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ABSTRACT
We study the complexity of approximating the number of answers

to a small query 𝜑 in a large databaseD. We establish an exhaustive

classification into tractable and intractable cases if𝜑 is a conjunctive

query possibly including disequalities and negations:

• If there is a constant bound on the arity of 𝜑 , and if the ran-

domised Exponential Time Hypothesis (rETH) holds, then

the problem has a fixed-parameter tractable approximation

scheme (FPTRAS) if and only if the treewidth of𝜑 is bounded.

• If the arity is unbounded and𝜑 does not have negations, then

the problem has an FPTRAS if and only if the adaptive width

of 𝜑 (a width measure strictly more general than treewidth)

is bounded; the lower bound relies on the rETH as well.

Additionally we show that our results cannot be strengthened

to achieve a fully polynomial randomised approximation scheme

(FPRAS): We observe that, unless NP = RP, there is no FPRAS even

if the treewidth (and the adaptive width) is 1.

However, if there are neither disequalities nor negations, we

prove the existence of an FPRAS for queries of bounded fractional

hypertreewidth, strictly generalising the recently established FPRAS

for conjunctive queries with bounded hypertreewidth due to Are-

nas, Croquevielle, Jayaram and Riveros (STOC 2021).
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1 INTRODUCTION
The evaluation of conjunctive queries is amongst the most central

and well-studied problems in database theory [1, 5, 9, 24]. These

queries are also called select-project-join queries in relational algebra

and select-from-where queries in SQL. In this work, we study the

counting problem associated with conjunctive queries and with

extensions to conjunctive queries allowing negations, disequali-

ties, and unions of queries. Given a query 𝜑 and a database D, an

“answer” of 𝜑 in D is an assignment of values from the universe

of D to the free variables of 𝜑 that can be extended (by also as-

signing values to the existential variables of 𝜑) to an assignment

satisfying 𝜑 . For example, the universe of the database D could be

a set of people𝑈 , and D has an entry 𝐹 (𝑎, 𝑏) whenever two people
𝑎, 𝑏 ∈ 𝑈 are “friends”. Then an answer to the query

𝜑 (𝑥) = ∃𝑦∃𝑧 𝐹 (𝑥,𝑦) ∧ 𝐹 (𝑥, 𝑧) ∧ (𝑦 ≠ 𝑧) (1)

is a person that has at least two friends (from the people in𝑈 ).

The counting problem is to compute the number of answers of

𝜑 in D. Our goal is to determine the parameterised complexity

of this counting problem in the situation where the query 𝜑 is

significantly smaller than the database D; a formal exposition is

given in Section 2.

Previous work [10, 16, 17] established that the problem of exactly

counting answers to conjunctive queries is extremely difficult: Even

very simple queries, such as acyclic conjunctive queries, which can

be evaluated in polynomial time [23, 44], are sufficiently powerful to
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encode intractable problems in their counting versions, making any

non-trivial improvement over the brute-force algorithm impossible

under the Strong Exponential Time Hypothesis [16].

Therefore, the relaxation to approximate counting is necessary

if efficient algorithms are sought. In this work, we quantify the

complexity of approximating the number of answers to conjunctive

queries with negations and disequalities, and unions thereof, in

terms of several natural width measures of the queries, such as

treewidth, fractional hypertreewidth, and adaptive width. This leads

to a complete classification (and a new approximation algorithm)

in the bounded-arity case, to a complete classification (and another

new approximation algorithm) in the unbounded-arity case when

negations are excluded, and to a new FPRAS in the unparameterised

setting. The formal setup, including the definitions of the problems

and the approximation schemes, are introduced in Section 2 and

we present our results in Section 3.

2 TECHNICAL BACKGROUND
A signature 𝜎 consists of a finite set of relation symbols with speci-

fied positive arities. A (relational) databaseD with signature sig(D)
consists of a finite universe 𝑈 (D)1 together with, for each relation

symbol 𝑅 ∈ sig(D), a relation 𝑅D
over the universe 𝑈 (D) with

the same arity that sig(D) specifies for 𝑅. The tuples in the rela-

tions 𝑅D
are called the facts of D. A conjunctive query (CQ) 𝜑 with

signature sig(𝜑) is a formula of the form

𝜑 (𝑥1, . . . , 𝑥ℓ ) = ∃𝑥ℓ+1 · · · ∃𝑥ℓ+𝑘𝜓 (𝑥1, . . . , 𝑥ℓ+𝑘 ),
where vars (𝜑) denotes the set of variables {𝑥1, . . . , 𝑥𝑘+ℓ } of 𝜑 ,

free (𝜑) denotes the set of free (output) variables {𝑥1, . . . , 𝑥ℓ } of 𝜑 ,
and 𝜓 is a conjunction of a finite number of atoms, which are

predicates of the form 𝑅(𝑦1, . . . , 𝑦 𝑗 ), where 𝑅 is an arity- 𝑗 relation

symbol in sig(𝜑) and each 𝑦𝑖 is a variable in vars (𝜑). Each ele-

ment of sig(𝜑) appears in at least one predicate. Also, each variable

in vars (𝜑) appears in at least one atom.

In an extended conjunctive query (ECQ) there are three more

types of allowable atoms.

• Equality: 𝑦𝑖 = 𝑦 𝑗 .

• Disequality: 𝑦𝑖 ≠ 𝑦 𝑗 .

• Negated predicate: ¬𝑅(𝑦1, . . . , 𝑦 𝑗 ), where 𝑅 is an arity- 𝑗 re-

lation symbol in sig(𝜑) and each 𝑦𝑖 is a variable in vars (𝜑).
Again, each element of sig(𝜑) appears at least once in 𝜑 (as a predi-

cate, as a negated predicate, or both).

In fact, without loss of generality we can assume that 𝜑 has no

equalities, since we can re-write 𝜑 to avoid these by replacing equal

variables with a single variable. Thus, from now on, we assume

that ECQs do not have equalities.

It is natural to extend conjunctive queries by adding disequalities

and negations. Such extended queries were studied for instance

in [4, 11, 27, 31, 32, 38]. Sometimeswewill be interested in extending

CQs by adding disequalities but not negations. We refer to these

partially-extended queries as DCQs.

Consider an ECQ 𝜑 . The following notation of “Solution” cap-

tures the assignments (of elements in 𝑈 (D) to the variables of 𝜑)

that satisfy 𝜑 . It does not distinguish between existential and free

variables, but we do that later in Definition 2.

1𝑈 (D) is also often referred to as the “domain” of D.

Definition 1. (solution, Sol(𝜑,D)) Let 𝜑 be an ECQ and let D
be a database with sig(𝜑) ⊆ sig(D). A solution of (𝜑,D) is an
assignment 𝛼 : vars (𝜑) → 𝑈 (D) which has the following property.

• For every predicate 𝑅(𝑦1, . . . , 𝑦 𝑗 ) of 𝜑 , we have that the tuple
(𝛼 (𝑦1), . . . , 𝛼 (𝑦 𝑗 )) is in 𝑅D

,

• For every negated predicate ¬𝑅(𝑦1, . . . , 𝑦 𝑗 ) of 𝜑 , the tuple
(𝛼 (𝑦1), . . . , 𝛼 (𝑦 𝑗 )) is not in 𝑅D

, and

• For every disequality 𝑦𝑖 ≠ 𝑦 𝑗 of 𝜑 we have 𝛼 (𝑦𝑖 ) ≠ 𝛼 (𝑦 𝑗 ).
We use Sol(𝜑,D) to denote the set of solutions of (𝜑,D).

In this work, we will not be interested so much in the solutions of

(𝜑,D) but rather in their projections onto the free (output) variables
of 𝜑 .

Definition 2. (proj, answer, Ans(𝜑,D)) Let 𝜑 be an ECQ and let

D be a database with sig(𝜑) ⊆ sig(D). Let 𝛼 : vars (𝜑) → 𝑈 (D)
be an assignment of elements in 𝑈 (D) to the variables of 𝜑 . We

use proj(𝛼, free (𝜑)) to denote 𝛼 ’s projection onto the free variables

of 𝜑 . That is, proj(𝛼, free (𝜑)) is the assignment from free (𝜑) to
𝑈 (D) that agrees with 𝛼 . An answer of (𝜑,D) is an assignment

𝜏 : free (𝜑) → 𝑈 (D) of elements in𝑈 (D) to the free variables of 𝜑
which can be extended to a solution in the sense that there is a

solution 𝛼 of (𝜑,D) with proj(𝛼, free (𝜑)) = 𝜏 . We write Ans(𝜑,D)
for the set of all answers of (𝜑,D).

Our main focus is on the problem of approximately counting

answers to extended conjunctive queries 𝜑 , parameterised
2
by the

size of 𝜑 , which is denoted by ∥𝜑 ∥, and is defined to be the sum of

|vars (𝜑) | and the sum of the arities of the atoms in 𝜑 .

The formal problem definition is as follows. Let Φ be a class of

ECQs.

Name: #ECQ (Φ)
Input: An ECQ 𝜑 ∈ Φ and a database D with sig(𝜑) ⊆ sig(D).
Parameter: ∥𝜑 ∥.
Output: |Ans(𝜑,D)|.

We define the problems #CQ (Φ) and #DCQ (Φ) analogously, by
requiring the input to be a CQ (in the case of #CQ (Φ)) or a DCQ
(in the case of #DCQ (Φ)).

The size of the encoding of the input pair (𝜑,D) is taken to be

the sum of ∥𝜑 ∥ and the size of the encoding of D (written ∥D∥)
which is defined to be |sig(D)|+ |𝑈 (D)| plus the sum of the lengths

of the tuples in the relations of D.

Note that singleton unary relations in D can be used to imple-

ment “constants” in 𝜑 . To see this, for any 𝑣 ∈ 𝑈 (D) let 𝑅D
𝑣 denote

the relation {𝑣}. It is possible to refer to the constant 𝑣 in 𝜑 by

including 𝑅𝑣 in sig(𝜑) and constraining some variable 𝑥 ∈ vars (𝜑)
with the predicate 𝑅𝑣 (𝑥). Of course the size ∥𝜑 ∥ increases by an

additional constant amount by the introduction of the variable 𝑥

and the predicate 𝑅𝑣 (𝑥). Adding all singleton unary relations to the

signature of D does not increase ∥D∥ significantly, since |𝑈 (D)|
is already included in ∥D∥.

2
This choice of the parameter allows one to produce fine-grained complexity results

which are appropriate for instances in which the query size is (significantly) smaller

than the size of the database (see for example the section “Why Fixed-Parameter

Tractability” in [36, Section 1] for a longer discussion of this point). The notion of

fixed-parameter tractability is made formal below.



Randomised Approximation Schemes and Fixed-Parameter Tractabil-

ity. Given a value 𝑉 and 𝜀, 𝛿 ∈ (0, 1), an (𝜀, 𝛿)-approximation of 𝑉

is a random variable 𝑋 that satisfies Pr( |𝑋 −𝑉 | ≤ 𝜀𝑉 ) ≥ 1 − 𝛿 .

Let #𝐴 be a counting problem that, when given input 𝑥 , asks for

the value𝑉 (𝑥). Slightly overloading notation, an (𝜀, 𝛿)-approximation

for #𝐴 is a randomised algorithm that, given an input 𝑥 to #𝐴, out-

puts an (𝜀, 𝛿)-approximation of𝑉 (𝑥). A fully polynomial randomised

approximation scheme (FPRAS) for #𝐴 is an (𝜀, 𝛿)-approximation

that runs in time polynomial in ∥𝑥 ∥, 1/𝜀, and log(1/𝛿).
Suppose that the counting problem #𝐴 is parameterised by a

parameter 𝑘 (as the problem #ECQ (Φ) is parametetrised by ∥𝜑 ∥).
A randomised approximation scheme for #𝐴 is a fixed-parameter

tractable randomised approximation scheme (FPTRAS) if there is a

function 𝑓 : R→ R and a polynomial 𝑝 such that the running time

is at most 𝑓 (𝑘) · 𝑝 (∥𝑥 ∥, 1/𝜀, log(1/𝛿)).
Applying this definition, note that an FPTRAS for #ECQ (Φ) has

a running time bound of 𝑓 (∥𝜑 ∥) · 𝑝 (∥D∥, 1/𝜀, log(1/𝛿)). In other

words, relative to the definition of FPRAS, the definition of FPTRAS

relaxes the condition that the algorithm must run in polynomial

time by allowing a super-polynomial factor in the size of the query.

Since the query is assumed to be significantly smaller than the

database, this is a very natural notion of an efficient algorithm.

Indeed, we will show that all FPTRASes for #ECQ (Φ) constructed
in this work cannot be upgraded to FPRASes (subject to natural

complexity hypotheses). The reason that they cannot be upgraded is

that, even for very restricted query classes Φ, there are reductions
from NP-hard problems to the problem of producing an FPRAS

for #ECQ (Φ).
Considering #ECQ (Φ) as a parameterised problem allows one

to interpolate between the classical complexity of the problem, in

which no assumptions are made regarding the size of the input

query, and its data complexity, in which the input query is fixed.

From the viewpoint of data complexity, there is a brute-force

polynomial-time algorithm for counting answers to a query, by

iterating through all assignments of the variables, roughly in time

∥D∥O( ∥𝜑 ∥)
. If the query 𝜑 is fixed, the running time of this brute-

force algorithm is bounded by a polynomial in the input size. In the

fixed-parameter setting the goal is instead to separate the (poten-

tially exponential) running time in the query size from the (polyno-

mial) running time, in the size of the database.

3 OUR RESULTS
In order to give an overview of our results, we provide an illustration

in Figure 1.

Bounded-Treewidth ECQs. The tractability criteria in our results

will depend on the hypergraph associated with a conjunctive query

(Definition 3, see also [24]). A hypergraph 𝐻 consists of a (finite) set

of vertices𝑉 (𝐻 ) and a set 𝐸 (𝐻 ) ⊆ 2
𝑉 (𝐻 )

of non-empty hyperedges.

The arity of a hypergraph is the maximum size of its hyperedges.

Definition 3. (𝐻 (𝜑), Φ𝐶 ) Given an ECQ 𝜑 , the hypergraph of 𝜑 ,

denoted 𝐻 (𝜑), has vertex set 𝑉 (𝐻 (𝜑)) = vars (𝜑). For each predi-

cate of 𝜑 there is a hyperedge in 𝐸 (𝐻 (𝜑)) containing the variables

appearing in the predicate. For each negated predicate of 𝜑 , there

is a hyperedge in 𝐸 (𝐻 (𝜑)) containing the variables appearing in

the negated predicate. For any class of hypergraphs 𝐶 , Φ𝐶 denotes

the class of all ECQs 𝜑 with 𝐻 (𝜑) ∈ 𝐶 .

We emphasise that 𝐻 (𝜑) does not contain any hyperedges cor-

responding to the disequalities of 𝜑 ; note that this makes positive

results in terms of 𝐻 (𝜑) stronger, but it also makes these results

harder to prove.
3

Our first result uses the treewidth of a hypergraph (Definition 4,

originally from [40]). For the definitions of other width measures

such as fractional hypertreewidth and adaptive width, which we

will only use in a blackbox manner throughout this work, we refer

the reader for instance to [36] and to the full version [22].

Definition 4. (tree decomposition, treewidth) A tree decomposition

of a hypergraph 𝐻 is a pair (𝑇,B) where 𝑇 is a (rooted) tree and

B assigns a subset 𝐵𝑡 ⊆ 𝑉 (𝐻 ) (called a bag) to each 𝑡 ∈ 𝑉 (𝑇 ).
The following two conditions are satisfied: (i) for each 𝑒 ∈ 𝐸 (𝐻 )
there is a vertex 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑒 ⊆ 𝐵𝑡 , and (ii) for each

𝑣 ∈ 𝑉 (𝐻 ) the set {𝑡 ∈ 𝑉 (𝑇 ) | 𝑣 ∈ 𝐵𝑡 } induces a (connected) subtree
of 𝑇 . The treewidth tw(𝑇,B) of the tree decomposition (𝑇,B) is
max𝑡 ∈𝑉 (𝑇 ) |𝐵𝑡 | − 1. The treewidth tw(𝐻 ) of 𝐻 is the minimum of

tw(𝑇,B), minimised over all tree decompositions (𝑇,B) of 𝐻 .

Our first theorem is as follows.

Theorem 5. Let 𝑡 and 𝑎 be positive integers. Let 𝐶 be a class of

hypergraphs such that every member of 𝐶 has treewidth at most 𝑡

and arity at most 𝑎. Then #ECQ (Φ𝐶 ) has an FPTRAS, running in

time exp(O( | |𝜑 | |2)) · poly(log(1/𝛿), 𝜀−1, | |D||).

Technical Challenges. While, in the case of bounded arity, negated

predicates can be simulated by adding a negated relation (symbol)

𝑅 for each relation (symbol) 𝑅, the disequalities have to be treated

separately since we do not include them in the query hypergraph

(see the discussion below Definition 3).

However, the main difficulty stems from the fact that our queries

have both quantified and free variables; recall e.g. the query in (1).

We note that the restricted case in which there are no quantified

variables can be dealt with in a much easier way by using stan-

dard and well-established reductions from approximate counting

to decision. For example, in the special case of arity 2, and with all

disequalities present, approximate counting of answers to queries

without quantified variables can be encoded as approximate count-

ing subgraphs, which can be done efficiently for bounded treewidth

graphs using colour-coding [3, 6].

If quantified variables are allowed, the situation changes dras-

tically: While it does not matter for the decision version which

variables are quantified and which are not, even quantifying a

single variable can transform the counting version from easy to

infeasible.
4
The core technical difficulty arising in both the recent

3
If we included hyperedges corresponding to disequalities, we could just model these

disequalities as (binary) relations and reduce to the case of conjunctive queries without

disequalities. However, adding those hyperedges can increase the treewidth of the

hypergraph (see Definition 4) significantly, so it would weaken the results significantly.

4
Consider for example the following query in the signature of graphs

𝜑 (𝑥1, . . . , 𝑥𝑘 ) = ∃𝑦
𝑘∧
𝑖=1

𝐸 (𝑦, 𝑥𝑖 ) .

Deciding whether 𝜑 has an answer is computationally trivial, since it is equivalent to

deciding whether there are 𝑘 (not necessarily distinct) vertices that have a common

neighbour. In other words, we can always return “Yes” if the graph has at least one edge.



bounded tw⇔ bounded (f)hw⇔ bounded aw

FPTRAS for DCQ, ECQ [Theorem 5]

No FPRAS for DCQ, ECQ [Obs. 10]

FPRAS for CQ [5, Thm 3.2]

No FPTRAS for

CQ, DCQ, ECQ [Obs. 9]

No FPRAS for CQ [5, Cor 3.3]

Bounded Arity

No FPRAS for DCQ, ECQ [Obs. 10]

bounded tw

FPRAS for CQ [5, Thm 3.2]

bounded hw

FPRAS for CQ [Theorem 16]

bounded fhw

FPTRAS for DCQ, CQ [Theorem 13]

bounded aw

No FPTRAS for

CQ, DCQ, ECQ [Obs. 15]

Unbounded Arity

Figure 1: Overview of our results on approximately counting answers to conjunctive queries (CQs), to conjunctive queries with
disequalities (DCQs), and to conjunctive queries with disequalities and negations (ECQs). Upper and lower bounds depend on a
variety of width measures of the input queries, namely, treewidth (tw), hypertreewidth (hw), fractional hypertreewidth (fhw),
and adaptive width (aw). The equivalence of the width parameters in the case of bounded arity is well known; we provide an
explicit argument in the full version [22]. For completeness, we also compare our results to recent work of Arenas et al. [5].
The lower bounds either rely on the assumption that NP ≠ RP or on the rETH. All referenced theorems and observations are
stated in Section 3. Note that, while our results complete the picture of the complexity of CQ, DCQ, and ECQ in the bounded
arity case, two questions remain open for the unbounded arity case: Assuming the adaptive width is bounded, does ECQ have
an FPTRAS, and does CQ have an FPRAS?

result of Arenas et al. [5] and also in our work is the problem of

handling quantified variables in the context of approximate count-

ing. While Arenas et al. were able to establish an FPRAS for the

case of conjunctive queries of bounded (hyper)treewidth, we show

that an FPRAS is not possible if disequalities are allowed (see Ob-

servation 10). For this reason, we relax the condition of feasibility

of approximation by aiming for an FPTRAS.
In this work, we solve the problem of handling quantified vari-

ables by relying on the recent𝑘-Hypergraph framework of Dell, Lap-

inskas and Meeks [15], which, in combination with colour-coding,

will ultimately establish Theorem 5. We note that the presentation

of our methods could be streamlined if we would only consider the

However, (exactly) counting answers to 𝜑 cannot be done in time 𝑂 ( |𝑉 (𝐺) |𝑘−𝜀 )
unless the Strong Exponential Time Hypothesis fails [16], ruling out any improvement

over the brute-force algorithm for the counting version. In the case of approximate

counting, the result of Arenas et al. [5] yields an FPRAS for counting answers to

𝜑 . Also, our result, Theorem 5, yields an FPTRAS even if we additionally add the

constraint that the 𝑥𝑖 s should be pairwise different. Note that our result relaxes the

notion of feasibility from an FPRAS to an FPTRAS since it turns out that the former is

not always possible if disequalities are allowed (see Observation 10).

Finally, we point out that even exact counting becomes easy if we make 𝑦 a free

variable, that is, if we modify the query as follows:𝜑′ (𝑥1, . . . , 𝑥𝑘 , 𝑦) =
∧𝑘

𝑖=1 𝐸 (𝑦, 𝑥𝑖 ) .
The reason for this easiness is that counting answers to 𝜑′

in 𝐺 is equivalent to

counting homomorphisms from 𝐻 (𝜑′) to𝐺 , which can be done efficiently as 𝐻 (𝜑′)
has treewidth 1 [13].

bounded arity case. However, since understanding the unbounded

arity case is also part of our goal, we present the framework in

slightly more generality than we need for the bounded arity case.

Before we continue with the presentation of further results, we

will present a useful application of Theorem 5.

Application to Locally Injective Homomorphisms. Given graphs

𝐺 and 𝐺 ′
, a homomorphism from 𝐺 to 𝐺 ′

is a mapping from the

vertices of𝐺 to the vertices of𝐺 ′
that maps the edges of𝐺 to edges

of𝐺 ′
. A homomorphismℎ is locally injective if for each vertex 𝑣 of𝐺 ,

the restriction ofℎ to the neighbourhood𝑁𝐺 (𝑣) of 𝑣 in𝐺 is injective.

Locally injective homomorphisms have been studied extensively,

see [21] for an overview, and they can be applied, for instance, to

model interference-free assignments of frequencies (of networks

such as wireless networks) [20]. Some recent works on locally

injective homomorphisms include [42] and [7]. The complexity of

exactly counting locally injective homomorphisms from a fixed

graph 𝐺 to an input graph 𝐺 ′
has been considered and is fully

classified [41].

Given 𝐺 and 𝐺 ′
, it is easy to construct an ECQ 𝜑 (𝐺) and a data-

base D(𝐺 ′) such that locally injective homomorphisms from 𝐺 to

𝐺 ′
are in one-to-one correspondence with Ans(𝜑 (𝐺),D(𝐺 ′)). For

this, the signature of 𝜑 (𝐺) and D(𝐺 ′) has one binary relation 𝐸



(representing the edge set of a graph). D(𝐺 ′) is the structure rep-
resenting𝐺 ′

— its universe𝑈 (D) is 𝑉 (𝐺 ′) and its relation 𝐸D(𝐺′)

is the edge set of 𝐺 ′
. The query 𝜑 (𝐺) is constructed as follows.

For convenience, let 𝑘 = |𝑉 (𝐺) | and assume that 𝑉 (𝐺) = [𝑘]. Let
cn(𝐺) be the set of pairs 𝑖 ≠ 𝑗 of vertices of 𝐺 such that 𝑖 and 𝑗

have a common neighbour. Then 𝜑 (𝐺) is the following query 𝜑

(which has no existential variables).

𝜑 (𝑥1, . . . , 𝑥𝑘 ) =
∧

{𝑖, 𝑗 }∈𝐸 (𝐺)
𝐸 (𝑥𝑖 , 𝑥 𝑗 ) ∧

∧
(𝑖, 𝑗) ∈cn(𝐺)

𝑥𝑖 ≠ 𝑥 𝑗 .

Consequently, Theorem 5 also gives an FPTRAS for counting

locally injective homomorphisms from graphs 𝐺 with bounded

treewidth. Let 𝐶 and 𝐶 ′
be two classes of graphs.

Name: #LIHom(𝐶,𝐶 ′)
Input: Graphs 𝐺 ∈ 𝐶 and 𝐺 ′ ∈ 𝐶 ′

.

Parameter: |𝑉 (𝐺) |.
Output: The number of locally injective homomorphisms from 𝐺

to 𝐺 ′
.

Corollary 6. Let 𝑡 be a positive integer. Let 𝐶𝑡 be the class of all

graphs with treewidth at most 𝑡 , and let 𝐶 be the class of all graphs.

Then #LIHom(𝐶𝑡 ,𝐶) has an FPTRAS.

Matching Lower Bound. Theorem 5 is optimal under standard

assumptions — subject to the randomised Exponential Time Hy-

pothesis (rETH) there is a matching lower bound showing that there

is no FPTRAS for #ECQ (Φ𝐶 ) if the treewidth of 𝐶 is unbounded.

In fact, there is no FPTRAS for #CQ (Φ𝐶 ) in this case. In order to

explain the lower bound, we first state the rETH.

Conjecture 7 (rETH, [28]). There is a positive constant 𝑐 such that

no algorithm, deterministic or randomised, can decide the satisfiabil-

ity of an 𝑛-variable 3-SAT instance in time exp(𝑐 · 𝑛) (with failure

probability at most 1/4).

The lower bound relies on a result byMarx [34, Theorem 1.3]. We

state it here using our notation — in addition we allow randomised

algorithms and therefore replace ETH by rETH.
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Theorem 8 ([34, Theorem 1.3]). Let 𝑎 be positive integer. Let 𝐶

be a recursively enumerable class of hypergraphs such that every

member of 𝐶 has arity at most 𝑎. Suppose that the treewidth of hy-

pergraphs in 𝐶 is unbounded. If there is a computable function 𝑓

and a randomised algorithm that, given a CQ 𝜑 ∈ Φ𝐶 and a data-

base D with sig(𝜑) ⊆ sig(D), decides in time 𝑓 (𝐻 (𝜑)) · (∥𝜑 ∥ +
∥D∥)o(tw(𝐻 (𝜑)/log tw(𝐻 (𝜑))))

whether (𝜑,D) has an answer, then

rETH fails.

In order to apply Theorem 8, note that an FPTRAS for #CQ (Φ𝐶 )
provides a (1/2, 1/4)-approximation for #CQ (Φ𝐶 ) that runs in

time 𝑓 (∥𝜑 ∥) · poly(∥𝜑 ∥ + ∥D∥). It follows from the definition

of ∥𝜑 ∥ that ∥𝜑 ∥ is a function of 𝐻 (𝜑). Thus, the FPTRAS pro-

vides a (1/2, 1/4)-approximation for #CQ (Φ𝐶 ) that runs in time

𝑓 (𝐻 (𝜑)) · poly(∥𝜑 ∥ + ∥D∥). This approximation algorithm can be

used to solve the decision problem of determining whether the

output of #CQ (Φ𝐶 ) is nonzero. Thus, by Theorem 8, we obtain the

following observation.
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In case it is not clear to the reader how Theorem 8 matches [34, Theorem 1.3], we

refer to the introduction of [36] where this result is stated as Theorem 1.2.

Observation 9. Let 𝑎 be positive integer. Let 𝐶 be a recursively

enumerable class of hypergraphs such that every member of 𝐶 has

arity at most 𝑎. If the treewidth of hypergraphs in 𝐶 is unbounded

then #CQ (Φ𝐶 ) does not have an FPTRAS, unless rETH fails.

Observation 9 shows that Theorem 5 provides a tight result for

hypergraph classes with bounded arity in the sense that, assuming

rETH, there is an FPTRAS if and only if the treewidth is bounded.

Note that the stated lower bound is slightly stronger than required

since it also applies to conjunctive queries without extensions.

Theorem 5 shows that if 𝐶 is any class of hypergraphs such that

every member of𝐶 has treewidth at most 𝑡 and arity at most 𝑎 then

there is an (𝜀, 𝛿)-approximation algorithm for #ECQ (Φ𝐶 ) that runs
in time 𝑓 (∥𝜑 ∥) · poly(log(1/𝛿), 𝜀−1, | |D||)), where 𝑓 is exponen-

tial in ∥𝜑 ∥2. A natural question is whether the function 𝑓 can be

improved. Specifically, a polynomial 𝑓 would imply the existence

of an FPRAS for #ECQ (Φ𝐶 ). However, the following observation,
proved by reduction from the Hamilton path problem, shows that

there is no such FPRAS unless NP = RP, even when 𝑡 = 1 and 𝑎 = 2.

Observation 10. Let𝐶 be the class of all hypergraphs with treewidth

at most 1 and arity at most 2. Then there is no FPRAS for #DCQ (Φ𝐶 ),
unless NP = RP.

Proof. Given an 𝑛-vertex graph 𝐺 , we will show how to con-

struct (in time poly(𝑛)) an instance (𝜑,D) of #DCQ (Φ𝐶 ) such that

the answers in Ans(𝜑,D) are in one-to-one correspondence with

the Hamiltonian paths of 𝐺 . This implies (e.g., [19, Theorem 1])

that there is no FPRAS for #DCQ (Φ𝐶 ) unless NP = RP.

The construction is as follows. 𝑈 (D) = 𝑉 (𝐺). The signature

sig(𝜑) = sig(D) contains a single binary relation symbol 𝐸. The

relation 𝐸D
is the edge set 𝐸 (𝐺). The query 𝜑 is defined as follows.

𝜑 (𝑥1, . . . , 𝑥𝑛) =
∧

𝑖∈[𝑛−1]
𝐸 (𝑥𝑖 , 𝑥𝑖+1) ∧

∧
1≤𝑖< 𝑗≤𝑛

𝑥𝑖 ≠ 𝑥 𝑗 .

Note that 𝜑 has no existential variables so the solutions of (𝜑,D)
are in one-to-one correspondence with Ans(𝜑,D). It is clear from
the definition of 𝜑 that these are also in one-to-one correspondence

with the Hamilton paths of 𝐺 .

It remains to show that 𝜑 ∈ Φ𝐶 , that is that𝐻 (𝜑) has treewidth 1

and arity 2. Both of these follow from the fact that 𝐻 (𝜑) is the path
𝑥1, . . . , 𝑥𝑛 , which follows from the definition of 𝐻 (𝜑) (Definition 3).

□

Interestingly, the situation changes if we consider CQs with-

out extensions. Arenas, Croquevielle, Jayaram, and Riveros [5]

give an FPRAS for #CQ (Φ𝐶 ) for any bounded-treewidth class 𝐶 of

hypergraphs. We refer the reader to the full version [22] for the

formal statement of their result. Observation 10 ensures that their

result cannot be generalised to cover extended conjunctive queries

(unless NP = RP). However, their result does apply to classes of

hypergraphs with unbounded arity.

Beyond Bounded Arity. Even though Observation 9 gives a tight

lower bound for classes𝐶 of hypergraphs with bounded arity, there

is room for improvement if the arity in 𝐶 is unbounded. In this

setting, it is worth considering other notions of hypergraph width,

such as hypertreewidth, fractional hypertreewidth, adaptive width

and submodular width. As mentioned before, we refer the reader



to [36] and the full version [22] for the definitions of these width

measures, since we will only use them in a blackbox manner. Here

we just give the relationships between them, from [36, Figure 2].

Definition 11 (weakly dominated, strongly dominated, weakly

equivalent). A width measure is a function from hypergraphs to

R≥0. Given two width measures 𝑤1 and 𝑤2, we say that 𝑤1 is

weakly dominated by 𝑤2 if there is a function 𝑓 such that every

hypergraph 𝐻 has𝑤2 (𝐻 ) ≤ 𝑓 (𝑤1 (𝐻 )). We say that𝑤1 is strongly

dominated by 𝑤2 if 𝑤1 is weakly dominated by 𝑤2 and there is a

class of hypergraphs that has unbounded𝑤1-width, but bounded

𝑤2-width. We say that 𝑤1 and 𝑤2 are weakly equivalent if they

weakly dominate each other.

If𝑤1 is strongly dominated by𝑤2 then the class of hypergraphs

with bounded𝑤1-width is strictly contained in the class of hyper-

graphs with bounded 𝑤2-width. Thus, algorithmic results based

on bounded 𝑤2-width have strictly greater applicability than al-

gorithmic results based on bounded 𝑤1-width. If 𝑤1 and 𝑤2 are

weakly equivalent then algorithmic results for bounded𝑤1-width

and bounded𝑤2-width are equivalent.

Lemma12 ([36]). Treewidth is strongly dominated by hypertreewidth.

Hypertreewidth is strongly dominated by fractional hypertreewidth.

Fractional hypertreewidth is strongly dominated by adaptive width,

which is weakly equivalent to submodular width.

Note that all of the width measures from Lemma 12 are weakly

equivalent if we assume an overall bound on the arity of hyper-

graphs.

When restricting the queries to DCQs instead of ECQs, we can

improve Theorem 5 by allowing unbounded arity, extending it

to adaptive width. The following Theorem is proved in the full

version [22]

Theorem 13. Let 𝑏 be a positive integer. Let 𝐶 be a class of hyper-

graphs such that every member of 𝐶 has adaptive width at most 𝑏.

Then #DCQ (Φ𝐶 ) has an FPTRAS.

Further Technical Challenges. In addition to the challenges that

arose in the bounded arity case, a further issue that arises in the

unbounded arity case is finding the right notion of treewidth on

hypergraphs; recall that the notions of treewidth, hypertreewidth,

fractional hypertreewidth and adaptive width are all equivalent in

the bounded arity setting, but not in the unbounded arity setting.

We ultimately ended up with adaptive width as the most gen-

eral width measure for which we can establish the existence of

an FPTRAS. Despite the fact that approximate counting is often

harder than decision [8, 19], we find that in the current setting, the

criterion for tractability is the same for decision and approximate

counting. In fact, it turns out that Theorem 13, i.e., the choice of

adaptive width, is optimal, unless the rETH fails. This matching

lower bound comes from another result of Marx [36, Theorem 7.1],

which we express using our notation; for what follows, we write

aw(𝐻 ) for the adaptive width of a hypergraph 𝐻 :

Theorem 14 ([36, Theorem 7.1]). Let𝐶 be a recursively enumerable

class of hypergraphs with unbounded adaptive width. If there is a

computable function 𝑓 and a randomised algorithm that, given a CQ

𝜑 ∈ Φ𝐶 and a database D with sig(𝜑) ⊆ sig(D), decides in time

𝑓 (𝐻 (𝜑)) · (∥𝜑 ∥ + ∥D∥)o(aw(𝐻 (𝜑))1/4)
whether (𝜑,D) has an answer,

then rETH fails.

Aswe noted earlier, an FPTRAS for #CQ (Φ𝐶 ) provides a (1/2, 1/4)-
approximation for #CQ (Φ𝐶 ) that runs in time 𝑓 (∥𝜑 ∥) · poly(∥𝜑 ∥ +
∥D∥). It follows from the definition of ∥𝜑 ∥ that ∥𝜑 ∥ is a function
of 𝐻 (𝜑). Thus, the FPTRAS provides a (1/2, 1/4)-approximation

for #CQ (Φ𝐶 ) that runs in time 𝑓 (𝐻 (𝜑)) · poly(∥𝜑 ∥ + ∥D∥). This
approximation algorithm can be used to solve the decision problem

of determining whether the output of #CQ (Φ𝐶 ) is nonzero. Thus,
by Theorem 14, we obtain the following observation.

Observation 15. Let 𝐶 be a recursively enumerable class of hyper-

graphs with unbounded adaptive width. Then #CQ (Φ𝐶 ) does not
have an FPTRAS, unless rETH fails.

Clearly, Observation 15 also rules out an FPTRAS for #DCQ (Φ𝐶 )
(matching Theorem 13) or an FPTRAS for #ECQ (Φ𝐶 ) when 𝐶 has

unbounded adaptive width.

As stated in Observation 10, there is little hope of improving

Theorem 13 to obtain an FPRAS instead of an FPTRAS. However,

as mentioned previously, if disequalities are not part of the query,

the result by Arenas et al. [5] also applies to classes of hypergraphs

with unbounded arity — they give an FPRAS for #CQ (Φ𝐶 ) if 𝐶
is a class of hypergraphs with bounded hypertreewidth. We im-

prove this result by showing that it suffices to require bounded

fractional hypertreewidth — the following theorem is proved in the

full version [22].

Theorem 16. Let 𝑏 be a positive integer. Let 𝐶 be a class of hyper-

graphs such that every member of 𝐶 has fractional hypertreewidth at

most 𝑏. Then #CQ (Φ𝐶 ) has an FPRAS.

Wedon’t knowwhether Theorem 16 can be extended to instances

with bounded adaptive width (closing the gap between Theorem 16

and the lower bound presented in Observation 15). However, this

situation now mirrors the situation in the decision world: Bounded

fractional hypertreewidth is the most general property of the class

of underlying hypergraphs, for which the conjunctive query de-

cision problem is known to be polynomial-time solvable, see [33].

Fixed-parameter tractability for this problem is also known for

classes with bounded adaptive width [36], complemented by the

matching lower bound stated in Theorem 14. The question whether

bounded fractional hypertreewidth is the right answer for the exis-

tence of a polynomial-time algorithm remains open and we refer

to the conclusion of [36] for further discussion regarding this ques-

tion. With our results from Theorems 13 and 16 we now arrive

at precisely the same gap for the existence of an FPRAS for the

corresponding counting problem #CQ.

Extensions: Sampling and Unions. Using standard methods, the

algorithmic results presented in this work can be extended in two

ways. First, approximate counting algorithms can be lifted to obtain

algorithms for approximately uniformly sampling answers. This

is based on the fact that the problems that we considered are self-

reducible (self-partitionable) [18, 29, 43]. Second, instead of single

(extended) conjunctive queries, one can also consider unions thereof.

We refer to the full version [22] for further details.



4 RELATEDWORK
The first systematic study of the complexity of exactly counting

answers to conjunctive queries is due to Pichler and Skritek [39],

and Durand and Mengel [17]. Their results have been extended

to unions of conjunctive queries by Chen and Mengel [10] and

to extended
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conjunctive queries by Dell, Roth and Wellnitz [16].

Unfortunately, all of those results have shown that exact counting

is infeasible even for very restricted classes of queries, indicating

that relaxing to approximate counting is necessary if efficient algo-

rithms are sought for wide classes of queries. As highlighted before,

a recent result by Arenas et al. [5] shows that there is an FPRAS

for approximately counting answers to conjunctive queries when-

ever the hypergraphs of the queries have bounded hypertreewidth,

yielding a significantly wider class of tractable instances than for

exact counting.

If we restrict to instances without existential quantifiers then

counting answers to conjunctive queries is equivalent to the prob-

lem of counting homomorphisms from a small relational structure

to a large one, the complexity of which was investigated by Dalmau

and Jonsson [13] in the case of exact counting and by Bulatov and

Živný [8] in the case of approximate counting.

The notion of an FPTRAS was introduced by Arvind and Ra-

man [6] and has since been established as the standard notion

for tractability of parameterised approximate counting problems

(see [37] for an overview).

5 ALGORITHMIC METHODS AND PROOF
TECHNIQUES

We conclude by presenting an overview of the most important

tools and arguments used towards achieving our main results. The

reader is referred to the full version [22] for a detailed and formal

presentation.

At the heart of our approximate counting algorithms for count-

ing answers to bounded-arity extended conjunctive queries (Theo-

rem 5) and for counting answers to unbounded-arity conjunctive

queries with disequalities (Theorem 13) lies a randomised reduction

from these problems to the problem of determining whether there

is a homomorphism between two associated relational structures.

While reductions from approximate counting to decision are com-

mon, (e.g. approximate subgraph counting via colour-coding [3, 6]),

the main difficulty in the current setting is the presence of quanti-

fied variables which make the usual reductions fail. We solve this

problem by finding an algorithm which uses an oracle for the homo-

morphism decision problem between relational structures to solve

the CQ counting problem by identifying and using carefully-tuned

auxiliary structures. In the following lemma, the sizes ∥·∥ of queries,
databases, and signatures are defined in the usual way (see the full

version [22] for details).

Lemma 17 (informal version; see [22] for details). There is a ran-

domised algorithm that is equipped with oracle access to the homo-

morphism decision problem over relational structures

(A,B) ↦→
{
1 there is a homomorphism from A to B
0 otherwise

(2)
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“Disequalities” are sometimes referred to as “Inequalities”, and “Negations” are some-

times referred to as “Non-monotone Constraints”.

and takes as inputs an extended conjunctive query 𝜑 , a database D
and 𝜀 > 0. The algorithm computes w.h.p. an 𝜀-approximation of the

number of answers of 𝜑 in D in time

exp(O(∥𝜑 ∥2)) · poly(𝜀−1, ∥D∥, 𝜈 ∥D∥𝑎) , (3)

where 𝑎 is the arity and 𝜈 is the number of negated predicates of 𝜑 .

Each oracle query (Â, B̂) that is made by the algorithm has the

property that Â can be obtained from the structure representing the

hypergraph of 𝜑 by adding unary relations. It also satisfies ∥Â∥ ≤
poly(∥𝜑 ∥).

We next discuss how to prove Lemma 17. Recall that the hy-

pergraph of 𝜑 contains a hyperedge for every atom and for every

negated atom of 𝜑 . Crucially, it does not contain hyperedges for

disequalities. Hence, proving Lemma 17 requires us not only to

solve the problem of quantified variables, but also to deal with

disequalities.

Our proof builds on the recent 𝑘-hypergraph framework of Dell,

Lapinskas andMeeks [15], which shows how to reduce approximate

counting problems to coloured or partitioned decision problems. It

is not immediately clear how this coloured version is applicable

(both because of existential variables and because of the colouring)

but we will see how to use it after stating an informal version of

their theorem. In the following theorem, 𝑉1, . . . ,𝑉ℓ are disjoint sets

of vertices of a hypergraph 𝐻 and the hypergraph 𝐻 [𝑉1, . . . ,𝑉ℓ ]
has their union as its vertex set and contains all hyperedges of 𝐻

that intersect each 𝑉𝑖 (precisely) once.

Theorem 18 (informal version of Theorem 1 of [15]). There is an

efficient algorithm𝐴(𝐻, 𝜀) with the following behaviour. Suppose that
𝜀 is a positive real number, 𝐻 is an ℓ-uniform hypergraph, and that

(in addition to learning𝑉 (𝐻 ) and ℓ) the algorithm 𝐴 has access to an

oracle for computing the following function

𝑉1, . . . ,𝑉ℓ ↦→
{
1 if 𝐻 [𝑉1, . . . ,𝑉ℓ ] has no hyperedges
0 otherwise

(4)

With high probability,𝐴(𝐻, 𝜀) computes an 𝜀-approximation to |𝐸 (𝐻 ) |.

We emphasise that, while learning 𝑉 (𝐻 ), ℓ , and 𝜀, the algorithm
in Theorem 18 does not learn 𝐸 (𝐻 ) as part of the input. The only ac-
cess that the algorithm has to 𝐸 (𝐻 ) is via the oracle which evaluates
the predicate EdgeFree(𝐻 [𝑉1, . . . ,𝑉ℓ ]).

With Theorem 18 in hand, we proceed towards proving Lemma 17

as follows: Given an extended conjunctive query 𝜑 with ℓ free vari-

ables and a database D the goal is to approximately count the

number of answers of 𝜑 in D. We define a corresponding hyper-

graph𝐻 (𝜑,D) to which we can then apply Theorem 18. The vertex

set of 𝐻 (𝜑,D) consists of ℓ copies of the universe of D (one copy

for each free variable of 𝜑). The purpose of the copies is to ensure

that 𝐻 (𝜑,D) is ℓ-uniform. Naturally, the hyperedges of 𝐻 (𝜑,D)
are chosen to correspond to the answers that we wish to count.

The key question is how to provide the oracle used by Theo-

rem 18.Wewill provide it using the oracle for (2) given by Lemma 17.

To do this, we want to reduce the decision problem solved by the

oracle in Theorem 18 (as applied to the hypergraph 𝐻 (𝜑,D)) to
the problem of detecting homomorphisms from Â to B̂, where Â
and B̂ are some appropriately-defined structures associated with



the query 𝜑 and the database D; in what follows, we elaborate on

our construction.

We start with Â, which will only depend on 𝜑 ; we make this

explicit and write Â = Â(𝜑) where
• The universe of Â(𝜑) is the set of variables of 𝜑 .
• For each atom “(𝑣1, . . . , 𝑣 𝑗 ) ∈ 𝑅” of𝜑 , we add the tuple (𝑣1, . . . , 𝑣 𝑗 )
to the relation 𝑅 of Â.

• For each negated atom “(𝑣1, . . . , 𝑣 𝑗 ) ∉ 𝑅” of 𝜑 , we add the tuple

(𝑣1, . . . , 𝑣 𝑗 ) to the relation 𝑅 of Â.

• For each variable 𝑣𝑖 of 𝜑 , we add a unary relation 𝑃𝑖 = {𝑣𝑖 }.
• For each disequality 𝜂 = “𝑣𝑖 ≠ 𝑣 𝑗 ” (with 𝑖 < 𝑗 ), we add two unary

relations 𝑅𝜂 = {𝑣𝑖 } and 𝐵𝜂 = {𝑣 𝑗 }.
We refer the reader to the full version [22] for a detailed construc-

tion. Note that Â has the same treewidth and adaptive width, re-

spectively, as the hypergraph 𝐻 (𝜑): Essentially, Â can be obtained

from 𝐻 (𝜑) by labelling the hyperedges and adding unary predi-

cates.

Now, ideally, for each tuple (𝑉1, . . . ,𝑉ℓ ) of disjoint vertex sub-

sets of 𝐻 (𝜑,D), we would like to also construct a structure B̂ of

size bounded by a polynomial in ∥𝜑 ∥ and ∥D∥ such that there is a

homomorphism from Â(𝜑) to B̂ if and only if 𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ]
has a hyperedge; this would conclude the construction by Theo-

rem 18 and the fact that 𝐻 (𝜑,D) has as many hyperedges as 𝜑 has

answers in D.

Unfortunately, the presence of disequalities in 𝜑 enforces partial

injectivity constraints and hence prevents us from constructing a

single structure B̂ with the above property.
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However, at this point,

we can rely on colour-coding to circumvent this problem. More pre-

cisely, given the tuple (𝑉1, . . . ,𝑉ℓ ) we consider multiple structures

B̂f , each corresponding to a collection f of colouring functions

which assign colours to the elements of the database D as defined

below. The objective of the construction is that𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ]
has a hyperedge if and only if, for at least one of the B̂f , there is

a homomorphism from Â(𝜑) to B̂f . We will also show that a ran-

dom choice of the structure B̂f has the desired property with high

probability.

We now present the construction of the structure B̂f in more

detail. Let 𝜑 be an extended conjunctive query and let D be a

database. Let ℓ and 𝑘 be the number of free and quantified variables

of𝜑 , respectively. Recall that the vertex set of𝐻 (𝜑,D) is the disjoint
union of ℓ copies of the universe of D. Therefore, let us assume

that each vertex of 𝐻 (𝜑,D) is of the form (𝑥, 𝑖) where 𝑥 is in the

universe of D and 𝑖 is the index of the copy. We focus here on the

most important case, which is where each set 𝑉𝑗 is from a distinct

copy (without loss of generality, from the 𝑗 ’th copy).

Let f be a collection of colouring functions that contains, for each
disequality 𝜂 of 𝜑 , a function 𝑓𝜂 from the universe of D to {𝑟, 𝑏}.
We construct a structure B̂ B B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f) as follows:
• For each 𝑖 ∈ {1, . . . , ℓ} let 𝑆𝑖 = 𝑉𝑖 (recall that the elements of

𝑉𝑖 are of the form (𝑥, 𝑖)), and for each 𝑖 ∈ {ℓ + 1, . . . , ℓ + 𝑘} let
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As mentioned previously, we could add binary relations for the disequalities to Â (𝜑)
to naively solve this problem. However, with those additional relations, the treewidth

(and the adaptive width) of Â (𝜑) could become arbitrarily large, even when 𝐻 (𝜑)
itself has low treewidth (even when it has treewidth 1).

𝑆𝑖 = 𝑈 (D)×{𝑖}, that is, 𝑆𝑖 contains all pairs (𝑥, 𝑖) with 𝑥 ∈ 𝑈 (D).
Define the universe of B̂ as𝑈 (B̂) = ⋃ℓ+𝑘

𝑖=1 𝑆𝑖 .

• For each arity-𝑎 relation 𝑅 of D, B̂ has the arity-𝑎 relation 𝑅 B̂

containing each tuple ((𝑤1, 𝑖1), . . . , (𝑤𝑎, 𝑖𝑎)) ∈ 𝑆𝑖1 × . . . × 𝑆𝑖𝑎 for

all (𝑖1, . . . , 𝑖𝑎) and (𝑤1, . . . ,𝑤𝑎) ∈ 𝑅.

• For each arity-𝑎 relation 𝑅 of D, B̂ has the arity-𝑎 relation 𝑅 B̂

containing each tuple ((𝑤1, 𝑖1), . . . , (𝑤𝑎, 𝑖𝑎)) ∈ 𝑆𝑖1 × . . . × 𝑆𝑖𝑎 for

all (𝑖1, . . . , 𝑖𝑎) and (𝑤1, . . . ,𝑤𝑎) ∉ 𝑅.

• For each variable 𝑥𝑖 of 𝜑 , B̂ has a unary relation 𝑃 B̂
𝑖

:= 𝑆𝑖 .

• For each disequality 𝜂 of 𝜑 , we add to B̂ the unary relations

𝑅 B̂
𝜂 B {(𝑥𝑖 , 𝑗) ∈ 𝑈 (B̂) | 𝑓𝜂 (𝑥𝑖 ) = 𝑟 } ,

and

𝐵 B̂
𝜂 B {(𝑥𝑖 , 𝑗) ∈ 𝑈 (B̂) | 𝑓𝜂 (𝑥𝑖 ) = 𝑏} .

For a more comprehensive presentation of the construction of

B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f), including a discussion on its size, we refer

the reader to the full version [22].

The following result establishes correctness of our construction;

again, we refer the reader to the full version [22] for the formal

statement and the proof.

Lemma19 (informal version). Let𝜑 ,D, ℓ , (𝑉1, . . . ,𝑉ℓ ), and𝐻 (𝜑,D)
as above. Then 𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ] has a hyperedge if and only if

there exists a collection f of colouring functions such that there is a

homomorphism from Â(𝜑) to B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f).

With the above lemma in hand, we are now able to sketch the

proof of Lemma 17.

Proof Sketch of Lemma 17. Given 𝜀, 𝜑 , and D, we first con-

struct Â(𝜑). Next we consider (but we do not construct) the hy-

pergraph 𝐻 (𝜑,D), the number of edges of which is the number of

answers of 𝜑 in D.

We run the algorithm given by Theorem 18 with input 𝜀 to

obtain, with high probability, an 𝜀-approximation of |𝐸 (𝐻 (𝜑,D)|.
This, however, requires us to (efficiently) simulate the oracle

𝑉1, . . . ,𝑉ℓ ↦→
{
1 𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ] has no hyperedges

0 otherwise.

(5)

Given (𝑉1, . . . ,𝑉ℓ ) for which an oracle call must be simulated, we

observe that, by Lemma 19, 𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ] has an hyperedge

if and only if there exists a collection of colouring functions f such
that there is a homomorphism from Â(𝜑) to B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f).
We take 𝑄 random guesses for the collection f , where

𝑄 = 4
|Δ | · poly(𝜀−1, ℓ, log𝑛) .

Here, Δ is the set of disequalities of 𝜑 , ℓ is the number of free

variables of 𝜑 and 𝑛 is the number of elements of D.

For each guess of f , we construct B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f), and we

use the homomorphism decision oracle (2) from the assumptions of

Lemma 17 to decide whether there is a homomorphism from Â(𝜑)
to B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f). If for at least one of the guesses, our oracle
returns 1, we determine that 𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ] has a hyperedge,
and thus we answer the oracle query (5) by returning 0. Otherwise,

we return 1.



The choice of 𝑄 allows us to prove that, with high probability,
8

one of our guesses yields an f for which a homomorphism exists

(given that 𝐻 (𝜑,D)[𝑉1, . . . ,𝑉ℓ ] has a hyperedge; otherwise, no

guess can yield a homomorphisms by Lemma 19).

Finally, this allows us to return w.h.p. an 𝜀-approximation of the

the number of edges of𝐻 (𝜑,D). Since the edge count of𝐻 (𝜑,D) is
equal to the number of answers of 𝜑 in D this gives the sought-for

result.

We point out that the overall running time is dominated by an

exponential function in ∥𝜑 ∥2 which is due to the running time of

the algorithm in Theorem 18, and by a polynomial in the size of

B̂(𝜑,D,𝑉1, . . . ,𝑉ℓ , f) which crucially depends on both, the arity and
the number of disequalities of 𝜑 . More precisely, the full proof will

establish the overall running time bound given in Equation (3). □

With Lemma 17 in hand, we now sketch the proofs of Theorems 5

and 13.

Proof Sketch of Theorem 5. We use Lemma 17 and simulate

the oracle queries to the homomorphism decision problem by run-

ning the algorithm of Dalmau et al. [14]. Since each oracle query

(Â, B̂) has the property that Â can be obtained from the hyper-

graph of 𝜑 by adding unary relations, it is easy to see that the

treewidth does not increase and is thus still bounded by the con-

stant 𝑡 in the statement of the theorem. Therefore, the algorithm

in [13] runs in polynomial time. The overall running time is ob-

tained by observing that

𝜈 ∥D∥𝑎 ≤ poly(∥𝜑 ∥, ∥D∥) ,
since 𝑎 ∈ 𝑂 (1). □

Proof Sketch of Theorem 13. Weproceed similarly to the pre-

vious proof, with three exceptions:

First, we do not use the algorithm in [14], but instead the algo-

rithm of Marx for the unbounded arity case [36].

Second, similarly to treewidth, the adaptive width does not in-

crease if unary predicates are added.

Third, we obtain the desired running time by observing that

𝜈 ∥D∥𝑎 = 0 since we do not have negated predicates; note that this

is important as ∥D∥𝑎 is not bounded by a polynomial in ∥D∥ and
∥𝜑 ∥, since 𝑎 is unbounded. □
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