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Abstract.
The constraint satisfaction problem (CSP) is concerned with homomorphisms between two

structures. For CSPs with restricted left-hand side structures, the results of Dalmau, Kolaitis, and
Vardi [CP’02], Grohe [FOCS’03/JACM’07], and Atserias, Bulatov, and Dalmau [ICALP’07] establish
the precise borderline of polynomial-time solvability (subject to complexity-theoretic assumptions)
and of solvability by bounded-consistency algorithms (unconditionally) as bounded treewidth modulo
homomorphic equivalence.

The general-valued constraint satisfaction problem (VCSP) is a generalisation of the CSP concerned
with homomorphisms between two valued structures. For VCSPs with restricted left-hand side valued
structures, we establish the precise borderline of polynomial-time solvability (subject to complexity-
theoretic assumptions) and of solvability by the k-th level of the Sherali-Adams LP hierarchy
(unconditionally). We also obtain results on related problems concerned with finding a solution and
recognising the tractable cases; the latter has an application in database theory.
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1. Introduction.

1.1. Constraint Satisfaction Problems. The homomorphism problem for
relational structures is a fundamental computer science problem: Given two relational
structures A and B over the same signature, the goal is to determine the existence
of a homomorphism from A to B (see, e.g., the book by Hell and Nešetřil on this
topic [35]). The homomorphism problem is known to be equivalent to the evaluation
problem and the containment problem for conjunctive database queries [13, 37], and
also to the constraint satisfaction problem (CSP) [24], which originated in artificial
intelligence [43] and provides a common framework for expressing a wide range of both
theoretical and real-life combinatorial problems.

For a class C of relational structures, we denote by CSP(C, −) the restriction
of the homomorphism problem in which the input structure A belongs to C and the
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input structure B is arbitrary (these types of restrictions are known as structural
restrictions). Similarly, by CSP(−, C) we denote the restriction of the homomorphism
problem in which the input structure A is arbitrary and the input structure B belongs
to C.

Feder and Vardi initiated the study of CSP(−, {B}), also known as non-uniform
CSPs, and famously conjectured that, for every fixed finite structure B, CSP(−, {B})
is in PTIME or CSP(−, {B}) is NP-complete. For example, if B is a clique on k
vertices then CSP(−, {B}) is the well-known k-colouring problem, which is known
to be in PTIME for k ≤ 2 and NP-complete for k ≥ 3. Most of the progress on the
Feder-Vardi conjecture (e.g., [7, 3, 36, 11, 2]) is based on the algebraic approach [10],
culminating in two (affirmative) solutions to the Feder-Vardi conjecture obtained
independently by Bulatov [8] and Zhuk [52].

CSP(C, −) is only interesting if C is an infinite class of structures as otherwise
CSP(C, −) is always in PTIME. (This is, however, not the case for CSP(−, C) as
we have seen in the example of 3-colouring.) Freuder observed that CSP(C, −) is in
PTIME if C consists of trees [26] or, more generally, if it has bounded treewidth [27].
Later, Dalmau, Kolaitis, and Vardi showed that CSP(C, −) is solved by k-consistency,
a fundamental local propagation algorithm [17], if C is of bounded treewidth modulo
homomorphic equivalence, i.e., if the treewidth of the cores of the structures from C is
at most k, for some fixed k ≥ 1 [16]. Atserias, Bulatov, and Dalmau showed that this
is precisely the class of structures solved by k-consistency [1]. Grohe proved [32] that
the tractability result of Dalmau et al. [16] is optimal for classes C of bounded arity:
Under the assumption that FPT 6= W[1], CSP(C, −) is tractable if and only if C has
bounded treewidth modulo homomorphic equivalence.

1.2. General-valued Constraint Satisfaction Problems. General-valued
Constraint Satisfaction Problems (VCSPs) are generalisations of CSPs which al-
low for not only decision problems but also for optimisation problems (and the mix of
the two) to be considered in one framework [15]. In the case of VCSPs we deal with
valued structures. Regarding tractable restrictions, the situation of the non-uniform
case is by now well-understood. Indeed, it holds that for any fixed valued structure B,
either VCSP(−, {B}) is in PTIME or VCSP(−, {B}) is NP-complete [41, 39].

For structural restrictions, it is a folklore result that VCSP(C, −) is tractable if C
is of bounded treewidth; see, e.g. [4]. So is the belief that the (k + 1)-st level of the
Sherali-Adams LP hierarchy [48] solves VCSP(C, −) to optimality if the treewidth of
all structures in C is at most k. (We are not aware of any reference for this. For certain
special problems, it is discussed in [5]. For the extension complexity of such problems,
see [38].) However, unlike the CSP case, the precise borderline of polynomial-time
solvability and the power of fundamental algorithms (such as the Sherali-Adams LP
hierarchy) for VCSP(C, −) is still unknown. Understanding these complexity and
algorithmic frontiers for VCSP(C, −) is the main goal of this paper.

1.3. Contributions. We study the problem VCSP(C, −) for classes C of valued
structures over finite signatures and give three main results.

(1) Complexity classification. As our first result, we give (in Theorem 4.1) a
complete complexity classification of VCSP(C, −) and identify the precise borderline
of tractability, for classes C of bounded arity. A key ingredient in our result is a
novel notion of valued equivalence and a characterisation of this notion in terms of
valued cores. More precisely, we show that VCSP(C, −) is tractable if and only
if C has bounded treewidth modulo valued equivalence. This latter notion strictly
generalises bounded treewidth and it is strictly weaker than bounded treewidth modulo
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homomorphic equivalence. Our proof builds on the characterisation by Dalmau et
al. [16] and Grohe [32] for CSPs. We show that the newly identified tractable classes
are solvable by the Sherali-Adams LP hierarchy.

(2) Power of Sherali-Adams. Our second result (Theorem 5.4) gives a precise
characterisation of the power of Sherali-Adams for VCSP(C, −). In particular, we
show that the (k + 1)-st level of the Sherali-Adams LP hierarchy solves VCSP(C, −)
to optimality if and only if the valued cores of the structures from C have treewidth
modulo scopes at most k and the overlaps of scopes are of size at most k + 1. The
proof builds on the work of Atserias et al. [1] and Thapper and Živný [51], as well as
on an adaptation of the classical result connecting treewidth and brambles by Seymour
and Thomas [47].

(3) Search VCSP. Our first two results are for the VCSP in which we ask for the
cost of an optimal solution. It is also possible to define the VCSP as a search problem,
in which one is additionally required to return a solution with the optimal cost. A
complete characterisation of tractable search cases in terms of structural properties of
(a class of structures) C is open even for CSPs and there is some evidence that the
tractability frontier cannot be captured in simple terms.1 Building on our first two
results as well as on techniques from [50], we give in Section 6 a characterisation of
the tractable cases for search VCSP(C, −) in terms of tractable core computation
(Theorem 6.1).

(4) Additional results. In addition to our main results, we provide in Section 7
tight complexity bounds for several problems related to our classification results, e.g.,
deciding whether the treewidth is at most k modulo valued equivalence, deciding
solvability by the k-th level of the Sherali-Adams LP hierarchy, and deciding valued
equivalence for valued structures. These results have interesting consequences to
database theory. Specifically, to the evaluation and optimisation of conjunctive queries
over annotated databases. In particular, we show that the containment problem of
conjunctive queries over the tropical semiring is in NP, thus improving on the work
of [40], which put it in Πp

2.

1.4. Related work. In his PhD thesis [22], Färnqvist studied the complexity of
VCSP(C, −) and some other fragments of VCSPs (see also [23, 21]). He considered
a very specific framework that only allows for particular types of classes C’s to be
classified. For these classes, he showed that only bounded treewidth gives rise to
tractability (assuming bounded arity) and asked about more general classes. In
particular, decision CSPs do not fit in his framework and Grohe’s classification [32] is
not implied by Färnqvist’s work. In contrast, our characterisation (of all classes C’s
of valued structures) gives rise to new tractable cases going beyond those identified
by Färnqvist. Moreover, we can derive both Grohe’s classification and Färnqvist’s
classification directly from our results, as explained in Section 4.

It is known that Grohe’s characterisation applies only to classes C of bounded
arity, i.e., when the arities of the signatures are always bounded by a constant (for
instance, CSPs over digraphs) and fails for classes of unbounded arity. In this direction,
several hypergraph-based restrictions that lead to tractability have been proposed (for
a survey see, e.g. [28]). Nevertheless, the precise tractability frontier for CSP(C, −)
is not known. The situation is different for fixed-parameter tractability : Marx gave
a complete classification of the fixed-parameter tractable restrictions CSP(C, −), for

1In particular, [9, Lemma 1] shows that a description of tractable cases of SCSP(C, −), which is
the search variant of CSP(C, −) defined in Section 6, would imply a description of tractable cases of
CSP(−, {B}).
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classes C of structures of unbounded arity [42]. Gottlob et al. [29] and Färnqvist [21]
applied well-known hypergraph-based tractable restrictions of CSPs to VCSPs.

2. Preliminaries. We assume familiarity with relational structures and homo-
morphisms. Briefly, a relational signature is a finite set τ of relation symbols R, each
with a specified arity ar(R). A relational structure A over a relational signature τ
(or a relational τ -structure, for short) is a finite non-empty universe A together with
one relation RA ⊆ Aar(R) for each symbol R ∈ τ . A homomorphism from a relational
τ -structure A (with universe A) to a relational τ -structure B (with universe B) is a
mapping h : A→ B such that for all R ∈ τ and all tuples x ∈ RA we have h(x) ∈ RB.
We refer the reader to [35] for more details.

We use Q≥0 to denote the set of nonnegative rational numbers with positive

infinity, i.e. Q≥0 = Q≥0 ∪ {∞}. As usual, we assume that ∞+ c = c+∞ =∞ for all

c ∈ Q≥0, ∞× 0 = 0×∞ = 0, ∞× c = c×∞ =∞ for all c > 0, and c/∞ = 0 for all
c ∈ Q≥0.

Valued structures. A signature is a finite set σ of function symbols f , each
with a specified arity ar(f). A valued structure A over a signature σ (or valued
σ-structure, for short) is a finite non-empty universe A together with one function
fA : Aar(f) → Q≥0 for each symbol f ∈ σ. We define tup(A) to be the set of all pairs

(f,x) such that f ∈ σ and x ∈ Aar(f). The set of positive tuples of A is defined by
tup(A)>0 := {(f,x) ∈ tup(A) | fA(x) > 0}. If A,B, . . . are valued structures, then
A,B, . . . denote their respective universes.

VCSPs. We define Valued Constraint Satisfaction Problems (VCSPs) as in [49].
An instance of the VCSP is given by two valued structures A and B over the same
signature σ. For a mapping h : A→ B, we define

cost(h) =
∑

(f,x)∈tup(A)

fA(x)fB(h(x)).

If needed, we will write costA→B(h) for cost(h) to emphasise the source and target
structures. Given a VCSP instance, the goal is to find the minimum cost over all
possible mappings h : A→ B. We denote this cost by opt(A,B).

For a class C of valued structures (not necessarily over the same signature), we
denote by VCSP(C, −) the class of VCSP instances (A,B) such that A ∈ C. We say
that VCSP(C, −) is in PTIME, the class of problems solvable in polynomial time,
if there is a deterministic algorithm that solves any instance (A,B) of VCSP(C, −)
in time (|A|+ |B|)O(1). We also consider the parameterised version of VCSP(C, −),
denoted by p-VCSP(C, −), where the parameter is |A|. We say that p-VCSP(C,
−) is in FPT, the class of problems that are fixed-parameter tractable, if there is
a deterministic algorithm that solves any instance (A,B) of p-VCSP(C, −) in time
f(|A|) · |B|O(1), where f : N→ N is an arbitrary computable function. The class W[1],
introduced in [19], can be seen as an analogue of NP in parameterised complexity
theory. Proving W[1]-hardness of p-VCSP(C, −) (under an fpt-reduction, formally
defined in Section 4.1) is a strong indication that p-VCSP(C, −) is not in FPT as
it is believed that FPT 6= W[1]. We refer the reader to [25] for more details on
parameterised complexity.

Treewidth of a valued structure. The notion of treewidth (originally introduced by
Bertelé and Brioschi [4] and later rediscovered by Robertson and Seymour [44]) is a
well-known measure of the tree-likeness of a graph [18]. Let G = (V (G), E(G)) be a
graph. A tree decomposition of G is a pair (T, β) where T = (V (T ), E(T )) is a tree
and β is a function that maps each node t ∈ V (T ) to a subset of V (G) such that
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1. V (G) =
⋃
t∈V (T ) β(t),

2. for every u ∈ V (G), the set {t ∈ V (T ) | u ∈ β(t)} induces a connected
subgraph of T , and

3. for every edge {u, v} ∈ E(G), there is a node t ∈ V (T ) with {u, v} ⊆ β(t).
The width of the decomposition (T, β) is max{|β(t)| | t ∈ V (T )} − 1. The treewidth
tw(G) of a graph G is the minimum width over all its tree decompositions.

Let A be a relational structure over relational signature τ . Its Gaifman graph
(also known as its primal graph), denoted by G(A), is the graph whose vertex set is
the universe of A and whose edges are the pairs {u, v} for which there is a tuple x
and a relation symbol R ∈ τ such that u, v appear in x and x ∈ RA. We define the
treewidth of A to be tw(A) = tw(G(A)).

Let A be a valued σ-structure. If A is the left-hand side of an instance of the
VCSP, the only tuples relevant to the problem are those in tup(A)>0. Hence, in order
to define structural restrictions and in particular, the notion of treewidth, we focus
on the structure induced by tup(A)>0. Formally, we associate with the signature σ
a relational signature rel(σ) that contains, for every f ∈ σ, a relation symbol Rf of
the same arity as f . We define Pos(A) to be the relational structure over rel(σ) with

the same universe A of A such that x ∈ RPos(A)
f if and only if fA(x) > 0. We let the

treewidth of A be tw(A) = tw(Pos(A)).

Remark 2.1. Observe that, in the VCSP, we allow infinite costs not only in B
but also in the left-hand side structure A. This allows us to consider the VCSP as
the minimum-cost mapping problem between two mathematical objects of the same
nature. Intuitively, mapping the tuples of A to infinity ensures that those are logically
equivalent to hard constraints, as any minimum-cost solution of finite cost must map
them to tuples of cost exactly 0 in B. Thus, decision CSPs, which are {0,∞}-valued
VCSPs, are a special case of our definition and all our results also apply to CSPs.

3. Equivalence for valued structures. We start by introducing the notion of
valued equivalence that is crucial for our results.

Definition 3.1. Let A,B be valued σ-structures. We say that A improves B,
denoted by A � B, if opt(A,C) ≤ opt(B,C) for all valued σ-structures C.

When two valued structures improve each other, we call them equivalent. In
Section 1, we used the term “valued equivalence”. In the rest of the paper, we drop
the word “valued” unless needed for clarity.

Definition 3.2. Let A,B be valued σ-structures. We say that A and B are
equivalent, denoted by A ≡ B, if A � B and B � A.

Hence, two valued σ-structures A and B are equivalent if they have the same
optimal cost over all right-hand side valued structures. Observe that equivalence
implies homomorphic equivalence of Pos(A) and Pos(B). Indeed, whenever Pos(A)
is not homomorphic to Pos(B), we can define a valued σ-structure C as follows: C
and B have the same universe B, and for every f ∈ σ and x ∈ Bar(f), fC(x) = 0 if
(f,x) ∈ tup(B)>0, and fC(x) = ∞ otherwise. Since the identity mapping has cost
0, we have opt(B,C) = 0. On the other hand, opt(A,C) =∞ as any finite-cost map
from A to C is a homomorphism from Pos(A) to Pos(B). Consequently, A 6≡ B. As
the following example shows, the converse does not hold in general.

Example 3.3. Consider the valued σ-structures A and B from Figure 1, with σ =
{f, µ}, where f and µ are binary and unary function symbols, respectively. In Figure 1,
µ is represented by the numbers labelling the nodes, and f is represented as follows:
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0. It can be proved that the labels produced by the previous algorithm are precisely the levels of G. We have the
following lemmas, from [21]:

Lemma 8.2. If G and H are two balanced digraphs such that G → H, then hg(G) ≤ hg(H).

Lemma 8.3. Let G and H be two balanced digraphs of the same height, then any homomorphism from G into H
preserves the levels of vertices.

Now we prove the Proposition. Let P and P ′ be oriented paths. We define the digraph D(P, P ′) as follows: Consider
the digraph ({a, b, c, d}, {(a, b), (a, d), (c, b), (c, d)}). Add disjoint copies of P and P ′ and identify the initial vertex
of the copy of P and P ′, with b and d, respectively. Finally, add disjoint copies of P and P ′ again, and identify the
terminal vertex of the copy of P and P ′, with a and c, respectively. See Figure 3.

a11

1 1 1 1 1

111

111

1 1 1

1 2 3 2 1

a′
1 a′

2 a′
3 a′

4 a′
5

Figure 3:

Now, for oriented paths P and P ′, we define Dac(P, P ′) and Dbd(P, P ′) as the digraphs obtained from D(P, P ′) by
identifying a with c, and b with d, respectively. See Figure 4.

e

b

P

P P ′

P ′

d

e

P

P ′

P ′P a c

Figure 4: The digraphs Dac(P, P ′) and Dbd(P, P ′).

We have the following claim:

Claim 8.4. Let P and P ′ be incomparable (P ̸→ P ′ and P ′ ̸→ P ) oriented paths of the same net length k > 0, such
that each interior vertex (vertex different from the initial and terminal vertices) in P and P ′ has a level that is
neither 0 nor k. Then Dac(P, P ′) and Dbd(P, P ′) are incomparable cores.

Proof: Suppose that Dac(P, P ′) is not a core. Then Dac(P, P ′)
h−→ Dac(P, P ′), where h is not surjective. Using

Lemma 8.3, we know that h preserves levels. It follows that h(e) = e (see Figure 5). Now, h(x1) is either x1 or x3.
Note that h(x1) = x3, implies that P → P ′, since no vertex in the copy of P between x1 and e can be mapped to
b or d, and no vertex, except for the terminal one, has level k. It follows that h(x1) = x1. Similarly, we have that
h(x3) = x3. Using the same argument, we have that h(b) = b, otherwise h(b) = d and P → P ′, since no vertex in

14

A B A′

Figure 1. The valued structures from Examples 3.3 and 3.14.

pairs receiving cost∞ are depicted as edges, while all remaining pairs are mapped to 0.
Observe that Pos(A) and Pos(B) are homomorphically equivalent. However, they are
not (valued) equivalent. Indeed, consider the valued σ-structure C with same universe
B as B such that (i) for every x ∈ B2, fC(x) = 0 if fB(x) =∞, otherwise fC(x) =∞,
and (ii) µC = µB. It follows that opt(A,C) = 9 and opt(B,C) = 5, and thus A 6≡ B.

In the rest of the section, we give characterisations of equivalence in terms of
certain types of homomorphisms and (valued) cores. We conclude with a useful
characterisation of bounded treewidth modulo equivalence in terms of cores. In order
to keep the flow uninterrupted, we defer (most of) the proofs from this section to
Appendix A.

3.1. Inverse fractional homomorphisms. A homomorphism between two
relational structures is a structure-preserving mapping; e.g., for graphs, this means
preserving adjacency – edges are mapped to edges only. An inverse homomorphism
between two relational structures is a mapping with the property that the preimage
of any tuple in a relation in the target structure can only contain tuples in the
corresponding relation in the source structure; e.g., for graphs, only edges (and not
non-edges) from the source graph can be mapped to the edges of the target graph.

A fractional homomorphism between two valued structures has played an important
role in the work of Thapper and Živný on the power of the basic LP relaxation for
VCSPs with a fixed valued constraint language [49]. Intuitively, it is a probability
distribution over mappings between the universes of the two structures with the
property that the expected cost is not increased [49]. In this paper, we will use a
different but related notion of inverse fractional homomorphism.

First, we need to define two elementary operations on valued structures (summation
and scaling), as well as pointwise comparison. Let A1, . . . ,Ak be valued σ-structures.
The valued σ-structure C =

∑
i Ai has universe C = ∪iAi, and for each f ∈ σ and

x ∈ Car(f), fC(x) =
∑
i:x∈Aar(f)

i
fAi(x). Similarly, for c ∈ Q≥0, the structure c · A1 is

obtained from A1 by scaling its functions by c, i.e. f c·A1(x) = c · fA1(x). Finally, if A
and B are valued σ-structures with A = B, then we define the partial order A ≤ B
pointwise, i.e. A ≤ B if and only if fA(x) ≤ fB(x) for every symbol f and tuple x.

For sets A and B, we denote by BA the set of all mappings g : A→ B from A to
B. For a probability distribution ω on BA, the support of ω is the set supp(ω) := {g ∈
BA | ω(g) > 0}. The following notion of an “image valued structure” will be useful.

Definition 3.4. Let A be a valued σ-structure and g : A→ B be a mapping. We
define g(A) to be the valued σ-structure over universe g(A) such that, for all f ∈ σ
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and y ∈ g(A)ar(f),

fg(A)(y) = fA(g−1(y)) :=
∑

x∈Aar(f):g(x)=y

fA(x).

If ω is a probability distribution over BA we put ω(A) =
∑
g∈BA ω(g)g(A).

Observe that, in the definition above, the universe of ω(A) is always B. Conse-
quently, if B is a valued σ-structure over B, then pointwise comparison is possible
between ω(A) and B.

Definition 3.5. Let A,B be valued σ-structures. A probability distribution ω over
BA is an inverse fractional homomorphism (IFH) from A to B if ω(A) ≤ B.

Example 3.14 on page 8 describes an explicit example of an IFH.
The following result relates improvement from Definition 3.1 and inverse fractional

homomorphisms from Definition 3.5. The proof is based on Farkas’ Lemma.

Proposition 3.6. Let A,B be valued σ-structures. Then, A � B if and only if
there exists an IFH from A to B.

Remark 3.7. Let us remark that an IFH ω from A to B is actually a distribution
over the set of homomorphisms from Pos(A) to Pos(B), i.e., every g ∈ supp(ω) is a

homomorphism from Pos(A) to Pos(B). Indeed, for every x ∈ RPos(A)
f , where f ∈ σ

and x ∈ Aar(f), it must be the case that fB(g(x)) ≥ ∑h∈BA ω(h)fA(h−1(g(x))) ≥
ω(g)fA(x) > 0. Hence, g(x) ∈ RPos(B)

f . In view of Proposition 3.6, this offers another
explanation of the fact that equivalence implies homomorphic equivalence (of the
positive parts).

Let ω and ω′ be inverse fractional homomorphisms from A to B, and from B to C,
respectively. We define ω′ ◦ ω : CA → Q≥0 as

ω′ ◦ ω(h) =
∑

h1:A→B,h2:B→C
h2◦h1=h

ω(h1)ω′(h2).

Observe that ω′ ◦ ω is an inverse fractional homomorphism from A to C.

3.2. Cores. Appropriate notions of cores have played an important role in
the complexity classifications of left-hand side restricted CSPs [32], right-hand side
restricted CSPs [10, 8, 52], and right-hand side restricted VCSPs [50, 39]. In this
paper, we will define cores around IFHs.

For two valued σ-structures A and B, we say that an IFH ω from A to B is
surjective if every g ∈ supp(ω) is surjective.

Definition 3.8. A valued σ-structure A is a core if every IFH from A to A is
surjective.

Next we show that equivalent valued structure that are cores are in fact isomorphic.

Definition 3.9. Let A,B be valued σ-structures. An isomorphism from A to B
is a bijective mapping h : A→ B such that fA(x) = fB(h(x)) for all (f,x) ∈ tup(A).
If such an h exists, we say that A and B are isomorphic.

Proposition 3.10. If A, B are core valued σ-structures such that A ≡ B, then A
and B are isomorphic.

We now introduce the central notion of a core of a valued structure and show that
every valued structure has a unique core (up to isomorphism).
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Definition 3.11. Let A,B be valued σ-structures. We say that B is a core of A
if B is a core and A ≡ B.

Proposition 3.12. Every valued structure A has a core and all cores of A are
isomorphic. Moreover, for a given valued structure A, it is possible to effectively
compute a core of A and all cores of A are over a universe of size at most |A|.

Proposition 3.12 allows us to speak about the core of a valued structure. It follows
then that equivalence can be characterised in terms of cores: A and B are equivalent
if and only if their cores are isomorphic.

We conclude with a technical characterisation of the property of being a core that
will be important in the paper. Intuitively, it states that every non-surjective mapping
from a core A to itself is suboptimal with respect to a fixed weighting of the tuples of
A.

Proposition 3.13. Let A be a valued σ-structure. Then, A is a core if and only
if there exists a mapping c : tup(A)→ Q≥0 such that for every non-surjective mapping
g : A→ A, ∑

(f,x)∈tup(A)

fA(x)c(f,x) <
∑

(f,x)∈tup(A)

fA(x)c(f, g(x)).

Moreover, such a mapping c : tup(A)→ Q≥0 is computable, whenever A is a core.

Example 3.14. Let A and A′ be the valued σ-structures depicted in Figure 1.
Recall that σ = {f, µ}, where f is a {0,∞}-valued binary function (represented by
edges) and µ is unary (represented by node labels). Also, the elements of A are
denoted by aij , where i and j indicate the corresponding row and column of the grid,
respectively (for readability, only a11 is depicted in Figure 1). We claim that A′ is the
core of A. Indeed, since Pos(A′) is a relational core, it follows that A′ is a core. To
see that A � A′, let g : A → A′ be the mapping that maps all elements in the i-th
diagonal of A (first diagonal is {a11}, second diagonal is {a21, a12}, and so on) to a′i.
Assigning ω(g) = 1 gives an IFH ω from A to A′, and thus A � A′ by Proposition 3.6.

Conversely, we will consider the following six mappings g1,g2,g3,g4,g5,g6 from
A′ to A that map (a′1, a

′
2, a
′
3, a
′
4, a
′
5) to (a11, a21, a31, a32, a33), (a11, a21, a22, a32, a33),

(a11, a12, a22, a23, a33), (a11, a12, a13, a23, a33), (a11, a12, a22, a32, a33), and
(a11, a21, a22, a23, a33), respectively. We define the distribution ω′(g1) = 1/3, ω′(g2) =
1/12, ω′(g3) = 1/12, ω′(g4) = 1/3, ω′(g5) = 1/12 and ω′(g6) = 1/12. Then, we have

∑
k

ω′(gk)µA′(g−1
k (aij)) =


(2× 1/3 + 4× 1/12)× 1 if aij ∈ {a11, a33}
(1/3 + 2× 1/12)× 2 if aij ∈ {a12, a21, a23, a32}
(1/3)× 3 if aij ∈ {a13, a31}
(4× 1/12)× 3 if aij = a22

and hence for all i, j,
∑
k ω
′(gk)µA′(g−1

k (aij)) = 1 ≤ µA(aij). It follows that ω′ is an
IFH from A′ to A. Therefore, A′ � A and A′ is the core of A. In particular, A is not
a core. As we explain later in Example 4.5, it is possible to modify A (more precisely,
µA) so that it becomes a core.

3.3. Treewidth modulo equivalence. In this section we show an elementary
property of cores that is crucial for our purposes: the treewidth of the core of a valued
structure A is the lowest possible among all structures equivalent to A.

Proposition 3.15. Let A be a valued σ-structure and A′ be its core. Then,
tw(A′) ≤ tw(A).
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Proof. Since treewidth is preserved under relational substructures, it suffices to
show that Pos(A′) is isomorphic to a substructure of Pos(A), i.e., there is an injective
homomorphism from Pos(A′) to Pos(A). Let ω and ω′ be IFHs from A′ to A, and
from A to A′, respectively. Pick any mapping g ∈ supp(ω). As observed at the end of
Section 3.1, g has to be a homomorphism from Pos(A′) to Pos(A). It suffices to show
that g is injective. But this follows immediately from the fact that ω′ ◦ ω is an IFH
from A′ to itself and the assumption that A′ is a core.

We conclude Section 3 with the following useful characterisation of “being equiva-
lent to a bounded treewidth structure” in terms of cores.

Proposition 3.16. Let A be a valued σ-structure and k ≥ 1. Then, the following
are equivalent:

1. There is a valued σ-structure A′ such that A′ ≡ A and A′ has treewidth at
most k.

2. The treewidth of the core of A is at most k.

Proof. (2) ⇒ (1) is immediate. For (1) ⇒ (2), let A′ be of treewidth at most k
such that A′ ≡ A. Let B and B′ be the cores of A and A′, respectively. Since B ≡ B′,
B and B′ are isomorphic, by Proposition 3.10. By Proposition 3.15, the treewidth of
B′ is at most k, and so is the treewidth of B.

4. Complexity of VCSP(C, −). Let C be a class of valued structures. We
say that C has bounded arity if there is a constant r ≥ 1 such that for every valued
σ-structure A ∈ C and f ∈ σ, we have that ar(f) ≤ r. Similarly, we say that C has
bounded treewidth modulo equivalence if there is a constant k ≥ 1 such that every
A ∈ C is equivalent to a valued structure A′ with tw(A′) ≤ k. The following is our
first main result.

Theorem 4.1 (Complexity classification). Assume FPT 6= W[1]. Let C be a
recursively enumerable class of valued structures of bounded arity. Then, the following
are equivalent:

1. VCSP(C, −) is in PTIME.
2. p-VCSP(C, −) is in FPT.
3. C has bounded treewidth modulo equivalence.

Remark 4.2. Although Grohe’s result [32] for CSPs looks almost identical to
Theorem 4.1, we emphasise that his result involves a different type of equivalence.
In Grohe’s case, the equivalence in question is homomorphic equivalence whereas in
our case the equivalence in question involves improvement (cf. Definition 3.2). As
we will explain later in this section, Grohe’s classification follows as a special case of
Theorem 4.1.

Remark 4.3. As in [32], we can remove the condition in Theorem 4.1 of C being
recursively enumerable, by assuming a stronger hypothesis than FPT 6= W[1] regarding
non-uniform complexity classes.

Bounded treewidth implies bounded treewidth modulo equivalence but we will
show in Example 4.4 that the converse is not true in general. Thus Theorem 4.1
gives new tractable cases compared to classes of VCSPs of (previously known to be
tractable) bounded treewidth.

Bounded treewidth modulo equivalence implies bounded treewidth modulo homo-
morphic equivalence (of the positive parts) but we will show in Example 4.5 below
that the converse is not true in general either. Therefore, Theorem 4.1 tells us that
the tractability frontier for VCSP(C, −) lies strictly between bounded treewidth and
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0. It can be proved that the labels produced by the previous algorithm are precisely the levels of G. We have the
following lemmas, from [21]:

Lemma 8.2. If G and H are two balanced digraphs such that G → H, then hg(G) ≤ hg(H).

Lemma 8.3. Let G and H be two balanced digraphs of the same height, then any homomorphism from G into H
preserves the levels of vertices.

Now we prove the Proposition. Let P and P ′ be oriented paths. We define the digraph D(P, P ′) as follows: Consider
the digraph ({a, b, c, d}, {(a, b), (a, d), (c, b), (c, d)}). Add disjoint copies of P and P ′ and identify the initial vertex
of the copy of P and P ′, with b and d, respectively. Finally, add disjoint copies of P and P ′ again, and identify the
terminal vertex of the copy of P and P ′, with a and c, respectively. See Figure 3.

(1, 1)

11

1

1

1

1

1

1

1

M 1 1

M

M

M4

M2

M3

Figure 3:

Now, for oriented paths P and P ′, we define Dac(P, P ′) and Dbd(P, P ′) as the digraphs obtained from D(P, P ′) by
identifying a with c, and b with d, respectively. See Figure 4.

We have the following claim:

Claim 8.4. Let P and P ′ be incomparable (P ̸→ P ′ and P ′ ̸→ P ) oriented paths of the same net length k > 0, such
that each interior vertex (vertex different from the initial and terminal vertices) in P and P ′ has a level that is
neither 0 nor k. Then Dac(P, P ′) and Dbd(P, P ′) are incomparable cores.

Proof: Suppose that Dac(P, P ′) is not a core. Then Dac(P, P ′)
h−→ Dac(P, P ′), where h is not surjective. Using

Lemma 8.3, we know that h preserves levels. It follows that h(e) = e (see Figure 5). Now, h(x1) is either x1 or x3.
Note that h(x1) = x3, implies that P → P ′, since no vertex in the copy of P between x1 and e can be mapped to
b or d, and no vertex, except for the terminal one, has level k. It follows that h(x1) = x1. Similarly, we have that
h(x3) = x3. Using the same argument, we have that h(b) = b, otherwise h(b) = d and P → P ′, since no vertex in

14

(2, 1)

(1, 2)

Figure 2. The valued σ-structure C4 from Example 4.5 (M > 16).

bounded treewidth modulo homomorphic equivalence.

Example 4.4. We construct a class of structures of unbounded treewidth whose
cores are of bounded treewidth (in fact treewidth 1).

By Proposition 3.16, a class C has bounded treewidth modulo equivalence if and
only if the class given by the cores of the valued structures in C has bounded treewidth.
Thus we obtain a separation of bounded treewidth and bounded treewidth modulo
equivalence.

Consider the signature σ = {f, µ}, where f and µ are binary and unary function
symbols, respectively. For n ≥ 1, let An be the valued σ-structure with universe
An = {1, . . . , n} × {1, . . . , n} such that (i) fAn((i, j), (i′, j′)) = ∞ if i ≤ i′, j ≤ j′,
and (i′ − i) + (j′ − j) = 1; otherwise fAn((i, j), (i′, j′)) = 0, and (ii) µAn((i, j)) = 1,
for all (i, j) ∈ An. Also, for n ≥ 1, let A′n be the valued σ-structure with universe
A′n = {1, . . . , 2n− 1} such that (i) fA

′
n(i, j) =∞ if j = i+ 1; otherwise fA

′
n(i, j) = 0,

and (ii) µA′n(i) = i, for 1 ≤ i ≤ n, and µA′n(i) = 2n− i, for n+ 1 ≤ i ≤ 2n− 1. The
structures A and A′ from Figure 1 correspond to A3 and A′3, respectively; informally
An is a crisp directed grid of size n × n with a unary function µ with weight 1
applied to each element. Generalising the reasoning behind Example 3.14, we argue
in Appendix B that for each n ≥ 1 the valued structure A′n is the core of An. Since
tw(A′n) = 1, the class C := {An | n ≥ 1} has bounded treewidth modulo equivalence.
However, C has unbounded treewidth as the Gaifman graphs in {G(Pos(An)) | n ≥ 1}
correspond to the class of (undirected) grids, which is a well-known family of graphs
with unbounded treewidth (see, e.g. [18]). We also describe in Appendix B how to
alter the definition of C to obtain a class of finite-valued structures (taking on finite
values in Q≥0) that has bounded treewidth modulo equivalence but Gaifman graphs
of unbounded treewidth.

Example 4.5. We construct a class of structures of unbounded treewidth modulo
equivalence but bounded treewidth modulo homomorphic equivalence, thus separating
bounded treewidth modulo equivalence from bounded treewidth modulo homomorphic
equivalence.

For n ≥ 3, let An be the valued σ-structure from Example 4.4. Let Cn be the
valued σ-structure with the same universe as An, i.e., Cn = {1, . . . , n} × {1, . . . , n},
such that fCn = fAn and µCn is defined as follows. Let D1, . . . , Dn be the n first
diagonals of Cn starting from the bottom left corner (1, 1) (see Figure 2 for an
illustration of C4). For 1 ≤ i ≤ n, let Ei be the top-left to bottom-right enumeration
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of Di. In particular, E1 = ((1, 1)), E2 = ((2, 1), (1, 2)), E3 = ((3, 1), (2, 2), (1, 3)) and
En = ((n, 1), (n− 1, 2), . . . , (1, n)). Fix an integer M = M(n) such that M > n2.
The values assigned by µCn to E1, E2 and E3 are (1), (M, 1) and

(
M3,M2,M4

)
,

respectively, and for Ei, with 4 ≤ i ≤ n, is (M, 1, . . . , 1,M). All remaining elements
in Cn \

⋃
1≤i≤nDi receive cost 1. Figure 2 depicts the case of C4.

Let C := {Cn | n ≥ 3}. Note first that Pos(Cn) is homomorphically equivalent
to the relational structure P2n−1 over relational signature rel(σ) = {Rf , Rµ} (recall
the definition of rel(σ) from Section 2), whose universe is P2n−1 = {1, . . . , 2n − 1},
R

P2n−1
µ = P2n−1 and R

P2n−1

f = {(i, i + 1) | 1 ≤ i ≤ 2n − 2}. Since tw(P2n−1) = 1,
for all n ≥ 3, it follows that {Pos(Cn) | n ≥ 3} has bounded treewidth modulo
homomorphic equivalence. We claim that C has unbounded treewidth modulo (valued)
equivalence. It suffices to show that Cn is a core, for all n ≥ 3. In order to prove
this, we apply Proposition 3.13. Fix n ≥ 3 and define c : tup(Cn)→ Q≥0 such that
(i) c(f,x) = 0 if fCn(x) =∞; otherwise c(f,x) = 1, and (ii) c(µ, x) = 1/µCn(x), for
all x ∈ Cn. We have

∑
(p,y)∈tup(Cn) p

Cn(y)c(p,y) = |Cn| = n2. Next we show that if

g : Cn → Cn satisfies that v(g) =
∑

(p,y)∈tup(Cn) p
Cn(y)c(p, g(y)) ≤ n2, then g is the

identity mapping. Using Proposition 3.13, this implies that Cn is a core.
Let g : Cn → Cn such that v(g) ≤ n2. The mapping g must satisfy the fol-

lowing two conditions: (a) g is a homomorphism from Pos(Cn) to Pos(Cn) (oth-
erwise v(g) = ∞), and (b) for every x ∈ Cn, µCn(x) ≤ µCn(g(x)), otherwise
v(g) ≥ µCn(x)c(µ, g(x)) = µCn(x)/µCn(g(x)) ≥ M > n2. We can argue inductively,
and show that g is the identity over Di, for all 1 ≤ i ≤ n. Condition (a) implies that
g is the identity over the remaining elements in Cn \

⋃
1≤i≤nDi, as required. For D1,

we have that g((1, 1)) = (1, 1) by condition (a). For D2, note that (a) implies that
{g((2, 1)), g((1, 2))} ⊆ {(2, 1), (1, 2)}. By condition (b), g((2, 1)) = (2, 1). To see that
g((1, 2)) = (1, 2), suppose by contradiction that g((1, 2)) = (2, 1), then condition (a)
implies that g((1, 3)) ∈ {(3, 1), (2, 2)}, which violates (b). For the case 3 ≤ i ≤ n,
recall that Ei = x1, x2, . . . , x|Di| is the above-defined enumeration of Di. Since g
is the identity over Di−1 and by condition (a), we have that g is the identity over
{x2, . . . , x|Di|−1}. As µCn(x1) > µCn(x2) and µCn(x|Di|) > µCn(x|Di|−1), conditions
(a) and (b) imply that g(x1) = x1 and g(x|Di|) = x|Di|, as required.

To conclude this example we note that the class of valued σ-structures {Bn | n ≥ 3}
where each Bn is derived from Cn by setting Bn = Cn, µBn = µCn and fBn(x) =
min(1, fCn(x)) for all x ∈ (Bn)2 is an example of a finite-valued class of structures that
has bounded treewidth modulo homomorphic equivalence but unbounded treewidth
modulo valued equivalence, since each Bn is a core (this follows from exactly the same
argument used for Cn).

Corollaries of the complexity classification. We can obtain the classification for
CSPs of Dalmau et al. [16] and Grohe [32] as a special case of Theorem 4.1. Indeed,
we can associate with a relational τ -structure A a valued στ -structure A0,∞ such that
(i) στ = {fR | R ∈ τ, ar(fR) = ar(R)}, (ii) A and A0,∞ have the same universe A,

and (iii) if x ∈ RA, then f
A0,∞
R (x) = ∞, otherwise f

A0,∞
R (x) = 0, for every R ∈ τ

and x ∈ Aar(R). For a class C of relational structures, we define the class of valued
structures C0,∞ := {A0,∞ | A ∈ C}. It is not hard to check that, when C is of bounded
arity, CSP(C,−) reduces in polynomial time to VCSP(C0,∞,−) and vice versa. Hence,
a classification of CSP(C,−), for C’s of bounded arity, is equivalent to a classification
of VCSP(C0,∞,−). Finally, note that C has bounded treewidth modulo homomorphic
equivalence if and only if C0,∞ has bounded treewidth modulo (valued) equivalence.
This implies the known CSP classification from [16] and [32].
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In his PhD thesis [22], Färnqvist also considered the complexity of VCSP(C,
−). However, he considered a different definition of the problem, that we denote
by VCSPF (C, −). Formally, for a relational τ -structure A, let AF be the valued
σA-structure such that (i) σA = {fR,x | R ∈ τ,x ∈ RA, ar(fR,x) = ar(R)}, (ii) A and
AF have the same universe A, and (iii) for every fR,x ∈ σA and x ∈ Aar(fR,x), we have

that fAFR,x(x) = 1 and fAFR,x(y) = 0, for all y 6= x. For a class of relational structures C,
VCSPF (C, −) is precisely the problem VCSP(CF , −), where CF := {AF | A ∈ C}. It
was shown in [22] that for a class C of relational structures of bounded arity, VCSPF (C,
−) is tractable if and only if C has bounded treewidth. This result follows directly
from Theorem 4.1 as every valued structure in a class of the form CF is a (valued) core,
and hence, bounded treewidth modulo equivalence boils down to bounded treewidth.

Intuitively, VCSPF (C, −) restricts VCSP only based on the (multiset of) tuples
appearing in the structures from C. In contrast, our definition of VCSP(C, −) considers
directly the structures in C. This allows us for a more fine-grained analysis of structural
restrictions, and in particular, provides us with new tractable classes beyond bounded
treewidth. Indeed, as Example 4.4 illustrates, we can find simple tractable classes of
valued structures with unbounded treewidth.

Finally, let us note that since Theorem 4.1 applies to all valued structures, it in
particular covers the finite-valued VCSP, where all functions are restricted to take
finite values in Q≥0, and hence the tractability part of Theorem 4.1 directly applies to
the finite-valued case. The hardness part also applies to the finite-valued case. Indeed,
the right-hand side structure B constructed in the reduction of Proposition 4.6 can be
made to be finite-valued as explained at the end of the proof. Therefore, Theorem 4.1
also gives a classification for finite-valued VCSPs. Moreover, Examples 4.4 and 4.5
demonstrate that already for finite-valued structures the tractability frontier is strictly
between bounded treewidth and bounded treewidth modulo homomorphic equivalence.

The rest of this section is devoted to proving the hardness part of Theorem 4.1,
i.e., the implication (2) ⇒ (3). The tractability part of Theorem 4.1 (implication
(3) ⇒ (1)) is established in Section 5. In particular, it will follow from Theorem 5.4
that, if there is a constant k ≥ 1 such that every valued structure in the class C is
equivalent to a valued structure of treewidth at most k, then VCSP(C, −) can be
solved in polynomial time using the (k+ 1)-st level of the Sherali-Adams LP hierarchy.
The remaining implication (1) ⇒ (2) is immediate.

4.1. Hardness. We start with the notion of fpt-reductions [25] tailored to our
setting. Formally, a decision problem P with parameter κ over Σ is a subset of
Σ∗, the set of all strings over the alphabet Σ, describing the “yes” instances of P,
and κ : Σ∗ → N. It is known that each optimisation problem has an equivalent
decision problem. We denote by p-VCSPd(C, −) the decision version of p-VCSP(C,
−). Formally, p-VCSPd(C, −) with parameter κ′ over Σ′ is a subset of (Σ′)∗ such
that x = ((A,B), c) ∈ p-VCSPd(C, −) if and only if (A,B) is a VCSP(C, −) instance
such that opt(A,B) ≤ c, and κ′ : (Σ′)∗ → N is defined by κ′(x) = |A|.

An fpt-reduction from (P, κ) to p-VCSPd(C, −) is a mapping red : Σ∗ → (Σ′)∗

such that (i) for all x ∈ Σ∗ we have x ∈ P if and only if red(x) ∈ p-VCSPd(C, −);
(ii) there is a computable function f : N → N and an algorithm that, given x ∈ Σ∗,
computes red(x) in time f(κ(x)) · |x|O(1); and (iii) there is a computable function
g : N→ N such that for all instances x ∈ Σ∗, we have κ′(red(x)) ≤ g(κ(x)).

Let us mention that our hardness result does not follow directly from Grohe’s
result for CSPs [32]. The natural approach is to define, for a class of valued structures
C, the class of relational structures Pos(C) = {Pos(A) | A ∈ C}. Then one can observe
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that p-CSP(Pos(C), −) fpt-reduces to p-VCSPd(C, −), and hence W[1]-hardness of
the former problem implies hardness for the latter. However, if C has unbounded
treewidth modulo equivalence, the class Pos(C) does not necessarily have unbounded
treewidth modulo homomorphic equivalence (see Example 4.5), and hence Pos(C) is
not necessarily hard according to Grohe’s classification.

We instead adapt Grohe’s proof to the case of VCSPs. We need some notation.
For k ≥ 1, a k-clique of a graph is a clique on k vertices. A graph H is a minor of a
graph G if H is isomorphic to a graph that can be obtained from a subgraph of G
by contracting edges (for more details see, e.g. [18]). For k, ` ≥ 1, the (k × `)-grid is
the graph with vertex set {1, . . . , k} × {1, . . . , `} and an edge between (i, j) and (i′, j′)
if |i− i′|+ |j − j′| = 1. The parameterised problem p-CLIQUE asks, given instance
(G, k), whether there is a k-clique in G, and has parameter κ such that κ(G, k) = k.
It is a well-known result that p-CLIQUE is complete for W [1] under fpt-reductions
[20]. The implication (2)⇒ (3) in Theorem 4.1 follows from the following proposition.

Proposition 4.6. Let C be a recursively enumerable class of valued structures of
bounded arity. Suppose C is of unbounded treewidth modulo equivalence. If p-VCSP(C,
−) is fixed-parameter tractable then FPT = W[1].

Proof. We present an fpt-reduction from p-CLIQUE to p-VCSPd(C, −). More
precisely, given an instance (G, k) of p-CLIQUE, we shall construct valued structures
A′ ∈ C and B, together with a threshold M∗ ≥ 0, such that G contains a k-clique if and
only if opt(A′,B) ≤M∗. As in [32], we rely on the Excluded Grid Theorem [45], which
states that there is a function w : N→ N such that every graph H of treewidth at least
w(k) contains the (k×k)-grid as a minor. Given an instance (G, k) of p-CLIQUE, with
k ≥ 2, we start by enumerating the class C until we obtain a valued structure A′ ∈ C
with core A such that tw(A) ≥ w(K), where K =

(
k
2

)
. By Proposition 3.16, such

A′ ∈ C always exists. Let A := Pos(A). By the Excluded Grid Theorem, the Gaifman
graph G(A) of A (see the definition of the Gaifman graph in Section 2) contains
the (K × K)-grid, and hence, the (k × K)-grid as a minor. Since C is recursively
enumerable and cores are computable (by Proposition 3.12), the valued structure A′
and its core A can be effectively computed in time α(k), where α is a computable
function.

In order to define B, we exploit the main construction in [32], which defines a
relational structure B from G, k and A. The key property of B is that, assuming A
is a relational core, then G contains a k-clique if and only if there is a homomorphism
from A to B. Since in our case A is not necessarily a relational core, we restate in
the following lemma the properties of B simply in terms of surjective homomorphisms.
Together with our characterisation of (valued) cores in Proposition 3.13, this will allow
us to define our required valued structure B and threshold M∗.

Lemma 4.7. Given k ≥ 2, K =
(
k
2

)
, graph G and relational τ -structure A such

that the (k × K)-grid is a minor of its Gaifman graph G(A), there is a relational
τ -structure B such that

1. There exists a fixed homomorphism π from B to A such that the following
are equivalent:
(a) G contains a k-clique.
(b) There is a homomorphism h from A to B such that π ◦ h is the identity

mapping from A to itself, where A is the universe of A.
2. B can be computed in time β(|A|, k) · |G|O(r(A)), where β is a computable

function and r(A) ≥ 1 is the arity of the relational signature τ .
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Proof. We can separate A into two relational τ -structures A′ and A \A′ such
that the disjoint union of their Gaifman graphs G(A′) and G(A \ A′) is precisely
G(A), and G(A′) is a connected graph containing the (k ×K)-grid as a minor. The
main hardness reduction in [32] produces for the connected structure A′ a relational
τ -structure B′ and a homomorphism π′ from B′ to A′ such that conditions (1) and
(2) hold with respect to A′, B′ and π′. (This is shown in Section 4 from [32] as a
preparation for the proof of Theorem 4.1.) We define our required structure B to be
the disjoint union of B′ and A \A′. We define π to be the homomorphism from B
to A such that π(b) = π′(b), if b belongs to B′ and π(b) = b, otherwise. It suffices to
check condition (1).

Suppose that G contains a k-clique. Then there is a homomorphism h′ from A′

to B′ such that π′ ◦ h′ = id. We can define the mapping h from A to B such that
h(a) = h′(a), if a belongs to A′, and h(a) = a, otherwise. It follows that h is a
homomorphism and π ◦ h = id. Assume now that there is a homomorphism h from
A to B such that π ◦ h = id. Then there exists a homomorphism h′ from A′ to B′

such that π′ ◦ h′ = id (h′ is simply the restriction of h to A′). Since A′ and B′ satisfy
condition (1), we conclude that G contains a k-clique.

Let B be the relational structure from Lemma 4.7 applied to G, k and A = Pos(A).
Recall that A, and hence B, are defined over the relational signature rel(σ), where σ
is the signature of A. Since A is a core, by Proposition 3.13 we can compute a function
c∗ : tup(A) → Q≥0 such that for every non-surjective mapping g : A → A, it is the
case that

∑
(f,x)∈tup(A)

fA(x)c∗(f,x) <
∑

(f,x)∈tup(A)

fA(x)c∗(f, g(x)).

From B and c∗ we construct a valued structure B over the same signature σ of
A as follows. Let π be the homomorphism from B to A given by Lemma 4.7. Let
M∗ :=

∑
(f,x)∈tup(A) f

A(x)c∗(f,x) < ∞. The universe of B is the universe B of B.

For each f ∈ σ and x ∈ Bar(f), we define:

fB(x) =

{
c∗(f, π(x)) if x ∈ RB

f

∞ otherwise.

We show that G contains a k-clique if and only if opt(A′,B) ≤M∗. Before doing so,
note that the total running time of the reduction is α(k) + β(α(k), k)|G|O(r(A)), where
β is from Lemma 4.7 and r(A) is the arity of rel(σ), and hence the arity of σ. Since
the class C has bounded arity, there is a constant r ≥ 1 such that r(A) ≤ r. Thus the
running time of the reduction is β′(k)|G|O(1) for a computable function β′. Also, since
A′ is computed in time α(k), we have that |A′| ≤ α(k). It follows that our reduction
is actually an fpt-reduction, and hence, p-VCSPd(C, −) is W[1]-hard. If p-VCSP(C,
−) is in FPT, then p-VCSPd(C, −) is in FPT, and consequently FPT = W[1], as
required.

Assume that G contains a k-clique. By Lemma 4.7, there is a homomorphism h
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from A to B such that π ◦ h is the identity. We have that

opt(A′,B) = opt(A,B) ≤ costA→B(h)

=
∑

(f,x)∈tup(A)>0

fA(x)fB(h(x)) =
∑

x∈RA
f

fA(x)fB(h(x))

=
∑

x∈RA
f

fA(x)c∗(f, π(h(x)))

=
∑

(f,x)∈tup(A)>0

fA(x)c∗(f,x) = M∗.

Suppose now that opt(A′,B) ≤M∗. In particular, opt(A,B) ≤M∗. Let h∗ : A→
B be a mapping with cost opt(A,B). Note that h∗ is a homomorphism from A to B
(otherwise costA→B(h∗) =∞). We show that π◦h∗ is surjective. Assume to the contrary.
By the definition of c∗, it follows that M∗ <

∑
(f,x)∈tup(A) f

A(x)c∗(f, π(h∗(x))). On
the other hand, using the fact that h∗ is a homomorphism, we have that

∑
(f,x)∈tup(A)

fA(x)c∗(f, π(h∗(x))) =
∑

x∈RA
f

fA(x)c∗(f, π(h∗(x)))

=
∑

x∈RA
f

fA(x)fB(h∗(x))

=
∑

(f,x)∈tup(A)>0

fA(x)fB(h∗(x)) = cost(h∗).

Hence, M∗ < cost(h∗); a contradiction. It follows that π ◦ h∗ is an isomorphism
of A. We can define g = h∗ ◦ (π ◦ h∗)−1 and obtain a homomorphism g from A to B
such that π ◦ g = id. By Lemma 4.7 we obtain that G contains a k-clique.

Finally, note that we can make B in the reduction to be finite-valued. We
only need to replace ∞ by a sufficiently large N in its definition. More precisely,
we need costA→B(h) > M∗, whenever h : A → B is not a homomorphism from
A to B, i.e., we need fA(x) · N > M∗ for any (f,x) ∈ tup(A)>0. (We can take
N = 1 + (M∗/min{fA(x) : (f,x) ∈ tup(A)>0}).)

5. Power of Sherali-Adams for VCSP(C, −). In this section we will present
and prove our second main result, Theorem 5.4. First, in Section 5.1, we will define
the Sherali-Adams LP relaxation for VCSPs and state Theorem 5.4. Second, in
Section 5.2, we will define the key concept of treewidth modulo scopes, which essentially
captures the applicability of the Sherali-Adams for VCSP(C, −). Section 5.3 proves
the sufficiency part of Theorem 5.4, whereas Sections 5.4 and 5.5 prove the necessity
part of Theorem 5.4.

5.1. Sherali-Adams LP Relaxations. Before we define the Sherali-Adams LP
relaxation formally, we give an informal explanation that might be helpful to the
reader who has not seen this before. Any VCSP instance (A,B) over signature σ
has a natural integer linear programming formulation (ILP) with 0/1-variables. The
variables of the ILP are pairs (fA,x), where fA is a “constraint” and x ∈ Aar(f) is
a “local assignment to the variables on which the constraint fA depends”, denoted
by s in Figure 3. The ILP has several constraints. Firstly, local assignments with
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min
∑

(f,x)∈tup(Ak)>0, s:Set(x)→Bk
fAk (x)×fBk (s(x))<∞

λ(f,x, s)fAk(x)fBk(s(x))

λ(f,x, s) =
∑

r:Set(y)→Bk,r|Set(x)=s

λ(p,y, r) (SA1) ∀(f,x), (p,y) ∈ tup(Ak)>0 :

Set(x) ⊆ Set(y) and |Set(x)| ≤ k;

∀s : Set(x)→ Bk∑
s:Set(x)→Bk

λ(f,x, s) = 1 (SA2) ∀(f,x) ∈ tup(Ak)>0

λ(f,x, s) = 0 (SA3) ∀(f,x) ∈ tup(Ak)>0, s : Set(x)→ Bk : fAk(x)× fBk(s(x)) =∞
λ(f,x, s) ≥ 0 (SA4) ∀(f,x) ∈ tup(Ak)>0, s : Set(x)→ Bk

Figure 3. The Sherali-Adams relaxation SAk(A,B) of level k of (A,B).

infinite costs are forbidden by setting the corresponding ILP variables to 0. Secondly,
the integrality constraints (i.e., having 0/1 variables) ensure that for every constraint
exactly one assignment is selected. Finally, “marginalisation constraints” ensure that
the local assignments are consistent in the sense that if x ∈ A is mapped by a solution
to b ∈ B then it is the same b independently of the constraint that depends on x. The
objective function of the ILP is the cost of an assignment given by the ILP variables.

By relaxing the integrality constraints, one obtains the so-called basic LP relaxation.
One can think of the LP variables, for every constraint, as a probability distribution
over the set of local assignments. Looking at Figure 3, conditions (SA2) and (SA4)
ensure that the variables are indeed probability distributions. Conditions (SA3)
correspond to the feasibility part (the underlying CSP) and rule out locally-infeasible
assignments. Conditions (SA1) ensure consistency between pairs of constraints, called
“marginalisation constraints” above. Finally, the objective function of the LP is the
expected cost of an assignment given by the LP variables with respect to the local
probability distributions.

The idea of the k-th level of the Sherali-Adams relaxation is to strengthen the
LP by introducing constraints on all sets of variables of size up to k and imposing
(local) consistency among these constraints. A further (notational) complication in
the definition is the possible repetition of a variable in a constraint scope, which is
dealt with using the Set() operator, which now define.

Given a tuple x, we write Set(x) to denote the set of elements appearing in x.
Let (A,B) be an instance of the VCSP over a signature σ and k ≥ 1. We define a new
signature σk = σ∪{ρk}, where ρk is a new function symbol of arity k. Then, we create
from (A,B) an instance (Ak,Bk) over σk such that Ak = A, Bk = B, ρAkk (x) = 1 for

any x ∈ Akk, ρBkk (x) = 0 for any x ∈ Bkk , and for every f ∈ σ we have fAk = fA and
fBk = fB. Because the new function ρk is identically zero in Bk, we have that for any
mapping h : A→ B, cost(h) is the same in both instances (A,B) and (Ak,Bk). The
Sherali-Adams relaxation of level k [48] of (A,B), denoted by SAk(A,B), is the linear
program given in Figure 3, which has one variable λ(f,x, s) for each (f,x) ∈ tup(Ak)>0

and s : Set(x)→ Bk.
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The variables are indexed not only by x and s but also by f . This would not be
necessary if k ≥ ar(f) but we are also interested in the case of k < ar(f).

Definition 5.1. Let A,B be valued σ-structures and k ≥ 1.
• We denote by optSAk (A,B) the minimum cost of a solution to SAk(A,B).
• We write A �SA

k B if optSAk (A,C) ≤ optSAk (B,C) for all valued σ-structures
C.

The proof of the following can be found in Appendix C.

Proposition 5.2. Let A,B be valued σ-structures and k ≥ 1. If there exists an
IFH from A to B, then A �SA

k B.

We also have the following.

Proposition 5.3. Let A be a valued σ-structure, A′ be the core of A and k ≥ 1.
Then, optSAk (A,C) = optSAk (A′,C), for all valued σ-structures C.

Proof. Since A ≡ A′, by Proposition 3.6, there exist IFHs from A to A′ and from
A′ to A. Therefore, by Proposition 5.2, optSA

k (A,C) = optSA
k (A′,C) for all valued

σ-structures C.

Given a valued σ-structure A, the overlap of A is the largest integer m such that
there exist (f,x), (p,y) ∈ tup(A)>0 with (f,x) 6= (p,y) and |Set(x) ∩ Set(y)| = m.

The following is our second main result; twms(A) is defined in Section 5.2 and
Theorem 5.4 is implied by Theorems 5.11, 5.19, and 5.24 proved in Sections 5.3, 5.4,
and 5.5, respectively.

Theorem 5.4 (Power of Sherali-Adams). Let A be a valued σ-structure and
let k ≥ 1. Let A′ be the core of A. The Sherali-Adams relaxation of level k is always
tight for A, i.e., for every valued σ-structure B, we have that optSAk (A,B) = opt(A,B),
if and only if (i) twms(A′) ≤ k − 1 and (ii) the overlap of A′ is at most k.

We remark that although Theorem 5.4 deals with valued structures, it also shows
the same result for finite-valued structures, where all functions are restricted to finite
values in Q≥0. In particular, the sufficiency part of Theorem 5.4, i.e., if the core
satisfies conditions (i) and (ii) then the k-th level of Sherali-Adams is tight, applies
directly to the finite-valued case. It will follow from the proofs of Theorems 5.12
and 5.20 that whenever the core violates condition (i) or (ii) then the k-th level of
Sherali-Adams is not tight even for finite-valued structures. Hence, Theorem 5.4 also
characterises the tightness of Sherali-Adams for finite-valued VCSPs.

Let us note that the characterisation given by Theorem 5.4 for levels k ≥ r, where
r is the arity of the signature of A, boils down to the notion of treewidth. That is,
if k ≥ r, the k-th level of Sherali-Adams is tight if and only if the treewidth of the
core of A is at most k − 1. Interestingly, Theorem 5.4 tells us precisely under which
conditions the k-th level works even for k < r.

Finally, we remark that the tractability part of Theorem 4.1, which we obtain
as a corollary of Theorem 5.4, does not immediately follow from a naive algorithm
that would compute, for A ∈ C, opt(A,B) using dynamic programming along a tree
decomposition of the core A′ of A. Such an algorithm would first need to compute A′,
and it is not clear that it can be done in polynomial time, even with the promise that
A′ has bounded treewidth. (The situation is different for relational structures, where
this promise problem is known to be solvable in polynomial time [14, Lemma 25].)
Theorem 5.4 gives a way to circumvent this issue since the linear program SAk(A,B)
does not depend on A′ in any way.
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5.2. Treewidth modulo scopes. Let A be a relational structure with universe
A over a relational signature τ . Recall from Section 2 that G(A) denotes the Gaifman
graph of A. A scope of G(A) is a set X for which there is relation symbol R ∈ τ and
a tuple x ∈ RA such that X = Set(x). In other words, the scopes of G(A) are the
sets that appear precisely in the tuples of A.2 Observe that every scope X of G(A)
induces a clique in G(A).

Definition 5.5. Let A be a relational structure and G(A) its Gaifman graph. Let
(T, β) be a tree decomposition of G(A), where T = (V (T ), E(T )). The width modulo
scopes of (T, β) is defined by

max{|β(t)| − 1 | t ∈ V (T ) and β(t) is not a scope of G(A)}.

If β(t) is a scope for all nodes t ∈ V (T ) then we set the width modulo scopes of (T, β) to
be 0. The treewidth modulo scopes of G(A), denoted by twms(G(A)), is the minimum
width modulo scopes over all its tree decompositions. The treewidth modulo scopes of A
is twms(A) = twms(G(A)). For a valued structure A, we define the treewidth modulo
scopes of A as twms(A) = twms(Pos(A)).

Unlike treewidth, the notion of treewidth modulo scopes is not monotone, i.e., it
can increase after taking substructures. To see this, take for instance the relational
structure A that corresponds to the undirected k × k grid. We have twms(A) = k.
However, adding a new relation with only one tuple containing all elements of A lowers
the treewidth modulo scopes to 0. Let us also remark that the relational structures
with treewidth modulo scopes 0 are precisely the relational structures whose underlying
hypergraphs are α-acyclic (see e.g. [28]).

Let G = (V,E) be a graph. A bramble B of G is a collection of subsets of V such
that (i) each B ∈ B is a connected set, and (ii) every pair of sets B,B′ ∈ B touch, i.e.,
they have a vertex in common or G contains an edge between them. A subset of V is
a cover of B if it intersects every set in B. There is a well-known connection between
treewidth and brambles.

Theorem 5.6 ([47]). Let G be a graph and k ≥ 1. Then the treewidth of G is at
most k if and only if any bramble in G can be covered by a set of size at most k + 1.

We show an analogous characterisation for treewidth modulo scopes, which will
be important later in the proof of Theorem 5.12.

Theorem 5.7. Let A be a relational structure and k ≥ 0. Then twms(A) ≤ k if
and only if any bramble in G(A) can be covered by a set of size at most k + 1 or by a
scope in G(A).

Proof. The proof is an adaptation of the proof of [18, Theorem 12.3.9]. Suppose
first that twms(A) ≤ k and let (T, β) be a tree decomposition of G(A) of width
modulo scopes at most k, where T = (V (T ), E(T )). Let B be any bramble of G(A).
We show that there is t ∈ V (T ) such that β(t) covers B. If there is an edge {t1, t2}
of T such that β(t1) ∩ β(t2) covers B, then we are done. Otherwise, we can define
an orientation for each edge {t1, t2} of T as follows. Let X := β(t1) ∩ β(t2) and
BX = {B ∈ B | X ∩ B = ∅}. By assumption, X does not cover B and then BX is
not empty. If we remove the edge {t1, t2} from T , we obtain exactly two connected
components T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)) containing t1 and t2,

2In a (V)CSP instance, the term scope usually refers to the list of variables a (valued) constraint
depends on.
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respectively. Let U1 :=
⋃
t∈V (T1) β(t) and U2 :=

⋃
t∈V (T2) β(t). It is a well-known

property of tree decompositions (e.g., [18, Lemma 12.3.1]) that X separates U1 and
U2 in G(A). Take B ∈ BX . Since B is connected, it follows that B ⊆ Ui \X, for some
i ∈ {1, 2}. Since all sets in BX mutually touch, we can choose the same i ∈ {1, 2}, for
all B ∈ BX . We then orient {t1, t2} towards ti.

Let t be a sink node in this orientation of T , i.e., t has only incoming arcs (note
that there must be at least one sink). We claim that β(t) covers B. Towards a
contradiction, suppose there exists B ∈ B with B ∩ β(t) = ∅. Take an arbitrary b ∈ B
and a node tb ∈ V (T ) such that b ∈ β(tb). Let {t′, t} be the last edge in the unique
simple path from tb to t. Observe that (β(t′)∩β(t))∩B = ∅, and hence B ∈ Bβ(t′)∩β(t).
Since the edge {t′, t} is oriented towards t, we have that B ⊆ Ut \ β(t′) ∩ β(t),
where Ut =

⋃
t∈V (Tt)

β(t), and Tt = (V (Tt), E(Tt)) is the connected component of

T − {t′, t} containing t. In particular, there is t∗ ∈ V (Tt) such that b ∈ β(t∗). By the
connectedness property of tree decompositions, we have that b ∈ β(t); a contradiction.

We now prove the other direction. Assume that any bramble in G(A) can be
covered by a set of size at most k + 1 or by a scope. We say that a set of vertices
satisfying this property is good ; otherwise it is bad. Let G′ be a subgraph of G(A)
and B be a bramble of G(A). A B-admissible tree decomposition for G′, is a tree
decomposition (T, β) of G′ with T = (V (T ), E(T )) such that every β(t), with t ∈ V (T ),
that is a bad set of G(A) does not cover B. We will show that for every bramble B of
G(A), there is a B-admissible tree decomposition for G(A). Since every set covers the
empty bramble B = ∅, the result follows as any B-admissible tree decomposition for
B = ∅ has only good bags, and then its width modulo scopes is at most k.

We now fix a bramble B of G(A) and assume inductively that G(A) has a B′-
admissible tree decomposition for every bramble B′ with more sets than B. (The
induction starts, since every bramble of G(A) has at most 2|V (G(A))| sets.) By
hypothesis, we can take a good set X covering B. We show the following:

For every connected component C = (V (C), E(C)) of G(A)−X, there is a B-admissible
tree decomposition of G(A)[X∪V (C)] (i.e., the subgraph of G(A) induced by X∪V (C))
which has X as one of its bags.

These decompositions can be glued to define a B-admissible tree decomposition of
G(A) as required.

Let C = (V (C), E(C)) be a fixed connected component of G(A) − X. Since
X ∩ V (C) = ∅ and X covers B, it follows that V (C) 6∈ B. Then if we define
B′ := B ∪ {V (C)}, we have that |B′| > |B|. Suppose first that B′ is not a bramble.
(Note that in the base case of the induction we always have this case.) This means
that V (C) fails to touch a set B∗ ∈ B. Let N(C) be the union of V (C) and all vertices
in G(A) adjacent to some vertex in V (C). We have N(C) ∩B∗ = ∅, and hence N(C)
does not cover B. We also have N(C) ⊆ X ∪ V (C). Then our desired B-admissible
tree decomposition for G(A)[X ∪ V (C)] consists of two adjacent bags X and N(C).

We now assume that B′ is a bramble. By induction, there is a B′-admissible tree
decomposition (T, β) for G(A) with T = (V (T ), E(T )). We start by considering the
case when |X| ≤ k + 1. Without loss of generality, we can assume that X is a cover of
B of minimum size. In this case we can argue as in the proof of [18, Theorem 12.3.9].
Let ` := |X| ≤ k + 1. If (T, β) is B-admissible then we are done, so we assume that
there exists s ∈ V (T ) such that β(s) is bad and covers B. Every separator of two
covers of a bramble is also a cover of that bramble [18, Lemma 12.3.8]. It follows
that the minimum size of a separator of X and β(s) is `. By Menger’s theorem [18,
Theorem 3.3.1], there exist ` disjoint paths P1, . . . , P` linking X and β(s) such that
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each Pi intersects X and β(s) exactly in its initial node and final node, respectively.
We denote by xi the initial node of Pi. We have X = {x1, . . . , x`}. Observe that since
(T, β) is B′-admissible, the bag β(s) fails to cover B′, that is, β(s) ∩ V (C) = ∅. It
follows that the path Pi intersects X ∪ V (C) exactly in its initial node xi.

Let (T, β′) be the restriction of (T, β) to the set of nodes X ∪ V (C), i.e., β′(t) =
β(t) ∩ (X ∪ V (C)), for all t ∈ V (T ). The pair (T, β′) is a tree decomposition of
G(A)[X ∪ V (C)]. The desired tree decomposition (T, β′′) for G(A)[X ∪ V (C)] is the
result of adding some of the nodes xi’s to some particular bags of (T, β′). Let us fix
for each xi a node ti ∈ V (T ) such that xi ∈ β(ti). Formally, (T, β′′) is given by

β′′(t) = β′(t) ∪ {xi | t is in the unique simple path from ti to s in T}.

Observe that (T, β′′) still satisfies the connectedness property of tree decom-
positions. Also, observe that |β(t)| ≥ |β′′(t)|, for all t ∈ V (T ). Indeed, for each
xi ∈ β′′(t) \ β(t), with i ∈ {1, . . . , `}, the node t is in the unique simple path from ti
to s in T . It follows that β(t) contains a node wi from the path Pi that is different
from xi. Since Pi meets X ∪ V (C) only in xi, we have that wi 6∈ β′′(t). The claim
follows since all the wi’s are distinct.

Since β′′(s) = X, it remains to show that (T, β′′) is B-admissible. Pick t ∈ V (T )
such that β′′(t) is bad, that is, |β′′(t)| > k + 1 and β′′(t) is not a scope. We need
to show that β′′(t) does not cover B. We claim first that β(t) is also a bad set. By
contradiction, suppose that β(t) is good. As |β(t)| ≥ |β′′(t)| > k + 1, we have that
β(t) is a scope. Since |β(t)| ≥ |β′′(t)| > k + 1 and |X| = ` ≤ k + 1, it is the case
that β(t) ∩ V (C) 6= ∅. It follows that β(t) ⊆ X ∪ V (C) as β(t) is a clique in G(A).
Consequently, β(t) ⊆ β′′(t), and since |β(t)| ≥ |β′′(t)|, we conclude that β(t) = β′′(t).
But β′′(t) is not a scope, which is a contradiction.

Since (T, β) is B′-admissible and β(t) is bad, we have that there is B∗ ∈ B′
such that β(t) ∩ B∗ = ∅. As discussed in the previous paragraph, we know that
β(t) ∩ V (C) 6= ∅. It follows that B∗ ∈ B. We claim that β′′(t) ∩ B∗ = ∅, which
implies that β′′(t) does not cover B, as required. Towards a contradiction, suppose
that xi ∈ B∗, for xi ∈ β′′(t) \β(t), with i ∈ {1, . . . , `}. By definition, t is in the unique
simple path from ti to s in T . Also, by definition, β(s) covers B, and then there is
b ∈ B∗ ∩ β(s). Since B∗ is connected, there is a path P from xi to b in G(A) whose
nodes belong to B∗. We have that β(t) must contain a node from P , and then a node
from B∗, which is a contradiction.

It remains to consider the case when |X| > k+1, and hence X is a scope. Without
loss of generality, we assume that X is a maximal scope covering B. Again, let (T, β′)
be the restriction of (T, β) to the set of nodes X ∪ V (C). For t ∈ V (T ), we say that
β′(t) is maximal if there is no t′ ∈ V (T ) such that β′(t) ( β′(t′). We define (T̃ , β̃),
where T̃ = (V (T̃ ), E(T̃ )), to be a decomposition of G(A)[X ∪ V (C)] whose bags are
precisely the maximal bags of (T, β′), or more formally,

{β̃(t) | t ∈ V (T̃ )} = {β′(t) | t ∈ V (T ) and β′(t) is maximal}.

In order to obtain (T̃ , β̃) we can iteratively remove non-maximal bags from (T, β′)
as follows: if β′(t) is not maximal and it is strictly contained in β′(t′), for t, t′ ∈ V (T ),
and {t, t′′} is the first edge in the unique simple path from t to t′ in T , then remove
β′(t) by contracting the edge {t, t′′} into a new node s defining β′(s) = β′(t′′).

We claim that (T̃ , β̃) satisfies the required conditions. Since X is a scope and then
a clique in G(A), there is a node tX ∈ V (T ) such that X ⊆ β′(tX). We show first
that there is no t ∈ V (T ) such that X ( β′(t). Towards a contradiction, suppose such
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a t exists. Note that X ( β′(t) ⊆ β(t). This implies that β(t) covers B′. Moreover,
since |X| > k + 1 and X is a maximal scope, we deduce that β(t) is a bad set. This
contradicts the B′-admissibility of (T, β) and the claim follows. Using this, we obtain
that β′(tX) = X and moreover, β′(tX) is a maximal bag for (T, β′). By construction
of (T̃ , β̃), there exists t̃ ∈ V (T̃ ) such that β̃(t̃) = X. It only remains to show that
(T̃ , β̃) is B-admissible.

Suppose β̃(t) is a bad set for a node t ∈ V (T̃ ). We prove first that β̃(t)∩V (C) 6= ∅.
By contradiction, assume that β̃(t) ⊆ X. It follows that β̃(t) = X, otherwise β̃(t)
would not be a maximal bag of (T, β′). But X is a scope and then β̃(t) cannot be bad.
This is a contradiction. Let t∗ ∈ V (T ) be a node such that β′(t∗) = β̃(t). We claim
that β(t∗) is a bad set. Since β′(t∗) ⊆ β(t∗), we know that |β(t∗)| ≥ |β′(t∗)| > k + 1.
For the sake of contradiction, suppose that β(t∗) is a scope. In particular, β(t∗) is a
clique in G(A). Since β′(t∗) ∩ V (C) 6= ∅, and hence β(t∗) ∩ V (C) 6= ∅, we have that
β(t∗) ⊆ X ∪ V (C). Therefore, β′(t∗) = β(t∗). This is a contradiction since β′(t∗) is
bad and then not a scope. Thus β(t∗) is a bad set. As (T, β) is B′-admissible, there is
B∗ ∈ B′ with β(t∗) ∩B∗ = ∅. Since β(t∗) ∩ V (C) 6= ∅, it follows that B∗ ∈ B. Finally,
since β′(t∗) ⊆ β(t∗), we have that β′(t∗)∩B∗ = ∅. Hence, β′(t∗) = β̃(t) does not cover
B. We conclude that (T̃ , β̃) is B-admissible.

5.3. Sufficiency. We show the following.

Theorem 5.8. Let A be a valued σ-structure and let k ≥ 1. Suppose that (i)
twms(A) ≤ k − 1 and (ii) the overlap of A is at most k. Then the Sherali-Adams
relaxation of level k is always tight for A, i.e., for every valued σ-structure B, we have
that optSAk (A,B) = opt(A,B).

Proof. Let B be an arbitrary valued σ-structure with universe B. Let A := Pos(A)
and let (T, β) be a tree decomposition of the Gaifman graph G(A) of width modulo
scopes ≤ k− 1, where T = (V (T ), E(T )). As usual, we denote by A the universe of A,
A and G(A). Recall that the solutions for SAk(A,B) are indexed by the set

I :={(f,x, s) : (f,x) ∈ tup(Ak)>0, s : Set(x)→ Bk}
={(f,x, s) : (f,x) ∈ tup(A)>0, s : Set(x)→ B}
∪ {(ρk,x, s) : x ∈ Ak, s : Set(x)→ B}.

Let BTup ⊆ tup(Ak)>0 be the set

BTup := {(f,x) ∈ tup(Ak)>0 | Set(x) ⊆ β(t) for some t ∈ V (T )}.

We have tup(A)>0 ⊆ BTup. We define T := {(f,x, s) ∈ I : (f,x) ∈ BTup}. Let
P (A,B) be the system of linear inequalities given by the constraints of SAk(A,B)
restricted to the variables indexed by T . More precisely, P (A,B) is the following
system over variables {λ(f,x, s) : (f,x, s) ∈ T }:
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λ(f,x, s) =
∑

r:Set(y)→B, r|Set(x)=s

λ(p,y, r) ∀(f,x), (p,y) ∈ BTup :

Set(x) ⊆ Set(y) and |Set(x)| ≤ k;

∀s : Set(x)→ B(5.1) ∑
s:Set(x)→B

λ(f,x, s) = 1 ∀(f,x) ∈ BTup(5.2)

λ(f,x, s) = 0 ∀(f,x, s) ∈ T , fAk(x)× fBk(s(x)) =∞(5.3)

λ(f,x, s) ≥ 0 ∀(f,x, s) ∈ T(5.4)

From the definition of the Sherali-Adams hierarchy, we have optSA
k (A,B) ≤

opt(A,B). We need to prove that opt(A,B) ≤ optSA
k (A,B). Let λ = {λ(f,x, s) :

(f,x, s) ∈ I} be an optimal solution to SAk(A,B). Let c = {c(f,x, s) : (f,x, s) ∈ I}
be the vector defining the objective function of SAk(A,B). Consider the projection
λ|T = {λ(f,x, s) : (f,x, s) ∈ T } of λ to T . Similarly, consider the projection c|T
of c to T . The restriction of c to I \ T is the vector 0, and hence, c|T · λ|T = c · λ.
Also, λ|T is a solution to P (A,B). By Lemma 5.9 proved below, the polytope P (A,B)
is integral and thus λ|T is a convex combination of integral solutions Ig1 , . . . , Ign

of P (A,B), for assignments gi : A → B. It follows that there exists i ∈ {1, . . . , n}
such that c|T · Igi ≤ c|T · λ|T = c · λ. In particular, the cost of the assignment gi is
≤ c · λ = optSA

k (A,B). We conclude that opt(A,B) ≤ optSA
k (A,B).

This is the last missing piece in the proof of Theorem 5.8.

Lemma 5.9. The polytope described by P (A,B) is integral.

Proof. We start with some notation. Let ω be a probability distribution over
WX . For X ′ ⊆ X, we define the marginal of ω, denoted by ωX′ , to be the probability
distribution over WX′ defined by ωX′(h) =

∑
g:X→W, g|X′=h ω(g). We have the

following:

Claim 5.10. Let ω and δ be probability distributions over WX and WY , respec-
tively. Suppose ωX∩Y = δX∩Y . Then there is a probability distribution ε over WX∪Y

with εX = ω and εY = δ.

Proof. We set ε(h) = ω(h|X)δ(h|Y )
ω(h|X∩Y ) for every h : X ∪ Y → W . (ε(h) = 0 if

ω(h|X∩Y ) = 0.)

Let us fix a solution λ of P (A,B). We need to show that λ is a convex combination
of integral solutions. Since the width modulo scopes of the decomposition (T, β) is
≤ k− 1, we know that either |β(t)| ≤ k or β(t) is a scope of G(A), for every t ∈ V (T ).
It follows that for each t ∈ V (T ), we can find (ft,xt) ∈ BTup such that Set(xt) = β(t).

For t ∈ V (T ), let ωt be the probability distribution over Bβ(t) given by ωt(h) =
λ(ft,xt, h). Note that (?) for every edge {t, t′} ∈ E(T ), we have that ωtβ(t)∩β(t′) =

ωt
′

β(t)∩β(t′). Indeed, since the overlap of A is ≤ k, we can pick a tuple (ρk, z) ∈ BTup

such that Set(z) = β(t) ∩ β(t′). By restriction (5.1) in P (A,B), we obtain that
ωtβ(t)∩β(t′) = λ(ρk, z, ·) = ωt

′

β(t)∩β(t′). We can then define a distribution ε over BA

such that εβ(t) = ωt, for every t ∈ V (T ). To do this, we start at a particular node
r ∈ V (T ). We apply iteratively Claim 5.10 to extend the current distribution (ωr at
the beginning) one bag at a time, until all bags are covered. Note that the hypothesis
of Claim 5.10 (same marginals) is always satisfied due to (?).
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For g : A → B, we define Ig = {Ig(f,x, s) : (f,x, s) ∈ T } to be the 0/1-vector
such that Ig(f,x, s) = 1 if and only if g|Set(x) = s. We show that λ =

∑
g∈supp(ε) ε(g)Ig.

Take (f,x, s) ∈ T . By definition of T , there is t ∈ V (T ) such that Set(x) ⊆ β(t) =
Set(xt). If (f,x) = (ft,xt), then∑

g∈supp(ε)

ε(g)Ig(ft,xt, s) =
∑

g∈supp(ε), g|β(t)=s
ε(g) = ωt(s) = λ(ft,xt, s)

and we are done. In case (f,x) 6= (ft,xt), since the overlap is ≤ k, we have that
|Set(x)| ≤ k, and by condition (5.1) in P (A,B), we obtain

λ(f,x, s) =
∑

r:β(t)→B, r|Set(x)=s

ωt(r) = εSet(x)(s) =
∑

g∈supp(ε)

ε(g)Ig(f,x, s).

It remains to show that Ig is a solution to P (A,B), for all g ∈ supp(ε). Conditions
(5.1), (5.2) and (5.4) hold by construction. For condition (5.3), take (f,x, s) ∈ T
such that fAk(x)× fBk(s(x)) =∞. Since 0 = λ(f,x, s) =

∑
g∈supp(ε) ε(g)Ig(f,x, s), it

follows that Ig(f,x, s) = 0, for all g ∈ supp(ε), and hence condition (5.3) is satisfied.

Theorem 5.11. Let A be a valued σ-structure and A′ be its core. Suppose that
(i) twms(A′) ≤ k − 1 and (ii) the overlap of A′ is at most k. Then the Sherali-Adams
relaxation of level k is always tight for A, i.e., for every valued σ-structure B, we have
that optSAk (A,B) = opt(A,B).

Proof. Let B be a valued σ-structure. We can apply Theorem 5.8 to A′, and obtain
that optSA

k (A′,B) = opt(A′,B). Since A′ ≡ A, we know that opt(A,B) = opt(A′,B)
(by the definition of equivalence and cores) and optSA

k (A,B) = optSA
k (A′,B) (by

Proposition 5.3). Hence, optSA
k (A,B) = opt(A,B).

5.4. Necessity of treewidth modulo scopes. In this and the following section
we will denote by ⊕ the addition modulo 2. We show the following.

Theorem 5.12. Let A be a valued σ-structure and let k ≥ 1. Suppose that A
is a core and twms(A) ≥ k. Then there exists a valued σ-structure B such that
optSAk (A,B) < opt(A,B).

Proof. Let A := Pos(A). As usual, we denote by A the universe of A, A and the
vertex set of G(A). Since twms(A) = twms(G(A)) ≥ k, Theorem 5.7 implies that
there exists a bramble B of G(A) that cannot be covered by any scope nor subset of
size at most k in G(A). Every B ∈ B must belong to the same connected component
of G(A), which we denote by G0 = (A0, E0). Fix any a0 ∈ A0. For each a ∈ A, let da
denote the degree of a in G(A), and let ea1 , . . . , e

a
da

be a fixed enumeration of all the
edges incident to a in G(A).

Recall that A is defined over the relational signature rel(σ) = {Rf | f ∈
σ, ar(Rf ) = ar(f)}. We define a relational structure B over rel(σ) as in [1]. The
universe of B, denoted by B, contains precisely all the tuples (a, (b1, . . . , bda)) such
that

1. a ∈ A and b1, . . . , bda ∈ {0, 1};
2. b1 ⊕ · · · ⊕ bda = 0, if a 6= a0;
3. b1 ⊕ · · · ⊕ bda = 1, if a = a0.

Let Rf ∈ rel(σ) be of arity n. A tuple ((a1, (b11, . . . , b
1
da1

)), . . . , (an, (bn1 , . . . , b
n
dan

)))

belongs to RB
f if and only if



24 C. CARBONNEL, M. ROMERO, S. ŽIVNÝ

1. (a1, . . . , an) belongs to RA
f ,

2. if {a`, am} = ea
`

i = ea
m

j , for some `,m ∈ {1, . . . , n}, i ∈ {1, . . . , da`} and

j ∈ {1, . . . , dam}, then b`i = bmj .
Let π : B → A be the first projection, i.e., π((a, (b1, . . . , bda))) = a, for all

(a, (b1, . . . , bda)) ∈ B. By definition of B, π is a homomorphism from B to A.
The following lemma follows directly from the proof of [1, Lemma 1].

Lemma 5.13. There is no homomorphism h from A to B such that π ◦ h(A) = A.

By Proposition 3.13, since A is a core, there is a function c∗ : tup(A)→ Q≥0 such
that every non-surjective mapping g : A→ A satisfies

∑
(f,x)∈tup(A)

fA(x)c∗(f,x) <
∑

(f,x)∈tup(A)

fA(x)c∗(f, g(x)).

We denote M∗ :=
∑

(f,x)∈tup(A) f
A(x)c∗(f,x) <∞.

Now we are ready to define B. The universe of B is B, i.e., the same as B. For
each f ∈ σ and tuple x ∈ Bar(f) we define

fB(x) =

{
c∗(f, π(x)) if x ∈ RB

f

∞ otherwise

Claim 5.14. opt(A,B) > M∗.

Proof. Let h be a homomorphism from A to B (if it is not then costA→B(h) =∞).
Then

costA→B(h) =
∑

(f,x)∈tup(A)>0

fA(x)fB(h(x)) =
∑

(f,x)∈tup(A)>0

fA(x)c∗(f, π(h(x))).

By Lemma 5.13, π ◦ h is a non-surjective mapping from A to A. By definition of c∗,
we have that costA→B(h) > M∗.

In the rest of the proof, we will show that optSA
k (A,B) ≤ M∗. Together with

Claim 5.14, this establishes Theorem 5.12.
Let s be a partial homomorphism from A to B. We denote by dom(s) the domain of

s. We say that s is an identity partial homomorphism from A to B if π(s(a)) = a, for all
a ∈ dom(s). We denote by IPHom(A,B) the set of all identity partial homomorphisms
from A to B. Let λ be a feasible solution of SAk(A,B) satisfying the following property
(†): if λ(f,x, s) > 0 for (f,x) ∈ tup(Ak)>0, s : Set(x)→ B, then s is an identity partial
homomorphism from A to B. We claim that the cost of any such λ is precisely M∗.



THE COMPLEXITY OF GENERAL-VALUED CSPS SEEN FROM THE OTHER SIDE 25

Indeed, we have that∑
(f,x)∈tup(Ak)>0,s:Set(x)→B

fAk (x)×fBk (s(x))<∞

λ(f,x, s)fAk(x)fBk(s(x))

=
∑

(f,x)∈tup(A)>0,s:Set(x)→B
fA(x)×fB(s(x))<∞

λ(f,x, s)fA(x)fB(s(x))

=
∑

(f,x)∈tup(A)>0

fA(x)
∑

s:Set(x)→B,fA(x)×fB(s(x))<∞
λ(f,x, s)fB(s(x))

=
∑

(f,x)∈tup(A)>0

fA(x)
∑

s:Set(x)→B,fA(x)×fB(s(x))<∞
s∈IPHom(A,B)

λ(f,x, s)fB(s(x))

=
∑

(f,x)∈tup(A)>0

fA(x)
∑

s:Set(x)→B,fA(x)×fB(s(x))<∞
s∈IPHom(A,B)

λ(f,x, s)c∗(f,x)

=
∑

(f,x)∈tup(A)>0

fA(x)c∗(f,x) = M∗.

Thus it suffices to show the existence of a feasible solution to SAk(A,B) satisfying
(†). In [1, Lemma 2] it is shown that, if the treewidth of A is at least k, then the
(k − 1)-consistency test succeeds over A,B. To do this, the authors of [1] exhibit a
winning strategy Hk for the Duplicator in the existential k-pebble game over A,B.
We built on their construction to define a set H of identity partial homomorphisms
from A to B, which will allow us to define our required λ.

Recall that we fixed a bramble B of G(A) that cannot be covered by any scope
nor subset of size at most k in G(A), whose existence is guaranteed by Theorem 5.7.
Recall also that every set in B belongs to the connected component G0 = (A0, E0) of
G(A) and that a0 ∈ A0. Let P be a path in G(A) starting at a0. For every edge e of
G(A), we define

xPe =

{
1 if e appears an odd number of times in P

0 otherwise.

For a ∈ A, we define hP (a) = (a, (xPea1 , . . . , x
P
eada

)). We have hP (a) = (a, (0, . . . , 0)),

for all a ∈ A \ A0. The following claim is shown in [1] (second claim in the proof of
Lemma 2):

Claim 5.15. Let X ⊆ A, and let P be a path in G(A) from a0 to b, where b 6∈ X.
Then, the restriction hP |X of hP to X is a partial homomorphism from A to B.

Notice that in the previous claim, hP |X is actually an identity partial homomor-
phism. Let X := {X ⊆ A : X does not cover B}. We define a set H of identity partial
homomorphisms from A to B as follows. For every X ∈ X and every path P in G(A)
from a0 to b, where b belongs to a set B ∈ B disjoint from X, we include hP |X to H.
By Claim 5.15, H contains only identity partial homomorphisms from A to B. For
X ∈ X , let H(X) := {h ∈ H | dom(h) = X}. We have |H(X)| > 0, for all X ∈ X , as
X does not cover B and then there is a set B ∈ B disjoint from X, and by connectivity,
there is at least one path P from a0 to some node b ∈ B.

It follows from the proof of Lemma 2 in [1] that H has the following closure
properties:



26 C. CARBONNEL, M. ROMERO, S. ŽIVNÝ

Claim 5.16. Let X,X ′ ∈ X such that X ⊆ X ′, then
1. if h ∈ H(X), then there exists h′ ∈ H(X ′) such that h′|X = h.
2. if h′ ∈ H(X ′), then h′|X ∈ H(X).

For X,X ′ ∈ X such that X ⊆ X ′ and h ∈ BX , let H(X ′)X,h := {h′ ∈ H(X ′) |
h′|X = h}. Claim 5.16, item (1) states that |H(X ′)X,h| > 0, for all h ∈ H(X).

The arguments below are an adaptation of the argument from [51] for proving
the existence of gap instances for Sherali-Adams relaxations of VCSP(EG,3), and a
refinement of an argument from [1, Lemma 2] (specifically Claim 5.18 below). In
particular, we shall define a well-behaved subset S ⊆ X . A key property of S is
that the family of distributions {U(H(S)) | S ∈ S}, where U(H(S)) is the uniform
distribution over H(S), is consistent in the following sense: for every S ⊆ S′, the
marginal distribution of U(H(S′)) over S coincides with U(H(S)). As it turns out, we
will be able to extend {U(H(S)) | S ∈ S} to a consistent family {µ(H(X)) | X ∈ X}
over the whole set X . We shall define our required λ from this latter family.

We say that X ⊆ A separates G0 if there exist nodes u, u′ ∈ A0 \ X such that
X separates u and u′, i.e., every path connecting u and u′ in G0 intersects X. Let
S := {S ∈ X | S does not separate G0}. Below we state two important properties of
S:

Claim 5.17. S is closed under intersection.

Proof. Let S, S′ ∈ S. Clearly, S ∩ S′ does not cover B. To see that S ∩ S′ does
not separate G0, take a, a′ ∈ A0 \ (S ∩ S′). We need to find a path in G0 between a
and a′ avoiding S ∩ S′. If a, a′ ∈ A0 \ S or a, a′ ∈ A0 \ S′, we are done as S and S′ do
not separate G0. Thus, without loss of generality we can assume that a ∈ (A0 ∩S) \S′
and a′ ∈ (A0 ∩ S′) \ S. Let B,B′ ∈ B such that B ∩ S = ∅ and B′ ∩ S′ = ∅, and pick
b ∈ B and b′ ∈ B′. Since S′ does not separate a and b′, there exists a path P from a
to b′ avoiding S′, and hence, S ∩ S′. Since B,B′ are connected and they touch, there
is also a path P ′ from b′ to b avoiding S ∩ S′. Finally, since S does not separate a′

and b, there is a path P ′′ from b to a′ avoiding S, and then, S ∩ S′. The claim follows
by taking the concatenation of P , P ′ and P ′′.

Claim 5.18. Let S, S′ ∈ S such that S ⊆ S′ and let h ∈ H(S). Then |H(S′)S,h| =
|H(S′)|/|H(S)|.

Proof. The proof is by induction on ` := |S′ \ S|. If ` = 0, we are done. Suppose
that ` = 1 and S′ \ S = {x}. Assume first that x 6∈ A0. Let g ∈ H(S) and P be any
path starting at a0 and ending at some node in B ∈ B, with B ∩ S = ∅, such that
hP |S = g. Since B ∩ S′ = ∅ as B ⊆ A0 and thus hP |S′ ∈ H(S′)S,g. Notice also that
for every g′ ∈ H(S′)S,g, it must be the case that g′(x) = (x, (0, . . . , 0)), as a path P ′

starting at a0 cannot visit an edge e incident to x, and hence xP
′

e = 0. It follows that
H(S′)S,g = {hP |S′}. In particular, |H(S′)S,h| = 1 and |H(S′)| =

∑
g∈BS |H(S′)S,g|.

By Claim 5.16, item (2),
∑
g∈BS |H(S′)S,g| = ∑

g∈H(S) |H(S′)S,g|. This implies that

|H(S′)| = |H(S)|, and then the claim follows.
We now assume that x ∈ A0. We show that there is an edge {x, u} in G(A) such

that u 6∈ S′. Assume to the contrary, and take B′ ∈ B such that S′ ∩B′ = ∅ and pick
b′ ∈ B′. We have x, b′ ∈ A0 \ S. Since every neighbour of x lies in S, we have that S
separates x and b′, which contradicts the fact that S ∈ S. Let e1, . . . , em, with m ≥ 1,
be an enumeration of all the edges from x to a node outside S′. Recall that ex1 , . . . , e

x
dx

is our fixed enumeration of all the edges incident to x. Without loss of generality,
suppose that ex1 , . . . , e

x
dx

= e1, . . . , em, e
′
1, . . . , e

′
n, where e′1, . . . , e

′
n is an enumeration
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(n ≥ 0) of all the edges from x to a node inside S. We claim that |H(S′)S,g| = 2m−1,
for all g ∈ H(S).

We start by proving |H(S′)S,g| ≤ 2m−1.
We define an injective mapping η from H(S′)S,g to {0, 1}m−1. Let g′ ∈ H(S′)S,g

and suppose that we have g′(x) = (x, (y1, . . . , ym, y
′
1, . . . , y

′
n)). We define η(g′) =

(y1, . . . , ym−1). Suppose that η(g′1) = η(g′2), for g′1, g
′
2 ∈ H(S′)S,g. Thus, g′1(x)

is of the form g′1(x) = (x, (η(g′1), y1m, y
′
11, . . . , y

′
1n)) and and g′2(x) is of the form

g′2(x) = (x, (η(g′2), y2m, y
′
21, . . . , y

′
2n)). We have (y′11, . . . , y

′
1n) = (y′21, . . . , y

′
2n) as these

values are already determined by g. It follows that y1m = y2m as the parity of the
number of ones in (η(g′1), y1m, y

′
11, . . . , y

′
1n)) and (η(g′2), y2m, y

′
21, . . . , y

′
2n)) must be

the same. In particular, g′1 = g′2, and thus η is injective.
Now we show that |H(S′)S,g| ≥ 2m−1. As we mentioned above, if g′ ∈ H(S′)S,g

and g′(x) = (x, (y1, . . . , ym, y
′
1, . . . , y

′
n)), then (y′1, . . . , y

′
n) is already determined by g.

Let z̄ = (z1, . . . , zm) ∈ {0, 1}m be an arbitrary 0/1-vector such that
• ⊕1≤i≤m zi ⊕

⊕
1≤j≤n y

′
j = 1, if x = a0;

• ⊕1≤i≤m zi ⊕
⊕

1≤j≤n y
′
j = 0, if x 6= a0.

The number of such z̄’s is precisely 2m−1, and hence, it suffices to show that, for
every such z̄, there exists g′z̄ ∈ H(S′)S,g such that g′z̄(x) = (x, (z̄, y′1, . . . , y

′
n)). Let P

be any path in G(A) from a0 to a node b ∈ B, where B ∈ B and B ∩ S = ∅, such that
hP |S = g. Let B′ ∈ B such that B′ ∩ S′ = ∅ and pick any b′ ∈ B′. Since B,B′ are
connected and they touch, there exists a path P ′ from b to b′ completely contained
in B ∪ B′, and hence, avoiding S. Let W be the concatenation of P and P ′. By
construction, g′ := hW |S′ ∈ H(S′). Since P ′ avoids S, xWe = xPe , for every edge e
incident to a node in S. Therefore, hW (a) = hP (a), for all a ∈ S. It follows that
g′ ∈ H(S′)S,g.

Let g′(x) = (x, (y1, . . . , ym, y
′
1, . . . , y

′
n)). Suppose without loss of generality that

z̄ = (z1, . . . , zr, zr+1, . . . , zm), where r ∈ {0, . . . ,m} and zi 6= yi if and only if i ∈
{1, . . . , r}. If r = 0, we are done as we can set g′z̄ = g′. Suppose then that r ≥ 1.
Observe that

⊕
1≤i≤r yi =

⊕
1≤i≤r zi. This implies that r is even. Recall that

e1, . . . , em is our fixed enumeration of all the edges from x to a node outside S′. Let
u1, . . . , ur be the nodes outside S′ such that ei = {x, ui}, for all i ∈ {1, . . . , r}. We
have ui, b

′ ∈ A0 \ S′. Since S′ ∈ S, S′ cannot separate ui and b′, there is a path
Pi from b′ to ui avoiding S′, for all i ∈ {1, . . . , r}. Let Wi be the extension of Pi
with the edge {ui, x}. We denote by W−1

i the reverse path of Wi, in particular,
W−1
i is a path from x to b′. Let W ′ be the extension of the path W with the

concatenation Z of the paths W1, W−1
2 ,. . . , Wr−1, W−1

r . Since W ′ ends at b′ we

have hW
′ |S′ ∈ H(S′). Since the subpath Z of W ′ avoids S, hW

′
(a) = hW (a), for all

a ∈ S, and then, hW
′ |S′ ∈ H(S′)S,g. Notice also that the subpath Z visits only the

ei’s with i ∈ {1, . . . , r}, and it visits each such ei exactly once. This implies that
hW

′
(x) = (x, (y1 ⊕ 1, . . . , yr ⊕ 1, yr+1, . . . , ym, y

′
1, . . . , y

′
n)). In other words, hW

′
(x) =

(x, (z1, . . . , zm, y
′
1, . . . , y

′
n)). The claim follows by taking g′z̄ = hW

′ |S′ . Therefore,
|H(S′)S,g| = 2m−1, for all g ∈ H(S). In particular, |H(S′)S,h| = 2m−1. On the other
hand, |H(S′)| =

∑
g∈BS |H(S′)S,g|. By Claim 5.16, item (2),

∑
g∈BS |H(S′)S,g| =∑

g∈H(S) |H(S′)S,g|. This implies that |H(S′)| = 2m−1|H(S)|, and then our claim
holds for ` = 1.

Assume now that ` ≥ 2. We claim that there is a node x∗ ∈ S′ \ S such that
S′ \ {x∗} ∈ S. By contradiction, suppose that this is not the case. If x 6∈ A0 for
x ∈ S′ \ S, then S′ \ {x} ∈ S as S′ \ {x} cannot separate G0. Similarly, if there
is an edge {x, u} in G(A) with x ∈ S′ \ S and u 6∈ S′, then S′ \ {x} ∈ S for the



28 C. CARBONNEL, M. ROMERO, S. ŽIVNÝ

same reason as before. It follows that x ∈ A0 and every neighbour of x lies inside S′,
for all x ∈ S′ \ S. Let B′ ∈ B be disjoint from S′. Then any path from a node in
S′ \ S to a node in B′ must intersect S. This contradicts the fact that S ∈ S. Let
S∗ := S′ \ {x∗} ∈ S.

We have |H(S′)S,h| =
∑
g∈H(S∗)S,h |H(S′)S

∗,g|. By inductive hypothesis, we

know that |H(S′)S
∗,g| = |H(S′)|/|H(S∗)|, for every g ∈ H(S∗), and |H(S∗)S,h| =

|H(S∗)|/|H(S)|. It follows that

|H(S′)S,h| = (|H(S′)|/|H(S∗)|)|H(S∗)S,h| = |H(S′)|/|H(S)|.

Now we are ready to define our vector λ satisfying (†). Fix (f,x) ∈ tup(Ak)>0.
Set(x) is either a scope or a subset of size at most k of G(A). In particular, Set(x)
cannot cover B and thus Set(x) ∈ X . Let Set(x) :=

⋂
S∈S|Set(x)⊆S S. Let us note that

Set(x) is well-defined, i.e., there is S∗ ∈ S such that Set(x) ⊆ S∗. Indeed, we can
take S∗ = A \ B ∈ S, where B is any set in B disjoint from Set(x). By Claim 5.17,
Set(x) ∈ S. Observe then that Set(x) is the inclusion-wise minimal set of S containing
Set(x). For every mapping s : Set(x)→ B, we define

λ(f,x, s) = Pr
h∼U(H(Set(x)))

[
h|Set(x) = s

]
where U(H(Set(x))) denotes the uniform distribution over H(Set(x)).

By Claim 5.16, we have that (∗) λ(f,x, s) > 0 if and only if s ∈ H(Set(x)). Hence,
λ satisfies (†). It remains to prove that λ is feasible for SAk(A,B). Conditions (SA4)
and (SA2) follow from definition. For condition (SA3), recall first that the function
c∗ : tup(A)→ Q≥0, whose existence is guaranteed by the fact that A is a core, satisfies
that ∑

(f,x)∈tup(A)

fA(x)c∗(f,x) <
∑

(f,x)∈tup(A)

fA(x)c∗(f, g(x))

for every non-surjective mapping g : A → A. In particular, we have the following:∑
(f,x)∈tup(A) f

A(x)c∗(f,x) <∞. It follows that fA(x) =∞ implies c∗(f,x) = 0, for

every (f,x) ∈ tup(A). By contradiction, suppose that condition (SA3) does not hold.
Then there is (f,x) ∈ tup(A) and s : Set(x) → B such that fA(x)fB(s(x)) = ∞,
but λ(f,x, s) > 0. By (∗), we know that s ∈ H(Set(x)). In particular, s is a
partial homomorphism from A to B. On the other hand, note that fB(s(x)) < ∞
by construction of B, and then fA(x) = ∞. By a previous remark, we have that
c∗(f,x) = 0. Additionally, note that x ∈ RA

f , and since s is a partial homomorphism,

s(x) ∈ RB
f . By definition of B, it follows that fB(s(x)) = c∗(f, π(s(x))) = c∗(f,x) = 0.

Hence, fA(x)fB(s(x)) = 0; a contradiction.
For condition (SA1), let (f,x), (p,y) ∈ tup(Ak)>0 and define X := Set(x) and

Y := Set(y). Suppose that |X| ≤ k and X ⊆ Y . Let s : X → B. We need to show
that

λ(f,x, s) =
∑

r:Y→B
r|X=s

λ(p,y, r) =
∑

r∈H(Y )X,s

λ(p,y, r),

where the last equality holds due to (∗). Using again (∗) and Claim 5.16, item (2), the
required equality holds directly when s 6∈ H(X). Then we assume that s ∈ H(X). For
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any Z ∈ X such that X ⊆ Z ⊆ Y , we have that

Pr
h∼U(H(Y ))

[h|X = s] =
∑

r:Z→B
Pr

h∼U(H(Y ))
[h|X = s, h|Z = r]

=
∑

r:Z→B
r|X=s

Pr
h∼U(H(Y ))

[h|Z = r] .
(5.5)

By applying Equation (5.5) with Z = X, we obtain

(5.6)

Pr
h∼U(H(Y ))

[h|X = s] =
∑

r:X→B
r|X=s

Pr
h∼U(H(Y ))

[h|X = r] =
∑

r∈H(X)X,s

Pr
h∼U(H(Y ))

[h|X = r] ,

where the last equality holds due to Claim 5.16, item (2). By definition, we have

Prh∼U(H(Y )) [h|X = r] = |H(Y )X,r|/|H(Y )|. Since r ∈ H(X), we can apply Claim 5.18

and obtain that Prh∼U(H(Y )) [h|X = r] = 1/|H(X)|. Using this in Equation (5.6), we
obtain

Pr
h∼U(H(Y ))

[h|X = s] =
∑

r∈H(X)X,s

1/|H(X)| = Pr
h∼U(H(X))

[h|X = s] = λ(f,x, s).

Hence,

λ(f,x, s) = Pr
h∼U(H(Y ))

[h|X = s]

=
∑

r:Y→B
r|X=s

Pr
h∼U(H(Y ))

[h|Y = r] (By Equation (5.5) with Z = Y )

=
∑

r:Y→B
r|X=s

λ(p,y, r).

Therefore, λ is a feasible solution of SAk(A,B).

Finally, we remark that, as in Proposition 4.6, we can define B to be finite-valued
by replacing ∞ with a sufficiently large N (taking N = 1 + (M∗/min{fA(x) : (f,x) ∈
tup(A)>0}) will do). This finishes the proof of Theorem 5.12.

Theorem 5.19. Let A be a valued σ-structure and let k ≥ 1. Let A′ be the core
of A. If twms(A′) ≥ k, then the Sherali-Adams relaxation of level k is not always tight
for A.

Proof. We can apply Theorem 5.12 to A′, and obtain B such that optSA
k (A′,B) <

opt(A′,B). Since A′ ≡ A, we know that opt(A,B) = opt(A′,B) (by the definition of
equivalence and cores) and optSA

k (A,B) = optSA
k (A′,B) (by Proposition 5.3). Hence,

optSA
k (A,B) < opt(A,B), and the result follows.

5.5. Necessity of bounded overlap. In this section we provide the last missing
piece in the proof of Theorem 5.4.
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Theorem 5.20. Let A be a valued σ-structure and let k ≥ 1. Suppose that A is a
core and that the overlap of A is at least k + 1. Then there exists a valued σ-structure
B such that optSAk (A,B) < opt(A,B).

Proof. Given a tuple t and an index i ∈ {1, . . . , |t|}, we denote by t[i] the i-th
entry of t. By extension, given a set I of indices we use t[I] to denote the tuple
obtained from t after discarding all entries t[j] with j /∈ I. Given a tuple t, we use
‖t‖ to denote the number of distinct elements appearing in t, i.e. ‖t‖ := |Set(t)|.

Because the overlap of A is at least k + 1, there exist (p,x), (q,y) ∈ tup(A) such
that:

(i) pA(x), qA(y) > 0,
(ii) |Set(x) ∩ Set(y)| > k, and
(iii) (p,x) 6= (q,y).

Let Ix, Iy be sets of indices of size n = |Set(x) ∩ Set(y)| such that Set(x[Ix]) =
Set(y[Iy]) = Set(x) ∩ Set(y). (There may be more than one possible choice for Ix and
Iy.) We first define a relational structure B over the signature rel(σ) = {Rf | f ∈
σ, ar(Rf ) = ar(f)} and universe B = A×{0, 1}. Let π : B → A and η : B → {0, 1} be
the projections onto the first and second coordinates, respectively. For every symbol

Rf ∈ rel(σ), we add to RB
f every tuple t ∈ Bar(Rf ) such that π(t) ∈ RPos(A)

f . Then,

we remove from RB
p all the tuples t such that π(t) = x and

⊕
i∈Ix η(t[i]) = 1 and

we remove from RB
q all the tuples t such that π(t) = y and

⊕
i∈Iy η(t[i]) = 0. This

completes the definition of B.
By construction, π is a homomorphism from B to Pos(A). As the next claim

shows, whenever h is a homomorphism from Pos(A) to B, the mapping π ◦ h cannot
be surjective.

Claim 5.21. If h : A→ B is a homomorphism from Pos(A) to B, then (π◦h)(A) 6=
A.

Proof. Towards a contradiction, suppose that (π ◦ h)(A) = A. In that case, the
map π ◦ h is bijective and has an inverse l. The map l is an isomorphism from Pos(A)

to itself, so in particular we have that l(x) ∈ RPos(A)
p and l(y) ∈ RPos(A)

q . It follows
that h(l(x)) ∈ RB

p , h(l(y)) ∈ RB
q , π(h(l(x))) = x and π(h(l(y))) = y. Now, if we

define
bS :=

⊕
v∈Set(x)∩Set(y)

η(h(l(v)))

then by construction of B we have both bS =
⊕

i∈Ix η(h(l(x))[i]) = 0 and also
bS =

⊕
i∈Iy η(h(l(y))[i]) = 1, a contradiction.

Now, since A is a core, by Proposition 3.13 there exists a function c∗ : tup(A)→
Q≥0 such that for every non-surjective mapping g : A→ A,

M∗ :=
∑

(f,z)∈tup(A)

fA(z)c∗(f, z) <
∑

(f,z)∈tup(A)

fA(z)c∗(f, g(z)).

In particular, M∗ is finite so fA(z) = ∞ implies c∗(f, z) = 0 for all (f, z) ∈ tup(A).
Then, we define a valued σ-structure B over the universe B such that for all f ∈ σ
and t ∈ Bar(f),

fB(t) :=

{
c∗(f, π(t)) if t ∈ RB

f

∞ otherwise

Claim 5.22. opt(A,B) > M∗.
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Proof. Let h be a homomorphism from Pos(A) to B (if it is not then costA→B(h) =
∞). By Claim 5.21, we have (π ◦ h)(A) 6= A, i.e., π ◦ h is not surjective. By definition
of c∗, we have

costA→B(h) =
∑

(f,z)∈tup(A)>0

fA(z)fB(h(z)) =
∑

(f,z)∈tup(A)>0

fA(z)c∗(f, π(h(z))) > M∗

and the claim follows.

The next step is to exhibit a solution to SAk(A,B) of cost exactly M∗. Recall that
the signature σk of the modified instance (Ak,Bk) used to define SAk(A,B) contains
an additional function symbol ρk of arity k.

Claim 5.23. optSAk (A,B) ≤M∗.
Proof. Let (f, z) ∈ tup(Ak)>0 and s : Set(z) → Bk. If π(s(z)) 6= z then we set

λ(f, z, s) := 0. If instead π(s(z)) = z, then we set λ(f, z, s) according to the following
rules:

• If (p,x) 6= (f, z) 6= (q,y), then λ(f, z, s) := 1/2‖z‖;
• If (f, z) = (p,x), then λ(p,x, s) := 1/2‖x‖−1 if

⊕
i∈Ix η(s(x)[i]) = 0 and

λ(p,x, s) := 0 otherwise;
• If (f, z) = (q,y), then λ(q,y, s) := 1/2‖y‖−1 if

⊕
i∈Iy η(s(y)[i]) = 1 and

λ(q,y, s) := 0 otherwise.
Because λ(f, z, s) may only be nonzero if π(s(z)) = z and fA(z) = ∞ implies

fB(s(z)) = c∗(f, π(s(z))) = c∗(f, z) = 0 for all such (s, z), λ satisfies the condition
(SA3). By construction, λ satisfies the conditions (SA2) and (SA4) as well.

For any (f, z) ∈ tup(Ak) we use id(fB, z) to denote the set of all assignments
r : Set(z)→ B such that π(r(z)) = z and either f = ρk or r(z) ∈ RB

f . Then, the cost
of λ is

∑
(f,z)∈tup(Ak)>0, s:Set(z)→Bk,

fAk (z)×fBk (s(z))<∞

λ(f, z, s)fAk(z)fBk(s(z))

=
∑

(f,z)∈tup(Ak)>0, s∈id(fB,z)

λ(f, z, s)fAk(z)fBk(s(z))

=
∑

(f,z)∈tup(A)>0, s∈id(fB,z)

λ(f, z, s)fA(z)fB(s(z))

=
∑

(f,z)∈tup(A)>0, s∈id(fB,z)

λ(f, z, s)fA(z)c∗(f, π(s(z)))

=
∑

(f,z)∈tup(A)>0, s∈id(fB,z)

λ(f, z, s)fA(z)c∗(f, z)

=
∑

(f,z)∈tup(A)>0

fA(z)c∗(f, z)

= M∗.

At this point, to prove that λ is indeed a solution to SAk(A,B) of cost M∗ we
need only show that it satisfies the condition (SA1). Let (f, z), (g,w) ∈ tup(Ak)>0

such that Set(z) ⊆ Set(w) and ‖z‖ ≤ k. Let s : Set(z)→ Bk. If π(s(z)) 6= z then all
the lambdas involved in the equation (SA1) for the triple ((f, z), (g,w), s) are zero,
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so in this case the condition holds. Now, assume that π(s(z)) = z and observe that
(p,x) 6= (f, z) 6= (q,y) because ‖x‖ , ‖y‖ > k. We consider two cases.

If (p,x) 6= (g,w) 6= (q,y) then there are exactly 2‖w‖−‖z‖ mappings r from Set(w)
to Bk such that π(r(w)) = w for all w ∈ Set(w) and η(r(z)) = η(s(z)) for all z ∈ Set(z).
Thus we have

λ(f, z, s) = 1/2‖z‖ = 2‖w‖−‖z‖1/2‖w‖ =
∑

r:Set(w)→Bk, r|Set(z)=s
λ(g,w, r)

and (SA1) holds for the triple ((f, z), (g,w), s).
In the second case, we have either (g,w) = (p,x) or (g,w) = (q,y). Let Z ′ :=

Set(z) ∩ Set(x) ∩ Set(y) and Z ′′ := Set(z)\Z ′. Since Z ′ is a strict subset of Set(x) ∩
Set(y), the mapping s has exactly 2|Set(x)∩Set(y)|−|Z′|−1 distinct extensions r : Set(z)∪
(Set(x) ∩ Set(y))→ Bk such that π(r(w)) = w for all w ∈ Set(z) ∪ (Set(x) ∩ Set(y))
and

⊕
v∈Set(x)∩Set(y) η(r(v)) = 0 (if (g,w) = (p,x)) or

⊕
v∈Set(x)∩Set(y) η(r(v)) = 1 (if

(g,w) = (q,y)). In turn, each of these mappings r has 2‖w‖−|Set(x)∩Set(y)|−|Z′′| distinct
extensions defined on the whole of Set(w) that satisfy π(r(w)) = w for all w ∈ Set(w).
Putting everything together, s has 2‖w‖−(|Z′|+|Z′′|)−1 = 2‖w‖−‖z‖−1 extensions to
Set(w) with the correct bit sum. Thus we have

λ(f, z, s) = 1/2‖z‖ = 2‖w‖−‖z‖−11/2‖w‖−1 =
∑

r:Set(w)→Bk, r|Set(z)=s
λ(g,w, r)

and (SA1) holds in this last case as well, which concludes the proof of the claim.

The proof of Theorem 5.20 is now established by Claim 5.22 and Claim 5.23. As
in Theorem 5.12, we can make B to be finite-valued by replacing ∞ with a sufficiently
large number N .

Theorem 5.24. Let A be a valued σ-structure and let k ≥ 1. Let A′ be the core
of A. If the overlap of A′ is at least k+ 1, then the Sherali-Adams relaxation of level k
is not always tight for A.

Proof. We can apply Theorem 5.20 to A′, and obtain B such that optSA
k (A′,B) <

opt(A′,B). Since A′ ≡ A, we know that opt(A,B) = opt(A′,B) (by the definition of
equivalence and cores) and optSA

k (A,B) = optSA
k (A′,B) (by Proposition 5.3). Hence,

optSA
k (A,B) < opt(A,B), and the result follows.

6. Search VCSP(C, −). If a class C of valued structures has bounded treewidth
modulo equivalence then the Sherali-Adams LP hierarchy can be used to solve in
polynomial time VCSP(C,−), that is, to compute the minimum cost of a mapping
from A ∈ C to some arbitrary valued structure B. However, it may be the case that
computing a mapping of that cost is NP-hard even though we know that one exists.
In this section we will focus on the search version of the VCSP, which explicitly asks
for a minimum-cost mapping and will be denoted by SVCSP.

If C is a class of valued structures, we denote by Core Computation(C) the
problem that takes as input some A ∈ C, and asks to compute a mapping g : A→ A
such that g(A) is a core of A and there exists an IFH ω from A to A such that
g ∈ supp(ω).

Building on our results from Section 5 and adapting techniques from [50], we will
prove our third main result.

Theorem 6.1 (Search classification). Assume FPT 6= W[1]. Let C be a
recursively enumerable class of valued structures of bounded arity. Then, the following
are equivalent:
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1. SVCSP(C, −) is in PTIME.
2. C is of bounded treewidth modulo equivalence and Core Computation(C) is

in PTIME.

Remark 6.2. Given a class C of relational structures, let SCSP(C, −) denote the
search variant of CSP(C, −); i.e., given A and B with A ∈ C, the task is to return a
homomorphism from A to B if one exists. When applied to (bounded-arity, recursively
enumerable) classes of relational structures, Theorem 6.1 states that SCSP(C, −) is in
PTIME if and only if C has bounded treewidth modulo homomorphic equivalence and
computing a homomorphism from any given A ∈ C to one of its cores is in PTIME.
This result is folklore and can be easily derived from Grohe [32] and Dalmau, Kolaitis,
and Vardi [16]. We provide here a brief sketch of the argument since our proof of
Theorem 6.1 for classes of valued structures follows roughly the same strategy, although
the technical details are significantly more involved.

Let C be a class of relational structures and C′ denote the class of all cores of
structures in C. If computing a homomorphism g from any given A ∈ C to one of
its cores is in PTIME, then SCSP(C, −) is polynomial-time reducible to SCSP(C′,
−) by simply replacing each instance (A,B) of SCSP(C, −) with (g(A),B). (If a
homomorphism h from g(A) to B is returned, then h ◦ g is a homomorphism from
A to B. Otherwise, no homomorphism from A to B exists.) Furthermore, if C has
bounded treewidth modulo homomorphic equivalence then SCSP(C′, −) is in PTIME;
one can, for example, compute an optimal tree decomposition of any A′ ∈ C′ in linear
time (using Bodlaender’s algorithm [6]) and then use standard dynamic programming
techniques. It follows that SCSP(C, −) is in PTIME for any class C satisfying
both conditions. For the converse implication, if SCSP(C, −) is in PTIME then, by
Grohe’s result [32] (and under our assumptions), C is of bounded treewidth modulo
homomorphic equivalence. It only remains to prove that computing a homomorphism
from A ∈ C to one of its cores is in PTIME; for this task we will use a simple argument
from Chen and Mengel [14]. Observe that a relational structure C is not a core if
and only if there exists a relational structure Ca obtained by removing one element a
from the universe of C (as well as all tuples containing a) that is homomorphically
equivalent to C. It follows that an algorithm that starts with the pair of structures
(A,A) and greedily removes elements from the universe of the right-hand side structure
while maintaining homomorphic equivalence will eventually terminate with (A,A′),
where A′ is the core of A. Recall that A ∈ C and C has bounded treewidth modulo
homomorphic equivalence. Thus the homomorphism tests required by the algorithm
outlined above can be done in polynomial time [16]. It then suffices to run the assumed
algorithm for SCSP(C, −) on the pair (A,A′) to compute a homomorphism from A
to one of its cores.

If C is a class of valued structures, the problem Reduction Step(C) takes as
input some A ∈ C and a mapping g : A→ A that belongs to the support of some IFH
from A to A. The goal is to compute a mapping g+ : A→ A such that g+(A) ( g(A)
and g+ belongs to the support of some IFH from A to A, or assert that no such
mapping exist. The relevance of this problem to Core Computation is highlighted
by the following proposition.

Proposition 6.3. Let A be a valued structure and g : A→ A be a mapping that
belongs to the support of some IFH from A to A. Then, g(A) is not the core of A if
and only if there exists a mapping g+ : A→ A such that g+(A) ( g(A) and g+ belongs
to the support of some IFH from A to A.



34 C. CARBONNEL, M. ROMERO, S. ŽIVNÝ

Proof. If there exists such a mapping g+ then by Proposition A.1 (3) from Appen-
dix A we have A ≡ g(A) ≡ g+(A). Then, the cores of g(A) and g+(A) are equivalent
and by Proposition 3.10 they are isomorphic. By Proposition 3.12 the universe of the
core of g+(A) has size at most |g+(A)| < |g(A)|, so g(A) is not a core.

For the converse implication, suppose that g(A) is not a core. Let ω be an IFH from
A to A such that g ∈ supp(ω). By the definition of a core, there exists a non-surjective
IFH from g(A) to g(A). Let g∗ be a mapping in its support such that g∗(g(A)) ( g(A).
By Proposition A.1 (3), we have A ≡ g(A) ≡ g∗(g(A)). Then, by Proposition 3.6 there
exist an IFH ω1 from A to g∗(g(A)) and an IFH ω2 from g∗(g(A)) to A. Let g1, g2 be
arbitrary mappings in the support of ω1, ω2, respectively. If we define ω+ := ω◦ω2 ◦ω1,
where

ω+(h) = (ω ◦ ω2 ◦ ω1)(h) =
∑

h1:A→g∗(g(A)),
h2:g∗(g(A))→A,

h3:A→A:
h3◦h2◦h1=h

ω(h3)ω2(h2)ω1(h1)

then ω+ is an IFH from A to A. Let g+ := g ◦ g2 ◦ g1. Because |g+(A)| ≤ |g1(A)| ≤
|g∗(g(A))| < |g(A)|, we have g+(A) ( g(A). Moreover,

ω+(g+) ≥ ω(g)ω2(g2)ω1(g1) > 0

so g+ belongs to the support of at least one IFH from A to A, which concludes the
proof.

Lemma 6.4. Let C be a class of valued structures. If Reduction Step(C) is in
PTIME, then Core Computation(C) is in PTIME.

Proof. Suppose that Reduction Step(C) is in PTIME, and let A ∈ C. We
initialize a variable g : A→ A to the identity mapping on A and invoke the polynomial-
time algorithm R for Reduction Step(C) on input (A, g). If R asserts that no
mapping g+ : A→ A such that g+(A) ( g(A) and g+ belongs to the support of some
IFH from A to A exists, then from Proposition 6.3 we deduce that g(A) is a core
and we are done. Otherwise, we set g := g+ and repeat the procedure until R finds
that g(A) is a core (via Proposition 6.3). In this case, by Proposition A.1 (3) from
Appendix A, it holds that g(A) ≡ A, so g(A) is the core of A and we return g. The
procedure terminates after at most |A| calls to R.

We start by proving the implication (1) ⇒ (2) of Theorem 6.1. If SVCSP(C, −)
is in PTIME, then, by Theorem 4.1 (and under the assumption that FPT 6= W[1]), C
is of bounded treewidth modulo equivalence; the nontrivial part is to show that Core
Computation(C) is in PTIME. To achieve this, we adapt an algorithm from [50,
Proposition 4.7] originally used to determine in polynomial time the complexity of
core finite-valued constraint languages (here, “core” refers to the notion for right-hand
side valued structures, which differs from our own; see [50, Definition 2.6] for a precise
definition). The central idea is to show that Reduction Step(C) can be solved by
the ellipsoid algorithm using a separation oracle that makes polynomially many calls
to the assumed polynomial-time algorithm for SVCSP(C, −).

Before we proceed with the main proof we need the following definitions and result
from combinatorial optimisation, as well as two minor technical lemmas.

Definition 6.5 ([33]). Let A ∈ Qm×n, b ∈ Qm and P = {x ∈ Qn : Ax ≤ b}. A
strong separation oracle for P is an algorithm that, given on input a vector y ∈ Qn,
either concludes that y ∈ P or computes a vector a ∈ Qn such that aT y > aTx for all
x ∈ P .
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Definition 6.6 ([33]). Let A ∈ Qm×n, b ∈ Qm, P = {x ∈ Qn : Ax ≤ b}, c ∈ Qn
and SEP be a strong separation oracle for P . A basic optimum dual solution with
oracle inequalities is a set of inequalities aT1 x ≤ α1, . . . , a

T
k x ≤ αk valid for P , where

a1, . . . , ak are linearly independent outputs of SEP, and dual variables λ1, . . . , λk ∈ Q≥0

such that λ1a1 + . . .+ λkak = c and λ1α1 + . . .+ λkαk = maxx∈P cTx.

Lemma 6.7 ([33, Lemma 6.5.15]). Let A ∈ Qm×n, b ∈ Qm, P = {x ∈ Qn : Ax ≤
b} and c ∈ Qn. Suppose that the bit sizes of the coefficients of A and b are bounded by
φ. Given a strong separation oracle SEP for P where every output has encoding size
at most φ, one can, in time polynomial in n, φ and the encoding size of c, and with
polynomially many oracle queries to SEP, either

• find a basic optimum dual solution with oracle inequalities, or
• assert that the dual problem is unbounded or has no solution.

Lemma 6.8. There exists a polynomially computable function ε∆ which maps
any two valued σ-structures A, B to a positive rational number ε∆(A,B) such that
for any two mappings h1, h2 : A → B satisfying cost(h1) < cost(h2) < ∞, we have
cost(h2)− cost(h1) > ε∆(A,B).

Proof. We assume without loss of generality that every nonnegative rational
number p/q is encoded as a sequence of two nonnegative integers p and q. Let qA (resp.
qB) denote the product of all denominators of the values fA(x) with (f,x) ∈ tup(A)<∞
(resp. values fB(x) with (f,x) ∈ tup(B)<∞). The cost of any mapping h : A→ B is
an integer multiple of 1/(qAqB), so for any two mappings h1, h2 : A → B satisfying
cost(h1) < cost(h2) <∞ we have that cost(h2)− cost(h1) ≥ 1/(qAqB). We can then
choose ε∆(A,B) := 1/2 · 1/(qAqB), which is positive and polynomially computable.

Lemma 6.9. There exists a polynomially computable function εΩ which maps any
two valued σ-structures A, B to a positive rational number εΩ(A,B) such that for any
subset HS of BA, the following statements are equivalent:

(i) There exists an IFH ω from A to B such that
∑
h∈HS ω(h) > 0.

(ii) There exists an IFH ω from A to B such that
∑
h∈HS ω(h) ≥ εΩ(A,B).

Proof. Let φ be a nondecreasing polynomial such that every feasible linear program
with encoding size n has an optimum value with encoding size at most φ(n). (Since
linear programming is solvable in polynomial time, such a polynomial exists and
depends on the encoding scheme chosen; for more details we refer the reader to [46].)
Let fmin be the polynomially computable function that maps each natural number
n ≥ 2 to the smallest positive rational number with encoding size at most n. We
define the set

H<∞ := {h ∈ BA : fB(x) <∞⇒ fA(h−1(x)) <∞, for all (f,x) ∈ tup(B)}

and observe that the statement (i) is true if and only if the linear program

(6.1)

max

 ∑
h∈HS∩H<∞

ω(h)


∑

h∈H<∞
ω(h)fA(h−1(x)) ≤ fB(x) ∀(f,x) ∈ tup(B)<∞∑

h∈H<∞
ω(h) = 1

ω(h) ≥ 0 ∀h ∈ H<∞
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is feasible and its optimum value is positive. This program has polynomially many
inequalities, hence if it is feasible then there exists an optimum solution ω∗ such
that supp(ω∗) has polynomial size. The restriction of the linear program (6.1) to the
variables in supp(ω∗) has encoding size at most p(|A|+ |B|) for some polynomial p,
and has the same optimum value. Now, we define

εΩ(A,B) := fmin(φ(p(|A|+ |B|)))

and we observe that if the linear program (6.1) is feasible and its optimum value is
positive, then it is at least εΩ(A,B). This establishes the implication (i) ⇒ (ii) for the
function εΩ. The implication (ii) ⇒ (i) is trivial and given A,B the function εΩ(A,B)
is polynomially computable, so the claim follows.

The following lemma is the main technical part in establishing (1) ⇒ (2) in
Theorem 6.1.

Lemma 6.10. Let C be a class of valued structures. If SVCSP(C, −) is in PTIME
then Reduction Step(C) is in PTIME as well.

Proof. Let (A, g) be an input to Reduction Step(C). We assume that |g(A)| >
1; otherwise the problem is trivial. If A is {0,∞}-valued then we can solve the
instance by following the argument described in Remark 6.2, so we also assume that
max(f,x)∈tup(A)<∞(fA(x)) > 0. We define the set

H<∞ := {h ∈ AA : fA(x) <∞⇒ fA(h−1(x)) <∞, for all (f,x) ∈ tup(A)}

and we recall that for every IFH ω from A to A, every mapping g′ ∈ supp(ω) belongs
to H<∞. We denote by H∗ the set of all mappings h in H<∞ such that h(A) ( g(A).
Let us consider the following linear program:

(6.2)

min 0∑
h∈H<∞

ω(h)fA(h−1(x)) ≤ fA(x) ∀(f,x) ∈ tup(A)<∞∑
h∈H<∞

ω(h) = 1

∑
h∈H∗

ω(h) ≥ εΩ(A,A)

ω(h) ≥ 0 ∀h ∈ H<∞

By Lemma 6.9, this program is not feasible if and only if g(A) is a core; otherwise
a solution gives a mapping g ∈ H∗ with the desired property. This program has
exponentially many variables, and hence we will solve its dual instead:
(6.3)

max δ1 + εΩ(A,A)δ2∑
(f,x)∈tup(A)<∞

z(f,x)
(
fA(x)− fA(h−1(x))

)
+ δ1 ≤ 0 ∀h ∈ H<∞\H∗

∑
(f,x)∈tup(A)<∞

z(f,x)
(
fA(x)− fA(h−1(x))

)
+ δ1 + δ2 ≤ 0 ∀h ∈ H∗

z(f,x) ≥ 0 ∀(f,x) ∈ tup(A)<∞
δ2 ≥ 0
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We now describe a strong separation oracle for the associated polyhedron P . Given
a vector (z, δ1, δ2) ∈ Q|tup(A)<∞|×Q2, we first check if there exists (f∗,x∗) ∈ tup(A)<∞
such that z(f∗,x∗) < 0; if it is the case then a(f∗,x∗) = −1 and 0 otherwise defines a
separating hyperplane. Similarly, if δ2 < 0 then we can set a(δ2) = −1 and 0 otherwise
to obtain a separation.

Now, let B0 be a valued σ-structure with universe B0 = A such that for all
(f,x) ∈ tup(B0), fB0(x) = z(f,x) if (f,x) ∈ tup(A)<∞ and fB0(x) = 0 otherwise.
We will be interested in computing a mapping h ∈ BA0 ∩ H<∞ with minimum cost.
However, invoking the assumed algorithm for SVCSP(C, −) on the instance (A,B0)
is not sufficient for this task because the returned mapping might not belong to H<∞.
In order to solve this problem, we define

ε :=
ε∆(A,B0)

|tup(A)| ·max(f,x)∈tup(A)<∞(fA(x))

where the function ε∆ is as in Lemma 6.8, and we let B be the valued σ-structure
with universe B = A such that for all (f,x) ∈ tup(B), fB(x) = z(f,x) + ε if (f,x) ∈
tup(A)<∞ and fB(x) = 0 otherwise. Because ε > 0, the set of finite-cost mappings
A→ B is precisely H<∞ and cannot be empty because of the identity mapping. Since
(A,B) is an instance of SVCSP(C, −), we can find a mapping h∗ from A to B of
minimum cost in polynomial time. Then, we have

h∗ ∈ argminh∈BA

 ∑
(f,x)∈tup(B)

fB(x)fA(h−1(x))


= argminh∈H<∞

 ∑
(f,x)∈tup(B)

fB(x)fA(h−1(x))


= argminh∈H<∞

( ∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))

+ ε

 ∑
(f,x)∈tup(A)<∞

fA(h−1(x))

).
Recall that we are looking for a mapping in BA0 ∩H<∞ with minimum cost with

respect to the instance (A,B0). The mapping h∗ we have just computed realises the
minimum of a slightly different objective function, but the next claim shows that this
is not an issue.

Claim 6.11. Let HS be a non-empty subset of H<∞ and h′ ∈ HS. If

h′ ∈ argminh∈HS

( ∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))

+ε

 ∑
(f,x)∈tup(A)<∞

fA(h−1(x))

)
then

h′ ∈ argminh∈HS

 ∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))

 .
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Proof. We prove the statement by contraposition. Let h′ ∈ HS and suppose that
there exists h1 ∈ HS such that

∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1
1 (x)) <

∑
(f,x)∈tup(A)<∞

z(f,x)fA(h′−1(x)).

These two quantities are the respective costs of h1 and h′ with respect to the instance
(A,B0), and both are finite. By Lemma 6.8 we have

∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1
1 (x)) + ε∆(A,B0) <

∑
(f,x)∈tup(A)<∞

z(f,x)fA(h′−1(x))

and since ∑
(f,x)∈tup(A)<∞

fA(h−1
1 (x))

|tup(A)| ·max(f,x)∈tup(A)<∞(fA(x))
≤ 1

it follows from the definition of ε that

∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1
1 (x)) + ε

 ∑
(f,x)∈tup(A)<∞

fA(h−1
1 (x))


is strictly smaller than

∑
(f,x)∈tup(A)<∞

z(f,x)fA(h′−1(x)), and a fortiori strictly

smaller than
∑

(f,x)∈tup(A)<∞
z(f,x)fA(h′−1(x)) + ε

(∑
(f,x)∈tup(A)<∞

fA(h′−1(x))
)

,

which concludes the proof.

As a consequence of Claim 6.11 (with HS = H<∞) we have that h∗ realises the
maximum of the function

ζ(h) =
∑

(f,x)∈tup(A)<∞

z(f,x)
(
fA(x)− fA(h−1(x))

)
+ δ1

over H<∞. If this maximum is positive, then the vector a such that a(f,x) =
fA(x) − fA(h∗−1(x)), a(δ1) = 1 and a(δ2) = 0 defines a separating hyperplane
(this is true even if h∗ ∈ H∗ because δ2 is nonnegative). In this case we output
a together with the mapping h∗. (A separation oracle is supposed to only output
the vector a, but later on we will need to know to which mapping it corresponds.)
Otherwise, only two possibilities remain: either (z, δ1, δ2) ∈ P , or the maximum of∑

(f,x)∈tup(A)<∞
z(f,x)

(
fA(x)− fA(h−1(x))

)
+ δ1 + δ2 over H∗ is positive.

To verify the latter condition, for every a ∈ g(A) we construct a valued σ-structure
Ba with universe Ba = g(A)\{a} such that for all (f,x) ∈ tup(Ba), fBa(x) = z(f,x)+ε
if (f,x) ∈ tup(A)<∞ and fBa(x) = 0 otherwise. Then, for each a ∈ g(A) we use the
algorithm for SVCSP(C, −) to compute in polynomial time a minimum-cost mapping
h∗a for the instance (A,Ba). If the cost of h∗a is infinite for each a ∈ g(A) then H∗ is
empty; it follows that g(A) is a core and we can stop. Otherwise, for each a ∈ g(A)
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such that the cost of h∗a is finite we have

h∗a ∈ argmin
h∈BAa

 ∑
(f,x)∈tup(Ba)

fBa(x)fA(h−1(x))


= argmin
h∈H<∞:h(A)⊆g(A)\{a}

( ∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))

+ ε

 ∑
(f,x)∈tup(A)<∞

fA(h−1(x))

)

and by Claim 6.11,

h∗a ∈ argmin
h∈H<∞:h(A)⊆g(A)\{a}

 ∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))

 .

Therefore, if we pick h∗∗ ∈ argminh∗a:a∈g(A)

(∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))
)

then

we have

h∗∗ ∈ argmin
h∈H<∞:h(A)⊂g(A)

 ∑
(f,x)∈tup(A)<∞

z(f,x)fA(h−1(x))


and either

∑
(f,x)∈tup(A)<∞

z(f,x)
(
fA(x)− fA(h∗∗−1(x))

)
+ δ1 + δ2 > 0 and the

vector a such that a(f,x) = fA(x)− fA(h∗∗−1(x)), a(δ1) = 1 and a(δ2) = 1 defines a
separating hyperplane (which we output together with the mapping h∗∗) or (z, δ1, δ2) ∈
P . This concludes the description of our strong separation oracle.

We now apply Lemma 6.7 to the linear program (6.3). Its dual (6.2) is bounded,
and if the ellipsoid algorithm returns that it is not feasible then g(A) is a core.
Otherwise, the algorithm will return a set of polynomially many valid inequalities of
the form ∑

(f,x)∈tup(A)<∞

z(f,x)
(
fA(x)− fA(h−1(x))

)
+ δ1 ≤ α′h

∀h ∈ H′ ⊆ (H<∞\H∗)∑
(f,x)∈tup(A)<∞

z(f,x)
(
fA(x)− fA(h−1(x))

)
+ δ1 + δ2 ≤ α′′h

∀h ∈ H′′ ⊆ H∗
−z(f,x) ≤ αf,x

∀(f,x) ∈ T ⊆ tup(A)<∞
−δ2 ≤ α2

where each mapping h appearing in the inequalities is explicitly known (because we
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modified the output of the strong separation oracle), and dual variables that satisfy∑
h∈H′

λ′h
(
fA(x)− fA(h−1(x))

)
+
∑
h∈H′′

λ′′h
(
fA(x)− fA(h−1(x))

)
− λf,x = 0

∀(f,x) ∈ tup(A)<∞∑
h∈H′

λ′h +
∑
h∈H′′

λ′′h = 1∑
h∈H′′

λ′′h − λ2 = εΩ(A,A)

where we set λf,x := 0 if (f,x) /∈ T . Now, we define

ω(h) :=


λ′h if h ∈ H′
λ′′h if h ∈ H′′
0 otherwise

and we deduce from the above system that∑
h∈H<∞

ω(h)
(
fA(x)− fA(h−1(x))

)
− λf,x = 0 ∀(f,x) ∈ tup(A)<∞(6.4)

∑
h∈H<∞

ω(h) = 1(6.5)

∑
h∈H∗

ω(h) ≥ εΩ(A,A) > 0(6.6)

Then, from (6.4), (6.5) and the nonnegativity of the dual variables we can deduce that
for all (f,x) ∈ tup(A)<∞, ∑

h∈H<∞
ω(h)fA(h−1(x)) ≤ fA(x)

and hence ω (complemented with ω(h) = 0 for all h /∈ H<∞) is an IFH with a
support of polynomial size. Finally, we search supp(ω) for a mapping g+ such that
g+(A) ( g(A), which is guaranteed to exist by the definition of ω and (6.6).

The next lemma is the last missing ingredient in the proof of Theorem 6.1.

Lemma 6.12. Let k ≥ 1 and C be a class of valued σ-structures such that for every
A ∈ C, twms(A) ≤ k − 1 and the overlap of A is at most k. Then, SVCSP(C, −) is
in PTIME.

Proof. Given a pair (A,B) of valued structures over some signature σ and two
elements a ∈ A, b ∈ B, we say that a is fixed to b if there exists a unary symbol
fab ∈ σ such that fAab(x) = ∞ if x = (a) and 0 otherwise, and fBab(x) = 0 if x = (b)
and ∞ otherwise. Clearly, if a is fixed to b then any finite-cost mapping from A to B
must map a to b.

Now, let (A,B) be an instance of SVCSP(C, −). Suppose that opt(A,B) is finite
and that the overlap of A is positive (otherwise the problem is trivial). If every element
a ∈ A is fixed to some element g(a) ∈ B, then the mapping g is the only finite-cost
mapping from A to B and we can output g. Otherwise, we pick an element a ∈ A
that is not fixed to any element of B. For each b ∈ B, we create one new instance
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(Aab,Bab) of SVCSP by adding to (A,B) a new symbol fab that fixes a to b. The
overlap and treewidth modulo scopes of Aab are no greater than those of A, so we can
use Theorem 5.8 to compute opt(Aab,Bab) in polynomial time.

Observe that there necessarily exists a value b∗ ∈ B such that opt(A,B) =
opt(Aab∗ ,Bab∗) (just take b∗ = h(a) for any minimum-cost mapping h from A to B).
The instance (Aab∗ ,Bab∗) has the same optimum cost as (A,B), but one extra element
of A is fixed. We can then repeat the operation until all elements of the left-hand side
structure are fixed, in which case the unique finite-cost mapping (which can be found
in polynomial time by inspecting the signature) is a minimum-cost mapping from A
to B.

Proof of Theorem 6.1. If (1) holds, then, by Theorem 4.1, C has bounded treewidth
modulo equivalence. Furthermore, by Lemma 6.10, Reduction Step(C) is in PTIME
and, by Lemma 6.4, Core Computation(C) is in PTIME as well. For the converse
implication, assume that (2) holds and let (A,B) be an instance of SVCSP(C, −).
Let k denote the maximum treewidth of the core of a structure in C. We compute in
polynomial time the core g(A) of A and the associated mapping g : A→ A. Because
tw(g(A)) ≤ k implies both twms(g(A)) ≤ k and an upper bound of k + 1 for the
overlap of g(A), we can use Lemma 6.12 to compute in polynomial time a minimum-
cost solution h : g(A) → B to (g(A),B). Since costg(A)→B(h) = costA→B(h ◦ g) and
opt(A,B) = opt(g(A),B), we conclude that h ◦ g is a minimum-cost mapping from A
to B and the theorem follows.

7. Related problems. In this section we provide a quick overview of the com-
plexity of deciding the various natural questions on valued structures that arise from
our characterisations. We also highlight some interesting implications of our results in
the context of database theory.

We establish tight complexity bounds for the following problems. We note that
while hardness mostly follows directly from existing results on relational structures, the
technical machinery of Section 3 is required in order to derive precise upper bounds.

• Improvement: given two valued structures A,B, is it true that A � B?
• Equivalence: given two valued structures A,B, is it true that A ≡ B?
• Core Recognition: given a valued structure A, is A a core?
• Core Treewidth: given a valued structure A and k ≥ 1, is the treewidth of

the core of A at most k?
• Sherali-Adams Tightness: given a valued structure A and k ≥ 1, is the

Sherali-Adams relaxation of level k tight for A?

Proposition 7.1. Improvement and Equivalence are NP-complete.

Proof. We first prove that Improvement is in NP, which implies that Equiv-
alence is in NP as well. By Proposition 3.6, an instance (A,B) of Improve-
ment is a yes-instance if and only if there exists an IFH from A to B, or equiv-
alently if G<∞ := {g ∈ BA | fA(g−1(x)) <∞ for all (f,x) ∈ tup(B)<∞} (where



42 C. CARBONNEL, M. ROMERO, S. ŽIVNÝ

tup(B)<∞ := {(f,x) ∈ tup(B) | fB(x) <∞}) is not empty and the system∑
g∈G<∞

ω(g)fA(g−1(x)) ≤ fB(x) ∀(f,x) ∈ tup(B)<∞∑
g∈G<∞

ω(g) ≤ 1

−
∑

g∈G<∞
ω(g) ≤ −1

− ω(g) ≤ 0 ∀g ∈ G<∞

has a rational solution ω. Since the number of inequalities is polynomial in |A| and
|B|, this system has a solution if and only if it has one with a polynomial number
of non-zero variables. Such a subset of non-zero variables is an NP certificate: the
corresponding restriction of the system has polynomial size and its satisfiability can
be checked in polynomial time.

For hardness, we note that in the special case of {0,∞}-valued structures (that
is, relational structures) the Improvement and Equivalence problems correspond
respectively to Homomorphism and Homomorphic Equivalence, which are well-
known to be NP-complete even in the bounded arity case [13].

Proposition 7.2. Core Recognition is coNP-complete.

Proof. We start by establishing membership in coNP. Let (A) be an instance of
Core Recognition. By the definition of a core, (A) is a no-instance if and only if
there exists a non-surjective IFH from A to A. This is true if and only if the optimum
of the linear program

min

−∑
g∈G∗

ω(g)


∑

g∈G<∞
ω(g)fA(g−1(x)) ≤ fA(x) ∀(f,x) ∈ tup(A)<∞∑

g∈G<∞
ω(g) ≤ 1

−
∑

g∈G<∞
ω(g) ≤ −1

− ω(g) ≤ 0 ∀g ∈ G<∞

is strictly negative, where tup(A)<∞ := {(f,x) ∈ tup(A) | fA(x) < ∞}, G<∞ :=
{g ∈ AA | fA(g−1(x)) <∞ for all (f,x) ∈ tup(A)<∞} and G∗ is the restriction of
G<∞ to non-surjective mappings. Again, the number of inequalities in this system
is polynomial in |A| so there exists a solution of minimum cost with a polynomial
number of non-zero variables. Such a subset of variables is a coNP certificate.

On {0,∞}-valued structures with a single binary symmetric function symbol,
Core Recognition coincides with the problem of deciding if a graph is a core in the
usual sense (that is, the problem of deciding if all of its endomorphisms are surjective).
This problem is coNP-complete [34], so Core Recognition is coNP-complete as
well.
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Proposition 7.3. Core Treewidth is NP-complete even for fixed k ≥ 1, and
Sherali-Adams Tightness is NP-complete even for fixed k ≥ 1.

Proof. First, we prove that these problems belong to NP when k is part of the input.
For Core Treewidth, the certificate for a yes-instance (A, k) is a valued structure
B, a polynomially-sized certificate that B ≡ A (which exists because Equivalence is
in NP by Proposition 7.1) and a tree decomposition of G(Pos(B)) of width at most
k. Correctness follows from Proposition 3.16. For Sherali-Adams Tightness, the
certificate for a yes-instance (A, k) is a valued structure B whose overlap is at most k,
a polynomially-sized certificate that B ≡ A and a tree decomposition of G(Pos(B)) of
width modulo scopes at most k − 1. For correctness, by Theorem 5.4 it is sufficient to
prove that this certificate exists if and only if the core A′ of A has treewidth modulo
scopes at most k − 1 and overlap at most k. One implication is immediate: if A′
has treewidth modulo scopes at most k − 1 and overlap at most k then we can take
B := A′. For the converse implication, if this certificate exists then by Theorem 5.8
the Sherali-Adams relaxation of level k is always tight for B. Then, by Theorem 5.4
the core B′ of B has treewidth modulo scopes at most k − 1 and overlap at most k.
Furthermore, A ≡ B so by Proposition 3.10 A′ and B′ are isomorphic, and finally A′
has treewidth modulo scopes at most k − 1 and overlap at most k.

As before, we derive hardness from the {0,∞}-valued case. Determining whether
a graph has a core of treewidth at most k is NP-complete for all fixed k ≥ 1 [16], so
Core Treewidth is NP-complete even for fixed k ≥ 1 and arity at most 2. For fixed
k ≥ 2 and on valued structures of arity at most 2, Sherali-Adams Tightness is
equivalent to Core Treewidth with k′ = k−1, and hence it is NP-complete. For the
case k = 1 and arity at most 2 (i.e., for directed graphs), Sherali-Adams Tightness
is equivalent to deciding whether the core of a directed graph is a disjoint union of
oriented trees, i.e., simple directed graphs whose underlying undirected graphs are
trees. It follows from the proof of [16, Theorem 13] that this problem is NP-complete.

7.1. Application to database theory. It is well-known that the evaluation
(containment) problem for conjunctive queries (CQs) (i.e., first-order queries using
only conjunction and existential quantification) is equivalent to the homomorphism
problem, and hence equivalent to CSPs [13, 37]. This observation has been fundamental
in providing principled techniques for the static analysis and optimisation of CQs.
Indeed, in their seminal work [13], Chandra and Merlin exploited this connection
to show that the containment and equivalence problem for CQs are NP-complete.
They also provided tools for minimising CQs with strong theoretical guarantees. In
terms of homomorphisms, minimising a CQ corresponds essentially to computing the
(relational) core of a relational structure.

The situation is less clear in the context of annotated databases [31]. In this
framework, the tuples of the database are annotated with values from a particular
semiring K, and the semantics of a CQ is a value from K. For instance, the Boolean
semiring ({0, 1},∨,∧, 0, 1) gives us the usual semantics of CQs, and the natural semiring
(N,+,×, 0, 1) corresponds to the so-called bag semantics of CQs. Another semiring
considered in the literature is the tropical semiring (Q≥0,min,+,∞, 0), which provides
a minimum-cost semantics [31]. Unfortunately, the homomorphism machinery cannot
be applied directly to the study of containment and equivalence in the semiring setting.
While there are some works in this direction (see, e.g. [40, 30]), several basic problems
remain open. In particular, the precise complexity of containment/equivalence of CQs
over the tropical semiring is open (it was shown in [40] to be NP-hard and in Πp

2, the
second level of the polynomial-time hierarchy). Our first observation is that these two
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problems are actually NP-complete. Indeed, it is well known that VCSP is equivalent
to CQ evaluation over the tropical semiring. Moreover, containment and equivalence
of CQs over the tropical semiring correspond to improvement and (valued) equivalence
of valued structures. By applying Proposition 7.1, we directly obtain NP-completeness
of these problems.

Our second observation is that our notion of (valued) core provides a notion of
minimisation of CQs over the tropical semiring with theoretical guarantees. Indeed, as
the following proposition shows, the core of a valued structure is always an equivalent
valued structure with minimal number of elements, or in terms of CQs, with minimal
number of variables.

Proposition 7.4. Let A and B be valued σ-structures. Then the following are
equivalent:

1. B is the core of A.
2. B is a minimal (with respect to the size of the universe) valued structure

equivalent to A.

Proof. For (1) ⇒ (2), suppose that B is the core of A. By contradiction, assume
that (2) is false, i.e., there is a valued σ-structure B′ such that |B′| < |B| and B′ ≡ A.
In particular, B′ ≡ B and then by Proposition 3.10 the core B′′ of B′ is isomorphic to B.
By Proposition 3.12, we have that |B′′| ≤ |B′| < |B|; a contradiction. For (2) ⇒ (1),
suppose by contradiction that B is not the core of A. Since B ≡ A by hypothesis, the
only possibility is that B is not a core. Hence, there is an IFH ω and a non-surjective
mapping g : B → B such that g ∈ supp(ω). By Proposition A.1 (3) from Appendix A,
g(B) ≡ B ≡ A. Since |g(B)| < |B|, this is a contradiction.

Proposition 3.12 also gives an algorithm to compute the core of a CQ over the
tropical semiring. (In fact, a PSPACE algorithm.) Finally, it is worth mentioning that
our classification result from Theorem 4.1 can be interpreted as a characterisation of
the classes of CQs over the tropical semiring that can be evaluated in PTIME.
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BA. Then, A � g(A) and A � ω(A).
(3) If ω is an IFH from A to A then A ≡ ω(A) ≡ g(A) for every g ∈ supp(ω).

Proof.
(1) A ≤ B implies, for every C and g : A→ C, costA→C(g) ≤ costB→C(g). Thus,

opt(A,C) ≤ opt(B,C) for every C, and so A � B.
(2) Since costg(A)→C(h) = costA→C(h ◦ g), for every C and h : B → C, we obtain

A � g(A).
Then, since opt(

∑
g∈BA ω(g)g(A),C) ≥∑g∈BA ω(g)opt(g(A),C), we get A �

ω(A).
(3) From (2), A � ω(A). From the definition of IFH (Definition 3.5), we have

ω(A) ≤ A. By (1), ω(A) � A. Together, A ≡ ω(A).
By (2) again, A � g(A) for every g ∈ supp(ω). In particular, opt(A,C) ≤
opt(g(A),C) for every C. Assume for contradiction that opt(g(A),C) >
opt(A,C) for at least one g ∈ supp(ω) and some C. Then,

opt(ω(A),C) = opt(
∑
g∈AA

ω(g)g(A),C) ≥
∑
g∈AA

ω(g)opt(g(A),C) >

∑
g∈AA

ω(g)opt(A,C) = opt(A,C),

which contradicts the already established A ≡ ω(A). Hence A ≡ g(A).

Proposition A.2. Let A be a core valued σ-structure and ω be an IFH from A
to itself. Then, for every g ∈ supp(ω) and every (f,x) ∈ tup(A), we have fA(x) =
fA(g(x)).

Proof. By contradiction, take (f,x) ∈ tup(A) and g ∈ supp(ω) such that fA(x) 6=
fA(g(x)) with minimal c := fA(x). By minimality, for any h ∈ supp(ω), we have
fA(y) = fA(h(y)) if fA(y) < c. Since h is a bijection (A is a core), and by counting,
we obtain fA(y) ≥ c if and only if fA(h(y)) ≥ c. If c =∞, then fA(g(x)) needs to be
>∞; a contradiction.

If c < ∞, we have fA(x) < fA(g(x)). By counting, this implies that there is w
such that fA(g(w)) = c and fA(w) > c. Then

∑
h∈supp(ω);h(y)=g(w) ω(h)fA(y) > c =

fA(g(w)) since fA(y) ≥ c and at least for one y we have fA(y) > c. This contradicts
ω being an IFH.

Corollary A.3. Let A and B be two core valued σ-structures. Assume that there
is an IFH ω from A to B and an IFH ω′ from B to A. Then, A and B are isomorphic.

Proof. By composition, ω′ ◦ ω is an IFH from A to itself. Since A is a core, the
support of ω′ ◦ ω contains only bijections. Similarly, since B is a core the support
of ω ◦ ω′ contains only bijections. These two facts imply that |A| = |B| and the
supports of ω and ω′ also contain only bijections. Assume for contradiction that there
is g ∈ supp(ω) such that for some (f,x) ∈ tup(A) we have fA(x) 6= fB(g(x)).

Case 1: fA(x) < fB(g(x)). Since ω′ is an IFH, there must exist g′ ∈ supp(ω′) such
that for some y we have g′(y) = x and fB(y) ≤ fA(x). But then, g ◦ g′ ∈ supp(ω ◦ω′),
which contradicts Proposition A.2.

Case 2: fA(x) > fB(g(x)). In this case, we consider any g′ ∈ supp(ω′) and (f, g(x)).
As g′ ◦ g ∈ supp(ω′ ◦ ω), Proposition A.2 guarantees that fB(g(x)) < fA(g′(g(x))).
We can then proceed as in Case 1, interchanging the roles of A and B.
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We will need the following variant of Farkas’ Lemma, known as Motzkin’s transpo-
sition theorem. [50, Lemma 2.8] shows how it can be derived from Farkas’ Lemma [46,
Corollary 7.1k].

Lemma A.4. For any A ∈ Qm×n and B ∈ Qp×n exactly one of the following
holds:

• Ay > 0, By ≥ 0 for some y ∈ Qn≥0, or

• AT z1 +BT z2 ≤ 0 for some 0 6= z1 ∈ Qm≥0, z2 ∈ Qp≥0.

Proposition A.5. Let A and B be two valued σ-structures and let G ⊆ BA. Then,
either there is an IFH ω from A to B such that G ∩ supp(ω) 6= ∅, or there is a finite-
valued σ-structure C with C = B such that costA→C(g) > costB→C(id) for every g ∈ G.
Moreover, deciding whether such a ω exists and if so then computing it, as well as
computing C if no such ω exists, can be done effectively from A, B and G.

Proof. Let M ⊆ BA be the set of all mappings g such that for every (f,x) ∈
tup(A), fB(g(x)) =∞ whenever fA(x) =∞.

Case 1: Assume G ∩M = ∅, i.e., for every g ∈ G there is some (f,x) ∈ tup(A)
satisfying fA(x) =∞ and fB(g(x)) <∞. Define C by setting fC(x) = 0 if fB(x) =∞
and fC(x) = 1 otherwise. By the definition of C, we have costB→C(id) <∞. By the
definition of C again and the assumption, costA→C(g) =∞ for every g ∈ G. Hence the
desired inequality holds.

Case 2: Assume there is g ∈ G∩M such that for every (f,x) ∈ tup(A), fB(g(x)) =
∞ whenever 0 < fA(x) <∞. Define ω by ω(g) = 1; it is an IFH from A to B, since
for every (f,y) ∈ tup(B),

∑
x:g(x)=y f

A(x) ≤ fB(y).
Case 3: Assume that neither Case 1 nor Case 2 applies. We will use Lemma A.4.

We set n := |M|+1 and m := 1. Thus the matrix A is just a row vector, where we have
a coordinate for every map g ∈M and one more (say, the last), coordinate. We define
A(g) = 1 if g ∈M∩G and A(g) = 0 otherwise. Note that since Case 1 does not apply,
then M∩G 6= ∅. We set A to be 0 in the last coordinate. Condition Ay > 0 means
that y(g) > 0 for some g ∈M∩ G. Let tup(B)<∞ := {(f,y) ∈ tup(B) : fB(y) <∞}.
We set p := |tup(B)<∞|+ 1 and define the matrix B as follows. We have a row in B
for every (f,y) ∈ tup(B)<∞. The entry of B with row (f,y) and column g ∈ M is
−∑x:g(x)=y f

A(x). In the last column of B we put fB(y). Finally, we add one more

row to B of the form (1, . . . , 1,−1). Note that B is actually a rational matrix.
We now distinguish the two cases of Lemma A.4.
Case 3a: In the first case of Lemma A.4, we will construct an IFH ω from A to B.

Let c be the value of the last coordinate of y.
If c = 1, we define ω as follows: ω(g) is the g-th coordinate of y. Using all, except

for the last one, rows of By, we get ω(A) ≤ B. Using Ay > 0, G ∩ supp(ω) 6= ∅. Finally,
using the last row of By, we get that d :=

∑
g∈BA ω(g) ≥ c = 1. If d 6= 1, to make ω a

probability distribution, we scale it by 1/d.
If c > 0, we can scale y by 1/c and are in the c = 1 case.
If c = 0, let g ∈ M ∩ G be a coordinate in y with y(g) > 0. Since Case 2 does

not apply, there is (f,x) ∈ tup(A) such that 0 < fA(x) < ∞ and fB(g(x)) < ∞.
We claim that in By the entry corresponding to (f, g(x)) ∈ tup(B)<∞ is negative,
which contradicts By ≥ 0. Indeed, by the definition of B, the entry is equal to∑

h∈M y(h)(−∑y:h(y)=g(x) f
A(y)). This is negative as every term in the sum is ≤ 0

and there is one term < 0 (take h = g and y = x).
Case 3b: In the second case of Lemma A.4, we construct a valued σ-structure C as

required. Let c be the last entry of z2 given by Lemma A.4. Define C by fC(x) to be
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z2((f,x)) + ε for every (f,x) ∈ tup(B)<∞, where ε is a positive number to be defined
later. For (f,x) ∈ tup(B) \ tup(B)<∞ we set fC(x) = 0. The last row of the inequality
AT z1 + BT z2 ≤ 0 implies that costB→C(id) =

(∑
(f,x)∈tup(B)<∞

fB(x)z2((f,x))
)

+

εN ≤ c + εN , where N :=
∑

(f,x)∈tup(B)<∞
fB(x). Since costB→C(id) < ∞, the

required inequality holds for every g ∈ G \ M, as we have costA→C(g) = ∞ (here
we use the fact that fC(x) > 0 whenever fB(x) < ∞). On the other hand, for
every g ∈ G ∩M we have costA→C(g) ≥ ∑(f,x)∈tup(B)<∞

z2((f,x))
∑

y:g(y)=x f
A(y).

Using the row corresponding to g in the inequality AT z1 + BT z2 ≤ 0, we obtain
costA→C(g) ≥ z1 + c. We can choose ε so z1 > εN and obtain the required inequality.

Computability of ω and C follows directly from the previous arguments and from
solving the corresponding system of linear inequalities (from Lemma A.4) whenever
necessary.

We now show how the previous propositions imply the results from Section 3.
Propositions A.1 (1) and (2) imply the “if direction” of Proposition 3.6. For the

“only if direction”, we can use Proposition A.5 with G = BA. We obtain that if there
is no IFH from A to B, then there is a structure C with opt(A,C) > opt(B,C), i.e.,
A � B does not hold.

Proposition 3.10 follows from Corollary A.3 and Proposition 3.6.
The existence of a core for every valued structure A in Proposition 3.12 follows from

the fact that either A is a core or, by Proposition A.1 (3), A ≡ g(A), where g : A→ A
is a non-surjective mapping. We can iterate this argument until we find a core of A,
whose universe has size ≤ |A|. Uniqueness of cores follows from Corollary A.3. The
computability of the core can be obtained by invoking Proposition A.5 with A = B
and G being the set of non-surjective functions on A. In this case, Proposition A.5
gives us that if A is not a core, then we can compute a non-surjective IFH ω from
A to itself, and in particular, we can compute a non-surjective g : A→ A such that
A ≡ g(A). Hence, we can turn the previous existence argument into an algorithm for
computing the core.

For the “only if direction” of Proposition 3.13, we again use Proposition A.5 with
A = B and G being the set of non-surjective functions on A. We obtain that if A is a
core, then there exists the required mapping c (which is the finite-valued structure C)
and it can be effectively computed. For the “if direction”, and towards a contradiction,
suppose A is not a core and assume there exists a mapping c as in the statement of
the proposition. Take a non-surjective IFH ω from A to itself and a non-surjective
g ∈ supp(ω). Let C be the finite-valued structure with C = A and fC(x) = c(f,x).
By Proposition A.1 (3), A ≡ g(A). Let h be a minimum-cost mapping from g(A) to
C. Since costg(A)→C(h) = costA→C(h ◦ g) and opt(g(A),C) = opt(A,C), we obtain
that h ◦ g is a minimum-cost mapping from A to C. However, by the properties of
c (and hence C) and the fact that h ◦ g : A → A is non-surjective, we obtain that
costA→C(h ◦ g) > costA→C(id). This is a contradiction.

Appendix B. Proof of Example 4.4.
We first recall the construction from Example 4.4. Consider the signature σ =

{f, µ}, where f and µ are binary and unary function symbols, respectively. For n ≥ 1,
let An be the valued σ-structure with universe An = {1, . . . , n} × {1, . . . , n} such
that (i) fAn((i, j), (i′, j′)) =∞ if i ≤ i′, j ≤ j′, and (i′ − i) + (j′ − j) = 1; otherwise
fAn((i, j), (i′, j′)) = 0, and (ii) µAn((i, j)) = 1, for all (i, j) ∈ An. Also, for n ≥ 1,
let A′n be the valued σ-structure with universe A′n = {1, . . . , 2n − 1} such that (i)
fA
′
n(i, j) =∞ if j = i+ 1; otherwise fA

′
n(i, j) = 0, and (ii) µA′n(i) = i, for 1 ≤ i ≤ n,
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and µA′n(i) = 2n− i, for n+ 1 ≤ i ≤ 2n− 1.
We prove the following.

Proposition B.1. For every n ≥ 1, A′n is the core of An.

Proof. Let n ≥ 1. First, Pos(A′n) is a relational core, so A′n is a core. We define
g : An → A′n as g((i, j)) := i+ j − 1, then for all k ∈ A′n we have

|g−1(k)| = |{(i, j) ∈ An | i+ j − 1 = k}| =
{
k if 1 ≤ k ≤ n
2n− k if n+ 1 ≤ k ≤ 2n− 1

and hence for every k ∈ A′n we have µAn(g−1(k)) = |g−1(k)| ≤ µA′n(k). Further-
more, fAn((i, j), (i′, j′)) = ∞ implies g(i′, j′) − g(i, j) = (i′ − i) + (j′ − j) = 1 and
in turn fA

′
n(g(i, j), g(i′, j′)) = ∞. In particular, for all k1, k2 ∈ A′n it holds that

fAn(g−1((k1, k2))) ≤ fA
′
n((k1, k2)), which completes the proof that the distribution

ω(g) := 1 is an IFH from An to A′n.
We now turn to the more delicate task of constructing an IFH ω′ from A′n

to An. Note that for any (hypothetical) mapping g′ ∈ supp(ω′), if fA
′
n(x) = ∞

then fAn(g′(x)) = ∞. This implies that for any such mapping the sequence of
vertices g′(1), . . . , g′(2n− 1) is a directed path from (1, 1) to (n, n) in Pos(An) and if
g′(m) = (i, j) then i+ j − 1 = m (i.e. (i, j) lies on the mth diagonal). Additionally,
the definitions of µAn and µA′n imply that ω′ is an IFH if and only if the marginal for
each vertex on the mth diagonal is 1/m if m ≤ n and 1/(2n−m) if n ≤ m ≤ 2n− 1.
Formally, for every i, j,

∑
g′:g′(i+j−1)=(i,j)

ω′(g′) =

{
1/(i+ j − 1) if i+ j − 1 ≤ n
1/(2n− i− j + 1) otherwise

(B.1)

Now, let Bn := {(i, j) ∈ An : i + j − 1 ≤ n} and Bn be the restriction of An to Bn.
Similarly, let B′n := {1, . . . , n} and B′n be the restriction of A′n to B′n. Note that it
suffices to find an IFH ω′B from B′n to Bn satisfying Equation B.1 (the “otherwise” part
of the equation is void for Bn,B′n): given any such ω′B we can define ω′(g′) := ω′B(g′|B′n)
if for all m ≤ n, g′(m) = (i, j) implies that g′(2n−m) = (n− j, n− i), and 0 otherwise
(i.e. every mapping g′ in the support of ω′ is a mirror image of itself via the diagonal).

Recall that, in order for ω′ to be an IFH, any g′B ∈ supp(ω′B) must define a path
in Pos(Bn) of length n from (1, 1) to a vertex on the last diagonal (i.e. a vertex (i, j)
such that i+ j− 1 = n). Each vertex (i, j) in Bn, except for those on the last diagonal,
has two outgoing edges: to (i+ 1, j) and to (i, j + 1). We choose the first edge with
probability i/(i+ j) and the second with probability j/(i+ j). The probability ω′B(g′B)
is the product of the probabilities of the edges in the path defined by g′B .

It remains to prove that Equation B.1 holds for ω′B. Note that the LHS of
Equation B.1 is the probability that (i, j) is on a path chosen according to distribution
ω′B , i.e., the probability that the initial part of the path g′B(1), . . . , g′B(i+j−1) ends in
the vertex (i, j). We now prove that Equation B.1 holds by induction on the diagonal
of Bn (i.e. for increasing values of i + j − 1). Choose (i, j). If i = j = 1, the LHS
of Equation B.1 is equal to 1 and the claim holds. Otherwise, we have two cases. If
i 6= 1 6= j, then the probability that (i, j) is on the path is equal to the probability
that (i− 1, j) is and the edge ((i− 1, j), (i, j)) was chosen, plus the probability that
(i, j − 1) is and the edge ((i, j − 1), (i, j)) was chosen. By induction, this probability is
equal to 1/(i+ j − 2)× (j − 1)/(i+ j − 1) + 1/(i+ j − 2)× (i− 1)/(i+ j − 1), which
is equal to 1/(i + j − 1) as required. In the case where i = 1 or j = 1, one of the
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summands is 0, but the required equality still holds. This concludes the proof that ω′

is an IFH from A′n to An, and hence A′n is the core of An, as claimed.
As a final remark, we note that if we alter the definitions of An and A′n so that the

edges of A′n have weight 1 (instead of ∞) and the weight of each edge e of A′n is the
marginal of ω′ on e, then the distributions ω and ω′ are still IFHs between An and A′n.
Since A′n is still a core, this new construction shows that bounded treewidth modulo
(valued) equivalence is a strictly more general property than bounded treewidth even
for finite-valued structures.

Appendix C. Proof of Proposition 5.2.
We prove the following.

Proposition C.1. Let A,B be valued σ-structures and k ≥ 1. If there exists an
IFH from A to B, then A �SA

k B.

Proof. Let C be an arbitrary valued σ-structure, ω be an IFH from A to B and
λ be a solution to SAk(B,C) of minimum cost. We can write the cost of λ as a sum
over all (f,x) ∈ tup(Bk)>0 and s : Set(x) → Ck, as constraint (SA3) ensures that
λ(f,x, s) = 0, whenever fBk(x)× fCk(s(x)) =∞. Then, we have

optSA
k (B,C) =

∑
(f,x)∈tup(Bk)>0,s:Set(x)→Ck

λ(f,x, s)fBk(x)fCk(s(x))

=
∑

(f,x)∈tup(B),s:Set(x)→C
λ(f,x, s)fB(x)fC(s(x))

≥
∑

(f,x)∈tup(B),s:Set(x)→C

 ∑
g∈supp(ω)

ω(g)fA(g−1(x))

λ(f,x, s)fC(s(x))

=
∑

g∈supp(ω)

ω(g)

 ∑
(f,x)∈tup(B),s:Set(x)→C

λ(f,x, s)fA(g−1(x))fC(s(x))


=

∑
g∈supp(ω)

ω(g)

 ∑
(f,y)∈tup(A),s:Set(g(y))→C

λ(f, g(y), s)fA(y)fC(s(g(y)))


and hence there exists g ∈ supp(ω) such that

optSA
k (B,C) ≥

∑
(f,y)∈tup(A),s:Set(g(y))→C

λ(f, g(y), s)fA(y)fC(s(g(y)))

=
∑

(f,y)∈tup(Ak)>0,s:Set(g(y))→Ck
λ(f, g(y), s)fAk(y)fCk(s(g(y)))(C.1)

Since g ∈ supp(ω), we have that g is a homomorphism from Pos(A) to Pos(B)
(see remark at the end of Section 3.1). It follows that (f, g(y)) ∈ tup(Bk)>0, for every
(f,y) ∈ tup(Ak)>0. Hence, for any (f,y) ∈ tup(Ak)>0 and r : Set(y) → Ck, we can
define

λ′(f,y, r) =

{
λ(f, g(y), s) if there exists s : Set(g(y))→ Ck such that s ◦ g = r

0 otherwise

Equation (C.1) then becomes

optSA
k (B,C) ≥

∑
(f,y)∈tup(Ak)>0,r:Set(y)→Ck

λ′(f,y, r)fAk(y)fCk(r(y))
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All that remains to do is to show that λ′ is a feasible solution to SAk(A,C). The fact
that the condition (SA4) is satisfied is immediate. Also, it follows from ω(g) > 0
that fAk(y) =∞ implies fBk(g(y)) =∞ and fAk(y) > 0 implies fBk(g(y)) > 0; thus
fAk(y)× fCk(r(y)) =∞ implies that fBk(g(y))× fCk(r(y)) =∞ and the condition
(SA3) is satisfied for all r that can be written as s ◦ g for some s, as λ satisfies
(SA3). The definition of λ′ ensures that it also holds for all other mappings r. For
the condition (SA2), observe that for all (f,y) ∈ tup(Ak)>0 we have∑
r:Set(y)→Ck

λ′(f,y, r) =
∑

s:Set(g(y))→Ck
λ′(f,y, s ◦ g) =

∑
s:Set(g(y))→Ck

λ(f, g(y), s) = 1

That only leaves the condition (SA1). Let (f,x), (p,y) ∈ tup(Ak)>0 such that
Set(x) ⊆ Set(y) and |Set(x)| ≤ k, and let t : Set(x)→ Ck be any mapping. If there
does not exist a mapping z : Set(g(x))→ Ck such that t = z ◦ g, then

λ′(f,x, t) = 0 =
∑

r:Set(y)→Ck,r|Set(x)=t

λ′(p,y, r)

and the relevant constraints are satisfied, so let us assume that such a mapping z
exists. In this case, we have∑

r:Set(y)→Ck,r|Set(x)=t

λ′(p,y, r) =
∑

s:Set(g(y))→Ck,s◦g|Set(x)=t

λ′(p,y, s ◦ g)

=
∑

s:Set(g(y))→Ck,s◦g|Set(x)=t

λ(p, g(y), s)

=
∑

s:Set(g(y))→Ck,s|Set(g(x))=z

λ(p, g(y), s)

= λ(f, g(x), z)

= λ′(f,x, t)

and again the condition (SA1) is satisfied. (The second equality holds by definition of
λ′ and the penultimate equality holds by applying (SA1) to λ, (f, g(x)) and (p, g(y)).)
Therefore λ′ is a feasible solution to SAk(A,C), and finally A �SA

k B.
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