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Abstract
Convex relaxations have been instrumental in solvability of constraint satisfaction problems

(CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs,
and most recently promise CSPs. In this work, we extend an existing tractability result to the
three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear
programming and affine integer programming relaxation for exact solvability of promise valued CSPs
over infinite-domains. This extends a result of Brakensiek and Guruswami [SODA’20] for promise
(non-valued) CSPs (on finite domains).
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1 Introduction

Constraint satisfaction Constraint satisfaction problems (CSPs) are a wide class of
computational decision problems. An instance of a CSP is defined by finitely many relations
(constraints) that must hold among finitely many given variables; the computational task is
to decide whether it is possible to find an assignment of labels from a fixed set (the domain)
to the variables so that all the constraints are satisfied. Many problems in computer science
(e.g., from artificial intelligence, scheduling, computational linguistic, computational biology
and verification) can be modelled as CSPs by choosing an appropriate set of constraints.
However, there are many other problems in which some of the constraints may be violated
at a cost or in which there are satisfying assignments which are preferable to others. These
situations are captured by valued constraint satisfaction problems.
Valued constraint satisfaction An instance of a valued constraint satisfaction problem
(VCSP) is defined by finitely many cost functions (valued constraints) depending on finitely
many given variables and a (rational) threshold; the computational task is to decide whether
it is possible to find an assignment of labels from the domain to the variables so that the
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value of the sum of the cost functions is at most the given threshold. In VCSP instances,
cost functions can take on rational or infinite values. VCSPs not only capture optimisation
problems but are also a generalisation of CSPs: the non-feasibility of an assignment is
modelled by allowing the cost functions to evaluate to +∞. A CSP can thus be seen as a
VCSP in which the cost functions take values in {0,+∞}.
Finite domains In the case in which the domain (i.e., the fixed set of possible labels for
the variables) is a finite set the computational complexity of both CSPs and VCSPs have
been completely classified. Moreover, in both frameworks a dichotomy theorem holds: every
CSP and VCSP is either in P or is NP-complete, depending on some algebraic condition of
the underlying set of allowed relations and cost functions, respectively. A dichotomy theorem
for CSPs was conjectured by Feder and Vardi [27]. The attempt to prove the conjecture
motivated the introduction of the so-called universal algebraic approach [20] for CSPs, which
was later extended to VCSPs in [39], where an analogue of the complexity dichotomy was
conjectured for VCSPs. The dichotomy conjectures for finite-domain CSPs and VCSPs
inspired an intensive line of research. A complexity classification of finite-domain VCSPs for
sets of cost functions taking finite (rational-only) values was established in [45]. A complexity
classification of VCSPs was consequently established in [35], assuming a dichotomy for CSPs,
which was proved independently in [19] and [51].
Infinite domains Although most research on CSPs and VCSPs in the past two decades
focused on finite-domain problems, the literature is full of problems (studied independently
of CSPs and VCSPs) that can be modelled as CSPs or VCSPs only if infinite domains are
allowed. For instance, solvability of linear Diophantine equations [24, 33] and the model-
checking problem for Kozen’s modal µ-calculus [38] are examples of problems that can be
modelled as infinite-domain CSPs. Linear Programming, Linear Least Square Regression [14],
and Minimum Correlation Clustering [2] are examples of problems that can be modelled as
infinite-domain VCSPs. The classes of infinite-domain CSPs and infinite-domain VCSPs are
huge! In fact, every computational problem over a finite alphabet is Turing-equivalent to an
infinite-domain CSP [6]. Therefore, only by focussing on special classes of infinite-domain
CSPs (and VCSPs) is it possible to obtain general complexity results. There is a rich
literature on the computational complexity of special classes of infinite-domain CSPs, e.g.,
[9, 8, 13, 32, 7, 11, 12, 5].
Promise constraint satisfaction Both infinite-domains CSPs and VCSPs are extensions
of the original (finite-domain) CSPs. Promise constraint satisfaction problems (PCSPs) are a
third, recently introduced extension of CSPs [15, 21, 3, 28]. Informally, in a PCSP the goal
is to find an approximately good solution to a problem under the assumption (the promise)
that the problem has a solution. The difference between CSPs and PCSPs is that in a PCSP
instance each constraint comes with two relations (not necessarily on the same domain), a
“strict” and a “weak” relation. The computational task is then to distinguish between being
able to satisfy all the strict constraints versus not being able to satisfy all the weak constraints.
A CSP can be seen as a PCSP in which the strict and weak constraints coincide. Perhaps the
most well-known example of a PCSP is the approximate graph colouring problem, in which
the task is to distinguish k-colourable graphs from graphs that are not c-colourable, for some
c > k. (For c = k, we get the standard k-colouring problem.) Kazda recently introduced
the framework of promise VCSPs on finite domains [34], where he generalised some of the
algebraic reductions from (finite-domain) promise CSPs to (finite-domain) promise VCSPs.
As far as we are aware, the only other related work on (finite-domain) promise VCSPs is [1].
Convex relaxations One of the most effective ways to design a polynomial-time algorithm
for solving combinatorial and optimisation problems is to employ convex relaxations. The
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idea of convex relaxations is to transform the original problem to an integer program which is
then relaxed to a polynomial-time solvable convex program [14], e.g. a linear program. In the
context of CSPs, convex relaxations have been studied for robust solvability [40, 26, 4, 25].
Convex relaxations have been also successfully applied to the study of the three extensions
of CSPs. For VCSPs, characterisations of the applicability of the basic linear programming
relaxation [36], constant levels of the Sherali-Adams linear programming hierarchy [46],
and a polynomial-size semidefinite programming relaxation [47] have been provided for
exact solvability. In the PCSP framework, the polynomial-time tractability via a specific
convex relaxation has been characterised for the basic linear programming relaxation [21],
affine integer programming relaxation [21], and their combination [16, 17, 18]. For infinite-
domain VCSPs, a sufficient condition has been identified for the solvability via a combination
of the basic linear programming relaxation and an efficient sampling algorithm (that is,
polynomial-time many-one reduction to a finite-domain VCSP) [10, 49].

Contributions We initiate the study of convex relaxations for the three generalisations
of CSPs combined; that is, convex relaxations for promise valued constraint satisfaction
problems on infinite-domains. We focus on the combined basic linear programming (BLP) and
affine integer programming (AIP) relaxation introduced by Brakensiek and Guruswami [17].
This relaxation is stronger than both the BLP and AIP relaxations individually in the
sense that if a class of promise VCSPs is solved by, say, the BLP relaxation then it is also
solved by the combined relaxation (and the same holds true for the AIP relaxation). The
power of the combined relaxation for (finite-domain) promise CSPs was established in [18].
Rather surprisingly, the combined relaxation gives an algorithm that solves all tractable
(non-promise) CSPs on Boolean domains, identified in Schaefer’s work [43], thus giving a
unified algorithm.

By extending the argument from [17], we establish a sufficient algebraic condition on
the combined relaxation for the solvability of promise VCSPs in which the domain of the
“weak cost functions” is possibly infinite (Theorem 4). The proof of this result draws on
ideas introduced in [17] but requires a non-trivial amount of technical machinery to make
it work in the infinite-domain valued setting. While our relaxation is inspired by [17], it is
appropriately modified to work in the optimisation setting (of valued (P)CSPs). We remark
that the condition we give is known to be necessary already in special cases of our setting,
namely for finite-domain non-valued PCSPs [18]. As an application of our main result, we
derive an algebraic condition under which an infinite-domain promise VCSP admitting an
efficient sampling algorithm can be solved in polynomial time using the combined relaxation
(Theorem 9). We emphasise that our main results (Theorems 4 and 9) are appreciatively
general, and in particular hold for various special cases of our framework; e.g., for finite-
domain promise VCSPs and infinite-domain promise CSPs.

Approximability of Max-CSPs PCSPs are approximability problems in which we
require that all constraints should be satisfied, although only in a weaker sense. Another
very natural and well-studied form of relaxation is to try to maximise the number of satisfied
constraints. Convex relaxations have played a crucial role in this research direction on
approximability of (finite-domain) Max-CSPs, going back to the work of Goemans and
Williamson [30], e.g., [42, 48, 41, 23, 22, 37, 29].

Paper outline This is an extended abstract of our work. Given the page limit, we do not
introduce some of the standard notation and do not include all proofs. All details with more
explanation and examples can be found in the full version of the paper [50].

MFCS 2020



82:4 The combined BLP and AIP relaxation for promise VCSPs

2 Preliminaries

Throughout the paper, we denote by xi the i-th component of a tuple x. We denote by N, Z,
Q, and Q≥0 the set of whole numbers, integer numbers, rational numbers, and nonnegative
rational numbers, respectively. For every m ∈ N , we denote by [m] the set {1, . . . ,m} ⊂ N.
Finally, for every k ∈ Q we use the dke and bkc to denote the minimum natural number that
is at least k and the maximum natural number that is at most k, respectively.
Valued Constraint Satisfaction Problems A valued structure Γ (over D) consists
of a signature τ consisting of function symbols f , each equipped with an arity ar(f); a
set D = dom(Γ) (the domain); and, for each f ∈ τ , a cost function, i.e., a function
fΓ : Dar(f) → Q ∪ {+∞}. Here, +∞ is an extra element with the expected properties
that for all c ∈ Q ∪ {+∞}, we have (+∞) + c = c + (+∞) = +∞ and c < +∞ for
every c ∈ Q. Given a valued structure Γ with signature τ , for every f ∈ τ we define
dom(f) := {t ∈ Dar(f) | fΓ(t) < +∞}.

Let Γ be a valued structure with domain D and signature τ . The valued constraint
satisfaction problem for Γ, denoted by VCSP(Γ), is the following computational problem.

An instance of VCSP(Γ) is a triple I := (V, φ, u) where V is a finite set of variables; φ
is an expression of the form

∑m
i=1 fi(vi1, . . . , viar(fi)), where f1, . . . , fm ∈ τ and all the vij are

variables from V (each summand is called a τ -term); and u is a value from Q. The task is to
decide whether there exists an assignment s : V → D, whose cost, defined as

φΓ(s(v1), . . . , s(v|V |)) :=
m∑
i=1

fΓ
i (s(vi1), . . . , s(viar(fi)))

is finite, and if so, whether there is one whose cost is at most u.
We remark that, given a valued structure Γ over a finite signature, the representation of

the structure Γ is inessential for computational complexity as Γ is not part of the input.
Fractional Homomorphisms and Fractional Polymorphisms Let C and D be two
sets. A map g : Dm → C is called an m-ary operation. For any m ∈ N, we denote by CDm

the set of all maps g : Dm → C.
Let Γ and ∆ be valued structures with the same signature τ with domains C and D,

respectively. A fractional homomorphism [44] from ∆ to Γ is a discrete probability measure
χ with a non-empty support on CD such that for every function symbol γ ∈ τ and tuple
a ∈ Dar(γ), it holds that

Eh∼χ[γΓ(h(a))] =
∑

h∈Supp(χ)

χ(h)γΓ(h(a)) ≤ γ∆(a), (1)

where the functions h are applied component-wise. We write ∆→f Γ to indicate the existence
of a fractional homomorphism from ∆ to Γ.

The following proposition, proved for completeness in the full version [50], is adapted
from [44], where it was proved in the case of finite-domain valued structure, and appears
in [10], where it was stated for valued structures with arbitrary domains and for fractional
homomorphisms with finite supports.

I Proposition 1. Let Γ and ∆ be valued structures over the same signature τ with domains C
and D, respectively. Assume ∆→f Γ. Let V = {v1, . . . , vn} be a set of variables and φ a sum
of finitely many τ -terms with variables from V . For every u ∈ Q, if there exists an assignment
s : V → D such that φ∆(s(v1, . . . , s(vn)) ≤ u, then there exists an assignment s′ : V → C

such that φΓ(s′(v1), . . . , s′(vn)) ≤ u. In particular, it holds that infC φΓ ≤ infD φ∆.
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Let Γ be a valued structure with domain C and signature τ . An m-ary fractional
polymorphism of Γ is a discrete probability measure on CCm with a non-empty support such
that for every f ∈ τ and tuples a1, . . . , am ∈ Car(f) it holds (with g applied componentwise
below) that

Eg∼ω[fΓ(g(a1, . . . , am))] =
∑

g∈CCm

ω(g)fΓ(g(a1, . . . , am)) ≤ 1
m

m∑
i=1

fΓ(ai).

Promise VCSPs Let Γ and ∆ be two valued structures over the same signature τ with
domains C and D, respectively. We say that (∆,Γ) is a promise valued template if there
exists a fractional homomorphism from ∆ to Γ. Given a promise valued template (∆,Γ), the
promise valued constraint satisfaction problem [34] for (∆,Γ), denoted by PVCSP(∆,Γ), is
the following computational problem.

An instance I of PVCSP(∆,Γ) is a triple I := (V, φ, u) where V is a finite set of variables;
φ is an expression of the form

∑m
i=1 fi(vi1, . . . , viar(fi)), where f1, . . . , fm ∈ τ and all the vij

are variables from V ; and u is a value from Q.
The task is to output yes if there exists an assignment s : V → D with cost

φ∆(s(v1), . . . , s(v|V |)) :=
m∑
i=1

f∆
i (s(vi1), . . . , s(viar(fi))) ≤ u

and output no if every assignment s′ : V → C has cost

φΓ(s′(v1), . . . , s′(v|V |)) :=
m∑
i=1

fΓ
i (s′(vi1), . . . , s′(viar(fi))) � u.

Note that every valued structure Γ is fractionally homomorphic to itself and thus VCSP(Γ)
is the same as PVCSP(Γ,Γ).

Let (∆,Γ) be a promise valued template. We remark that if the common signature τ is
finite then the representation of the template is inessential for the computational complexity
of PVCSP(∆,Γ) as (∆,Γ) is not part of the input.

Let e(m)
i : Dm → D denote the m-ary projection on D onto the i-th coordinate. Let

J (m)
D := {e(m)

1 , . . . , e
(m)
m }, i.e., the set of all projections on D.

An m-ary promise fractional polymorphism1 of a promise valued template (∆,Γ) is a pair
ω := (ωI , ωO) where ωO is a discrete probability measure on CDm with a non-empty support
and ωI is a discrete probability measure with (finite) support Supp(ωI) = J (m)

D such that
for every f ∈ τ and tuples a1, . . . , am ∈ Dar(f) it holds that

Eg∼ωO
[fΓ(g(a1, . . . , am))] =

∑
g∈Supp(ω)

ωO(g)fΓ(g(a1, . . . , am))

≤
m∑
i=1

ωI(e(m)
i )f∆(ai) = Ee∼ωI

[f∆(e(a1, . . . , am)). (2)

Block-Symmetric Maps Let Sm be the symmetric group on {1, . . . ,m}. An m-ary
map g is fully symmetric if for every permutation π ∈ Sm, we have g(x1, . . . , xm) =
g(xπ(1), . . . , xπ(m)).

1 These are called weighted polymorphisms in [34].

MFCS 2020
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An m-ary map g is block-symmetric if there exists a partition of the coordinates of g into
blocks B1 ∪ · · · ∪Bk = [m] such that g is permutation-invariant within each block Bi. Let
Psym(g) be the set of all partitions into symmetric blocks of g. For B1 ∪ · · · ∪Bk ∈ Psym(m),
we define w(g,B1 ∪ · · · ∪Bk) := min1≤i≤k|Bi| and we define the width of g to be

w(g) := max{w(g,B1 ∪ · · · ∪Bk) | B1 ∪ · · · ∪Bk ∈ Psym(g)}.

Block-symmetric operation with width 1 are fully symmetric operations.
An m-ary fractional polymorphism ω of a valued structure Γ is block-symmetric if there

exists a partition of [m] into blocks B1 ∪ · · · ∪Bk such that every operation in Supp(ω) is
permutation-invariant within each coordinate block Bi.

Given a promise valued template (∆,Γ), an m-ary promise fractional polymorphism
ω = (ωI , ωO) of (∆,Γ) is block-symmetric if

there exists a partition of the coordinates of g into blocks B1 ∪ · · · ∪Bk = [m] such that
every map in Supp(ωO) is s permutation-invariant within each coordinate block Bi, and∑
i∈Bj

ωI(e(m)
i ) = |Bj |

m for every j ∈ {1, . . . , k}.

The proof of the following lemma can be found in the full version [50].

I Lemma 2. Let (∆,Γ) be a promise valued template and let m ∈ N. If ω = (ωI , ωO) is an
m-ary block symmetric promise fractional polymorphism of (∆,Γ), then also ω′ = (ω′I , ωO),
where ω′I(e

(m)
i ) = 1

m for 1 ≤ i ≤ m, is an m-ary block-symmetric promise fractional
polymorphism of (∆,Γ).

In view of Lemma 2, we will assume without loss of generality that any m-ary block-
symmetric promise fractional polymorphism ω = (ωI , ωO) is such that ωI assign 1

m to each
m-ary projection on the domain of ∆ and we will identify ω with ωO.
The Basic Linear Programming Relaxation Every VCSP over a finite domain has a
natural linear programming relaxation. Let ∆ be a valued structure with finite domain D
and signature τ . Let I be an instance of VCSP(∆) with set of variables V = {x1, . . . , xd},
objective function φ(x1, . . . , xd) =

∑
j∈J fj(x

j
1, . . . , x

j
nj

), with fj ∈ τ, xj = (xj1, . . . , xjnj
) ∈

V nj , for all j ∈ J (the set J is finite and indexing the cost functions that are summands
of φ), and a threshold u ∈ Q.2 Define the sets of variables as follows: W1 := {λj(t) | j ∈
J and t ∈ Dnj}, W2 := {µxi

(a) | xi ∈ V and a ∈ D}, and W := W1 ∪W2. Then the basic
linear programming (BLP) relaxation associated to I (see [44], [36], and references therein)
is a linear program with variables W and is defined in Figure 1.

We remark that a solution to the BLP also satisfies the constraints
∑
t∈Dnj λj(t) = 1

for all j ∈ J . If there is no feasible solution to the BLP then BLP(I,∆) = +∞. For
a finite-domain VCSP instance, the corresponding BLP relaxation can be computed in
polynomial time.
The Affine Integer Programming Relaxation Let ∆ be a valued structure with
finite domain D and signature τ . Let I be an instance of VCSP(∆) with set of variables
V = {x1, . . . , xd}, and objective function φ(x1, . . . , xd) =

∑
j∈J fj(x

j
1, . . . , x

j
nj

), with fj ∈
τ, xj = (xj1, . . . , xjnj

) ∈ V nj , for all j ∈ J (the set J is finite and indexing the cost functions
that are summands of φ), and a threshold u ∈ Q.3 Define the sets of variables as follows:
R1 := {qj(t) | j ∈ J and t ∈ Dnj}, R2 := {rxi

(a) | xi ∈ V and a ∈ D}, and R := R1 ∪ R2.
Then the affine integer programming (AIP) relaxation associated to I [16, 17] is an integer
program with variables R and is defined in Figure 2.

2 Note that the BLP relaxation does not depend on the threshold u.
3 Note that the AIP relaxation does not depend on the threshold u.
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BLP(I,∆) := min
∑
j∈J

∑
t∈Dnj

λj(t)f∆
j (t)

subject to∑
t∈Dnj :t`=a

λj(t) = µxj
`
(a) for all j ∈ J , ` ∈ {1, . . . , nj}, a ∈ D,∑

a∈D
µxi

(a) = 1 for all xi ∈ V,

λj(t) = 0 for all j ∈ J , t /∈ dom(fj),
0 ≤ λj(t), µxi(a) ≤ 1 for all λj(t) ∈W1, µxi(a) ∈W2.

Figure 1 BLP

AIP(I,∆) := min
∑
j∈J

∑
t∈Dnj

qj(t)f∆
j (t)

subject to∑
t∈Dnj :t`=a

qj(t) = rxj
`
(a) for all j ∈ J , ` ∈ {1, . . . , nj}, a ∈ D,∑

a∈D
rxi(a) = 1 for all xi ∈ V,

qj(t) = 0 for all j ∈ J , t /∈ dom(fj),
qj(t), rxi

(a) ∈ Z for all qj(t) ∈ R1, rxi
(a) ∈ R2.

Figure 2 AIP

We remark that a solution to the AIP also satisfies the constraints
∑
t∈Dnj λq(t) = 1 for

all j ∈ J . If there is no feasible solution to the AIP then AIP(I,∆) = +∞.
For a finite-domain VCSP instance, the corresponding AIP relaxation can be computed in

polynomial time. Since the feasibility version of AIP can be solved in polynomial time [33, 16],
(the optimisation version of) AIP can be solved in (oracle) polynomial time using an oracle
for the feasibility version of the problem (see [31, Theorem 6.4.9]).

3 The Combined BLP and AIP Relaxation for PVCSPs

Let (∆,Γ) be a promise valued template such that the domain of ∆ is a finite set. We may
solve PVCSP(∆,Γ) by using a combination of the BLP relaxation and the AIP relaxation of
∆, as proposed (for finite-domain promise non-valued) CSPs in [17], appropriately modified
to the valued setting.

To describe such an algorithm, we need the following definition.

I Definition 3. Let ∆ be a valued structure with finite domain D and signature τ . Let us con-
sider an instance I := (V, φ, u) of VCSP(∆) such that φ(x1, . . . , xd) =

∑
j∈J fj(x

j
1, . . . , x

j
nj

).
Assume that BLP(I,∆) ≤ u. We define (λ?, µ?) as follows.

MFCS 2020
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If there exists a relative interior point of the rational feasibility polytope of BLP(I,∆)
with cost at most u,4 then (λ?, µ?) is such a point;
otherwise, (λ?, µ?) is defined to be a point from the relative interior of the optimal polytope
of BLP(I,∆).5

The refinement of AIP(I,∆) with respect to (λ?, µ?) is the integer program AIP?(I,∆)
obtained by adding to AIP(I,∆) the constraints

qj(t) = 0 for every j ∈ J, t ∈ Dnj such that λ?j (t) = 0,
rxi

(a) = 0 for every xi ∈ V, a ∈ D such that µ?xi
(a) = 0.

Algorithm 1 The combined BLP + AIP Relaxation Algorithm for PVCSP(∆,Γ)
Input:

I := (V, φ, u), a valid instance of PVCSP(∆,Γ)
Output:

yes if there exists an assignment s : V → dom(∆) such that φ∆(s(x1), . . . , s(x|V |)) ≤ u
no if there is no assignment s : V → dom(Γ) such that φΓ(s(x1), . . . , s(x|V |)) ≤ u

BLP(I,∆);
if BLP(I,∆) � u then

output no;
else

(λ?, µ?), as in Definition 3;
AIP?(I,∆) := refinement of AIP(I,∆) with respect to (λ?, µ?), as in Definition 3;
if AIP?(I,∆) � u then

output no;
else

output yes;
end

end

As our main result, we now present a sufficient condition under which Algorithm 1
correctly solves PVCSP(∆,Γ).

I Theorem 4. Let (∆,Γ) be a promise valued template such that ∆ has a finite domain.
Assume that for all L ∈ N there exists a block-symmetric promise fractional polymorphisms
of (∆,Γ) with arity 2L + 1 having two symmetric blocks of size L + 1 and L, respectively.
Then Algorithm 1 correctly solves PVCSP(∆,Γ) (in polynomial time).

Note that in Theorem 4 the domain of the valued structure Γ can be finite or (countably)
infinite.

To prove Theorem 4 we need to use a preliminary lemma and the notion of a bimultiset-
structures. Let ∆ be a valued τ -structure with domain D, let L ∈ N, and let B1 ∪B2 any
partition of [2L+ 1] such that |B1| = L+1 and |B2| = L. The bimultiset-structure B2L+1

B1,B2
(∆)

is the valued structure with domain
((

D
L+1

))
×
((
D
L

))
i.e., the set whose elements (α, β) are

4 There is a polynomial-time algorithm [31, 17] that decides the existence of a relative interior point in
the rational feasibility polytope of BLP(I,∆) with cost at most u and, in the case it exists, finds it.

5 Such a point can be found in polynomial time by applying the algorithm in [31, 17] to the feasibility
linear program defined by adding to the constraints defining the feasibility polytope of BLP(I,∆) the
additional constraint

∑
j∈J

∑
t∈Dnj λj(t)f∆

j (t) = u.
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pairs of multisets of elements from D of size L+ 1 and of size L, respectively. For every k-ary
function symbol f ∈ τ , and (α1, β1) . . . , (αk, βk) ∈

((
D
L+1

))
×
((
D
L

))
the function fB

2L+1
B1,B2

(∆)

is defined as follows

f
B2L+1

B1,B2
(∆)((α1, β1) . . . , (αk, βk)) := 1

2L+ 1 min
t1,...,tk∈D2L+1:

{t`}B1 =α`,{t`}B2 =β`

2L+1∑
i=1

f∆(t1i , . . . , tki ),

where {t`}B1 denotes the multiset {t`i | i ∈ B1} and {t`}B2 denotes the multiset {t`i | i ∈ B2}.
The proof of the following lemma can be found in the full version [50].

I Lemma 5. Let (∆,Γ) be a promise valued template such that ∆ has a finite domain. Let
L ∈ N and assume that (∆,Γ) has a block-symmetric promise fractional polymorphism of
arity 2L+ 1 with two symmetric blocks B1 and B2 of size L+ 1 and L, respectively. Then
B2L+1
B1,B2

(∆) is fractionally homomorphic to Γ.

Proof of Theorem 4. Let C be the (possibly infinite) domain of Γ and let D be the finite
domain of ∆. Let τ be the common signature of ∆ and Γ. Let I be an instance of PVCSP(∆,Γ)
with variables V = {x1, . . . , xn}, objective function φ(x1, . . . , xn) =

∑
j∈J γj(xj) where J is

a finite set of indices, γj ∈ Γ, and xj ∈ V ar(j), and threshold u.
Assume that minD φ∆ ≤ u. Our goal is to show that Algorithm 1 outputs yes. Since

minD φ∆ ≤ u we have BLP(I,∆) ≤ u and in particular we have that either BLP(I,∆) < u,
which by linearity implies the existence of a relative interior point in the feasibility polytope
of BLP(I,∆) with value at most u; or BLP(I,∆) = u = minD φ∆. In the first case, each
coordinate of (λ?, µ?) is positive if and only if the same coordinate is positive at some point
in the feasibility polytope of the BLP. Therefore, the feasibility lattice of AIP?(I,∆) includes
every possible assignment which is in the support of some feasible solution to BLP(I,∆),
including integral solutions and as a consequence AIP?(I,∆) ≤ minD φ∆ ≤ u. In the second
case, each coordinate of (λ?, µ?) is positive if and only if the same coordinate is positive at
some point in the optimal polytope of the BLP. Therefore, the feasibility lattice of AIP?(I,∆)
includes every possible assignment which is in the support of some optimal solution to
BLP(I,∆), including integral solutions and as a consequence AIP?(I,∆) ≤ minD φ∆ = u.
Thus, in both cases, BLP(I,∆) ≤ u and AIP?(I,∆) ≤ u and hence Algorithm 1 indeed
outputs yes, as required.

In the other direction, we want to show (by contrapositive) that if Algorithm 1 outputs
yes then infC φΓ ≤ u. Thus, assume that BLP(I,∆) ≤ u and AIP?(I,∆) ≤ u. Let (λ?, µ?)
be as in Definition 3 and denote BLP?(I,∆) :=

∑
j∈J

∑
t∈Dnj λ?j (t)f∆

j (t); observe that
BLP?(I,∆) ≤ u by the definition of (λ?, µ?). Let (q?, r?) be a solution to AIP?(I,∆) with
objective value at most u. Let ` be a positive integer such that ` · λ?, and ` · µ? are both
integral, and let M be the maximum of the absolute values of the coordinates of both q?
and r?. Let us set L := (M + 1)`. From BLP?(I,∆) ≤ u and AIP?(I,∆) ≤ u it immediately
follows that

2(M + 1)`
2(M + 1)`+ 1 BLP?(I,∆) + 1

2(M + 1)`+ 1 AIP?(I,∆) ≤ u. (3)

We claim that

min((
D

L+1

))
×
((

D
L

))φB2L+1
B1,B2

(∆)

≤ 2(M + 1)`
2(M + 1)`+ 1 BLP?(I,∆) + 1

2(M + 1)`+ 1 AIP?(I,∆) (4)

MFCS 2020
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for all the partitions B1 ∪B2 = [2L+ 1] such that |B1| = L+ 1 and |B2| = L. To prove the
claim, let us define, for every i ∈ {1, . . . , n} and for every a ∈ D, the following nonnegative
integers

Wxi,B1(a) := (M + 1)`µ?xi
(a) + r?xi

(a),
Wxi,B2(a) := (M + 1)`µ?xi

(a).

(To check that Wxi,B1(a) and Wxi,B2(a) are nonnegative it is enough to observe that if µ?xi
(a)

is 0 then, by Definition 3, r?xi
(a) is also 0, otherwise µ?xi

(a) is at least 1
` , and the positivity

of Wxi,B1(a), Wxi,B2(a) follows by the choice of M .) Observe that for every i ∈ {1, . . . , n}
we have that∑

a∈D
Wxi,B1(a) = (M + 1)`

∑
a∈D

µ?xi
(a) +

∑
a∈D

r?xi
(a) = (M + 1)`+ 1 = L+ 1,∑

a∈D
Wxi,B2(a) = (M + 1)`

∑
a∈D

µ?xi
(a) = (M + 1)` = L.

Let ν : V →
((

D
L+1

))
×
((
D
L

))
be the map defined, for every xi ∈ V , by ν(xi) = (αi, βi), where

αi is the multiset of
((

D
L+1

))
that contains Wxi,B1(a) many occurrences of a, for every a ∈ D,

and βi is the multiset of
((
D
L

))
that contains Wxi,B2(a) many occurrences of a, for every

a ∈ D.
Let fj be a k-ary function symbol appearing as a term of the objective function φ. Let

us define, for every t ∈ Dk, the following nonnegative integers

Pj,B1(t) := (M + 1)`λ?j (t) + q?j (t),
Pj,B2(t) := (M + 1)`λ?j (t).

Observe that∑
t∈Dk

Pj,B1(t) = (M + 1)`
∑
t∈Dk

λ?j (t) +
∑
t∈Dk

q?j (t) = (M + 1)`+ 1 = L+ 1,

∑
t∈Dk

Pj,B2(t) = (M + 1)`
∑
t∈Dk

λ?j (t) = (M + 1)` = L.

We write now

∑
t∈Dk

Pj,B1(t)f∆
j (t) =

(M+1)`+1∑
h=1

f∆
j (ζh1 , . . . , ζhk )

where ζ1, . . . , ζ(M+1)`+1 are defined to be (M + 1)` + 1 elements of Dk such that Pj,B1(t)
many of them are equal to t, for every t ∈ Dk; and

∑
t∈Dk

Pj,B2(t)f∆
j (t) =

(M+1)`∑
h=1

f∆
j (ξh1 , . . . , ξhk )

where ξ1, . . . , ξ(M+1)` are defined to be (M + 1)` elements of Dk such that Pj,B2(t) many of
them are equal to t, for every t ∈ Dk.
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We obtain
2(M + 1)`

2(M + 1)`+ 1λ
?
j (t)f∆

j (t) + 1
2(M + 1)`+ 1q

?
j (t)f∆

j (t)

= 1
2(M + 1)`+ 1

∑
t∈Dk

Pj,B1(t)f∆
j (t) +

∑
t∈Dk

Pj,B2(t)f∆
j (t)


= 1

2L+ 1

(
L+1∑
h=1

f∆
j (ζh1 , . . . , ζhk ) +

L∑
h=1

f∆
j (ξh1 , . . . , ξhk )

)

≥ 1
2L+ 1 min

t1,...,tk∈Dm:{t`}B1 =ζ`,{t`}B2 =ξ`

2L+1∑
i=1

f∆(t1i , . . . , tki )

=f
B2L+1

B1,B2
(∆)

j ((ζ1, ξ1), . . . , (ζk, ξk)) = f
B2L+1

B1,B2
(∆)

j (ν(xj1), . . . , ν(xjk)),

where the last equality follows because, for every a ∈ D, the number of a’s in ζh is∑
t∈Dk:th=a

Pj,B1(t) = (M + 1)`
∑

t∈Dk:th=a

λ?j (t) +
∑

t∈Dk:th=a

q?j (t)

=(M + 1)`µ?
xj

h

(a) + r?
xj

h

(a) = Wxj
h
,B1

(a),

and, for every a ∈ D, the number of a’s in ξh is∑
t∈Dk:th=a

Pj,B2(t) = (M + 1)`
∑

t∈Dk:th=a

λ?j (t) = (M + 1)`µ?
xj

h

(a) = Wxj
h
,B2

(a).

This proves the claim.
From Inequalities (3) and (4) it follows that for all partitions B1 ∪ B2 = [2L+ 1] such

that |B1| = L+ 1 and |B2| = L it holds

min((
D

L+1

))
×
((

D
L

))φB2L+1
B1,B2

(∆) ≤ u.

Moreover, since there exists a block-symmetric promise fractional polymorphisms of (∆,Γ)
of arity 2L+ 1 having two symmetric blocks B1 and B2 with respective size L+ 1 and L,
Lemma 5 implies the existence of a fractional homomorphism from B2L+1

B1,B2
(∆) to Γ. From

Proposition 1 it follows that

inf
C
φΓ ≤ min((

D
L+1

))
×
((

D
L

))φB2L+1
B1,B2

(∆) ≤ u

and this concludes the proof. J

It is not difficult to see that the number of symmetric blocks and their size do not play a
crucial role in the proof of Theorem 4 (and also in the proof of Lemma 5 in the full version [50]).
Moreover, the notion of bimultiset-structure can be straightforwardly generalised to the
notion of k-multiset-structure with blocks of size b1, . . . , bk. In fact, Theorem 4 also holds in
the case in which the block-symmetric promise fractional polymorphisms of (∆,Γ) have an
arbitrary number k of blocks each of arbitrary size bi, given that k, b1, . . . , bk are the same
for every arity 2L+ 1. For finite-domain PCSPs, the condition of having a block-symmetric
promise polymorphism of arity 2L+ 1 is equivalent to the one of having a block-symmetric
promise polymorphism of arity 2L+ 1 with two symmetric blocks of arity L+ 1 and L, for
every L ∈ N [18].
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4 The Combined Relaxation with Sampling for PVCSPs

We use the notion of a sampling algorithm for a valued structure from [10].

I Definition 6. Let Γ be a valued structure with domain C and finite signature τ . A sampling
algorithm for Γ takes as input a positive integer d and computes a finite-domain valued
structure ∆ fractionally homomorphic to Γ such that, for every finite sum φ of τ -terms having
at most d distinct variables, V = {x1, . . . , xd}, and every u ∈ Q, there exists a solution
s : V → C with φΓ(s(x1), . . . , s(xd)) ≤ u if and only if there exists a solution h′ : V → D

with φ∆(h′(x1), . . . , h′(xd)) ≤ u. A sampling algorithm is called efficient if its running time
is bounded by a polynomial in d. The finite-domain valued structure computed by a sampling
algorithm is called a sample.

I Example 7. A valued structure Γ with domain Q and signature τ is called piecewise linear
homogeneous (PLH) if, for every γ ∈ τ , the cost function γΓ is first-order definable over the
structure L = (Q;≤, 1, {c·}c∈Q) where

< is a relation symbol (i.e., a {0,∞}-valued function symbol) of arity 2 and <L is the
strict linear order of Q,
1 is a constant symbol and 1L := 1 ∈ Q, and
c· is a unary function symbol for every c ∈ Q such that (c·)L is the function x 7→ cx, i.e.,
the multiplication by c.

If Γ is a PLH valued structure with a finite signature, then it admits an efficient sampling
algorithm [10].

Let Γ be a valued structure with a finite signature that admits an efficient sampling
algorithm. Observe that for every finite-domain valued structure ∆d computed by such an
efficient sampling algorithm, the pair (∆d,Γ) is a promise valued template. The following
lemma, proved in the full version [50], follows from the definition of sampling algorithm for a
valued structure.

I Lemma 8. Let (Γ1,Γ2) be a promise valued template with a finite signature. Assume that
Γ1 admits an efficient sampling algorithm. If PVCSP(∆d,Γ2) is polynomial-time solvable
for every finite-domain valued structure ∆d computed by an efficient sampling algorithm for
Γ1, then PVCSP(Γ1,Γ2) is polynomial-time solvable.

Using Theorem 4, it is possible to prove the following result.

I Theorem 9. Let (Γ1,Γ2) be a promise valued template with a finite signature. Assume
that Γ1 admits an efficient sampling algorithm. Moreover, assume that (Γ1,Γ2) has a block-
symmetric promise fractional polymorphism of arity 2L+ 1 with two symmetric blocks of size
L+ 1 and L, respectively, for all L ∈ N. Then PVCSP(Γ1,Γ2) is polynomial-time solvable.

Note that in Theorem 9 (and in Lemma 8) both the respective domains of the valued
structures Γ1 and Γ2 have arbitrary (countable) cardinality, that is, each of Γ1 and Γ2 can
have a finite or an infinite domain. In the particular case in which Γ1 = Γ2, from Theorem 9
we obtain the following result for infinite-domain (non-promise) VCSPs.

I Corollary 10. Let Γ be a valued structure with a finite signature that admits an efficient
sampling algorithm. Assume that Γ has a block-symmetric fractional polymorphism of arity
2L + 1 with two symmetric blocks of size L + 1 and L, respectively, for all L ∈ N. Then
VCSP(Γ) is polynomial-time solvable.

Corollary 10 and the existence of an efficient sampling algorithm for PLH valued structures
(see Example 7) imply tractability of certain convex PLH valued structures, as discussed in
the full version [50].
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