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Abstract. We study the problem of computing the parity of the number of homomorphisms
from an input graph G to a fixed graph H. Faben and Jerrum [ToC’15] introduced an explicit
criterion on the graph H and conjectured that, if satisfied, the problem is solvable in polynomial
time and, otherwise, the problem is complete for the complexity class ⊕P of parity problems. We
verify their conjecture for all graphs H that exclude the complete graph on 4 vertices as a minor.
Further, we rule out the existence of a subexponential-time algorithm for the ⊕P-complete cases,
assuming the randomised Exponential Time Hypothesis. Our proofs introduce a novel method of
deriving hardness from globally defined substructures of the fixed graph H. Using this, we subsume
all prior progress towards resolving the conjecture (Faben and Jerrum [ToC’15]; Göbel, Goldberg
and Richerby [ToCT’14,’16]). As special cases, our machinery also yields a proof of the conjecture
for graphs with maximum degree at most 3, as well as a full classification for the problem of counting
list homomorphisms, modulo 2.
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1. Introduction. A homomorphism from a graph G to a graph H is a map h
from V (G) to V (H) that preserves edges in the sense that, for every edge {u, v}
of G, the image {h(u), h(v)} is an edge of H. Many combinatorial structures can be
modelled using graph homomorphisms. For this reason, graph homomorphisms are
ubiquitous in both classical and modern-day complexity theory with applications in
areas such as constraint satisfaction problems [24], evaluations of spin systems in sta-
tistical physics [2, 1], database theory [31, 25], and parameterised algorithms [4, 34].
The computational problems of finding and counting homomorphisms are therefore
amongst the most well-studied computational problems; the analysis of their com-
plexity dates back to the intractability result for computing the chromatic number,
one of Karp’s original 21 NP-complete problems [28]. More recent work builds on
Hell and Nešetřil’s celebrated dichotomy theorem [26], which shows that determining
whether an input graph G has a homomorphism to a fixed graph H is polynomial-time
solvable if H is bipartite, or if H has a self-loop. For any other graph H, they show
that the problem is NP-complete.

This paper focusses on the problem of counting homomorphisms. Applications of
this problem are discussed in [1]. The complexity of the problem has been the focus
of much research (see, for example, [9, 16, 17, 30, 3]).1
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1There is also a huge literature on generalisations of this problem such as counting weighted

homomorphisms (computing partition functions of spin systems or holant problems), counting ho-
momorphisms to directed graphs, counting partition functions of constraint satisfaction problems,
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The complexity of counting homomorphisms was initiated by Dyer and Green-
hill [9], who gave a complete dichotomy theorem. The complexity of counting the
homomorphisms from an input graph G to a fixed graph H is polynomial-time solv-
able if every component of H is either a complete bipartite graph with no self-loops
or a complete graph in which every vertex has a self-loop. For any other graph H,
they show that the problem is #P-complete.

Given that (exactly) counting the homomorphisms to H is #P-complete for al-
most every graph H, research has focussed on restrictions of the problem. Instead
of determining the exact number of homomorphisms from G to H, compute an ap-
proximation to this number [16, 17, 30], or determine whether it is odd or even
[11, 12, 19, 18], or determine its value modulo any prime p [20, 29]. Alternatively,
consider the parameterised complexity [14]. For example, the problem can be studied
when the input G is assumed to have bounded treewidth [6] or when H has a bounded
treewidth, for example when H is a tree [12, 20, 29, 21].

Restricting the input G to have bounded treewidth makes counting homomor-
phisms tractable — given this restriction, the problem is solvable in polynomial
time for any fixed H [6, Corollary 5.1]. Restricting the fixed target graph H to
have bounded treewidth leads to a more nuanced complexity classification, even for
treewidth 1 (when H is a tree). For example, the complexity of approximately count-
ing homomorphisms to a tree H has still not been fully resolved, and it is known that
different trees lead to vastly different complexities. For example, approximately count-
ing homomorphisms to the very simple tree that is a path of length 3 is equivalent to
#BIS, which is the canonical open problem in approximate counting [10]. Moreover,
[21] shows that for every integer q ≥ 3 there is a tree Jq such that approximately
counting homomorphisms to Jq is equivalent to classic problem of approximating the
partition function of the q-state Potts model from statistical physics. Also, it shows
that there are trees H such that approximately counting homomorphisms to H is
NP-hard.

1.1. Counting modulo 2 and Past Work. Faben and Jerrum [12] combined
the restriction that H is a tree with the restriction that counting is modulo 2. Their
result will be important for our work, so we next give the definitions that we need to
state their result.

The complexity class ⊕P [33, 22] contains all problems of the form “compute
f(x) mod 2” such that computing f(x) is a problem in #P. Toda [35] showed that
there is a randomised polynomial-time reduction from every problem in the polynomial
hierarchy to some problem in ⊕P. Thus, ⊕P-hardness is viewed as a stronger kind
of intractability than NP-hardness. We use ⊕Hom(H) to denote the computational
problem of computing the number of homomorphisms from G to H, modulo 2, given
an input graph G. It is immediate from the definition that ⊕Hom(H) is in ⊕P.

The involution-free reduction of a graph H, from [12], is defined as follows. An
involution σ of H is an automorphism of H whose order is at most 2 (that is, σ ◦ σ
is the identity permutation). An involution is non-trivial if it is not the identity
permutation. A graph H is involution-free if it has no non-trivial involutions. Hσ

denotes the subgraph of H induced by the fixed points of σ (the vertices v with σ(v) =
v). We write H → K if there is a non-trivial involution σ of H such that K = Hσ.
The relation →∗ is the reflexive-transitive closure of the relation →. Thus, H →∗ K
means that either K = H, or there is a positive integer j and a sequence H1, . . . ,Hj

and counting homomorphisms with restrictions such as surjectivity. These generalisations and re-
strictions are beyond the scope of this paper.
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of graphs such that H = H1, K = Hj and, for all i ∈ [j], Hi → Hi+1. Faben
and Jerrum [12, Theorem 3.7] showed that every graph H has, up to isomorphism,
exactly one involution-free graph H∗ such that H →∗ H∗. This graph H∗ (labelled in
a canonical way) is the involution-free reduction of H. The relevance of the involution-
free reduction is given by the following theorem.

Theorem 1.1 ([12, Theorem 3.4]). For all graphs G and H, the number of
homomorphisms from G to H has the same parity as the number of homomorphisms
from G to H∗.

Thus, the computational problem ⊕Hom(H) reduces to ⊕Hom(H∗). Faben and
Jerrum made the following conjecture [12].

Conjecture 1.2 (Faben-Jerrum Conjecture). Let H be a graph. If its invo-
lution-free reduction H∗ has at most one vertex, then ⊕Hom(H) can be solved in
polynomial time. Otherwise, ⊕Hom(H) is ⊕P-complete.

The following progress has been made on the Faben-Jerrum conjecture.
• Faben and Jerrum [12, Theorem 3.8, Theorem 6.1] proved the conjecture for

the case where every connected component of H is a tree.
• Göbel, Goldberg and Richerby [18, Theorem 3.8] proved the conjecture for

the case where every connected component of H is a cactus graph, which is
a connected, simple graph in which every edge belongs to at most one cycle.

• Göbel, Goldberg and Richerby [19, Theorem 1.2] proved the conjecture for
the case where H is a simple graph whose involution-free reduction H∗ is
square-free (meaning that it has no 4-cycle).

The cactus-graph result generalises the tree result, and is incomparable with the
square-free result.

1.2. Contributions and Techniques. Our first (and main) contribution is to
prove the Faben-Jerrum conjecture for every simple graph H that does not have a
K4-minor.

Here, K4 denotes the complete graph with four vertices. The concept of graph
minors is well known (see, for example, [7]). In short, a graph H is K4-minor-free if
K4 cannot be obtained from H by a sequence of vertex deletions, edge deletions, and
edge contractions (removing any self-loops and multiple-edges that are formed by the
contraction). Graph classes based on excluded minors form the basis of the graph
structure theory of Robertson and Seymour (see [32]).

The class of K4-minor-free graphs is a rich and well-studied class. It is equivalent
to the class of graphs with treewidth at most 2 and it includes all outerplanar and
series-parallel graphs [8].

Both trees and cactus graphs are K4-minor free, so our result subsumes the tree
result of Faben and Jerrum [12] and also the cactus-graph result of Göbel et al. [18].
K4-minor-free graphs can contain a 4-cycle and, going the other way, square-free
graphs can have a K4-minor. Thus, our result is incomparable with the result of [19].
(As a more minor contribution, our techniques also give a shorter proof of the result
of [19] — see Remark 5.8.)

Our second contribution is to extend ⊕P-hardness, using the randomised version
of the Exponential Time Hypothesis of Impagliazzo and Paturi (rETH) to rule out
subexponential algorithms. In order to state our result, we first state the hypothesis.

Conjecture 1.3 (rETH, [27]). There is a positive constant c such that no al-
gorithm, deterministic or randomised, can decide the satisfiability of an n-variable
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3-SAT instance in time exp(c · n).

Using the rETH, we can now state our main result. Here (and in the rest of the
paper) we denote the size of the input graph G as |G| = |V (G)|+ |E(G)|.

Theorem 1.4. Let H be a simple graph whose involution-free reduction H∗ is
K4-minor free. If H∗ contains at most one vertex, then ⊕Hom(H) can be solved
in polynomial time. Otherwise, ⊕Hom(H) is ⊕P-complete and, assuming the ran-
domised Exponential Time Hypothesis, it cannot be solved in time exp(o(|G|)).

As an example of an application of Theorem 1.4, consider the following K4-minor-
free graphs H1 and H2.

H2H1

The graph H1 has a non-trivial involution whose only fixed-point is the solid vertex,
so H∗1 has one vertex. By Theorem 1.4, ⊕Hom(H1) can be solved in polynomial time.
The graphH2 does not have any non-trivial involutions, soH∗2 = H2. By Theorem 1.4,
⊕Hom(H2) is ⊕P-complete and it cannot be solved in time exp(o(|G|)), unless the
rETH fails.

Before describing our techniques, we mention that they lead easily to a couple of
other results — a proof of the Faben-Jerrum conjecture for graphs whose involution-
free reduction have degree at most 3 (Theorem 10.2) and a complete complexity
classification for counting list homomorphisms modulo 2 (Theorem 11.3).

Technical Overview. Given Theorem 1.1, we focus on the case where H is invo-
lution-free. In general, our proof proceeds in two steps. Given an involution-free
K4-minor-free graph H, in step 1 we try to find a biconnected component of H, let us
call it B, that allows us to derive ⊕P-hardness of ⊕Hom(H) by exploiting the local
structure of B to construct a reduction from counting independent sets, modulo 2.
The latter problem, denoted by ⊕IS, is known to be ⊕P-complete [36] and cannot
be solved in subexponential time, unless the rETH fails [5].

A careful analysis of biconnected and K4-minor-free graphs, which crucially relies
on the absence of non-trivial involutions, shows that the first step is always possible,
unless all biconnected components of H have a very restricted form; examples are
depicted in Figure 1.

The second step of the proof exploits the global structure of H and deals with
the case where step 1 fails. Note that all of the depicted biconnected components
have non-trivial involutions; consider for example the involution given by swapping
the vertices x and y in Figure 1. Since the overall graph H is promised to be free of
such involutions, we infer that at least one of x and y has a neighbour in a further
biconnected component of H, which will allow us to successively construct a global
“walk-like” structure in H that eventually yields a reduction from ⊕IS.

We consider the construction of those global substructures as our main technical
contribution. While the formal specifications are beyond the scope of the introduction,
we give an illustrated example which we hope gives some flavour of the graph theory
that we will encounter in this work:
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Fig. 1: Examples of three types of biconnected and K4-minor-free graphs that, if
viewed as biconnected components, do not yield a reduction from ⊕IS. We will re-
encounter those graphs as “impasses” (left), “diamonds” (centre), and “obstructions”
(right).

The above illustration depicts a K4-minor-free graph H ′ without non-trivial invo-
lutions, together with a subgraph, highlighted in red, that allows for a reduction
from ⊕IS. Solid vertices depict articulation points, i.e., vertices that lie in the inter-
section of at least 2 biconnected components. Note that each biconnected component
of H ′ that is not an edge is of one of the three types given in Figure 1. Also, each
biconnected component of H ′ has an involution. These non-trivial involutions prevent
us from exploiting the local structure of the biconnected components to derive ⊕P-
hardness. Instead, we will see that the highlighted subgraph is what makes⊕Hom(H ′)
hard.

In the next section we provide an overview of the general framework that allows us
to reduce ⊕IS to ⊕Hom(H). The structures used in such reductions are captured by
the so-called hardness gadgets introduced by Göbel, Goldberg and Richerby [18, 19].
Prior applications of hardness gadgets could only be used to construct a reduction
from ⊕IS to ⊕Hom(H) if H has certain local substructures, based around a path or a
cycle. In contrast, our analysis will establish global walks such as the one highlighted
in H ′. As far as we can tell, none of the prior machinery [12, 18, 19, 29] is capable
of proving the ⊕P-hardness of ⊕Hom(H ′), however, this will follow as a result of our
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abstract consideration of global substructures of K4-minor-free graphs.

2. Warm-up: useful Ideas from Previous Papers — Retractions and
Hardness Gadgets . Instead of directly reducing ⊕IS to ⊕Hom(H), it is useful to
consider the intermediate problem ⊕Ret(H), the problem of counting retractions2

to H, modulo 2. Given a graph H, a partially H-labelled graph J = (G, τ) consists
of an underlying graph G and a corresponding pinning function τ , which is a partial
function from V (G) to V (H). A homomorphism from J to H is a homomorphism h
from G to H such that, for all vertices v in the domain of τ , h(v) = τ(v).

A homomorphism from a partially H-labelled graph J to H is also called a re-
traction to H because we can think of the pinning function τ as a way of identifying
an induced subgraph H of G which must “retract” to H under the action of the ho-
momorphism — see [13] for details. We use ⊕Ret(H) to denote the computational
problem of computing the number of homomorphisms from J to H, modulo 2, given
as input a partially H-labelled graph J .

It is known [19] that ⊕Ret(H) reduces to ⊕Hom(H) whenever H is involution-
free. Since τ allows us to pin vertices of G to vertices of H arbitrarily, it is much easier
to construct a reduction from ⊕IS to ⊕Ret(H) than to construct a direct reduction
from ⊕IS to ⊕Hom(H).

Consider the following example. Suppose that H is the 4-vertex path (o, s, i, x)
and that our goal is to reduce ⊕IS to ⊕Ret(H). Let G be an input to ⊕IS. That
is, G is a graph whose independent sets we wish to count, modulo 2. For ease of
presentation, suppose that G is bipartite,3 that is, the vertices of G can be partitioned
into two independent sets U and V . Let Ĝ be the graph obtained from G by adding
two additional vertices u and v, and by connecting u to all vertices in U , and v to
all vertices in V , respectively. Let τ be the pinning function defined by τ(u) = s and
τ(v) = i. We provide an illustration of the construction in Figure 2.

Observe that any homomorphism ϕ from (Ĝ, τ) to H must map every vertex in
U to either o or i, and every vertex in V to either s or x. Since H has no edge from o
to x, the definition of homomorphism ensures that ϕ−1(o)∪ϕ−1(x) is an independent
set of G. It is easy to verify that the function ϕ 7→ ϕ−1(o) ∪ ϕ−1(x) is a bijection

between the homomorphisms from (Ĝ, τ) to H and the independent sets of G, which
gives a reduction from (bipartite) ⊕IS to ⊕Ret(H).

The observant reader might notice that the 4-vertex path has a non-trivial in-
volution, and thus, we cannot further reduce ⊕Ret(H) to ⊕Hom(H) in this case.4

However, the construction works for any graph H with an induced path (o, s, i, x)
such that s and i each only have two neighbours.

The notion of a hardness gadget, which we formally introduce in Section 4, is
essentially a generalisation of the previous construction. For example, we could sub-
stitute each of o, s, i and x with an odd number of copies, since we are only interested
in the parity of the number of independent sets. Furthermore, we could identify o
and x, since we only need the edge {o, x} to be absent in H. A more sophisticated
generalisation is obtained by observing that we can, to some extent, substitute the
edges {o, s}, {s, i} and {i, x} with more complicated graphs, e.g. with length-2 paths,

if we substitute the edges in Ĝ accordingly. Finally, observe that the construction

2In some definition versions a retraction is surjective. However, for algorithmic problems this
surjectivity requirement is not important [13, 15]

3The case of general graphs will be discussed later in the paper.
4In fact, the problem ⊕Hom(H) is trivial when H is the 4-vertex path since the number of

homomorphisms will always be even.
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Fig. 2: Illustration of the reduction from (bipartite) ⊕IS to ⊕Ret(H) where H is
the 4-vertex path (left), and H is the graph H2 from page 4 (right).

(Ĝ, τ) uses the partial function τ in a very simple manner: By adding a common
neighbour u for all vertices in U and setting τ(u) = s, the construction enforces the

constraint that any homomorphism from (Ĝ, τ) to H must map every vertex in U
to a neighbour of s. More sophisticated constructions will allow us to enforce much
stronger constraints on homomorphisms. We will need this flexibility to construct
reductions from ⊕IS to ⊕Ret(H) for more general graphs H.

We conclude by making a generalisation explicit for one further example — the
graph H2 from page 4. We provide a more convenient drawing of H2, including a
labelling of its vertices and an illustration of the reduction in Figure 2. Again, we will
assume for ease of presentation that the input G to ⊕IS is bipartite. To construct Ĝ,
we add two additional vertices u1 and u2 and make them adjacent to every vertex in
U . Similarly, we add two additional vertices v1 and v2 and make them adjacent to
every vertex in V . Let τ be the pinning function defined by τ(u1) = y, τ(u2) = s,
τ(v1) = z, and τ(v2) = i.

Consider any homomorphism ϕ from (Ĝ, τ) to H2. Since ϕ is edge-preserving, it
must map every vertex in U to a common neighbour of s and y in H2. Consequently,
ϕ(U) ⊆ {o, i}. Similarly, we obtain ϕ(V ) ⊆ {s, x}. Again, it is easy to see that the

mapping ϕ 7→ ϕ−1(o)∪ϕ−1(x) is a bijection between the homomorphisms from (Ĝ, τ)
to H and the independent sets of G, which gives a reduction from (bipartite) ⊕IS to
⊕Ret(H).

Note that the second example, while being less straightforward than the first, is
still a very simple reduction. The proof of Theorem 1.4 requires us to consider much
more intricate “hardness gadgets”; the necessary tools will be carefully introduced in
Sections 5 and 6.
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3. Proof Outline and Organisation of the Paper. We start with the formal
definitions that we need in Section 4; in particular we set up the framework of hardness
gadgets. Section 5, our “toolbox”, presents the most important class of hardness
gadgets that we use.

Sections 6-9 constitute the proof of our main result and should be considered the
technical core of this paper. In Section 6 we deal with biconnected K4-minor-free
graphs that are additionally chordal bipartite graphs (that is, they have the property
that every induced cycle is a square). The reason for our separate treatment of these
graphs is that our main gadget from Section 5 cannot be applied to graphs without
an induced cycle of length 6= 4. We identify two families of such graphs, impasses and
diamonds, that prevent us from constructing a local hardness gadget; examples of an
impasse and a diamond are depicted in Figure 1.

After that, we dedicate Section 7 to the analysis of K4-minor-free graphs that
contain certain sequences of biconnected components, each of which is either an edge,
an impasse, or a diamond. In Section 8 we consider biconnected K4-minor-free graphs
that are not necessarily chordal bipartite. We identify another family of graphs that
does not allow for a local, i.e., an “internal”, hardness gadget; we call such graphs
obstructions; obstructions always contain an induced cycle of length other than 4, and
an example of an obstruction is depicted in Figure 1.

In combination, Sections 7 and 8 reveal the structure of involution-free K4-minor-
free graphs that do not allow for a local hardness gadget. In Section 9 we use this
structure, which allows us to constructively prove the existence of global hardness
gadgets for all remaining K4-minor-free graphs without non-trivial involutions. Our
main theorem, Theorem 1.4, follows.

In Sections 10 and 11 we explore the applicability of our machinery to further
classes of graphs and problems: Section 10 presents a full classification for counting
homomorphisms to graphs of degree at most 3, modulo 2. Section 11 considers the
problem of counting list homomorphisms, modulo 2, a variation of the homomorphism
problem that generalises retractions as follows: Let H be a fixed graph. The problem
⊕LHom(H) expects as input a graph G and a function τ that maps every vertex of
G to a list of vertices of H. The goal is then to compute the parity of the number of
homomorphisms from G to H which additionally map every vertex v of G to a vertex
contained in τ(v). We provide a full classification of ⊕LHom(H) for all graphs H,
even if self-loops are allowed.

Finally, in Section 12, we provide an index containing the most important symbols
and definitions.

4. Preliminaries. An index of notation and terminology is in Section 12. Given
a positive integer q let [q] = {1, . . . , q}. Given a finite set S, we write |S| for its
cardinality.

Graph theory. Graphs in this work are simple, that is, without multiple edges,
and do not contain self-loops, unless stated otherwise. The size of a graph G is defined
as |G| = |V (G)| + |E(G)|. Given a graph H and a subset S of its vertices, we write
H[S] for the subgraph of H induced by S.

Given a non-negative integer k, a walk of length k in a graph H is a sequence of
(not necessarily distinct) vertices (v0, . . . , vk) such that, for all i ∈ [k], {vi−1, vi} ∈
E(H). The walk is closed if v0 = vk. Note that for k = 0, the single vertex (v0) is a
closed walk of length 0. A path of length k is a walk of length k for which v0, . . . , vk
are distinct. For k ≥ 3, a cycle of length k is a closed walk of length k such that
v1, . . . , vk are distinct. A square is a cycle of length 4.
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For i, j ∈ {0, . . . , k} with i ≤ j, we say that (vi, vi+1 . . . , vj) is a subwalk of
(v0, . . . , vk). For vertices u, v ∈ V (H), distH(u, v) is the length of a shortest path
between u and v.

Definition 4.1 (chordal bipartite graph, see e.g. [23]). A graph in which every
induced cycle is a square is called a chordal bipartite graph.

Given a graph H and a vertex v ∈ V (H), we write ΓH(v) for the neighbourhood of v
in H and we write degH(v) for the degree of v. That is, ΓH(v) = {u ∈ V (H) |
{u, v} ∈ E(H)} and degH(v) = |ΓH(v)|. Given a subset S of V (H), we set ΓH(S) =⋂
v∈U ΓH(v) and note that ΓH(v) = ΓH({v}).

Definition 4.2 (walk-neighbour-set). Let W = (w0, . . . , wq−1, w0) be a closed
walk in a graph H. We use NW,H(wi) to denote ΓH(wi−1) ∩ ΓH(wi+1), where the
indices are taken modulo q. We refer to the sets NW,H(w0), . . . , NW,H(wq−1) as the
walk-neighbour-sets of W in H.

Definition 4.3 (articulation point, biconnected, block-cut tree). An articulation
point of a graph is a vertex whose removal increases the number of connected com-
ponents. A graph is biconnected if it has at least 2 vertices and has no articulation
point. A biconnected component is a maximal biconnected subgraph.

Let H be a connected graph. The block-cut tree of H is the tree BC(H) that has
a vertex for each biconnected component of H (such vertices are called blocks) and a
vertex for each articulation point of H (such vertices are also called cut vertices) such
that T has an edge between each biconnected component B and each articulation
point a in B.

Partially labelled graphs. Let H be a graph. Recall from Section 2 that a partially
H-labelled graph J = (G, τ) consists of an underlying graph G and a corresponding
pinning function τ , which is a partial function from V (G) to V (H). A vertex v in
the domain of the pinning function is said to be pinned, pinned to τ(v), or a τ(v)-pin.
We write partial functions as sets of pairs, for example, writing τ = {a 7→ s, b 7→ t}
for the partial function τ with domain {a, b} such that a is an s-pin and b is a t-pin.
The size of a partially H-labelled graph J = (G, τ) is defined as |J | = |G|.

Homomorphisms and Counting (mod 2). Given graphs G and H, hom(G→ H)
denotes the set of homomorphisms from G to H and hom(J → H) denotes the set of
homomorphisms from J to H.

It will sometimes be convenient to consider a graph G together with some number
of distinguished vertices x1, . . . , xr of G. We denote such a graph by (G, x1, . . . , xr).
The distinguished vertices need not be distinct. A homomorphism from a graph
(G, x1, . . . , xr) to (H, y1, . . . , yr) is a homomorphism h from G to H with the property
that, for each i ∈ [r], h(xi) = yi. We write hom((G, x1, . . . , xr)→ (H, y1, . . . , yr)) for
the set of such homomorphisms.

Given a partially labelled graph J = (G, τ) and distinguished vertices x1, . . . , xr
of G that are not in the domain of τ , a homomorphism from (J, x1, . . . , xr) to
(H, y1, . . . , yr) is a homomorphism from J ′ = (G, τ ∪ {x1 7→ y1, . . . , xr 7→ yr}) to H.
The set of such homomorphisms is denoted by hom((J, x1, . . . , xr)→ (H, y1, . . . , yr)).

Useful tools. The following theorem of Göbel, Goldberg and Richerby will be of
crucial importance in this work, as it will allow us to derive hardness of ⊕Hom(H)
from hardness of ⊕Ret(H).

Theorem 4.4 ([19, Theorem 3.1]). Let H be an involution-free graph. Then
there is an algorithm with oracle access to ⊕Hom(H) that takes as input a partially
H-labelled graph J and computes |hom(J → H)| mod 2 in time poly(|J |). The size
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of the input to every oracle query is O(|J |).
The statement of Theorem 4.4 in [19, Theorem 3.1] does not mention the fact that

the size of the input to every oracle query is O(|J |). Nevertheless, it is easy to see,
by examining the proof in [19] that this linearity requirement is met (without making
any changes to the proof). The reason that we introduce this linearity constraint
is so that our hardness results can also rule out subexponential-time algorithms for
⊕Hom(H) in the ⊕P-hard cases, using the rETH.

The following theorem of Faben and Jerrum will also be useful, as it will allow us
to focus on connected graphs. The statement of [12, Theorem 6.1] does not mention
the linearity requirement on the size of oracle queries, but this requirement does not
present any difficulties. Faben and Jerrum’s proof is given in a slightly different setting
(pinning to orbits of vertices of H rather than to vertices) so, for completeness, we
give a short proof.

Lemma 4.5 ([12, Theorem 6.1]). Let H be an involution-free graph and let H ′

be a connected component of H. Then there exists an algorithm with oracle access
to ⊕Hom(H) that takes as input a graph G and computes |hom(G→ H ′)| mod 2 in
time poly(|G|). The size of every oracle query is O(|G|).

Proof. Let G be a graph. If G is the empty graph then the algorithm returns 1,
which is the number of homomorphisms from G to H ′. Otherwise, there exists a vertex
u ∈ V (G). For each v ∈ V (H ′) we define the partially H ′-labelled Jv = (G, {u 7→ v}).
Note that |hom(G→ H ′)| =

∑
v∈V (H′)|hom(Jv → H)|.

By Theorem 4.4, there is an algorithm A with oracle access to ⊕Hom(H) that
takes as input a partially H-labelled graph J and computes |hom(J → H)| mod 2
in time poly(|J |) such that the size of every oracle query is bounded by O(|J |). Our
algorithm uses algorithm A as a subroutine to compute the parity of |hom(Jv → H)|
for each v ∈ V (H ′). This requires |V (H ′)| executions of the subroutine A. Thus, the
algorithm runs in time

O
( ∑
v∈V (H′)

poly(|Jv|)
)

= poly(|G|).

Moreover, for each v ∈ V (H ′), the size of each ⊕Hom(H) oracle query is bounded by
O(|Jv|) = O(|G|).

Hardness Gadgets. The following is a slightly generalised version of the hardness
gadget introduced in [19, Definition 4.1]. The only difference between their definition
and ours is that they require the sets I and S to have size 1.

Definition 4.6. [19, Definition 4.1] A hardness gadget for a graph H is a tuple
(I, S, (J1, y), (J2, z), (J3, y, z)) that consists of odd-cardinality sets I, S ⊆ V (H) to-
gether with three connected, partially H-labelled graphs with distinguished vertices
(J1, y), (J2, z) and (J3, y, z) that satisfy certain properties as explained below. Let

Ωy = {a ∈ V (H) | |hom((J1, y)→ (H, a))| is odd},
Ωz = {b ∈ V (H) | |hom((J2, z)→ (H, b))| is odd}, and

Σa,b = hom((J3, y, z)→ (H, a, b)) .

The properties that we require are the following.
1. |Ωy| is even and I ⊂ Ωy.
2. |Ωz| is even and S ⊂ Ωz.
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3. For each i ∈ I, o ∈ Ωy \ I, s ∈ S and each x ∈ Ωz \ S,
• |Σo,x| is even.
• |Σi,s|, |Σo,s| and |Σi,x| are odd.

The following theorem of Göbel, Goldberg and Richerby establishes intractability
of ⊕Ret(H) whenever H has a hardness gadget.

Theorem 4.7 ([19, Theorem 4.2]). Let H be an involution-free graph that has
a hardness gadget. Then ⊕Ret(H) is ⊕P-hard. Also, assuming the randomised
Exponential Time Hypothesis, ⊕Ret(H) cannot be solved in time exp(o(|J |)).

Proof. Although the hardness gadgets from [19] are more constrained than the
ones that we use, the proof of [19, Theorem 4.2] establishes the ⊕P-hardness in
Theorem 4.7 with only very minor changes, which we now describe.

As noted in the introduction, Valiant [36] showed that the problem ⊕IS is ⊕P-
complete. The proof of [19, Theorem 4.2] gives a polynomial-time Turing reduction
from ⊕IS to ⊕Ret(H). The reduction uses G and the hypothesised hardness gadget
for H to construct a partially H-labelled graph J such that the number of indepen-
dent sets of G, which we denote |I(G)|, is equal, modulo 2, to |hom(J → H)|. The
reduction concludes by making a single oracle call to ⊕Ret(H) with input J .

In our case, the construction of J is exactly as it is in [19]. The proof that
|I(G)| = |hom(J → H)| mod 2 needs only a very minor modification to account for
the fact that the sets I and S in the hardness gadget may have more than one element.
At some point in the proof of [19], it is argued that a certain quantity n(a, a′) is even
if a and a′ are both in I, and odd otherwise. This is still true even when I and S
contain more than one element — it follows from item 3 in the definition of hardness
gadget (and from the fact that I and S have odd cardinality).

The final sentence in the statement of Theorem 4.7, asserting that ⊕Ret(H)
cannot be solved in time exp(o(|J |)) unless the rETH fails, was not contained in the
original theorem of [19], however it follows immediately from the fact that |J | =
O(|G|) (which is easily checked) and from the fact that ⊕IS cannot be solved in
time exp(o(|G|)), unless the rETH fails, which was proved by Dell, Husfeldt, Marx,
Taslaman and Wahlen [5]. 5

More precisely, for establishing the conditional lower bound for ⊕Ret(H), let us
assume for contradiction that we can solve ⊕Ret(H) in time exp(o(|J |)). We obtain
an algorithm for ⊕IS that, on input G, runs the (polynomial-time) Turing-reduction
from [19, Theorem 4.2] and then simulates each oracle query J for ⊕Ret(H) in time
exp(o(|J |)); note that this simulation is possible by our assumption. Since each oracle
query J has size at most O(|G|), the total running time of our algorithm for ⊕IS is
bounded by poly(|G|) ·exp(o(|G|)) = exp(o(|G|)), contradicting rETH. This concludes
the proof of the conditional lower bound.

5. Toolbox.

5.1. Path Gadget. We will use the following path gadget, which is called a
“caterpillar gadget” in [19].

Definition 5.1. Given a path P = (v0, . . . , vq) in H with q ≥ 1, define the path
gadget JP = (G, τ) as follows. V (G) = {u1, . . . , uq−1, w1, . . . , wq−1, y, z} and G is

5In more detail, Dell et al. established that counting independent sets cannot be done in time
exp(o(|E(G)|)), unless the rETH fails [5, Theorem 1.2]. They point out explicitly that their reduction
also works in the case of counting modulo 2. Furthermore, their reduction always yields a graph
without isolated vertices — for such graphs we have |E(G)| = Θ(|G|).
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the path (y, u1, . . . , uq−1, z) together with edges {uj , wj} for j ∈ [q − 1]. τ = {w1 7→
v1, . . . , wq−1 7→ vq−1}.

We will use the following lemma of Göbel, Goldberg and Richerby. The original
lemma was stated for square-free graphs, but the proof only uses the fact that no edge
of P is part of a square in H.

Lemma 5.2 ([19, Lemma 4.5]). For an integer q ≥ 1, let P = (v0, . . . , vq)
be a path in a graph H. Suppose that no edge of P is part of a square in H and
that degH(vj) is odd for all j ∈ [q − 1]. Let Ωy ⊆ ΓH(v0) and Ωz ⊆ ΓH(vq), with
I = {v1} ⊂ Ωy and S = {vq−1} ⊂ Ωz. For i = v1, s = vq−1 and for each o ∈ Ωy \ I
and x ∈ Ωz \ S we have the following:

• |hom((Jp, y, z)→ (H, o, x))| = 0,
• |hom((Jp, y, z)→ (H, o, s))| = 1,
• |hom((Jp, y, z)→ (H, i, x))| = 1, and
• |hom((Jp, y, z)→ (H, i, s))| is odd.

5.2. Cycle Gadget. We will use the following cycle gadget, which is a general-
isation of the cycle gadget in [29].

Definition 5.3 (Cycle gadget). For an integer q ≥ 3, let C = (C0, . . . , Cq−1) where,
for i = 0, . . . , q−1, si is a positive integer and Ci = {c1i , . . . , c

si
i } is a set of si vertices.

We define the cycle gadget JC = (G, τ) as follows (see Figure 3). For i = 0, . . . , q−1, let
Ui = {u1i , . . . , u

si
i } be a set of si vertices. Then V (G) = {v0, . . . , vq−1}∪U0∪· · ·∪Uq−1

(where all named vertices are assumed to be distinct) and E(G) = {{vi, vi+1 mod q} |
i ∈ {0, . . . , q − 1}} ∪ {{vi, uji} | i ∈ {0, . . . , q − 1}, j ∈ {1, . . . , si}}. τ = {uji 7→ cji |
∀i ∈ {0, . . . q − 1}, j ∈ {1, . . . si}}.

C

usiiu1i

u1i−1

u
si−1

i−1

vi

vi+1vi−1

c1i+1

c
si+1

i+1

csiic1i

c
si−1

i−1

c1i−1

τ

τ u1i+1

u
si+1

i+1

τ

Fig. 3: The cycle gadget JC is depicted in black. The corresponding pinning function
τ is depicted in red, it maps to the vertices of C, depicted in blue.
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In fact, we will also need a further generalisation of the cycle gadget from Defini-
tion 5.3.

Definition 5.4 (Generalised cycle gadget). Intuitively, we generalise the cycle
gadget by attaching, at each vertex vi, a gadget Ji. Let H be a graph. For an
integer q ≥ 3, let C = (C0, . . . , Cq−1) where, for i = 0, . . . , q − 1, si is a positive
integer and Ci = {c1i , . . . , c

si
i } is a set of si vertices of H. Let JC be the cycle gadget

from Definition 5.3. Let (J0, z0), . . . , (Jq−1, zq−1) be partially H-labelled graphs with
distinguished vertices. Then the generalised cycle gadget J(JC , J0, . . . , Jq−1) is the
gadget obtained from JC , J0, . . . , Jq−1 by identifying, for each i ∈ {0, . . . , q − 1} the
vertex vi from JC with the vertex zi from Ji.

Lemma 5.5. For an integer q ≥ 3, let H be a graph which contains sets of vertices
C0, . . . , Cq−1 (not necessarily disjoint or even distinct). Let (J0, z0), . . . , (Jq−1, zq−1) be
partially H-labelled graphs with distinguished vertices, and, for each i ∈ {0, . . . , q−1},
let Ωi = {a ∈ V (H) | |hom((Ji, zi)→ (H, a))| is odd}. Suppose that for all i ∈
{0, . . . , q − 1} we have the following.

(L5.5.1) |Ci−1 mod q ∩ Ωi| and |Ci+1 mod q ∩ Ωi| are odd.
(L5.5.2) If w ∈ Ci−1 mod q then ΓH(w) ∩ ΓH(Ci+1 mod q) = Ci.
(L5.5.3) If w ∈ Ci+1 mod q then ΓH(Ci−1 mod q) ∩ ΓH(w) = Ci.
(L5.5.4) There is no walk of the form D = (d0, . . . , dq−1, d0) such that, for all

i ∈ {0, . . . , q − 1}, di ∈ ΓH(Ci) \ (Ci−1 mod q ∪ Ci+1 mod q).
Let JC be the cycle gadget (Definition 5.3) and let J∗ = J(JC , J0, . . . , Jq−1) be the
generalised cycle gadget (Definition 5.4) Then, for all k ∈ {0, . . . , q − 1},

{a ∈ V (H) | |hom((J∗, vk)→ (H, a))| is odd} = (Ck−1 mod q ∪ Ck+1 mod q) ∩ Ωk.

Proof. To simplify notation, all indices in this proof are considered to be modulo q.
For a ∈ V (H), let k ∈ {0, . . . , q−1} and h ∈ hom((J∗, vk)→ (H, a)). By construction
of J∗ and the fact that h has to preserve edges, for all i ∈ {0, . . . , q − 1}, we obtain

• h(vi) ∈ ΓH(Ci),
• h(vi) /∈ Ci (since we do not allow self-loops in H),
• h(vi) is adjacent to h(vi+1) in H,
• h(vi) 6= h(vi+1).

Consequently, it holds that h(vi+1) ∈ ΓH(h(vi)) ∩ ΓH(Ci+1). Suppose, for some
i ∈ {0, . . . , q − 1}, that h(vi) ∈ Ci−1. Then, by (L5.5.2), we have h(vi+1) ∈ Ci.
Therefore,

(5.1) If h(vi) ∈ Ci−1 then h(vi+1) ∈ Ci.

Analogously, using (L5.5.3),

(5.2) If h(vi) ∈ Ci+1 then h(vi−1) ∈ Ci.

Thus, if there exists some ` ∈ {0, . . . , q − 1} such that h(v`) ∈ C`−1 then we can
use (5.1) iteratively to obtain h(vi) ∈ Ci−1 for all i ∈ {0, . . . , q − 1}. In particular,
h(vk) ∈ Ck−1. Analogously, if there exists some ` ∈ {0, . . . , q − 1} such that h(v`) ∈
C`+1 then we can use (5.2) iteratively to obtain h(vi) ∈ Ci+1 for all i ∈ {0, . . . , q− 1}.
This means that h(vk) ∈ Ck+1.

Suppose that h(vk) /∈ Ck−1∪Ck+1. We have established that, using (5.1) and (5.2)
iteratively, we obtain, for all i ∈ {0, . . . , q − 1}, h(vi) /∈ Ci−1 ∪ Ci+1 and consequently
h(vi) ∈ ΓH(Ci) \ (Ci−1 ∪ Ci+1). However, (h(v0), . . . , h(vq−1), h(v0)) is a walk in H,
which gives a contradiction to (L5.5.4).
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We have shown that h(vk) ∈ Ck−1 ∪ Ck+1. Moreover, for each a ∈ Ck−1, we have
|hom((J∗, vk)→ (H, a))| = |hom((Jk, zk)→ (H, a))| ·

∏
i∈{0,...,q−1}\{k}|Ci−1 ∩ Ωi|,

which is odd if and only if a ∈ Ck−1 ∩ Ωk by (L5.5.1). The statement for a ∈ Ck+1 is
analogous.

Lemma 5.6. For an integer q ≥ 3, let H be a graph which contains sets of vertices
C0, . . . , Cq−1 (not necessarily disjoint or even distinct). Let (J0, z0), . . . , (Jq−1, zq−1) be
partially H-labelled graphs with distinguished vertices, and, for each i ∈ {0, . . . , q−1},
let Ωi = {a ∈ V (H) | |hom((Ji, zi)→ (H, a))| is odd}. Suppose that for all i ∈
{0, . . . , q− 1} we have the following properties from the statement of Lemma 5.5.

(L5.5.1) |Ci−1 mod q ∩ Ωi| and |Ci+1 mod q ∩ Ωi| are odd.
(L5.5.2) If w ∈ Ci−1 mod q then ΓH(w) ∩ ΓH(Ci+1 mod q) = Ci.
(L5.5.3) If w ∈ Ci+1 mod q then ΓH(Ci−1 mod q) ∩ ΓH(w) = Ci.
(L5.5.4) There is no walk of the form D = (d0, . . . , dq−1, d0) such that, for all

i ∈ {0, . . . , q − 1}, di ∈ ΓH(Ci) \ (Ci−1 mod q ∪ Ci+1 mod q).
Furthermore, there exists k ∈ {0, . . . , q − 1} such that

(L5.6.1) there are no edges between Ck and Ck+3 mod q,
(L5.6.2) |(Ck ∪ Ck+2 mod q) ∩ Ωk+1| and |(Ck+1 mod q ∪ Ck+3 mod q) ∩ Ωk+2| are even.

Then H has a hardness gadget.

Proof. To simplify notation all indices in this proof are considered to be modulo
q. We construct a hardness gadget (I, S, (J ′1, y), (J ′2, z), (J

′
3, y, z)) for H, as defined in

Definition 4.6.
Let C = (C0, . . . , Cq−1). Let J ′1 and J ′2 each be an instance of the generalised

cycle gadget J(JC , J0, . . . , Jq−1), let y = vk+1, and let z = vk+2. Then we have
Ωy = (Ck ∪ Ck+2) ∩ Ωk+1 and Ωz = (Ck+1 ∪ Ck+3) ∩ Ωk+2 by Lemma 5.5. It follows
that |Ωy| and |Ωz| are even by (L5.6.2). Let I = Ck+2 ∩ Ωk+1 and S = Ck+1 ∩ Ωk+2.
We note that I and S have odd size by (L5.5.1) and that I ⊂ Ωy and S ⊂ Ωz.

Let J3 be an edge from y to z. For each o ∈ Ωy \ I ⊆ Ck, s ∈ S ⊆ Ck+1,
i ∈ I ⊆ Ck+2 and x ∈ Ωz \ S ⊆ Ck+3,

• |Σox| = 0 since no edge exists between Ck and Ck+3 according to (L5.6.1).
• |Σis| = |Σix| = |Σos| = 1 since, by (L5.5.2), for all ` ∈ {0, . . . , q − 1} we have
C` ⊆ ΓH(C`+1).

We point out a corollary which is more easily accessible and does not use the full
generality of the gadget J(JC , J0, . . . , Jq−1) but rather only uses the cycle gadget JC .

Corollary 5.7. For an integer q = 3 or q ≥ 5, let H be a graph which contains
a cycle C = c0, . . . , cq−1, c0 such that

• for all i ∈ {0, . . . , q − 1}, we have |NC,H(ci)| = 1, and
• there is no walk of the form D = d0, . . . , dq−1, d0 with di ∈ ΓH(ci)\(ci−1∪ci+1)

(∀i ∈ {0, . . . , q − 1}).
Then H has a hardness gadget.

Proof. All indices in this proof are considered to be modulo q. For i ∈ {0, . . . , q−
1} we choose Ci = NC,H(ci), which by the fact that |NC,H(ci)| = 1 implies Ci = {ci}.
We choose k = 0. For each i ∈ {0, . . . , q − 1}, let (Ji, zi) be the partially H-labelled
graph that only contains the single vertex zi and has an empty pinning function. It
follows that Ωi = V (H) and that J(JC , J0, . . . , Jq−1) is essentially JC . We check that
the requirements of Lemma 5.6 are met. (L5.5.1) holds since Ci−1∩Ωi = Ci−1 = {ci−1}
and Ci+1 ∩ Ωi = Ci+1 = {ci+1}. (L5.5.2) and (L5.5.3) hold since |NC,H(ci)| = 1 and
therefore ci is the only common neighbour of ci−1 and ci+1. There is no walk of the
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form D = d0, . . . , dq−1, d0 with di ∈ ΓH(ci) \ (ci−1 ∪ ci+1), as required by (L5.5.4).
Since q ≥ 3 and C is a cycle, the vertices c0, c1, c2 are distinct. If q = 3, as C is a cycle,
we have c0 = c3, and (L5.6.1) holds since we do not allow self-loops in H. If otherwise
q ≥ 5 then (L5.6.1) holds since ΓH(c1) ∩ ΓH(c3) = NC,H(c2) = {c2} and therefore c0
(which is a neighbour of c1) cannot be a neighbour of c3. Since q ≥ 3 (L5.6.2) holds as
(C0 ∪ C2) ∩Ω1 = {c0, c2} and (C1 ∪ C3) ∩Ω2 = {c1, c3} are sets of 2 distinct vertices.

Remark 5.8. Suppose that a square-free graph H contains a cycle C. Clearly, the
requirements of Corollary 5.7 are met and, by Theorem 4.7, we obtain ⊕P-hardness for
⊕Ret(H). If, in addition, H is involution-free ⊕P-hardness carries over to ⊕Hom(H)
by Theorem 4.4 (from [19, Theorem 3.1]). This argument, together with the classifica-
tion of ⊕Hom(H) for trees by Faben and Jerrum [12] (or alternatively the shorter [19,
Lemmas 5.1 and 5.3]) implies the dichotomy for square-free graphs presented in [19].

6. Chordal Bipartite Components. As our main strategy for proving ⊕P-
hardness of ⊕Hom(H) for K4-minor-free graphs will rely on finding induced cycles
whose lengths are not equal to 4. However, this requires us to treat the case of (K4-
minor-free) graphs that include only squares as induced cycles separately; recall that
such graphs are called chordal bipartite graphs.

In the current section we will construct a hardness gadget for every involution-free,
K4-minor-free, biconnected chordal bipartite graph H, unless H has a very restricted
form (this is Lemma 6.17). In this restricted case we call H an impasse (which will be
formally defined in Definition 6.15). The main tool that we use to construct hardness
gadgets relies on two squares that share one edge. More formally, we will consider the
following graph:

Definition 6.1 (The graph F , ΓH\F (i, j)). The graph F is defined to be the
graph depicted in Figure 4.

v2

v5

v1

v4

v3

v6

Fig. 4: The graph F .

Given a graph H that contains F as a subgraph, and i 6= j ∈ [6], we define

ΓH\F (i, j) = (ΓH(vi) ∩ ΓH(vj)) \ V (F ) .

Definition 6.2 (Type V). Let H be a K4-minor-free graph that contains F as a
subgraph. We say that F has type V in H if one of the following is true

• ΓH\F (1, 5) and ΓH\F (3, 5) are non-empty and ΓH\F (2, 4) and ΓH\F (2, 6) are
empty.

• ΓH\F (2, 4) and ΓH\F (2, 6) are non-empty and ΓH\F (1, 5) and ΓH\F (3, 5) are
empty.

An illustration of the former case is given in Figure 5.

The following observation will be useful in the remainder of this section:
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v2

v5

v1

v4

v3

v6

Fig. 5: A K4-minor-free graph containing F of type V.

Lemma 6.3. Let H be a K4-minor-free graph containing F as a subgraph. At
least one of ΓH\F (1, 5) and ΓH\F (2, 4) is empty, and at least one of ΓH\F (2, 6) and
ΓH\F (3, 5) is empty.

Proof. If ΓH\F (1, 5) and ΓH\F (2, 4) are both non-empty, then the vertices v1, v2,
v4 and v5 yield a K4-minor. If ΓH\F (2, 6) and ΓH\F (3, 5) are both non-empty, then
the vertices v2, v3, v5 and v6 yield a K4-minor.

Lemma 6.4. Let H be a K4-minor-free graph containing F as a subgraph. If F
does not have type V in H then either ΓH\F (1, 5) = ΓH\F (2, 6) = ∅ or ΓH\F (2, 4) =
ΓH\F (3, 5) = ∅.

Proof. Note that either ΓH\F (2, 6) or ΓH\F (3, 5) are empty by Lemma 6.3. As-
sume w.l.o.g. that the former is empty; the other case is symmetric. We distinguish
two cases:

(I) ΓH\F (3, 5) 6= ∅. Now assume for contradiction that ΓH\F (1, 5) 6= ∅. Then,
again by Lemma 6.3, we obtain ΓH\F (2, 4) = ∅, which implies that F has type
V in H, yielding the desired contradiction. In combination with the previous
assumption, we thus have ΓH\F (1, 5) = ΓH\F (2, 6) = ∅.

(II) ΓH\F (3, 5) = ∅. By Lemma 6.3 we have that either ΓH\F (1, 5) or ΓH\F (2, 4)
is empty. This concludes the proof as the current case provides additionally
ΓH\F (3, 5) = ∅ and ΓH\F (2, 6) = ∅.

Lemma 6.5. Let H be a K4-minor-free graph containing F as a subgraph. Then
H has a hardness gadget, unless F has type V in H.

Proof. Using Lemma 6.4 and the fact that H is K4-minor free, we can w.l.o.g.
assume that
(a) The edges {v1, v6} and {v3, v4} are not present in H as, otherwise, we obtain a

K4-minor.
(b) ΓH(v1) ∩ ΓH(v5) = {v2, v4}.
(c) ΓH(v2) ∩ ΓH(v6) = {v3, v5}.
This allows us to construct a hardness gadget:

• S = {v5} and I = {v2}.
• J1 is the graph where y is adjacent to a v1-pin and a v5-pin Note that Ωy =
{v2, v4} by (b).

• J2 is the graph where z is adjacent to a v2-pin and a v6-pin. Note that
Ωz = {v3, v5} by (c).

• J3 is just the edge {y, z}.
We have |Σv4,v5 | = |Σv5,v2 | = |Σv2,v3 | = 1. Furthermore, |Σv4,v3 | = 0 by (a).

Definition 6.6 (The graph Sk,`). For positive integers k and `, Sk,` is the graph
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depicted in Figure 6.

v2

v5

v1

v4

v3

v6

y1

yk z1

z`

Fig. 6: The graph Sk,`.

Lemma 6.7. Let H be a K4-minor-free graph containing F as a subgraph. If F
has type V in H and |ΓH\F (1, 5)| and |ΓH\F (2, 4)| are even, then H has a hardness
gadget.

Proof. As F has type V in H we can assume w.l.o.g. that ΓH\F (2, 4) 6= ∅ and
ΓH\F (2, 6) 6= ∅, and that ΓH\F (1, 5) = ΓH\F (3, 5) = ∅; the other case is symmetric.
In other words, there exist positive integers k and ` such that H contains the subgraph
Sk,` (Definition 6.6) with ΓH\F (2, 4) = {y1, . . . , yk} and ΓH\F (2, 6) = {z1, . . . , z`}.
By the premise of the lemma, k must be even. We will emphasise some crucial
properties of H:
(a) ΓH(v3) ∩ ΓH(v5) = {v2, v6}, since ΓH\F (3, 5) = ∅.
(b) v6 is not adjacent to any vertex in {y1, . . . , yk, v1}: Assuming otherwise, let w ∈
{y1, . . . , yk, v1} be adjacent to v6. We obtain the following K4-minor of H:

v6

w

v5

v4 v3

v2

We proceed by constructing a hardness gadget:
• S = {v2} and I = {v5}.
• J1 is the graph where y is adjacent to a v2-pin and a v4-pin. Note that

Ωy = {v1, v5} ∪ ΓH\F (2, 4) = {v1, v5, y1, . . . , yk} .

In particular, |Ωy| is even as k is.
• J2 is the graph where z is adjacent to a v3-pin and a v5-pin. Note that

Ωz = {v2, v6} by (a).
• J3 is just the edge {y, z}.

We have |Σv2,v5 | = |Σv5,v6 | = 1 and, for every o ∈ Ωy \{v5}, |Σo,v2 | = 1. Furthermore,
by (b), |Σo,v6 | = 0.

6.1. Strong Hardness Gadgets.

Definition 6.8 (strong hardness gadget). A graph J is called a strong hardness
gadget if every K4-minor-free graph that contains J as a subgraph has a hardness
gadget.
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Lemma 6.9. The following graph J is a strong hardness gadget:

i

x

s

u

v

Proof. Let H be a K4-minor-free supergraph of J . We construct a hardness
gadget of H:

• S = {s} and I = {i}.
• J1 is the graph where y is adjacent to a u-pin and an i-pin. Note that

Ωy = {x, s} as H is K4-minor free.
• J2 is the graph where z is adjacent to a v-pin and an s-pin. Note that

Ωz = {x, i} as H is K4-minor free.
• J3 is just the edge {y, z}.

We have |Σs,i| = |Σs,x| = |Σx,i| = 1 and |Σx,x| = 0 — recall that we do not allow
self-loops.

For the proof of the following lemma recall the definition of walk-neighbour-sets
from Definition 4.2.

Lemma 6.10. Let H be a K4-minor-free graph containing two adjacent vertices a
and b such that |ΓH(a)∩ΓH(b)| is odd and at least 3. Then H has a hardness gadget.

Proof. Let c be a common neighbour of a and b and consider the triangle C =
(a, b, c, a): If a and c have a common neighbour apart from b, or if b and c have a
common neighbour apart from a then Lemma 6.9 applies, as a and b have a common
neighbour apart from c by assumption. Otherwise, we have that |NC,H(a)| = 1,
|NC,H(b)| = 1, and |NC,H(c)| = j ≥ 3, where j is odd. For any w ∈ NC,H(c) we can
assume that

(6.1) ΓH(w) ∩ ΓH(a) = {b} and ΓH(w) ∩ ΓH(b) = {a},

as otherwise we obtain a hardness gadget from Lemma 6.9 (choose w instead of c).
Next we can apply Lemma 5.6 to obtain a hardness gadget as follows.

Let q = 3 and C0 = NC,H(a) = {a}, C1 = NC,H(b) = {b}, C2 = NC,H(c). For
each i ∈ {0, 1, 2}, let (Ji, zi) be the partially H-labelled graph that only contains the
single vertex zi and has an empty pinning function. It follows that Ωi = V (H). We
choose k = 0 and check that the requirements of Lemma 5.6 are met.

• (L5.5.1) holds since, for each i ∈ {0, 1, 2}, Ωi = V (H) and Ci has odd cardi-
nality (either 1 or j).

• (L5.5.2) and (L5.5.3) hold by (6.1) and the fact that ΓH(a) ∩ ΓH(b) =
NC,H(c) = C2.

• Suppose for contradiction that there exists a walk D = (da, db, dc, da) with
da ∈ ΓH(a)\{b, c}, db ∈ ΓH(b)\{a, c} and dc ∈ ΓH(c)\{a, b}. Consequently,
as we do not allow self-loops in H, da 6= a, db 6= b and dc 6= c. Then the
vertices da, a, b, c induce a K4-minor (where the path from da to b goes via
db, and the path from da to c goes via dc). Hence (L5.5.4) holds.

• Since C0 = C3 mod q = {a}, (L5.6.1) holds by the fact that we do not allow
self-loops in H.
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• (L5.6.2) holds since (C0 ∪ C2) ∩ Ω1 = C0 ∪ C2, which has cardinality j + 1 (as
we do not allow self-loops in H and therefore C0 = {a} and C2 = NC,H(c) =
ΓH(a)∩ ΓH(b) are disjoint), and j + 1 is even. Analogously, (C1 ∪ C2)∩Ω1 =
C1 ∪ C2 has even cardinality.

Lemma 6.11. The following graph J is a strong hardness gadget:

v2

v5

v1

v4

v3

v6

Proof. Let H be a K4-minor-free supergraph of J . In particular, the graph F is
a subgraph of J and thus of H. Note that, due to the edge {v1, v5}, the vertices v2
and v4 have no common neighbours apart from v1 and v5 in H, as we would obtain
a K4-minor otherwise. In other words, ΓH\F (2, 4) = 0. By Lemma 6.5 we are done,
unless F has type V in H. In particular, as ΓH\F (2, 4) = ∅, only the following case
remains:

v2

v5

v1

v4

v3

v6
y1

yk z1

z`

In particular, ΓH\F (1, 5) = {y1, . . . , yk} and ΓH\F (3, 5) = {z1, . . . , z`} and k, ` > 0.
Now, if k is even, then Lemma 6.7 yields a hardness gadget of H. Finally, if k is odd,
then Lemma 6.10 yields a hardness gadget of H — note that Lemma 6.10 is applicable
as v1 and v5 have precisely k+2 common neighbours, which is an odd number greater
or equal than 3 since k is odd and positive.

Lemma 6.12. The following graph J is a strong hardness gadget:

v2

v6

v1

v5

v3
v4

v8
v7

Proof. Let H be a K4-minor-free supergraph of J .

Claim A If J is not an induced subgraph of H then H has a K4-minor or a hardness
gadget.
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Proof: If J is not an induced subgraph of H then there is an edge e = {vi, vj} ∈
E(H) \ E(J) for some i 6= j ∈ [8]. If e is a diagonal of one of the three squares, such
as {v2, v7}, then H has a hardness gadget by Lemma 6.11.

If e is not a diagonal of a square, then we obtain a K4-minor; each case is similar
to one of the following two:

v2

v6

v1

v5

v3
v4

v8
v7

v2

v6

v1

v5

v3
v4

v8
v7

�

Thus assume for the remainder of the proof that J is an induced subgraph of H.
Note that J has two subgraphs isomorphic to F . We are done unless both have type
V in H by Lemma 6.5. If both have type V, but Lemma 6.7 is applicable, we are done
as well. There is thus only one case (up to symmetry) remaining:
(a) ΓH(v1) ∩ ΓH(v6) = {v2, v5},
(b) ΓH(v3) ∩ ΓH(v6) = {v2, v7},
(c) ΓH(v3) ∩ ΓH(v8) = {v4, v7},
(d) |ΓH(v2) ∩ ΓH(v5)| is odd,
(e) |ΓH(v2) ∩ ΓH(v7)| is odd, and
(f) |ΓH(v4) ∩ ΓH(v7)| is odd.
We provide an illustration for convenience:

v2

v6

v1

v5

v3
v4

v8
v7

x1

xk y1

y` z1

zm

Note that k, ` and m are odd. We construct a hardness gadget:
• S = {v2} and I = {v7}.
• J1 is the graph where y is adjacent to a v1-pin and a v6-pin. Note that

Ωy = {v2, v5} by (a).
• J2 is the graph where z is adjacent to a v3-pin and a v8-pin. Note that

Ωz = {v7, v4} by (c).
• J3 is a path of length 2 from y to z.

By (d), (e) and (f) we have that |Σv5,v2 |, |Σv2,v7 | and |Σv7,v4 | are odd. Furthermore,
we observe that |Σv5,v4 | = 0 as any path of length 2 from v5 to v4 would create a
K4-minor.

Lemma 6.13. The following graph J is a strong hardness gadgets:
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Proof. Let H be a K4-minor-free supergraph of J . Note that J has two subgraphs
isomorphic to F . By Lemma 6.5, we obtain a hardness gadget of H, unless both of
the subgraphs isomorphic to F have type V. If this is the case, however, we obtain
the following subgraph Ĵ of H:

v2

v5

v1

v4

v3

v6

y1

yk z1

z`

α β

z′m

z′1

In Ĵ , k, `,m > 0 and all common neighbours in H between the pairs (v2, v4), (v2, v6)
and (v2, β) are depicted. By definition of type V, we also obtain that each of the
pairs (v1, v5), (v5, v3) and (v3, α) has only the two common neighbours in H depicted.
Note further, that H has a hardness gadget if at least one of k, ` or m is even by
Lemma 6.7. Thus assume for the remainder of the proof that all three are odd. We
will rely on the following claim, that we can assume Ĵ to be an induced subgraph of
H:

Claim A: If Ĵ is not an induced subgraph of H then H has a K4-minor or a hardness
gadget.

Proof: Let e ∈ E(H) \ E(Ĵ) be an edge of H that connects two vertices of Ĵ . We
first assume that e connects two vertices in

{v1, v2, v3, v4, v5, v6, y1, . . . , yk, z1, . . . , z`} .

We show by case distinction that e either yields a hardness gadget, or a K4-minor:
(I) x ∈ e for x ∈ {v1, y1, . . . , yk}. Let x′ be the other endpoint of e and note that

x′ /∈ {v4, v2, x} as we do not allow self-loops and multiple edges.
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(i) If x′ ∈ {v1, y1, . . . , yk, v5} then we obtain a K4-minor induced by x, x′, v2,
v4 — note that, as k > 0, there exists a 2-path from v2 to v4 whose
internal vertex is neither x nor x′.

(ii) If x′ ∈ {v3, z1, . . . , z`} then we obtain a K4-minor induced by x, v2, x
′, v5

— note that there is a 2-path from v5 to x via v4, and a 2-path from v5
to x′ via v6.

(iii) If x′ = v6, then we obtain a K4-minor induced by x, v2, v6, v5 — note that
there is a 2-path from v5 to x via v4, and a 2-path from v6 to v2 via v3.

(II) x ∈ e for x ∈ {v3, z1, . . . , z`}. Symmetric to the previous case (I).
(III) v4 ∈ e. Let x′ be the other endpoint of e. Note that x′ /∈ {v4, v1, y1, . . . , yk, v5}

as we do not allow self-loops and multiple edges.
(i) If x′ ∈ {v3, z1, . . . , z`} then the case is symmetric to case (I)(iii).

(ii) If x′ = v6 then we obtain a K4-minor induced by v4, v2, v6, v5 — note that
there is a 2-path from v4 to v2 via v1, and a 2-path from v2 to v6 via v3.

(iii) If x′ = v2, then H has a hardness gadget by Lemma 6.11.
(IV) v6 ∈ e. Symmetric to the previous case (III).
(V) v2 ∈ e. Let x′ be the other endpoint of e. Then, as we do not allow self-loops

and multiple edges, it follows that x′ /∈ {v2, v1, y1, . . . , yk, v5, z1, . . . , z`, v3} .
The only remaining candidates for x′ are thus v4 and v6. However, both of the
latter candidates yield a hardness gadget by Lemma 6.11.

(VI) v5 ∈ e. Let x′ be the other endpoint of e and note that x′ /∈ {v5, v4, v2, v6} as
we do not allow self-loops and multiple edges. Similarly as in the previous case
(V), all other candidates for x′ yield a hardness gadget by Lemma 6.11.

This concludes the case distinction. Observe now, that a symmetric case analysis
shows H has a hardness gadget or a K4-minor if e connects two vertices in

{v5, v2, α, v6, v3, β, z1, . . . , z`, z′1, . . . , z′m} .

The remaining possibility for e is to have one endpoint in {v4, v1, y1, . . . , yk} and the
other endpoint in {α, β, z′1, . . . , z′m}. However, in this case, we find a path from v5
to v3 whose vertices are disjoint from {v2, z1, . . . , z`, v6}. Consequently, we obtain a
K4-minor induced by v2, v3, v5, v6. �

We thus assume that Ĵ is an induced subgraph of H in what follows. Next, we perform
a case distinction on the parity of the degree of v2; in both cases, we construct a
hardness gadget.

(I) degH(v2) is even. We construct a hardness gadget:
• I = {v4} and S = {v6}.
• J1 is the graph where y is adjacent to a v1-pin and a v5-pin so Ωy =
{v2, v4}.

• J2 is the graph where z is adjacent to a v5-pin and a v3-pin so Ωz =
{v2, v6}.

• J3 is a 2-path between y and z.
As the degree of v2 is even, |Σv2,v2 | is even. As k and ` are odd, |Σv2,v6 | and
|Σv2,v4 | are odd. Finally, we claim that |Σv6,v4 | is odd: Otherwise there must

be an additional 2-path from v6 to v4. As Ĵ is an induced subgraph of H,
the internal vertex of this path, let us call it x, cannot be contained in V (Ĵ);
otherwise, H would contain an edge between x and a vertex v of Ĵ while x and
v are not adjacent in Ĵ .
This, however, yields a K4-minor induced by the vertices v4, v2, v6 and v5 —
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note that v4 and v2 are connected by the 2-path via v1, v2 and v6 are connected
by the 2-path via v3, and v4 and v6 are connected by the 2-path via x.

(II) degH(v2) is odd. We construct a hardness gadget:
• I = S = {v2}.
• J1 is the graph where y is adjacent to a v1-pin and a v5-pin so Ωy =
{v2, v4}.

• J2 is the graph where z is adjacent to an α-pin and a v3-pin so Ωz =
{v2, β}.

• J3 is a 2-path between y and z.
As the degree of v2 is odd, |Σv2,v2 | is odd. As k and ` are odd, we have that
|Σv4,v2 | and |Σv2,β | are odd. Finally, we claim that |Σv4,β | is even: Assuming
otherwise, there must be at least one 2-path in H from v4 to β; we show that
there is none.
As Ĵ is an induced subgraph of H, the internal vertex of this path, let us call it
x, cannot be contained in V (Ĵ); otherwise, H would contain an edge between
x and a vertex v of Ĵ while x and v are not adjacent in Ĵ .
This, however, yields a K4-minor induced by the vertices v2, β, v5 and v4 —
note that v4 and v2 are connected by the 2-path via v1, v2 and β are connected
by the 2-path via α, v4 and β are connected by the 2-path via x, and v5 and β
are connected by the 3-path via v6 and v3.

6.2. Chordal Bipartite Component Lemma.

Definition 6.14 ((1,2)-supergraph). Let J be a connected graph. We say that a
supergraph H of J is a (1,2)-supergraph of J if every edge of H connecting vertices
of J is also an edge of J and every length-2 path of H connecting vertices of J is also
a path of J .

For what follows, recall that a chordal bipartite graph is a graph in which every
induced cycle is a square. The following notion captures the K4-minor-free (bicon-
nected) graphs that are obtained by gluing squares together without inducing ⊕P-
hardness.

Definition 6.15 (impasse, pair of connectors). A K4-minor-free biconnected
graph B is called an impasse if there are odd positive integers k and ` such that
B is a (1,2)-supergraph of the graph Sk,`. Also, with the vertex labels from Def-
inition 6.6, all of the vertices in {v1, y1, . . . , yk, v3, z1, . . . , z`} are required to have
degree 2 in B. The pair (v1, v3) is called a pair of connectors of the impasse B. (Note
that a pair of connectors of B is not unique as, for instance, (v1, z1) is also a pair of
connectors.)

The graph in Figure 5 is an example of an impasse.

Definition 6.16 (diamond). A biconnected graph B is a diamond if, for an integer
k ≥ 2, V (B) = {s, t, x1, . . . , xk} and E(B) = ∪i∈[k]{{s, xi}, {xi, t}}.

Note that a square is a diamond with k = 2. The following lemma classifies
biconnected chordal bipartite graphs:

Lemma 6.17 (Chordal Bipartite Component Lemma). Let H be a K4-minor-free
graph and let B be a biconnected component of H. If B is chordal bipartite and not
just a single edge, then at least one of the following is true:
(a) B is a diamond.
(b) H has a hardness gadget.
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(c) B is an impasse.

Proof. As B is biconnected, chordal bipartite and not a single edge, there exists
an induced square C = (a, b, c, d, a) in B. Let us write ΓH\C(a, c) for the set ΓH(a)∩
ΓH(c)\{b, d} and ΓH\C(b, d) for the set ΓH(b)∩ΓH(d)\{a, c}. Since B is a biconnected
component of H, and a, b, c, d ∈ B, we actually have that ΓH\C(a, c) = ΓB(a)∩ΓB(c)\
{b, d} and ΓH\C(b, d) = ΓB(b)∩ΓB(d)\{a, c}. As H is K4-minor free, we observe that
at least one of ΓH\C(a, c) and ΓH\C(b, d) is empty. Assume w.l.o.g., that ΓH\C(b, d)
is empty. Let B′ be the graph consisting of C together with the edges from a and c
to ΓH\C(a, c). If B = B′ then B is a diamond. Otherwise, as B is biconnected, there
is a shortest path P in B connecting two vertices of C ∪ ΓH\C(a, c) whose internal
vertices are not in B′. This path P has an internal vertex since B has no triangle.

Claim A: P has length 3, one endpoint of P is contained in ΓB(a) ∩ ΓB(c) and the
other endpoint is contained in {a, c}.

Proof: Assume first, for contradiction, that both endpoints of P , let us call them s
and t, are in ΓB(a) ∩ ΓB(c). The only possible length for P under this assumption is
2, as, otherwise, we obtain an induced cycle (a, s, P, t, a) of length 6= 4. As P must
have length 2, the endpoints of P cannot be b and d, as ΓH\C(b, d) is empty. Thus
we can assume w.l.o.g. that s 6= b and t 6= b, which yields the following K4-minor; P
is depicted dashed:

s

c

a

b

t

This yields the desired contradiction.
Next, if P starts in a and ends in c, then we obtain an induced cycle that is not

a square, unless P as length 2. However, in the latter case, the internal vertex of
P is contained in ΓH\C(a, c), contradicting the fact that P is not fully contained in
C ∪ΓH\C(a, c). This shows that one endpoint of P is in ΓB(a)∩ΓB(c) and the other
endpoint is in {a, c}.

Recall that the length of P is greater than 1 (since it has internal vertices). If
P has length 2, then we obtain a triangle, contradicting the fact that B is chordal
bipartite. Finally, if P has length at least 4, we obtain an induced cycle of length at
least 5, also contradicting chordal-bipartiteness. Consequently, P must have length
3. �

Claim A yields that B contains a subgraph isomorphic to the graph F — recall
from Definition 6.1 that F is just the graph containing two squares that share one
edge. We use the vertex labels from Figure 4, i.e., the vertices are {v1, . . . , v6}. Now
assume that (b) is not true, i.e., that H does not have a hardness gadget. Using
the fact that H is K4-minor free, and invoking Lemma 6.5 we obtain that F has
to be of type V. So, without loss of generality (by renaming), we can assume that
ΓB(v4) ∩ ΓB(v2) = {v1, y1, . . . , yk, v5} and ΓB(v6) ∩ ΓB(v2) = {v5, z1, . . . , z`, v3} for
some k, ` ≥ 1. Consequently, since H is K4-minor-free ΓB(v1)∩ΓB(v5) = {v2, v4} and
ΓB(v3)∩ΓB(v5) = {v2, v6} have to hold. By Lemma 6.7, we obtain that k and ` have
to be odd. So we have shown that B contains Sk,` (Definition 6.6) as a subgraph.
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Claim B Sk,` is an induced subgraph of B.

Proof: Assume that Sk,` is not an induced subgraph. Then B (equivalently, H)
contains an edge e /∈ E(Sk,`) between two vertices of Sk,`. We need to distinguish a
variety of (simple) cases:

• v4 ∈ e: The other endpoint of e cannot be one of v4, v5, y1, . . . , yk, v1 as we do
not allow self-loops and multi-edges. Further, it cannot be v6 or v2, as this
would create a triangle, contradicting the fact that B is chordal-bipartite.
Finally, if the other endpoint of e is x ∈ {v3, z1, . . . , z`}, then we obtain a K4-
minor induced by the vertices v4, v5, v2 and x — note that there is a 2-path
from x to v5 via v6, and a 2-path from v2 to v4 via v1.

• v6 ∈ e: Symmetric to the previous case.
• x ∈ e for some x ∈ {v1, y1, . . . , yk}: The other endpoint of e cannot be one of

v1, y1, . . . , yk, v4, v2, v5, v3, z1, . . . , z` ,

as each of those cases would yield a self-loop, a multi-edge, or a triangle (in
B). The remaining candidate for the other endpoint is v6, which was covered
in the previous case.

• x ∈ e for some x ∈ {v3, z1, . . . , z`}: Symmetric to the previous case.
• v5 ∈ e: Any (additional) edge from v5 to a vertex of Sk,` would create either

a multi-edge, a self-loop, or a triangle.
• v2 ∈ e: The other endpoint of e cannot be v2 as we this would create a

self-loop. Consequently, one of the previous cases must be true for the other
endpoint of e.

�

Recall that we want to show that (a) B is a diamond, (b) H has a hardness
gadget, or (c) B is an impasse. For what follows, we distinguish two cases:

(I) All vertices v1, y1, . . . , yk, z1, . . . , z`, v3 have degree 2 in B. In this case we will
show that B is a (1,2)-supergraph of Sk,`. This implies (see Definition 6.15) that
B is an impasse, so we are finished. To see that B is a (1,2)-supergraph of Sk,`,
recall (from Claim B) that Sk,` is an induced subgraph of B. All neighbours
of v1, y1, . . . , yk, z1, . . . , z`, v3 in B are included in Sk,`. Thus, it suffices to
show that B has no 2-path connecting vertices in {v4, v5, v6, v2} whose internal
vertex x, is outside of Sk,`. We noted above that ΓB(v4) ∩ ΓB(v2) ⊆ V (Sk,`)
and ΓB(v6)∩ΓB(v2) ⊆ V (Sk,`). There is no 2-path in B from v2 to v5 because
that would yield a triangle in B. Similarly, 2-paths from v5 to v4 or v6 would
yield triangles in B, so the only possibility is a 2-path from v4 to v6 but this
would yield the K4-minor {v4, v5, v6, v2} in B, contradicting the fact that H
(hence B) has no K4-minor.

(II) Otherwise, assume w.l.o.g. that v1 has degree at least 3 in B. As B is bicon-
nected, there exists a shortest path P in the remainder of B connecting v1 with
another vertex w of Sk,`. We claim that the only candidates for w are v4 and
v2, which we will prove by case distinction:
• w ∈ {y1, . . . , yk, v5}. Then we obtain a K4-minor: (v4, w, v2, v1, v4) is a

square, P connects v1 and w via vertices not contained in Sk,`, and v4 and
v2 are connected by a 2-path via a vertex x ∈ {y1, . . . , yk, v5} \ w — note
that x exists as k ≥ 1.

• w = v6. Then we obtain a K4-minor induced by the vertices v5, v6, v1 and
v2 — note that v1 is connected to v5 by the 2-path via v4, and that v2 is
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connected to v6 by the 2-path via v3.
• w ∈ {z1, . . . , z`, v3}. Then we obtain a K4-minor induced by the vertices
v5, v1, v2 and w — note that v1 is connected to v5 by the 2-path via v4,
and that v5 is connected to w by the 2-path via v6.

Consequently, w must either be v4 or v2 as all other possibilities create a K4-
minor. As B is chordal bipartite, P must have length three. However, if P
connects v1 and v2, we obtain a strong hardness gadget by Lemma 6.13, and if
P connects v1 and v4, we obtain a strong hardness gadget by Lemma 6.12. In
both cases, H therefore has a hardness gadget.

The following lemma shows that impasses already yield hardness if the vertex v2
has even degree:

Lemma 6.18. Let H be a graph containing an impasse B as biconnected compo-
nent, that is, there are odd integers k and ` such that B is a (1,2)-supergraph of the
graph Sk,` such that, using the vertex labels from Figure 6, all vertices v1, y1, . . . , yk, v3,
z1, . . . , z` have degree 2 in B. If degH(v2) is even, then H has a hardness gadget.

Proof. We construct a hardness gadget:
• I = {v4} and S = {v6}.
• J1 is the graph where y is adjacent to a v1-pin and a v5-pin so Ωy = {v2, v4}

as H has the impasse B as a biconnected component.
• J2 is the graph where z is adjacent to a v5-pin and a v3-pin so Ωz = {v2, v6}

as H has the impasse B as a biconnected component.
• J3 is a 2-path between y and z.

As the degree of v2 is even, |Σv2,v2 | is even. As k and ` are odd, we have that |Σv2,v4 |
and |Σv2,v6 | are odd. Finally, we also have |Σv4,v6 | = 1 as an additional 2-path from
v4 to v6 would contradict the fact that the biconnected component B of H is an
impasse.

7. Sequences of Chordal Bipartite Components. In Section 6, we proved
(Lemma 6.17) that every chordal bipartite biconnected component B of a K4-minor-
free graph H is an edge, a diamond, or an impasse, or the graph H has a hard-
ness gadget. The goal of the current section is to establish a structural property
(Lemma 7.14) of a graph H, informally stating that a path in a block-cut-tree of H
consisting only of edges, diamonds, and impasses either induces a hardness gadget of
H, or has endpoints that satisfy a technical criterion necessary for our construction
of global hardness gadgets in Section 9.

Definition 7.1 (good start, good stop). Let H be a graph and let B be a subgraph
of H. Let y be a vertex in B and let LB ⊆ ΓH(y) ∩ V (B).

• We say that (LB , y) is a good start in B if there is a gadget (J, z) such that
{v ∈ V (H) | |hom((J, z)→ (H, v))| is odd } = LB ∪ RB , where |LB | is odd
and RB = ΓH(y) \ V (B).

• We say that (LB , y) is a good stop in B if it is a good start in B and |RB | is
odd.

For non-negative integers k and `, we define some (classes of) graphs with a pair of
distinguished vertices a and b each, see Figure 7 (The graph Sk,` was already defined
in Definition 6.15, however, for the scope of this section it will be more convenient to
work with the vertex labels as given in Figure 7.).

7.1. Good Starts.
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Fig. 7: The graphs BDk (for “backward diamond”), FDk (for “forward diamond”)
and Sk,` (from left to right).

Lemma 7.2. Let B be a biconnected component of a graph H, where B is an edge
between vertices a and b. Then ({a}, b) is a good start in B.

Proof. Clearly, {a} has odd cardinality, and is contained in ΓH(b) ∩ V (B). Let
(JB , zB) be the gadget where zB is adjacent to a b-pin and let RB = ΓH(b)\{a}. Then
{v ∈ V (H) | |hom((JB , zB)→ (H, v))| is odd } = ΓH(b) = {a} ∪RB , as desired.

Lemma 7.3. Let B be a biconnected component of a graph H such that, for an
even non-negative integer k, B is a graph of the form FDk and the vertices a and b
are as given in Figure 7. Let A be a subgraph of H such that V (A) ∩ V (B) = {a}
Suppose that LA ⊆ ΓH(a) ∩ V (A). If (LA, a) is a good start in A but not a good stop
in A then ({a}, b) is a good start in B.

Proof. By the definition of a good start, |LA| is odd and there is a gadget (JA, zA)
such that {v ∈ V (H) | |hom((JA, zA)→ (H, v))| is odd } = LA ∪ RA where RA =
ΓH(a) \ V (A). Since (LA, a) is not a good stop in A, |RA| is even.

Let LB = {a}. We now prove the lemma by showing that (LB , b) is a good start
in B. Clearly, |LB | is odd.

Let (JB , zB) be the gadget where zB is adjacent to the vertex zA of the gadget
JA and it is also adjacent to a b-pin. In order to prove that (LB , b) is a good start
we check that {v ∈ V (H) | |hom((JB , zB)→ (H, v))| is odd } = LB ∪ RB , where
LB = {a} and RB = ΓH(b) \ V (B).

Since zB is adjacent to a b-pin we need only consider each v ∈ ΓH(b) and ho-
momorphisms with zB 7→ v. Then zA is also adjacent to zB and can be mapped to
every vertex in the set ΓH(v) ∩ (LA ∪ RA). We determine the cardinality of this set
depending on v:

• If v = a then ΓH(v)∩(LA∪RA) = LA∪RA and |LA ∪RA| is odd, as required.
• If v = c (for c as given in Figure 7) then v = c does not have any neighbours in
LA since every path from LA to B goes through a because B is a biconnected
component of H. Hence, ΓH(v)∩(LA∪RA) = ΓH(v)∩RA and ΓH(v)∩RA =
ΓH(c)∩ (ΓH(a)\V (A)) by definition of RA. Finally, since B is a biconnected
component, the vertices of B have no common neighbours outside of B. Thus
ΓH(c) ∩ (ΓH(a) \ V (A)) = {d, b, z1, . . . , zk}, which has even cardinality, as
required (since k is even).

• If v ∈ ΓH(b)\V (B) then since B is a biconnected component we have ΓH(v)∩
ΓH(a) = {b}. Consequently, ΓH(v) ∩ (LA ∪ RA) = {b}, which is odd, as
required.

Lemma 7.4. Let B be a biconnected component of a graph H such that, for a
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non-negative integer k, B is a graph of the form BDk and the vertices a and b are as
given in Figure 7. Let A be a subgraph of H such that V (A) ∩ V (B) = {a}. Suppose
that LA ⊆ ΓH(a)∩V (A). If (LA, a) is a good start in A but not a good stop in A then
({a}, b) is a good start in B.

Proof. The proof is analogous to that of Lemma 7.3. We define LB = {a} and
use the same gadget and again have to consider each v ∈ ΓH(b) and homomorphisms
with zB 7→ v and consequently determine the cardinality of the set ΓH(v)∩ (LA∪RA)
depending on v:

• If v = a then ΓH(v)∩(LA∪RA) = LA∪RA and |LA ∪RA| is odd, as required.
• If v ∈ {c, y1, . . . yk} (as given in Figure 7) then v does not have any neighbours

in LA since every path from LA to B goes through a. Hence, ΓH(v) ∩ (LA ∪
RA) = ΓH(v) ∩RA and ΓH(v) ∩RA = ΓH(v) ∩ (ΓH(a) \ V (A)) by definition
of RA. Finally, since B is a biconnected component, the vertices of B have
no common neighbours outside of B, ΓH(v)∩ (ΓH(a) \V (A)) = {b, d}, which
has even cardinality, as required.

• If v ∈ ΓH(b)\V (B) then since B is a biconnected component we have ΓH(v)∩
ΓH(a) = {b}. Consequently, ΓH(v) ∩ (LA ∪ RA) = {b}, which is odd, as
required.

Lemma 7.5. Let B be a biconnected component of a graph H, where B is an
impasse (Definition 6.15). Let (a, b) be a pair of connectors of B and let m1 be
the unique common neighbour of a and b in H (see Figure 7). Suppose further that
degH(m1) is odd. Let A be a subgraph of H such that V (A) ∩ V (B) = {a}. Suppose
that LA ⊆ ΓH(a)∩V (A). If (LA, a) is a good start in A but not a good stop in A then
({m1}, b) is a good start in B.

Proof. By the definition of a good start, |LA| is odd and there is a gadget (JA, zA)
such that {v ∈ V (H) | |hom((JA, zA)→ (H, v))| is odd } = LA ∪ RA, where RA =
ΓH(a) \ V (A). Since (LA, a) is not a good stop, |RA| is even.

Let LB = {m1}. We now prove the lemma by showing that (LB , b) is a good
start in B. Clearly, |LB | is odd.

Let (JB , zB) be the gadget that consists of the gadget JA joined with a path
of length 2 from the vertex zA to the vertex zB , and a b-pin that is adjacent to
zB . In order to prove that (LB , b) is a good start we check that {v ∈ V (H) |
|hom((JB , zB)→ (H, v))| is odd } = LB ∪ RB , where LB = {m1} and RB = ΓH(b) \
V (B).

Since zB is adjacent to a b-pin we need only consider v ∈ ΓH(b) and homomor-
phisms with zB 7→ v. Then there is a path of length 2 from zA to zB and therefore,
for v ∈ ΓH(b),

|hom((JB , zB)→ (H, v))| = |{u ∈ LA ∪RA | |ΓH(u) ∩ ΓH(v)| is odd.}|.

We determine |{u ∈ LA ∪RA | |ΓH(u) ∩ ΓH(v)| is odd.}| depending on v and using
the vertex labels from Figure 7. Note that m1 and c are the only neighbours of b in B
since the degree of b is 2 in B (by the definition of an impasse).

• Consider v = m1.
– If u ∈ ΓH(a) \ {d,m1} then u /∈ V (B) since degB(a) = 2. As B is a

biconnected component, it follows that a is the only common neighbour
of v = m1 and u.

– The vertices v = m1 and u = d have an odd number of common neigh-
bours in Sk,` since k is odd. They have no further common neighbours
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in B, since B is an impasse, and no further common neighbours in H
since B is a biconnected component of H.

– Finally, v = m1 and u = m1 have an odd number of common neighbours
since degH(m1) is odd by assumption of the lemma.

Therefore, {u ∈ LA∪RA | |ΓH(u) ∩ ΓH(v)| is odd} = LA∪RA and |LA ∪RA|
is odd, as required.

• Consider v = c.
– If u ∈ ΓH(a) \ {d,m1}, then u /∈ V (B) and, as B is a biconnected

component, v = c and u have no common neighbours.
– The vertices v = c and u = d have one common neighbour in Sk,`

(the vertex m2) and no further common neighbours in H (by the same
argument as we used for v = m1), so v = c and u = d have an odd
number of common neighbours in H.

– Finally, v = c and u = m1 have an odd number of common neighbours
(since ` is odd).

Therefore, {u ∈ LA ∪ RA | |ΓH(u) ∩ ΓH(v)| is odd} = {d,m1} which has
even cardinality, as required.

• Consider v ∈ ΓH(b) \ V (B).
– If u ∈ ΓH(a) \ {d,m1} then u /∈ V (B) (since degB(a) = 2) and, as B is

a biconnected component, v and u have no common neighbours.
– If u = d then {u, b} is not an edge of B (by the definition of impasse) so it

is not an edge of H (since B is a biconnected component). Hence b is not
a common neighbour of u and v. Also, v and u have no other common
neighbours since v is not in the biconnected component containing b and
d.

– If u = m1 then the only neighbour of u and v is b since v is not in the
biconnected component containing m1 and b.

Since LA ∪ RA ⊆ ΓH(a) and m1 ∈ RA it follows that {u ∈ LA ∪ RA |
|ΓH(u) ∩ ΓH(v)| is odd} = {m1} which has odd cardinality, as required.

7.2. Good Stops.

Lemma 7.6. Let B be a biconnected component of a graph H. Suppose that, for
an even non-negative integer k, B is a graph of the form FDk with vertices as given
in Figure 7. If ({a}, b) is a good stop in B then H has a hardness gadget.

Proof. By the definition of a good stop, RB = ΓH(b) \ {a, c} has odd cardinality
and there is a gadget (JB , zB) such that {v ∈ V (H) | |hom((JB , zB)→ (H, v))| is odd}
equals {a} ∪RB .

We give a hardness gadget (I, S, (J1, y), (J2, z), (J3, y, z)) for H as follows:
• I = {a} and S = {b}.
• J1 is the gadget JB with y = zB so Ωy = {a}∪RB , which has even cardinality,

as required.
• J2 is the graph where z is adjacent to an a-pin and a c-pin so we have

Ωz = {b, d, z1, . . . , zk}, which has even cardinality, as required (since k is
even).

• J3 is an edge between y and z.
Note that a is adjacent to every vertex in Ωz, and b is adjacent to every vertex in Ωy,
as required. Since Ωy \ I = RB = ΓH(b) \ {a, c} and Ωz \ S = {d, z1, . . . , zk} and B
is a biconnected component, there is no edge from Ωy \ I to Ωz \ S, as required.

Lemma 7.7. Let B be a biconnected component of a graph H. Suppose that, for
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a non-negative integer k, B is a graph of the form BDk with vertices as given in
Figure 7. If ({a}, b) is a good stop in B then H has a hardness gadget.

Proof. By the definition of a good stop, RB = ΓH(b) \ V (B) has odd cardinality
and there is a gadget (JB , zB) such that {v ∈ V (H) | |hom((JB , zB)→ (H, v))| is odd}
equals {a} ∪ RB . We give a hardness gadget (I, S, (J1, y), (J2, z), (J3, y, z)) for H as
follows:

• I = {a} and S = {b}.
• J1 is the gadget JB with y = zB so Ωy = {a}∪RB , which has even cardinality,

as required.
• J2 is the graph where z is adjacent to an a-pin and a c-pin so Ωz = {b, d},

which has even cardinality, as required.
• J3 is an edge between y and z.

Note that a is adjacent to every vertex in Ωz, and b is adjacent to every vertex in Ωy,
as required. Since RB = ΓH(b) \ V (B) and B is a biconnected component, note that
there are no edges between Ωy \ I = RB and Ωz \ S = {d}, as required.

Lemma 7.8. Let B be a biconnected component of a graph H. Suppose that B is
an impasse (Definition 6.15) and that (a, b) is a pair of connectors of B. Let m1 be
the unique common neighbour of a and b in H (see Figure 7). Suppose further that
degH(m1) is odd. If ({m1}, b) is a good stop in B then H has a hardness gadget.

Proof. By the definition of a good stop, RB = ΓH(b) \ V (B) has odd cardinality
and there is a gadget (JB , zB) such that {v ∈ V (H) | |hom((JB , zB)→ (H, v))| is odd}
equals {m1} ∪ RB , Using the vertex labels from Figure 7, we give a hardness gadget
(I, S, (J1, y), (J2, z), (J3, y, z)) for H as follows:

• I = {m1} and S = {m1}.
• J1 is the gadget JB with y = zB so Ωy = {m1} ∪ RB , which has even

cardinality, as required.
• J2 is the graph where z is adjacent to an a-pin and an m2-pin so Ωz = {m1, d},

which has even cardinality, as required.
• J3 is a 2-path between y and z.

There are an odd number of 2-walks from m1 to itself since degH(m1) is odd by
assumption. There are an odd number of 2-walks from m1 to d since k is odd and
no pair of vertices of Sk,` has common neighbours outside of Sk,`. Since RB =
ΓH(b)\V (B) and B is biconnected there is exactly one 2-walk from m1 to each vertex
in RB . Thus, for s ∈ S = {m1}, i ∈ I = {m1}, o ∈ Ωy \ I = RB , x ∈ Ωz \ S = {d},
we have shown that |Σi,s|, |Σo,s| and |Σi,x| are odd, as required. Finally, since B is a
biconnected component there are no 2-walks from d to a vertex in RB and therefore
|Σo,x| is even, as required.

7.3. Hardness Results. In this section we establish hardness results which are
used to prove Lemma 7.14 in Section 7.4.

Lemma 7.9. Let H be a graph and let B be a biconnected component of H. Sup-
pose that, for an odd non-negative integer k, B is a graph of the form FDk with
vertex labels as given in Figure 7. If degH(a) is even then H has a hardness gadget.

Proof. We give a hardness gadget (I, S, (J1, y), (J2, z), (J3, y, z)) for H as follows:
• I = {a} and S = {b, d, z1, . . . zk}.
• J1 is the graph where y is adjacent to a b-pin and a d-pin so Ωy = {a, c},

which has even cardinality, as required.
• J2 is the graph where z is adjacent to an a-pin so Ωz = ΓH(a), which has
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even cardinality, as required.
• J3 is an edge between y and z.

Note that a is adjacent to every vertex in Ωz, and each vertex of S is adjacent to
every vertex in Ωy, as required. Since B is a biconnected component there are no
edges between Ωy \ I = {c} and Ωz \ S = ΓH(a) \ V (B), as required.

Lemma 7.10. Let H be a graph and let A and B be biconnected components of
H. Suppose that, for odd integers k ≥ 1 and ` ≥ 1, there is an isomorphism f from
the graph BDk to A and an isomorphism g from the graph FD` to B. Suppose that
there is a vertex w = f(b) = g(a) such that degH(w) is odd. Then H has a hardness
gadget.

Proof. We give a hardness gadget (I, S, (J1, y), (J2, z), (J3, y, z)) for H as follows:
• I = {w} and S = {w}.
• J1 is the graph where y is adjacent to an f(a)-pin and an f(c)-pin so Ωy =
{f(d), f(b)} = {f(d), w}, which has even cardinality, as required.

• J2 is the graph where z is adjacent to a g(b)-pin and an g(d)-pin so Ωz =
{g(c), g(a)} = {g(c), w}, which has even cardinality, as required.

• J3 is a 2-path between y and z.
By the fact that A and B are biconnected components, there are exactly k + 2 walks
of length 2 from f(d) to w, and there are exactly ` + 2 walks of length 2 from g(c)
to w, where k and ` are odd. Since degH(w) is odd, there is a an odd number of
length-2 walks from w to itself. Finally, there are no length-2 walks from f(d) to g(c),
as required.

Lemma 7.11. Let H be a graph and let B be a biconnected component of H that
is of the form BDk for some integer k ≥ 0. Using the vertex names from Figure 7,
there is a gadget (J, z) such that {v ∈ V (H) | |hom((J, z)→ (H, v))| is odd } =
ΓH(b) \ V (B).

Proof. The graph J has three pinned vertices — an a-pin, a b-pin, and a c-pin.
The b-pin is adjacent to the vertex z and the other two pins are attached to z by
paths of length 2.

We will now consider each v ∈ V (H) to determine whether |hom((J, z)→ (H, v))|
is odd. Since z is adjacent to a b-pin in J , this can only be true for v ∈ ΓH(b).

First, consider a vertex v ∈ ΓH(b) ∩ V (B).
• If v ∈ {a, y1, . . . , yk} then v has exactly two length-2 walks to c, therefore
|hom((J, z)→ (H, v))| is even.

• If v = c then v has exactly two length-2 walks to a so |hom((J, z)→ (H, v))|
is even.

Finally, consider a vertex v ∈ ΓH(b) \ V (B). There is exactly one 2-walk to a,
and exactly one 2-walk to c, so |hom((J, z)→ (H, v))| is odd.

The following lemma is essentially the same as Lemma 7.11.

Lemma 7.12. Let H be a graph and let B be a biconnected component of H that
is of the form FDk for some integer k ≥ 0. Using the vertex names from Figure 7,
there is a gadget (J, z) such that {v ∈ V (H) | |hom((J, z)→ (H, v))| is odd } =
ΓH(a) \ V (B).

Proof. The graph J has three pinned vertices — an a-pin, a b-pin, and a d-pin.
The a-pin is adjacent to the vertex z and the other two pins are attached to z by
paths of length 2.

We will now consider each v ∈ V (H) to determine whether |hom((J, z)→ (H, v))|
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is odd. Since z is adjacent to an a-pin in J , this can only be true for v ∈ ΓH(a).
First, consider a vertex v ∈ ΓH(a) ∩ V (B).
• If v ∈ {d, z1, . . . , zk} then v has exactly two length-2 walks to b, therefore
|hom((J, z)→ (H, v))| is even.

• If v = b then v has exactly two length-2 walks to d so |hom((J, z)→ (H, v))|
is even.

Finally, consider a vertex v ∈ ΓH(b) \ V (B). There is exactly one 2-walk to b,
and exactly one 2-walk to d, so |hom((J, z)→ (H, v))| is odd.

We obtain the following lemma, which is a generalisation of [19, Lemma 4.5].

Lemma 7.13. For an integer q ≥ 1, let P = v0, . . . , vq be a path in a graph H.
Suppose that no edge of P is part of a square in H and that degH(vj) is odd for all
j ∈ [q − 1]. Suppose that

1 a) degH(v0) is even, or
1 b) degH(v0) is odd and there is a biconnected component B0 that is isomorphic

to BDk for some odd integer k ≥ 1, where the isomorphism maps v0 to the
vertex b from Figure 7.

Suppose further that
2 a) degH(vq) is even, or
2 b) degH(vq) is odd and there is a biconnected component Bq+1 that is isomorphic

to FDk for some odd integer k ≥ 1, where the isomorphism maps vq to the
vertex a from Figure 7.

Then H has a hardness gadget.

Proof. We give a hardness gadget (I, S, (J1, y), (J2, z), (J3, y, z)) for H as follows:
• I = {v1} and S = {vq−1}.
• If 1 a) holds, then J1 is the graph where y is adjacent to a v0-pin so Ωy =

ΓH(v0), which has even cardinality as required. If 1 b) holds then (J1, y)
is the gadget from Lemma 7.11 and Ωy = ΓH(v0) \ V (B0), which has even
cardinality as required. The vertex v1 is in Ωy because the edge {v0, v1} is
not part of a square in H.

• If 2 a) holds, then J2 is the graph where z is adjacent to a vq-pin so Ωz =
ΓH(vq), which has even cardinality as required. If 2 b) holds then (J2, z) is
the gadget from Lemma 7.12 and Ωz = ΓH(vq) \ V (Bq+1), which has even
cardinality as required. The vertex vq−1 is in Ωz because the edge {vq−1, vq}
is not part of a square in H.

• J3 is the path gadget JP .
This is a hardness gadget by Lemma 5.2.

7.4. Chordal Bipartite Sequence Lemma.

Lemma 7.14 (Chordal Bipartite Sequence Lemma). For an integer q ≥ 1, let
B1, . . . , Bq be biconnected components of a graph H and let b0, . . . , bq be vertices such
that, for all i ∈ [q], bi−1 and bi are distinct vertices of Bi, and Bi satisfies one of the
following:

• Bi is an edge from bi−1 to bi,
• Bi is a diamond in which {bi−1, bi} is an edge, or
• Bi is an impasse, where (bi−1, bi) is a pair of connectors of Bi. In this case,

let di be the unique common neighbour of bi−1 and bi in H.
If |ΓH(b0) \ V (B1)| is odd, then at least one of the following holds:

• Bq is an edge or a diamond and ({bq−1}, bq) is a good start in Bq but not a
good stop in Bq,
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• Bq is an impasse and ({dq}, bq) is a good start in Bq but not a good stop
in Bq, or

• H has a hardness gadget.

Proof. We start by collecting some facts that we will need.
Fact 1. If i ∈ [q] and Bi is a diamond, then at least one of the following holds:

• for some non-negative integer k there is an isomorphism from FDk to Bi,
mapping the vertex a from Figure 7 to bi−1 and the vertex b to bi (we refer
to this situation below by saying “Bi is of the form FDk”), or

• for some non-negative integer k there is an isomorphism from BDk to Bi,
mapping the vertex a from Figure 7 to bi−1 and vertex b to bi. (We refer to
this situation as “Bi is of the form BDk”).

Fact 2. If B1 is an edge or a biconnected component of the form FDk for an odd
integer k then ΓH(b0) is even. (This is because b0 has and odd number of neighbours
in B1 and an odd number outside of B1, by assumption.)

Let L0 = ΓH(b0)\V (B1) and let B0 be the subgraph of H induced by the vertices
in L0 ∪ {b0}. For every i ∈ [q] such that Bi is an edge or a diamond, let Li = {bi−1}.
For every i ∈ [q] such that Bi is an impasse, let Li = {di}. For every i ∈ {0, . . . , q},
let Ri = ΓH(bi) \ V (Bi).

We start by considering i ∈ {0, 1} and showing that (Li, bi) is a good start in Bi
or that H has a hardness gadget. We first deal with the easy case i = 0. |L0| is odd
by assumption so, to show that (L0, b0) is a good start in B0, it suffices to use the
gadget (J, z) in which z is adjacent to a b0-pin. Note that R0 = ΓH(b0)∩ V (B1). We
next deal with i = 1 by considering four cases depending on B1:

• If B1 is an edge from b0 to b1 then, by Lemma 7.2, (L1, b1) is a good start in
B1.

• If B1 is a diamond of the form FDk for an odd integer k ≥ 0 then H has a
hardness gadget by Fact 2 and Lemma 7.9.

• If B1 is a diamond of the form FDk for an even integer k ≥ 0 then R0 has
even cardinality. Therefore (L0, b0) is not a good stop in B0 and we can apply
Lemma 7.3 to show that (L1, b1) is a good start in B1.

• If B1 is a diamond of the form BDk then R0 has even cardinality. Therefore
(L0, b0) is not a good stop in B0 and we can apply Lemma 7.4 to show that
(L1, b1) is a good start in B1.

• If B1 is an impasse where (b0, b1) is a pair of connectors. Then b0 has 2
neighbours in B1 and hence R0 has even cardinality. Therefore (L0, b0) is
not a good stop in B0. Recall that d1 be the unique common neighbour
of b0 and b1 in H. If degH(d1) is even then H has a hardness gadget by
Lemma 6.18. Otherwise Lemma 7.5 shows that (L1, b1) is a good start in B1.

For the rest of the proof, let j be the smallest index in [q] that satisfies one of the
following properties:
(P1) |Rj | is odd and there is no odd integer k such that Bj is of the form FDk.
(P2) There is an odd integer k such that Bj is of the form FDk.
(P3) j = q and |Rj | is even and there is no odd integer k such that Bj is of the form

FDk.
We will use the following claims.

Claim A Suppose that j does not satisfy (P2). Then H has a hardness gadget or,
for all ` ∈ [j], the following are satisfied.

• (L`, b`) is a good start in B`, and
• If ` > 1 then (L`−1, b`−1) is not a good stop in B`−1.

33



Proof: The proof of Claim A is by induction on `. We have already established the
base case ` = 1. Now fix ` ∈ {2, . . . , j} and suppose (from the inductive hypothesis)
that (L`−1, b`−1) is a good start in B`−1. By the minimality of j, B`−1 is not of
the form FDk for an odd integer k (otherwise ` − 1 would satisfy (P2)). Again, by
minimality of j, |R`−1| is even (otherwise `− 1 would satisfy (P1)). By the definition
of good stop, (L`−1, b`−1) is not a good stop in B`−1. Since j does not satisfy (P2),
B` is not of the form FDk for an odd integer k. Thus, we can apply one of Lem-
mas 7.2, 7.3, 7.4 or 7.5 depending on the form of B` to show that (L`, b`) is a good
start in B`. This completes the proof of Claim A. �

Claim B Suppose that Bj satisfies one of the following.
(B1) Bj is the edge {bj−1, bj} and degH(bj) is even, or
(B2) there is an odd integer k such that Bj is of the form FDk.
Suppose that there is an integer ` in the range 1 ≤ ` ≤ j such that, for i ∈ {`, . . . , j−1},
Bi is the edge {bi−1, bi} and for i ∈ {`, . . . , j}, ΓH(bi−1) and ΓH(bi−1)∩V (Bi−1) have
odd cardinality. Then H has a hardness gadget or there is an integer p in the range
1 ≤ p ≤ ` − 1 and an odd integer k′ such that Bp is of the form BDk′ . Also, for
i ∈ {p+ 1, . . . , j − 1}, Bi is the edge {bi−1, bi} where ΓH(bi−1) has odd cardinality.

Proof: The proof of Claim B is by induction on `. The base case ` = 1 is vacuous
— taking i = 1, the precondition of the claim ensures that |ΓH(b0)| is odd, contrary
to Fact 2. So consider some ` > 1 for which we wish to prove the claim. Since taking
i = ` guarantees that |ΓH(b`−1) ∩ V (B`−1)| is odd, B`−1 is either an edge or it is of
the form BDk′ for an odd integer k′. We consider each case.

• B`−1 is an edge: If degH(b`−2) is evenH has a hardness gadget by Lemma 7.13
(take v0, . . . , vq = b`−2, . . . , bj in Case (B1) and v0, . . . , vq = b`−2, . . . , bj−1
in Case (B2). Thus, assume that degH(b`−2) is odd. By Fact 2, ` − 2 ≥ 1
and consequently (by Claim A), (L`−2, b`−2) is a good start in B`−2 that is
not a good stop in B`−2. This implies that |R`−2| is even, which together
with the fact that degH(b`−2) is odd implies that b`−2 has an odd number of
neighbours in B`−2. So the preconditions of the claim are met with i = `− 1
and we can finish by induction.

• B`−1 is of the form BDk′ for an odd integer k′. The claim follows by taking
p = `− 1.

This concludes the proof of Claim B. �

We now make a case distinction, depending on which property j satisfies.
Case (P1). We will show that H has a hardness gadget.

By Claim A, either H has a hardness gadget (in which case we are finished)
or (Lj , bj) is a good start in Bj . Since |Rj | is odd, (Lj , bj) is a good stop in
Bj . We now distinguish several cases, depending on the form of Bj .
• If Bj is of the form FDk for even k, or of the form BDk, then H has a

hardness gadget by Lemmas 7.6 or 7.7, respectively.
• If Bj is an impasse, then depending on the degree of dj , H has a hardness

gadget either by Lemma 6.18 (if the degree of dj is even) or by Lemma 7.8
(if the degree of dj is odd).

• Finally, suppose that Bj is an edge. We will use Claim B with ` = j
to show that H has a hardness gadget. The first step is to show that
(unless H has a hardness gadget) the preconditions of the claim are met
— that is degH(bj) is even, degH(bj−1) is odd, and |ΓH(bj−1)∩V (Bj−1)|
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is odd.
By (P1), |Rj | is odd. Since bj has only one neighbour in Bj , degH(bj)
is even. If degH(bj−1) is even, H has a hardness gadget by Lemma 7.13
(taking q = 1, v0 = bj−1 and v1 = bj). From now on, we assume that
degH(bj−1) is odd. By Fact 2, j− 1 ≥ 1. By the minimality of j, |Rj−1|
is even, which implies that bj−1 has an odd number of neighbours in
Bj−1.
Applying Claim B with ` = j, either H has a hardness gadget. or there
is an integer p in the range 1 ≤ p ≤ j − 1 and an odd integer k′ such
that Bp is of the form BDk′ . Also, for i ∈ {p + 1, . . . , j − 1}, Bi is the
edge {bi−1, bi} where ΓH(bi−1) has odd cardinality.
Now we apply Lemma 7.13 with the path v0, . . . , vq equal to bp, . . . , bj .
The degrees of v0, . . . , vq−1 are odd and the degree of vq is even. v0 is
in the biconnected component Bp. This shows that H has a hardness
gadget.

Case (P2). We will use Claim B with ` = j to show that H has a hardness gadget.
The first step is to show that (unless H has a hardness gadget) the precon-
ditions of the claim are met — that is degH(bj−1) is odd, and |ΓH(bj−1) ∩
V (Bj−1)| is odd.
If degH(bj−1) is even then H has a hardness gadget by Lemma 7.9. From
now on, we assume that degH(bj−1) is odd. By Fact 2, j − 1 ≥ 1. By the
minimality of j, |Rj−1| is even, which implies that bj−1 has an odd number
of neighbours in Bj−1.
Applying Claim B with ` = j, either H has a hardness gadget. or there is an
integer p in the range 1 ≤ p ≤ j − 1 and an odd integer k′ such that Bp is
of the form BDk′ . Also, for i ∈ {p + 1, . . . , j − 1}, Bi is the edge {bi−1, bi}
where ΓH(bi−1) has odd cardinality.
If p = j − 1 then H has a hardness gadget by Lemma 7.10. Otherwise, we
apply Lemma 7.13 with the path v0, . . . , vq equal to bp, . . . , bj−1. The degrees
of v0, . . . , vq are odd. v0 is in the biconnected component Bp and bq is in the
biconnected component Bj . This shows that H has a hardness gadget.

Case (P3) By Claim A, H has a hardness gadget or (Lq, bq) is a good start in Bq.
In the latter case, since |Rq| is even, (Lq, bq) is not a good stop in Bq.

8. K4-minor-free Components. In this section, we establish a structural clas-
sification for biconnected K4-minor-free graphs. Recall that such a classification
has already been achieved for biconnected chordal bipartite graphs in Section 6 (see
Lemma 6.17). For this reason, we focus in what follows on biconnected K4-minor-
free graphs that are not chordal bipartite, which is equivalent to focusing on bicon-
nected K4-minor-free graphs which have an induced cycle that is not a square. The
main result of this section is presented in Lemma 8.10. Informally, it states that
every biconnected K4-minor-free graph B either induces a hardness gadget for every
K4-minor-free graph containing B as a biconnected component, or B is an edge, a
diamond, an impasse, or a so-called obstruction (Definition 8.6). Together with our
insights from the previous section, obstructions will be the final building block in our
construction of global hardness gadgets in Section 9.

Definition 8.1 (separation, separator). Let G be a graph and let A and B be
subsets of V (G). The pair (A,B) is a separation of G if V (G) = A ∪ B and G has
no edges between A \ B and B \ A. The set A ∩ B is called the separator of this
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separation.

8.1. Induced Cycles. Recall Definition 4.2, which defines for a closed walk
W = (w0, . . . , wq−1, w0) in a graph H the walk-neighbour-set NW,H(wi) = ΓH(wi−1)∩
ΓH(wi+1), where the indices are taken modulo q. In this section we will use this notion
mainly for cycles.

Lemma 8.2. Let H be a biconnected K4-minor-free graph containing an induced
cycle C = (c0, . . . , cq−1, c0) for some q 6= 4. Then the walk-neighbour-sets NC,H(c0),
. . . , NC,H(cq−1) are pairwise disjoint.

Proof. If q = 3 then the fact that we do not allow self-loops in H together with
the fact that H does not contain K4 as a subgraph ensures that the NC,H(ci) are
pairwise disjoint.

Suppose q > 4. Assume for contradiction that there exists a vertex w ∈ NC,H(ci)∩
NC,H(cj) for some i 6= j. If w is part of the cycle C, then we obtain a chord (note
that q > 4), contradicting the fact that C is induced. If w is not part of the cycle C,
then w is adjacent to at least 3 vertices of the cycle, yielding a K4-minor.

Lemma 8.3. Let H be a biconnected K4-minor-free graph containing an induced
cycle C = (c0, . . . , cq−1, c0). If q > 4 and |NC,H(ci)| > 1 for some i ∈ {0, . . . , q − 1}
then there exists a separation (A,B) of H such that C \ {ci} ⊆ A, NC,H(ci) ⊆ B and
A ∩B = {ci−1, ci+1}. Furthermore, H is a (1,2)-supergraph of H[B].

Proof. Let S1, . . . , Sk be the connected components of the graph obtained from
H by deleting ci−1, ci+1, and all edges incident to ci−1 and ci+1. Then w.l.o.g. we
can assume that cj ∈ V (S1) for all j /∈ {i− 1, i, i+ 1}. Set A = V (S1) ∪ {ci−1, ci+1}
and B = V (S2)∪ · · · ∪ V (Sk)∪ {ci−1, ci+1}. By construction, we have A∪B = V (H)
and A∩B = {ci−1, ci+1}, and there are no edges between A \B and B \A. We claim
that NC,H(ci) ∩ V (S1) = ∅ as, otherwise, we obtain the following K4-minor; recall
that |NC,H(ci)| > 1 and q > 4:

ci−1

ci+1

cj

Here, the dashed lines depict the path ci−1, . . . , cj , . . . , ci+1 which is C \{ci}. Further,
cj is a vertex of C satisfying that there exists a (shortest) path P from a vertex in
NC,H(ci) to cj such that the internal vertices of P are disjoint from C ∪ NC,H(ci).
Note that cj exists if NC,H(ci)∩V (S1) is not empty. We depict P in the above picture
with a dotted line. In particular, P has length at least one, i.e., cj /∈ NC,H(ci) by
Lemma 8.2. Hence we obtain indeed a K4-minor. Consequently, no vertex of NC,H(ci)
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is contained in A, and thus NC,H(ci) ⊆ B.
It remains to show that H is a (1,2)-supergraph of H[B]: It is immediate that

an edge e between two vertices in B is present in H if and only if it is present in
H[B]. By the definition of B, H and H[B] cannot have a different number of 2-paths
between two different vertices b1 and b2 in B, unless {b1, b2} = {ci−1, ci+1}. However,
regarding the latter case, all common neighbours of ci−1 and ci+1 are contained in
NC,H(ci) ⊆ B and thus the claim also holds for those two vertices.

Corollary 8.4. Let H be a biconnected K4-minor-free graph containing an in-
duced cycle C = (c0, . . . , cq−1, c0). If q > 4 then, for all i ∈ {0, . . . , q − 1}, we have
that at least one of NC,H(ci) and NC,H(ci+1) has cardinality 1.

Proof. Assume for contradiction that for some i, both, NC,H(ci) and NC,H(ci+1),
have cardinality greater than 1. We invoke Lemma 8.3 for C and i, which yields a
separation (A,B) ofH such that C\{ci} ⊆ A, NC,H(ci) ⊆ B, andA∩B = {ci−1, ci+1}.
However, by assumption, there exists c′ ∈ NC,H(ci+1) \ {ci+1}. Note further, that
c′ 6= ci−1 as q > 4 and C is induced. Thus there is a path connecting ci ∈ B and
ci+2 ∈ A which does not pass through either one of ci−1 and ci+1 contradicting the
assumption that (A,B) is a separation with A ∩B = {ci−1, ci+1}.

Corollary 8.5. Let H be a biconnected K4-minor-free graph containing an in-
duced cycle C = (c0, . . . , cq−1, c0). If q 6= 4 and H does not have a hardness gadget
then, for all i ∈ {0, . . . , q− 1}, we have that at least one of NC,H(ci) and NC,H(ci+1)
has cardinality 1.

Proof. If q > 4 the statement follows from Corollary 8.4. If q = 3 then C is a
triangle and the statement follows directly from Lemma 6.9.

8.2. Pre-Hardness Gadgets and Obstructions.

Definition 8.6 (obstruction). Let B be a K4-minor-free biconnected graph and
let C be an induced cycle of B whose length is not 4. We say that B is an ob-
struction with cycle C if every even-cardinality walk-neighbour-set of C in B only
contains vertices whose degree in B is 2. We say that B is an obstruction if, for
some C, it is an obstruction with cycle C. We use Cy(B) to denote the set {C |
B is an obstruction with cycle C}.

Definition 8.7 (pre-hardness gadget). Let J be a connected graph. We say that
J is a pre-hardness gadget if, for every (1,2)-supergraph H of J without K4-minors,
H has a hardness gadget.

Note that if J is a biconnected graph that is a pre-hardness gadget, then every
K4-minor-free graph H which contains J as a biconnected component has a hardness
gadget.

It will be convenient to establish the following special case of an obstruction.

Lemma 8.8. Let J be a K4-minor-free biconnected graph such that the largest
induced cycle of J is a square. If J contains a triangle then J is either a pre-hardness
gadget or an obstruction.

Proof. Let (a, b, c, a) be a triangle of J , let a1, . . . , ak be the common neighbours
of b and c with a = a1, let b1, . . . , b` be the common neighbours of a and c with
b = b1, and let c1, . . . , cm be the common neighbours of a and b with c = c1. If
at least two of k, `, and m are at least 2, then J is a strong hardness gadget by
Lemma 6.9. In particular, every strong hardness gadget is also a pre-hardness gadget.
If k = ` = m = 1 then J is a pre-hardness gadget by Corollary 5.7, as follows. Let
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H be a (1,2)-supergraph of J , let q = 3, and let C = (a, b, c, a). Then |NC,H(a)| =
|NC,H(b)| = |NC,H(c)| = 1 since k = ` = m = 1. Also, suppose for contradiction that
there exists a walk D = (da, db, dc, da) with da ∈ ΓH(a) \ {b, c}, db ∈ ΓH(b) \ {a, c}
and dc ∈ ΓH(c) \ {a, b}. Consequently, as we do not allow self-loops in H, da 6= a,
db 6= b and dc 6= c. Then the vertices da, a, b, c induce a K4-minor (contract the edges
{b, db} and {c, dc} to obtain a K4).

Hence assume w.l.o.g. that k > 1 and ` = m = 1. If k is odd then J is a pre-
hardness gadget by Lemma 6.10. If k is even and all aj have degree 2 then J is an
obstruction. Otherwise, for some j ∈ {1, . . . , k}, let aj have degree at least 3. As J
is biconnected, there exists a shortest (induced) path P of length at least 2 from aj
to one of the vertices b, c or to some ai with i ∈ [k] \ {j}. The internal vertices of P
are disjoint from b, c and {ai | i ∈ [k]}. If the endpoint of P is one of the other ai, we
obtain a K4-minor, hence the endpoint must be b or c; suppose w.l.o.g. that it is c.
As the largest induced cycle of J is a square, P has either length 2 or 3. In the former
case, we obtain a strong (and thus also a pre-) hardness gadget by Lemma 6.9. In the
latter case, J is a strong (and thus also a pre-) hardness gadget by Lemma 6.11.

Lemma 8.9. Let H be a biconnected K4-minor-free graph. If H contains an in-
duced cycle of length at least 5 then H is either an obstruction or a pre-hardness
gadget.

Proof. We perform induction on |V (H)|: Let C = (c0, . . . , cq−1, c0) be an induced
cycle of length q ≥ 5. If H is not an obstruction then, by Definition 8.6 there exists i
such that NC,H(ci) has even cardinality and contains a vertex of degree not equal to
2. Assume w.l.o.g. that i = 1. So we can assume that NC,H(c1) = {c11, . . . , ck1} where
k > 0 is even and degH(c11) 6= 2.

We invoke Lemma 8.3 and obtain a separation (A,B) of H such that C\{c1} ⊆ A,
NC,H(c1) ⊆ B and A ∩ B = {c0, c2}. Furthermore, H is a (1,2)-supergraph of H[B].
Now consider the neighbours of c11: We have that c0 ∈ ΓH(c11) and c2 ∈ ΓH(c11) by the
definition of NC,H(c1). As degH(c11) 6= 2, there exists another neighbour w ∈ ΓH(c11).
By the properties of the separation (A,B), for any w ∈ ΓH(c11) \ {c0, c2}, w ∈ B.

Claim A: There is a vertex w in ΓH(c11) \ {c0, c2} and an induced path P in H[B]
from w to either c0 or c2 such that all internal vertices of P are contained in B \
(NC,H(c1) ∪ {c0, c2}). Furthermore, no internal vertex of P is a neighbour of c11.
Proof: Let w′ ∈ ΓH(c11) \ {c0, c2}. As H is biconnected, the vertex c11 is not an
articulation point. Consequently, there exists a path P ′ from w′ to c0 not containing
c11 as internal vertex. We can assume P ′ to be induced by taking possible “shortcuts”.
W.l.o.g. we have that P ′ does not visit c2 as internal vertex as, otherwise, we can
just continue with c2 instead of c0.

Assume first that P ′ contains a vertex in A \ B. As (A,B) is a separation and
w′ ∈ B, we have that P ′ is of the form

w′
P1→ x

P2→ c0 ,

such that P1 is contained in H[B] and x ∈ A ∩ B = {c0, c2}. However, as P ′ is a
path that does not contain c2 as internal vertex, we obtain that P2 = ∅ and x = c0,
contradicting the assumption.

Next assume that P ′ contains an internal vertex z in NC,H(c1) \ {c11}; we obtain
the contradiction by identifying a K4-minor in H as depicted in Figure 8. We have
now shown that there is an induced path P ′ in H[B] from w′ to c0 or c2 such that
all internal vertices of P ′ are contained in B \ (NC,H(c1) ∪ {c0, c2}). Now choose w
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c0

c2

z c11
w′

Fig. 8: The K4-minor used in the proof of Claim A in Lemma 8.9. The dashed line
depicts the remainder of the cycle, and the dotted line depicts P ′.

c0

c2

ck1 c11c21ck−11

w

Fig. 9: Illustration of cycle C consisting of the dashed line and one of the vertices
ci1, and path P (dotted) in the proof of Lemma 8.9.

to be the first neighbour of c11 along P ′ from c0 or c2, respectively, and let P be the
sub-path of P ′ going from c0 or c2, respectively, to w.

�

We assume in the remainder of the proof that the Claim A holds for c0; the
case of c2 is completely symmetric (by substituting every subsequent appearance of
c0 by c2 and vice versa). For convenience, we also provide an illustration of our
current situation in Figure 9. For the remainder of the proof, we need the following
observation:

Claim B: H[B] is biconnected.
Proof: By Menger’s Theorem, we have to show that there are two internally vertex-
disjoint paths (in H[B]) between every pair of different vertices x and y in B. As H is
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biconnected, there are two such paths Q1 and Q2 connecting x and y in H. If {x, y} =
{c0, c2}, then the claim follows immediately as NC,H(c1) ⊆ B and |NC,H(ci)| ≥ 2.

Hence we can assume that {x, y} 6= {c0, c2}. The next step is to show that at least
one of Q1 and Q2 is fully contained in H[B]. If {x, y} intersects {c0, c2} (for example,
if y = c2) then this is clear because c0 can only be on one of Q1, Q2. Otherwise,
suppose that one of the paths, say Q2, from x to y, leaves H[B]. It leaves by one of
the vertices in the separator {c0, c2} and returns by the other. So Q1 stays within
H[B]. If Q2 is also fully contained in H[B] we are done.

Otherwise we have that w.l.o.g. (otherwise switch c0 and c2 and proceed symmet-
rically):

Q2 = x
Q1

2→ c0
Q2

2→ c2
Q3

2→ y ,

where Q1
2 and Q3

2 are in H[B] and Q2
2 is non-empty in H[A \B]. Next we claim that

Q1 contains at most one vertex in NC,H(c1) as internal vertex. Assuming otherwise,
we have

Q1 = x
Q1

1→ c11
Q2

1→ c21
Q3

1→ y ,

where c11 6= c21 ∈ NC,H(c1). As Q1 is fully contained in H[B], we obtain a K4-
minor, unless Q2

1 contains c0 or c2 as internal vertices: The K4-minor is induced by
c0, c

1
1, c

2
1, c2 — note that c0 is connected to c2 by C \ {c1}, and c11 is connected to c21

by Q2
1.

Thus we can assume that Q2
1 contains c0 or c2 as internal vertices.

• If c2 is an internal vertex of Q2
1, then y 6= c2. In this case, however, Q1 and

Q2 share c2 as internal vertex, which leads to a contradiction.
• If c0 is an internal vertex of Q2

1, then x 6= c0. In this case, however, Q1 and
Q2 share c0 as internal vertex, which leads to a contradiction.

Consequently, Q1 contains at most one vertex in NC,H(c1). As NC,H(c1) is of even
positive cardinality, there exists hence a vertex z ∈ NC,H(c1) which is not part of
Q1. Finally, this enables us to modify Q2 be substituting Q2

2 by the path c0, z, c2.
The resulting path is fully contained in H[B] and, by the previous analysis, internally
vertex-disjoint from Q1. This concludes the proof of Claim B. �
We proceed with the following claim.

Claim C: If H[B] is an obstruction, then so is H.
Proof: If H[B] is an obstruction then it contains an induced cycle D satisfying the
requirements of Definition 8.6. For the sake of readability, we state those requirements
explicitly: The graph H[B] contains an induced cycle D = (d0, . . . , dr−1, d0) for some
r 6= 4. Furthermore, we have that for all i, every vertex in ND,H[B](di) has degree 2
in H[B], unless |ND,H[B](di)| is odd.

We claim that H is an obstruction with cycle D: Observe that

ND,H[B](di) = ΓH[B](di−1) ∩ ΓH[B](di+1) = ΓH(di−1) ∩ ΓH(di+1) = ND,H(di) ,

where the second equality is true as H is a (1,2)-supergraph of H[B]. Consequently,
it remains to show that for all i with |ND,H(di)| even, every vertex in ND,H(di) has
degree 2 in H. For the sake of contradiction, we assume w.l.o.g. that ND,H(d1) is

of even cardinality and contains a vertex d̂1 such that d̂1 has degree 2 in H[B], but
degree at least 3 in H. As the separator of (A,B) is {c0, c2}, the only possibility for

this to happen is d̂1 = c0 or d̂1 = c2. However, d̂1 = c0 is impossible, as c0 has at
least three neighbours already in H[B]: c0 is adjacent to every vertex in NC,H(c1),
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which is of positive even cardinality (i.e., of size at least 2), and c0 is adjacent to the
first vertex in the path P from c0 to w (see Figure 9).

Hence the remaining possibility is d̂1 = c2. Recall that d̂1 = c2 has neighbours
c11, . . . , c

k
1 in B. So if there are only two of them, then k = 2 and |NC,H(c1)| = 2.

However, as d̂1 ∈ ND,H(d1) has degree 2 in H[B], and c11 and c21 are adjacent to d̂1 = c2
in H[B], we obtain that {c11, c21} = {d0, d2} — recall that d̂1 ∈ ΓH[B](d0)∩ ΓH[B](d2).

Finally, ND,H(d1) has positive, even cardinality. Thus there exists a vertex d′1 6= d̂1
in ND,H(d1) which is also adjacent to d0 and d2. This yields the following K4-minor
of H; note that ND,H(d1) ⊆ B and the dashed line is C \ c1, which is in A.

c0

c2 = d̂1

c21 = d0 c11 = d2
d′1

This concludes the proof of Claim C. �

In what follows, we perform a case distinction along the length L of the largest
induced cycle in H[B].

(I) L ≥ 5. This allows us to invoke the induction hypothesis to the graph H[B];
note that |V (H[B])| = |B| is indeed strictly smaller than |V (H)| as the cycle
C has length at least 5, and thus A is not empty. Furthermore, H[B] is bicon-
nected by Claim B. If H[B] is a pre-hardness gadget, then so is H, as H is a
(1,2)-supergraph of H[B]. If H[B] is an obstruction, then so is H by Claim C.

(II) L ≤ 4. Consider again the path P in Figure 9. By the assumption of this
case, P is either an edge or a 2-path. If P is an edge, then H[B] satisfies all
conditions of Lemma 8.8. Consequently, H[B] is a pre-hardness gadget or an
obstruction. In the former case, we are done as H is a (1,2)-supergraph of H[B]
and thus also a pre-hardness gadget. In the latter case, we obtain that H is an
obstruction as well by invoking Claim C.
Finally, assume that P is a 2-path. We claim that H is a pre-hardness gadget.
To this end, let H ′ be a K4-minor-free (1,2)-supergraph of H. Then H ′ contains
the following subgraph:
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c0

c2

ck1 c11

w

x

In particular, we have that c11 and ck1 have no common neighbours in H ′ apart
from c0 and c2: This is due to the fact that they have no further common
neighbours in H, as otherwise H has a K4-minor similarly as in the proof of
Claim A, and as H ′ is a (1,2)-supergraph, it cannot add common neighbours
to vertices. Furthermore, we have that k > 0 is even and that c11, . . . , c

k
1 are all

common neighbours of c0 and c2 in H and thus in H ′. We apply Lemma 6.5
to the subgraph of H ′ induced by the vertices ck1 , c0, x, w, c

1
1, c2 and obtain a

hardness gadget in H ′, unless this subgraph, call it F , is of type V. By the
previous argument, the only possibility for F being of type V is k being strictly
greater than 2. However, as k is even, we obtain a hardness gadget in H ′ in
this case as well: We found an instance of Lemma 6.7.

8.3. K4-minor-free Component Lemma.

Lemma 8.10 (K4-minor-free Component Lemma). Let B be a biconnected K4-
minor-free graph. If B is not an edge then at least one of the following is true:
(a) B is a diamond.
(b) B is an obstruction.
(c) B is an impasse.
(d) For every K4-minor-free graph H containing B as a biconnected component, H

has a hardness gadget.

Proof. Let L be the size of the largest induced cycle of B. Note that L ≥ 3 is
well-defined as B is biconnected, but not an edge. If L ≥ 5 we obtain by Lemma 8.9
that B is either a pre-hardness gadget or an obstruction. In the latter case, (b) holds.
In the former case, (d) holds, as every K4-minor-free graph H containing B as a
biconnected component is a (1,2)-supergraph of B.

If L ≤ 4 and B contains a triangle, then B is either a pre-hardness gadget or an
obstruction by Lemma 8.8. Similarly as before, (b) or (d) hold.

In the remaining case, B is chordal bipartite and we can invoke Lemma 6.17,
yielding that either (a), (c) or (d) hold.

9. K4-minor-free Graphs.

9.1. Suitable Connectors.

Definition 9.1 (suitable connector). Let H be a graph, let B be a biconnected
component of H, and let A ⊆ V (B) be a set of articulation points of H. We say that
(B,A) is a suitable connector in H if one of the following cases holds:
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• B is an edge {a, b} and A = {a, b}, or
• B is a diamond (Definition 6.16) that contains an edge {a, b} such that A =
{a, b}, or

• B is an impasse (Definition 6.15) that has a pair of connectors (a, b) such
that A = {a, b}, or

• B is an obstruction (Definition 8.6). In this case (B,A) is a suitable connector
in H if there is a cycle C ∈ Cy(B) such that A = {c ∈ C | |NC,H(c)| is even}.
Note that A could be the empty set. If (B,A) is a suitable connector in H
then we fix a particular cycle C(B,A) ∈ Cy(B) such that

A = {c ∈ C(B,A) | the cardinality of NC(B,A),H(c) is even}.

(It does not matter if there are multiple possibilities for C(B,A) in Cy(B) —
we just fix one, for example, the lexicographically least one.)

Lemma 9.2. Let B be a biconnected component in an involution-free graph H. If
B is a diamond then there exists a set A ⊆ V (B) of articulation points of H such
that (B,A) is a suitable connector in H.

Proof. If B is a diamond with vertices as given in Definition 6.16, then as H is
involution-free there exist articulation points a ∈ {s, t} and b ∈ {x1, . . . , xk}. Hence,
for A = {a, b}, (B,A) is a suitable connector in H.

Lemma 9.3. Let B be a biconnected component in an involution-free graph H. If
B is an impasse then there exists a set A ⊆ V (B) of articulation points of H such
that (B,A) is a suitable connector in H.

Proof. If B is an impasse with vertices as given in Definition 6.15, then as
H is involution-free there exist articulation points a ∈ {v1, y1, . . . , yk} and b ∈
{v3, z1, . . . , z`}. Note that (a, b) is a pair of connectors (cf. Definition 6.15) and hence,
for A = {a, b}, (B,A) is a suitable connector in H.

Lemma 9.4. Let B be a biconnected component in an involution-free graph H. If
B is an obstruction then there exists a set A ⊆ V (B) of articulation points of H such
that (B,A) is a suitable connector in H.

Proof. If B is an obstruction then there exists a cycle C with C ∈ Cy(B). Let
c ∈ C such that |NC,H(c)| is even. By definition of an obstruction, every vertex in
|NC,H(c)| has degree 2 in B. Since c ∈ NC,H(c), |NC,H(c)| ≥ 2. Therefore, as H
is involution-free, at least one vertex in NC,H(c) is an articulation point of H. By
renaming vertices, we can assume without loss of generality that c is an articulation
point. Hence, for A = {c ∈ C | the cardinality of NC,H(c) is even}, (B,A) is a
suitable connector in H, where C(B,A) = C.

9.2. Finding a Suitable Subtree. In this section we will use the notion of
rooted trees. Given a tree T and a vertex r in T , (T, r) is a rooted tree and the
tree-order <r induced by r (on T ) is the partial order of the vertices of T , where for
vertices u and v of T we have u <r v if and only if the unique path from r (the root)
to v passes through u. Such a partial order gives rise to the standard notion of child,
parent, ancestor and descendant. In order to clarify which tree-order we are referring
to we speak of an r-child, r-parent, r-ancestor and r-descendant when we mean child,
parent, ancestor and descendant with respect to <r.

For a connected graph H, recall the definition of the block-cut tree BC(H) from
Definition 4.3.
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Definition 9.5 (R-open, R-closed). Let H be a connected graph, let a be a cut
vertex in BC(H), and let R be a block in BC(H). If a has exactly one descendant
with respect to <R in BC(H) and this descendant is a block in BC(H) that is an edge,
then a is R-closed (in BC(H)). Otherwise, a is R-open (in BC(H)).

Definition 9.6 (suitable subtree, closed). Let H be a connected graph. Let T be
a subtree of BC(H). We say that T is suitable if it has the following properties:

1. For every block B in T , (B,ΓT (B)) is a suitable connector in H (Defini-
tion 9.1).

2. Every cut vertex of T has degree at most 2 in T .
A suitable subtree T is closed if there exists a block R in T such that every cut

vertex that is a leaf in T is R-closed in BC(H).

Lemma 9.7. Let H be a connected graph and let T be a suitable subtree of BC(H).
Let R and R′ be distinct blocks in T and let a be a cut vertex that is a leaf in T . If a
is R-closed in BC(H) then it is R′-closed in BC(H).

Proof. Let B be a block of BC(H). We show that B is an R-descendant of a in
BC(H) if and only if it is an R′-descendant. From this it follows immediately that
if a is R-closed in BC(H) then it is R′-closed in BC(H). Let B be an R-descendant
of a. Since a is a leaf of T and R is in T it follows that B is not in T . Since R, R′

and a are all in T , there is a path in T from R′ to a and consequently this path does
not contain B. Hence the unique path from R′ to B goes through a, which means
that B is an R′-descendant of a in BC(H). It is analogous to show that if B is an
R′-descendant of a it is also an R-descendant.

The following lemma gives the initialisation for finding a closed suitable subtree
(which is then done in Lemma 9.9).

Lemma 9.8. Let H be an involution-free, connected graph such that every bi-
connected component of H is an edge, a diamond, an impasse or an obstruction.
Then there exists a biconnected component B0 and a set of articulation points A0 ⊆
V (B0) such that (B0, A0) is a suitable connector in H and hence T (B0) = ({B0} ∪
A0, {{B0, a} | a ∈ A0}) is a suitable subtree of BC(H).

Proof. First note that if all biconnected components of H are edges, then there
is at least one edge between articulation points as H is involution-free and therefore
H is not a star. Therefore, H contains a biconnected component R that is one of the
following: a diamond, an impasse, an obstruction, or an edge for which both endpoints
are articulation points of H. In the first three cases we can use Lemmas 9.2, 9.3 or 9.4,
respectively, to obtain a suitable connector. If B0 is an edge {a, b} where both end
points are articulation points, then (B0, {a, b}) is a suitable connector. Then it is
immediate that T (B0) is a suitable subtree of BC(H).

Lemma 9.9. Let H be an involution-free, connected graph such that every bicon-
nected component of H is an edge, a diamond, an impasse or an obstruction. Then
there exists a closed suitable subtree of BC(H).

Proof. Let B0, A0, T (B0) be as given by Lemma 9.8. Algorithm 9.1 keeps track
of a suitable subtree T of BC(H), a block R of T , and the set A(T ) of leaves of T that
are cut vertices (i.e., that are articulation points of H).
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Algorithm 9.1

T ← T (B0)
R← B0

A(T )← A0

while A(T ) contains an R-open cut vertex a∗

// Invariant: All elements of A(T ) are B0-descendants of R.
if there is a suitable connector (B,A) in H such that B is an R-child of a∗ and

a∗ ∈ A
// By the invariant, every element of A \ {a∗} is a B0-descendant of a∗.
V ← V (T ) ∪ {B} ∪A
E ← E(T ) ∪ {{B, a} | a ∈ A}
T ← (V,E)
A(T )← (A(T ) ∪A) \ {a∗}

else
Choose a suitable connector (B,A) in H such that B is an R-child of a∗ in

BC(H).
// By the invariant, every element of A is a B0-descendant of a∗.
V ← {B} ∪A
E ← {{B, a} | a ∈ A}
T ← (V,E)
R← B
A(T )← A

We now show that Algorithm 9.1 is well-defined and finds a closed suitable sub-
tree.6 In order to show that the algorithm is well-defined note that any R-open cut
vertex a∗ is an articulation point of H and therefore is adjacent to at least two blocks
of BC(H). At most one of these blocks can be an R-parent. Therefore a∗ has an
R-child in BC(H). If there is such an R-child B that is a diamond, an impasse, or
an obstruction, then by Lemmas 9.2, 9.3 or 9.4, respectively, there exists a suitable
connector of the form (B,A). If otherwise all R-children of a∗ are edges then a∗ has at
least one such R-child B = {a∗, b} for which b is an articulation point (as a∗ is R-open
and H is involution-free). Therefore (B, {a∗, b}) is a suitable connector. Thus, the
algorithm is well-defined as we can always choose a suitable connector (B,A) where
B is an R-child of a∗.

We next show that at any point during the algorithm, T is a suitable subtree of
BC(H), R is a block in T , and A(T ) is the set of leaves of T that are cut vertices of
BC(H). First note that in the initialisation this clearly holds by Lemma 9.8. We show
that after each update these properties still hold. Note that if we update T , R, and
A(T ) as part of the else-block then R = B is the only block in T , ΓT (B) = A, and
(B,A) is a suitable connector. Thus, T is a suitable subtree. Furthermore, the cut
vertex leaves of T are precisely the elements of A and we have A(T ) = A, as required.

If otherwise we update T and A(T ) as part of the if-block then
1. The block R continues to be a vertex of T .
2. We add precisely one block B together with the articulation points A and the

edges {{B, a} | a ∈ A}, which ensures that ΓT (B) = A and hence (B,ΓT (B))

6Since the graph H is fixed, the running time of Algorithm 9.1 is not important for us. What is
important is that the algorithm gives us a (constructive) proof that such a closed suitable subtree
exists.
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is a suitable connector.
3. All cut vertices in A \ {a∗} are leaves in T and since a∗ was a leaf before the

update, it now has degree 2 in T .
Consequently, T is a suitable subtree after the update. Furthermore, we remove a∗

from A(T ) as it now has degree 2 in T , and we add the cut vertices A \ {a∗} to A(T )
since they are leaves in T .

We have established that at any point during the algorithm, T is a suitable subtree
of BC(H), R is a block in T , and A(T ) is the set of leaves of T that are cut vertices.
It remains to show that Algorithm 9.1 terminates (in which case it is immediate that
T is a closed suitable subtree). Note that with each iteration we remove a vertex a∗

from A(T ). With each iteration we may also add some vertices to A(T ). As noted in
Algorithm 9.1, the vertices that are added in each iteration are always B0-descendants
in BC(H) of the vertex a∗ that is deleted. It follows immediately that Algorithm 9.1
terminates as we only consider finite graphs.

9.3. Suitable Subtrees without Obstructions.

Lemma 9.10. Let H be a connected graph and let T be a closed suitable subtree
of BC(H). If no block of T is an obstruction then H has a hardness gadget.

Proof. As T does not contain an obstruction, the degree of every block in T is
2. Together with the fact that every cut vertex has degree at most 2, this implies
that, for a non-negative integer q, T is a path of the form (b0, B1, b1, B2, . . . , Bq, bq),
where B1, . . . , Bq are blocks, i.e. biconnected components of H, and b0, . . . , bq are cut
vertices, i.e. articulation points of H. Since T is closed it contains at least one block
R and therefore q ≥ 1. Furthermore, for each i ∈ [q], (Bi, {bi−1, bi}) is a suitable
connector. And since Bi is no obstruction, one of the following holds:

• Bi is an edge {bi−1, bi}, or
• Bi is a diamond that contains the edge {bi−1, bi}, or
• Bi is an impasse such that (bi−1, bi) is a pair of connectors.

Since T is closed, there is a block R among B1, . . . , Bq such that both b0 and bq
are R-closed. By Lemma 9.7, b0 is B1-closed and bq is Bq-closed. It follows that
|ΓH(b0) \ V (B1)| = 1 and |ΓH(bq) \ V (Bq)| = 1.

Thus, we can apply Lemma 7.14 to obtain that H has a hardness gadget or
otherwise there exists Lq ⊆ ΓBq

(bq) such that (Lq, bq) is a good start in Bq. Since
ΓH(bq) \ V (Bq) has odd cardinality, this means that (Lq, bq) is a good stop in Bq.
Then Lemma 7.14 ensures that H has a hardness gadget in this case as well.

9.4. Suitable Subtrees with Obstructions. The goal of this section is to
prove Lemma 9.24, which gives a hardness gadget in a connected K4-minor-free graph
using a closed suitable subtree that contains an obstruction. In order to find this
hardness gadget we use Lemma 5.6, which derives a hardness gadget based on the
generalised cycle gadget from Definition 5.4. The sets of vertices C0, . . . , Cq−1 from
Lemma 5.6 will correspond to the walk-neighbour-sets of a specific closed walk W .
With Algorithms 9.2 and 9.3 we define this walkW — it is the output of Algorithm 9.3.
In Lemmas 9.17, 9.18 and 9.19 we establish that the algorithms are well-defined and
give as output a closed walk in H whose length is at least 3, and not equal to 4. In
Figure 10 we give an example that illustrates how W is derived. In Lemmas 9.22
and 9.23 we then show that the walk-neighbour-sets of W satisfy certain properties
required to apply Lemma 5.6. In the proof of Lemma 9.24 we put all the pieces
together and establish the remaining necessary properties of W .

Definition 9.11 (obstruction-free path, proper). Let H be a connected graph
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and let T be a closed suitable subtree of BC(H). A path in T is obstruction-free if
it does not contain a block that is an obstruction. An obstruction-free path is proper
if its endpoints are cut vertices of BC(H). Note that it is possible that a proper
obstruction-free path has length 0. Then it is of the form (v) where v is a cut vertex
of BC(H).

Definition 9.12 (PH(a, b)). Let H be a graph and let a and b be vertices of H.
If a = b then PH(a, b) = (a). If a 6= b then PH(a, b) is a shortest path from a to b in
H.

In Definition 9.12, it is of course possible that H might have multiple shortest
paths from a to b. In this case, it doesn’t matter which of these is chosen to be PH(a, b)
— for concreteness, the reader may assume that PH(a, b) is the lexicographically least
of these. (In fact, when we use the definition, this shortest path will turn out to be
unique.)

Lemma 9.13. Let H be a connected graph and let T be a closed suitable subtree of
BC(H). For a non-negative integer q, let P = (b0, B1, b1, B2, . . . , Bq, bq) be a proper
obstruction-free path in T . Then PH(b0, bq) is the unique shortest path from a to b
in H. It passes through b0, b1, . . . , bq in order. For i ∈ [q], the subpath of PH(b0, bq)
that connects bi−1 and bi is either an edge or it is of the form (bi−1, v, bi), where v is
the unique common neighbour of bi−1 and bi in H.

Proof. Since P is a proper obstruction-free path, b0, b1 . . . , bq are cut vertices and
B1, . . . , Bq are blocks. Since T is a suitable subtree and P is obstruction free, for
each i ∈ [q], (Bi, {bi−1, bi}) is a suitable connector, where Bi is an edge, diamond
or impasse. Since B1, . . . , Bq are biconnected components, every path from b0 to bq
traverses b0, b1 . . . , bq in order. The shortest path from b0 to bq is unique, if for each
i ∈ [k], the shortest path from bi−1 to bi is unique. If Bi is an edge or diamond, this
is clearly the case since then the shortest path from bi−1 to bi is an edge. If Bi is
an impasse then (bi−1, bi) is a pair of connectors of Bi and by Definition 6.15 there
is no edge between bi−1 and bi, but there is a unique common neighbour v of bi−1
and bi in H and consequently the unique shortest path from bi−1 to bi is of the form
(bi−1, v, bi), as required.

Definition 9.14 (attachment point, exit, destination). Let H be a connected
graph and let T be a closed suitable subtree of BC(H). Let a be a cut vertex that
has an obstruction B as a neighbour in T . Then, since every cut vertex of T has
degree at most 2, there is a unique maximal-length proper obstruction-free path P ∗

in T starting at a. Let b be the other endpoint of P ∗ (possibly P ∗ = (a) in which case
b = a). The vertex a is an attachment point of (T,B) if b is a leaf in T . Otherwise, a is
an exit of (T,B). In this case, b is adjacent to a block B′ 6= B which is an obstruction.
We say that (b, B′) is the destination of a in T .

At the beginning of this section we outlined our plan to define a particular closed
walk W . We chose the names in Definition 9.14 since W will exit an obstruction when
it encounters an exit, and it will then proceed towards the destination of that exit.
The walk W will not exit an obstruction when it encounters an attachment point.
However, W will be designed so that every even-cardinality walk-neighbour-set of W
contains an attachment point, and the structure that is attached to such a point will
allow us to construct a hardness gadget.

Definition 9.15 (concatenation “+”). Let W = (w0, . . . , wk) and W ′ = (w′0,
. . . , w′`) be two walks such that wk = w′0. If k = 0 then the concatenation W +W ′ of
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W with W ′ is equal to W ′. Similarly, if ` = 0, it is equal to W . If both k and ` are
positive then W +W ′ = (w0, . . . , wk−1, wk, w

′
1 . . . , w

′
`).

Definition 9.16 (D(C), WC(a), WC(a, b)). For an integer q ≥ 3, let C =
(c0, . . . , cq−1, c0) be a cycle in a graph H. Then D(C) is the cyclic order induced
by the order in which the walk C traverses the vertices {c0, . . . , cq−1}. For a ∈ C,
WC(a) is the walk from a to itself following all of the vertices of C in the order given
by D(C). For a, b ∈ C, WC(a, b) is the walk from a to b along C in the order given
by D(C).

Algorithm 9.2 ExitWalk(T, a∗, B, `, a0)

Input: A closed suitable subtree T of BC(H) of a connected graph H, a cut vertex
a∗ in T , an obstruction B that is a block in T such that distT (a∗, B) = `, and an
exit a0 of (T,B)
C ← C(B,ΓT (B))
{a0, . . . , ak} ← The exits of (T,B) in the order of D(C), starting from a0
if k = 0

W ←WC(a0).
else
{(b1, B1), . . . , (bk, Bk)} ← The destinations of a1, . . . , ak, respectively
W ←WC(a0, a1)
for i = 1, . . . , k

ri ← distT (B, bi)
W ←W + PH(ai, bi) + ExitWalk(T, a∗, Bi, `+ ri + 1, bi) + PH(bi, ai)+
WC(ai, ai+1 mod k+1)

Output: W

Algorithm 9.3 Walk(T,B′)

Input: A closed suitable subtree T of BC(H) of a connected graph H, an obstruction
B′ that is a block in T
if there is an exit a∗ of (T,B′)

(b∗, B∗)← The destination of a∗

r∗ ← distT (a∗, b∗)
W ← ExitWalk(T, a∗, B′, 1, a∗) + PH(a∗, b∗)+

ExitWalk(T, a∗, B∗, r∗ + 1, b∗) + PH(b∗, a∗)
else

W ← C(B′,ΓT (B′))

Output: W

In Figure 10 we provide some illustrations of a graph H, a closed suitable subtree
T ∈ BC(H), and the walk W returned by Algorithm 9.3. In order to gain intuition,
it is probably useful to simulate Walk(T,O1). The exit a∗ can be chosen to be a2
with destination (b∗, B∗) = (b2, O2). The variable r∗ is set to 0. So the first part of
W is the output of the call ExitWalk(T, a2, O1, 1, a2).

Let’s start by considering that call. ΓT (O1) = {t1, a1, a2} and C is the cycle
around O1 shown in red. The exits are {a2, a1} so the output W of this call starts
by following the red cycle clockwise from a2 to a1. In the else-clause we have k = 1
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and the destination of a1 is (b1, O3). The walk next takes the unique shortest path
from a1 to b1. Then there is a call to ExitWalk(T, a2, O3, `, b1), for some value of `
(the value of ` doesn’t matter — it is just for accounting). The only exit of (T,O3)
is b1, so this call returns a walk around the red cycle in O3 from b1 to itself. Finally,
the call to ExitWalk(T, a2, O1, 1, a2) takes the unique shortest path back from b1
to a1 and finishes the red cycle in O1 clock-wise, back to a2. Thus, the output of
ExitWalk(T, a2, O1, 1, a2) is a closed walk from a2 to itself that covers all of the red
edges in the picture, apart from the triangle in O2.

This is concatenated with PH(a2, b2) = (a2) (which does nothing). Then it is
concatenated with the output of a call to ExitWalk(T, a2, O2, 1, a2). Now (O2, {a2})
is a suitable connector in H with C(O2, {a2}) equal to the red triangle in O2, so C
is assigned to be this triangle. The cut-vertex a2 is the only exit of C, so this call
returns the walk from a2 to itself around C. Concatenating PH(a2, b2) with this does
not change the output. The entire walk is coloured in red.

We now proceed to establish the correctness of Algorithms 9.2 and 9.3, and to
prove some properties of the walks that they output.

Lemma 9.17. All calls to ExitWalk(·) in Algorithms 9.2 and 9.3 have arguments
that are feasible inputs to Algorithm 9.2.

Proof. First, consider Algorithm 9.2, where for i = 1, . . . , k we make a call
ExitWalk(T, a∗, Bi, ` + ri + 1, bi). Observe that bi is an exit of (T,Bi) by the
definition of a destination (Definition 9.14). It remains to check that distT (a∗, Bi) =
`+ ri + 1. This is true since ` = distT (a∗, B) and ri = distT (B, bi) using the fact that
the (unique) path from a∗ to Bi in the tree T goes from a∗ to B then from B to bi
and then from bi to Bi, where Bi is adjacent to bi.

Second, consider Algorithm 9.3. The if-block makes two calls to ExitWalk(·) —
one is ExitWalk(T, a∗, B′, 1, a∗) and the other is ExitWalk(T, a∗, B∗, r∗ + 1, b∗).
Observe that a∗ is an exit of (T,B′) by the condition of the if-block and b∗ is an exit
of (T,B∗) by the definition of a destination. It remains to check that distT (a∗, B′) = 1
and distT (a∗, B∗) = r∗ + 1. The former is immediate since a∗ is adjacent to B′ in
T . The latter is true since r∗ = distT (a∗, b∗) and B∗ is adjacent to b∗ in T where the
(unique) path from a∗ to B∗ goes via b∗.

Lemma 9.18. ExitWalk(T, a∗, B, `, a0) (Algorithm 9.2) is well-defined, termi-
nates, and returns a closed walk in H of length at least 3 from a0 to itself.

Proof. First consider the case k = 0. Clearly, Algorithm 9.2 terminates and is
well-defined. It returns WC(a0), which is a cycle from a0 to itself of length at least 3.
Now consider the case where k ≥ 1. Note that with each recursive call of ExitWalk(·)
the value of the parameter ` increases. Since ` corresponds to the distance between
a∗ and B in the finite graph T , Algorithm 9.2 terminates.

We now show that Algorithm 9.2 returns a closed walk of length at least 3 from
a0 to itself. If, for i ∈ [k], ExitWalk(T, a∗, Bi, ` + ri + 1, bi) returns a closed walk
from bi to itself of length at least 3 then PH(ai, bi) + ExitWalk(T, a∗, Bi, ` + ri +
1, bi) + PH(bi, ai) + WC(ai, ai+1 mod k+1) is a walk from ai to ai+1 mod k+1 of length
at least 3. Thus, ExitWalk(T, a∗, B, `, a0) returns a closed walk from a0 to itself of
length at least 3. Since Algorithm 9.2 terminates, it reaches the base of the recursion,
i.e., the case k = 0, at some point, and we have already verified that the base case
returns a closed walk of length at least 3, as required.

Finally, we show that Algorithm 9.2 is well-defined. By Lemma 9.17 all subroutine
calls have feasible inputs. Also observe that all concatenation operations are well-
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Fig. 10: A graph H, a closed suitable subtree T of BC(H) with a block O1 that is an
obstruction, and Walk(T,O1).
(Top) An involution-free and K4-minor-free graph H such that every biconnected
component is an edge, a diamond, an impasse or an obstruction. Articulation points
are depicted as filled vertices.
(Center) A closed and suitable subtree T of the block-cut tree of H, rooted at O1.
Note that every cut vertex of T that is a leaf (i.e., c1 or c11) is O1-closed in BC(H).
(Bottom) Solid lines are contained in the subgraph of H induced by V (T ), while
dashed lines are not. The red closed walk is the output of Walk(T,O1). Observe
that a1 and a2 are exits of (T,O1) with destinations (b1, O3) and (b2, O2), respectively,
and that t1 and t2 are attachment points of (T,O1) and (T,O3), respectively.
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defined since, for each i ∈ [k], ExitWalk(T, a∗, Bi, ` + ri + 1, bi) returns a closed
walk from bi to itself.

Lemma 9.19. Walk(T,B′) (Algorithm 9.3) terminates, is well-defined, and re-
turns a closed walk in H of length q, where q ≥ 3 and q 6= 4.

Proof. Since Algorithm 9.2 terminates (Lemma 9.18), it is immediate that Al-
gorithm 9.3 terminates. If there is no exit of (T,B′) then Walk(T,B′) returns
C(B′,ΓT (B′)) which is a cycle in Cy(B′) by Definition 9.1 and hence has length
at least 3, but not 4, by Definition 8.6. If there is an exit a∗ of (T,B′) then, by
Lemma 9.17 all subroutine calls have feasible inputs. By Lemma 9.18, the algorithm
ExitWalk(T, a∗, B′, 1, a∗) returns a closed walk from a∗ to itself, of length at least
3, and ExitWalk(T, a∗, B∗, r∗ + 1, b∗) returns a closed walk from b∗ to itself, also of
length at least 3. It follows that the concatenations in the if-block are well-defined
and therefore that Algorithm 9.3 is well-defined. Also, ExitWalk(T, a∗, B′, 1, a∗) +
PH(a∗, b∗) + ExitWalk(T, a∗, B∗, r∗+ 1, b∗) + PH(b∗, a∗) is a closed walk from a∗ to
itself of length q ≥ 6.

Observation 9.20. Walk(T,B′) (Algorithm 9.3) outputs a closed walk W . If
(T,B′) has no exit then W = C for a cycle C ∈ Cy(B′). Otherwise, the following
holds. For a positive integer j, there are obstructions B′0, . . . , B

′
j such that W is of

the form W = Q0 +P0 +Q1 +P1 · · ·+Qj +Pj where Qi and Pi satisfy the following
properties for all i ∈ {0, . . . , j}.

• Let Ci = C(B′i,ΓT (B′i)). Then there are vertices a and a′ in B′i such that Qi
is of the form WCi

(a) or WCi
(a, a′). Either way, all vertices of Qi are in

B′i. Furthermore, only the endpoints of Qi are exits of (T,B′i).
• There is an exit a of (T,B′i) with a destination (b, B′i+1 mod (j+1)) such that

Pi is a path of the form PH(a, b). Hence, by Definition 9.14 and Lemma 9.13,
the endpoints of Pi are the only vertices of Pi that are part of an obstruction.

• The obstruction B′i is distinct from the obstruction B′i+1 mod (j+1).

Explanation of Observation 9.20. If (T,B′) has no exit then the result follows directly
from the definition of C(B,A) for a suitable connector (B,A) of an obstruction B
(Definition 9.1).

For the remaining case, we will prove that ExitWalk(T, a∗, B, `, a0) (Algo-
rithm 9.2) outputs a closed walk W ′. For a positive integer q, there are obstructions
B′′0 , . . . , B

′′
q such that W ′ is of the form W ′ = Q′0 +

∑q
i=1(P ′i +Q′i) where Q′i and P ′i

satisfy the following properties for all i ∈ {0, . . . , q}.
• Let Ci = C(B′′i ,ΓT (B′′i )). Then there are vertices a and a′ in B′′i such that
Q′i is of the form WCi(a) or WCi(a, a

′). Either way, all vertices of Q′i are in
B′′i . Furthermore, only the endpoints of Q′i are exits of (T,B′′i ).

• There is an exit a of (T,B′′i ) with a destination (b, B′′i+1 mod (j+1)) such that

P ′i is a path of the form PH(a, b). Hence, by Definition 9.14, the endpoints
of P ′i are the only vertices of P ′i that are part of an obstruction.

• The obstruction B′′i is distinct from the obstruction B′′i+1 mod (q+1).

The proof is by induction on the recursion depth. If ExitWalk(T, a∗, B, `, a0) makes
no recursive calls then the variable “k” is equal to 0 and we also set q = 0. In
this case, B′′0 is equal to B, and the first property follows easily (the others are
vacuous). Otherwise, k is positive and (T,B) has exits {a0, . . . , ak} where a1, . . . , ak
have destinations (b1, B1), . . . , (bk, Bk). Note that B1, . . . , Bk are disjoint from B and
from each other. Once again, B′′0 is B. Q′0 is WC(a0, a1), as defined in the algorithm.
Then B′′1 is B1, and P ′1 is PH(a1, b1) as defined in the algorithm. The rest follows by
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induction, and examination of the algorithm, using the fact that the block-cut tree is
a tree.

Given this fact for Algorithm 9.2, we obtain the conclusion for Algorithm 9.3
by putting together the pieces in the output W . This completes our explanation of
Observation 9.20.

Lemma 9.21. Let H be a connected graph. Let T be a closed suitable subtree of
BC(H). Let B′ be an obstruction that is a block of T . Let W = (w0, , . . . , wq−1, w0)
be the output of Walk(T,B′) (Algorithm 9.3). Then, for each i ∈ {0, . . . , q − 1}, wi
and wi+2 mod q are distinct.

Proof. All indices in this proof are considered to be modulo q. For any i ∈
{0, . . . , q − 1}, our goal is to show wi 6= wi+2. We make a case distinction based on
Observation 9.20.

• If W is a cycle C ∈ Cy(B′) then wi 6= wi+2 is immediate.
• Otherwise, for a positive integer j, W is of the form W = Q0 + P0 + Q1 +
P1 · · ·+Qj +Pj with the properties stated in Observation 9.20. We consider
the walk (wi, wi+1, wi+2).

– If for some ` ∈ [j], (wi, wi+1, wi+2) is a subwalk of Q` then wi 6= wi+2

since, by Observation 9.20, Qi is a subwalk of a cycle.
– If for some ` ∈ [j], (wi, wi+1, wi+2) is a subwalk of P` then, since P` is a

path, we have wi 6= wi+2.
– Otherwise, by Observation 9.20, there is no biconnected component that

contains both wi and wi+2 and consequently wi 6= wi+2.

The following lemma establishes (a stronger version of) the properties (L5.5.2)
and (L5.5.3) for the walk returned by Algorithm 9.3, as required by Lemma 5.6.

Lemma 9.22. Let H be a connected K4-minor-free graph. Let T be a closed suit-
able subtree of BC(H). Let B′ be an obstruction that is a block of T . Let W =
(w0, . . . , wq−1, w0) be the output of Walk(T,B′) (Algorithm 9.3). By Lemma 9.19,
W is a closed walk and q ≥ 3. For each i ∈ {0, . . . , q − 1}, let Wi = NW,H(wi)
(Definition 4.2). If H has no hardness gadget then the following statement holds:

If u ∈Wi−1 mod q and v ∈Wi+1 mod q then ΓH(u) ∩ ΓH(v) = Wi.

Proof. All indices in this proof are considered to be modulo q. Let i ∈ {0, . . . , q−
1}, u ∈Wi−1 and v ∈Wi+1. Our goal is to show that ΓH(u)∩ ΓH(v) = Wi. We split
the proof into two cases (Claims A and B).

Claim A: If there is no biconnected component of H that contains both wi−1 and
wi+1 then ΓH(u) ∩ ΓH(v) = Wi.

Proof: If there is no biconnected component that contains both wi−1 and wi+1 then,
by the definition of Wi, Wi = {wi}. Since wi−1 and wi+1 are not in the same bicon-
nected component every path from wi−1 to wi+1 goes through wi. There is a path
from wi−1 to u via wi−2 and there is a path from v to wi+1 via wi+2. Since wi−2 and
wi+2 are distinct from wi by Lemma 9.21 these paths do not go through wi. Hence
every path from u to v also goes through wi. Thus, there is no biconnected component
that contains both u and v. Hence, ΓH(u) ∩ ΓH(v) = {wi} = Wi, as required. This
concludes the proof of Claim A. �

Claim B: If there is a biconnected component B such that wi−1 and wi+1 are in B
then ΓH(u) ∩ ΓH(v) = Wi.

52



Proof: By Lemma 9.21, wi−1 6= wi+1. This together with the fact that wi is adjacent
to both wi−1 and wi+1 implies that wi is also in B. If u = wi−1 then it is trivial that
u is in B. If u 6= wi−1 then |Wi−1| > 1. By the fact that Wi−1 = ΓH(wi−2)∩ ΓH(wi)
and the fact that both wi−1 and wi are in B, it follows that Wi−1 ⊆ V (B) and that
wi−2 is in B. Thus, we have established that u is in B. Analogously, v is in B. We
state this formally so we can refer to it.

Fact 1: If |Wi−1| > 1 then every vertex in Wi−1 ∪ {wi−2} is in B. Similarly, if
|Wi+1| > 1 then every vertex in Wi+1 ∪ {wi+2} is in B. Consequently, both u and v
are in B.

If u = wi−1 and v = wi+1 then ΓH(u) ∩ ΓH(v) = ΓH(wi−1) ∩ ΓH(wi+1) = Wi, as
required.

Therefore, we assume for the rest of the proof that u 6= wi−1 (the case v 6= wi+1

is symmetric). By Fact 1, the walk (wi−2, wi−1, wi, wi+1) is in B. We show that
B is an obstruction. Suppose, for contradiction, that B is an edge, diamond or
impasse. Then by Observation 9.20, there are cut-vertices a and b such that the walk
(wi−2, wi−1, wi, wi+1) is a subpath of PH(a, b). This contradicts Lemma 9.13, which
states that no four consecutive vertices of this path are part of the same biconnected
component.

Thus, we have established that (wi−2, wi−1, wi, wi+1) is a walk in the obstruc-
tion B. By Observation 9.20 and the definition of WC(·) (Definition 9.16), it is
a subwalk of some cycle C ∈ Cy(B) following the order D(C). It follows that
Wi−1 = NC,H(wi−1) and Wi = NC,H(wi). By Corollary 8.5, from the fact that
H has no hardness gadget and |Wi−1| > 1 it follows that Wi = {wi}. Let ` be the
length of C. Since C ∈ Cy(B) we have ` = 3 or ` > 4. We make a case distinction
depending on `.

• Suppose ` = 3 so wi−2 = wi+1. Suppose, for contradiction that |Wi+1| > 1.
Then by Fact 1, wi+2 is also in B and (wi−2, wi−1, wi, wi+1, wi+2) is a subwalk
of WC(·). This gives a contradiction to the fact that all vertices of WC(·),
apart from possibly its endpoints, are distinct (see Definition 9.16). Therefore,
Wi+1 = {wi+1} and consequently v = wi+1. Since u 6= wi−1, (v, u, wi, v)
and (v, wi−1, wi, v) are two distinct triangles that share the edge {wi, v}.
By Lemma 6.9, since H has no hardness gadget, u and v have no common
neighbour other than wi.

• Suppose ` > 4. Apply Lemma 8.3 to the cycle C and the index i − 1. This
shows that there is a separation (A1, A2) of H such that C \ {wi−1} ⊆ A1,
Wi−1 = NC,H(wi−1) ⊆ A2, and A1 ∩A2 = {wi−2, wi}. Since u ∈ A2, u is not
adjacent to any vertex in C \ {wi−2, wi−1, wi}. By the definition of Cy(B)
(Definition 8.6) C is an induced cycle of B, so the cycle C ′ that is obtained
from C by replacing wi−1 with u is also an induced cycle of B. Also, C ′ has
length ` > 4. Since H has no hardness gadget, we can apply Corollary 8.5 to
obtain (using the fact that NC′,H(u) = NC,H(wi−1) = Wi−1 has cardinality
greater than 1) that |NC′,H(wi)| = 1. By definition, NC′,H(wi) = ΓH(u) ∩
ΓH(wi+1), so ΓH(u) ∩ ΓH(wi+1) = {wi}.

– If |Wi+1| = 1 then v = wi+1, so we are finished.
– Suppose that |Wi+1| > 1. By Fact 1, wi+1 and wi+2 are in B, and

consequently the walk (wi−2, u, wi, wi+1, wi+2) is a subwalk of C ′. It
follows that Wi+1 = NC′,H(wi+1). Apply Lemma 8.3 to the cycle C ′

and the index i+ 1. This shows that there is a separation (A3, A4) of H
such that C ′ \ {wi+1} ⊆ A3, Wi+1 ⊆ A4, and A3 ∩A4 = {wi, wi+2}.
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Since v ∈ A4, v is not adjacent to any vertex in C ′ \ {wi, wi+1, wi+2}.
So the cycle C ′′ that is obtained from C ′ by replacing wi+1 with v is
also an induced cycle of B with length ` > 4. Since H has no hard-
ness gadget, we can apply Corollary 8.5 to obtain (using the fact that
NC′′,H(v) = Wi+1 has cardinality greater than 1) that |NC′′,H(wi)| = 1.
By definition, NC′′,H(wi) = ΓH(u) ∩ ΓH(v), so we are finished.

This concludes the proof of Claim B. �
The lemma follows immediately from Claim A and Claim B.

The following lemma establishes property (L5.5.4) for the walk returned by Al-
gorithm 9.3, as required by Lemma 5.6.

Lemma 9.23. Let H be a connected graph. Let T be a closed suitable subtree of
BC(H). Let B′ be an obstruction that is a block of T . Let W = (w0, , . . . , wq−1, w0)
be the output of Walk(T,B′) (Algorithm 9.3). By Lemma 9.19, W is a closed walk
and q ≥ 3. For each i ∈ {0, . . . , q − 1}, let Wi = NW,H(wi). Then there exists no
closed walk D = (d0, . . . , dq−1, d0) with di ∈ ΓH(Wi)\ (Wi−1∪Wi+1) for all i (indices
taken modulo q).

Proof. Assume for the sake of contradiction that such a walk D exists. We dis-
tinguish two cases:

(I) W is not entirely contained in a single biconnected component of H. In this
case, there is an index i such that no biconnected component contains both wi−1
and wi+1. Now consider di−1 ∈ ΓH(wi−1) and di+1 ∈ ΓH(wi+1). Note that
di−1 6= wi and di+1 6= wi by the specification of D. Note further that di 6= wi
as we do not allow self-loops in H. Consequently, there are two internally
vertex disjoint 2-paths from wi−1 to wi+1; one passes through di−1, di and
di+1; and the other passes through wi. This is a contradiction to the fact that
no biconnected component contains both wi−1 and wi+1.

(II) W is entirely contained in a biconnected component B. By Observation 9.20,
the only possibility for this to be true is that B is an obstruction and W is a
cycle in Cy(B). By the definition of obstructions (and Cy(B)), W is thus an
induced cycle of length q such that q ≥ 3 and q 6= 4. The lemma will follow
easily from the following claim.

Claim A: D ∩ (
⋃
iWi) = ∅.

Proof: Assume for contradiction that di ∈ Wj for some indices i and j. Note
that j /∈ {i − 1, i + 1} by the specification of D. We cannot have j = i since
di ∈ ΓH(Wi) so di /∈Wi (otherwise H has a self-loop). Since j /∈ {i−1, i, i+1},
we have q ≥ 5. We will show that H has a K4-minor. Since di is adjacent to
wi, and it is not equal to wi−1 or wi+1 and since W is an induced cycle in B,
we conclude that di is distinct from the vertices of W . H therefore contains a
K4-minor containing the vertex di and its three neighbours wi, wj−1 and wj+1.
There are disjoint paths between these three vertices along the cycle W and di
is not on these paths. See the following illustration.
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This concludes the proof of Claim A. �
We have assumed for contradiction that D exists, and proved Claim A. We
obtain the contradiction by using Claim A to construct a K4-minor in H.
Claim A demonstrates that W ∩D = ∅. Now contract the walk D to a single
vertex. This yields a vertex d /∈ W which is adjacent to all vertices of W . As
W has length at least 3, we have found a K4-minor as promised.

Lemma 9.24. Let H be a connected K4-minor-free graph. Let T be a closed suit-
able subtree of BC(H). Let B′ be an obstruction that is a block of T . Then H has a
hardness gadget.

Proof. Let W = (w0, . . . , wq−1, w0) be the output of Walk(T,B′). According
to Lemma 9.19, W is a closed walk with q ≥ 3 and q 6= 4. Our goal is to use
Lemma 5.6 to show that H has a hardness gadget. To this end, we identify the sets
Ci of Lemma 5.6 with the sets Wi = NW,H(wi). Let S be the set of all i such that Wi

has even cardinality.

Claim A: For every i ∈ S, there is an obstruction Oi such that the following hold
for Ci = C(Oi,ΓT (Oi)).

• wi−1, wi, wi+1 ∈ Ci.
• Wi = NCi,H(wi).
• Every vertex in Wi has degree 2 in Oi.
• wi is an attachment point of (T,Oi).

Proof: Fix i ∈ S. By the definition of Wi and the fact that |Wi| > 1, there is
a biconnected component Oi of H that contains wi−1, Wi, and wi+1. Suppose, for
contradiction, that Oi is an edge, diamond or impasse, then, by Observation 9.20, the
walk (wi−1, wi, wi+1) is a subpath of a path of the form PH(·). However, since |Wi| ≥
2, wi−1 and wi+1 have at least 2 common neighbours in H, this is a contradiction to
Lemma 9.13.

We have established that Oi is an obstruction. Since T is a suitable subtree,
(Oi,ΓT (Oi)) is a suitable connector and, by Definition 9.1, Ci = C(Oi,ΓT (Oi)) is
a cycle with ΓT (Oi) = {c ∈ Ci | the cardinality of NCi,H(c) is even}. By Observa-
tion 9.20, (wi−1, wi, wi+1) is a subwalk of a walk of the form WCi

(·). It follows that
wi−1, wi, wi+1 ∈ Ci and Wi = NCi,H(wi), as required.

As the cardinality of Wi is even and Ci ∈ Cy(Oi), by Definition 8.6, every vertex
in Wi has degree 2 in Oi, as required.

The fact that the cardinality of Wi is even also implies that wi ∈ ΓT (Oi) (since
ΓT (Oi) = {c ∈ Ci | the cardinality of NCi,H(c) is even}). Thus, by Definition 9.14,
wi is either an exit or an attachment point of (T,Oi). However, by Observation 9.20,
only the endpoints of WCi

(·) are exits, which means that wi is an attachment point,
as required. This finishes the proof of Claim A. �
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In the remainder of this proof, for each i ∈ S, let Oi and Ci be as stated in
Claim A. Next we use the fact that, for each i ∈ S, wi is an attachment point of
(T,Oi) to define a gadget (Ĵi, ẑi). Those gadgets will be used in the construction of
the gadgets (J0, z0), . . . , (Jq−1, zq−1) required by Lemma 5.6. Recall that, by definition
of attachment points (Definition 9.14), for each i ∈ S, there is a (unique) maximal-
length proper obstruction-free path Pi = (bi0, B

i
1, b

i
1, B

i
2, . . . , B

i
qi , b

i
qi) in T such that

wi = biqi and bi0 is a leaf in T . As T is closed, we obtain that, for some block R of T ,

the vertex bi0 is R-closed, i.e., bi0 has precisely one descendant in BC(H) with respect
to <R. Moreover, this descendant must be an edge. We distinguish whether qi = 0
or qi ≥ 1:
qi = 0: We have wi = biqi = bi0. Since bi0 = wi is R-closed, Lemma 9.7 ensures that

it is also Oi-closed. Consequently, wi has precisely three neighbours in H:
The two neighbours in Oi (which are wi−1 and wi+1 — these are distinct by
Lemma 9.21), as well as the other endpoint `i of the edge that is the unique
descendant of wi in BC(H).
We define Ĵi to be a single edge, one endpoint of which is zi, and the other
endpoint of which is pinned to wi. Observe that

{v ∈ V (H) |
∣∣∣hom

(
(Ĵi, ẑi)→ (H, v)

)∣∣∣ is odd.} = {wi−1, wi+1, `i} .

This concludes the definition of (Ĵi, ẑi) in the case that qi = 0.
qi ≥ 1: By Lemma 9.7, bi0 is Bi0-closed. It follows that |ΓH(bi0) \Bi0| = 1. Since T is

a suitable subtree and Pi is obstruction-free, for each j ∈ [qi], (Bij , {bij−1, bij})
is a suitable connector in H and Bij is an edge, diamond or impasse. Thus,
we can invoke Lemma 7.14. We obtain that at least one of the following is
true:

– H has a hardness gadget.
– Biqi is an edge or a diamond and (Li, b

i
qi) is a good start in Biqi but not

a good stop in Biqi , where Li = {biqi−1}.
– Biqi is an impasse, and (Li, b

i
qi) is a good start in Biqi but not a good

stop in Biqi , where Li = {di} and di is the unique common neighbour of

biqi−1 and biqi in H.
We are done in the first case, so suppose that one of other cases applies.
By definition of good starts, we thus obtain a gadget (Ĵi, ẑi) such that, for
Ri = ΓH(biqi) \ V (Biqi),

{v ∈ V (H) |
∣∣∣hom

(
(Ĵi, ẑi)→ (H, v)

)∣∣∣ is odd.} = Li ∪Ri.

Note that Li and Ri are disjoint. Further, recall that wi = biqi and therefore

Ri ∩ V (Oi) = {wi−1, wi+1} (by Claim A). As (Li, b
i
qi) is not a good stop

in Biqi , we have that Ri is of even cardinality, and thus Li ∪ Ri is of odd

cardinality. This concludes the definition of (Ĵi, ẑi) in the case that qi ≥ 1.
We now state the previously-established crucial property of the gadgets (Ĵi, ẑi) (which
applies for all qi, unless H has a hardness gadget).

Fact 1: For every i ∈ S, there is a gadget (Ĵi, ẑi) such that the set

Ω̂i = {v ∈ V (H) |
∣∣∣hom

(
(Ĵi, ẑi)→ (H, v)

)∣∣∣ is odd.}
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Fig. 11: The gadget (Ji, zi) for the case i− 1 ∈ S and i+ 1 ∈ S

is a subset of ΓH(wi), has odd cardinality, and contains precisely two vertices of Oi
— the vertices wi−1 and wi+1.

We proceed by defining for each i ∈ {0, . . . , q − 1} the gadgets (Ji, zi) needed for
Lemma 5.6. The definition of (Ji, zi) depends on whether or not i− 1 and i+ 1 are in
S. (Ji, zi) always contains the vertex zi. Additionally, for j ∈ {i− 1, i+ 1}, if j ∈ S
then (Ji, zi) also contains a copy of the gadget (Ĵj , ẑj) and zi is adjacent to ẑj . We
provide an illustration of (Ji, zi) for the case i− 1 ∈ S and i+ 1 ∈ S in Figure 11.

Following the notation of Lemma 5.6, we set (for every i ∈ {0, . . . , q − 1}):

Ωi = {v ∈ V (H) | |hom((Ji, zi)→ (H, v))| is odd.}

Claim B: For all i ∈ {0, . . . , q− 1} the following holds true, unless H has a hardness
gadget; indices are taken modulo q:

• If i−1 ∈ S then Wi−1∩Ωi = {wi−1}, and if i−1 /∈ S then Wi−1∩Ωi = Wi−1.
• If i+1 ∈ S then Wi+1∩Ωi = {wi+1}, and if i+1 /∈ S then Wi+1∩Ωi = Wi+1.

So, Wi−1 ∩ Ωi and Wi+1 ∩ Ωi have odd cardinality.

Proof: We only show the first item; the second one is symmetric. We distinguish
whether or not i− 1 ∈ S:

(I) If i − 1 ∈ S then, by Claim A, wi−1 and wi are contained in the cycle Ci−1,
and Wi−1 = NCi−1,H(wi−1). Since Ci−1 ∈ Cy(Oi−1), Ci−1 is an induced cycle
in Oi−1 (hence in H) and is not a square. Therefore we can apply Corollary 8.5.
It follows that H either has a hardness gadget, in which case we are done, or∣∣NCi−1,H(wi)

∣∣ = 1, i.e., NCi−1,H(wi) = {wi}. This implies that wi is not an
exit of (T,Oi−1), and thus wi+1 ∈ Ci−1 and consequently Wi = NCi−1,H(wi) =
{wi}.
We are now able to prove that Wi−1∩Ωi = {wi−1}. First, for v ∈Wi−1\{wi−1},
we show that v /∈ Ωi and hence v /∈ Wi−1 ∩ Ωi. By the construction of Ji, it
suffices to show that there is an even number of vertices in Ω̂i−1 that are
adjacent to v. Recall from Fact 1 that Ω̂i−1 ⊆ ΓH(wi−1). The vertex v has
precisely two common neighbours with wi−1, namely wi−2 and wi (any others
would lead to a K4-minor in H induced by the vertices {v, wi−2, wi−1, wi}). By
Fact 1, we know that both of these are in Ω̂i−1 and hence that there are two
vertices in Ω̂i−1 that are adjacent to v, as required.
It remains to show that wi−1 ∈ Ωi and hence wi−1 ∈ Wi−1 ∩ Ωi. By the
construction of Ji, it suffices to show that there is an odd number of vertices
in Ω̂i−1 that are adjacent to wi−1, and, in case i+ 1 ∈ S, that there is an odd
number of vertices in Ω̂i+1 that are adjacent to wi−1.
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• By Fact 1, Ω̂i−1 ⊆ ΓH(wi−1). Hence every element of Ω̂i−1 is adjacent to
wi−1. By Fact 1, Ω̂i−1 has odd cardinality, as required.

• Suppose that i + 1 ∈ S. By Fact 1, we have Ω̂i+1 ⊆ ΓH(wi+1) and
wi ∈ Ω̂i+1. Furthermore, wi is the only common neighbour of wi−1 and
wi+1 in H by the fact that Wi = {wi}. Hence wi is the only vertex in
Ω̂i+1 that is adjacent to wi−1, as required.

(II) Consider i− 1 /∈ S. Our goal is to show that Wi−1 ∩ Ωi = Wi−1. If i+ 1 /∈ S,
then Ji contains only the single vertex zi and Ωi = V (H) and we are finished.
Hence we can assume i+1 ∈ S. We first proceed as in Case (I) to obtain either
a hardness gadget or Wi = {wi}. By Claim A, wi, wi+1 and wi+2 are contained
in the cycle Ci+1, and Wi+1 = NCi+1,H(wi+1). Since Ci+1 ∈ Cy(Oi+1), Ci+1

is induced and not a square and therefore we can apply Corollary 8.5. It
follows that H either has a hardness gadget, in which case we are done, or∣∣NCi+1,H(wi)

∣∣ = 1, i.e., NCi+1,H(wi) = {wi}. This implies that wi is not an
exit of (T,Oi+1), and thus wi−1 ∈ Ci+1 and consequently Wi = NCi+1,H(wi) =
{wi}.
In order to show that Wi−1 ∩ Ωi = Wi−1 we show, for each v ∈ Wi−1, that
v ∈ Ωi. By the construction of Ji (i− 1 /∈ S, i+ 1 ∈ S), it suffices to show that
there is an odd number of vertices in Ω̂i+1 that are adjacent to v. Recall from
Fact 1 that Ω̂i+1 ⊆ ΓH(wi+1). By the fact that v ∈ Wi−1 and wi+1 ∈ Wi+1,
from Lemma 9.22 we obtain that ΓH(v) ∩ ΓH(wi+1) = Wi. We have already
established that Wi = {wi} and hence wi is the only vertex in Ω̂i+1 that is
adjacent to wi−1, as required.

This concludes the proof of Case (II) and of Claim B. �
We prove one final claim before we can apply Lemma 5.6:

Claim C: Unless H has a hardness gadget, there exists k ∈ {0, . . . , q − 1} such that
both of the following are true; indices are taken modulo q:

• There are no edges between Wk and Wk+3.
• (Wk ∪Wk+2) ∩ Ωk+1 and (Wk+1 ∪Wk+3) ∩ Ωk+2 are of even cardinality.

Proof: We distinguish two cases.
(I) There is a biconnected component B that contains W . Consequently, by Ob-

servation 9.20, there is a cycle C ∈ Cy(B) such that W = C. Since C ∈ Cy(B)
it has length q = 3 or q ≥ 5. In this case, we choose k = 0. We first show that
there is no edge between Wk and Wk+3:
• If q = 3, we show that for u, v ∈ W0 there cannot be an edge between u

and v. If u = v there cannot be an edge since we do not allow self-loops
in H. If u 6= v there cannot be an edge, as otherwise u, v, w1, w2 induce a
K4-minor in H, contradicting the fact that H has none. Thus, there are
no edges between W0 and W3 mod q = W0.

• If q ≥ 5, consider W0 and W3 = W3 mod q. If |W0| = |W3| = 1 then there
are no edges between W0 and W3 since C is induced by the definition of
obstruction (Definition 8.6). So suppose |W0| > 1 (the case |W3| > 1 is
symmetric). Since C is an induced cycle of length q > 4 in a biconnected
graph B, we can apply Lemma 8.3 to find a separation (A,A′) of H such
that C \ {w0} ⊆ A, W0 ⊆ A′and A ∩ A′ = {wq, w1}. Since all of the

vertices in
⋃q−1
i=1 Wi have neighbours in C \ {w0}, this implies that wq−1

and w1 are the only vertices in
⋃q−1
i=1 Wi that are adjacent to vertices in

W0. However, by Lemma 8.2, W0, . . .Wq−1 are pairwise disjoint and hence
wq−1, w1 /∈W3. So, there are no edges between W0 and W3, as required.
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To establish the second bullet point, again use k = 0 and the fact that W0,
. . . ,Wq−1 are pairwise disjoint. We have |(W0 ∪W2) ∩ Ω1| = |W0 ∩ Ω1| +
|W2 ∩ Ω1|. By Claim B, each of these terms is odd, so their sum is even.
The same argument applies to (W1 ∪W3) ∩ Ω2.

(II) W is not entirely contained in one biconnected component. If this is true, then
by Observation 9.20, there exists an obstruction B with cycle C ∈ Cy(B) such
that, for some k ∈ {0, . . . , q − 1}, wk and wk+1 are contained in C, wk+1 is
an exit of B (in particular, an articulation point), and wk+2 and wk+3 are not
contained in B.
Since wk+2 6= wk+4 by Lemma 9.21, it follows that no v ∈Wk+3 is in B, which
implies that there is no edge between Wk and Wk+3, as required.
For the second item, observe that Wk and Wk+2 must be disjoint, as wk and
wk+1 are in the biconnected component B, but wk+2 is not. We further claim
thatWk+1 andWk+3 are disjoint. To see this, observe first thatWk+1 = {wk+1}
since wk+1 is the only common neighbour of wk and wk+2 as otherwise wk+2

would be contained in B. Then we have already established that no v ∈Wk+3

is in B, which implies wk+1 /∈Wk+3.
The fact that Wk and Wk+2 are disjoint implies that |(Wk ∪Wk+2) ∩ Ωk+1| =
(|Wk ∩ Ωk+1| + |Wk+2 ∩ Ωk+1|). By Claim B, each of these terms is odd, so
their sum is even. Using the fact that Wk+1 and Wk+3 are disjoint, the same
is true for Wk+1 and Wk+3.

�

We are finally able to invoke Lemma 5.6: Recall first, that q ≥ 3 and q 6= 4 from
the beginning of the proof. Recall that we identify the sets Ci of Lemma 5.6 with the
sets Wi. Unless H has a hardness gadget (in which case we are finished) the following
hold.

(L5.5.1) holds by Claim B.
(L5.5.2) and (L5.5.3) hold by Lemma 9.22.
(L5.5.4) is established by Lemma 9.23.
There is a k such that (L5.6.1) and (L5.6.2) hold by Claim C.

Consequently, all conditions are satisfied and we obtain a hardness gadget according
to Lemma 5.6.

9.5. Proof of the Main Theorem. We can now prove Theorem 1.4, which we
restate for convenience.

Theorem 1.4. Let H be a simple graph whose involution-free reduction H∗ is
K4-minor free. If H∗ contains at most one vertex, then ⊕Hom(H) can be solved
in polynomial time. Otherwise, ⊕Hom(H) is ⊕P-complete and, assuming the ran-
domised Exponential Time Hypothesis, it cannot be solved in time exp(o(|G|)).

Proof. By Theorem 1.1, for every graph G, |hom(G→ H)| = |hom(G→ H∗)|
mod 2. It is trivial to count homomorphisms to a graph with at most one vertex.
Suppose that H∗ has at least two vertices. Then it suffices to show that ⊕Hom(H∗)
is ⊕P-complete and that ⊕Hom(H∗) cannot be solved in time exp(o(|G|)), unless the
rETH fails.

Since H∗ is involution-free and contains at least 2 vertices, there is an involution-
free connected component H ′ of H∗ with at least 2 vertices as well: If H is discon-
nected, it has at least 2 connected components, and at least one of those two compo-
nents cannot be a single vertex, as otherwise, we obtain a non-trivial involution by
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Fig. 12: Illustration of the two cases in the proof of Lemma 10.1.

switching those vertices. Furthermore, a connected component of an involution-free
graph cannot have a non-trivial involution, as otherwise, the entire graph would have
a non-trivial involution.

Next we claim that H ′ has a hardness gadget: Assume first that H ′ has a bi-
connected component that is not an edge, a diamond, an obstruction, or an impasse.
By Lemma 8.10, H ′ has a hardness gadget. In the remaining case, every biconnected
component of H ′ is an edge, a diamond, an obstruction, or an impasse. By Lemma 9.9,
there is a closed suitable subtree T of the block-cut tree BC(H ′). If no block of T is
an obstruction, then H ′ has a hardness gadget by Lemma 9.10. Otherwise, H ′ has a
hardness gadget by Lemma 9.24.

This allows us to invoke Theorem 4.7 and we obtain that ⊕Ret(H ′) is ⊕P-hard
and cannot be solved in time exp(o|J |), unless the rETH fails.

Since H ′ is involution-free, we can reduce ⊕Ret(H ′) to ⊕Hom(H ′) by Theo-
rem 4.4, and we can reduce ⊕Hom(H ′) to ⊕Hom(H∗) by Lemma 4.5. These reduc-
tions are tight in the sense that any subexponential-time algorithm for ⊕Hom(H∗)
would yield a subexponential-time algorithm for ⊕Ret(H ′); this is due to the fact
that the size of the oracle queries in each reduction is bounded linearly in the input
size (see, e.g., the proof of Theorem 4.7 in which we made explicit that a linear bound
on the size of the oracle queries is sufficient for the lower bound under rETH to trans-
fer). We thus obtain ⊕P-hardness of ⊕Hom(H∗), and that ⊕Hom(H∗) cannot be
solved in time exp(o(|G|)), unless the rETH fails.

10. Counting Homomorphisms mod 2 to Graphs of Degree at most 3.
We explored the possibilities for constructing hardness gadgets in graphs containing
two squares that share one edge when we analysed K4-minor-free and chordal bipartite
graphs. It turns out that a similar strategy suffices to completely solve the case where
H has degree at most 3. We start with the following lemma.

Lemma 10.1. Let H be an involution-free graph of degree at most 3 that contains
a square. Then H has a hardness gadget.

Proof. Let C = (a, b, c, d, a) be a square in H. Assume first that at least one of
the edges {a, c} or {b, d} are present. W.l.o.g. let {a, c} be present. Then a and c have
degree 3 and thus, by assumption, no further neighbours. Thus (ac) is a non-trivial
involution of H.

Now assume that none of {a, c} or {b, d} are edges of H. If both, a and c have
degree 2 then (ac) is an involution. Similarly, if b and d have both degree 2, we obtain
the involution (bd). W.l.o.g. we can thus assume that a and b have degree 3. Let v
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and v′ be the neighbours of a and b, respectively, that are not contained in C. In what
follows, we consider cases based on whether the edge {v, v′} is present, and, if not,
we differentiate between v = v′ and v 6= v′; an illustration is provided in Figure 12.

(I) {v, v′} /∈ E(H): This case corresponds to the two illustrations to the left of
Figure 12. Note first that {v′, d} cannot be an edge of H, as otherwise, b and
d both have neighbours {a, v′, c} (and no other neighbours, since they have
degree 3), which means that (bd) is a non-trivial involution of H. Similarly,
{v, c} cannot be an edge of H, as otherwise (ac) is a non-trivial involution of
H. Also, at least one of the edges {v, d} and {v′, c} must not be present in
H, as otherwise (ad)(bc) is a non-trivial involution of H. W.l.o.g., assume that
{v, d} is not present. We construct a hardness gadget of H as follows:
• I = {a}.
• S = {b}.
• J1 is a path of 4 vertices: The first vertex is a b-pin, the second vertex is
y, and the fourth vertex is an a-pin.

• J2 is a path of 3 vertices: The first vertex is an a-pin, the second vertex
is z, and the third vertex is a c-pin.

• J3 is just the edge {y, z}.
We first claim that Ωy = {v′, a}. A vertex of H is in Ωy if and only if it is
adjacent to b and has an odd number of 2-paths to a. As H has degree at most
three, the neighbours of b are precisely v′, a and c. Note that a has degree
precisely 3 and thus has an odd number of 2-paths to itself. Furthermore, there
is only one 2-path from v′ to a: This path contains b as internal vertex. There
cannot be an additional 2-path from v′ to a, since, in this case, the internal
vertex must either be v, which is not possible as {v, v′} /∈ E(H), or d, which
is not possible as {v, d} /∈ E(H). Finally, there are precisely two 2-paths from
c to a: One has b as internal vertex, and the other has d as internal vertex.
There cannot be a third one, as this 2-path would have v as internal vertex,
but we ruled out the existence of the edge {v, c}. This shows that Ωy = {v′, a}.
Our next claim is that Ωz = {b, d}. Observe that Ωz contains precisely the
common neighbours of a and c. Thus b and d are included in Ωz. The only
candidate for a third common neighbour would be v, but we ruled out the
existence of the edge {v, c}.
Finally, we observe that |Σv′,d| = 0 as {v′, d} is not an edge of H, and that
|Σv′,b| = |Σb,a| = |Σa,d| = 1.

(II) {v, v′} ∈ E(H): This case corresponds to the illustration to the right of Fig-
ure 12. As in case (I), the edge {v, c} is not present, as otherwise (ac) is a
non-trivial involution, and that the edge {v′, d} is not present, as otherwise
(bd) is a non-trivial involution. We construct a hardness gadget as follows:
• I = {a}.
• S = {b}.
• J1 is a path of 3 vertices: The first vertex is a v-pin, the second vertex is
y, and the third vertex is a b-pin.

• J2 is a path of 3 vertices: The first vertex is an a-pin, the second vertex
is z, and the third vertex is a c-pin.

• J3 is just the edge {y, z}.
Note first that Ωy contains precisely the common neighbours of v and b. Thus
v′ and a are contained in Ωy. Recall further that c is not adjacent to v. As the
degree of H is bounded by 3, we thus have Ωy = {v′, a}. Similarly, we obtain
that Ωz = {b, d}.
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Finally, we observe that |Σv′,d| = 0 as {v′, d} is not an edge of H, and that
|Σv′,b| = |Σb,a| = |Σa,d| = 1.

Theorem 10.2. Let H be a graph whose involution-free reduction H∗ has max-
imum degree at most 3. If H∗ contains at most one vertex, then ⊕Hom(H) can be
solved in polynomial time. Otherwise, ⊕Hom(H) is ⊕P-complete and, assuming the
randomised Exponential Time Hypothesis, it cannot be solved in time exp(o(|G|)).

Proof. By Theorem 1.1, for every graph G, |hom(G→ H)| = |hom(G→ H∗)|
mod 2. It is trivial to count homomorphisms to a graph with at most one vertex.
Suppose that H∗ has at least two vertices. Then it suffices to show that ⊕Hom(H∗)
is ⊕P-complete and that ⊕Hom(H∗) cannot be solved in time exp(o(|G|)), unless the
rETH fails.

If H∗ does not contain a square but has at least 2 vertices, then it has a hardness
gadget as shown in [19]. If H∗ contains a square, then it has a hardness gadget by
Lemma 10.1.

By Theorem 4.7, we obtain that ⊕Ret(H∗) is ⊕P-hard and that it cannot be
solved in time exp(o|J |), unless the rETH fails.

Finally, since H∗ is involution-free, we can reduce ⊕Ret(H∗) to ⊕Hom(H∗)
by Theorem 4.4. As we have already noted, the size of the oracle queries in this
reduction are bounded linearly in the input size, so the reduction proves that any
subexponential-time algorithm for ⊕Hom(H∗) would yield a subexponential-time al-
gorithm for ⊕Ret(H∗), completing the proof.

11. Counting List Homomorphisms modulo 2. Given graphs G and H to-
gether with a set of lists S = {Sv ⊆ V (H) | v ∈ V (G)}, a (list) homomorphism
from (G,S) to H is a homomorphism h from G to H such that for each v ∈ V (G)
we have h(v) ∈ Sv. We use hom((G,S)→ H) to denote the set of homomorphisms
from (G,S) to H. List homomorphisms are a natural generalisation of both homo-
morphisms and retractions.

In this section we provide a complete complexity classification for the problem
of counting list homomorphisms modulo 2 to a given graph H. The classification
determines for which graphs H the problem is feasible. We strengthen the result
by considering a wider class of graphs H than in the rest of the paper (where we
required H to be a simple graph, without self-loops or parallel edges). Let H be
the set of all undirected graphs H which do not have parallel edges — self-loops are
allowed.

Given a set S, let P(S) denote its power set. We consider the following problem,
parameterised by a graph H ∈ H and by a set of lists L ⊆ P(V (H)).
Name: ⊕Hom(H,L).
Input: A simple graph G and a collection of lists S = {Sv ∈ L | v ∈ V (G)}.
Output: |hom((G,S)→ H)| mod 2.

The input G to ⊕Hom(H,L) is assumed to be simple because this is standard
in the field, and because it makes results stronger. However, this restriction is not
important for our result — see Remark 11.4. Taking L = P (V (H)), the problem
⊕Hom(H,P(V (H))) is the problem of counting list homomorphisms to H modulo 2.
To simplify the notation, we also write ⊕LHom(H) for this problem. The following
lemma is well-known.

Lemma 11.1. Let H be a graph in H that contains a walk (a, b, c, d) such that a 6=
c, b 6= d, and {a, d} /∈ E(H). Let L ⊆ P(V (H)) be a set of lists with {{a, c}, {b, d}} ⊆
L. Then ⊕Hom(H,L) is ⊕P-complete.
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Proof. The problem ⊕BIS, of counting the independent sets of a bipartite graph,
modulo 2, is known to be ⊕P-complete [11, Theorem 4.2.1]. We will reduce ⊕BIS to
⊕Hom(H,L).

Let G be a bipartite graph (an input to ⊕BIS) with vertex partition V (G) =
(L,R). For each v ∈ L, let Sv = {a, c} and for each v ∈ R let Sv = {b, d}. We set
S = {Sv | v ∈ V (G)}. Then every homomorphism h from (G,S) to H corresponds
to an independent set in G (and vice versa), where h(v) ∈ {a, d} means that v is in
the independent set and h(v) ∈ {b, c} means that v is out of the independent set.
(Since a 6= c and b 6= d it is well-defined whether v is in or out.) Hence a single
⊕LHom(H,L) oracle call with input (G,S) returns the number of independent sets
of G, modulo 2.

Theorem 11.2. Let H be a connected graph in H and let L ⊆ P(V (H)) be a
set of lists with {S ⊆ V (H) | |S| = 2} ⊆ L. If (i) H is a complete bipartite graph
with no self-loops, or (ii) H is a complete graph in which every vertex has a self-
loop, then ⊕Hom(H,L) can be solved in polynomial time. Otherwise, ⊕Hom(H,L)
is ⊕P-complete.

Proof. The easiness result comes from Dyer and Greenhill [9, Theorem 1.1]. (Dyer
and Greenhill’s result is stated for homomorphisms rather than for list homomor-
phisms, but it is easy to see, and well known, that it extends to list homomorphisms.)
For the hardness part we consider four cases.
Case 1: H contains at least one looped and one unlooped vertex.

The problem ⊕IS, of counting the independent sets of a graph, modulo 2, is
known to be ⊕P-complete [36]. In this case there is an easy reduction from
⊕IS to⊕LHom(H,L). To see this, note that, sinceH is connected, it contains
a looped vertex a which is adjacent to an unlooped vertex b. Counting the
homomorphisms from a graph G to H[{a, b}] is well-known to be equivalent
to counting the independent sets of G (see, e.g., [2]). Since {a, b} ∈ L we
can use this list to restrict the image of homomorphisms to {a, b}, giving the
desired reduction.

Case 2: H is a bipartite graph without self-loops but it is not a complete bipartite
graph.
In this case, H contains a path (a, b, c, d) such that {a, d} /∈ E(H) so the
problem ⊕Hom(H,L) is ⊕P-complete by Lemma 11.1.

Case 3: H is a graph without self-loops that contains a cycle of odd length.
Consider a shortest odd-length cycle C in H. Due to minimality, C has to
be an induced cycle of H (any additional edge between vertices of C would
give a shorter even-length cycle and a shorter odd-length cycle). If C is not
a triangle, then C contains a path (a, b, c, d) such that {a, d} /∈ E(H). If
otherwise C is a triangle (a, b, c, a), then {a, a} /∈ E(H) since H does not
have self-loops. In both cases ⊕Hom(H,L) is ⊕P-complete by Lemma 11.1.

Case 4: H is a graph with all self-loops present but H is not a complete graph.
In this case, H contains a path (a, b, c) where {a, c} /∈ E(H). Since {b, b} ∈
E(H) we can apply Lemma 11.1 to the walk (a, b, b, c) and obtain ⊕P-
completeness of ⊕Hom(H,L).

The following complexity classification for the problem ⊕LHom(H) follows easily
from Theorem 11.2.

Theorem 11.3. Let H be graph in H. If every connected component H ′ of H
satisfies one of the following
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1. H ′ is a complete bipartite graph with no self-loops, or
2. H ′ is a complete graph in which every vertex has a self-loop,

then ⊕LHom(H) can be solved in polynomial time. Otherwise, ⊕LHom(H) is ⊕P-
complete.

Proof. The easiness result comes from Dyer and Greenhill [9, Theorem 1.1]. For
the hardness part, let H ′ be a connected component of H that is not a complete
bipartite graph with no self-loops and is not a complete graph in which every ver-
tex has a self-loop. Let L be the set of all size-2 subsets of V (H ′). From Theo-
rem 11.2, ⊕Hom(H ′,L) is ⊕P-complete. However, ⊕Hom(H ′,L) reduces trivially to
⊕LHom(H) — given an input (G,S) to ⊕Hom(H ′,L) simply return the number of
(list) homomorphisms from (G,S) to H, modulo 2.

Remark 11.4. Theorem 11.3 would be unchanged if we changed the definition of
⊕LHom(H) so that the input G can be any graph in H (so it need not be simple). A
self-loop on a vertex v of G simply enforces the constraint that a homomorphism must
map v to a vertex of H that has a self-loop. The same constraint can be enforced
using a list.
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12. Index of Symbols and Definitions.

articulation point removal increases number of connected components Def. 4.3 p. 9

attachment point Def. 9.14 p. 47

BC(H) block-cut tree of H Def. 4.3 p. 9

biconnected component maximal biconnected subgraph Def. 4.3 p. 9

biconnected graph at least two vertices and no articulation points Def. 4.3 p. 9

block-cut tree tree of biconn. components and articulation points Def. 4.3 p. 9

chordal bipartite graph all induced cycles are squares Def. 4.1 p. 9

Cy(B) set of distinguished cycles of obstruction B Def. 8.6 p. 37

D(C) order induced by cycle C Def. 9.16 p. 48

degH(v) degree of v in graph H p. 9

destination Def. 9.14 p. 47

diamonds distinguished family of chordal bipartite graphs Def. 6.16 p. 23

exit Def. 9.14 p. 47

F graph with two squares sharing one edge Def. 6.1 p. 15

good start Def. 7.1 p. 26

good stop Def. 7.1 p. 26

hardness gadget substructure of a graph inducing ⊕P-hardness Def. 4.6 p. 10
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H[S] subgraph of H induced by S p. 8

homomorphism edge-preserving mapping p. 1

hom(G→ H) set of homomorphisms from G to H p. 9

hom((J, x)→ (H, y)) set of homomorphisms with pinned vertices p. 9

impasses distinguished family of chordal bipartite graphs Def. 6.15 p. 23

involution automorphism of order ≤ 2 p. 2

involution-free graph graph without non-trivial involutions p. 2

involution-free reduction p. 3

K4, K4-minor-free 4-vertex complete graph p. 3

list homomorphism p. 62

NW,H(wi) walk-neighbour-set Def. 4.2 p. 9

obstruction distinguished biconnected K4-minor-free graph Def. 8.6 p. 37

obstruction-free path path in the block-cut tree excluding obstructions Def. 9.11 p. 46

pair of connectors distinguished pair of vertices of an impasse Def. 6.15 p. 23

partially H-labelled graph pair consisting of a graph and a pinning function p. 9

PH(a, b) a particular shortest path from a to b in H Def. 9.12 p. 47

pinning function partial function between vertices of two graphs p. 9

pre-hardness gadget ⊕P-hardness for all K4-minor-free (1,2)-supergraphs Def. 8.7 p. 37

R-closed/R-open Def. 9.5 p. 44

rETH randomised Exponential Time Hypothesis p. 3

retraction homomorphism from a partially labelled graph p. 6

separation/separator Def. 8.1 p. 35

Sk,` distinguished V-typed supergraph of F Def. 6.6 p. 16

strong hardness gadget ⊕P-hardness for all K4-minor-free supergraphs Def. 6.8 p. 17

suitable connector Def. 9.1 p. 42

suitable subtree Def. 9.6 p. 44

type V predicate for supergraphs of F Def. 6.2 p. 15

walk-neighbour-set Def. 4.2 p. 9

WC(a, b)/WC(a) walk from a to b / from a to a along cycle C Def. 9.16 p. 48

ΓH(v) neighbourhood of v in graph H p. 9

ΓH(S) joint neighbourhood of S p. 9

ΓH\F (i, j) common neighbours of vi and vj in H \ F Def. 6.1 p. 15

⊕Hom(H) counting homomorphisms to H mod 2 p. 2
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⊕IS counting independent sets mod 2 p. 4

⊕LHom(H) counting list homomorphisms to H mod 2 p. 62

⊕P complexity class of parity problems p. 2

⊕Ret(H) counting retractions to H mod 2 p. 6

(1,2)-supergraph supergraph without new adjacencies and 2-paths Def. 6.14 p. 23

+ concatenation of walks Def. 9.15 p. 47
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