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THE COMPLEXITY OF COUNTING SURJECTIVE
HOMOMORPHISMS AND COMPACTIONS *

JACOB FOCKE', LESLIE ANN GOLDBERG' , AND STANISLAV ZIVNYT

Abstract.

A homomorphism from a graph G to a graph H is a function from the vertices of G to the
vertices of H that preserves edges. A homomorphism is surjective if it uses all of the vertices
of H and it is a compaction if it uses all of the vertices of H and all of the non-loop edges of H.
Hell and Nesetfil gave a complete characterisation of the complexity of deciding whether there is
a homomorphism from an input graph G to a fixed graph H. A complete characterisation is not
known for surjective homomorphisms or for compactions, though there are many interesting results.
Dyer and Greenhill gave a complete characterisation of the complexity of counting homomorphisms
from an input graph G to a fixed graph H. In this paper, we give a complete characterisation of the
complexity of counting surjective homomorphisms from an input graph G to a fixed graph H and
we also give a complete characterisation of the complexity of counting compactions from an input
graph G to a fixed graph H. In an addendum we use our characterisations to point out a dichotomy
for the complexity of the respective approximate counting problems (in the connected case).

1. Introduction. A homomorphism from a graph G to a graph H is a function
from V(G) to V(H) that preserves edges. That is, the function maps every edge of G
to an edge of H. Many structures in graphs, such as proper colourings, independent
sets, and generalisations of these, can be represented as homomorphisms, so the study
of graph homomorphisms has a long history in combinatorics [3, 4, 20, 21, 24, 26].

Much of the work on this problem is algorithmic in nature. A very important
early work is Hell and Nesetfil’s paper [22], which gives a complete characterisation of
the complexity of the following decision problem, parameterised by a fixed graph H:
“Given an input graph G, determine whether there is a homomorphism from G to H.”
Hell and Nesetfil showed that this problem can be solved in polynomial time if H
has a loop or is loop-free and bipartite. They showed that it is NP-complete oth-
erwise. An important generalisation of the homomorphism decision problem is the
list-homomorphism decision problem. Here, in addition to the graph G, the input
specifies, for each vertex v of G, a list S, of permissible vertices of H. The problem is
to determine whether there is a homomorphism from G to H that maps each vertex
v of G to a vertex in S,. Feder, Hell and Huang [12] gave a complete characterisation
of the complexity of this problem. This problem can be solved in polynomial time
if H is a so-called bi-arc graph, and it is NP-complete otherwise.

More recent work has restricted attention to homomorphisms with certain prop-
erties. A function from V(G) to V(H) is surjective if every element of V(H) is the
image of at least one element of V/(G). So a homomorphism from G to H is surjec-
tive if every vertex of H is “used” by the homomorphism. There is still no complete
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2 JACOB FOCKE, LESLIE ANN GOLDBERG AND STANISLAV ZIVNY

characterisation of the complexity of determining whether there is a surjective homo-
morphism from an input graph G to a graph H, despite an impressive collection of
results [1, 17, 18, 19, 27]. A homomorphism from V(G) to V(H) is a compaction if
it uses every vertex of H and also every non-loop edge of H (so it is surjective both
on V(H) and on the non-loop edges in E(H)). Compactions have been studied under
the name “homomorphic image” [20, 24] and even under the name “surjective homo-
morphism” [6, 26]. Once again, despite much work [1, 30, 31, 32, 33, 34], there is still
no characterisation of the complexity of determining whether there is a compaction
from an input graph G to a graph H.

Dyer and Greenhill [10] initiated the algorithmic study of counting homomor-
phisms. They gave a complete characterisation of the graph homomorphism counting
problem, parameterised by a fixed graph H: “Given an input graph G, determine
how many homomorphisms there are from G to H.” Dyer and Greenhill showed that
this problem can be solved in polynomial time if every component of H is a clique
with all loops present or a biclique (complete bipartite graph) with no loops present.
Otherwise, the counting problem is #P-complete. Diaz, Serna and Thilikos [8] and
Hell and Nesetfil [23] have shown that the same dichotomy characterisation holds for
the problem of counting list homomorphisms.

The main contribution of this paper is to give complete dichotomy characterisa-
tions for the problems of counting compactions and surjective homomorphisms. Our
main theorem, Theorem 1.2, shows that the characterisation for compactions is dif-
ferent from the characterisation for counting homomorphisms. If every component of
H is (i) a star with no loops present, (ii) a single vertex with a loop, or (iii) a single
edge with two loops then counting compactions to H is solvable in polynomial time.
Otherwise, it is #P-complete. We also obtain the same dichotomy for the problem
of counting list compactions. Thus, even though the decision problem is still open
for compactions, our theorem gives a complete classification of the complexity of the
corresponding counting problem.

There is evidence that computational problems involving surjective homomor-
phisms are more difficult than those involving (unrestricted) homomorphisms. For
example, suppose that H consists of a 3-vertex clique with no loops together with
a single looped vertex. As [1] noted, the problem of deciding whether there is a
homomorphism from a loop-free input graph G to H is trivial (the answer is yes,
since all vertices of G may be mapped to the loop) but the problem of determining
whether there is a surjective homomorphism from a loop-free input graph G to H
is NP-complete. (To see this, recall the NP-hard problem of determining whether
a connected loop-free graph G’ that is not bipartite is 3-colourable. Given such a
graph G’, we may determine whether it is 3-colourable by letting G consist of the
disjoint union of G’ and a loop-free clique of size 4, and then checking whether there
is a surjective homomorphism from G to H.) There is also evidence that counting
problems involving surjective homomorphisms are more difficult than those involving
unrestricted homomorphisms. In Section 4.3 we consider a uniform homomorphism-
counting problem where all connected components of G are cliques without loops and
all connected components of H are cliques with loops, but both G and H are part of
the input. It turns out (Theorem 4.4) that in this uniform case, counting homomor-
phisms is in FP but counting surjective homomorphisms is #P-complete. Despite this
evidence, we show (Theorem 1.3) that the problem of counting surjective homomor-
phisms to a fixed graph H has the same complexity characterisation as the problem
of counting all homomorphisms to H: The problem is solvable in polynomial time if
every component of H is a clique with loops or a biclique without loops. Otherwise,
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COUNTING SURJECTIVE HOMOMORPHISMS AND COMPACTIONS 3

it is #P-complete. Once again, our dichotomy characterisation extends to the prob-
lem of counting surjective list homomorphisms. Even though the decision problem
is still open for surjective homomorphisms, our theorem gives a complete complexity
classification of the corresponding counting problem.

In Section 1.2 we will introduce one more related counting problem — the problem
of counting retractions. Informally, if G is a graph containing an induced copy of H
then a retraction from G to H is a homomorphism from G to H that maps the induced
copy to itself. Retractions are well-studied in combinatorics, often from an algorithmic
perspective [1, 11, 12, 13, 31, 33]. A complexity classification is not known for the
decision problem (determining whether there is a retraction from an input to H).
Nevertheless, it is easy to give a complexity characterisation for the corresponding
counting problem (Corollary 1.7). This characterisation, together with our main
results, implies that a long-standing conjecture of Winkler about the complexity of
the decision problems for compactions and retractions is false in the counting setting.
See Section 1.2 for details.

Finally, in an addendum to this work, we address the relaxed versions of the count-
ing problems where the goal is to approzimately count surjective homomorphisms,
compactions and retractions. We use our theorems to give a complexity dichotomy in
the connected case for all three of these problems.

1.1. Notation and Theorem Statements. In this paper graphs are undi-
rected and may contain loops. A homomorphism from a graph G to a graph H is a
function h: V(G) — V(H) such that, for all {u,v} € E(G), the image {h(u),h(v)} is
in E(H). We use N (G — H) to denote the number of homomorphisms from G to H.
A homomorphism h is said to “use” a vertex v € V(H) if there is a vertex u € V(G)
such that h(u) = v. It is surjective if it uses every vertex of H. We use N5 (G — H)
to denote the number of surjective homomorphisms from G to H. A homomorphism h
is said to use an edge {v1,v2} € E(H) if there is an edge {u1,u2} € E(G) such that
h(u1) = vy and h(ug) = va. It is a compaction if it uses every vertex of H and every
non-loop edge of H. We use NP (G — H) to denote the number of compactions
from G to H. H is said to be reflerive if every vertex has a loop. It is said to be
irreflezive if no vertex has a loop. We study the following computational problems!,
which are parameterised by a graph H.

Name. #Hom(H).
Input. Irreflexive graph G.
Output. N(G — H)

Name. #Comp(H).
Input. Irreflexive graph G.
Output. No™P (G — H)

Name. #SHom(H).
Input. Irreflexive graph G.
Output. NS‘“(G — H)

A list homomorphism generalises a homomorphism in the same way that a list
colouring of a graph generalises a (proper) colouring. Suppose that G is an irreflexive

IThe reason that the input graph G is restricted to be irreflexive in these problems, but that H

is not restricted, is that this is the convention in the literature. Since our results will be complexity
classifications, parameterised by H, we strengthen the results by avoiding restrictions on H. Different
conventions are possible regarding GG, but hardness results are typically the most difficult part of the
complexity classifications in this area, so restricting G leads to technically-stronger results.
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4 JACOB FOCKE, LESLIE ANN GOLDBERG AND STANISLAV ZIVNY

graph and that H is a graph. Consider a collection of sets S = {S, C V(H) : v €
V(G)} A list homomorphism from (G,S) to H is a homomorphism % from G to H
such that, for every vertex v of G, h(v) € S,. The set S, is referred to as a “list”,
specifying the allowable targets of vertex v. We use N ((G7 S)—H ) to denote the
number of list homomorphisms from (G,S) to H, N***((G,S) — H) to denote the
number of surjective list homomorphisms from (G, S) to H and N°™P((G,S) — H)
to denote the number of list homomorphisms from (G, S) to H that are compactions.
We study the following additional computational problems, again parameterised by a
graph H.

Name. #LHom(H).
Input. Irreflexive graph G and a collection of lists S = {S, CV(H) : v € V(G)}.
Output. N ((G,S) — H).

Name. #LComp(H).
Input. Irreflexive graph G and a collection of lists S = {S, CV(H) : v € V(G)}.
Output. NP ((G,S) — H).

Name. #LSHom(H).
Input. Irreflexive graph G and a collection of lists S = {S, CV(H) : v € V(G)}.
Output. N**((G,S) — H).

In order to state our theorems, we define some classes of graphs. A graph H is
a clique if, for every pair (u,v) of distinct vertices, E(H) contains the edge {u,v}.
(Like other graphs, cliques may contain loops but not all loops need to be present.)
H is a biclique if it is bipartite (disregarding any loops) and there is a partition of
V(H) into two disjoint sets U and V such that, for every w € U and v € V, E(H)
contains the edge {u,v}. A biclique is a star if [U| =1 or |[V| =1 (or both). Note
that a star may have only one vertex since, for example, we could have |U| = 1 and
|[V]| = 0. We sometimes use the notation K, ; to denote an irreflexive biclique whose
vertices can be partitioned into U and V with |[U| = a and |V| = b. The size of a
graph is the number of vertices that it has. We can now state the theorem of Dyer
and Greenhill [10], as extended to list homomorphisms by Diaz, Serna and Thilikos
[8] and Hell and Nesgettil [23].

THEOREM 1.1 (Dyer, Greenhill). Let H be a graph. If every connected compo-
nent of H is a reflexive clique or an irreflexive biclique, then the problems #Hom(H)
and #LHom(H) are in FP. Otherwise, #Hom(H) and #LHom(H) are #P-complete.

We can also state the main results of this paper.

THEOREM 1.2. Let H be a graph. If every connected component of H is an ir-
reflexive star or a reflexive clique of size at most 2 then #Comp(H) and #LComp(H)
are in FP. Otherwise, #Comp(H) and #LComp(H) are #P-complete.

THEOREM 1.3. Let H be a graph. If every connected component of H is a reflex-
we clique or an irreflexive biclique, then #SHom(H) and #LSHom(H) are in FP.
Otherwise, #SHom(H) and #LSHom(H) are #P-complete.

The tractability results in Theorem 1.2 follow from the fact that the number of
compactions from a graph G to a graph H can be expressed as a linear combination
of the number of homomorphisms from G to certain subgraphs of H, see Section 3.1.
A proof sketch of the intractability result in Theorem 1.2 is given at the beginning of
Section 3.2. Theorem 1.3 is simpler, see Section 4.
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1.2. Reductions and Retractions. In the context of two computational prob-
lems P; and Ps, we write P; < Py if there exists a polynomial-time Turing reduction
from P; to Po. If there exist such reductions in both directions, we write P; = Ps.
Theorems 1.1, 1.2 and 1.3 imply the following observation.

OBSERVATION 1.4. Let H be a graph. Then

#Hom(H) = #LHom(H) = #SHom(H) = #LSHom(H)
< #Comp(H) = #LComp(H).

In order to see how Observation 1.4 contrasts with the situation concerning deci-
sion problems, it is useful to define decision versions of the computational problems
that we study. Thus, Hom(H)) is the problem of determining whether N (G — H) = 0,
given an input G of #Hom(H). The decision problems Comp(H), SHom(H) and
LHom(H) are defined similarly.

It is also useful to define the notion of a retraction. Suppose that H is a graph
with V(H) = {v1,...,v.} and that G is an irreflexive graph. We say that a tuple
(uq,...,uc) of ¢ distinct vertices of G induces a copy of H if, for every 1 <a < b < ¢,
{ug,up} € E(G) < {vq, v} € E(H). A retraction from (G;uy,...,u.) to H is
a homomorphism h from G to H such that, for all i € [¢], h(u;) = v;. We use
Nret((G;ul, ceyUe) = H) to denote the number of retractions from (G;uq,...,u.)
to H. We briefly consider the retraction counting and decision problems, which are
parameterised by a graph H with V(H) = {vy,...,v.}.

Name. #Ret(H).

Input. Irreflexive graph G and a tuple (uq,...,u.) of distinct vertices of G that
induces a copy of H.

Output. N™'((G;u1,...,uc) — H).

Name. Ret(H).

Input. Irreflexive graph G and a tuple (uq,...,u.) of distinct vertices of G that
induces a copy of H.

Output. Does N*'((G;uy,...,u;) = H) = 0?

The following observation appears as Proposition 1 of [1]. The proposition is
stated for more general structures than graphs, but it applies equally to our setting.

ProposITION 1.5 (Bodirsky et al.). Let H be a graph. Then
Hom(H) < SHom(H) < Comp(H) < Ret(H) < LHom(H).

We have already mentioned the fact (pointed out by Bodirsky et al.) that if H
is an irreflexive 3-vertex clique together with a single looped vertex, then Hom(H)
is in P, but SHom(H) is NP-complete. There are no known graphs H separating
SHom(H), Comp(H) and Ret(H). Moreover, Bodirsky et al. mention a conjecture [1,
Conjecture 2], attributed to Peter Winkler, that, for all graphs H, Comp(H) and
Ret(H) are polynomially Turing equivalent.

The following observation, together with our theorems, implies Corollary 1.8 (be-
low), which shows that the generalisation of Winkler’s conjecture to the counting
setting is false unless FP = #P, since #Comp(H) and #Ret(H) are not polynomi-
ally Turing equivalent for all H.

20Once again, some works would allow G to have loops, and would insist that loops are preserved
in the induced copy of H. We prefer to stick with the convention that G is irreflexive, but this does
not make a difference to the complexity classifications that we describe.
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OBSERVATION 1.6. Let H be a graph. Then
#Ret(H) < #LHom(H) and #Hom(H) < #Ret(H).

Proof. Let V(H) = {v1,...,v.}. We first reduce #Ret(H) to #LHom(H). Con-
sider an input to #Ret(H) consisting of G and (uq,...,u.). For each a € [¢], let
Sy, be the set containing the single vertex v,. For each v € V(G) \ {u1,...,uc},
let S, = V(H). Let S = {S, : v € V(G)}. Then N*™'((G;uy,...,u.) = H) =
N((G,S) = H).

We next reduce #Hom(H) to #Ret(H). Let E° be the set of all non-loop edges
of H. Consider an input G to #Hom(H). Suppose without loss of generality that
V(G) is disjoint from V(H) = {v1,...,v.}. Let G’ be the graph with vertex set
V(G) UV (H) and edge set E(G)U E°. Then (vy,...,v.) induces a copy of H in G’
and N(G — H) = N*™'((G';v1,...,v.) — H). 0

Observation 1.6 immediately implies the following dichotomy characterisation for
the problem of counting retractions.

COROLLARY 1.7. Let H be a graph. If every connected component of H is a
reflexive clique or an irreflexive biclique, then #Ret(H) is in FP. Otherwise, #Ret(H)
is #P-complete.

Proof. The corollary follows immediately from Observation 1.6 and Theorem 1.1.0

COROLLARY 1.8. Let H be a graph. Then

#Hom(H) = #LHom(H) = #SHom(H) = #LSHom(H) = #Ret(H) <
#Comp(H) = #LComp(H).

Furthermore, there is a graph H for which #Comp(H) and #LComp(H) are #P-
complete, but #Hom(H), #LHom(H), #SHom(H), #LSHom(H) and #Ret(H) are
in FP.

Proof. Theorems 1.1, 1.2, 1.3 and Corollary 1.7 give complexity classifications for
all of the problems. The reductions in the corollary follow from three easy observa-
tions.

e All problems in FP are trivially inter-reducible.

e All #P-complete problems are inter-reducible.

e All problems in FP are reducible to all #P-complete problems.
The separating graph H can be taken to be any reflexive clique of size at least 3 or
any irreflexive biclique that is not a star. 0

1.3. Related Work. This section was added after the announcement of our
results (https://arxiv.org/abs/1706.08786v1), in order to draw attention to some in-
teresting subsequent work [7, 5].

Both our tractability results and our hardness results rely on the fact (see Theo-
rem 3.8) that the number of compactions from G to H can be expressed as a linear
combination of the number of homomorphisms from G to certain subgraphs J of H.
A similar statement applies to surjective homomorphisms.

As we note in the paper, these kinds of linear combinations have been noticed
in related contexts before, for example in [2, Lemma 4.2] and in [26]. We use the
linear combination of Theorem 3.8, together with interpolation, to prove hardness.
Although it is standard to restrict the input graph G to be irreflexive (and this
restriction makes the results stronger) the fact that G is required to be irreflexive
causes severe difficulties.

This manuscript is for review purposes only.
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In fact, Dell’s note about our paper [7] shows that, if you weaken the theorem
statements by allowing the input G to have loops, then a simpler interpolation based
on a very recent paper by Curticapean, Dell and Marx [6] can be used to make the

proofs very elegant! The exact same idea, written more generally, was also discovered
by Chen [5].

2. Preliminaries. It will often be technically convenient to restrict the problems
that we study by requiring the input graph G to be connected. In each case, we do this
by adding a superscript “C” to the name of the problem. For example, the problem
#Hom® (H) is defined as follows.

Name. #Hom®(H).
Input. A connected irreflexive graph G.
Output. N(G — H)

It is well known and easy to see (See, e.g., [26, (5.28)]) that if G is an irreflexive
graph with components Gi,...,G; then N(G — H) = Hie[t] N(Gi — H) Simi-
larly, given S = {S, C V(H) : v € V(G)} let S; = {S, : v € V(G;)}. Then
N((G,8) —» H) = Hie[t] N((G;,8;) = H). Thus, Dyer and Greenhill’s theorem
(Theorem 1.1) can be re-stated in the following convenient form.

THEOREM 2.1 (Dyer, Greenhill). Let H be a graph. If every connected compo-
nent of H is a reflexive clique or an irreflevive biclique, then #Hom®(H), #Hom(H),
#LHomC(H) and #LHom(H) are all in FP. Otherwise, #Hom®(H), #Hom(H),
#LHom®(H) and #LHom(H) are all #P-complete.

Finally, we introduce some frequently used notation. For every positive integer n,
we define [n] = {1,...,n}.

A subgraph H’ of H is said to be loop-hereditary with respect to H if for every
v € V(H') that is contained in a loop in E(H), v is also contained in a loop in E(H').

We indicate that two graphs G; and G5 are isomorphic by writing G; = Gs.

Given sets S1 and Sy, we write S; ® Sy for the disjoint union of S7 and S5. Given
graphs G1 and Ga, we write G1 @ G for the graph (V(G1) ®V(G2), E(G1) ® E(G2)).
If V is a set of vertices then we write G; @ V as shorthand for the graph Gy & (V, 0).
Similarly, if M is a matching (a set of disjoint edges) with vertex set V', then we write
G1 ® M as shorthand for the graph G; & (V, M).

3. Counting Compactions. The section is divided into a short subsection on
tractable cases and the main subsection on hardness results which also contains the
proof of the final dichotomy result, Theorem 1.2.

3.1. Tractability Results. The tractability result in Lemma 3.1 follows from
the fact (see Theorem 3.8) that the number of compactions from G to H can be
expressed as a linear combination of the number of homomorphisms from G to certain
subgraphs J of H. While we need the full details of our particular linear expansion
to derive our hardness results, the following simpler version suffices for tractability.

LEMMA 3.1. Let H be a graph such that every connected component is an irreflex-
ive star or a reflexive clique of size at most 2. Then #Comp(H) and #LComp(H)
are in FP.

Proof. First we deal with the case that H is the empty graph. Suppose that H
is the empty graph and let (G, S) be an instance of #LComp(H). If G is empty then
N¢™P((G,8) — H) = 1. Otherwise, N°™P((G,S) — H) = 0. Thus, if H is empty,
then #LComp(H) is in FP. Obviously, this also implies that #Comp(H) is in FP.

This manuscript is for review purposes only.
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Let H be the set of all non-empty graphs in which every connected component is
an irreflexive star or a reflexive clique of size at most 2. We will show that for every
H € H, #LComp(H) is in FP. To do this, we need the following notation. Given
a graph H, let m(H) denote the sum of |V(H)| and the number of non-loop edges
of H. We will use induction on m(H).

The base case is m(H) = 1. In this case, H has only one vertex w. If G is
non-empty and has w € S, for every vertex v € V(G) then NP ((G,S) — H) = 1.
Otherwise, NP ((G,S) — H) is 0. So #LComp(H) is in FP.

For the inductive step, consider some H € H with m(H) > 1. Let (G,S) be
an instance of #LComp(H). If G is empty then N©™P((G,S) — H) = 0, so sup-
pose that G is non-empty. For every subgraph H’ of H let Sy denote the set of
lists Spr = {Sy NV(H') : v € V(G)}. 1t is easy to see that N((G,S) = H) =
> NP ((G,Spy) — H'), where the sum is over all loop-hereditary subgraphs H’
of H. This observation is well known and is implicit, e.g, in the proof of a lemma of
Borgs, Chayes, Kahn and Lovész [2, Lemma 4.2] (in a context without lists or loops).

A subgraph H’ of H is said to be a proper subgraph of H if either V(H') is
a strict subset of V(H) or E(H') is a strict subset of E(H) (or both). For every
graph H, let Sub<(H) denote the set of non-empty proper subgraphs of H that are
loop-hereditary with respect to H. Note that if H € H and H' € Sub<(H) then
H' € H and m(H') < m(H). We can refine the summation as follows.

N((G,S) = H) = N“"((G,8) = H)+ Y N“"((G,Sy)— H').
H'€Sub<(H) a

Since H € H, every component of H is a reflexive clique or an irreflexive biclique,
so Theorem 1.1 shows that the quantity N((G7S) — H) on the left-hand side can
be computed in polynomial time. By induction, we see that every term of the form
Ncomp((G, Su) — H') can also be computed in polynomial time. Subtracting this
from the left-hand side, we obtain Ncomp((G, S) — H), as desired.

Thus, we have proved that #LComp(H) is in FP. The problem #Comp(H) is a
restriction of #LComp(H), so it is also in FP.

3.2. Hardness Results. This is the key section of this work. In this section,
we consider a graph H that has a connected component that is not an irreflexive star
or a reflexive clique of size at most 2. The objective is to show that #Comp(H) and
#LComp(H) are #P-hard (this is the hardness content of Theorem 1.2).

We start with a brief proof sketch. The easy case is when H contains a component
that is not a reflexive clique or an irreflexive biclique. In this case, Dyer and Greenhill’s
Theorem 1.1 shows that #Hom(H) is #P-hard. We obtain the desired hardness
by giving (in Theorem 3.4) a polynomial-time Turing reduction from #Hom(H) to
#Comp(H). The result is finished off with a trivial reduction from #Comp(H) to
#LComp(H). The proof of Theorem 3.4 is not difficult — given an input G to
#Hom(H), we add isolated vertices and edges to G and recover the desired quantity
N (G — H ) using an oracle for #Comp(H) and polynomial interpolation. There are
small technical issues related to size-1 components in H, and these are dealt with in
Lemma 3.2.

The more interesting case is when every component of H is a reflexive clique or
an irreflexive biclique, but some component is either a reflexive clique of size at least 3
or an irreflexive biclique that is not a star. The first milestone is Lemma 3.14, which
shows #P-hardness in the special case where H is connected. We prove Lemma 3.14
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in a slightly stronger setting where the input graph G is connected. This allows us,
in the remainder of the section, to generalise the connected case to the case in which
H is not connected.

The main difficulty, then, is Lemma 3.14. The goal is to show that #Comp(H)
is #P-hard when H is a reflexive clique of size at least 3 or an irreflexive biclique
that is not a star. Our main method for solving this problem is a technique (Theo-
rem 3.8) that lets us compute the number of compactions from a connected graph
G to a connected graph H using a weighted sum of homomorphism counts, say
N (G — J1), cee, N(G — Jk). An important feature is that some of the weights might
be negative.

Our basic approach will be to find a constituent J; such that #Hom®(.J;) is #P-
hard and to reduce #Hom®(.J;) to the problem of computing the weighted sum. Of
course, if computing N(G — J1) is #P-hard and computing N(G — J2) is #P-hard,
it does not follow that computing a weighted sum of these is #P-hard.

In order to solve this problem, in Lemmas 3.10 and 3.11 we use an argument
similar to that of Lovdsz [25, Theorem 3.6] to prove the existence of input instances
that help us to distinguish between the problems #Hom®(.J}), ..., #Hom®(J;). The-
orem 3.12 then provides the desired reduction from a chosen #Hom®(.J;) to the prob-
lem of computing the weighted sum. Theorem 3.12 is proved by a more complicated
interpolation construction, in which we use the instances from Lemma 3.11 to modify
the input.

Having sketched the proof at a high level, we are now ready to begin. We start
by working towards the proof of Theorem 3.4. The first step is to show that deleting
size-1 components from H does not add any complexity to #Comp(H).

LEMMA 3.2. Let H be a graph that has exactly q size-1 components. Let H' be the
graph constructed from H by removing all size-1 components. Then #Comp(H') <

#Comp(H).

Proof. Let W = {ws,...,wq} be the vertices of H that are contained in size-1
components. We can assume g > 1, otherwise H' = H. Let G’ be an input to
#Comp(H') and note that G’ might contain isolated vertices. For any non-negative
integer t, let V; be a set of t isolated vertices, distinct from the vertices of G’, and
let Gy = G' ®V;. For all i € {0,...,t}, we define S(G’) to be the number of
homomorphisms ¢ from G’ to H with the following properties:

1. o uses all non-loop edges of H'.

2. le(V(G))n{ws,...,wg} =1, ‘
where o(V(G")) is the image of V(G’) under the map o. We define N*(V;) as the
number of homomorphisms 7 from V; to H such that {wy,...,w;} C 7(V(V4)). Intu-
itively, N%(V}) is the number of homomorphisms from V; to H that use at least a set of
i arbitrary but fixed vertices of H, as the particular choice of vertices {wy,...,w;} is
not important when counting homomorphisms from a set of isolated vertices. For any
compaction v: V(G¢) — V(H), the restriction 7|y () has to use all non-loop edges in
H'. As H' does not have size-1 components, this implies that all vertices other than
w,...,wy are used by 7|y (). Say, additionally, that v uses ¢ — i vertices from W,
for some i € {0,...,q}. Then, 7|y, has to use the remaining ¢ vertices. Thus, for each
fixed ¢ > 0, we obtain a linear equation:

q
NO™P (G — H) =Y ST(G')N'(Vi).
=0 N N —

by x; at,g
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By choosing g+ 1 different values for the parameter ¢ we obtain a system of linear

equations. Here, we choose ¢t = 0,...,q. Then the system is of the form b = Ax for
bo a0,0 . aqu i)
b=|: A= oo, and X =
by Aq0 --- Ggq Zq

Note, that the vector b can be computed using ¢+ 1 #Comp(H ) oracle calls. Further,
T, = SO(G/) _ NCOInp(Gl N Hl).

Thus, determining x is sufficient for computing the sought-for N™P (G’ — H'). It
remains to show that the matrix A is of full rank and is therefore invertible.

If t < i, we observe that a; ; = 0 as we cannot use at least ¢ vertices of H when we
have fewer than ¢ vertices in the domain. For the diagonal elements with ¢ € {0,..., ¢}
we have that a;; = N*(V;) = t! (note that 0! = 1). Hence,

o o --- 0
A * 1!

0

* x  ql

is a triangular matrix with non-zero diagonal entries, which completes the proof. 0O

LEMMA 3.3. Let H be a graph without any size-1 components. Then #Hom(H) <
#Comp(H).

Proof. The proof is by interpolation and is somewhat similar to the proof of
Lemma 3.2. Let G be an input to #Hom(H). We design a graph G; = G @ I; as an
input to the problem #Comp(H) by adding a set I; of ¢ disjoint new edges to the
graph G.

We introduce some notation. Let E°(H) be the set of non-loop edges of H and
let r = |E°(H)|. Let S*(G) be the number of homomorphisms o from G to H that
use exactly k of the non-loop edges of H (additionally, ¢ might use any number of
loops). Let {ej1,...,ex} be a set of k arbitrary but fixed non-loop edges from H. We
define N*(I;) as the number of homomorphisms 7 from I; to H such that {ey, ..., e}
are amongst the edges used by 7. Note that the particular choice of edges {e1, ..., ex}
is not important when counting homomorphisms from an independent set of edges to
H-—N*(I}) only depends on the numbers k and t.

We observe that, for each compaction v: V(G¢) — V(H), the restriction v|y(q)
uses some set F' C E°(H) of non-loop edges and does not use any other non-loop
edges of H. Suppose that F has cardinality |F'| = r — k for some k € {0,...,7}. Then
Ylv(r,) uses at least the remaining & fixed non-loop edges of H. As H does not have
any size-1 components, this ensures at the same time that ~ is surjective.

Therefore, we obtain the following linear equation for a fixed ¢ > 0:

NO™P(Gy — H) =Y S™HG) NH(I).

by at, k

As in the proof of Lemma 3.2, we choose t = 0,...,r to obtain a system of linear
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equations with

bo apo ... Qo ZTo
b=|": A= oo and X =

b, aro ... Grp T,

)

We can compute b using a #Comp(H) oracle. Further,

i:xk = isr—’f(G) = is’c(a) =N(G — H).
k=0 k=0 k=0

Thus, determining the vector x is sufficient for computing the sought-for number of
homomorphisms N (G — H )

Finally, we show that A is invertible. If ¢ < k, we observe that a; j, = NF(I) =0,
as clearly it is impossible to use more than ¢ edges of H when there are only ¢
edges in I;. Further, for the diagonal elements it holds that for ¢ € [r] we have
aty = N'(I;) = 2't! as there are t! possibilities for assigning the edges in I; to the
fixed set of ¢t edges of H and there are 2! vertex mappings for each such assignment
of edges, also N°(Iy) = 1. Hence,

1 0 0
111
A * 2711
0
x ... %k 2Tyl
is a triangular matrix with non-zero diagonal entries and is therefore invertible. 0

THEOREM 3.4. Let H be a graph. Then #Hom(H) < #Comp(H).

Proof. Let H' be the graph constructed from H by removing all size-1 compo-
nents. By Lemma 3.2 we obtain #Comp(H') < #Comp(H ). Then Lemma 3.3 can be
applied to the graph H’ and thus we obtain #Hom(H') < #Comp(H') < #Comp(H).
Finally, it follows from Theorem 1.1 that #Hom(H') = #Hom(H), which gives
#Hom(H) = #Hom(H') < #Comp(H') < #Comp(H). O

Theorem 3.4 shows that hardness results from Theorem 1.1 will carry over from
#Hom(H) to #Comp(H). We also know some cases where #Comp(H) is tractable
from Lemma 3.1. The complexity of #Comp(H) is still unresolved if every com-
ponent of H is a reflexive clique or an irreflexive biclique, but some reflexive clique
has size greater than 2, or some irreflexive biclique is not a star. This is the case
described at length at the beginning of the section. Recall that the first step is to
specify a technique (Theorem 3.8) that lets us compute the number of compactions
from a connected graph G to a connected graph H using a weighted sum of homo-
morphism counts, say N(G — Jl), e N(G — Jk). Towards this end, we introduce
some definitions which we will use repeatedly in the remainder of this section.

DEFINITION 3.5. A weighted graph set is a tuple (H, \), where H is a set of non-
empty, pairwise non-isomorphic, connected graphs and X\ is a function \: H — 7Z.

DEFINITION 3.6. Let H be a connected graph. By Sub(H) we denote the set of
non-empty, loop-hereditary, connected subgraphs of H. Let Sy be a set which contains
exactly one representative of each isomorphism class of the graphs in Sub(H). Finally,
for H € Sy, we define pug(H') to be the number of graphs in Sub(H) that are
isomorphic to H'.

This manuscript is for review purposes only.



473

474
A75
176
477
478
479

4180

481
482

483

484
185
486
487

488

489
490
491
492
193
494

495

12 JACOB FOCKE, LESLIE ANN GOLDBERG AND STANISLAV ZIVNY

Note that for a connected graph H, we have pgy(H) = 1.

DEFINITION 3.7. For each non-empty connected graph H, we define a weight func-
tion Ay which assigns an integer weight to each non-empty connected graph J.
o If J is not isomorphic to any graph in Sg, then Ag(J) = 0.
o If J= H, then A\g(J) =1.
e Finally, if J is isomorphic to some graph in Sy but J 2 H, we define Ay (J)
inductively as follows.

)\H(J):* E ,LLH(H,))\H/(J).
HIESH
s.t. H'2H

Note that Ay is well-defined as all graphs H' € Sy with H' 2 H are smaller than H
either in the sense of having fewer vertices or in the sense of having the same number
of vertices but fewer edges.

The following theorem is the key to our approach for computing the number of
compactions from a connected graph G to a connected graph H using a weighted sum
of homomorphism counts. In the Appendix, we give an illustrative example where
we verify the theorem for the case H = Ky 3 and we give the intuition behind the
definitions. Here we go on to give the formal statement and proof.

THEOREM 3.8. Let H be a non-empty connected graph. Then for every non-
empty, irreflexive and connected graph G we have

N™(G— H) = Y Au(J)N(G = J).
JESH

Proof. Let Hy, Hs,... be the set of non-empty connected graphs sorted by some
fixed ordering that ensures that if H; is isomorphic to a subgraph of Hj, then i < j.
We verify the statement of the theorem by induction over the graph index with respect
to this ordering. Let G be non-empty, irreflexive and connected.

For the base case, H; is K7, which is the graph with one vertex and no edges. In
this case, Sg, = {K1} and Ak, (K1) = 1. Also

N©™ (G — K1) = N(G — Ki).

So the theorem holds in this case.

Now assume that the statement holds for all graphs up to index 7 and consider
the graph H;;1. For ease of notation we set H = H,;;1. We use the fact that every
homomorphism from a connected graph G to H;;1 is a compaction onto some non-
empty, loop-hereditary and connected subgraph of H;1; and vice versa. Thus, it holds
that

N(G—H)= Y pg(H) N (G~ H')
H'eSy
=N (G—H)+ Y pu(H) N°"(G— H).

H'eSy
s.t. H'2H
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COUNTING SURJECTIVE HOMOMORPHISMS AND COMPACTIONS 13

Thus, we can rearrange and use the induction hypothesis to obtain

NO(G = H) = N(G = H) = Y7 pu(H)-N™(G — H)

H'eSy
s.t. H'2H
=NG—=H)— > pu(H)- > Aw(J)N(G—J).
H’GSH JGSHI
s.t. H'2H

Then we change the order of summation and use that Ag/(J) = 0 if J is not isomor-
phic to any graph in Sy to collect all coefficients that belong to a particular term
N(G — J). We obtain

Nem (G H) =N(G = H) = > (Y wn(H) ()N (G~ J)
JeSH H’ €Sy
st. JEH st. H'22H

= > Au(N(G = J). 0
JESH

We remark that Theorem 3.8 can be generalised to graphs H and G with multiple
connected components by looking at all subgraphs of H, rather than just at the
connected ones. However, within this work, the version for connected graphs suffices.

Let (H, ) be a weighted graph set. The following parameterised problem is not
natural in its own right, but it helps us to analyse the complexity of #Comp® (H):

Name. #GraphSetHomC((H, \)).

Input. An irreflexive, connected graph G.

0 if G is empty
Output. Zy A\ (G
P ua(G) = Y sen MJ)N (G —J)  otherwise.

COROLLARY 3.9. Let H be a non-empty connected graph. Then
#CompC(H) = #GraphSetHomC ((Sw, M\ir)).

Proof. The corollary follows directly from Theorem 3.8. O

Corollary 3.9 gives us the desired connection between weighted graph sets and
compactions. We will use this later in the proof of Lemma 3.14 to establish the #P-
hardness of #Comp®(H) when H is either a reflexive clique of size at least 3 or an
irreflexive biclique that is not a star.

Our next goal is to prove Theorem 3.12, which states that, for certain weighted
graph sets (H, \), determining Z (@) is at least as hard as computing N (G — J)
for some graph J from the set H with A\(J) # 0. To this end, we first introduce two
lemmas that help us to distinguish between different graphs J in the interpolation
that we will later use to prove Theorem 3.12.

For the following lemmas, we introduce some new notation. For a graph G with
distinguished vertex v € V(G) and a graph H with distinguished vertex w € V(H),
the quantity N ((G,v) — (H,w)) denotes the number of homomorphisms h from G to
H with h(v) = w. Analogously, N™ ((G,v) — (H,w)) denotes the number of injective
homomorphisms h from G to H with h(v) = w. If there exists an isomorphism
from G to H that maps v onto w, we write (G,v) = (H,w), otherwise we write
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(G,v) 2 (H,w). In the following lemma, we show that for two such target entities
(Hi,w) and (Hs,ws) that are non-isomorphic, there exists an input which separates
them. To this end, we use an argument very similar to that presented in [16, Lemma
3.6] and in the textbook by Hell and Nesetfil [24, Theorem 2.11], which goes back to
the works of Lovész [25, Theorem 3.6].

LemMA 3.10. Let Hy and Hy be connected graphs with distinguished vertices wy €
V(Hy) and wy € V(Hs) such that (Hy,wi) 2 (Hz,ws2). Suppose that one of the
following cases holds:

Case 1. Hy and Ho are reflexive graphs.

Case 2. Hy and Hy are irreflexive bipartite graphs, each of which contains at

least one edge.
Then
i) There exists a connected irreflexive graph G with distinguished vertexr v €
V(G) for which N ((G,v) = (Hy,w1)) # N ((G,v) = (Ha, w2)).
it) In Case 2 we can assume that G contains at least one edge and is bipartite.

Proof. In order to shorten the proof, we define some notation that depends on
which case holds. In Case 1, we say that a tuple (G, v) consisting of a graph G with
distinguished vertex v is relevant if G is connected and reflexive. In Case 2, we say
that it is relevant if G is connected, irreflexive and bipartite and contains at least one
edge. We start with a claim that applies in either case.

Claim: There exists a relevant (G,v) such that

N((G/U) — (thl)) 7é N((GJJ) — (HQ,U}Q)).

Proof of the claim: To prove the claim, assume for a contradiction that for all
relevant (G, v) we have

(31) N((G,’U) — (Hl,wl)) = N((G,’U) — (HQ,’LUQ)).

The contradiction will follow from the following subclaim:

Subclaim: For every relevant (G,v),
Ninj((G»U) - (Hlvwl)) = Ninj((GaU) - (H27w2))-

Proof of the subclaim: The proof of the subclaim is by induction on the number
of vertices of G. For the base case of the induction we treat the two cases separately.

In Case 1, the base case of the induction is |[V(G)| = 1. The relevant (G,v)
is the graph consisting of the single (looped) vertex v. For every reflexive graph H
and vertex w € V(H) we have that N ((G,v) = (H,w)) = N"™((G,v) = (H,w)).
Therefore, (3.1) implies that the subclaim is true for this (G, v).

In Case 2, the base case of the induction is |[V(G)| = 2. (There are no relevant
(G,v) with |V(G)| < 2 since G has to contain an edge.) Consider a relevant (H,w).
Since H is irreflexive and the two vertices of G are connected by an edge (so cannot be
mapped by a homomorphism to the same vertex of H) we have N ((G,v) — (H,w)) =
N™((G,v) = (H,w)). Once again, (3.1) implies that the subclaim is true for this
(G,v).

For the inductive step, suppose that the subclaim holds for all relevant (G,v) in
which G has up to k — 1 vertices. Consider a relevant (G, v) with |V(G)| = k. Let ©
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U1 V2 " {'UQ}
v3 {v1,v3}
X

AN

Vg Us {1)4 , Us }

G 0 Gle

Fi1c. 1. Graph G and the corresponding quotient graph Glg for 0 = {{v2}, {v1,vs}, {vs,v5}}.

be the set of partitions of V/(G) — that is, each 6 € © is a set {Uq,...,U,} for some
integer j such that the elements of § are non-empty and pairwise disjoint subsets of
V(G) with J]_, U; = V(G). For 0 € © with § = {U,...,U;}, by G|y we denote the
corresponding quotient graph, i.e. let G|g be the graph with vertices {Uy,...,U;} that
has an edge {U;, Uy } if and only if there exist v € U; and u € Uy with {v,u} € E(G).
Therefore, G|p might have loops but no multi-edges, see Figure 1. Let vy denote
the vertex of G|y which corresponds to the equivalence class of 8 that contains the
distinguished vertex v. Finally, let 7 denote the partition of V(G) into singletons.
Then for every relevant (H,w) it holds that

N((G,v) = (H,w)) = Z N™((Glg,ve) = (H,w))

6cO
= N"((Glr,v,) > (Hw)) + > N™((Glo,ve) — (H,w))
0coO\{r}
(3.2) = Ninj((G,U) — (H,w)) + Z Ninj((GLg,Ug) — (H,w)),
0co\{r}

where the third equality follows as G|, = G.

Now we show that only relevant tuples (Glg, vg) actually contribute to the sum
n (3.2). First, note that since G is connected, so is G|g.

In Case 1, every quotient graph G|y is reflexive. Therefore, for every 6 € ©\ {7},
the tuple (Glg, vg) is relevant.

In Case 2, H is an irreflexive bipartite graph with at least one edge. Therefore,
we have N™ ((Glg,vg) — (H,w)) > 0 only if Glg is an irreflexive bipartite graph and
also, 6 is a proper vertex-colouring of G, i.e. every part of § is an independent set.
For such a partition 6, G|y has at least one edge if G does. We have now shown that
only relevant tuples (G|g, vg) contribute to the sum in (3.2).

Therefore, let " be the set of all partitions 6 of V(G) such that (G|g, vg) is relevant.
Then, we can rephrase (3.2) as follows.

(3.3)
N((G,v) = (H,w)) = N™((G,v) — (H,w)) + Z N™((Glg,ve) — (H,w)).
ocr\{r}

To prove the subclaim, we can set (H,w) in (3.3) to be (Hy,wy). Similarly, we can
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set it to be (Ha,ws). Then, we can use the induction hypothesis, the subclaim, on all
tuples (G|g, vg) in the sum as all these tuples are relevant and the partitions § € I'\ {7}
have strictly fewer than k parts. Applying (3.1), we obtain

Ninj((G7U) = (Hi,w1)) = Ni“j((G,v) — (Ha,w2)),

which completes the induction and the proof of the subclaim. (End of the proof of
the subclaim.)

We show next how to use the subclaim to derive a contradiction. In particular,
in the subclaim we can set (G,v) to be either (Hy,w;) or (Hs,ws). This implies
(Hy,w1) & (Ha,ws), which gives the desired contradiction. Thus, we have shown
contrary to (3.1) that there exists a relevant (G, v) with

N((G,v) = (Hi,w1)) # N ((G,v) = (Hz,w2))

and therefore we have proved the claim. (End of the proof of the claim.)

In Case 2, the claim is identical to the statement of the lemma. However, in Case
1 a relevant tuple (G, v) contains a reflexive graph G, whereas for the statement of
the lemma, G has to be irreflexive. This is easily fixed as we can set G° to be the
graph constructed from G by removing all loops. Using the fact that H; and Hs are
reflexive, we obtain for ¢ = 1 and ¢ = 2 that

N((GO,’U) — (H“wz)) = N((G, U) — (HZ,’LUZ))

Hence, the choice (G, v) has all the desired properties. O

In the following lemma, we generalise the pairwise property from Lemma 3.10.
The result and the proof are adapted versions of [15, Lemma 6]. For ease of notation
let ([g}) denote the set of all pairs {7, j} with i,j € [k] and i # j.

LEmMMA 3.11. Let Hy,...,Hy be connected graphs with distinguished vertices
wi, ..., w, where w; € V(H;) for all i € [k] and, for every pair {i,j} € (U;]), we
have (H;,w;) 2 (Hj,w;). Suppose that one of the following cases holds:

Case 1. Vi € [k], H; is a reflexive graph.

Case 2. Yi € [k], H; is an irreflexive bipartite graph that contains at least one

edge.
Then
i) There exists a connected irreflexive graph G with a distinguished vertex v €
V(G) such that, for every {i,j} € ([]2“]), it holds that N ((G,v) = (H;, w;)) #
N((G,v) — (Hj,wj)).

it) In Case 2 we can assume that G contains at least one edge and is bipartite.

Proof. Again, we use the notion of relevant tuples but slightly modify the defini-
tion from the one given in the proof of Lemma 3.10. A tuple (G,v) is called relevant
if G is a connected irreflexive graph and, in Case 2, if additionally G contains at least
one edge and is bipartite. We show that there exists a relevant (G, v) such that for
every {i,j} € ([g}) we have

N((G,U) — (HZ,’LUZ)) 75 N((G, 1}) — (Hj,wj)).

We use induction on k, which is the number of graphs Hy, ..., Hx. The base case
for £k = 2 is covered by Lemma 3.10. Now let us assume that the statement holds
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for kK — 1 and the inductive step is for k. By the inductive hypothesis there exists a
relevant (G, v) such that without loss of generality (possibly by renaming the graphs
Hla ceey Hk)

N((G,U) — (Hg,wg)) > > N((G,’U) — (Hk7wk))
Let i* € [k] \ {1} be an index with
N((G, U) — (Hl,wl)) = N((G, 1}) — (HZ*,U)@*))

If no such index exists, we can simply choose the graph G which then fulfils the
statement of the lemma. Using the base case, there exists a relevant (G’,v") such that

N((G/,U/) — (Hlawl)) > N((Glav/) - (H’i*awi*))a

possibly renaming (Hy,w1) and (Hj«, w;). Let i € [k].

First, we show that for all i € [k] we have N ((G',v') = (H;,w;)) > 1. This is
clearly true for Case 1, where w; has a loop. In this case, we can always map all
vertices of G’ to the single vertex w;.

In Case 2, as H; is connected and contains at least one edge, there is some
w € V(H;) such that {w,w;} € E(H;). Since (G',v’) is relevant, G’ is connected and
bipartite and has at least one edge. Let {A, B} be a partition of V(G’) such that
v’ € A and A and B are independent sets of G. There is a homomorphism h from G’
to H; with h(v") = w; which maps all vertices in A to w; and all vertices in B to w.

Therefore, in both cases we have shown that for all i € [k] we have

N((G,,’Ul) — (Hl,wl)) > 1.

Cormr = -

Fic. 2. (G*,v*).

For a yet to be determined number ¢ we construct a graph G* from (G,v) and
(G’',v') by taking the graph G’ and t copies of G and identifying the vertex v’ with
the ¢ copies of v and call the resulting vertex v*, cf. Figure 2. Note that from the
fact that (G,v) and (G’,v’) are relevant, it is straightforward to show that (G*,v*) is
relevant as well. Then, for any graph H and w € V(H) it holds that

N((G*,v*) = (H,w)) = N((G',v) = (H,w)) - N((G,v) = (H,w))t.
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668 The goal is to choose t sufficiently large to achieve

669 N((G*,v*) = (H2,w2)) > ... > N((G*,v*) = (H—1,wi-—1))

670 > N ((G*,v*) — (Hy,w1))

671 > N((G*,v*) = (Hi», w;+))

672 > ...

673 > N((G*,v*) = (Hy,wy)).

675 Accordingly, we define a permutation o of the indices {1,...,k} that inserts index 1

676 between position i* — 1 and ¢*. The domain of ¢ corresponds to the new indices to
677 which we assign the former indices. To avoid confusion, we give the function table in

Table 1
TABLE 1
Function table of o.
) ‘1 cee =2 =1 9 -k
o(i) ‘ 2 i*—1 1 i* k
678
679 Formally,

i+ 1 ifi <¢*—2
680 o(i)=<1 ifi=i*—1

i otherwise.

651 Let M = N((G,v) = (Hz,w2)). As N((G',v') — (Hj,w;)) > 1 for all j € [K], it is
632  well-defined to set

N((G' ') = (Ho(j41), Wo(j+1)))

683 C = max
] jelk\i* -1} N((G",v) = (Hy(j) Wo(s)))

684 and t = [CM]. Let G* be as defined above. For ease of notation, for j € [k — 1], we
685 set

- e(j) = VUG = (Hog) Wow)

N((G*,v%) = (Ho(j11), Wo(j+1))

687 We want to show £(j) > 1 for all j € [k — 1] to complete the proof.
688 For j =" — 1 we obtain

N((G*,'U*) — (Ha(i*—l)vwa(i*—l)))

689 §0) = N{(G™0) = (Hyey w0o)))
690 N((G*,v*) = (Hi,w1))

)( N((G*’v ) (Hz* Wi* ))

’ N((G o) = (Hywn))

o S N(@) > (Hevwr))
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For j € [k — 1]\ {i* — 1} we have

N((G*,v") = (Ho(), Wos)))

N((G*,v*) = (Ho(j+1): Wo(j+1)))

N((G"v") = (Hog), wo(s)) - N (G, ) — a(j)vwaw)t

t

N((G",v") = (Ho(j11)s Wo(j41))) - ( G,v) = (Ho(j+1): Wo(j+1)))
_ 1 N((Gv) = (Ho), wa(;))
~ C\N((G,v) = (Ho(j11), Wo(j41)))
Since N ((G,v) = (Ho(j), Wo(s))) = 1+ N((G,v) = (Hy(j+1), Wo(j+1))) for

elk—-1\{i* -1}

() =

we have

€)= % (1 * 1 ) ~
C\" N((G.v) = (Ho(r1)swo(j41)))

Using (1 4+ )t > 1+tz >tz for t > 1, z > 0 we obtain

t
C-N((G,v) = (Hy(j11), Wo(j41)))

Finally, we use that for all j € [k — 1]\ {i* — 1} we have

N((G,U) — (Hg,wg)) > N((G,’U) — (Hg(j+1),wg(j+1)))

£(4) >

and conclude ; .
1) > > > 1.
U)> ETN(Crv) = () — O =

Thus, we have shown £(j) > 1 as required, which completes the proof. 0

In the following theorem, we use the separating instances that we obtain from
Lemma 3.11 for interpolation-based reductions to #GraphSetHom® ((H, \)).

THEOREM 3.12. Let (H,\) be a weighted graph set for which one of two cases
holds:

Case 1. All graphs in H are reflexive.

Case 2. All graphs in H are irreflexive and bipartite.
Then, for all H € H with \(H) # 0, #Hom“(H) < #GraphSetHom®((H, \)).

Proof. If, in Case 2, H contains a graph without edges, i.e. a single-vertex graph
K1, let (H',\) be a weighted graph set constructed from (H, A) by removing the K;
and its corresponding weight A\(K7). As #Hom(kK) is in FP we have

#GraphSetHom® ((#', \')) < #GraphSetHom® ((#, \))

and
#Hom® (K,) < #GraphSetHom® ((#, \)).

Therefore, for the remainder of this proof, we assume that every graph in H contains at
least one edge. Let H70 = {H,..., Hy} be the set of graphs in # that are assigned
non-zero weights by \. Note that all graphs in H7° are pairwise non-isomorphic,
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connected and non-empty by definition of a weighted graph set. Thus, for every pair
{i,j} € ([g]) and every w; € V(H;), w; € V(H;) we have (H;,w;) 2 (Hj,w;).

Now, for each graph H; we collect the vertices which are in the same orbit of
the automorphism group of H;. Formally, for each i € [k] and w € V(H;), let [w]
be the orbit of w, i.e. the set of vertices w’ such that (H;,w’) & (H;,w). Let W be
a set which contains exactly one representative from each such orbit. Further, for
each i € [k] set W; = W N V(H;). Then, for each w,w’ € W; with w’ # w, we have
(H;,w) 2 (H;,w').

Let k' = Zle\WA and let (H{,w!),...,(H},, w;,) be an enumeration of the
tuples {(H;,w;) : i € [k], w; € W;}. Then we can apply Lemma 3.11 to the input
(H{,wh),...,(H}/,w;) to obtain a connected irreflexive graph J with distinguished
u € V(J) such that for every ¢,j € [k] and for all w, € W;, w; € W, we have
N((Jvu) - (Huwl)) 7& N((Ja 'LL) - (Hjawj))'

Let i € [k] and suppose that H; € H and A(H;) # 0. Let G be a non-empty
graph which is an input to the problem #Hom®(H;). Let v be an arbitrary vertex of
G. We use the same construction as in Figure 2 to design a graph G as input to the
problem #GraphSetHom® ((#, \)) by taking ¢ copies of J as well as the graph G and
identifying the ¢ copies of vertex u with the vertex v € V(G). As both G and J are
connected, G is as well. Then, using an oracle for #GraphSetHom® ((H, )\)), we can
compute Zy (Gt) with

Zua(Ge) = Y MH)N (G, — H)

HeH
= > MH;)N (Gy — H;)
1€ (k]
(3.4) =3 AMH) Y. N((G,v) = (Hiyw)) - N((J,u) = (Hi,w))'
i€lk) weV (H;)

Now we collect the terms which belong to vertices in the same orbit. To this end,
for w € W and i € [k] such that w € V(H;), we define A\, = |[w]| - AM(H;), Nw(G) =
N((G,v) = (H;,w)) and Ny(J) = N((J,u) = (H;,w)). Let W = {wp,...,w
Then, continuing from Equation (3.4):

Zua(Ge) = D ANH) Y. N((Gyv) = (Hyw)) - N((Ju) — (Hi,w))'
i€[k] weV (H;)
= > AuNu(G)Ny ()"
weW

By choosing r + 1 different values for the parameter ¢ — here it is sufficient to

choose t = 0,...,r — we obtain a system of linear equations b = Ax as follows:
Z1A(Go) AwoNuwo (J)° o0 Ay, N, (J)° Ny, (G)

b=| A= z - : x=|
Zyu A (Gr) Awo Nuwo ()7 oo ANy, (J)T Ny, (G)

The vector b can be computed using r+1 #GraphSetHom® ((#, \)) oracle calls. Then

N(G—H) =Y |[w]

weW;
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Thus, determining  is sufficient for computing the sought-for N (G — H;). It remains
to show that the matrix A € Z"+Dx("+1) ig of full rank and therefore invertible. This
can be easily seen by dividing each column by its first entry. The division is well-
defined as for t € {0...,7} we have \,, # 0 by definition of #7°. The columns of the
resulting matrix are pairwise different by the choice of (J,u) and as a consequence
the resulting matrix is a Vandermonde matrix and therefore invertible. 0

Next, we give a short technical lemma which follows from Definition 3.7 and is used
in Lemma 3.14 to show that Theorem 3.12 gives hardness results for #Comp®(H).

LEMMA 3.13. Let H be a connected graph with at least one non-loop edge. Let
H~ be the graph obtained from H by deleting exactly one non-loop edge (but keeping
all vertices). If H™ is connected, then A\g(H ™) # 0.

Proof. As H~ is non-empty and connected, it is a valid input to Ay and from the
definition of Ay (Definition 3.7) we obtain

Ag(H ) == > pp(H)Ag(H").
H'eSy
s.t. H'2H

Consider a graph H' € Sy with H' 22 H and H' 2 H~. H’ is a non-empty loop-
hereditary connected subgraph of H and not isomorphic to H or H~. Note that
H~ is not isomorphic to any graph in Sy which gives Ay (H~) = 0. Furthermore,
wr(H™) > 1. Thus, we proceed

Au(H™) = —pu(H ) g-(H™)
< 1. O

We now have most of the tools at hand to classify the complexity of #Comp(H ).
Tractability results come from Lemma 3.1. If H has a component that is not a reflexive
clique or an irreflexive biclique then hardness will be lifted from Dyer and Greenhill’s
Theorem 1.1 via Theorem 3.4. The most difficult case is when all components of H
are reflexive cliques or irreflexive bicliques, but some component is not an irreflexive
star or a reflexive clique of size at most 2.

If H is connected then hardness will come from the following lemma, whose proof
builds on the weighted graph set technology (Corollary 3.9) using Theorem 3.12 and
Lemma 3.13 (using the stronger hardness result of Dyer and Greenhill, Theorem 2.1).

The remainder of the section generalises the connected case to the case in which
H is not connected.

LEMMA 3.14. If H is a reflezive clique of size at least 3 then #Comp®(H) is #P-
hard. If H is an irreflexive biclique that is not a star then #Comp®(H) is #P-hard.

Proof. Suppose that H is a reflexive clique of size at least 3 or an irreflexive
biclique that is not a star. Recall the definitions of Sy, Ay and weighted graph sets
(Definitions 3.5, 3.6 and 3.7). Note that (Sg, Am) is a weighted graph set. Let H~
be a graph obtained from H by deleting a non-loop edge. Note that H~ is connected
and it is not a reflexive clique or an irreflexive biclique. Thus Theorem 2.1 states that
#Hom®(H ™) is #P-complete. We will complete the proof of the Lemma by showing
#Hom®(H ) < #Comp® (H).

If H is a reflexive graph then the definition of Sy ensures that all graphs in Sy
are reflexive. If H is an irreflexive bipartite graph, then the definition ensures that
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all graphs in Sy are irreflexive and bipartite. Since H ™~ is connected and therefore
Ag(H™) # 0 by Lemma 3.13, we can apply Theorem 3.12 to the weighted graph set
(Sw, \g) with H~ € Sy to obtain #Hom®(H~) < #GraphSetHom® ((Sg, Axr)). By
Corollary 3.9, #GraphSetHom® ((Sg, Agr)) = #Comp®(H). The lemma follows.

We use the following two definitions in Lemmas 3.17 and 3.18 and in the proof of
Theorem 1.2.

DEFINITION 3.15. Let H be a graph. Suppose that every connected component
that has more than j vertices is an irreflexive star. Suppose further that some con-
nected component has j vertices and is not an irreflexive star. Let A(H) be the set
of reflexive components of H with j vertices and let B(H) be the set of irreflexive
non-star components of H with j vertices.

DEFINITION 3.16. Let L(H) denote the set of loops of a graph H. We define the
graph H® = (V(H), E(H) \ L(H)).

LEMMA 3.17. Let H be a graph in which every component is a reflexive clique or
an irreflexive biclique. If J € A(H) then #Comp©(J) < #Comp(H).

Proof. Let H be a graph in which every component is a reflexive clique or an
irreflexive biclique. Let A(H) = {A1,..., Ax}. It follows from the definition of A(H)
that all elements of A(H) are reflexive cliques of some size j (the same j for all graphs
in A(H)).

If j < 2, the statement of the lemma is trivially true, since Lemma 3.1 shows that
#Comp(A;) is in FP, so the restricted problem #Comp®(A4;) is also in FP.

Now assume j > 3. Suppose without loss of generality that J = A;. Let G be a
(connected) input to #Comp®(J). For all i € [k], let H \ A; be the graph constructed
from H by deleting the connected component A;. Using Definition 3.16 we define the
(irreflexive) graph G’ = (H \ J @ G)° as an input to #Comp(H). Intuitively, to form
G’ from H we replace the connected component J with the graph G, then we delete
all loops. We will prove the following claim.

Claim: Let h: V(G') — V(H) be a compaction from G’ to H. Then the
restriction hly () is a compaction from G onto an element of A(H).

Proof of the claim: As his a homomorphism, it maps each connected component of
G’ to a connected component of H. As, furthermore, h is a compaction and G’ and H
have the same number of connected components, it follows that there exist connected
components C1,...,Cy of G' such that for i € [k], hly(c,) is a compaction from C;
onto A;. To prove the claim, we show that G is an element of C = {C1,...,Cx}. In
order to use all vertices of a graph in A(H), i.e. a reflexive size-j clique, a graph in
C has to have at least j vertices itself. Therefore and by the construction of G’, an
element of C can only be one of the following:

e a clique with j vertices,

e a biclique with j vertices,

e a star with at least j vertices

e or the copy of G.
Since j > 3, it is easy to see that there is no compaction from a star onto a clique
with j vertices. In order to compact onto a reflexive clique of size j, an element of
C also has to have at least j(j — 1)/2 edges. Thus, C does not contain any bicliques.
Finally, there are only & — 1 connected components in G’ that are j-vertex cliques
other than (possibly) G. Therefore, G has to be an element of C, which proves the
claim. (End of the proof of the claim.)
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Using the notation from Definition 3.16, the claim implies
k
(35)  NO™(G' — H) = NO™(G— A;) - N ((H\ A;)° — H\ A;).
i=1
We can simplify the expression (3.5) using the fact that all elements of A(H) are
reflexive size-j cliques:

NOmP (G =5 H) = k- NP (G — J) - N™ (H\ J)° = H\ J).

As NomP((H \ J)°® — H \ J) does not depend on G, it can be computed in constant
time. Thus, using a single #Comp(H) oracle call we can compute NP (G — J) in
polynomial time as required.

LEMMA 3.18. Let H be a graph in which every component is a reflexive clique or
an irreflexive biclique. If A(H) is empty but B(H) is non-empty, then there exists a
component J € B(H) such that #Comp®(J) < #Comp(H).

Proof. The proof is similar to that of Lemma 3.17. For completeness, we give the
details. By Definition 3.15 the elements of B(H) are of the form K,; with a +b=j
for some fixed j. As stars are excluded from B(H), we have a,b > 2. Let B™**(H)
denote the set of graphs with the maximum number of edges in B(H). The elements of
B™**(H) are pairwise isomorphic since the number of edges of a K, 3 is a-b = a(j—a)
and this function is strictly increasing for a < j/2. For concreteness, fix a and b so
that each J € B™*(H) is isomorphic to K, ;. Let B™*(H) = {By,...,By}. Take
J = Bs.

For all i € [k], let H \ B; be the graph constructed from H by deleting the
connected component B;. Let G’ = (H \ J & G)° be an input to #Comp(H). We will
prove the following claim.

Claim: Let h: V(G') — V(H) be a compaction from G’ to H. Then the
restriction hly () is a compaction from G onto an element of B™*(H).

Proof of the claim: As his a homomorphism, it maps each connected component of
G’ to a connected component of H. As, furthermore, h is a compaction and G’ and H
have the same number of connected components, it follows that there exist connected
components C1,...,Cy of G’ such that for i € [k], hly(c,) is a compaction from C;
onto B;. To prove the claim, we show that G is an element of C = {C},...,Cx}. In
order to compact onto a graph in B™**(H ), a graph in C has to have at least j vertices
and a - b edges itself. By the construction of G’ and the fact that A(H) is empty, a
connected component in G’ with at least j vertices and a - b edges can only be one of
the following;:

e a biclique Ky,

e a star with at least j vertices and at least a - b edges

e or the copy of G.
Since a,b > 2, it is easy to see that there is no compaction from a star onto a K p.
Finally, there are only k — 1 connected components in G’ that are bicliques of the
form K, other than (possibly) G. Therefore, G has to be an element of C, which
proves the claim. (End of the proof of the claim.)

Using the notation from Definition 3.16, the claim implies

k
(3.6)  NOWP(G' — H) =Y NUP(G — B;) - NP ((H\ B;)° — H\ By).
=1
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We can simplify the expression (3.6) using the fact that all elements of B™**(H) are
of the form K, p:

NP (G — H) = k- N (G — J) - N ((H\ J)° — H\ J).

As NeomP((H\ J)® — H \ J) does not depend on G, it can be computed in constant
time. Thus, using a single #Comp(H) oracle call we can compute N ™P (G — J) in
polynomial time as required.

Finally, we prove the main theorem of this section, which we restate at this point.

THEOREM 1.2. Let H be a graph. If every connected component of H is an ir-
reflexive star or a reflexive clique of size at most 2 then #Comp(H) and #LComp(H)
are in FP. Otherwise, #Comp(H) and #LComp(H) are #P-complete.

Proof. The membership of #Comp(H) in #P is straightforward. We distinguish
between a number of cases depending on the graph H.

Case 1: Suppose that every connected component of H is an irreflexive star or a
reflexive clique of size at most 2. Then #LComp(H) is in FP by Lemma 3.1.

Case 2: Suppose that H contains a component that is not a reflexive clique or an
irreflexive biclique. Then the hardness of #Hom(H) (from Theorem 1.1) together with
the reduction #Hom(H) < #Comp(H) (from Theorem 3.4) implies that #Comp(H)
is #P-hard. The hardness of #LComp(H) follows from the trivial reduction from
#Comp(H) to #LComp(H).

Case 3: Suppose that the components of H are reflexive cliques or irreflexive
bicliques and that H contains at least one component that is not an irreflexive star
or a reflexive clique of size at most 2. Every graph J € A(H) U B(H) is a reflexive
clique of size at least 3 or an irreflexive biclique that is not a star. By Lemma 3.14,
#Comp®(J) is #P-complete. Finally, as A(H) U B(H) is non-empty, we can use
either Lemma 3.17 or Lemma 3.18 to obtain the existence of J € A(H) U B(H) with
#Comp®©(J) < #Comp(H). This implies that #Comp(H) is #P-hard. As in Case 2,
the hardness of #LComp(H) follows from the trivial reduction from #Comp(H) to
#LComp(H). o

4. Counting Surjective Homomorphisms. The proof of Theorem 1.3 is di-
vided into two sections. The first of these deals with tractable cases and the second
deals with hardness results and also contains the proof of the final theorem. Taken
together, Theorem 1.3 and Dyer and Greenhill’s Theorem 1.1 show that the problem
of counting surjective homomorphisms to a fixed graph H has the same complexity
characterisation as the problem of counting all homomorphisms to H.

Section 4.3 shows that this equivalence disappears in the uniform case, where H
is part of the input, rather than being a fixed parameter of the problem. Specifically,
Theorem 4.4 demonstrates a setting in which counting surjective homomorphisms is
more difficult than counting all homomorphisms (assuming FP # #P).

4.1. Tractability Results.
THEOREM 4.1. Let H be a graph. Then #LSHom(H) < #LHom(H).

Proof. Let H be fixed and |V(H)| = ¢q. Let (G,S) be an input instance of
#LSHom(H). Let (v1,...,v,) be the vertices of G in an arbitrary but fixed order.
With respect to this ordering and with respect to a homomorphism from G to H, let us
denote by v;, the first vertex of G which is assigned the first new vertex of H (v;, = v1),
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v;, the first vertex of G which is assigned the second new vertex of H and so on.
Every surjective homomorphism from G to H contains exactly one subsequence v =
(Viys--.,v;,) and every homomorphism containing such a subsequence is surjective.
The number of subsequences is bounded from above by (Z) Let o: v — V(H) be an
assignment of the vertices of H to the vertices in v. There are ¢! such assignments.
We call ¥ = (v, 0) a configuration of G and ¥(G) the set of all configurations for the
given G. For every such configuration ¢ we create a #LHom(H) instance (G,S¥)
with 8¥ = {SY CV(H) : i€ [n]} and

g — Sv, N{o(vi;)}, if i =i; for j € [q]

vi Svl- ﬂ{o(vil),...,a(vij)}, for ij <1 <’ij+1.

Intuitively, we use lists to “pin” the vertices in v to the vertices assigned by ¢ and to
prohibit the remainder of the vertices of G from being mapped to new vertices of H.
Then
N ((G,S) = H)= Y  N((G,S")— H)
YeV(G)

We can compute N***((G,S) — H) by making a #LHom(H) oracle call for every
instance (G, S¥) and adding the results. The number of oracle calls |¥(G)| is bounded
from above by the polynomial ¢!(}}) < nf. 0

COROLLARY 4.2. Let H be a graph. If every connected component of H is a
reflezive clique or an irreflexive biclique then #LSHom(H) is in FP.

Proof. The statement follows directly from Theorem 4.1 using Dyer and Green-
hill’s dichotomy from Theorem 1.1. 0

4.2. Hardness Results. The following result and proof are very similar to that
of Theorem 3.4 and Lemma 3.3, respectively. For completeness, we repeat the proof
in detail.

THEOREM 4.3. Let H be a graph. Then #Hom(H) < #SHom(H).

Proof. Let |V(H)| = q and G be an input to #Hom(H). We design a graph
G = G ® W, as an input to the problem #SHom(H) by adding a set W; of t new
isolated vertices to the graph G.

We introduce some additional notation. Let S*(G) be the number of homomor-
phisms o from G to H that use exactly k of the vertices of H. Let {wy,...,wi} be a
set of k arbitrary but fixed vertices from H. We define N¥(W,) as the number of ho-
momorphisms 7 from W; to H such that {wy,...,wg} are amongst the vertices used
by 7. The particular choice of vertices {wq,...,w;} is not important when counting
homomorphisms from a set of isolated vertices—N*(WW;) only depends on the numbers
k and t.

We observe that, for each surjective homomorphism «: V(Gy) — V(H), the re-
striction 7|y () uses a subset V' C V(H) of vertices and does not use any vertices
outside of V’. Suppose that V' has cardinality |V’| = ¢ — k for some k € {0,...,q}.
Then ~|w, uses at least the remaining & fixed vertices of H.

Therefore, we obtain the following linear equation for a fixed ¢ > O:

q
N (Gy— H) =Y STHG) N W)
—_———— k:—O\W_/\W_/

be Tk Ak
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By choosing g+ 1 different values for the parameter ¢ we obtain a system of linear

equations. Here, we choose ¢t = 0,...,q. Then the system is of the form b = Ax for
bo a0,0 . aqu i)
b=|: A= oo, and X =
by Aq0 --- Ggq Zq

Note, that the vector b can be computed using ¢+ 1 #SHom(H ) oracle calls. Further,

q

zq:zk =Y s17FG) = zq:sk(c;) =N(G— H).
k=0 k=0

k=0

Thus, determining x is sufficient for computing the sought-for N (G — H ) It remains
to show that the matrix A is of full rank and is therefore invertible.

For t < k, clearly a; x, = N*(W;) = 0. Further, for the diagonal elements we have
ary = NY (W) =t! for t € {0,...,q}. Hence,

1 0 0

A * 1!
0
* *  q!

is a triangular matrix with non-zero diagonal entries, which completes the proof. 0O

THEOREM 4.4. Let H be a graph. If every connected component of H is a reflex-
ive clique or an irreflexive biclique, then #SHom(H) and #LSHom(H) are in FP.
Otherwise, #SHom(H) and #LSHom(H) are #P-complete.

Proof. The easiness result follows from Corollary 4.2 using the trivial reduction
#SHom(H) < #LSHom(H). The hardness result follows from the same trivial reduc-
tion, along with Theorem 4.3 and the dichotomy for #Hom(H) from Theorem 1.1.

4.3. The Uniform Case. We have seen from Theorems 1.1 and 1.3 that the
problem of counting homomorphisms to a fixed graph H has the same complexity as
the problem of counting surjective homomorphisms to H.

Nevertheless, there are scenarios in which counting problems involving surjective
homomorphisms are more difficult than those involving unrestricted homomorphisms.
To illustrate this point, we consider the following wuniform homomorphism-counting
problems. Motivated by terminology from constraint satisfaction, we use “uniform”
to indicate that the target graph H is part of the input, rather than being a fixed
parameter.

Name. Uniform#HomToCliques.

Input. Irreflexive graph G whose components are cliques and reflexive graph H whose
components are cliques.

Output. N(G — H)

Name. Uniform#SHomToCliques.

Input. Irreflexive graph G whose components are cliques and reflexive graph H whose
components are cliques.

Output. N (G — H)
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The main result of this section is the following theorem.

THEOREM 4.4. Uniform#HomToCliques is in FP but Uniform#SHomToCliques
is #P-complete.

In order to prove Theorem 4.4, we define a counting variant of the subset sum
problem. Given a set of integers A = {ay,...,a,} and an integer b let S(A,b), be the
number of subsets A’ C A such that the sum of the elements in A’ is equal to . The
counting problem is stated as follows.

Name. #SubsetSum.
Input. A set of positive integers A = {a1,...,a,} and a positive integer b.
Output. S(A,b).

It is well known that #SubsetSum is #P-complete (see for instance the textbook
by Papadimitriou [29, Theorems 9.9, 9.10 and 18.1]). Thus, Theorem 4.4 follows
immediately from Lemmas 4.5 and 4.6.

LemMMA 4.5. Uniform#HomToCliques is in FP.

Proof. Let G and H be an input instance of Uniform#HomToCliques. Let k be
the number of connected components of G and let a1, ..., ar be the number of vertices
of these components, respectively. Let H have ¢ connected components with by, ..., b,
vertices, respectively. Then, as all components are cliques and H is reflexive,

N(G - H) :ﬁibj".

i=1j=1

Thus, it is easy to compute N(G — H) ]
LEMMA 4.6. #SubsetSum < Uniform#SHomToCliques.

Proof. Let A = {ay,...,a;}, b be an input instance of #SubsetSum. We define
N = Zle a;. Now, we design a polynomial time algorithm to determine S(A,b)
using an oracle for Uniform#SHomToCliques. If N < b, we have S(A,b) = 0. Now
assume N > b. We create an input of Uniform#SHomToCliques as follows. We set
G to be an irreflexive graph with a connected component G; for each i € [k], where
G; is a clique with a; vertices. Furthermore, we set H to be a reflexive graph with
two connected components Hy and Hy. Let Hy be a clique with b vertices and let Ho
be a clique with N — b vertices. By {Z} we denote the Stirling number of the second
kind, i.e. the number of partitions of a set of n elements into & non-empty subsets.
By definition, we have {7} =0if n < k.

Let h: V(G) — V(H) be a homomorphism from G to H and let ¥’ be the number
of vertices of G that are mapped to the connected component H;. Note that h has
to map each connected component of G to a connected component of H. By the
construction of G, this implies that there exists a subset A’ C A such that the sum
of elements in A’ is equal to b'. Furthermore, as all connected components of G and
H are cliques and H is reflexive, the number of surjective homomorphisms from G
to H that assign exactly b’ fixed vertices to Hj is equal to the number of surjective
mappings from [b'] to [b], which is b!{i}. Therefore, we can express N5 (G — H ) as
follows.

-y NSUY(G%H)—ZN:SMW’W”{Z}'(Nb)!{ij\fv__g},

b’=0
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where the factor (N —b)! ]]ij;} corresponds to the number surjective mappings from
the remaining N — b’ fixed vertices of G to the component Hsy. Finally, we use the
fact that the summands in (4.1) are non-zero only if ¥ > b and N —¥ > N —b, which
implies ¥’ = b. Thus,

mmm_uﬂzsuwymﬁ}wN_m%x:ﬂ

= BI(N — b)!- S(A,b). 0

5. Addendum: A Dichotomy for Approximately Counting Homomor-
phisms with Surjectivity Constraints. The following standard definitions are
taken from [28, Definitions 11.1, 11.2, Exercise 11.3]. A randomised algorithm gives
an (e, 0)-approximation for the value V if the output X of the algorithm satisfies
Pr(|X — V| <€V) > 1-46. A fully polynomial randomised approzimation scheme
(FPRAS) for a problem V is a randomised algorithm which, given an input z and a
parameter € € (0, 1), outputs an (e,1/4)-approximation to V() in time that is poly-
nomial in 1/e and the size of the input . The concept of an approximation-preserving
reduction (AP-reduction) between counting problems was introduced by Dyer, Gold-
berg, Greenhill and Jerrum [9]. We will not need the detailed definition here, but
the definition has the property that if there is an AP-reduction from problem A to
problem B (written as A <ap B) then this reduction, together with an FPRAS for B,
yields an FPRAS for A. The problem #BIS, which is the problem of counting the
independent sets of a bipartite graph, comes up frequently in approximate counting
because it is complete with respect to AP-reductions in an intermediate complex-
ity class. It is not believed to have an FPRAS. Galanis, Goldberg and Jerrum [15]
gave a dichotomy for the problem of approximately counting homomorphisms in the
connected case, in terms of #BIS.

THEOREM 5.1 ([15]). Let H be a connected graph. If H is a reflexive clique or
an irreflexive biclique, then there is an FPRAS for #Hom(H). Otherwise, #BIS <ap
#Hom(H).

In this addendum we give a similar dichotomy for approximately counting ho-
momorphisms with surjectivity constraints®. The tractability part of the following
theorem follows from Theorem 1.3, Corollary 1.7 and from Lemma 5.3 below. The

#BIS-hardness follows from Theorem 5.1 and from the reductions in Lemmas 5.4, 5.5
and 5.6.

THEOREM 5.2. Let H be a connected graph. If H is a reflerive clique or an ir-
reflexive biclique, then there is an FPRAS for #SHom(H), #Ret(H) and #Comp(H).
Otherwise, each of these problems is # BIS-hard under approximation-preserving re-
ductions.

LEMMA 5.3. Let H be a reflexive clique or an irreflexive biclique. Then there is
an FPRAS for #Comp(H).

Proof. Let H be a reflexive clique or an irreflexive biclique with g vertices and p
edges. Our goal is give an FPRAS for #Comp(H).

First, we show that we can assume without loss of generality that every input G
to #Comp(H) has no isolated vertices. To see this, suppose instead that G is of

3When H is not connected, the complexity of approximate counting is open even for counting
homomorphisms. Hence we do not address this case here.

This manuscript is for review purposes only.



1094
1095
1096
1097
1098
1099
1100

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125
1126
1127

COUNTING SURJECTIVE HOMOMORPHISMS AND COMPACTIONS 29

the form G’ ® I where I is the set of isolated vertices in G. As H is connected,
we have N°°™P (G — H) = glTl yeomp (G’ — H) Thus, an estimate of the number
of compactions from G’ to H will immediately enable us to approximately count
compactions from G to H.

From now on we restrict attention to inputs G which have no isolated vertices.
We use H(G, H) to denote the set of homomorphisms from G to H.
Case 1. H is a reflexive clique.

Let G be a size-n input to #Comp(H). Then N(G — H) = ¢". If there is
a compaction from G to H then there is a set U C V(G) with |U|] < 2p and a
compaction o from G[U] to H. Each assignment of the (at most n — 2p) vertices in
V(G)\ U extends o to a compaction from G to H. Thus, we have N°™P(G — H) >
q""? = N(G — H)/q?. Using this lower bound, it is straightforward to apply the
naive Monte Carlo method (cf. [28, Theorem 11.1]). Hence Algorithm 5.1 with ¢ = ¢*?
and H = H(G, H) gives an (¢, d)-approximation for the number of compactions in .

Algorithm 5.1 If the number of compactions in H is at least |H|/c then by [28, The-
orem 11.1] this algorithm gives an (¢, §)-approximation for the number of compactions
in H.
Input: Irreflexive graph G, € € (0,1) and ¢ € (0,1).
m = [c31In(2/0)/€*].
Choose m samples independently and uniformly at random from H.
Let Xi,...,X,, be the corresponding indicator random variables, where X; takes
value 1

if the ith sample is a compaction and 0 otherwise.
m

If there are no compactions in H then the algorithm answers 0. Otherwise,
the number of compactions in H is at least |H|/c, so the algorithm gives an (e, d)-
approximation.

When the algorithm is run with 6 = 1/4, the running time is at most a polynomial
in n and 1/e because m is at most a polynomial in 1/e and the basic tasks (choosing
a sample from 7, determining whether a sample is a compaction, and computing
|H| = ¢™) can all be done in poly(n) time. Thus, the algorithm gives an FPRAS for
#Comp(H).

Case 2. H is an irreflexive biclique.

Let the bipartition of V(H) be (Lg, Ry) where ¢y = |Ly| < |Ry| = ry. We can
assume that £ > 1, otherwise counting compactions to H is trivial.

Without loss generality, we can assume that inputs G to #Comp(H) are bipartite
(as well as having no isolated vertices). (If G is not bipartite, then NP (G — H) =
0.)

Suppose that G is an input to #Comp(H). Let Cy,...,C, be the connected
components of G. For each i € [x], let (L;, R;) be a fixed bipartition of C; such

that 1 < ¢; = |L;| < |R;| = r;. Then N(G — H) = Hle(ffn}m” +£H“‘eri) <
2115, Cutirym.

Let Q be the set of functions w: [k] — {Ly,Ry}. Given w € Q, we say that
a homomorphism from G to H obeys w if, for each ¢ € [k], the vertices of L; are
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assigned to vertices in w().
Case 2a. k > p.

Let w be the function in 2 that maps every i € [k] to Ly. Since G has no isolated
vertices, each of C1,...,C\ has at least 2 vertices, so there is a compaction from G
to H which obeys w.

As in Case 1, there is a set U C V(G) of size at most 2p such that there is a
compaction ¢ from G[U] to H that obeys the restriction of o to U. Every assignment
of the vertices in V(G)\ U that obeys w yields an w-obeying compaction from G to H.
Since rg > £y, we obtain the lower bound

1

(ru)*”

N(G— H)
2(ry)””

Neowp (G — H) > >

K
EH&THTi>
i=1

By the same arguments as in Case 1, Algorithm 5.1 with ¢ = 2(rg)” and H =
H(G, H) gives an (e, d)-approximation for the number of compactions in H. When
the algorithm is run with § = 1/4, the running time is at most a polynomial in |V(G)|
and 1/e, so it can be used in an FPRAS for inputs G with x > p.

Case 2b. k < p.

For each w € Q, let H,,(G, H) be the set of homomorphisms obeying w, and let
N,(G — H) and N™P(G — H) be the number of homomorphisms and compactions
obeying w, respectively. Given a compaction that obeys w we obtain a lower bound
as before:

wmvwmw=mﬁ;$” i

Now Algorithm 5.1 with ¢ = (r5)* and H# = H.,(G, H) gives an (e, §)-approximation
for the number of compactions in H,, (G, H). Taking 6 = 1/(4-2") and summing over
the 2% < 2P functions w € €2, we obtain an (e, 1/4)-approximation for the number of
compactions in H(G, H). The running time of each call to Algorithm 5.1 is at most
a polynomial in |V(G)| and 1/e. Thus, putting the cases together, we get an FPRAS
for #Comp(H).

&(

NG ) > Tt
(re)™ i=1

LEMMA 5.4. Let H be a graph. Then #Hom(H) <ap #SHom(H).

Proof. Let ¢ = |V(H)|. Given any positive integer ¢, let s, ; denote the number
of surjective functions from [f] to [¢]. Clearly, s;, > ¢' — 29(q — 1)", since the range
of every non-surjective function from [¢] to [¢] is a proper subset of [g], and there are
most 27 of these. Also, the number of functions from [t] onto this subset is at most

(1",
Given any n-vertex input G to the problem #Hom(H), let

t = [log(5¢"2%)/log(q/(q — 1)].

Clearly, t = O(n), and t can be computed in time poly(n). Note that
t
(5.1) <ql) > 5¢"27 > 4q"29 + 29,
q—

Let G be the graph constructed from G by adding a set I; of ¢ isolated vertices that
are distinct from the vertices in V(G). We claim that

st,qN(G — H) < N5 (Gt — H) < stqu(G — H) +(¢" — S1,q)q"
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To see this, note that any homomorphism from G to H, together with a surjective
homomorphism from the I; to V(H), constitutes a surjective homomorphism from G;
to H. Any other surjective homomorphism from G; to H consists of a non-surjective
homomorphism from I; to H (and there are ¢* — s;, of these) together with some
homomorphism from G to H (and there are at most ¢™ of these). Dividing through
by s;4 and applying our lower bound for s; , and then inequality (5.1), we have

N (Gy > H)

St,q

t _
N(G—H) < <N(G—>H)+<qst’q>q"
St,q
29(q —1)'q"
gt —21(q—1)"
qn
_q
24(q—1)"

(5.2) gN(G—>H)+i 0

<N(G—H)+

=N(G—H)+

Given Equation (5.2), the proof of [9, Theorem 3] shows that, in order to approximate
N (G — H ) with accuracy €, we need only use the oracle to obtain an approximation

S for Nsur (G, — H) with accuracy €/21. We can then return the floor of §/st,q. The

only remaining issue is how to compute s; ,. However, it is easy to do this in time

poly(t) = poly(n) since s;, = {;}q! =210 (—=1)477 (?)jt7 where {;} is a Stirling

number of the second kind.

LEMMA 5.5. Let H be a connected graph. Then #Hom(H) <ap #Comp(H).

Proof. If not explicitly defined otherwise, we use the same notation and obser-
vations as in the proof of Lemma 5.4. In addition let p be the number of non-loop
edges in H and ¢, = 2's; . If G is an input to #Hom(H) of size n, G is the graph
constructed from G by adding a set of ¢ isolated edges distinct from the edges in G.
If H is a graph of size 1 the statement of the lemma clearly holds. If otherwise H is a
connected graph of size at least 2, every homomorphism that uses all non-loop edges
of H is also surjective and therefore a compaction. Thus, we obtain

ctpN (G — H) < N (Gy — H) < ¢, pN(G — H) + (2" — crp)q"™
Dividing through by c; , gives

Neom (G — H)

Ct,p

t_
N(G— H) < <N(G—>H)+<ps“’“’)q".
t,p

If we choose t = [log(5¢™2P)/log(p/(p — 1)] the remainder of this proof is analogous
to that of Lemma 5.4. ad

LEMMA 5.6. Let H be a graph. Then #Hom(H) <ap #Ret(H).

Proof. Let ¢ = |V(H)| and G be an input to #Hom(H). Further, let H' be a
copy of H and (u1,...,uq) be the vertices of H' ordered in such a way that they
induce a copy of H. Then N(G — H) = Nret((G@H';ul,...,uq) — H) ]
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Appendix A. Decomposition of NCOmP(G — K273). In this appendix, we
work through a long example to illustrate some of the definitions and ideas from
Section 3.2. We do this by verifying the statement of Theorem 3.8 for the special case
where H = Ks 3.

Of course, the theorem is already proved in the earlier sections of this paper, but
we work through this example in order to help the reader gain familiarity with the
definitions. For H = Kj 3 and a non-empty, irreflexive and connected graph G we
want to prove

(A.1) N™P (G — H) = Y Ag(J)N(G = J).
JESH

First, we set Sy = {H1, ..., Hyo}, cf. Figure 3, as defined in Definition 3.6.

H~H, H, H, H, Hs
Hg Hy Hyg Hy Hyg

At

Fic. 3. Sy = {H17"'7H10}

Next, we recall the definitions of pugy and Ay from Definitions 3.6 and 3.7. For
J € Sy, pg(J) is the number of non-empty connected subgraphs of H that are
isomorphic to J. Also, Ag(J) = 1if J = H. If otherwise J is isomorphic to some
graph in Sy but J 2 H, we have

(A.2) Au(J) =— Z o (H ) Ao ().
H'eSy
s.t. H'2H

In order to verify (A.1), we have to determine Ay (J) for all J € Sgy. As Ag(J) is
defined inductively by (A.2), we first determine Ay (J) for all H' € Sy with H' 22 H.

We start with the graph Hjo and determine Ag,,. Clearly, Hip has only one
connected subgraph and we can choose Sg,, = {Hi0}. Recall that A\g,,(J) = 0 for
all graphs J that are not isomorphic to any graph in Sy, i.e. not isomorphic to Hig
in this case. By definition we have

pi(Hig) =1 aswell as Ay, (Hio) = 1, see Table 2.
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This conforms with our intuition as for the single vertex graph Hig, it clearly holds
that

(A3) Neomp (G — HIO) = N(G — HlO)-

Thus, we have now verified (A.1) for H = Hy.

Using this information, we consider the graph Hy next and determine pp, and
A, for Spy = {Hy, H10}, see Table 3. Hyg contains two connected subgraphs that are
isomorphic to Hig, therefore pp,(Hip) = 2. Then, from (A.2) we obtain

My (Hio) == Y g (H') A (Hio) = 2.
H/G{Hl()}

Plugging this into (A.1) for H = Hy, we get

N©™P(G = Hy) = Y Ay (J)N (G — J)
JESH,

Now let us verify this expression. Recall that G is connected. The central idea
behind our approach is that every homomorphism from G to Hy is a compaction onto

some connected subgraph H' of Hy. Furthermore, up,(H') tells us how many such
subgraphs there are that are isomorphic to H’. Thus,

N(G — Hg) = ‘[LHQ(HQ) . Ncomp(G — Hg) + ,UHQ(Hlo) 'Ncomp(G — HlO)
= NP (G — Hy) + 2N (G — Hyp).

Rearranging and using the fact that N¢°o™P (G — H10) = N(G — HlO) from (A.3):
N®™ (G — Hg) = N (G — Hy) — 2N°°"P(G — Hyp)
= N (G — Hy) — 2N (G — Hyy).

Thus, we have now proved (A.4) which in turn proves (A.1) for H = Hy.
Using (A.3) and (A.4) we can now go on to find (see Table 4) that

N®™P(G — Hg) = N(G — Hg) — 2N (G — Hy) + N (G — Hyp)

and so on.

This gives the intuition behind the formal definitions of pgy and Agy. For com-
pleteness, we give the values for all graphs H; through H;py in Tables 2 through 11.
From Table 11 we can conclude that for H = K3 3 the statement of Theorem 3.8 gives

NP (G — Ky ) = N (G = Ka) = 6N (G — Hp) + 6N (G — Hs)
+3N (G — Hy) + 6N (G — Hs) — 2N (G — Hg)
— 12N (G — Hy) + 3N (G — Hg).
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TABLE 2
Decomposition of Hig

Hl Hlo
.
firy (H') 1
Aty (H') 1
TABLE 3
Decomposition of Hg
H' Hy Hio
/ .
HHy (H/) 1 2
Am, (H') 1 -2
TABLE 4
Decomposition of Hg
H' Hg Hy Hig
/ .
i, (H') 1 2 3
A (H') 1 9 1
TABLE 5
Decomposition of Hy
H' Hy Hg Hyg Hio
X < / .
firr, (H') 1 2 3 4
A, (H') 1 9 1
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TABLE 6
Decomposition of Hg

H' Hg Hyg Hy Hy

35

./ ’

prg (H') 1 3 3 4

Aug(H') 1 -3 3 -1

TABLE 7
Decomposition of Hs

H H; Hy H; Hy H,

. (H') 1 1 2 4 4
A, (H") 1 -1 —2 3 ~1
H' Hio
[ ]
HHS (H/)
)‘H5 (H/) 0
TABLE 8

Decomposition of Hy

H' Hy H; Hg Hy Hyy
§ < / °
pr, (H') 1 4 4 4 4
A, (H) 1 —4
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TABLE 9
Decomposition of Hs

H' 3 Hy Hg Hy Hyo

Az (H) 1 2 1 0 0

TABLE 10
Decomposition of Ha

H Hy Hs H, Hs Hg
wr, (H') 1 2 1 2 1
A, (H') 1 -2 -1 -2 1

H' Hy Hyg Hy Hyp

wr, (H') 6 6

A, (H') 6 -3 0 0
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TABLE 11
Decomposition of Hy = K2 3

H' Hl H2 H3 H4 HS
wr, (H) 1 6 6 3
A, (H') 1 —6

H Hg H; Hy Hy Hyp

o, (H') 2 12
A, (H') —2 ~12 3 0 0
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