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1 INTRODUCTION
The Constraint Satisfaction Problem (CSP) is a well-known framework for expressing a wide range

of both theoretical and real-life combinatorial problems [15, 27, 30]. Some examples are satisfiabil-

ity [35], evaluation of conjunctive queries [10, 28], graph colourings [25] and homomorphisms [26].

An instance of the CSP is a set of variables, a domain of values and a set of constraints; each
constraint is a relation applied to a subset of the variables called the constraint scope. Given a

CSP instance, the goal is to decide whether one can assign a value to each variable so that all

constraints are satisfied; that is, whether for every constraint, the assignment restricted to the

constraint scope belongs to the constraint relation. Due to its expressivity, it is not surprising

that the CSP is NP-complete in general. This has motivated a long line of research aiming to find

tractable restrictions of the problem, sometimes called islands of tractability. The focus of this paper
is on the so-called structural restrictions, which restricts the ways in which the constraints overlap

and intersect each other.
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A standard way of analysing structural restrictions is via the underlying hypergraph of a CSP

instance. The vertex set of this hypergraph is the set of variables X of the instance and the edges

correspond to the scopes of the constraints: each constraint whose scope is a subset S ⊆ X yields

the edge S . Given a class H of hypergraphs, we define the problem CSP(H ,−) as the restriction of

the CSP to instances whose underlying hypergraphs lie inH . Then the goal is to understand for

which classesH the problem CSP(H ,−) is tractable, and for which classes H it is not.

The situation of CSP instances of bounded arity (i.e., the maximum edge size in the class H is a

constant) is by now well-understood. In this setting, it follows from [18] and [22] (see also [24])

that CSP(H ,−) is tractable if and only ifH has bounded treewidth (under the complexity theoretical

assumption that FPT ,W[1]). On the other hand, the case of unbounded arity, that is, arbitrary
classesH of hypergraphs, is more delicate. Unlike the bounded-arity case, the complexity of the

problem heavily depends on how the constraints in a CSP instance are represented [11]. We focus

on one of the most natural and well-studied representation of constraints, namely the positive
representation, where each constraint is represented by the list of tuples satisfying the constraint.

Bounded treewidth is not the right answer for tractability in the case of unbounded arity, as one

can easily find classes H of hypergraphs of unbounded treewidth such that CSP(H ,−) is tractable.
One of the first such classes are the acyclic hypergraphs [2, 3, 40] (also called α-acyclic [14]). This
tractability result has been extended to more general classes such as hypergraphs of bounded

hypertreewidth [20] and bounded fractional hypertreewidth [23]. The latter is the most general

natural hypergraph property known to be tractable, although the precise borderline of polynomial-

time solvability is still unknown (and cannot coincide with bounded fractional hypertreewidth;

see [29] for a brief discussion on that topic). However, as shown in [29], the classesH for which

CSP(H ,−) becomes fixed-parameter tractable (parameterised by the size of the hypergraph) are

precisely those of bounded submodular width, which are more general than classes of hypergraphs

of bounded fractional hypertreewidth.

In this paper we study the problem Max-CSP
1
, which is a well-known generalisation of CSPs for

expressing optimisation problems. Now each constraint is of the form f (x), where |x| = r and f
is an r -ary (finite-valued) function f : Dr → Q≥0 (we assume that f is given as the set of pairs

{(d, f (d)) : d ∈ Dr , f (d) > 0}, which corresponds to the positive representation). Given a set of

variables X = {x1, . . . , xn}, a domain D of values and a set C of (finite-valued) constraints, the goal

is to compute the maximum value of f (x1, . . . , xn) =
∑

fc (x)∈C fc (x), over all possible assignments

of values to X .

In the case of bounded arity, tractability of Max-CSP(H ,−) is also characterised by bounded

treewidth, which follows directly from the CSP case. However, the complexity of unbounded-arity

Max-CSPs under structural restrictions is poorly understood and the techniques used in the CSP

context cannot be easily applied. Indeed, Max-CSP(H ,−) is hard even for classesH of α-acyclic
hypergraphs [19]. Moreover, unlike the CSP case, there is no known maximal hypergraph property

that leads to tractability. The two most general hypergraph properties known to ensure tractability

1
A usual definition of a Max-CSP instance is a CSP instance with the goal to maximise the number of satisfied constraints.

As we explain in Section 2.2, we actually consider a more general framework, sometimes called finite-valued CSPs [38] or

Max-CSPs with payoff functions [31]. Since our main result is a tractability result, this makes it only stronger.
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of Max-CSP(H ,−) are β-acyclicity2 [4], introduced in [14], and having bounded (incidence) MIM-
width3 [34, 39]. These properties are incomparable [4] and lead to very different algorithms. The

main goal of this paper is to provide a common explanation for these two tractable properties, and

in particular, for all known tractable hypergraph properties for Max-CSPs. We believe that such a

unified explanation is a necessary first step to a better understanding of the tractable structural

restrictions of Max-CSPs, and ultimately, to a precise characterisation of the tractability frontier.

1.1 Contributions
As our main contribution, we introduce the notions of point decomposition and point-width that unify
β-acyclicity and bounded MIM-width. We show that Max-CSPs (with positive representation) are

tractable for hypergraphs of bounded point-width, provided a point decomposition of polynomial

size and bounded width is also part of the input (Theorem 4.9). Our tractability result explains the

tractability of β-acyclic and bounded MIM-width hypergraphs. In particular, we prove that every

β-acyclic hypergraph has a point decomposition of width 1 and polynomial size (Theorem 5.5),

which can be computed in polynomial time. In the case of MIM-width, we obtain a stronger

result that may be of independent interest: having bounded MIM-width is equivalent to having

bounded flat point-width (Theorem 6.3), where the latter is defined via a syntactic restriction of

point decompositions. Finally, we also discuss some related notions such as β-hypertreewidth [21]

(Section 7).

The high-level idea behind our new notion of width is that a point decomposition of width k ≥ 1

for a hypergraph H provides a mechanism to encode several tree decompositions of hypertreewidth

at most k in a compact and controlled way. In particular, a point decomposition will be expressive

enough to encode one such a tree decomposition for each subhypergraph of H . Interestingly, the

underlying trees of all these tree decompositions can be very different from each other, as long as

they respect the “template” tree T given by the point decomposition. For flat point decompositions,

which capture MIM-width, these underlying trees need to be subtrees of the template T , and then

they are more similar to each other. The full details of point decompositions and their flat variant

are given in Sections 3 and 6, respectively.

The algorithm behind our main tractability result (Theorem 4.9) uses a form of dynamic pro-

gramming over the point decomposition where in each step we need to solve an instance of the

weighted maximum independent set problem in chordal graphs (which is known to be tractable and

in fact solvable in linear time [17], see also [37]). We can think of this procedure as doing dynamic

programming simultaneously over all the tree decompositions of the subhypergraphs of H encoded

in the point decomposition.

1.2 Related work
It is also possible to parameterise CSPs and Max-CSPs by a class of admissible underlying structures,
instead of hypergraphs, which offers a more fine-grained analysis. In the case of CSPs of bounded

arity, a complete classification of the tractable cases in terms of the underlying relational structures

follows from [12] and [22]. Recently, a similar classification has been obtained for (finite-valued)

Max-CSPs in terms of the underlying valued structures [8].

2
In fact, the authors in [4] consider a more general framework called the CSP with default values, and focus on counting

solutions. However, they briefly discuss how to adapt the results to the maximisation version.

3
The results for MIM-width in [34, 39] apply to Max-SAT (and #SAT), but can be adapted to Max-CSPs. Let us also remark

that in [34, 39] a more general notion than that of bounded MIM-width, namely having polynomial PS-width, is shown to

be tractable for Max-SAT and #SAT. This notion is however not purely structural, as it depends on the entire input instance

and not just its hypergraph.
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Another important type of restrictions (and perhaps the most studied one) are the non-uniform
restrictions, where the constraint relations (or functions) are restricted to be fixed. In this case, the

situation is fairly clear and now, after two decades of intense research, complete classifications

have been obtained for CSPs [5, 41], and (finite-valued) Max-CSPs [38].

1.3 Structure
The paper is organised as follows. Section 2 introduces the necessary notation on hypergraphs and

Max-CSPs. Section 3 defines point decompositions and point-width. The main tractability result is

given in Section 4. Sections 5 and 6 show that β-acyclicity and bounded MIM-width are special

cases of bounded point-width, respectively. We conclude in Section 7.

2 PRELIMINARIES
2.1 Hypergraphs, points and covers
We assume that the reader is familiar with elementary graph theory and refer to Diestel’s textbook

for more details [13]. Given a graphG , we useV (G) and E(G) to denote its sets of vertices and edges,
respectively. The subgraph of a graph G induced by a set X ⊆ V (G), denoted by G[X ], has vertex

set X and edge set {{u,v} ∈ E(G) : u,v ∈ X }. We use the same notation for directed graphs.

Hypergraphs. A (finite) hypergraph is a finite set of non-empty finite sets called edges. The set of
vertices of a hypergraphH , denoted byV (H ), is the union of all its edges. Note that in this definition,

every vertex of a hypergraph belongs to at least one edge. A subhypergraph of a hypergraph H is a

subset of H . We use S(H ) to denote the set of all vertex sets of subhypergraphs of H .

Points. A point of a hypergraph H is a pair (v, e) with e ∈ H and v ∈ e . We use P(H ) to denote

the set of all points of H . Given P ⊆ P(H ) and e ∈ H , the restriction of e to P , denoted by e |P , is the
set {v ∈ e : (v, e) ∈ P}. By extension the restriction of H to P , denoted by H |P , is the hypergraph

{e |P : e ∈ H , e |P , ∅}. If H ′
is a subhypergraph of H and P ⊆ P(H ), we use the notation H ′ |P as a

shorthand for H ′ |P∩P (H ′).

Covers. An edge cover of a hypergraph H is a subhypergraph C of H such that V (C) = V (H ). The

cover number of H , denoted by cn(H ), is the smallest cardinality of an edge cover of H . We denote

by β-cn(H ) the maximum of cn(H ′) over all subhypergraphs H ′
of H .

2.2 Max-CSP
A finite-valued function of arity r = ar(f ) over a domain D is a mapping f : Dr → Q≥0. A

finite-valued constraint over a set X of variables is an expression of the form f (x), where f is a

finite-valued function and x ∈ X ar(f )
. The set of variables appearing in x is called the scope of the

constraint f (x). An instance I of the Max-CSP problem is a finite set X = {x1, . . . , xn} of variables,
a finite domain D of values, and an objective function of the form

fI (x1, . . . , xn) =

q∑
i=1

fi (xi)

where each fi (xi), 1 ≤ i ≤ q is a finite-valued constraint. The goal is to compute the maximum value

of fI over all possible assignments to X , which we denote by opt(I ). In this paper we assume that

each function fi , 1 ≤ i ≤ q is given in the input as the table of all pairs (d, fi (d)) where d ∈ Dar(fi )

and fi (d) > 0 (the so-called positive representation). It follows that the total size ∥I ∥ of a Max-CSP
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Fig. 1. The hypergraph H and its point decomposition from Examples 3.1–5.2.

instance I is roughly
q∑
i=1

(
ar(fi ) log(|X |) +

∑
d∈Dar(fi )

fi (d)>0

(ar(fi ) log(|D |) + |enc(fi (d))|)
)

where enc(·) is a reasonable encoding for rational numbers.

Actually, Max-CSPs are commonly defined with only {0, 1}-valued functions, or with {0,w}-

valued functions, wherew could be different in different functions; the latter are called weighted

Max-CSPs. What we defined as Max-CSPs is a more general framework, sometimes called finite-
valued CSPs [38] or Max-CSPs with payoff functions [31].

The hypergraph of a Max-CSP instance is the set of scopes of its constraints. Without loss of

generality, we will always assume that no two constraints share the same scope and for every

constraint fi (xi), the entries of xi are pairwise distinct. In particular, there is a bijection between

the constraints of a Max-CSP instance and the edges of its hypergraph. Given a family H of

hypergraphs, we denote by Max-CSP(H ,−) the restriction of Max-CSP to the instances whose

hypergraph belongs to H .

3 POINT DECOMPOSITIONS AND POINT-WIDTH
Let H be a hypergraph. Let T = (T , (Bt )t ∈V (T )) be a pair such thatT is a rooted tree and Bt ⊆ P(H )

is a set of points, for every t ∈ V (T ). For t ∈ V (T ), we call the set Bt the bag of t and the pairs

(t, S) with S ∈ S(H |Bt ) the sub-bags of t . We denote by <T the strict partial order on V (T ) such
that t1 <T t2 if and only if t1 is a descendant of t2 in T . A T -structure is a directed graph A whose

vertex set is the set of all sub-bags ofV (T ) and such that for every arc ((t1, S1), (t2, S2)) inAwe have

t1 <T t2.

Example 3.1. Consider the hypergraph H = {e, e1, e2, e3}, where e = {x0, x1, x2, x3} and ei =
{x0, xi }, for every i ∈ {1, 2, 3}; see Figure 1 on the left. In particular,V (H ) = {x0, x1, x2, x3}. The right-
hand side of Figure 1 depicts a pair T = (T , (Bt )t ∈V (T )), where T is a path (depicted by bold arcs

4
)

rooted at t0, and the points in each bag Bt are listed below each node. The sub-bags of each node ofT

4
We view the tree T as undirected although there is an implicit direction by the parent/child relationship. For clarity, in

Figure 1, we directed the (bold) edges of the tree T away from the root, which is t0.
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are depicted within the node. For instance, for the node t4 we haveH |Bt
4

= {{x1, x0}, {x1, x2, x0, x3}}.
Hence the sub-bags of t4 are (t4, ∅), (t4, {x1, x0}) and (t4, {x1, x2, x0, x3}). The arcs between sub-bags

represent a possible T -structure A.

Definition 3.2 (Decomposability). Let A be a T -structure for a pair T = (T , (Bt )t ∈V (T )). We say

that A is decomposable if for any two arcs (s1, s), (s2, s) in A, if

(i) s1, s2 are sub-bags of different vertices of V (T ), and
(ii) there exist two sub-bags s ′

1
, s ′

2
(not necessarily distinct) of the same vertex t ∈ V (T ), and

directed paths in A from s ′
1
to s1, and from s ′

2
to s2

then either (s1, s2) ∈ E(A) or (s2, s1) ∈ E(A).

Observe that if A is not decomposable due to arcs (s1, s), (s2, s), where s1, s2 are sub-bags of

t1, t2 ∈ V (T ), respectively, then either t1 <T t2 or t2 <T t1 must hold (otherwise, condition (ii) would

fail). Let say that t1 <T t2. Note that it could be possible that t = t1, in which case, the directed path

from s ′
1
to s1 is simply the empty path, i.e., s ′

1
= s1. If additionally, s

′
2
= s1, we obtain the simplest

case of non-decomposability, in which there is a directed path inA from s1 to s2 (and (s1, s2) < E(A)).

Example 3.3. The T -structure A from Example 3.1 and Figure 1 is decomposable. Consider for

instance the arcs (s1, s) and (s2, s) with s = (t2, {x0, x3}), s1 = (t4, {x1, x0}) and s2 = (t3, {x2, x0, x3}).
We have that s1 and s2 are sub-bags of different vertices of T , and condition (ii) of decomposability

holds if we take s ′
1
= s1 and s

′
2
= (t4, {x0, x1, x2, x3}). In this case decomposability requires that at

least one of (s1, s2) or (s2, s1) is an arc of A, which is true for (s1, s2).

The intuition behind decomposability is as follows. Suppose we have a sub-bag s in the T -

structure and two incoming arcs (s1, s), (s2, s) in A, where s1, s2 are sub-bags of distinct vertices
t1, t2 ∈ V (T ). Let Ts1 be the set of nodes of V (T ) that can “reach” s1, i.e., that contain a sub-bag

s ′
1
from which s1 is reachable in A. Similarly, we define Ts2 . Then decomposability means that

whenever s1 and s2 are “incomparable” with respect to A (i.e., neither (s1, s2) nor (s2, s1) is an arc),

then Ts1 and Ts2 must be disjoint.

Definition 3.4 (Realisations). Let A be a T -structure for a pair T = (T , (Bt )t ∈V (T )). A realisation
of A is a subgraph A′

of A induced by a subset X ⊆ V (A) such that

(i) X contains at most one sub-bag of each t ∈ V (T ), and
(ii) A′

has exactly one sink, which must be a sub-bag of the root of T .

For any realisation A′
of a T -structure A, we define TA′ as the rooted tree whose vertex set is

V (TA′) = {t ∈ V (T ) : ∃ a sub-bag (t, S) ∈ V (A′)},

and whose edges are defined as follows. Suppose t1, t2 ∈ V (TA′) due to sub-bags (t1, S1), (t2, S2) ∈
V (A′), respectively. Then t2 is the parent of t1, i.e., (t1, t2) ∈ E(TA′), if t2 is the least vertex with

respect to <T of the set

{t ∈ V (T ) : ∃(t, S) ∈ V (A′) and ((t1, S1), (t, S)) ∈ E(A′)}.

Example 3.5. For the T -structure A in Figure 1, consider the subgraph A1 of A induced by

the sub-bags (t4, {x1, x0}), (t3, {x2, x0, x3}), (t2, {x0, x3}), (t1, {x3}) and (t0, ∅). We have that A1 is a

realisation as the only sink is (t0, ∅). Note that if we remove from A1 the sub-bag (t1, {x3}) then we

obtain a subgraph that is not a realisation as now (t2, {x0, x3}) becomes a sink. Observe also that

TA1
is precisely T . Another possible realisation is the subgraph A2 of A induced by the sub-bags

(t4, {x1, x0}), (t3, {x2, x0}), (t2, {x0}) and (t0, ∅). In this case,TA2
is the tree with vertices {t0, t2, t3, t4}

and edges (t2, t0), (t3, t2) and (t4, t2).
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For a T -structureA and a subhypergraphH ′
ofH , we denote byA[H ′] the subgraph ofA induced

by the set {(t,V (H ′ |Bt )) : t ∈ V (T )}. We denote by A[H ′]∅ the directed graph obtained from A[H ′]

after removing every connected componentC inA[H ′] that satisfies the following: for every sub-bag

(t, S) ∈ C , we have that t is not the root of T and S = ∅. In other words, A[H ′]∅ contains precisely

the connected components of A[H ′] that contain a sub-bag of the root of T or a sub-bag (t, S) with
S , ∅.

Example 3.6. The subgraph A2 of A from Example 3.5 is precisely A[H ′]∅, where H
′ = {e1, e2}.

Note that (t1, ∅) needs to be removed from A[H ′] in order to obtain A[H ′]∅. While A[H ′]∅ is a

realisation, A[H ′] is not, as (t1, ∅) is a sink.

Definition 3.7 (Point decomposition). A point decomposition of a hypergraph H is a triple

(T , (Bt )t ∈V (T ),A)

whereT is a rooted tree, each set Bt ⊆ P(H ) is a set of points ofH ,A is a decomposable T -structure,

where T = (T , (Bt )t ∈V (T )), and

(i) For every edge e ∈ H , there exists t ∈ V (T ) such that P({e}) = {(v, e) : v ∈ e} ⊆ Bt .
(ii) For every subhypergraph H ′

of H , the subgraph A[H ′]∅ of A is a realisation.

(iii) For every realisation A′
of A and v ∈ ∪(t ,S )∈V (A′)S , the set

{t ∈ V (TA′) : ∃(t, S) ∈ V (A′) and v ∈ S}

induces a connected subtree of TA′ .

A point decomposition is flat if every arc in A is between sub-bags of nodes adjacent in T . The
width of a point decomposition (T , (Bt )t ∈V (T ),A) of a hypergraph H is maxt ∈V (T ) β-cn(H |Bt ), the

point-width of H , denoted by pw(H ), is the minimum width over all its point decompositions,

and the flat point-width of H , denoted by fpw(H ), is the minimum width over all its flat point

decompositions.

Throughout the paper we assume a straightforward encoding for point decompositions, where

each bag is given as a list of points, the tree T is given as a rooted graph whose vertex set is the

set of all bags, and the T -structure A is given as a directed graph whose vertex set is the set of

all sub-bags. We denote by ∥P ∥ the encoding size of a point decomposition P . We remark that

checking whether a triple (T , (Bt )t ∈V (T ),A) is a point decomposition may be a difficult task due

to conditions (ii) and (iii). Whether it can be done in polynomial time is an interesting question,

which we leave for future work.

Example 3.8. Figure 1 shows a point decomposition of the hypergraph H to the left. Note that

β-cn(H |Bti ) = 1, for 1 ≤ i ≤ 4, and then the width of the decomposition is 1. Hence pw(H ) = 1.

Note that the decomposition is not flat.

As mentioned in the introduction, the intuition is that a T -structure A in a point decomposition

of width k encodes various tree decompositions of hypertreewidth at most k (cf. Appendix A for

a precise definition of tree decomposition and hypertreewidth), and in particular, one for each

subhypergraph H ′
of H . Such a tree decomposition for H ′

is given by the tree TA[H ′]∅ and the bags

correspond to the sub-bags in A[H ′]∅.

Finally, let us remark that once we know the T -structure of a point decomposition, the particular

form of the tree T is irrelevant. Indeed, we can always assume that T is a path: if it is not the case,

we can extend <T to a total order <tot on V (T ), which is precisely <T ′ for a certain path T ′
, and

then replace T by T ′
in the point decomposition. However, in the case of flat point decompositions

this is not true. Hence, in general, we shall not impose any assumption on the tree T .
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4 THE ALGORITHM
In this section we describe a polynomial-time algorithm for solving Max-CSPs when the input

instance is paired with a point decomposition of bounded width of its hypergraph. We start with a

number of simple definitions and observations before proving the main result in Theorem 4.9.

Definition 4.1 (Partial realisations). Let H be a hypergraph and (T , (Bt )t ∈V (T ),A) be a point

decomposition of H . A partial realisation of A is a subgraph A′
of A induced by a subset X ⊆ V (A)

such that (i) X contains at most one sub-bag of each t ∈ V (T ), (ii) A′
has exactly one sink s and (iii)

there is a (possibly empty) directed path in A from s to a sub-bag of the root of T .

The rooted tree TA′ of a partial realisation A′
is defined the same way as for realisations:

its vertex set is the set of all t ∈ V (T ) with at least one sub-bag in V (A′), and the parent of

t1 ∈ V (TA′) with (t1, S1) ∈ V (A′) is the least vertex with respect to <T in the set {t ∈ V (T ) :

∃(t, S) ∈ V (A′) and ((t1, S1), (t, S)) ∈ E(A′)}. The next observation is a minor extension of condition

(iii) of point decompositions to partial realisations.

Observation 4.2. Let H be a hypergraph, (T , (Bt )t ∈V (T ),A) be a point decomposition of H , A′ be a
partial realisation of A and v ∈ ∪(t ,S )∈V (A′)S . Then, the set

{t ∈ V (TA′) : ∃(t, S) ∈ V (A′) and v ∈ S}

induces a connected subtree of TA′ .

Proof. Let s be the unique sink of A′
. If s is a sub-bag of the root of T then A′

is a realisation

and the claim follows from condition (iii) of point decompositions. Otherwise, let (s, s1, . . . , sn)
be a directed path in A from s to a sub-bag sn of the root of T . The subgraph A∗

of A induced

by V (A′) ∪ {s1, . . . , sn} is a realisation and TA′ is precisely the subtree of TA∗ rooted at s , so the

observation follows. □

Definition 4.3 (Guards). Let H be a hypergraph, (T , (Bt )t ∈V (T ),A) be a point decomposition of H
and (t, S) be a sub-bag of t ∈ V (T ). A guard of (t, S) is an inclusion-minimal subhypergraph H ′

of

H such that V (H ′ |Bt ) = S .

Given aMax-CSP instance I with hypergraphH and e ∈ H , wewill use fe (xe) to denote the unique
constraint with scope e . (As usual X and D denote the variables and the domain of I , respectively.)
Given a constraint fe (xe) with e ∈ H , its support is the relation Re := {d ∈ D |e |

: fe (d) > 0}.

Without ambiguity we will sometimes treat Re as a set of assignments to e . As usual, for an
assignment ψ with domain Y and a subset Y ′ ⊆ Y , we denote by ψ |Y ′ the restriction of ψ to Y ′

.

Similarly, for a set R of assignments over Y , we denote by R |Y ′ the set {ψ |Y ′ : ψ ∈ R}. Ifψ : X ′ → D
is an assignment to X ′ ⊆ X , we define val(ψ ) =

∑
e ∈H :e⊆X ′ fe (ψ (xe)) and callψ a partial assignment

to X . In particular, for any partial assignmentψ to X , we have that val(ψ ) ≤ opt(I ).
Given a partial assignmentψ : X ′ → D, we say thatψ satisfies an edge e ∈ H ifψ |X ′∩e ∈ Re |X ′∩e ,

and satisfies a subhypergraph if it satisfies all of its edges. Note thatψ can satisfy edges that are

not completely contained in X ′
. For 1 ≤ i ≤ n, with n ≥ 2, let Ri be a set of partial assignments

from Xi ⊆ X to D. The join of R1, . . . ,Rn is the set of all partial assignments ψ :

⋃n
i=1Xi → D

such that ψ |Xi ∈ Ri , for every 1 ≤ i ≤ n. Observe that a partial assignment ψ : X ′ → D satisfies

a subhypergraph H ′ ⊆ H if and only if ψ restricted to

⋃
e ∈H ′(X ′ ∩ e) belongs to the join of

{Re |X ′∩e }e ∈H ′ .

Definition 4.4 (Consistent assignments). Let H be the hypergraph of a Max-CSP instance and

(T , (Bt )t ∈V (T ),A) be a point decomposition of H . If s = (t, S) is a sub-bag of t ∈ V (T ), an s-valid
assignment is an assignment ψ : S → D such that ψ satisfies some guard C of s . A consistent
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assignment to a partial realisation A′
of A is a function ϕ that maps every sub-bag s = (t, S) ∈ V (A′)

to an s-valid assignment such that for any two sub-bags (t1, S1), (t2, S2) with t1, t2 adjacent in TA′ ,

ϕ((t1, S1))|S1∩S2 = ϕ((t2, S2))|S1∩S2 .

The following is a direct consequence from Observation 4.2.

Observation 4.5. Let H be the hypergraph of a Max-CSP instance, (T , (Bt )t ∈V (T ),A) be a point
decomposition of H , ϕ be a consistent assignment to some partial realisation A′ of A and X ′

:=

∪(t ,S )∈V (A′)S . Then, there exists an assignment ψ : X ′ → D such that for every s = (t, S) ∈ V (A′),
ϕ(s) = ψ |S .

Definition 4.6. Let H be the hypergraph of a Max-CSP instance, (T , (Bt )t ∈V (T ),A) be a point

decomposition of H , ϕ be a consistent assignment to a partial realisation A′
of A and ψ be as in

Observation 4.5. The value of (ϕ,A′) is the quantity

val(ϕ,A′) :=
∑

e ∈H :∃(t ,S )∈V (A′), e⊆S

fe (ψ (xe)).

The general idea behind the algorithm is to traverse the tree T of the point decomposition

bottom-up, keeping track for each sub-bag s and s-valid assignmentψ of the best value achievable

by a partial realisation A′
with sink s and consistent assignment to A′

that agrees withψ on s . The
fact that A is decomposable ensures that joining multiple partial realisations to a common sink

always produces a partial realisation, as long as their initial sinks form an independent set in a

certain (easily computable) chordal graph. This property enables a dynamic programming approach.

It will follow from conditions (i), (ii) and (iii) in the definition of point decompositions that the

maximum of the values computed by this algorithm at the root of T is, in fact, the optimum of the

Max-CSP instance.

Proposition 4.7. Let I be a Max-CSP instance with hypergraph H and (T , (Bt )t ∈V (T ),A) be a point
decomposition ofH . The maximum of val(ϕ,A′) over all realisationsA′ ofA and consistent assignments
ϕ to A′ is exactly opt(I ).

Proof. LetM be the maximum of val(ϕ,A′) over all realisations A′
of A and consistent assign-

ments ϕ to A′
.

We first proveM ≥ opt(I ). Letψopt be an assignment to the variables of I such that val(ψopt) =

opt(I ), and let H ′ ⊆ H be the set of edges satisfied by ψopt. Consider the subgraph A[H ′]∅ of A,
which by condition (ii) of point decompositions is a realisation. We define ϕ∗ as the function that

maps each (t, S) ∈ V (A[H ′]∅) toψopt |S . Sinceψopt satisfies H
′
, it satisfies at least one guard for each

sub-bag (t, S) ∈ V (A[H ′]∅). Therefore, ϕ
∗
is a consistent assignment to A[H ′]∅. By condition (i) of

point decompositions, for every edge e ∈ H ′
there exists (t, S) ∈ V (A[H ′]∅) such that e ⊆ S , and

henceM ≥ val(ϕ∗,A[H ′]∅) = opt(I ).
We now prove opt(I ) ≥ M . Let A′

be a realisation of A and ϕ be a consistent assignment to A′

such that val(ϕ,A′) = M . By Observation 4.5, there exists an assignment ψ to X ′
:= ∪(t ,S )∈V (A′)S

such that

val(ψ ) =
∑

e ∈H :e⊆X ′

fe (ψ (xe)) ≥
∑

e ∈H :∃(t ,S )∈V (A′), e⊆S

fe (ψ (xe)) = val(ϕ,A′) = M

and hence opt(I ) ≥ M . □

If A′
is a partial realisation and s ∈ V (A′), we use A′[s] to denote the partial realisation induced

by the sub-bags s ′ of A′
such that there is a (possibly empty) directed path in A′

from s ′ to s .
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Observation 4.8. Let H be the hypergraph of a Max-CSP instance, (T , (Bt )t ∈V (T ),A) be a point
decomposition of H , ϕ be a consistent assignment to a partial realisation A′ of A with sink s = (t, S)
andψ be as in Observation 4.5. LetW be the set of all sub-bags s ′ = (t ′, S ′) in V (A′) such that t ′ is a
child of t in TA′ . Then,

val(ϕ,A′) =
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

s ′=(t ′,S ′)

(
val(ϕ |V (A′[s ′]),A

′[s ′]) −
∑

e ∈H :e⊆S∩S ′
fe (ψ (xe))

)
.

Proof. By definition ofTA′ there is no arc (s1, s2) inAwith s1, s2 ∈W . SinceA is decomposable, it

follows that the setsV (A′[s ′]), s ′ ∈W , are pairwise disjoint. Furthermore, byObservation 4.2, if there

exist an edge e ∈ H and two sub-bags s1, s2 ∈W with e ⊆
(
∪(t ∗,S∗)∈V (A′[s1])S

∗
)
∩

(
∪(t ∗,S∗)∈V (A′[s2])S

∗
)

then e ⊆ S . Similarly, if there exist e ∈ H and s1 = (t1, S1) ∈W such that e ⊆
(
∪(t ∗,S∗)∈V (A′[s1])S

∗
)
∩S ,

then e ⊆ S1. Putting everything together we have

val(ϕ,A′) =
∑

e ∈H :∃(t ∗,S∗)∈V (A′), e⊆S∗

fe (ψ (xe))

=
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

©­­«
∑

e ∈H ,e⊈S :∃(t ∗,S∗)∈V (A′[s ′]), e⊆S∗

fe (ψ (xe))
ª®®¬

=
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

s ′=(t ′,S ′)

(
val(ϕ |V (A′[s ′]),A

′[s ′]) −
∑

e ∈H :e⊆S∩S ′
fe (ψ (xe))

)
as claimed. □

Recall that an independent set in a graph is a subset of vertices that induces a subgraph with no

edges. We will denote by IS(G) the set of all independent sets in a graph G.

Theorem 4.9. Let k be a fixed positive integer. There exists an algorithm which, given as input
a Max-CSP instance I with hypergraph H and a point decomposition P = (T , (Bt )t ∈V (T ),A) of H of
width at most k , computes opt(I ) in time polynomial in ∥P ∥ and ∥I ∥.

Proof. We first describe the algorithm. To each bag t ∈ V (T ), sub-bag s = (t, S) and s-valid
assignment ψ we will associate a nonnegative rational value valalg(s,ψ ). We will compute these

values bottom-up, starting from the leaves of T .
Let t be a vertex ofT , s = (t, S) be a sub-bag of t andψ be an s-valid assignment. Suppose that the

values valalg(s
′,ψ ′) have already been computed for all pairs (s ′ = (t ′, S ′),ψ ′) with t ′ <T t . If t is a

leaf then we set valalg(s,ψ ) :=
∑

e ∈H :e⊆S fe (ψ (xe)). If t is not a leaf then we define a vertex-weighted

graph G where

• V (G) is the set of all sub-bags s ′ = (t ′, S ′) with t ′ <T t such that (i) there exists at least one

s ′-valid assignmentψ ′
such thatψ ′ |S∩S ′ = ψ |S∩S ′ and (ii) (s ′, s) is an arc in A;

• E(G) is the set of all pairs {(t1, S1), (t2, S2)} ∈ V (G)2 such that either t1 = t2 or ((t1, S1), (t2, S2))
is an arc in A;

• For every s ′ = (t ′, S ′) ∈ V (G), the weightw(s ′) of s ′ is the maximum of

valalg(s
′,ψ ′) −

∑
e ∈H :e⊆S∩S ′

fe (ψ (xe))

over all s ′-valid assignments ψ ′
such that ψ ′ |S∩S ′ = ψ |S∩S ′ . Note that this quantity is well-

defined because at least one suitable assignmentψ ′
exists, by definition of V (G).
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We then set valalg(s,ψ ) :=
∑

e ∈H :e⊆S fe (ψ (xe)) +maxU ∈IS(G) (
∑

s ′∈U w(s ′)). Once valalg(s,ψ ) is com-

puted for all pairs (s,ψ ) where s is a sub-bag of the root of T , the algorithm outputs the maximum

of valalg(s,ψ ) over all such pairs.

Claim 1. For every t ∈ V (T ), sub-bag s = (t, S) with a (possibly empty) directed path in A from s
to a sub-bag of the root of T and s-valid assignmentψ , valalg(s,ψ ) is the maximum of val(ϕ,A′) over
all partial realisations A′ of A whose sink is s and consistent assignments ϕ to A′ such that ϕ(s) = ψ .

Proof. We proceed by induction, proving the claim for all pairs (s,ψ ) in the same order the

algorithm computes valalg(s,ψ ). Let s = (t, S) be a sub-bag with a directed path in A to a sub-bag

of the root of T andψ be an s-valid assignment. Suppose that the claim holds for all pairs (s ′,ψ ′)

for which valalg(s
′,ψ ′) is computed by the algorithm before valalg(s,ψ ) (and in particular for all

pairs (s ′,ψ ′) where s ′ is a sub-bag of t ′ with t ′ <T t ). If t is a leaf then the claim trivially holds,

so suppose that t is not a leaf. We start by showing that valalg(s,ψ ) is at least the maximum over

all val(ϕ,A′). Let A′
be any partial realisation of A with sink s and ϕ be a consistent assignment

to A′
with ϕ(s) = ψ . LetW be the set of all sub-bags s ′ = (t ′, S ′) in V (A′) such that t ′ is a child of

t in TA′ . Note that we have t ′ <T t for all (t ′, S ′) inW ; it follows from the definition of the tree

TA′ that there does not exist an arc ((t ′, S ′), (t ′′, S ′′)) in A with (t ′, S ′), (t ′′, S ′′) ∈W (as otherwise

one of t ′, t ′′ would not have t as parent in TA′). Therefore,W is a subset of V (G) and forms an

independent set. By Observation 4.8 and the induction hypothesis we have

val(ϕ,A′) =
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

s ′=(t ′,S ′)

©­­«val(ϕ |V (A′[s ′]),A
′[s ′]) −

∑
e ∈H :

e⊆S∩S ′

fe (ψ (xe))
ª®®¬

≤
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

s ′=(t ′,S ′)

©­­«valalg(s ′,ϕ(s ′)) −
∑
e ∈H :

e⊆S∩S ′

fe (ψ (xe))
ª®®¬ .

Then, from the definition of the vertex weights in G we deduce

val(ϕ,A′) ≤
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑

s ′=(t ′,S ′)∈W

w(s ′)

and since valalg(s,ψ ) is the maximum of the right-hand side expression taken over all independent

setsW ′
of G, we finally obtain that val(ϕ,A′) ≤ valalg(s,ψ ), as required.

For the other direction, we need only prove that there exist a partial realisation A′
with sink

s and a consistent assignment ϕ to A′
such that ϕ(s) = ψ and val(ϕ,A′) is exactly valalg(s,ψ ). Let

W be the independent set ofG chosen by the algorithm to compute valalg(s,ψ ). For each sub-bag

s ′ = (t ′, S ′) ∈W , letψs ′ be an s
′
-valid assignment such that valalg(s

′,ψs ′)−
∑

e ∈H :e⊆S∩S ′ fe (ψ (xe)) =
w(s ′) and ψs ′ |S∩S ′ = ψ |S∩S ′ . Note that every sub-bag inW can reach a sub-bag of the root of T
via a directed path in A by going through s . Then, by induction for each s ′ ∈ W there exist a

partial realisation A′
s ′ with sink s ′ and a consistent assignment ϕs ′ to A

′
s ′ such that ϕs ′(s

′) = ψs ′ and
val(ϕs ′,A

′
s ′) = valalg(s

′,ψs ′) = w(s ′) +
∑

e ∈H :e⊆S∩S ′ fe (ψ (xe)). Now, if we define A′
as the subgraph

of A induced by {s} ∪
(
∪s ′∈WV (A′

s ′)
)
, then (i) A′

has a single sink s , since the sinks of each A′
s ′

have an outgoing arc to s , and (ii) A′
contains at most one sub-bag for each t ∈ V (T ) because A is

decomposable andW is an independent set in G. It follows that A′
is a partial realisation of A.

The mapping ϕ defined on V (A′) such that ϕ(s∗) := ψ if s∗ = s and ϕ(s∗) := ϕs ′(s
∗) otherwise,

where s ′ is the only sub-bag inW such that s∗ ∈ V (A′
s ′), is a consistent assignment to A′

. Finally,
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by Observation 4.8 and the induction hypothesis we obtain

val(ϕ,A′) =
∑

e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

s ′=(t ′,S ′)

(
val(ϕs ′,A

′
s ′) −

∑
e ∈H :e⊆S∩S ′

fe (ψ (xe))

)
=

∑
e ∈H :e⊆S

fe (ψ (xe)) +
∑
s ′∈W

w(s ′)

which is exactly valalg(s,ψ ). ■

Corollary 4.10. The output of the algorithm is the maximum of val(ϕ,A′) over all realisations A′

of A and consistent assignments ϕ to A′.

We deduce from Corollary 4.10 and Proposition 4.7 that the algorithm correctly outputs opt(I ).
We now turn to the problem of estimating the time complexity of the algorithm. To this end, we

will need to bound the time necessary to compute the maximum-weight independent sets. This

will be achieved with the help of the next claim.

A graph is chordal if every cycle C with at least four vertices has a chord, that is, an edge

connecting two vertices that are not consecutive in C .

Claim 2. For any given pair (s,ψ ), the associated graph G is chordal.

Proof. By way of contradiction let us assume that there exists a pair (s,ψ ) for which G has a

chordless cycle C . Let s1 = (t1, S1) be a sub-bag in C such that t1 is minimal with respect to <T .
Since C is chordless, at least one of the two sub-bags that are adjacent to s1 in C is not a sub-bag of

t1. Let s2 be that sub-bag, and s3 be the other one. Note that s2 and s3 are not adjacent in G, which
means that they are not sub-bags of the same vertex of T and none of (s2, s3), (s3, s2) is an arc in

A. Furthermore, since t1 is minimal with respect to <T in the cycle, there is a directed path (of

length 1) in A from s1 to s2. Likewise, there is always a directed path in A from some sub-bag of t1
to s3: if s3 is a sub-bag of t1 then this path is empty, and otherwise we have the path (s1, s3) in A
by minimality of t1. Finally, by construction we have the arcs (s2, s) and (s3, s) in A, so the triple

(s, s2, s3) contradicts the decomposability of A. Thus the chordless cycle C does not exist, which

establishes the claim. ■

Claim 3. The runtime of the algorithm is polynomial in ∥I ∥ and ∥P ∥.

Proof. By definition of the width of a point decomposition, for each bag Bt , t ∈ V (T ) we have
β-cn(H |Bt ) ≤ k . Hence, for each subhypergraph H ′ ⊆ H there exists a subhypergraph H ∗ ⊆ H ′

,

|H ∗ | ≤ k , such that V (H ∗ |Bt ) = V (H ′ |Bt ); in particular, every guard of a sub-bag contains at most

k edges. Therefore, given a sub-bag s , any s-valid assignment is in the join of restrictions of the

support of at most k constraints; it follows that there are at most |H |kqk distinct s-valid assignments,

where q := maxe ∈H |Re |, and the algorithm computes valalg(s,ψ ) for O(∥P ∥|H |kqk ) pairs (s,ψ ).
The computation of valalg(s,ψ ) for a given pair (s,ψ ) reduces to computing a maximum weighted

independent set in the graph G, which can be achieved in time linear in ∥G∥ = O(∥P ∥) since G is

chordal [17, 37] by Claim 2. Constructing the graph G takes time polynomial in ∥P ∥ and |H |kqk ,
which concludes the proof of Claim 3. ■

Theorem 4.9 now follows from Corollary 4.10, Proposition 4.7 and Claim 3. □

5 RELATIONSHIP WITH β-ACYCLICITY
A hypergraphH is α -acyclic [3] if it has a join tree. A join tree is a pair (T , λ)whereT is a tree and λ is
a bijection fromV (T ) to (the edges of) H , such that for everyv ∈ V (H ) the set {t ∈ V (T ) : v ∈ λ(t)}
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induces a connected subtree of T . A hypergraph H is β-acyclic [14] if every subhypergraph of H is

α-acyclic. It is known that β-acyclic hypergraphs are tractable for Max-CSPs:

Theorem 5.1 ([4]). Max-CSP(H ,−) can be solved in polynomial time if H is a family of β-acyclic
hypergraphs.

The algorithm of Brault-Baron, Capelli, and Mengel [4] works by variable elimination, making

use of a well-known alternative characterisation of β-acyclic hypergraphs in terms of the so-

called β-elimination orders [3]. In this section we show that such hypergraphs are covered by our

framework as they always have a point decomposition of polynomial size and width 1, which can

be computed in polynomial time. Hence, together with Theorem 4.9, we can obtain Theorem 5.1.

An ordering (x1, . . . , xn) of the vertices of a hypergraph H is a β-elimination order if for any
xi ∈ V (H ) and e, e ′ ∈ H such that xi ∈ e ∩ e ′, either e ∩ {x j : j ≥ i} ⊆ e ′ or e ′ ∩ {x j : j ≥ i} ⊆ e . A
hypergraph is β-acyclic if and only if it has a β-elimination order [3].

Our construction of point decompositions for β-acyclic hypergraphs is inspired by recent work

of Capelli [7], from whom we borrow some notation and lemmas. Let H be a β-acyclic hypergraph
and <β be a β-elimination order ofH . Given a vertex x ∈ V (H ), letV (H )≤x := {v ∈ V (H ) : v ≤β x}
andV (H )≥x := {v ∈ V (H ) : v ≥β x}. Let <H be the total order on the edges ofH such that e1 <H e2
if and only if max<β (e1∆e2) ∈ e2, where ∆ denotes the symmetric difference. A walk from e ∈ H to

f ∈ H is a sequence (e1, x1, e2, x2, . . . , xn−1, en), with n ≥ 1, where each ei is an edge of H , e1 = e ,
en = f , and each xi is a vertex of H such that xi ∈ ei ∩ ei+1. Given x ∈ V (H ) and e ∈ H , let Hx

e
denote the set of edges of H reachable from e through a walk that contains only vertices ≤β x and

edges ≤H e .

Example 5.2. Consider the hypergraph H from Figure 1 defined as H = {e, e1, e2, e3}, where
e = {x0, x1, x2, x3} and ei = {x0, xi }, for i ∈ {1, 2, 3}. We have that H is β-acyclic. A possible

β-elimination order is x1 <β x2 <β x0 <β x3. The induced order <H is e1 <H e2 <H e3 <H e . For
instance, note that e1 < H

x2
e3 as the only possible walk would be (e3, x0, e1) but x0 >β x2. We have

Hx2
e3 = {e3} and H

x0
e3 = {e3, e1, e2}. Note that e < H

x0
e3 as e >H e3.

Lemma 5.3 ([7, Lemma 2]). Let x,y ∈ V (H ) such that x ≤β y and e, f ∈ H such that e ≤H f and
V (Hx

e ) ∩V (H
y
f ) ∩V (H )≤x , ∅. Then, Hx

e ⊆ H
y
f .

Theorem 5.4 ([7, Theorem 3]). For every x ∈ V (H ) and e ∈ H , V (Hx
e ) ∩V (H )≥x ⊆ e .

Now we are ready to state the main result of this section:

Theorem 5.5. Every β-acyclic hypergraph has a point decomposition of polynomial size and width
1. Moreover, such a decomposition can be computed in polynomial time.

Proof. Let H be a β-acyclic hypergraph with β-elimination order <β . The rooted tree T of the

point decomposition of H has one vertex tx for each vertex x ∈ V (H ), plus a special vertex t⊥. The
root ofT is t⊥ and its only child is tz , where z is the last vertex in the β-elimination order of H . The

remainder of T is then a path, where tx is the child of ty if and only if y is the vertex that directly

follows x in the β-elimination order. In particular, for any two vertices x,y ∈ V (H ) we have that

tx <T ty if and only if x <β y.
For any tx ∈ V (T ), the associated bag Btx is the set of all points (y, e) ∈ P(H ) with x ∈ e and

x ≤β y. The bag of t⊥ is an empty set of points. We denote by T the pair (T , (Bt )t ∈V (T )).

By definition of a β-elimination order, for each tx ∈ V (T ) it holds that β-cn(H |Btx ) = 1 and

the possible sub-bags are of the form (tx , e ∩V (H )≥x ) with e ∈ H . We now describe the directed

graph A on the sub-bags of T that will complete the point decomposition. Given any two sub-bags

sx = (tx , Sx ) and sy = (ty , Sy ) with x,y ∈ V (H ) and x <β y, we add an arc from sx to sy if one of

the following conditions is satisfied:
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(†) |Sx | = 1 and there exist e, f ∈ H such that Sx = e ∩V (H )≥x , Sy = f ∩V (H )≥y and e ∈ H
y
f ;

(††) |Sx | > 1 and there exist e, f ∈ H such that Sx = e ∩V (H )≥x , Sy = f ∩V (H )≥y , e ∈ H
y
f and

y ≤β z, where z = min<β (Sx\{x}).

In addition, if |Sx | = 1 we add the arc ((tx , Sx ), (t⊥, ∅)). Figure 1 shows the construction applied to

the β-acyclic hypergraph H to the left and β-elimination order x1 <β x2 <β x0 <β x3.
By construction, A is a T -structure. The next claim will be used in conjunction with Lemma 5.3

and Theorem 5.4 to show that A is decomposable.

Claim 4. Let sx = (tx , Sx ) and sy = (ty , Sy ) be two sub-bags with x,y ∈ V (H ) and Sx , Sy , ∅, such
that there is a directed path in A from sx to sy . Then, there exist e, f ∈ H such that Sx = e ∩V (H )≥x ,
Sy = f ∩V (H )≥y and e ∈ H

y
f .

Proof. We prove the claim by induction on the length of the path. If the path has length 1 (i.e.

(sx , sy ) is an arc in A) then (sx , sy ) satisfies either (†) or (††) and the claim holds. Now, suppose that

the path has length n > 1 and that the claim holds for all paths of length n− 1. Let z ∈ V (H ), z <β y,
be such that sz = (tz, Sz ) is the predecessor of sy in the path. (Note that such a vertex z always

exists because the special sub-bag (t⊥, ∅) is a sink in A.) By induction, there exist ex , fz ∈ H such

that Sx = ex ∩V (H )≥x , Sz = fz ∩V (H )≥z and ex ∈ H z
fz
. Also, since (sz, sy ) is an arc in A, it satisfies

either (†) or (††) and hence there exist ez, fy ∈ H such that Sz = ez ∩V (H )≥z , Sy = fy ∩V (H )≥y

and ez ∈ H
y
fy
. In particular, there exists a walkwfzex from fz to ex that only contains vertices ≤β z

and edges ≤H fz , and a walkwfyez from fy to ez that only contains vertices ≤β y and edges ≤H fy .
If fz <H fy , then (wfyez , z,wfzex ) is a walk from fy to ex that contains only vertices ≤β y and

edges ≤H fy . Therefore, we have ex ∈ H
y
fy
and the claim follows from the edges ex , fy . If instead we

have fy <H fz , then by Theorem 5.4 we have fz ∩V (H )≥y = ez ∩V (H )≥y ⊆ V (H
y
fy
)∩V (H )≥y ⊆ fy .

Note that fz ∩V (H )≥y cannot be a strict subset of fy ∩V (H )≥y because fy <H fz . This implies that

fz ∩V (H )≥y = fy ∩V (H )≥y = Sy . Finally, we deduce from the inclusion H z
fz

⊆ H
y
fz
that ex ∈ H

y
fz
,

and the claim follows from the edges ex , fz . ■

Claim 5. A is decomposable.

Proof. We prove the claim by contradiction. Suppose that A is not decomposable, that is, there

exist five sub-bags s, sx = (tx , Sx ), sy = (ty , Sy ), s
1

z = (tz, S
1

z ), s
2

z = (tz, S
2

z ) with x,y, z ∈ V (H ) and

x , y such that (i) (sx , s) and (sy , s) are arcs in A, (ii) neither (sx , sy ) nor (sy , sx ) is an arc in A, and
(iii) there are directed paths in A from s1z to sx and from s2z to sy . By the definition of A, we can
further assume that none of Sx , Sy , S

1

z, S
2

z is empty.

By Claim 4, there exist fx , e
1

z, fy , e
2

z ∈ H such that Sx = fx ∩ V (H )≥x , Sy = fy ∩ V (H )≥y ,

S1z = e1z ∩V (H )≥z , S
2

z = e2z ∩V (H )≥z , e
1

z ∈ Hx
fx

and e2z ∈ H
y
fy
. Without loss of generality we assume

x <β y.
We distinguish two cases:

• fx ≤H fy . Observe that z ∈ e1z ∩ e2z ∩V (H )≤x ⊆ V (Hx
fx
) ∩V (H

y
fy
) ∩V (H )≤x , so by Lemma 5.3

we have Hx
fx

⊆ H
y
fy
. In particular, it holds that fx ∈ H

y
fy
. Since (sx , sy ) is not an arc in A, we

can deduce that |Sx | > 1; it follows that s is of the form (tw , Sw ) wherew ≤β min<β (Sx\{x}).
However, the arc (sy , s) implies that y <β w , which means that (sx , sy ) should have been an

arc in A, a contradiction.
• fx ≥H fy . Then, we have z ∈ V (H

y
fx
)∩V (H

y
fy
)∩V (H )≤y , so by Lemma 5.3 we haveH

y
fy

⊆ H
y
fx
.

By Theorem 5.4 it holds that fy ∩V (H )≥y ⊆ fx , and in particular y ∈ fx . Then, since (sx , s)
is an arc in A and |Sx | = | fx ∩V (H )≥x | > 1 (as it contains both x and y), it follows that s is
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of the form (tw , Sw ) wherew ≤β min<β (Sx\{x}). Again, the arc (sy , s) implies that y <β w .

Finally, since y ∈ Sx\{x}, we havew ≤β min<β (Sx\{x}) ≤β y <β w , a contradiction.

■

Claim 6. The triple (T , (Bt )t ∈V (T ),A) is a point decomposition of H .

Proof. T is a rooted tree, each Bt with t ∈ V (T ) is a set of points, and A is a decomposable T -

structure by Claim 5. That leaves conditions (i), (ii) and (iii) in the definition of a point decomposition

to verify.

By construction, for any edge e ∈ H , we have that P({e}) = {(v, e) : v ∈ e} ⊆ Btx , where
x ∈ V (H ) is the smallest vertex in e with respect to <β . Hence condition (i) holds.

For condition (ii), let H ′
be a subhypergraph of H . Note that A′

:= A[H ′]∅ is precisely the

subgraph of A induced by

{(t⊥, ∅)} ∪ {(tx ,V (H ′ |Btx )) : x ∈ V (H ),V (H ′ |Btx ) , ∅}.

because all sub-bags of the form (tx , ∅)with x ∈ V (H ) are isolated sub-bags of non-root vertices ofT .
We show thatA′

is a realisation ofA. Suppose for the sake of contradiction that it is not the case. The
only possibility is that A′

has two sinks, and one of them is of the form sx = (tx , Sx ) with x ∈ V (H )

and Sx , ∅. The sub-bag s⊥ = (t⊥, ∅) belongs to V (A′), which implies that |Sx | > 1 since otherwise

(sx , s⊥) would be an arc in A′
and hence sx would not be a sink. Now, let y = min<β (Sx\{x}), and

let ex ∈ H ′
be such that Sx = ex ∩V (H )≥x . Let sy = (ty , Sy ) denote the sub-bag (ty ,V (H ′ |Bty )) and

ey ∈ H ′
be such that Sy = ey ∩V (H )≥y . Note that Sy is not empty because (y, ex ) ∈ Bty ; this implies

in particular that sy ∈ V (A′). If ex ∩ V (H )≥y = ey ∩ V (H )≥y then (sx , sy ) would be an arc in A
because of condition (††) (with (e, f ) = (ex , ex )). Since sy ∈ V (A′), this contradicts our hypothesis

that sx is a sink inA′
. On the other hand, if ex ∩V (H )≥y , ey ∩V (H )≥y then from the facts that <β

is a β-elimination order, ex ∈ H ′
andy ∈ ex , we can further assume that ex ∩V (H )≥y ⊂ ey∩V (H )≥y .

It follows that ex <H ey , and the walk (ey ,y, ex ) implies that ex ∈ H
y
ey . However, by condition (††)

we deduce that (sx , sy ) is an arc in A, a final contradiction.
For condition (iii), we first prove that for any arc (s, s ′) of A′

where s = (ty , Sy ), y ∈ V (H )

and s ′ = (t ′, S ′) it holds that Sy\S
′ = {y}. Observe that Sy always contains y, and S ′ may only

contain vertices z ∈ V (H ) with y <H z, so Sy\S
′ = {y} whenever (s, s ′) satisfies condition (†) or if

s ′ = (t⊥, ∅). If (s, s
′) satisfies condition (††) instead, then s ′ = (tz, S

′) for some z ≤β min<β (Sy\{y}).
Let ey , fz ∈ H be such that Sy = ey∩V (H )≥y , S

′ = fz∩V (H )≥z and ey ∈ H z
fz
. By Theorem 5.4we have

that Sy\{y} = ey ∩V (H )≥z ⊆ V (H z
fz
) ∩V (H )≥z ⊆ fz and hence Sy\S

′ = Sy\(fz ∩V (H )≥z ) = {y},

as claimed.

Now, let A′
be a realisation of A and x ∈ ∪(t ,S )∈V (A′)S . It follows from the property above that if

t ′ is the parent of t in TA′ and (t, S), (t ′, S ′) are the sub-bags in V (A′), then x ∈ S and x < S ′ if and
only if t = tx . Since x may only appear in a set Sy for sub-bags of the form (ty , Sy ) with y ≤β x , the
set

{t ∈ V (TA′) : ∃(t, S) ∈ V (A′) and x ∈ S}

induces a connected subtree of TA′ , which proves the claim. ■

The point decomposition (T , (Bt )t ∈V (T ),A) has polynomial size. Moreover, it can be computed in

polynomial time since a β-elimination order can be computed efficiently from H [4]. Recall that for

each tx ∈ V (T ) it holds that β-cn(H |Btx ) = 1; it follows that (T , (Bt )t ∈V (T ),A) has width 1. Together

with Claim 6, these last observations establish Theorem 5.5. □

In the case of the hypergraph H of Figure 1, it can be verified that our construction produces a

non-flat point decomposition independently of the β-elimination order we pick for H . As we shall
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see in the next section, this is not coincidence as β-acyclic hypergraphs cannot be captured by flat

point decompositions of any constant width. The reason is that the latter captures precisely the

so-called hypergraphs of constant MIM-width, which are known to be incomparable with β-acyclic
hypergraphs [4].

6 FLAT POINT-WIDTH AND MIM-WIDTH
In this section, we show how our main tractability result from Theorem 4.9 also explains the

tractability of Max-CSPs for classes of hypergraphs of bounded MIM-width [34, 39]. Before doing

so, we need some notation and definitions.

An induced matching in a graphG is a setM ⊆ E(G) such that no two edges ofM share a common

vertex and for every edge e = {u,v} ∈ E(G) \M , we have {u,v} ⊈
⋃

{u′,v ′ }∈M {u ′,v ′}. For a graph

G, we denote by MIM(G) the maximum size of an induced matching in G. A graph G is bipartite if
there is a partition V1,V2 of its vertex set V (G) such that every edge of G has one endpoint in V1
and the other in V2. For a graph G and disjoint subsets V1,V2 of V (G), we define G[V1,V2] to be the

bipartite graph with vertex set V1 ∪V2 that contains all edges of G with one endpoint in V1 and the

other in V2.
A branch decomposition of a graph G is a pair (T , δ ) where T is a binary rooted tree and δ is a

bijection from V (G) to the leaves of T . For t ∈ V (T ), we let Tt denote the subtree of T rooted at t
andVt denote the set {δ

−1(ℓ) : ℓ is a leaf of Tt }. TheMIM-width of the branch decomposition (T , δ )
is the maximum MIM(G[Vt ,V (G) \Vt ]), taken over all t ∈ V (T ). The MIM-width [39] ofG , denoted
by mimw(G), is the minimum MIM-width over all branch decompositions of G.

The incidence graph of a hypergraph H , denoted by inc(H ), is the bipartite graph with vertex set

V (H ) ∪ H and edge set {{v, e} : v ∈ V (H ), e ∈ H and v ∈ e}. We define the MIM-width mimw(H )

of the hypergraph H to be mimw(inc(H )). It follows from the work of Sæther, Telle and Vatshelle

[34] that Max-CSPs are tractable for hypergraphs of bounded MIM-width, provided a branch

decomposition of bounded MIM-width is given with the input. More formally:

Theorem 6.1 ([34]). Let k ≥ 1 be fixed. There exists an algorithm which, given as input a Max-CSP
instance I with hypergraphH and a branch decomposition of inc(H ) of MIM-width at most k , computes
opt(I ) in time polynomial in ∥I ∥.

Let us stress that the results in [34, 39] are given for Max-SAT (and #SAT). However, Theorem 6.1

can be obtained by adapting the algorithm from [34, 39] to Max-CSPs. We omit the details as

Theorem 6.1 is implied by the results of this section.

The goal of this section is to prove the following:

Theorem 6.2. Let k ≥ 1 be fixed. For every hypergraph H and branch decomposition of inc(H ) of
MIM-width k , there exists a point decomposition of H of polynomial size in ∥H ∥ and of width at most
2k . Moreover, this point decomposition can be computed in time polynomial in ∥H ∥.

Note that we obtain Theorem 6.1 as a consequence of Theorem 6.2 and Theorem 4.9. In order to

prove Theorem 6.2, we show that the MIM-width of a hypergraph is equivalent to its flat point-

width modulo constant factors. This is the main technical result of this section which we state

below:

Theorem 6.3. For every hypergraphH , we havemimw(H ) ≤ 4·fpw(H ) and fpw(H ) ≤ 2·mimw(H ).
Moreover, for a fixed k ≥ 1, a flat point decomposition (of polynomial size) of width at most 2k can be
computed in time polynomial in ∥H ∥ from a branch decomposition of H of MIM-width k .

Note how Theorem 6.3 directly implies Theorem 6.2. In order to prove Theorem 6.3, we present

several notions of width and show that they are equivalent modulo constant factors. As an inter-

mediate step, we show a characterisation of the MIM-width of a bipartite graph in terms of its line
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graph. This characterisation of MIM-width and the one from Theorem 6.3 may be of independent

interest.

6.1 A characterisation of the MIM-width of bipartite graphs
A tree decomposition of a graph G is a pair (T , (Bt )t ∈V (T )), where T is a tree and each bag Bt is a
subset of V (G) such that

(i) V (G) =
⋃

t ∈V (T ) Bt ,
(ii) for each edge {u,v} ∈ E(G), there exists t ∈ V (T ) such that {u,v} ⊆ Bt , and
(iii) for each v ∈ V (G) the set {t ∈ V (T ) : v ∈ Bt } induces a connected subtree of T .

For any function f : 2
V (G) → Q≥0, we define the f -width of the decomposition (T , (Bt )t ∈V (T )) to

be the maximum f (Bt ), taken over all t ∈ V (T ), and the f -width of the graphG to be the minimum

f -width over all its tree decompositions. For instance, the standard notion of treewidth [32]

corresponds to s-width, where s(X ) = |X | − 1, for every X ⊆ V (G).
For a graphG , we say that a setU ⊆ V (G) is a distance-2 independent set if for every pair of distinct

nodes u,v ∈ U , there is no path from u to v in G of length at most 2, where the length of a path is

the number of edges. We denote by α2(G) the maximum size of a distance-2 independent set in G.
ForG , we define the function α2

G : 2
V (G) → Q≥0 as α

2

G (X ) := α2(G[X ]), for every X ⊆ V (G). (Recall
that G[X ] denotes the subgraph of G induced by X , i.e., G[X ] = (X , {{u,v} ∈ E(G) : u,v ∈ X }).)

We also consider the function mon-α2

G : 2
V (G) → Q≥0 defined by mon-α2

G (X ) := min{α2

G (Y ) : X ⊆

Y ⊆ V (G)}, for every X ⊆ V (G).

Observation 6.4. For a graph G, we have the following:
• α2

G is subadditive, i.e., α2

G (X ∪ Y ) ≤ α2

G (X ) + α2

G (Y ), for all X ,Y ⊆ V (G).
• mon-α2

G (X ) ≤ α2

G (X ), for all X ⊆ V (G).
• mon-α2

G is monotone (unlike α2

G ), i.e., mon-α2

G (X ) ≤ mon-α2

G (Y ), if X ⊆ Y ⊆ V (G).

We are particularly interested in the notions of α2

G -width and mon-α2

G -width for a graph G,

which we denote by α2
-w(G) and mon-α2

-w(G), respectively. For a graph G, we define the line
graph of G, denoted by L(G), to be the graph with vertex set E(G) such that {e, f } is an edge in

L(G), where e, f ∈ E(G) and e , f , if e and f share a common vertex.

Observation 6.5. Let G be a graph. Every induced matching in G is a distance 2-independent set
in L(G) and vice versa. In particular, MIM(G) = α2(L(G)).

Below we show that for bipartite graphs, the MIM-width and the α2
-w (and also mon-α2

-w) of

the line graph are equivalent, modulo constant factors. The proof is an adaptation of the classical

equivalence between treewidth and branchwidth [33].

Proposition 6.6. For every graph G, we have α2-w(L(G)) ≤ 2 ·mimw(G).

Proof. Given a branch decomposition (T , δ ) ofG ofMIM-widthk , we define a tree decomposition

of L(G) of α2

L(G)
-width at most 2k . Recall that for a node t ∈ V (T ), we denote by Tt the subtree

of T rooted at t and by Vt the set {δ
−1(ℓ) : ℓ is a leaf of Tt }. The underlying tree of our sought

decomposition is T itself. For t ∈ V (T ), we define Ct to be the set of edges of G appearing in the

bipartite graph G[Vt ,V (G) \Vt ]. Now we define Bt to be Bt := Ct , if t ∈ V (T ) is a leaf of T , and
Bt := Ct ∪ (Ct1 ∩ Ct2 ), otherwise, where t1 and t2 are the two children of t in T . We claim that

(T , (Bt )t ∈V (T )) satisfies the required conditions.

For condition (i) of tree decompositions, for every e = {u,v} ∈ E(G) = V (L(G)), we have

e ∈ Bδ (u). For condition (ii), if {e, f } ∈ E(L(G)) and e ∩ f = {u}, then we have {e, f } ⊆ Bδ (u). In
order to prove condition (iii), we show the following properties:
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(1) Suppose e ∈ E(G) = V (L(G)) and t, t ′, t ′′ ∈ V (T ) are distinct nodes such that t is a descendent
of t ′, t ′′ belongs the (unique) path in T from t to t ′, and e ∈ Ct ∩Ct ′ . Then e ∈ Ct ′′ .

(2) Suppose e ∈ E(G) = V (L(G)) and t, t ′, s ∈ V (T ) are distinct nodes such that t and t ′ are
incomparable in T , s is the least common ancestor of t and t ′ in T , and e ∈ Ct ∩Ct ′ . Then

e ∈ Cs1 ∩Cs2 , where s1 and s2 are the two children of s in T .

For property 1), suppose e = {u,v}, and note that by definition of the Ct ’s, one endpoint of e
belongs toVt , sayu, and the other endpointv is inV (G)\Vt ′ . In particular,u ∈ Vt ′′ andv ∈ V (G)\Vt ′′ ,
and hence e ∈ Ct ′′ . For property 2), let e = {u,v} and note again, by definition of the Ct ’s, that

one endpoint of e belongs to Vt , say u, and the other endpoint v belongs to Vt ′ . Then if s1 is the
ancestor of t , we have u ∈ Vs1 and v ∈ V (G) \Vs1 , and therefore e ∈ Cs1 . Similarly for s2 and t

′
.

Now for condition (iii), let e ∈ E(G) and t, t ′, t ′′ be distinct nodes inT such that t ′′ belongs to the
(unique) path in T from t to t ′ and e ∈ Bt ∩ Bt ′ . We start with the case when t is a descendent of t ′

(the case when t ′ is a descendent of t is analogous). Assume first that e ∈ Ct ′ ⊆ Bt ′ . We obtain that

e ∈ Ct ′′ ⊆ Bt ′′ , by applying property 1) to t ′, t ′′ and either t (if e ∈ Ct ) or a child of t (if e ∈ Bt \Ct ).

Suppose now that e ∈ Bt ′ \Ct ′ . If t
′′
is a child of t ′, then e ∈ Ct ′′ ⊆ Bt ′′ and we are done. Otherwise,

if t ′
1
is the child of t ′ that is ancestor of t ′′, we obtain e ∈ Ct ′′ ⊆ Bt ′′ by applying property 1) to t ′

1
,

t ′′ and either t or a child of t .
For the case when t and t ′ are incomparable, we let s ∈ V (T ) be the least common ancestor of t

and t ′ inT . We obtain that e ∈ Cs1 ∩Cs2 ⊆ Bs , where s1 and s2 are the two children of s , by applying
property 2) to s , either t or one of its child, and either t ′ or one of its child (depending on whether

e ∈ Ct and e ∈ Ct ′ , respectively). If t
′′ , s , we can apply the previous case and obtain that e ∈ Bt ′′

as required.

It remains to bound the α2

L(G)
-width of (T , (Bt )t ∈V (T )). If t ∈ V (T ) is a leaf of T , then α2

L(G)
(Bt ) =

1. Otherwise let t1, t2 be the two children of t in T . By Observation 6.5, we have α2

L(G)
(Ct ) ≤

k . By subadditivity, we have that α2

L(G)
(Bt ) ≤ α2

L(G)
(Ct ) + α

2

L(G)
(Ct1 ∩ Ct2 ). Observe that Ct1 ∩

Ct2 = E(G[Vt1,Vt2 ]) (in particular, L(G)[Ct1 ∩Ct2 ] = L(G[Vt1,Vt2 ])). By Observation 6.5, α2

L(G)
(Ct1 ∩

Ct2 ) = MIM(G[Vt1,Vt2 ]), and since G[Vt1,Vt2 ] is an induced subgraph of G[Vt1,V (G) \Vt1 ], we have
MIM(G[Vt1,Vt2 ]) ≤ MIM(G[Vt1,V (G) \Vt1 ]) ≤ k . We obtain that α2

L(G)
(Bt ) ≤ 2k as required. □

Proposition 6.7. For every bipartite graph G, we have mimw(G) ≤ 2 ·mon-α2-w(L(G)).

Proof. Let G and (T , (Bt )t ∈V (T )) be a tree decomposition of L(G) of mon-α2

L(G)
-width k . We

can assume that T is a binary rooted tree and that there is a bijection δ from V (G) to the leaves

of T such that Bδ (v) = {{v,w} ∈ E(G) : w ∈ V (G)}, for every v ∈ V (G). To see this, we start

by rooting (T , (Bt )t ∈V (T )) arbitrarily. For each v ∈ V (G), the set {{v,w} ∈ E(G) : w ∈ V (G)} is
a clique in L(G), and hence there exists t ∈ V (T ) such that {{v,w} ∈ E(G) : w ∈ V (G)} ⊆ Bt
(note that t is not necessarily unique). We add a fresh leaf δ (v) to T as a child of t and we let

Bδ (v) := {{v,w} ∈ E(G) : w ∈ V (G)}. After this, we iteratively remove all leaves of T that are

not of the form δ (v). Since mon-α2

L(G)
(Bδ (v)) = 1, for every v ∈ V (G), the width of the resulting

decomposition is at most k . Finally, if a node t has ℓ children t1, . . . , tℓ with ℓ > 2, we force t to
have only two children t1 and t

′
, where t ′ is a fresh node with Bt ′ := Bt and with children t2, . . . tℓ .

By applying this modification iteratively, we obtain a rooted binary tree as required.

We claim that (T , δ ) is a branch decomposition of G of MIM-width at most 2k . Fix t ∈ V (T ).

We have that E(G[Vt ,V t ]) ⊆ Bt , where V t := V (G) \Vt . Indeed, for e = {u,v} ∈ E(G[Vt ,V t ]), we

have e ∈ Bδ (u) ∩ Bδ (v), and by connectivity, e ∈ Bt . Let V1,V2 be independent sets partitioning

V (G) (recall that G is bipartite). Let M ⊆ E(G[Vt ,V t ]) be a maximum size induced matching in

G[Vt ,V t ]. Note thatM is the disjoint union ofM1 andM2, whereM1 = M ∩ E(G[Vt ∩V1,V t ∩V2])
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andM2 = M ∩ E(G[Vt ∩V2,V t ∩V1]). Finally, observe thatM1 andM2 are distance 2-independent

sets in L(G) asV1 andV2 are independent sets inG . In particular, for each i ∈ {1, 2},Mi is a distance

2-independent set in L(G)[Y ] for every superset Bt ⊆ Y . This implies that |Mi | ≤ mon-α2

L(G)
(Bt ),

for i ∈ {1, 2}. Hence |M | ≤ 2k . □

By Propositions 6.6 and 6.7, for every bipartite graph G, we have:

1

2

·mimw(G) ≤ mon-α2
-w(L(G)) ≤ α2

-w(L(G)) ≤ 2 ·mimw(G).

Remark 6.8. As in the case of treewidth, the widths α2
-w and mon-α2

-w can be related with other

notions such as brambles and games. For instance, α2
-w and mon-α2

-w can be lower bounded by

the (natural adaptation of the) bramble number [36]. Also, mon-α2
-w can be characterised in terms

of the monotone version of the cops and robber game [36] (this is the reason why we work explicitly

with mon-α2
-w in the first place). Now the cops are not restricted to play on a set X of size k , but

on a set X with mon-α2
-w(X ) ≤ k . The minimum k for which the cops can win the game in a

monotone way is precisely the mon-α2
-w (this follows for instance from [1, Theorem 2.2.12 and

Remark 2.1.18]). Hence these connections could be used to obtain bounds on the mimw of bipartite

graphs.

6.2 Proof of Theorem 6.3
We now show the equivalence of fpw and mimw. Let us start with a definition.

Definition 6.9 (Simplified point decomposition). A simplified point decomposition of a hypergraph

H is a pair (T , (Bt )t ∈V (T )) where T is a rooted tree, each set Bt ⊆ P(H ) is a set of points of H and

(1) For every edge e ∈ H , there exists t ∈ V (T ) such that P({e}) = {(v, e) : v ∈ e} ⊆ Bt .
(2) For every subhypergraph H ′

of H , and v ∈ V (H ′), the set {t ∈ V (T ) : v ∈ V (H ′ |Bt )} induces

a connected subtree of T .

As before, the width of a simplified point decomposition (T , (Bt )t ∈V (T )) is maxt ∈V (T ) β-cn(H |Bt ),

and the simplified point-width ofH , denoted by spw(H ), is the minimumwidth over all its simplified

point decompositions.

Proposition 6.10. For every hypergraph H , we have fpw(H ) = spw(H ).

Proof. We start by showing fpw(H ) ≤ spw(H ). Let (T , (Bt )t ∈V (T )) be a simplified point decom-

position of H of width k . We say that two sub-bags (t, S) and (t ′, S) with t , t ′ are consistent if
there exists a subhypergraph H ′

of H such that S = V (H ′ |Bt ) and S ′ = V (H ′ |Bt ′ ). Consider the

triple (T , (Bt )t ∈V (T ),A), where ((t, S), (t
′, S ′)) is an arc in A if and only if t ′ is the parent of t in T

and, (t, S) and (t ′, S ′) are consistent. We claim that (T , (Bt )t ∈V (T ),A) is a flat point decomposition of

H , and hence fpw(H ) ≤ k . Let H ′
be a subhypergraph of H and note that if t ′ is the parent of t inT

then there is an arc from (t,V (H ′ |Bt )) to (t ′,V (H ′ |Bt ′ )) in A as they are consistent. Hence A[H ′]∅
(actually we have A[H ′]∅ = A[H ′]) is a realisation of A.

Now letA′
be an arbitrary realisation ofA. By definition ofA, we have that the subtreeTA′ associ-

ated with A′
is actually a subtree of T that contains the root. By contradiction, suppose the connec-

tivity condition fails for some v ∈
⋃

(t ,S )∈V (A′) S . Then, there exists a sequence (t0, S0), . . . , (tn, Sn),
with n ≥ 2, such that (i) each (ti , Si ) ∈ V (A′), (ii) t0, . . . , tn is a path in T , and (iii) v ∈ S0 ∩ Sn but

v < Si , for 0 < i < n. We show by induction that for all i ∈ {1, . . . ,n}, there exists a subhypergraph
Hi of H such that v ∈ V (Hi |Bt

0

), v < V (Hi |Bti ) and Si ⊆ V (Hi |Bti ). In particular, v < V (Hn |Btn ) and

Sn ⊆ V (Hn |Btn ). This is a contradiction since v ∈ Sn .
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For the base case, recall that by construction of A, (t0, S0) is consistent with (t1, S1), and similarly,

(t1, S1) with (t2, S2). Hence, there are subhypergraphs H
′
0
and H ′

1
of H such that S0 = V (H ′

0
|Bt

0

),

S1 = V (H ′
0
|Bt

1

) = V (H ′
1
|Bt

1

) and S2 = V (H ′
1
|Bt

2

). We define H1 = H ′
0
∪ H ′

1
. Then we have that

S0 ⊆ V (H1 |Bt
0

) and S1 = V (H1 |Bt
1

). In particular, v ∈ S0 ⊆ V (H1 |Bt
0

), v < S1 = V (H1 |Bt
1

) and

S1 ⊆ V (H1 |Bt
1

), as required. For the inductive case, suppose we have Hi with the desired properties,

for i ∈ {1, . . . ,n − 1}. As (ti , Si ) and (ti+1, Si+1) are consistent, there is a subhypergraph H ′
i of

H such that Si = V (H ′
i |Bti ) and Si+1 = V (H ′

i |Bti+1 ). We take Hi+1 = Hi ∪ H ′
i . Note that Si+1 ⊆

V (Hi+1 |Bti+1 ) and v ∈ V (Hi+1 |Bt
0

) (using the inductive hypothesis v ∈ V (Hi |Bt
0

)). Observe that

V (Hi+1 |Bti ) = V (Hi |Bti )∪Si . Sincev < Si andv < V (Hi |Bti ) (by inductive hypothesis), we derive that

v < V (Hi+1 |Bti ). Since v ∈ V (Hi+1 |Bt
0

), it follows that v < V (Hi+1 |Bti+1 ); otherwise the connectivity

condition (2) for simplified point decompositions would be violated for Hi+1. Hence Hi+1 satisfies

all the required conditions.

For fpw(H ) ≥ spw(H ), let (T , (Bt )t ∈V (T ),A) be a flat point decomposition of H of width k . We

claim that (T , (Bt )t ∈V (T )) is a simplified point decomposition of H , and the result follows. Let H ′

be a subhypergraph of H . By definition of point decompositions, A[H ′]∅ is a realisation of A and

for every v ∈ V (H ′), the set {t ∈ V (TA[H ′]∅ ) : v ∈ V (H ′ |Bt )} induces a connected subtree of TA[H ′]∅ .

For every t ∈ V (T ) \V (TA[H ′]∅ ), we have V (H ′ |Bt ) = ∅ and then {t ∈ V (TA[H ′]∅ ) : v ∈ V (H ′ |Bt )} =

{t ∈ V (T ) : v ∈ V (H ′ |Bt )}. Since TA[H ′]∅ must be a subtree of T , the latter set induces a connected
subtree of T . Hence condition (2) of Definition 6.9 (simplified point decompositions) holds. □

Observe how a simplified point decomposition of H encodes tree decompositions for the subhy-

pergraphs of H without the need of a T -structure, unlike the case of flat point decompositions.

Whether arbitrary point decompositions can also be captured by a notion of decomposition that

does not use T -structures explicitly is an interesting question which we leave for future work.

For a hypergraph H , we define the point graph of H , denoted by pд(H ), as

pд(H ) := (P(H ), {{(v, e), (v ′, e ′)} : v = v ′
or e = e ′}).

Note that the point graph pд(H ) of H is isomorphic to L(inc(H )). There is a known duality between

β-cn and MIM (see e.g. [6, Theorem 2.18]):

Observation 6.11. For every hypergraph H , we have β-cn(H ) = MIM(inc(H )). By Observation
6.5, we have β-cn(H ) = α2(pд(H )).

Proposition 6.12. For every hypergraph H , we have spw(H ) ≤ α2-w(pд(H )) and α2-w(pд(H )) ≤

2 · spw(H ).

Proof. For spw(H ) ≤ α2
-w(pд(H )), let (T , (Bt )t ∈V (T )) be a tree decomposition of pд(H ) of α2

-

width k . We claim that (T , (Bt )t ∈V (T )) is a simplified point decomposition of H of width k . By
Observation 6.11, we have β-cn(H |Bt ) = α2(pд(H |Bt )) = α2(pд(H )[Bt ]) = α2

pд(H )
(Bt ), for every

t ∈ V (T ). Hence, the width of (T , (Bt )t ∈V (T )) is k . For condition (1) of Definition 6.9, let e ∈ H and

note that the set {(v, e) ∈ P(H ) : v ∈ e} forms a clique in pд(H ). Hence, there exists t ∈ V (T )
such that {(v, e) ∈ P(H ) : v ∈ e} ⊆ Bt . Towards a contradiction, suppose that condition (2) of

Definition 6.9 is violated, i.e., there is a subhypergraphH ′
ofH , a vertexv ∈ V (H ′) and distinct nodes

t1, t2, t3 ∈ V (T ) such that t3 is in the unique path from t1 to t2 in T , and v ∈ V (H ′ |Bt
1

) ∩V (H ′ |Bt
2

)

but v < V (H ′ |Bt
3

). In particular, there exist edges e1, e2 ∈ H ′
such that (v, e1) ∈ Bt1 , (v, e2) ∈ Bt2

and {(v, e1), (v, e2)} ∩ Bt3 = ∅. Since {(v, e1), (v, e2)} is an edge in pд(H ), there is a node t ∈ V (T )
such that {(v, e1), (v, e2)} ⊆ Bt . Using the connectivity of the tree decomposition (T , (Bt )t ∈V (T )),

we obtain that {(v, e1), (v, e2)} ∩ Bt3 , ∅; a contradiction.

For α2
-w(pд(H )) ≤ 2 · spw(H ), let (T , (Bt )t ∈V (T )) be a simplified point decomposition of H

of width k . We define T ′
to be the tree obtained from T by subdividing every edge in E(T ), i.e.,
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replacing every edge e = {t1, t2} ∈ E(T ) by two edges {t1, te } and {te , t2}, where te is a fresh node.

For t ∈ V (T ′), we define B′
t := Bt , if t ∈ V (T ), or B′

t := Bt1 ∪ Bt2 , if t = te with e = {t1, t2}.
We claim that (T ′, (B′

t )t ∈V (T ′)) is a tree decomposition of pд(H ). First note that, for every point

(v, e) in H , by condition (1) of simplified point decompositions, there is t ∈ V (T ) ⊆ V (T ′), such

that (v, e) ∈ Bt = B′
t , and hence condition (i) of tree decompositions holds. For condition (ii),

suppose (v, e) and (v ′, e) are points with v , v ′
. Again by condition (1), we obtain that there

is t ∈ V (T ) ⊆ V (T ′), such that {(v, e), (v ′, e)} ∈ Bt = B′
t . Now suppose that (v, e) and (v, e ′)

are points with e , e ′ and pick t, t ′ ∈ V (T ) such that (v, e) ∈ Bt and (v, e ′) ∈ Bt ′ . By applying

condition (2) of simplified point decompositions to the subhypergraph H ′ = {e, e ′}, we have that
{(v, e), (v, e ′)} ∩ Bs , ∅, for every s ∈ V (T ) in the unique path from t to t ′ in T . In particular,

there is an edge ê = {s1, s2} in this path such that (v, e) ∈ Bs1 and (v, e ′) ∈ Bs2 . It follows that
{(v, e), (v, e ′)} ⊆ B′

tê , for tê ∈ V (T ′), and hence condition (ii) holds. For a point (v, e) ofH , condition

(iii) follows from applying condition (2) to the subhypergraph H ′ = {e}. Finally, note that, by

Observation 6.11 and subadditivity of α2

pд(H )
, the α2

pд(H )
-width of (T ′, (B′

t )t ∈V (T ′)) is at most 2k , as

required. □

Theorem 6.3 follows from Propositions 6.12, 6.10, 6.6, and 6.7. Let us stress that given a branch

decomposition (T , δ ) of inc(H ) of MIM-width k ≥ 1, we can efficiently compute a flat point

decomposition (of polynomial size) of width at most 2k . By applying the construction in the

proof of Proposition 6.6 (and due to Proposition 6.12), from (T , δ ) we can efficiently compute a

simplified point decomposition for H of width at most 2k . Finally, the construction in the proof of

Proposition 6.10 of a flat point decomposition from the simplified point decomposition of width 2k ,
in particular, of the T -structureA, can be done in polynomial time. The main step is given two nodes

t, t ′ ∈ V (T ), where t ′ is the parent of t , and two sub-bags of the form (t, S1) and (t ′, S2), to check

whether they are consistent. This is equivalent to checking the existence of two subhypergraphs H1

andH2 with |H1 | ≤ 2k , |H2 | ≤ 2k , such that (i) S1 = V (H1 |Bt ), S2 = V (H2 |Bt ′ ), and (ii)V (H1 |Bt ′ ) ⊆ S2
and V (H2 |Bt ) ⊆ S1. This can be checked in polynomial time.

7 CONCLUSIONS
We have introduced a new width that unifies β-acyclicity and bounded MIM-width. We have

also identified a novel island of tractability for structurally restricted Max-CSPs. The main open

problem is to obtain more general hypergraph properties that lead to tractability, and ultimately

find the precise boundary of tractability. There are many natural hypergraph properties that

generalise bounded point-width whose tractability status is unclear (from less to more general):

bounded β-hypertreewidth (β-hw) [21], bounded β-fractional hypertreewidth (β-fhw), and bounded

β-submodular width (β-subw). In particular, we have β-subw ≤ β-fhw ≤ β-hw ≤ pw. For precise

definitions, see Appendix A.

In addition to β-acyclicity and MIM-width, our notion of point-width also subsumes a width

measure called coverwidth, introduced in [6, Section 5.3.2]. In Appendix D, we show that every class

of hypergraphs of bounded coverwidth also has bounded flat point-width, and hence, bounded MIM-

width. We also show that the converse does not hold, i.e., bounded MIM-width strictly generalises

bounded coverwidth.

We have focused on polynomial-time solvability for Max-CSPs. Regarding fixed-parameter
tractability (FPT), it is easy to show (cf. Appendix B) that Marx’s classification of CSPs [29]

implies an FPT classification of {0,1}-valued Max-CSPs and the FPT frontier is given by the classes

with bounded β-submodular width. This classification implies that for a class of unbounded β-
submodular width the {0, 1}-valued, and hence the finite-valued, problem Max-CSP(H ,−) is not
fixed-parameter (and thus not polynomial-time) tractable. Note that a collapse between bounded
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point-width and bounded β-submodular width would give us a complete classification of Max-CSPs

in terms of polynomial time-solvability (and FPT). Hence, a natural research direction is to study

the relationship between all these measures (pw, β-hw, β-fhw and β-subw). As a related result,

which could be interesting in its own right, we show (cf. Appendix C) that bounded β-fractional
hypertreewidth collapses to bounded β-hypertreewidth.

We finish with a few open problems. Firstly, we have shown (Theorem 5.5) that every β-acyclic
hypergraph has a point decomposition of polynomial size and width 1. We do not know whether the

converse is true. Secondly, as discussed before Example 3.8 in Section 3, we do not know whether

the problem of checking that a given triple is a point decomposition admits an efficient algorithm.

Finally, we do not know whether point decompositions of bounded width can be assumed to have

polynomial size (hence the dependency on ∥P ∥ in the statement of Theorem 4.9, and the importance

given to the fact that the decomposition has polynomial size in Theorem 5.5 and Theorem 6.2).
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A WIDTH MEASURES
Let H be a hypergraph and X ⊆ V (H ). The hypergraph induced by X , denote by H [X ], is defined as

H [X ] := {e ∩ X : e ∈ H , e ∩ X , ∅}.

Note that, in general, H [X ] is not a subhypergraph of H as defined in Section 2.

A fractional edge cover of a hypergraph H is a function γ : H → Q≥0 such that for all v ∈ V (H ),∑
e ∈H :v ∈e γ (e) ≥ 1, and the fractional edge cover number of H , denoted by fcn(H ), is the minimum

of

∑
e ∈H γ (e) over all fractional edge covers γ of H .

A tree decomposition of a hypergraph H is a pair (T , (Bt )t ∈V (T )), where T is a tree and each bag

Bt is a subset ofV (H ) such that (i) for each e ∈ H there exists t ∈ V (T ) such that e ⊆ Bt and (ii) for

each v ∈ V (H ) the set {t ∈ V (T ) : v ∈ Bt } induces a connected subtree of T .
Let H be a hypergraph. For any function f : 2

V (H ) → Q≥0, we define the f -width of a tree

decomposition (T , (Bt )t ∈V (T )) of H as the maximum of f (Bt ) taken over all t ∈ V (T ), and the

f -width of H as the minimum f -width of a tree decomposition of H . Given a hypergraph H ,

• The treewidth [32] of H is its s-width, where s(X ) = |X | − 1;

• The (generalised) hypertreewidth [20] of H is its c-width, where c(X ) = cn(H [X ]);

• The fractional hypertreewidth [23] of H is its f c-width, where f c(X ) = fcn(H [X ]).

The treewidth, hypertreewidth and fractional hypertreewidth of a hypergraph H will be denoted

by tw(H ), hw(H ) and fhw(H ), respectively. Let us notice that a hypergraph H is α-acyclic if and
only if hw(H ) = 1.

Let H be a hypergraph. If F is a set of functions from 2
V (H )

to Q≥0, we call F -width of H the

quantity sup{ f -width(H ) : f ∈ F }. A function f : 2
V (H ) → Q≥0 is edge-dominated if f (e) ≤ 1 for

all e ∈ H , and submodular if f (A∩B)+ f (A∪B) ≤ f (A)+ f (B) for allA,B ⊆ V (H ). The submodular
width [29] of H , denoted by subw(H ), is its Fs -width, where Fs is the set of all edge-dominated

submodular functions from 2
V (H )

to Q≥0 satisfying f (∅) = 0.

Given a hypergraphH , the β-hypertreewidth [21] (resp. β-fractional hypertreewidth, β-submodular
width) of H is the maximum hypertreewidth (resp. fractional hypertreewidth, submodular width)

taken over all subhypergraphs of H . We denote these quantities by β-hw(H ), β-fhw(H ) and

β-subw(H ), respectively. Observe that a hypergraph H is β-acyclic if and only if β-hw(H ) = 1.

B FPT CLASSIFICATION FOR {0,1}-VALUED MAX-CSPS
We denote by {0, 1}-Max-CSP the restriction of Max-CSP to {0, 1}-valued functions. In other words,

an instance of {0, 1}-Max-CSP is syntactically identical to a CSP instance but the goal is to compute

the maximum number of constraints that can be simultaneously satisfied.

We shall consider a parameterised version of {0, 1}-Max-CSP(H ,−) with parameter |H | (we

slightly abuse notation and denote this parameterised problem simply {0, 1}-Max-CSP(H ,−)). In
particular, {0, 1}-Max-CSP(H ,−) is in the class FPT of fixed-parameter tractable problems if an

instance I of {0, 1}-Max-CSP(H ,−) can be solved in time f (|H |) · |I |c , where f is any computable

function and c > 0 is a constant.

Theorem B.1. Let H be a recursively enumerable class of hypergraphs. Then, assuming the Ex-
ponential Time Hypothesis (ETH), {0, 1}-Max-CSP(H ,−) is in FPT if and only if H has bounded
β-submodular width.
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Proof. For the tractability part, supposeH has bounded β-submodular width and let I be an
instance of {0, 1}-Max-CSP(H ,−) with the underlying hypergraph H ∈ H . Let π = I1, . . . , Ir be
an enumeration of all the sub-instances of I (that is, instances obtained from I by removing some

constraints) ordered in non-increasing order according to the number of constraints (and hence

according to the number of edges in the underlying hypergraph). To compute the optimal value of

I , it suffices to find the first sub-instance according to π that has a solution. Since each sub-instance

has bounded submodular width, the existence of a solution can be checked in FPT by the result

of [29]. Since the number r of all sub-instances is bounded in terms of |H |, the whole procedure

can be done in FPT.

For the hardness, suppose thatH has unbounded β-submodular width. Then for each H ∈ H we

can take a subhypergraph H ′
such that the class H ′

:= {H ′ | H ∈ H} has unbounded submodular

width. By Marx’s result [29], assuming ETH, we have that CSP(H ′,−) is not in FPT. It suffices

to show that CSP(H ′,−) fpt-reduces to {0, 1}-Max-CSP(H ,−). Let I be an instance of CSP(H ′,−)
with the underlying hypergraph H ′ ∈ H ′

. We start by enumerating H until we find a hypergraph

H that contains as a subhypergraph H ′
. By definition of H ′

, such an H must exist. Let J be the
instance of {0, 1}-Max-CSP(H ,−) obtained from I by additionally adding one empty constraint

for each edge e ∈ H \ H ′
. We have that I has a solution if and only if the optimal value of J is the

number of constraints in I . Note that the reduction can be done in FPT time. □

C COLLAPSE OF β-HYPERTREEWIDTH AND β-FRACTIONAL HYPERTREEWIDTH
It follows from the definitions that β-fhw(H ) ≤ β-hw(H ), for every hypergraph H . In this section

we show that β-hw(H ) ≤ f (β-fhw(H )), for a fixed function f (Proposition C.3). The key ingredient

of the proof is the following lemma, which we borrow from [16]. The VC dimension of a hypergraph
H , denoted by VC(H ), is the size of the largest set X ⊆ V (H ) such that H [X ] = 2

X
. Note that the

precise statement of this result as given in [16] (in the proof of Theorem 6.1) differs by a factor

fcn(H ), but we believe that this is due to a typographical error on their side.

Lemma C.1 ([16]). For any hypergraph H , it holds that

cn(H ) ≤ 2
VC(H )+2 · fcn(H ) · log(11 · fcn(H ))

It follows that if a hypergraph H has a fractional edge cover of small weight then it has a small

edge cover unless its VC dimension is large. We will combine this fact with a straightforward upper

bound on the VC dimension in terms of β-fhw(H ).

Lemma C.2. For any hypergraph H , it holds that

VC(H ) ≤ 2 · β-fhw(H )

Proof. Let X ⊆ V (H ) be a subset of vertices of size VC(H ) such that H [X ] = 2
X
. Let KX be

the complete graph with vertex set X . Since KX is a subhypergraph of H [X ] and fhw does not

increase by taking induced hypergraphs, it holds that β-fhw(H ) ≥ β-fhw(H [X ]) ≥ fhw(KX ). Now,

let (T , (Bt )t ∈V (T )) be a tree decomposition of KX of f c-width fhw(KX ). For each t ∈ V (T ), let γt be
a fractional edge cover of KX [Bt ] such that

∑
e ∈KX [Bt ] γt (e) = fcn(KX [Bt ]). Since KX is a clique on

X , there exists t∗ ∈ V (T ) such that Bt ∗ = X , and hence KX [Bt ∗ ] = KX . It follows that

fhw(KX ) ≥
∑
e ∈KX

γt ∗ (e) ≥
1

2

∑
v ∈X

∑
e ∈KX :v ∈e

γt ∗ (e) ≥
1

2

|X |.

Hence,

β-fhw(H ) ≥ β-fhw(H [X ]) ≥ fhw(KX ) ≥
1

2

|X | =
1

2

VC(H ).

□
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Proposition C.3. For any hypergraph H , it holds that

β-hw(H ) ≤ 4
β -fhw(H )+1 · β-fhw(H ) · log(11 · β-fhw(H )).

Proof. Let H ′
be a subhypergraph of H , and (T , (Bt )t ∈V (T )) be a tree decomposition of H ′

of

f c-width at most β-fhw(H ). By Lemma C.1 and Lemma C.2, for each bag Bt we have

cn(H ′[Bt ]) ≤ 2
VC(H ′[Bt ])+2 · fcn(H ′[Bt ]) · log(11 · fcn(H

′[Bt ]))

≤ 2
VC(H )+2 · β-fhw(H ) · log(11 · β-fhw(H ))

≤ 4
β -fhw(H )+1 · β-fhw(H ) · log(11 · β-fhw(H ))

and hence the hypertreewidth of H ′
is at most 4

β -fhw(H )+1 · β-fhw(H ) · log(11 · β-fhw(H )). This is

true for all choices of subhypergraph H ′
, so the claim follows. □

Corollary C.4. A class of hypergraphs has bounded β-hypertreewidth if and only if it has bounded
β-fractional hypertreewidth.

D COVERWIDTH AND MIM-WIDTH
In this section, we prove that boundedMIM-width strictly generalises bounded coverwidth. We start

with some definitions. LetH be a hypergraph and < be an ordering ofV (H ). For x ∈ V (H ), we define

Hx
to be the set of edges of H that can be reached from x using only vertices ≤ x . More formally, a

walk from x ∈ V (H ) to e ∈ H is a sequence (x1, e1, x2, e2, . . . , xn, en) with n ≥ 1 such that x = x1,
e = en , xn ∈ en and {xi , xi+1} ⊆ ei , for all 1 ≤ i ≤ n − 1. Then e ∈ Hx

if and only if there is a walk

(x1, e1, x2, e2, . . . , xn, en) from x to e with xi ≤ x , for all 1 ≤ i ≤ n. Note that {e ∈ H : x ∈ e} ⊆ Hx
.

We define Hx [≥ x] := Hx [V (Hx )≥x ] = {e ∩ V (Hx )≥x : e ∈ Hx , e ∩ V (Hx )≥x , ∅}, where

V (Hx )≥x = {y ∈ V (Hx ) : y ≥ x}. Observe that x ∈ V (Hx [≥ x]). The coverwidth of the ordering <
is maxx ∈V (H ) β-cn(H

x [≥ x]). The coverwidth of H , denoted by cw(H ), is the minimum coverwidth

over all orderings of V (H ). It was shown in [6] that bounded coverwidth implies tractability of

Max-CSP:

Theorem D.1 ([6]). Let k ≥ 1 be fixed. There exists an algorithm which, given as input a Max-CSP
instance I with hypergraph H and an ordering of V (H ) of coverwidth ≤ k , computes opt(I ) in time
polynomial in ∥I ∥.

The main result of this section is the following:

Proposition D.2. For every hypergraph H , we have spw(H ) ≤ cw(H ).

Proof. Fix an ordering < ofV (H ) of coverwidth ≤ k , wherek := cw(H ). Let xmax := max<(V (H )).

We define T to be the rooted tree with vertex set {tx : x ∈ V (H )} and root txmax
such that ty is

the parent of tx in T if and only if |V (Hx [≥ x])| ≥ 2 and y = min<(V (Hx [≥ x]) \ {x}), or
|V (Hx [≥ x])| = 1 and y = xmax. For tx ∈ V (T ), we define Btx := {(y, e) : e ∈ Hx ,y ∈ e,y ≥ x}.
We claim that (T , (Bt )t ∈V (T )) is a simplified point decomposition of H of width ≤ k . To see the

bound on thewidth, note thatH |Btx = Hx [≥ x]. For condition (1) of simplified point decompositions,

given e ∈ H , we have that {(y, e) : y ∈ e} ⊆ Btx , where x = min<({y : y ∈ e}). For condition (2),

we need the following claim:

Claim 7. Suppose that tx is a descendent of ty inT and |V (H z [≥ z])| ≥ 2, where tz is the only child
of ty that is ancestor of tx . Then Hx ⊆ Hy .

Proof. We show the claim by induction. For the base case, assume ty is the parent of tx , and let

e ∈ Hx
. It follows that there is a walk πe from x to e using vertices ≤ x . Since |V (Hx [≥ x])| ≥ 2,

we have y = min<(V (Hx [≥ x]) \ {x}). In particular, there is f ∈ Hx
with y ∈ f , and hence a walk
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πf from x to f using vertices ≤ x . We can concatenate y, π−1
f and πe , where π

−1
f is the reverse

sequence of πf , and obtain a walk from y to e using vertices ≤ y (since x < y). Hence, e ∈ Hy
. Now

suppose that tx is a descendant of tz and ty is the parent of tz , where x < z < y. Let e ∈ Hx
. By

induction, e ∈ H z
. Using the same argument as above, we obtain that e ∈ Hy

. ■

Let H ′
be a subhypergraph of H . Suppose that x ∈ V (H ′ |Bty ) ∩V (H ′ |Btz ), and tw is in the unique

path from tz to ty in T , where x,y, z,w ∈ V (H ). Assume first that tz is a descendant of ty . Since
x ∈ V (H ′ |Btz ), there is a point (x, e) ∈ Btz such that x ∈ e and e ∈ H ′

. By definition of Btz , we have
that e ∈ H z

. Since w , xmax, we can apply Claim 7 and obtain that e ∈ Hw
. Sincew < y ≤ x , we

have (x, e) ∈ Btw . Therefore, x ∈ V (H ′ |Btw ). Suppose now that tz and ty are incomparable inT . Since
x ∈ V (H ′ |Btz ), there is e ∈ H z

with x ∈ e and e ∈ H ′
. Let tr be the only child of tx that is ancestor

of tz . Since r , xmax, by Claim 7, we have that e ∈ H r
. As r < x , we have that {r , x} ⊆ V (H r [≥ r ]).

We can then apply Claim 7 and deduce that e ∈ Hx
. In particular, x ∈ V (H ′ |Btx ). Since tz and ty are

descendent of tx , we obtain that x ∈ V (H ′ |Btw ) by applying the previous case. Hence condition (2)

holds. □

Together with Theorem 6.3 and Proposition 6.10, we obtain that mimw(H ) ≤ 4 · cw(H ), for every

hypergraph H . In particular, we have:

Corollary D.3. Every class of hypergraphs of bounded coverwidth also has bounded MIM-width.

It follows from the proofs of Propositions D.2, 6.12 and 6.7, that, given a hypergraph H and

an ordering of V (H ) of coverwidth ≤ k , we can compute in time polynomial in ∥H ∥, a branch

decomposition of H of MIM-width ≤ 4k . In particular, we obtain Theorem D.1 as a consequence of

Theorem 6.1.

Finally, we show that the converse to Corollary D.3 does not hold:

Proposition D.4. There exists a class of hypergraphs with bounded MIM-width and unbounded
coverwidth.

Proof. For every n ≥ 1, we define Hn to be the hypergraph with vertex set X ∪ Y , where
X = {x1, . . . , xn} and Y = {y1, . . . ,yn} and edges H = {X ∪ {y} : y ∈ Y } ∪ {Y ∪ {x} : x ∈ X }. Let

C := {Hn : n ≥ 1}. We also define ex := Y ∪ {x}, for every x ∈ X ; and ey := X ∪ {y}, for every
y ∈ Y .

We first prove that C has unbounded coverwidth by showing that cw(Hn) ≥ n, for every n ≥ 1.

Let z1, . . . , z2n be any ordering ofV (Hn) and assume without loss of generality that z1 ∈ X . Observe

that H z1 [≥ z1] = {e ∈ Hn : z1 ∈ e}. Then we have {ey1, . . . , eyn } ⊆ H z1 [≥ z1]. Note that {ey1,y1},
{ey2,y2}, . . . , {eyn ,yn} is an induced matching of inc(H z1 [≥ z1]). By Observation 6.11, we obtain

that β-cn(H z1 [≥ z1]) ≥ n, and hence, the coverwidth of the ordering z1, . . . , z2n is ≥ n. Since this
holds for any ordering, we have that cw(Hn) ≥ n.

Now we show that mimw(Hn) ≤ 2, for every n ≥ 1. We define a branch decomposition (T , δ ) for
inc(Hn) as follows. Let P be the rooted path

t1,1, t1,2, . . . , tn,1, tn,2, s1,1, s1,2, . . . , sn,1, sn,2

with root t1,1. The tree T is obtained from P by adding, for every 1 ≤ i ≤ n, fresh nodes t ′i ,1, t
′
i ,2,

whose parents are ti ,1, ti ,2, respectively; and by adding for every 1 ≤ i ≤ n − 1, fresh nodes s ′i ,1, s
′
i ,2,

whose parents are si ,1, si ,2, respectively, and a fresh node s ′n,1 with parent sn,1. For every 1 ≤ i ≤ n,
we let δ (t ′i ,1) = xi and δ (t

′
i ,2) = exi ; for every 1 ≤ i ≤ n − 1, we let δ (s ′i ,1) = yi and δ (s

′
i ,2) = eyi ; and

we set δ (s ′n,1) = yn and δ (sn,2) = eyn .
We claim that the MIM-width of (T , δ ) is at most 2. Let t be an internal node (i.e., not a leaf)

of T . Suppose that t = ti ,1 for some 1 ≤ i ≤ n (the case t = si ,1 is analogous). Then we have
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that inc(Hn)[Vt ,V (inc(Hn)) \Vt ] is the disjoint union of two complete bipartite graphs: one with

partition ({x1, . . . , xi−1}, {ey1, . . . , eyn }) and the other with partition ({ex1, . . . , exi−1 }, {y1, . . . ,yn}).
In particular, MIM(inc(Hn)[Vt ,V (inc(Hn)) \Vt ]) ≤ 2. Now suppose that t = ti ,2 for some 1 ≤ i ≤ n
(again, the case t = si ,2 is analogous). In this case, inc(Hn)[Vt ,V (inc(Hn)) \ Vt ] is the union of a

complete bipartite graph with partition ({ex1, . . . , exi−1 }, {y1, . . . ,yn}) and the graph obtained from

the complete bipartite graphwith partition ({x1, . . . , xi }, {ey1, . . . , eyn }) by adding the vertex exi and
the edge {xi , exi }. Hence, MIM(inc(Hn)[Vt ,V (inc(Hn)) \Vt ]) ≤ 2. We conclude that mimw(Hn) ≤ 2,

and therefore, that C has bounded MIM-width. □
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