(0)
1 , . . . , v

(k−1)
k ) ∈ APa1 × . . .×A

P
ak

⇐⇒ Aγ(v
(0)
1 , . . . , v

(k−1)
k ) = (a1, . . . , ak)

⇐⇒ P (Aγ(v
(0)
1 , . . . , v

(k−1)
k )) = P (Aγ(γ(v1, . . . , vk)))

= P (Aγ(γ(e))) = 1.
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Therefore, for any e ∈ E,

nOr(A(e)) = 1 ⇐⇒ P (Aγ(γ(e))) = 1

which implies

ValH,nOr(A0, . . . , Ar−1) = ValH,nOr(A) =
∑
e∈E

w(e)nOr(A(e)) =
∑
e∈E

w(e)P (Aγ(γ(e)))

=
∑
e∈E

wγ(γ(e))P (Aγ(γ(e))) =
∑
eγ∈Eγ

wγ(eγ)P (Aγ(eγ))

= Valγ(H),P (Aγ) = Valγ(H),P (fP (A0, . . . , Ar−1)).

A.5. Parity Predicates. The k-ary parity predicate Par : [r]k → {0, 1} is de-
fined by

Par(x1, . . . , xk) = 1 ⇐⇒
k∑
i=1

xi = 0 (mod 2).

It is trivial to show that the parity predicates do not contain an unused label. We
will show that, for any k ≥ 3, the k-ary parity predicate does not contain a singleton
`-cube for any ` ≤ k, yet it cannot be written in terms of a hypergraph cut predicate.

Proposition A.12. For all 2 ≤ ` ≤ k, where k ≥ 3, the k-ary parity predicate
Par does not contain a singleton `-cube.

Proof. By Definition A.6, the containment of a singleton `-cube for some ` ≥ 3
implies the containment of a singleton 2-cube. Thus it suffices to show that Par does
not contain any singleton 2-cube.

Suppose by contradiction that there exist subdomains {Dj = {dj0, d
j
1}}j∈{1,2} ∈(

[r]
2

)
, indices n1, n2 ∈ {0, 1}, and a permutation σ on {1, 2, . . . , k} such that there

exist x3, . . . , xk ∈ [r] which satisfy

Par(σ(d1
n1
, d2
n2
, x3, . . . , xk)) = 1

and for all y3, . . . , yk ∈ [r], for all ij ∈ {0, 1},

(A.4) Par(σ(d1
i1 , d

2
i2 , y3, . . . , yk)) = 1 =⇒ ij = nj for all j = 1, 2.

Case 1: d1
0 − d1

1 = 0 (mod 2).
Then,

d1
n1

+ d2
n2

+

k∑
j=3

xk = d1
1−n1

+ d2
n2

+

k∑
j=3

xk (mod 2)

and hence

Par(σ(d1
1−n1

, d2
n2
, x3, . . . , xk)) = Par(σ(d1

n1
, d2
n2
, x3, . . . , xk)) = 1,

contradicting (A.4).
Case 2: d1

0 − d1
1 = 1 (mod 2).

Then,

d1
n1

+ d2
n2

+

k∑
j=3

xk = d1
1−n1

+ d2
n2

+ (x3 + 1) +

k∑
j=4

xk (mod 2)



16 SILVIA BUTTI AND STANISLAV ŽIVNÝ

and hence

Par(σ(d1
1−n1

, d2
n2
, x3 + 1 (mod 2), x4, . . . , xk)) = Par(σ(d1

n1
, d2
n2
, x3, . . . , xk)) = 1,

again contradicting (A.4).

Proposition A.13. Let Par : [r]k → {0, 1} be the k-ary parity predicate, where
k ≥ 3. Then, for all weighted directed k-uniform hypergraphs H = (V,E,w) with
|V | ≥ rk, for all r′ ≥ 2, and for all functions f : Partr(V ) → Partr′(V

γ), there
exists a partition of the vertices A ∈ Partr(V ) such that

ValH,Par(A) 6= Valγ(H),r′-NAE(f(A)),

where γ(H) is the k-partite k-fold cover of H.

Proof. We proceed by contradiction. Suppose that there exist a weighted directed
k-uniform hypergraph H = (V,E,w) with |V | ≥ rk, an integer r′ ≥ 2, and a function
fPar : Partr(V )→ Partr′(V

γ) such that for all partitions A ∈ Partr(V ) we have

(A.5) ValH,Par(A) = Valγ(H),r′-NAE(f(A)).

Let A : V → [r] be any assignment with the induced r-partition A = (A0, . . . , Ar−1) ∈
Partr(V ) such that |Ai| ≥ k for all i ∈ [r]. Denote fPar(A) = (U0, . . . , Ur′−1). Define
an assignment AfPar(A) : V γ → [r′] such that, for all i ∈ [r′] and for all j ∈ [k],

AfPar(A)(v
(j)) = i ⇐⇒ A

(j)
A(v) ⊆ Ui.

First of all, we need to show that the assignment AfPar(A) is well-defined. Notice

that for all i ∈ [r], for all j ∈ [k], for all u(j), v(j) ∈ A(j)
i and for all ` ∈ [r′] we must

have {u(j), v(j)}∩U` ∈ {∅, {u(j), v(j)}}. For suppose by contradiction that there exist

i ∈ [r], j ∈ [k], and u(j), v(j) ∈ A(j)
i such that u(j) ∈ U`u and v(j) ∈ U`v with `u 6= `v.

Assume without loss of generality that j = 0. Then, for all v2, . . . , vk ∈ V and for
Ai ∈ A ∈ Partr(V ), we would have

Par(A(u, v2 . . . , vk)) = Par(A(u), A(v2), . . . , A(vk)) = Par(i, A(v2), . . . , A(vk))

= Par(A(v), A(v2), . . . , A(vk)) = Par(A(v, v2, . . . , vk))

and hence

r′-NAE(AfPar(A)(u
(0), v

(1)
2 , . . . , v

(k−1)
k )) = Par(A(u, v2, . . . , vk)) = Par(A(v, v2, . . . , vk))

= r′-NAE(AfPar(A)(v
(0), v

(1)
2 , . . . , v

(k−1)
k )).

Now pick v2, . . . , vk such that Par(A(u, v2, . . . , vk)) = 0. Then,

r′-NAE(AfPar(A)(u
(0), v

(1)
2 , . . . , v

(k−1)
k )) = Par(A(u, v2, . . . , vk)) = 0

=⇒ v
(1)
2 , . . . , v

(k−1)
k ∈ U`u(A.6)

and

r′-NAE(AfPar(A)(v
(0), v

(1)
2 , . . . , v

(k−1)
k )) = Par(A(v, v2, . . . , vk))

= Par(A(u, v2, . . . , vk)) = 0

=⇒ v
(1)
2 , . . . , v

(k−1)
k ∈ U`v .(A.7)
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Putting (A.6) and (A.7) together we get

v
(1)
2 , . . . , v

(k−1)
k ∈ U`u ∩ U`v =⇒ U`u ∩ U`v 6= ∅

=⇒ `u = `v

contradicting our initial assumption that `u 6= `v. So for all j ∈ [k], for all u(j), v(j) ∈
A

(j)
i and for all ` ∈ [r′] we have {u(j), v(j)} ∩ U` ∈ {∅, {u(j), v(j)}} and hence AfPar(A)

is well-defined.
Now we want to consider vertices which belong to sets Ai of different parity.

Without loss of generality, pick k vertices u1, . . . , uk ∈ A0 and 3 vertices v1, v2, v3 ∈
A1. Then we have

Par(A(v1, u2, . . . , uk)) = Par(1, 0, . . . , 0) = 0

since A(v1) +

k∑
j=2

A(uj) = 1 (mod 2)

and

Par(A(v1, v2, v3, u4, . . . , uk)) = Par(1, 1, 1, 0, . . . , 0) = 0

since A(v1) +A(v2) +A(v3) +

k∑
j=4

A(uj) = 3 = 1 (mod 2).

Then, by (A.5) we must have

r′-NAE(AfPar(A)(v
(0)
1 , u

(1)
2 , . . . , u

(k−1)
k )) = 0

and
r′-NAE(AfPar(A)(v

(0)
1 , v

(1)
2 , v

(2)
3 , u

(3)
4 , . . . , u

(k−1)
k )) = 0

respectively.
By the definition of r′-NAE, this implies that there exist x, y ∈ [r′] such that, for

X = A
(0)
1 tA

(1)
0 tA

(2)
0 t . . . tA

(k−1)
0

and
Y = A

(0)
1 tA

(1)
1 tA

(2)
1 tA

(3)
0 tA

(4)
0 t . . . tA

(k−1)
0

we have
X ∩ Ux = X and Y ∩ Uy = Y,

that is, hyperedges whose vertices lie wholly in X or wholly in Y do not contribute
to the cut. But then,

A
(0)
1 ⊆ (X ∩ Y ) ⊆ Ux ∩ Uy

which implies Ux ∩ Uy 6= ∅ and hence x = y. It follows that

A
(0)
1 tA

(1)
1 tA

(2)
0 tA

(3)
0 t . . . tA

(k−1)
0 ⊆ X ∪ Y ⊆ Ux

and hence
r′-NAE(AfPar(A)(v

(0)
1 , v

(1)
2 , u

(2)
3 , u

(3)
4 , . . . , u

(k−1)
k )) = 0
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implying, by (A.5), that

Par(A(v1, v2, u3, u4, . . . , uk)) = Par(1, 1, 0, 0, . . . , 0) = 0,

a contradiction since

A(v1) +A(v2) +

k∑
j=3

A(uj) = 2 = 0 (mod 2).

Therefore, such a map fPar cannot exist.
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