
1

The Complexity of Approximately Counting Retractions

JACOB FOCKE, LESLIE ANN GOLDBERG, and STANISLAV ŽIVNÝ, University of Oxford,

United Kingdom

Let G be a graph that contains an induced subgraph H . A retraction from G to H is a homomorphism from

G to H that is the identity function on H . Retractions are very well-studied: Given H , the complexity of

deciding whether there is a retraction from an input graph G to H is completely classified, in the sense that

it is known for which H this problem is tractable (assuming P , NP). Similarly, the complexity of (exactly)

counting retractions fromG to H is classified (assuming FP , #P). However, almost nothing is known about

approximately counting retractions. Our first contribution is to give a complete trichotomy for approximately

counting retractions to graphs without short cycles. The result is as follows: (1) Approximately counting

retractions to a graph H of girth at least 5 is in FP if every connected component of H is a star, a single

looped vertex, or an edge with two loops. (2) Otherwise, if every component is an irreflexive caterpillar or a

partially bristled reflexive path, then approximately counting retractions to H is equivalent to approximately

counting the independent sets of a bipartite graph — a problem which is complete in the approximate counting

complexity class RHΠ1. (3) Finally, if none of these hold, then approximately counting retractions to H is

equivalent to approximately counting the satisfying assignments of a Boolean formula.

Our second contribution is to locate the retraction counting problem for eachH in the complexity landscape

of related approximate counting problems. Interestingly, our results are in contrast to the situation in the exact

counting context. We show that the problem of approximately counting retractions is separated both from

the problem of approximately counting homomorphisms and from the problem of approximately counting

list homomorphisms — whereas for exact counting all three of these problems are interreducible. We also

show that the number of retractions is at least as hard to approximate as both the number of surjective

homomorphisms and the number of compactions. In contrast, exactly counting compactions is the hardest of

all of these exact counting problems.

CCS Concepts: • Theory of computation → Approximation algorithms analysis; Problems, reduc-

tions and completeness; • Mathematics of computing→ Combinatorics.

Additional Key Words and Phrases: approximate counting, counting complexity, graph homomorphisms,

retractions, surjective homomorphisms, graph compactions

ACM Reference Format:

Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný. 2020. The Complexity of Approximately Counting

Retractions. ACM Trans. Comput. Theory 1, 1, Article 1 (January 2020), 42 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

A homomorphism from a graph G to a graph H is a function h : V (G) → V (H) such that, for all

{u,v} ∈ E(G), we have {h(u),h(v)} ∈ E(H). For example, suppose that H is a path a,b, c . Then a

homomorphism fromG to H is a 3-colouring ofG in which the colour classes {a, c} and {b} induce

Authors’ address: Jacob Focke, jacob.focke@cs.ox.ac.uk; Leslie Ann Goldberg, leslie.goldberg@seh.ox.ac.uk; Stanislav Živný,

standa.zivny@cs.ox.ac.uk, University of Oxford, Oxford, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1942-3454/2020/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

a bipartition of G. Suppose that G itself contains a path A,B,C . Then a retraction from G to H is a

homomorphism from G to H that maps A to a, B to b and C to c . In general, let G and H be graphs

such that G contains a fixed copy of H as an induced subgraph. Then a retraction from G to H is a

homomorphism from G to H that is the identity function on this fixed copy of H in G.
Retractions have been studied over a long period of time [25, 26, 31, 39]. In particular, the

computational decision problem of determining whether there is a retraction from G to H is well-

studied [13, 29, 45, 47, 50]. Retractions have also been studied under the name of one-or-all list

homomorphisms, pre-colouring extensions or simply extensions, see, e.g., [1, 10–12, 35, 37, 43]. See

Hell and Nešetřil’s review article [30] for a more extensive list of such work.

Homomorphism counting problems have been researched extensively as well [3, 5, 6, 9, 14–16, 19,

20, 28, 33]. The problem of exactly counting retractions has been studied recently and a complete

complexity classification is given in [14]. However, very little is known about approximately

counting retractions. In this work we do two things. First we give a complexity trichotomy for

approximately counting retractions for the class of graphs that have girth at least 5. Second we

relate the complexity of approximately counting retractions to other approximate counting graph

homomorphism problems.

1.1 First Contribution: A Trichotomy for Approximately Counting Retractions to

Graphs of Girth at least 5

A (self-)loop is an edge from a vertex to itself. A cycle is a walk w0w1 · · ·wkw0 where k > 1 and

all vertices in {w0, . . . ,wk } are distinct. The length of the cycle is k + 1. We sometimes refer to

length-3 cycles as “triangles” and to length-4 cycles as “squares”. The girth of a graph H is the

length of a shortest cycle in H . If H is acyclic (that is if H is a forest with possibly some loops) then

its girth is infinity. In this work we give a complete complexity classification for the problem of

approximately counting retractions to graphs that have a girth of at least 5 (Theorem 1.1). Thus,

our classification applies to all graphs H except to those that contain 3-cycles or 4-cycles. We now

informally introduce some notation and concepts in order to state this result.

Given a graph H , we use #Ret(H) to denote the problem of counting retractions to H , given as

input a graph G containing a fixed copy of H .

To investigate the complexity of approximate counting problems, Dyer, Goldberg, Greenhill

and Jerrum [5] introduce the concept of an approximation-preserving reduction (AP-reduction).

Intuitively, an AP-reduction from a problem A to a problem B is an algorithm that is a “good”

approximation to A if it has oracle access to a “good” approximation to B. We write A ≤AP B
if such an AP-reduction exists. Two problems that are studied in this paper appear frequently

as benchmark problems in this line of research. #SAT is the problem of counting the satisfying

assignments of a Boolean formula. This problem is complete for #P with respect to AP-reductions.

#BIS is the problem of counting the independent sets of a bipartite graph. This problem is complete

for the approximate counting complexity class RHΠ1 (with respect to AP-reductions). While it is

not believed that there is an efficient approximation algorithm for #BIS, it is also not believed that

it is complete for #P with respect to AP-reductions.

While, in general, the vertices of H may or may not have loops, we will consider two special

cases. We say that a graph is irreflexive if it does not contain any loops. We say that it is reflexive if

every vertex has a loop. A tree may be irreflexive, reflexive, or neither, but it may not have any

cycles. A caterpillar is an irreflexive tree which contains a path P such that all vertices outside of

P have degree 1. A partially bristled reflexive path (formally defined in Definition 1.12) is a tree

consisting of a reflexive path P , together with a (possibly empty) set of unlooped “bristle” verticesU
and a matching connecting all of the vertices ofU to “internal” vertices of P (vertices of P that are

not endpoints of the path). A more formal definition, along with an example, is given in Section 1.5.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:3

Theorem 1.1. Let H be a graph of girth at least 5.

i) If every connected component of H is an irreflexive star, a single looped vertex, or an edge with

two loops, then #Ret(H) is in FP.

ii) Otherwise, if every connected component of H is an irreflexive caterpillar or a partially bristled

reflexive path, then #Ret(H) is approximation-equivalent to #BIS.

iii) Otherwise, #Ret(H) is approximation-equivalent to #SAT.

Since there has been prior work on the problem of counting homomorphisms to trees [19], it is

worth noting the special case of Theorem 1.1 where H is an irreflexive tree. In this case, #Ret(H) is

in FP ifH is a star. IfH is a caterpillar but not a star, then #Ret(H) ≡AP #BIS. For all other irreflexive

trees H , the problem #Ret(H) is #SAT-equivalent under AP-reductions. The special case where H
is a reflexive tree is also easy to state. In this case, #Ret(H) is in FP if H is a single looped vertex or

an edge with two loops. If H is a reflexive path with at least three vertices, then #Ret(H) ≡AP #BIS.

Otherwise, #Ret(H) is #SAT-equivalent with respect to AP-reductions.

The special case of our classification where H is irreflexive is given in Theorem 2.3. It is slightly

more general than what is given in Theorem 1.1 since it covers all irreflexive square-free graphs H ,

including those that have 3-cycles. The proof of Theorem 1.1 is given in Section 2.3.

1.2 Second Contribution: Locating #Ret(H) in the Approximate Counting Landscape

We locate the retraction counting problem in the complexity landscape of related homomorphism

counting problems. Interestingly, it turns out that the complexity landscape for approximate

counting looks very different from the one for exact counting.

We use H(G,H) to denote the set of homomorphisms from G to H and N
(
G → H

)
to denote

the size of H(G,H). The following is the well-known homomorphism counting problem.

Name: #Hom(H).

Input: An irreflexive graph G.
Output: N

(
G → H

)
.

Note that, in the problem #Hom(H), the input graph G is required to be irreflexive. This is

standard in the field, and the reason for it is to make results stronger — typically it is the hardness

results that are most challenging. In the problem #Ret(H), as we have informally defined it, it does

not make sense to forceG to be irreflexive, since it contains an induced copy of H , which may have

loops. However, we can insist that G have no loops outside of the induced copy of H . Theorem 1.1

is still true under this restriction, and we incorporate this restriction into our formal definitions

below. In order to give formal definitions, it is more natural to re-cast the retraction problem in

terms of list homomorphisms, so we define these next.

Let S = {Sv ⊆ V (H) | v ∈ V (G)} be a set of “lists” indexed by the vertices of G. Each list Sv is

a subset of V (H). We say that a function h : V (G) → V (H) is a homomorphism from (G, S) to H
(also called a list homomorphism) if h is a homomorphism from G to H and, for each vertex v of G,
we have h(v) ∈ Sv . We use H((G, S),H) to denote the set of homomorphisms from (G, S) to H and

we use N
(
(G, S) → H

)
to denote the size of H((G, S),H). We will be interested in the following

generalisation of #Hom(H).

Name: #LHom(H).
Input: An irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)}.
Output: N

(
(G, S) → H

)
.

As noted earlier, we will find it convenient to formally define the computational problem #Ret(H)

in terms of list homomorphisms.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

#Hom(H)

#SHom(H)

#Comp(H)

#Ret(H) #LHom(H)

#LSHom(H)

#LComp(H)

[14, Lem.37]

Obs. 1.2

Cor. 1.4

[14, Lem.38]

Thm. 1.5

Thm. 1.5

Obs. 1.2

Cor. 1.3

Thm. 1.6

Thm. 1.6

Fig. 1. Approximate counting complexity landscape. An arrow from a problem A to a problem B means that
there exists an AP-reduction fromA to B. A struck through arrow corresponds to a reduction with a separation.
The references for the reduction and the separation are given above and below the arrow, respectively.

Name: #Ret(H).

Input: An irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)} such that,

for all v ∈ V (G), |Sv | ∈ {1, |V (H)|}.

Output: N
(
(G, S) → H

)
.

The polynomial-time interreducibility between the problem #Ret(H) which we defined infor-

mally (with the restriction on loops inG) and the one defined here, is demonstrated by Feder and

Hell [10, Theorem 4.1] who give a parsimonious reduction between them. (A reduction is parsimo-

nious if it preserves the number of solutions.) This reduction also shows that the corresponding

decision problems are polynomial-time interreducible.

We consider two more related counting problems, namely #SHom(H), the problem of counting

vertex-surjective homomorphisms, and #Comp(H), the problem of counting edge-surjective ho-

momorphisms, which are called compactions. We give their formal definitions at the beginning

of Section 3. Both problems are well-studied in the decision setting [2, 21–23, 36, 44, 46, 48, 49].

All three of the problems #SHom(H), #Comp(H) and #Ret(H) can be interpreted as problems re-

quiring one to count homomorphisms with some kind of surjectivity constraint. #LSHom(H) and

#LComp(H) are the corresponding list homomorphism problems and these are also formally defined

in Section 3.

A separation between two homomorphism-counting problems A and B is given by a parameter

H for which A and B are of different complexity, subject to some complexity-theory assumptions.

Before stating our results we give an overview of the approximate counting complexity landscape

in Figure 1. The results summarised in this figure are consistent with the results that are known

concerning the corresponding decision problems, as surveyed by Bodirsky, Kára and Martin [2],

but they are in contrast to the situation in the exact counting world. For exact counting, #Hom(H),

#Ret(H) and #LHom(H) are interreducible. Also, all of the exact counting problems that we have

mentioned reduce to #Comp(H) and #LComp(H) [14], as depicted in Figure 2. Moreover, #Comp(H)

and #LComp(H) are separated from the remaining problems.

We now give our results in more detail. We start off with the following simple observation which

follows immediately from the problem definitions.

Observation 1.2. Let H be a graph. Then #Hom(H) ≤AP #Ret(H) ≤AP #LHom(H).

As we will see later, the complexity of approximately counting homomorphisms is still open

(despite a lot of work on the problem) — even if restricted to trees H . The complexity of approxi-

mately counting list homomorphisms is known, due to Galanis, Goldberg and Jerrum [16]. Thus,

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:5

#Hom(H), #SHom(H), #Ret(H),

#LHom(H), #LSHom(H)
#Comp(H), #LComp(H)

[14]

Fig. 2. Exact counting complexity landscape. All problems in the same box are interreducible with respect
to polynomial-time Turing reductions. The arrow means that each problem in the box on the left-hand side
reduces to each problem on the right-hand side using a polynomial-time Turing reduction. The arrow is struck
through as there exists a separation between each problem on the left and each problem on the right.

Observation 1.2 indicates that #Ret(H) is an important intermediate problem, between the solved

#LHom(H) and the wide-open #Hom(H).

The first interesting consequence of Theorem 1.1 is a separation between #Ret(H) and #LHom(H).

Corollary 1.3. #Ret(H) and #LHom(H) are separated subject to the assumption that #BIS and

#SAT are not AP-interreducible. In particular, if H is a partially bristled reflexive path with at least

one unlooped vertex, then #Ret(H) ≡AP #BIS, whereas #LHom(H) ≡AP #SAT.

The fact that #Ret(H) ≡AP #BIS for partially bristled reflexive paths follows from Theorem 1.1.

The fact that #LHom(H) ≡AP #SAT is from [16], see Theorem 1.8 in the Related Work section.

As a second consequence, Theorem 1.1 separates #Ret(H) from #Hom(H), but in a different sense.

For q ≥ 3 let Jq be the irreflexive graph obtained from the q-leaf star by subdividing each edge. The

graph J3 is depicted in Figure 4 on page 10. From Goldberg and Jerrum [19] it is known that the

problem #Hom(Jq) is AP-interreducible with the task of computing the partition function of the

q-state ferromagnetic Potts model [40] — a well-studied model from statistical physics. Despite

extensive work on this problem [17–19] it is only known to be #BIS-hard but is not known to be

#BIS-easy or to be #SAT-hard (with respect to AP-reductions).

Corollary 1.4. Let q be an integer with q ≥ 3. #Hom(H) and #Ret(H) are separated subject to the

assumption that approximately computing the partition function of the q-state ferromagnetic Potts

model is not #SAT-hard. In particular, it follows from Theorem 1.1 that #SAT ≤AP #Ret(Jq).

In addition to these separations, we show that approximately counting retractions is at least as

hard as approximately counting surjective homomorphisms and also at least as hard as approxi-

mately counting compactions. The latter is surprising as it is in contrast to known results for the

corresponding exact counting problems (see Figure 2). Our proof uses an interesting Monte Carlo

approach to AP-reductions and more details on this method are given in Section 1.3. The approach

gives analogous reductions for the list versions of these problems for free.

Theorem 1.5. Let H be a graph. Then #SHom(H) ≤AP #Ret(H) and #Comp(H) ≤AP #Ret(H).

Theorem 1.6. LetH be a graph. Then #LSHom(H) ≡AP #LHom(H) and #LComp(H) ≡AP #LHom(H).

Using Theorem 1.5 and Corollary 1.3 we can deduce that #SHom(H) and #LHom(H) are also

separated subject to the assumption that #BIS and #SAT are not AP-interreducible. The same holds

for #Comp(H) and #LHom(H). Moreover, from Theorem 1.6 it follows that we can replace the

problem #LHom(H) with #LSHom(H) or #LComp(H) in these separations.

Our reductions #SHom(H) ≤AP #Ret(H) and #Comp(H) ≤AP #Ret(H) allow us to state new

#BIS-easiness results which are not limited to graphs of girth at least 5, namely the #BIS-easiness

results in the following corollary.

Corollary 1.7. Let H be one of the following:

• A reflexive proper interval graph but not a complete graph.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

• An irreflexive bipartite permutation graph but not a complete bipartite graph.

Then #SHom(H), #Comp(H) and #Ret(H) are #BIS-equivalent.

The #BIS-easiness results in Corollary 1.7 come from our Theorem 1.5 together with Obser-

vation 1.2 and the #BIS-easiness results for #LHom(H) given in Theorem 1.8 on page 7. The

corresponding #BIS-hardness comes from [14, Theorem 35]).

The proof of Theorem 1.1 is given in Section 2.3. Theorem 1.5 is proved in Section 3.1 in the

form of Corollaries 3.4 and 3.6. The proof of Theorem 1.6 is in Section 3.2.

1.3 Methods

In the proof of Theorem 1.1 we use several different techniques. In the #BIS-easiness proof for

partially bristled reflexive paths (Lemma 2.4) we build upon a technique that was introduced

by Dyer et al. [5] and extended by Kelk [33] to reduce the problem of approximately counting

homomorphisms to the problem of approximately counting the downsets of a partial order. In

order to obtain more general results, we formalise this technique and use it in the context of the

constraint satisfaction framework. This framework is convenient for generating #BIS-easiness

results, not only for counting homomorphisms but also for counting retractions, both in the setting

of undirected graphs (as used in this work) and even in the setting of directed graphs.

In order to obtain the #SAT-hardness part of Theorem 1.1, we analyse, and classify, different local

structures in graphs. Themost difficult part is Lemma 2.30 which analyses distance-2 neighbourhood

structures as defined in Section 1.5. This lemma requires intricate gadgets (based on simpler versions

used in [5] and [33]), rather careful analysis, and classifying homomorphisms by type. Other #SAT-

hardness results are easier to come by. For instance, we use modifications of, and a more careful

analysis of, a gadget from [19] to prove the #SAT-hardness for irreflexive square-free graphs that

have an induced subgraph J3 (Lemma 2.2). Some hardness results are also based onNP-completeness

results for the retraction decision problem that carry over to the approximate counting version.

The algorithms captured by the reductions #SHom(H) ≤AP #Ret(H) and #Comp(H) ≤AP #Ret(H)

are based on a Monte Carlo approach (Lemma 3.3). We will discuss this approach here in the

context of counting surjective homomorphisms to H . The details, and the related approach for

counting compactions, are described in Section 3.1. The Monte Carlo approach is applicable for

a reduction from #SHom(H) to #Ret(H) because #Ret(H) is a so-called self-reducible problem.

Recall that the output of #Ret(H), given a graph G and lists S = {Sv ⊆ V (H) | v ∈ V (G)} such
that, for all v ∈ V (G), |Sv | ∈ {1, |V (H)|}, is the number of homomorphisms from (G, S) to H .

Using an oracle for approximating this number, it is also possible to sample a homomorphism

from (G, S) to H approximately uniformly at random (following the general method of Jerrum,

Valiant, and Vazirani [32]). A naive approach for sampling surjective homomorphisms (and hence

for approximately counting them) is as follows: Start with an inputG to #SHom(H). Let S be the
trivial set of lists S = {Sv = V (H) | v ∈ V (G)}. Using the oracle for #Ret(H), obtain a random

homomorphism from (G, S) to H (which is just a random homomorphism from G to H). Reject

(and repeat) if this homomorphism is not surjective. Eventually, we obtain a random surjective

homomorphism from G to H , as required. While this approach is certainly straightforward, it does

not lead to an efficient algorithm for sampling surjective homomorphisms because the number of

surjective homomorphisms might be very small compared to the total number of homomorphisms.

Our method to shrink the sample space is based on the following fact. For every surjective

homomorphism h from G to H there exists a constant-size set of vertices U ⊆ V (G) such that

the restriction of h to U is already surjective. We can enumerate all these constant-size sets U
and use single vertex lists to fix their images. Consequently we obtain a (polynomial) number

of instances (G, S1), . . . , (G, Sk) of the problem #Ret(H). For i ∈ {1, . . . ,k} let Ri be the set of

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:7

homomorphisms from (G, Si) to H . Then the set of surjective homomorphisms from G to H is the

union R =
⋃k

i=1 Ri . The final building block of our reduction is the idea that we can sample the

union R by first sampling from the disjoint union R+ =
⋃k

i=1{(h, i) | h ∈ Ri }. This idea is explained
more generally, for instance, in [38, Section 11.2.2]. The point is, that we can sample uniformly

from R+ by using a #Ret(H) oracle, and the union R is relatively dense in the disjoint union R+ (its
size is at least |R+ |/k). So we can obtain a sample from R. Then the samples can be combined to

obtain, with high probability, an approximate count. A lot of AP-reductions are based on the use of

gadgets and we have not seen the use of Monte Carlo algorithms in AP-reductions before.

1.4 Related Work

LetH be a graph. It is well-known that the complexity of #LHom(H) is determined by the maximum

complexity #LHom(C) for a connected component C of H . In the connected case the complexity is

determined by the following theorem by Galanis et al. [16].

Theorem 1.8 ([16]). Let H be a connected graph.

(i) If H is an irreflexive complete bipartite graph or a reflexive complete graph, then #LHom(H) is

in FP.

(ii) Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval graph,

then #LHom(H) is #BIS-equivalent under AP-reductions.

(iii) Otherwise, #LHom(H) is #SAT-equivalent under AP-reductions.

From our Theorem 1.1 and Theorem 1.8 we immediately obtain the separation between #Ret(H)

and #LHom(H) given in Corollary 1.3. Note that when restricting to irreflexive or reflexive graphs,

the classification of #Ret(H) for graphs of girth at least 5 is identical to the corresponding classi-

fication of the problem #LHom(H). A separation between these problems only occurs for graphs

with at least one looped and one unlooped vertex.

The complexity of approximately counting homomorphisms in the absence of lists is still far

from being resolved. Galanis, Goldberg and Jerrum [15] give a dichotomy for the problem in terms

of #BIS.

Theorem 1.9 ([15]). Let H be a connected graph. If H is a reflexive complete graph or an irreflexive

complete bipartite graph, then #Hom(H) admits an FPRAS. Otherwise, #BIS ≤AP #Hom(H).

Surprisingly, even for the subclass of problems where H is an irreflexive tree, the complexity

of approximately counting homomorphisms is not completely classified. The following partial

classification, originally due to Goldberg and Jerrum [19], follows from Theorems 1.8 and 1.9.

Theorem 1.10 ([19]). Let H be an irreflexive tree.

i) If H is a star, then #Hom(H) is in FP.

ii) Otherwise, if H is a caterpillar, then #Hom(H) is #BIS-equivalent under AP-reductions.

iii) Otherwise, #Hom(H) is #BIS-hard under AP-reductions.

Note that, in general, for irreflexive trees H that are neither stars nor caterpillars it is open

whether approximately counting homomorphisms is #BIS-equivalent, #SAT-hard or even none of

the two. It is only known that #BIS AP-reduces to #Hom(H). However, there exist trees for which

#Hom(H) is #SAT-equivalent with respect to AP-reductions (see [19, Section 5]).

The decision version of the retraction problem is formally defined as follows.
1

1
The literature is slightly inconsistent in the sense that the decision problem Ret(H) is often defined without the restriction

thatG is irreflexive. It is easy to see that the two versions (with andwithout the restriction) are polynomial-time interreducible

since a looped vertex v ofG with list Sv can be replaced with an irreflexive clique of size |V (H) | + 1 (all of whose members

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

c0 c1 c2 c3 c4 c5

д1 д3 д4

Fig. 3. Partially bristled reflexive path with Q = 4 and S = {1, 3, 4}.

Name: Ret(H).

Input: An irreflexive graph G and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)} such that,

for all v ∈ V (G), |Sv | ∈ {1, |V (H)|}.

Output: Is N
(
(G, S) → H

)
positive?

Ret(H) is completely classified as a result of the recent proof of the CSP dichotomy conjec-

ture [4, 52]. However, these proofs do not give a graph-theoretical characterisation. Feder, Hell,

Jonsson, Krokhin and Nordh [13, Corollary 4.2, Theorem 5.1] give the following graph-theoretical

characterisation for pseudotrees, where a pseudotree is a graph with at most one cycle. A graph H
is called loop-connected if, for every connected component C of H , the looped vertices in C induce

a connected subgraph of C .

Theorem 1.11 ([13]). Let H be a pseudotree. Then Ret(H) is NP-complete if any of the following

hold:

• H is not loop-connected,

• H contains a cycle of size at least 5,

• H contains a reflexive cycle of size 4 or

• H contains an irreflexive cycle of size 3.

Otherwise Ret(H) is in P.

Finally, the complexity of exactly counting retractions is completely classified. It is in FP if every

connected component of H is a reflexive complete graph or an irreflexive complete bipartite graph

and #P-complete otherwise [14].

1.5 Preliminaries

For a positive integer n let [n] = {1, . . . ,n}. As partially bristled reflexive paths appear in a number

of our results we give a more formal definition of this class of graphs. We also give an example in

Figure 3.

Definition 1.12. A partially bristled reflexive path is a reflexive path, or a tree with the follow-

ing form. Let Q be a positive integer and let S be a non-empty subset of [Q]. Then V (H) =

{c0, . . . , cQ+1} ∪
⋃

i ∈S {дi } and E(H) =
⋃Q

i=0{ci , ci+1} ∪
⋃Q+1

i=0 {ci , ci } ∪
⋃

i ∈S {ci ,дi }.

For a graph H and a vertex u ∈ V (H) we define the (distance-1) neighbourhood of u as Γ(u) =
{v ∈ V (H) | {v,u} ∈ E(H)}. Similarly, the distance-2 neighbourhood of u is defined as Γ2(u) = {v ∈

V (H) | ∃w ∈ V (H) : {v,w}, {w,u} ∈ E(H)}. Let U be a subset of V (H). Then Γ(U) =
⋂

u ∈U Γ(u) is
the set of common neighbours of the vertices in U . The set of vertices that have a neighbour in S is

denoted by Φ(S) =
⋃
v ∈S Γ(v).

have list Sv) without changing whether or not there is a homomorphism to H . Thus, results stated for one version apply to

the other.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:9

We will also use the concept of induced graphs. Given a subset U of V (H), the graph H [U] =

(U , {{u1,u2} ∈ E(H) | u1,u2 ∈ U }) is called the subgraph ofH induced byU . The graphH ′ = (V ′, E ′)

is a subgraph of H = (V , E) if V ′ ⊆ V and E ′ ⊆ E.
For the complexity theory part of our work we restate some standard definitions taken from [38,

Definitions 11.1, 11.2, Exercise 11.3]. A randomised algorithm gives an (ε, δ)-approximation for the

valueV if the output X of the algorithm satisfies Pr(|X −V | ≤ εV) ≥ 1−δ . Slightly overloading the
notation, an (ε, δ)-approximation for a problemV is a randomised algorithm which, given an input x
and parameters ε, δ ∈ (0, 1), outputs an (ε, δ)-approximation forV (x). A randomised approximation

scheme (RAS) for a problem V is a (ε, 1/4)-approximation of V . A RAS is called fully polynomial

(FPRAS) if it runs in time that is polynomial in 1/ε and the size of the input x .
Intuitively, an approximation-preserving reduction (AP-reduction) from a problemA to a problem B

is an algorithm that yields an FPRAS for A if it has access to an FPRAS for B. We state the technical

definition from [5]. An approximation-preserving reduction from a problem A to a problem B is a

probabilistic oracle Turing machine M which takes as input an instance x of A and a parameter

ε ∈ (0, 1), and satisfies the following three properties: 1) Every oracle call made byM is of the form

(y, δ), where y is an instance of B and δ ∈ (0, 1) with 1/δ ∈ poly(|x |, 1/ε) specifies the precision of

approximation. 2) The Turing machineM is a RAS for A whenever the oracle is a RAS for B. 3) The
runtime ofM is polynomial in |x | and 1/ε .
Sometimes it is useful to switch between different notions of accuracy. To this end we use the

following observation which follows immediately from the Taylor expansion of the exponential

function.

Observation 1.13. Let ε be in (0, 1). Then 1 + ε ≤ eε ≤ 1 + 2ε and 1 − ε ≤ e−ε ≤ 1 − ε/2.

We conclude this section with some simple remarks regarding the connectivity of graphs when

investigating the complexity of counting retractions. We will show that in the context of approx-

imately counting retractions we can restrict to connected graph without loss of generality. We

define the following problem which restricts the input to connected graphs.

Name: #Ret(H)conn.

Input: An irreflexive connected graph G and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)}
such that, for all v ∈ V (G), |Sv | ∈ {1, |V (H)|}.

Output: N
(
(G, S) → H

)
.

The following observation is well known.

Observation 1.14. Let H be a graph. Then #Ret(H) ≡AP #Ret(H)conn.

Proof. The fact that #Ret(H) ≥AP #Ret(H)conn is trivial. We now show that #Ret(H) ≤AP

#Ret(H)conn. Let (G, S) be an instance of #Ret(H) and let ε ∈ (0, 1) be the desired precision. Let

C1, . . . ,Ck be the connected components of G. For each i ∈ [k], let Si = {Sv | v ∈ V (Ci)}.

Then N
(
(G, S) → H

)
=

∏k
i=1 N

(
(Ci , Si) → H

)
. The algorithm which, for each i ∈ [k], makes a

#Ret(H)conn oracle call with precision δ = ε/k and input (Ci , Si), and returns the product of outputs,
approximates N

(
(G, S) → H

)
with the desired precision. □

Remark 1.15. Let H be a graph with connected components H1, . . . ,Hk and let (G, S) be an input

to #Ret(H)conn. For j ∈ [k] let S jv = Sv ∩ V (Hj) and let Sj = {S jv | v ∈ V (G)}. Then, as G is

connected, it holds that

N
(
(G, S) → H

)
=

∑
j ∈[k]

N
(
(G, Sj) → Hj

)
.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

w

z0

z1

x0

x1

y0

y1

Fig. 4. The graph J3.

Therefore, given an oracle for #Ret(Hj)
conn

for each j ∈ [k], we obtain an algorithm for #Ret(H)conn.

By Observation 1.14 this means that given an oracle for #Ret(Hj) for each j ∈ [k], we obtain an

algorithm for #Ret(H).

In the opposite direction, it is straightforward to see that for each j ∈ [k] we have that

#Ret(Hj)
conn ≤AP #Ret(H)conn (and therefore #Ret(Hj) ≤AP #Ret(H)). The details are as fol-

lows: Let (G, S) be an input to #Ret(Hj)
conn

. If all lists in S have size 1, computing N
(
(G, S) → Hj

)
is trivial. Otherwise we fix some vertexv ∈ V (G)with Sv = V (Hj). For eachu ∈ V (H) andw ∈ V (G)
we define

Suw =


{u}, ifw = v

Sw , if |Sw | = 1

V (H), otherwise.

and Su = {Suw | w ∈ V (G)}. AsG is connected, a homomorphism fromG to H maps all vertices ofG
to the same connected component of H . Therefore, N

(
(G, S) → Hj

)
=

∑
u ∈V (Hj)

N
(
(G, Su) → H

)
.

This shows that

��V (Hj)
��
calls to a #Ret(H)conn oracle are sufficient to approximate the number of

retractions to a component Hj of H .

2 APPROXIMATELY COUNTING RETRACTIONS TO GRAPHSWITHOUT SHORT

CYCLES

First we study the complexity of approximately counting retractions to graphs of girth at least

5. We start off by restricting to irreflexive graphs in Section 2.1. The corresponding classification

(Theorem 2.3) is for irreflexive square-free graphs. Subsequently, in Section 2.2, we consider graphs

that have at least one loop.

2.1 Irreflexive Square-free Graphs

The goal of this section is to prove Theorem 2.3. The most difficult part is Lemma 2.2, which shows

that, if H is a square-free graph containing an induced J3, then #SAT ≤AP #Ret(H).

The proof of Lemma 2.2 generalises ideas from the proof of Lemma 3.6 of [19], so we start with

some definitions from there. A multiterminal cut of a graph G with distinguished vertices α , β and

γ (called terminals) is a set of edges E ′ ⊆ E(G) that disconnects the terminals (i.e. ensures that there

is no path in (V (G), E(G) \ E ′) that connects any two distinct terminals). The size of a multiterminal

cut is its cardinality. We consider the following computational problem.

Name: #MultiterminalCut(3).

Input: A connected irreflexive graphG with 3 distinct terminals α, β, γ ∈ V (G) and a positive

integer B. The input has the property that every multiterminal cut has size at least B.
Output: The number of size-B multiterminal cuts of G with terminals α , β and γ .

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:11

For motivation we consider the case where H is a tree. Suppose that H is an irreflexive tree with

an induced J3, labelled as in Figure 4. Lemma 3.6 of [19] gives an AP-reduction from the problem

#MultiterminalCut(3) to the problem of counting “weighted” homomorphisms to H . In fact, the

weights used in the proof are Boolean values, so the proof actually reduces #MultiterminalCut(3)

to the problem of counting list homomorphisms to H . Given an input G,α, β,γ of the problem

#MultiterminalCut(3), a homomorphism instance is created in which lists ensure that the termi-

nals α , β and γ are mapped to the vertices x0, y0 and z0 of J3, respectively. Lists also ensure that

all other vertices of G are mapped to {x0,y0, z0}. Finally, lists ensure that all remaining vertices

of the homomorphism instance are mapped to the vertices {w, x1,y1, z1} of J3. Our proof shows
how to refine the gadgets so that lists have size 1 or size |V (H)|. Thus, our reduction is to the more

refined problem #Ret(H). We also show how to handle graphs H that are not trees (as long as they

are square-free). The details are given in the proof of Lemma 2.2. We use the following technical

lemma, known as Dirichlet’s approximation lemma, which bounds the extent to which reals can be

approximated by integers. Using this lemma is a standard technique in this line of research (see for

instance [15]).

Lemma 2.1 ([41, p. 34]). Let λ1, . . . , λd > 0 be real numbers and N be a natural number. Then there

exist positive integers p1, . . . ,pd , r with r ≤ N such that |rλi − pi | ≤ 1/N 1/d
for every i ∈ [d].

Using Lemma 2.1, we can prove our main lemma.

Lemma 2.2. Let H be a square-free graph that contains an induced J3. Then #SAT ≤AP #Ret(H).

Proof. Suppose thatH is a square-free graph with q vertices and an induced J3, which we label as
shown in Figure 4. The problem #MultiterminalCut(3) is shown in [19, Lemma 3.5] to be equiva-

lent to #SATwith respect to AP-reductions. We will give a reduction from #MultiterminalCut(3)

to #Ret(H).

LetG , α , β , γ , B be an instance of #MultiterminalCut(3) with n = |V (G)| and let ε be an error

bound in (0, 1). From this instance we construct an input (J , S) to #Ret(H) as follows. Each of the

terminals α , β and γ will be vertices of J . J will also have a vertex ω which is distinct from α , β
and γ . Let sα , sβ and sγ be positive integers (we will give their precise values later). For every edge

e = {u,v} ∈ E(G) we define the set of vertices

V ′(e) = {(e,α, 1), . . . , (e,α, sα), (e, β, 1), . . . , (e, β, sβ), (e,γ , 1), . . . , (e,γ , sγ)}.

The label “α” in the name of the vertex (e,α, i) indicates that, in the instance (J , S), this vertex will
be adjacent to α . The labels “β” and “γ ” are similar. The label “e” in the name of the vertex (e,α, i)
indicates that this vertex is in V ′(e).
For each edge e = {u,v} ∈ E(G) we then define a graph J (e) with vertex set V (J (e)) = V ′(e) ∪

{α, β,γ ,ω}. Note that the vertices in V ′(e) are distinct for each edge e whereas α , β , γ and ω are

identical for all e . The edge set E(J (e)) of the graph J (e) is defined as shown in Figure 5.

Then we define J =
(
V (G) ∪ {ω} ∪

⋃
e ∈E(G)V

′(e),
⋃

e ∈E(G) E(J (e))
)
. Intuitively, J is constructed

from the graph G by replacing each edge e ∈ E(G) with the corresponding graph J (e). SinceG is

connected, every vertex v ∈ V (G) is a member of some edge in E(G). This ensures that {v,ω} is an
edge of J .
Next we define the set of lists S in the instance (J , S). We set Sω = {w}, Sα = {x0}, Sβ = {y0},

Sγ = {z0} and Sv = V (H) for allv ∈ V (J)\ {α, β,γ ,ω}. Then we define S = {Sv ⊆ V (H) | v ∈ V (J)}.
This is depicted in Figure 6.

We now showhow amultiterminal cut ofG,α, β,γ corresponds to a certain set of homomorphisms

from (J , S) to H . Every multiterminal cut E ′
ofG,α, β,γ induces a partition of V (G) into connected

components. These are the connected components of (V (G), E(G) \ E ′). Let κ(E ′) be the number of

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

u v

ω

(e,α, 1) (e,α, sα) (e, β, 1) (e, β, sβ) (e,γ , 1) (e,γ , sγ)

α β γ

Fig. 5. The graph J (e) for e = {u,v}.

u v

ω → w

(e,α, 1) (e,α, sα) (e, β, 1) (e, β, sβ) (e,γ , 1) (e,γ , sγ)

α → x0 β → y0 γ → z0

Fig. 6. The graph J (e) for e = {u,v}. A label of the form a → b means that the vertex a ∈ V (G) is pinned to
b ∈ V (H) since Sa = {b}.

these components. Let Γ(w) be the set of neighbours of vertexw in H and let dw ≥ 3 be the degree

ofw in H . Let Ψ(E ′) be the set of functionsψ : V (G) → Γ(w) such that

• ψ maps the vertices of the components containing the terminals α , β , and γ to x0, y0 and z0,
respectively, and

• the set of bichromatic edges {{u,v} ∈ E(G) | ψ (u) , ψ (v)} is exactly the cut E ′
.

Then

|Ψ(E ′)| = dw
κ(E′)−3. (1)

Now, for everyψ ∈ Ψ(E ′), let X (ψ) = {{u,v} ∈ E(G) | ψ (u) = ψ (v) = x0}. Note that X (ψ) is the
set of monochromatic edges inG whose endpoints are mapped to x0. Similarly, let Y (ψ) = {{u,v} ∈
E(G) | ψ (u) = ψ (v) = y0} and Z (ψ) = {{u,v} ∈ E(G) | ψ (u) = ψ (v) = z0}.
Given a multiterminal cut E ′

of G,α, β,γ and a map ψ ∈ Ψ(E ′), we say that a homomorphism

σ ∈ H((J , S),H) agrees with ψ if, for all v ∈ V (G), we have σ (v) = ψ (v). Let Σ(ψ) be the set of
all σ ∈ H((J , S),H) that agree with ψ . Given a multiterminal cut E ′

of G,α, β,γ we say that a

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:13

homomorphism σ ∈ H((J , S),H) agrees with E ′
if there is aψ ∈ Ψ(E ′) such that σ agrees withψ .

Let ZE′ =
∑
ψ ∈Ψ(E′) |Σ(ψ)| be the number of homomorphisms from (J , S) to H that agree with the

cut E ′
.

Now consider a multiterminal cut E ′
of G,α, β,γ . We will bound ZE′ by considering two cases.

Recall that B is a positive integer and part of the instance of #MultiterminalCut(3).

Case 1: |E ′ | = B.
If κ(E ′) ≥ 4 then, since G is connected, the input G,α, β,γ has a multiterminal cut of size less

than B, which contradicts the definition of #MultiterminalCut(3). Hence, it must be the case that

κ(E ′) = 3, which means that |Ψ(E ′)| = 1. For the singleψ ∈ Ψ(E ′)we have |X (ψ)|+ |Y (ψ)|+ |Z (ψ)| =
|E(G)| − B. We will consider the possible homomorphisms σ ∈ Σ(ψ).
Let dx ,dy ,dz ≥ 2 be the degrees of x0, y0 and z0 in H , respectively.

• Consider any edge e ofG that is not in the cut E ′
. Then, as |E ′ | = B, e has to be in X (ψ), Y (ψ)

or Z (ψ).
– Suppose that e is in X (ψ). Consider a vertex (e, β, i) of J (e). This vertex is adjacent to

the terminal β , which is mapped to y0 byψ and also to its endpoints, which are mapped

to x0 by ψ . Thus, σ has to map (e, β, i) to a mutual neighbour (in H) of x0 and y0. Since
H is square-free, the only possibility is vertex w . Similarly, σ has to map each vertex

(e,γ , i) of J (e) to w . There is more choice concerning each vertex (e,α, i) of J (e) — the

homomorphism σ can map this vertex to any of the dx neighbours of x0 in H . Putting this

together, the edge e contributes a factor of dx
sα

to the number of homomorphisms in Σ(ψ).
– Suppose that e is in Y (ψ). Similarly, the edge e contributes a factor of dy

sβ
to |Σ(ψ)|.

– Suppose that e is in Z (ψ). Similarly, the edge e contributes a factor of dz
sγ

to |Σ(ψ)|.
• Consider any edge e = {u,v} of G that is in the cut E ′

. Then a homomorphism σ ∈ Σ(ψ) has
to map all vertices ofV ′(e) to a common neighbour ofψ (u) andψ (v) in H . Sinceψ (u) , ψ (v)
and H is square-free, the only possibility is to map all vertices of V ′(e) tow . Thus, the edge e
contributes a factor of 1 to |Σ(ψ)|.

Putting all of this together, we have

ZE′ = dx
sα |X (ψ) |dy

sβ |Y (ψ) |dz
sγ |Z (ψ) | .

Now our goal is to choose sα , sβ and sγ so that ZE′ depends only on the size of E ′
rather than

on the sizes of X (ψ), Y (ψ) and Z (ψ). (Intuitively, we want to design our graph J (e) in such a way

that it balances out the weights that are induced by the different degrees of x0, y0 and z0.) We are

limited by the fact that sα , sβ and sγ have to be integers. We use Lemma 2.1 to get around this. We

set δ ′ = logq e
ε/42

which we will use in the error bound of the Dirichlet approximation (the reasons

behind our choice of δ ′ will become clear at the end of the proof). Note that 1/δ ′ ∈ poly(ε−1).
Further, let s = 2 + |E(G)| + ⌈log

2
q⌉ |V (G)|. We use Lemma 2.1 to approximate the real values

λ1 = logdx (2
s), λ2 = logdy (2

s) and λ3 = logdz (2
s) and obtain positive integers p1,p2,p3 and r with

r ≤ (n2/δ ′)3 ∈ poly(n, ε−1) such that for all i ∈ {1, 2, 3} we have |rλi − pi | ≤ δ ′/n2. Note that

p1,p2,p3 ∈ poly(n, ε−1). We set sα = p1, sβ = p2 and sγ = p3 to obtain

ZE′ = dx
p1 |X (ψ) |dy

p2 |Y (ψ) |dz
p3 |Z (ψ) |

≤ dx
(rλ1+δ ′/n2) |X (ψ) |dy

(rλ2+δ ′/n2) |Y (ψ) |dz
(rλ3+δ ′/n2) |Z (ψ) |

≤ 2
sr (|X (ψ) |+ |Y (ψ) |+ |Z (ψ) |)qδ

′/n2(|X (ψ) |+ |Y (ψ) |+ |Z (ψ) |)

where we used the fact that dx ,dy ,dz ≤ q. Since |X (ψ)| + |Y (ψ)| + |Z (ψ)| = |E(G)| −B ≤ n2 it holds
that

ZE′ ≤ qδ
′

2
sr (|E(G) |−B).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Analogously we obtain q−δ
′

2
sr (|E(G) |−B) ≤ ZE′ .

Let Z ∗ = 2
sr (|E(G) |−B)

(this value will be used later in the proof). Then

q−δ
′

Z ∗ ≤ ZE′ ≤ qδ
′

Z ∗. (2)

(End of Case 1.)

Case 2: |E ′ | > B.
In this case we have κ(E ′) ≥ 3. For anyψ ∈ Ψ(E ′), as in Case 1, each edge in X (ψ) contributes

a factor of dsαx to |Σ(ψ)|, each edge in Y (ψ) contributes a factor of d
sβ
y , and each edge in Z (ψ)

contributes a factor of d
sγ
z .

Consider anyψ ∈ Ψ(E ′) and let E ′′ = E(G) \ (X (ψ) ∪Y (ψ) ∪ Z (ψ)). Then E ′′
consists of edges in

E ′
and edges in {{u,v} ∈ E(G) | ψ (u) = ψ (v) andψ (u) < {x0,y0, z0}}. Any edge e in E

′′
contributes

a factor of 1 to |Σ(ψ)| as every vertex in V ′(e) has to be mapped tow . Putting all of this together

and simplifying as in Case 1, we have

ZE′ =
∑

ψ ∈Ψ(E′)

dx
p1 |X (ψ) |dy

p2 |Y (ψ) |dz
p3 |Z (ψ) |

≤
∑

ψ ∈Ψ(E′)

qδ
′

2
sr (|X (ψ) |+ |Y (ψ) |+ |Z (ψ) |).

We can analogously derive a lower bound for ZE′ to obtain

q−δ
′

∑
ψ ∈Ψ(E′)

2
sr (|X (ψ) |+ |Y (ψ) |+ |Z (ψ) |) ≤ ZE′ ≤ qδ

′
∑

ψ ∈Ψ(E′)

2
sr (|X (ψ) |+ |Y (ψ) |+ |Z (ψ) |)

(3)

(End of Case 2.)

Let M denote the set of multiterminal cuts of G with terminals α , β and γ and let T be the

number of multiterminal cuts inM with size B. We would like to show how to estimateT using an

approximation for the number of homomorphisms from (J , S) to H . Towards this end, define Z as

follows.

Z = TZ ∗ +
∑

E′∈M: |E′ |>B

∑
ψ ∈Ψ(E′)

2
sr (|X (ψ) |+ |Y (ψ) |+ |Z (ψ) |).

The proof is in two parts.

Part 1: We show that Z/Z ∗ ∈ [T ,T + 1/4].
Since |X (ψ)| + |Y (ψ)| + |Z (ψ)| ≤ |E(G)| − |E ′ |, we have

Z ≤ TZ ∗ +
∑

E′∈M: |E′ |>B

∑
ψ ∈Ψ(E′)

2
sr (|E(G) |− |E′ |).

Using |Ψ(E ′)| = dw
κ(E′)−3

(from (1)) and the definition of Z ∗
(just before (2)), we obtain

Z ≤ TZ ∗ +
∑

E′∈M: |E′ |>B

dw
κ(E′)−3 Z ∗

2
sr (|E′ |−B)

.

Then, in the following expression, the first inequality follows from the definition of Z and the

second inequality follows from the fact that there are at most 2
|E(G) |

multiterminal cuts and from

the bounds dw
κ(E′)−3 ≤ qn , |E ′ | − B ≥ 1 and r ≥ 1. The third inequality follows from the choice of s .

T ≤
Z

Z ∗
≤ T +

2
|E(G) |qn

2
s ≤ T + 1/4.

We have verified that Z/Z ∗ ∈ [T ,T + 1/4].

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:15

Part 2: We show that we can obtain a close approximation to Z/Z ∗
using an oracle for

approximating #Ret(H).

Recall that N
(
(J , S) → H

)
is the number of homomorphisms from (J , S) to H and note that

N
(
(J , S) → H

)
=

∑
E′∈M: |E′ |=B

ZE′ +
∑

E′∈M: |E′ |>B

ZE′ .

Using Inequalities (2) and (3), and the fact that G,α, β,γ has T multiterminal cuts of size B, we
have

q−δ
′

Z ≤ N
(
(J , S) → H

)
≤ qδ

′

Z .

Let Q̂ be a solution returned by the #Ret(H) oracle when called with input

(
(J , S), ε/42

)
. Then

e−ε/42q−δ
′

Z ≤ e−ε/42N
(
(J , S) → H

)
≤ Q̂ ≤ eε/42N

(
(J , S) → H

)
≤ eε/42qδ

′

Z .

The choice of δ ′ = logq e
ε/42

yields e−ε/21 Z
Z ∗ ≤

Q̂
Z ∗ ≤ eε/21 Z

Z ∗ . Note that Z ∗
is easy to compute. The

fact that this precision in the approximation of Z suffices to obtain the required accuracy of the

output Q̂/Z ∗
as an approximation of T is derived in [5, Proof of Theorem 3]. □

We can now give a classification of #Ret(H) for irreflexive square-free graphs.

Theorem 2.3. Suppose that H is an irreflexive square-free graph.

(i) If every connected component of H is a star, then #Ret(H) is in FP.

(ii) Otherwise, if every connected component of H is a caterpillar, then #Ret(H) approximation-

equivalent to #BIS.

(iii) Otherwise, #Ret(H) approximation-equivalent to #SAT.

Proof. We first give the classification assuming that H is a connected graph. Then we use

Remark 1.15 to recover the full classification.

Suppose thatH is a connected irreflexive square-free graph. We have #Hom(H) ≤AP #Ret(H) and

#Ret(H) ≤AP #LHom(H) by Observation 1.2. Therefore, #Ret(H) inherits hardness results from

#Hom(H) hardness results and it inherits easiness results from #LHom(H) easiness results. Thus,

since a star is a complete bipartite graph, item (i) follows from Theorem 1.8. Since a square-free

graph that is not a star cannot be a complete bipartite graph, the #BIS-hardness part of item (ii)

follows from Theorem 1.9. It is known that a caterpillar is a bipartite permutation graph [34]

(see also [16, Appendix A]), so the #BIS-easiness part of item (ii) follows again from Theorem 1.8.

Theorem 1.8 also implies that #Ret(H) is always #SAT-easy, giving the easiness result in item (iii).

It remains to show the hardness result in item (iii). If H is not a caterpillar, then it contains either

a cycle or an induced J3 [24, Theorem 1].

Case 1: H contains an induced J3. The fact that #SAT ≤AP #Ret(H) follows from Lemma 2.2.

End of Case 1.

Case 2: H contains a cycle.

• Suppose that H contains a cycle of odd length. Then H is not bipartite and even the problem

of deciding whether there exists a homomorphism to H is NP-complete due to Hell and

Nešetřil [27]. This homomorphism decision problem reduces to the retraction decision

problem Ret(H) [2] and therefore Ret(H) is NP-hard as well. Then, NP-hardness of Ret(H)

implies #SAT-hardness of the corresponding approximate counting problem #Ret(H) by [5,

Theorem 1].

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

• Suppose that H contains exactly one cycle of even length. Then H is a pseudotree and, as H is

square-free, the cycle has length at least 6. Therefore Ret(H) isNP-complete by Theorem 1.11.

Then, as before, it follows that #Ret(H) is #SAT-hard under AP-reductions by [5, Theorem

1].

• Suppose that H contains at least 2 cycles and all cycles in H have even length. We will show

that H contains an induced J3 and therefore is covered by Case 1. Let C be a shortest cycle in

H . As there are at least two cycles in H and H is connected, there exists a path P1 = w, z0, z1
such thatw is in C and z0 is not in C . As C has length at least 6, there exists a path P2 in C of

the form x0, x1,w,y0,y1. As z0 is not in C it does not coincide with any of the vertices of P2.
Further, as C is a shortest cycle, z1 cannot coincide with any of the vertices of P2. Therefore
the vertices of P1 and P2 form a graph J3 as shown in Figure 4. This subgraph J3 is induced as
H does not contain any cycles of length less than 6.

End of Case 2.

The theorem now follows easily by Remark 1.15. If every connected component is easy, so is H .

If any connected component is hard, so is H . □

2.2 Graphs with Loops

In this section we consider graphs that are not irreflexive.

2.2.1 #BIS-Easiness Results for Graphs with Loops. The point of this section is to prove the following

lemma.

Lemma 2.4. Let H be a partially bristled reflexive path with at least 3 vertices. Then #Ret(H) ≡AP

#BIS.

This lemma builds on Kelk [33, Appendix A.8], who shows that #Hom(H) ≡AP #BIS for par-

tially bristled reflexive paths H . Thus, our work in this section is generalising Kelk’s work from

homomorphism-counting to retraction-counting. For us, the main interest is actually that we

manage to classify all graphs of girth at least 5, rather than that we show that these particular

graphs are #BIS-equivalent. Nevertheless, partially bristled reflexive paths allow us to explore some

interesting ideas, providing a convenient setting for generalising useful techniques.

In particular, in order to reduce #Ret(H) to #BIS, we generalise a technique that was introduced

by Dyer et al. [5, Lemma 8] in order to reduce homomorphism-counting problems to #BIS. Although

the graphs H that we consider in this work are undirected, we show that the technique also applies

to directed graphs. We expect this to be useful for future work.
2
A homomorphism from a digraphG

to a digraph H is simply a function h : V (G) → V (H) such that, for all (u,v) ∈ E(G), the image

(h(u),h(v)) is in E(H). A homomorphism from (G, S) toH must satisfyh(v) ∈ Sv , as in the undirected
case. As for undirected graphs, we use N

(
(G, S) → H

)
to denote the number of homomorphisms

from (G, S) to H . Thus, we consider the following directed retraction problem.

Name: #Dir-Ret(H).

Input: An irreflexive digraphG and a collection of lists S = {Sv ⊆ V (H) | v ∈ V (G)} such that,

for all v ∈ V (G), |Sv | ∈ {1, |V (H)|}.

Output: N
(
(G, S) → H

)
.

The main method used in the literature to prove #BIS-easiness of approximate homomorphism-

counting problems is to reduce them to the problem of counting the downsets of a partial order,

which is known to be #BIS-equivalent [5]. In order to obtain more general results, we formalise

2
The technique also applies if the input G to #Ret(H) is allowed to have loops. This is the main observation needed to

show that Theorem 1.1 extends to the setting where G might have loops.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:17

the technique introduced in the proof of [5, Lemma 8] and expanded by Kelk [33], and use it in

the context of the constraint satisfaction framework. Let L be a set of Boolean relations (called

a constraint language). The counting constraint satisfaction problem (CSP) with parameter L is

defined as follows.

Name: #CSP(L).

Input: A set of variables X and a set of constraints C , where each constraint applies a relation

from L to a list of variables from X .

Output: The number of assignments σ : X → {0, 1} that satisfy all constraints in C .

The constraint language that we will use consists of the two unary Boolean relations δ0 = {(0)}

and δ1 = {(1)} and the arity-two Boolean relation Imp = {(0, 0), (0, 1), (1, 1)}. Note that the

constraint δ0(x) forces a satisfying assignment to assign the value 0 to the variable x and the

constraint δ1(x) forces a satisfying assignment to assign the value 1 to x . The constraint Imp(x,y)
ensures that, in any satisfying assignment σ , we have σ (x) =⇒ σ (y) (that is, if σ (x) = 1 then

σ (y) = 1). It is known that the counting constraint satisfaction problem is #BIS-equivalent when

the constraint language contains (exactly) these three relations.

Lemma 2.5. [7, Theorem 3] #CSP({Imp, δ0, δ1}) ≡AP #BIS.

We now formalise the downsets reduction technique from [5, Lemma 8] and state it as a technique

for reducing homomorphism-counting problems to #CSP({Imp, δ0, δ1}). We generalise the original

technique in two ways. First, we allow size-1 and size-|V (H)| lists in the input, so we obtain #BIS-

easiness results for #Ret(H) and not merely for #Hom(H). Second, even though the main focus

of this work is on undirected graphs, we set up the machinery to enable (stronger) #BIS-easiness

results for the directed problem #Dir-Ret(H).

The main idea is as follows. Given any instances Iv, Ie, If and Ib of #CSP({Imp}) on a variable

setX we will define (Definition 2.6) an undirected graphHIv,Ie and (Definition 2.7) a digraphHIv,If ,Ib .

Then Lemma 2.8 will show that the problems #Ret(HIv,Ie) and #Dir-Ret(HIv,If ,Ib) both reduce to

the #BIS-easy problem #CSP({Imp, δ0, δ1}). Finally, to prove the #BIS-easiness of #Ret(H) when H
is a partially bristled reflexive path (in order to achieve our goal of proving Lemma 2.4), we have to

show, given a partially bristled reflexive path H , how to set up the corresponding instances Iv and
Ie of #CSP({Imp}) so that HIv,Ie = H .

Before defining the graph HIv,Ie and the digraph HIv,If ,Ib , it helps to explain the notation. The

subscript “v” stands for “vertex” and the #CSP({Imp}) instance Iv is used to define the vertices

of the graph HIv,Ie and the vertices of the digraph HIv,If ,Ib . The subscript “e” stands for “edge”

and the CSP instance Ie is used to define the edges of HIv,Ie . The instance If gives the “forward”
constraints for each directed edge ofHIv,If ,Ib and the instance Ib gives the corresponding “backward”
constraints. We will use Cv, Ce, Cf , and Cb to denote the constraint sets of the instances Iv, Ie, If ,
and Ib, respectively.

Definition 2.6. Let Iv = (X ,Cv) and Ie = (X ,Ce) be instances of #CSP({Imp}). We define the

undirected graph HIv,Ie as follows. The vertices of HIv,Ie are the satisfying assignments of Iv. Given
any assignments σ and σ ′

in V (HIv,Ie), there is an edge {σ ,σ ′} in HIv,Ie if and only if the following

holds: For every constraint Imp(x,y) in Ie, we have σ (x) ⇒ σ ′(y) and σ ′(x) ⇒ σ (y).

The definition of the digraph HIv,If ,Ib is similar.

Definition 2.7. Let Iv = (X ,Cv), If = (X ,Cf) and Ib = (X ,Cb) be instances of #CSP({Imp}). We

define the directed graph HIv,If ,Ib as follows. The vertices of HIv,If ,Ib are the satisfying assignments

of Iv. Given any assignments σ and σ ′
in V (HIv,If ,Ib), there is a (directed) edge (σ ,σ

′) in HIv,If ,Ib if

and only if the following holds:

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

• For every constraint Imp(x,y) in If , we have σ (x) ⇒ σ ′(y), and
• for every constraint Imp(x,y) in Ib, we have σ

′(x) ⇒ σ (y).

Lemma 2.8. Let Iv = (X ,Cv), Ie = (X ,Ce), If = (X ,Cf) and Ib = (X ,Cb) be instances of #CSP({Imp}).

Then #Ret(HIv,Ie) ≤AP #CSP({Imp, δ0, δ1}) and #Dir-Ret(HIv,If ,Ib) ≤AP #CSP({Imp, δ0, δ1}).

Proof. Undirected case: We first show the reduction from #Ret(HIv,Ie) to #CSP({Imp, δ0, δ1})
and extend this to the directed result afterwards. The reductions we show are parsimonious. From

an instance (G, S) of #Ret(HIv,Ie) we create an instance I of #CSP({Imp, δ0, δ1}) as follows. The set
of variables of I is V (G) × X and the set of constraints C of I is constructed as follows.

(1) For each v ∈ V (G) and each constraint Imp(x,y) ∈ Iv, we add the constraint Imp((v, x), (v,y))
to C .

(2) For each edge {u,v} ∈ E(G) and each constraint Imp(x,y) ∈ Ie, we add the constraints

Imp((u, x), (v,y)) and Imp((v, x), (u,y)) to C .
(3) For each v ∈ V (G) with |Sv | = 1 let τ be the (only) element of Sv . If τ (x) = 0 then add the

constraint δ0((v, x)) to C . Otherwise, add the constraint δ1((v, x)) to C .

To complete the reduction from #Ret(HIv,Ie) to #CSP({Imp, δ0, δ1}), we will show that there is a bi-

jection between homomorphisms from (G, S) toHIv,Ie and satisfying assignments of I . This bijection
ensures that the number of satisfying assignments of I is equal to N

(
(G, S) → HIv,Ie

)
. Hence the ap-

proximation to N
(
(G, S) → HIv,Ie

)
can be achieved using a single oracle call to #CSP({Imp, δ0, δ1})

with the desired accuracy ε .
To establish the bijection, we present an (invertible) map from satisfying assignments of I to

homomorphisms from (G, S) to HIv,Ie . The map is constructed as follows. Let σ be any satisfying

assignment of I .

• For every vertex v ∈ V (G), define a function σv : X → {0, 1} as follows. For all x ∈ X , let
σv (x) = σ ((v, x)). The constraints added to C in item (1) ensure that, since σ is a satisfying

assignment of I , the assignment σv is a satisfying assignment of Iv. Thus, σv is a vertex of

HIv,Ie .

• Next, we will argue that the function fromV (G) toV (HIv,Ie) that maps every vertex v ∈ V (G)
to σv is a homomorphism from (G, S) to HIv,Ie .

– Consider an edge {u,v} of G. We must show that {σu ,σv } is an edge of HIv,Ie . Using

Definition 2.6, this is equivalent to showing that, for every constraint Imp(x,y) in Ie, we
have σu (x) ⇒ σv (y) and σv (x) ⇒ σu (y). Using the construction of σu and σv , this is
equivalent to showing that, for every constraint Imp(x,y) in Ie, we have σ (u, x) ⇒ σ (v,y)
and σ (v, x) ⇒ σ (u,y). This is ensured by the fact that σ is a satisfying assignment of I , so
it satisfies the constraints added in item (2).

– Consider a vertex v ∈ V (G) with Sv = {τ }. We must show that σv = τ . This is ensured by

the constraints added in item (3).

Starting from the satisfying assignment σ of I , we produced a homomorphism from (G, S) toHIv,Ie ,

namely the homomorphism that maps every vertex v ∈ V (G) to σv . To finish the proof, we need

only note that this construction is invertible — given any homomorphism from (G, S) to HIv,Ie we

can let σv denote the image of v under this homomorphism. Given the collection {σv | v ∈ V (G)},
we construct an assignment σ from V (G) × X to {0, 1} by inverting the above construction: For

every v ∈ V (G) and x ∈ X , let σ ((v, x)) = σv (x). We must then check that σ is satisfying.

• For each v ∈ V (G), the assignment σ satisfies the relevant constraints added in item (1)

because σv is a vertex of HIv,Ie , hence a satisfying assignment of Iv.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:19

• For each {u,v} ∈ E(G) and each pair of constraints Imp((u, x), (v,y)) and Imp((v, x), (u,y))
added to C in item (2), σ satisfies the constraints because {σu ,σv } is an edge of HIv,Ie (so

σu (x) =⇒ σv (y) and σv (x) =⇒ σu (y)).
• Finally, for any s ∈ {0, 1}, consider a constraint δs ((v, x)) introduced in item (3). The procedure

in item (3) ensures that, for some τ with Sv = {τ }, we have τ (x) = s . Our homomorphism

has σv = τ . Thus, the constraint σ ((v, x)) = s is satisfied by σ .

Directed Case: The reduction from #Dir-Ret(HIv,If ,Ib) to #CSP({Imp, δ0, δ1}) is similar to the

one given in the undirected case. Starting with an instance (G, S) of #Dir-Ret(HIv,If ,Ib)we create an

instance I of #CSP({Imp, δ0, δ1}) as follows. The set of variables of I isV (G)×X , as in the undirected

reduction. The set of constraintsC of I is constructed in the same way as in the undirected reduction,

except that item (2) is replaced with the following.

(2)’ For each (directed) edge (u,v) ∈ E(G), we add the following constraints to C . For each
constraint Imp(x,y) ∈ If , we add the constraint Imp((u, x), (v,y)) to C . For each constraint

Imp(x,y) ∈ Ib, we add the constraint Imp((v, x), (u,y)) to C .

As in the undirected case, we complete the proof by establishing a bijection from satisfying

assignments of I to homomorphisms from (G, S) to HIv,If ,Ib . Let σ be any satisfying assignment of I .
The construction of σv from σ is the same as in the undirected case. Only one difference arises in

the verification that the function from V (G) to V (HIv,If ,Ib) that maps every vertex v ∈ V (G) to σv
is a homomorphism from (G, S) to HIv,If ,Ib . Consider any directed edge (u,v) of G. We must show

that (σu ,σv) is an edge of HIv,If ,Ib . Using Definition 2.7 and the construction of σu and σv , this is
equivalent to showing

• For every constraint Imp(x,y) in If , we have σ (u, x) ⇒ σ (v,y), and
• for every constraint Imp(x,y) in Ib, we have σ (v, x) ⇒ σ (u,y).

This is ensured by the constraints added in item (2)’.

As in the undirected case, we next show that we have a bijection by startingwith a homomorphism

from (G, S) to HIv,If ,Ib and letting σv denote the image of v under this homomorphism. Given the

collection {σv | v ∈ V (G)} we construct an assignment σ from V (G) × X to {0, 1} exactly as in

the undirected case. We must check that σ is a satisfying assignment of I . This is the same as

the undirected case except when checking that σ satisfies the constraints added in item (2)’. For

(u,v) ∈ E(G) and a constraint Imp((u, x), (v,y)) added to C because Imp(x,y) ∈ If , note that, since
(σu ,σv) is an edge of HIv,If ,Ib , by Definition 2.7, we have σu (x) =⇒ σv (x), so the constraint is

satisfied. Similarly, for a constraint Imp((v, x), (u,y)) added to C because Imp(x,y) ∈ Ib we again
have σv (x) =⇒ σu (y), so the constraint is satisfied.

So we have a bijection from satisfying assignments of I to homomorphisms from (G, S) toHIv,If ,Ib
and the reduction from #Dir-Ret(HIv,If ,Ib) to #CSP({Imp, δ0, δ1}) follows. □

Although, to be general, we have presented undirected and directed reductions in Lemma 2.8,

our goal in Lemma 2.4 is to prove #BIS-easiness of #Ret(H) for a partially bristled reflexive path,

which is an undirected graph. So we will use the undirected reduction from Lemma 2.8 for this.

The rough idea will be to take a partially bristled reflexive path H and show how to set up the

corresponding instances Iv and Ie of #CSP({Imp}) so that HIv,Ie = H . Then Lemma 2.8 shows that

#Ret(H) reduces to #CSP({Imp, δ0, δ1}), so #Ret(H) is #BIS-easy. Unfortunately, we can’t precisely

achieve this goal, but we can set up the corresponding instances Iv and Ie so that HIv,Ie is equal to H ,

together with some additional small connected components, which turn out not to matter. The fact

that these small connected components don’t cause trouble was first observed by Kelk [33] in the

context of counting homomorphisms. In Lemma 2.10 we show that this is also true when counting

retractions. Lemma 2.9 states the well-known fact that subtracting polynomial-size entities does

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

not spoil an AP-reduction, which is, for instance, pointed out in [33, Lemma 6.6]. For the sake of

completeness we give a short proof.

Lemma 2.9. Let H and H ′
be graphs. For any graph G, let f (G) = N

(
G → H

)
− N

(
G → H ′

)
. If

f (G) is non-negative and bounded from above by a polynomial in |V (G)|, and can be computed in

polynomial time, then #Hom(H ′) ≤AP #Hom(H).

Proof. Let G be an instance of #Hom(H ′) and let ε ∈ (0, 1) be the desired precision. To shorten

notation, letN = N
(
G → H

)
. From the definition of f in the statement of the lemma,N

(
G → H ′

)
=

N − f (G). First, the algorithm computes k = f (G) in polynomial time. If k = 0, then N
(
G → H ′

)
=

N
(
G → H

)
, and the algorithm simply returns the result of a #Hom(H) oracle call with precision ε .

Suppose instead that k ≥ 1. In this case, the algorithm makes a #Hom(H) oracle call with input

G and precision δ ≤ ε
16k . Let R be the integer solution returned by this oracle call (note that R is an

approximation to N satisfying e−δN ≤ R ≤ eδN). The algorithm returns R − k . We show that this

output approximates N
(
G → H ′

)
with the desired precision.

If N
(
G → H ′

)
= 0 then N = k and e−δk ≤ R ≤ eδk . By Observation 1.13 and the facts that ε < 1

and k ≥ 1 this implies R ∈ (k − 1/4,k + 1/4) and since R is integer this gives R = k . Thus, in this

case the algorithm returns 0, which is the exact solution.

Suppose instead that N
(
G → H ′

)
≥ 1. In this case, N ≥ k + 1 and by Observation 1.13 we have

R − k ≤ eδN − k ≤ (1 + 2δ)N − k = (1 + 2δ)(N − k) + 2kδ .

Since N ≥ k + 1 and 2δ ≤ ε/8 we have 2kδ ≤ ε/8 ≤ ε/8 · (N − k) and consequently

(1 + 2δ)(N − k) + 2kδ ≤ (1 + ε/4)(N − k).

Analogously, we obtain R −k ≥ (1−δ)(N −k) −kδ ≥ (1− ε/8)(N −k). Finally, by Observation 1.13,

this implies e−ε (N −k) ≤ R −k ≤ eε (N −k) and thus returning R −k has the desired precision. □

Lemma 2.10. Let H ′
be a graph and let H be the graph consisting of a connected component that

is isomorphic to H ′
together with some additional connected components C1, . . . ,Ck . Suppose that,

for each i ∈ [k], Ci is one of the following graphs: a singleton vertex, with or without a loop, or an

unlooped edge. Then #Ret(H ′) ≤AP #Ret(H).

Proof. Recall the definition of #Ret(H)conn from Section 1.5. To prove the lemma we show

#Ret(H ′) ≤AP #Ret(H ′)conn ≤AP #Ret(H)conn ≤AP #Ret(H). (4)

The first and the trivial third reduction follow from Observation 1.14. It remains to show that

#Ret(H ′)conn ≤AP #Ret(H)conn. Let (G, S′) be an input to #Ret(H ′)conn and let ε ∈ (0, 1) be the
desired precision. From the problem definition,G is connected. Now define the lists Sv forv ∈ V (G)
as follows. If S ′v = V (H ′) then let Sv = V (H). Otherwise, let Sv = S ′v . Let S = {Sv | v ∈ V (G)}
First, the algorithm tests whether there is a list S ′v ∈ S′ with |S ′v | = 1. If there is such a list,

then there is a particular component of H ′
with the property that every homomorphism fromG

to H ′
maps all vertices of G to this component, and every homomorphism from G to H maps all

vertices ofG to this component. Thus, N
(
(G, S′) → H ′

)
= N

(
(G, S) → H

)
. So a single oracle call

with precision ε gives the sought-for approximation.

If there is no list S ′v ∈ S′ with |S ′v | = 1 then every list S ′v is equal to V (H ′) and every list

Sv is equal to V (H). Thus, N
(
(G, S′) → H ′

)
= N

(
G → H ′

)
and N

(
(G, S) → H

)
= N

(
G → H

)
.

As G is connected we also have N
(
G → H

)
= N

(
G → H ′

)
+

∑k
i=1 N

(
G → Ci

)
. As C1, . . .Ck are

either singleton vertices or unlooped edges, the algorithm can compute

∑k
i=1 N

(
G → Ci

)
efficiently.

Also, for each i ∈ [k], N
(
G → Ci

)
≤ 2. Setting f (G) =

∑k
i=1 N

(
G → Ci

)
in Lemma 2.9 gives the

sought-for AP-reduction. □

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:21

As noted at the beginning of this section, approximately counting homomorphisms to partially

bristled reflexive paths is shown to be #BIS-easy in [33, Appendix A.8]. Using the same construc-

tion and our Lemma 2.8 we can now prove Lemma 2.4, which is the generalisation for counting

retractions. We restate the lemma and recast the construction in our setting for convenience.

Lemma 2.4. Let H be a partially bristled reflexive path with at least 3 vertices. Then #Ret(H) ≡AP

#BIS.

Proof. The #BIS-hardness part of the statement is inherited from #Hom(H) using Theorem 1.9

and the reduction #Hom(H) ≤AP #Ret(H) from Observation 1.2. We now show #BIS-easiness.

Matching the notation from Definition 1.12, the partially bristled reflexive path H can be

described as follows. There exists a positive integer Q and a be a subset S of [Q] such that

V (H) = {c0, . . . , cQ+1} ∪
⋃

i ∈S {дi } and E(H) =
⋃Q

i=0{ci , ci+1} ∪
⋃Q+1

i=0 {ci , ci } ∪
⋃

i ∈S {ci ,дi }. Note
that S can be empty.

Let X = {x0, . . . , xQ }. Define the instances Iv = (X ,Cv) and Ie = (X ,Ce) of #CSP({Imp}) as

follows.

• For each i ∈ [Q] \ S , we add a constraint Imp(xi , xi−1) to Cv.

• For each pair (i, j) satisfying 0 ≤ i < j ≤ Q , we add a constraint Imp(x j , xi) to Ce.

We claim that the graph HIv,Ie , as defined in Definition 2.6, has a connected component that is

isomorphic to H and that all other connected components of HIv,Ie are singleton vertices (without

loops). Given the claim, the reduction from #Ret(H) to #BIS follows from Lemmas 2.10, 2.8 and 2.5

(applied in that order).

We conclude the proof by showing the claim. For each i ∈ {0, . . . ,Q + 1} let σi : X → {0, 1} be
the following assignment of Boolean values to variables in X .

σi (x j) =

{
1, if j < i

0, otherwise.

Note that σ0 maps all arguments to 0 and σQ+1 maps all arguments to 1.

The indices of σ0, . . . ,σQ+1 are chosen this way to match the indices of the vertices c0 to cQ+1
of the graph H . Note that σ0, . . . ,σQ+1 are satisfying assignments of Iv and, therefore, they are

vertices of HIv,Ie . By the definition of Ie, these vertices are looped in HIv,Ie . Also, for all i ∈ [Q], we
have {σi ,σi+1} ∈ E(HIv,Ie). Hence, the vertices σ0, . . . ,σQ+1 form a reflexive path in HIv,Ie .

Now for each i ∈ [Q] let σ ′
i : X → {0, 1} be the following assignment of Boolean values to

variables in X .

σ ′
i (x j) =

{
1, if j ≤ i and j , i − 1

0, otherwise.

For every i ∈ [Q], we have σ ′
i (xi−1) = 0 and σ ′(xi) = 1, so σ ′

i is not equal to any σi′ .
Consider a vertex ci of H with i ∈ [Q].

• If i ∈ S : In this case, σ ′
i is a satisfying assignment of Iv. By the definition of Ie, σ

′
i has degree 1

and is adjacent to σi in HIv,Ie . Thus, the vertex σ
′
i of HIv,Ie corresponds to the vertex дi of H .

• If i < S : In this case, as i ≥ 1, the constraint Imp(xi , xi−1) in Iv ensures that σ ′
i is not a

satisfying assignment of Iv and, therefore, σ
′
i is not a vertex of HIv,Ie .

We will next show that the edges that we have already described constitute all of the edges of

HIv,Ie . This means that the rest of the vertices of HIv,Ie have degree 0, so we are finished.

To this end, let σ be any function from X to {0, 1}. From the definition of Ie, we obtain the

following necessary condition for σ to have a neighbour in HIv,Ie : Let i ∈ {0, . . . ,Q} be the largest

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Fig. 7. The graph 2-Wrench.

index for which σ (xi) = 1. Ifψ is a neighbour of σ then, for all j ≤ i − 1,ψ (x j) = 1 and hence, for all

j ≤ i − 2, σ (x j) = 1. Thus, for σ to have a neighbour in HIv,Ie it has to be of the form σi or σ
′
i . □

Remark 2.11. One interesting feature of Lemma 2.4 is that it shows that there are graphs H
for which #Ret(H) is #BIS-equivalent, whereas #LHom(H) is #SAT-hard. Thus, subject to the

complexity assumption that #BIS is not #SAT-equivalent, there is a graphH for which the complexity

of #Ret(H) differs from that of #LHom(H). The smallest example from the class of partially bristled

reflexive paths for which this separation holds is the so-called 2-Wrench, depicted in Figure 7. The

fact that #SAT ≤AP #LHom(2-Wrench) follows from Theorem 1.8.

2.2.2 #SAT-Hardness Results for Graphs with Loops. The goal of this section is to prove the hardness

results given in Lemmas 2.14, 2.15 and 2.30. In order to show #SAT-hardness results we will prove

that certain neighbourhood structures induce hardness. To this end consider the following easy

and well-known observation proved here for completeness.

Observation 2.12. LetH be a graph and letu be a vertex ofH . Then #Hom(H [Γ(u)]) ≤AP #Ret(H).

Proof. Let G be an input to #Hom(H [Γ(u)]) and let v1, . . . ,vn be the vertices of G. Let w be

a vertex distinct from the vertices in G. Then we construct the graph G ′
with vertices V (G ′) =

V (G) ∪ {w} and edges E(G ′) = E(G) ∪ {{w,vi } | i ∈ [n]}. We set Sw = {u} and Sv = V (H) for all

remaining vertices of G ′
. Let S = {Sv | v ∈ V (G ′)}. Then N

(
G → H [Γ(u)]

)
= N

(
(G ′, S) → H

)
. □

First we combine some known results to show hardness that is derived from the analysis of

distance-1 neighbourhoods (Lemmas 2.14 and 2.15). Then we show hardness results derived from

the analysis of distance-2 neighbourhoods in the more difficult Lemma 2.30, which is the main

result of this section.

For Lemmas 2.14 and 2.15 we use gadgets based on complete bipartite graphs where two states

dominate (see, e.g., [5, Lemma 25], [20, Section 5] and [33, Lemma 5.1]). We use the version of

Kelk [33]. Let F (H) = {u ∈ V (H) | Γ(u) = V (H)}. For a set of vertices S recall the set of common

neighbours Γ(S) from Section 1.5.

Lemma 2.13 ([33, Lemma 5.1]). Let H be a graph with ∅ ⊊ F (H) ⊊ V (H). Suppose that, for every

pair (S,T) with ∅ ⊆ S,T ⊆ V (H) satisfying S ⊆ Γ(T) andT ⊆ Γ(S), at least one of the following holds:

(1) S = F (H).

(2) T = F (H).

(3) |S | · |T | < |F (H)| · |V (H)|.

Then #SAT ≤AP #Hom(H).

Lemma 2.13 is not difficult to prove. A homomorphism from a complete bipartite graph to H
will typically map one side to F (H) and the other to V (H). So it is easy to reduce from counting

independent sets.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:23

Fig. 8. Possible graphs Hb with at most 4 vertices.

Let WRq be a reflexive star with q leaves. (The name is not relevant here but it comes from the

Widom-Rowlinson model [51] from statistical physics.) The non-leaf vertex of WRq is called its

centre.

Lemma 2.14. Let H be a graph that has a looped vertex b such that H [Γ(b)] is isomorphic toWRq
for some q ≥ 3. Then #SAT ≤AP #Ret(H).

Proof. The problem #Hom(WRq) is the same as #Hom(H [Γ(b)]), and by Observation 2.12 we ob-

tain #Hom(H [Γ(b)]) ≤AP #Ret(H). Forq ≥ 4Dyer et al. [5, Lemma 26] show #SAT ≤AP #Hom(WRq).

For q = 3 this fact is due to Kelk [33, Section 2.3]. Summarising we obtain

#SAT ≤AP #Hom(WRq) ≡AP #Hom(H [Γ(b)]) ≤AP #Ret(H).

□

Recall the 2-Wrench as given in Figure 7.

Lemma 2.15. Let H be a triangle-free graph that has a looped vertex b which has an unlooped

neighbour. If H [Γ(b)] is not isomorphic to a 2-Wrench, then #SAT ≤AP #Ret(H).

Proof. By Observation 2.12 we know #Hom(H [Γ(b)]) ≤AP #Ret(H). We show #SAT ≤AP

#Hom(H [Γ(b)]) to obtain #SAT ≤AP #Ret(H).

To shorten the notation letHb = H [Γ(b)]. We consider different cases depending on the graphHb .

By assumption the vertex b is looped and has at least one unlooped neighbour. First consider the

case where Hb has at most 4 vertices. Since, by assumption, Hb is triangle-free and not isomorphic

to a 2-Wrench, it has to be isomorphic to one of the graphs depicted in Figure 8. Approximately

counting homomorphisms to the first graph in Figure 8 is well-known to be equivalent to #IS (the

problem of approximately counting independent sets in a graph) which is #SAT-equivalent [5,

Theorem 3]. The second and fourth graphs correspond to weighted versions of #IS which are

known to be #SAT-equivalent [33, Lemma 2.3]. The third graph is the so-called 1-Wrench and

the corresponding #SAT-hardness is shown in [5, Theorem 21]. Finally, approximately counting

homomorphisms to the fifth graph in Figure 8 is shown to be #SAT-hard in [33, Section 2.3].

Now consider the case where Hb has 5 or more vertices. We claim that, under this assumption,

Lemma 2.13 gives #SAT ≤AP #Hom(Hb). To see this, note that F (Hb) = {b} and |F (Hb)| |V (Hb)| ≥ 5.

Consider any pair (S,T) with ∅ ⊆ S,T ⊆ V (Hb), S ⊆ Γ(T) and T ⊆ Γ(S). We distinguish between

different cases depending on the cardinalities of S and T and show that in each case the conditions

of Lemma 2.13 are fulfilled.

• If |S | = 1 then either item (1) or item (3) of Lemma 2.13 are satisfied.

• If |T | = 1 then either item (2) or item (3) of Lemma 2.13 are satisfied.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

q · t
p · t p · t

α → д α ′ → д

β → b

A B C C ′ B′ A′

Fig. 9. The graph J . A label of the form v → u means that the vertex v ∈ V (J) is pinned to u ∈ V (H) since
Sv = {u}.

• If |S | ≥ 3 then T = {b} since T ⊆ Γ(S) and H is triangle-free. So |T | = 1.

• If |T | ≥ 3 then S = {b} since S ⊆ Γ(T) and H is a triangle-free. So |S | = 1.

• If |S | = |T | = 2 then |S | · |T | = 4 and item (3) of Lemma 2.13 is satisfied.

So Lemma 2.13 gives #SAT ≤AP #Hom(Hb). □

The goal of the remainder of this section is to show Lemma 2.30, in which we prove #SAT-

hardness using distance-2 neighbourhoods of vertices in H . In order to show #SAT-hardness we

use a reduction from counting large cuts in a graph G. We use graph gadgets to model these cuts.

We replace each vertex of G by a graph J such that the number of homomorphisms from J to H is

dominated by exactly two “types” of homomorphisms. These two types encode the two parts of a

cut. In Table 1 we give all types that represent a significant share of the set of homomorphisms.

In Lemma 44 we show how to choose parameters of the graph J to ensure that only 2 significant

types remain. In the proof of Lemma 45 we verify another desired property, which is that the two

types interact in an “anti-ferromagnetic” way to ensure that large cuts dominate.

At this point we introduce the gadget graph J and introduce some of its properties. Note that a

similar but simpler gadget has been used in [5] and [33].

Definition 2.16. For sets X and Y we define X × Y = {{x,y} | x ∈ X ,y ∈ Y } as an undirected

version of the usual definition of the Cartesian product.

Definition 2.17. We now define the graph J , as visualised in Figure 9. Let p, q and t be positive
integers — these are parameters of J . Let A, A′

, B and B′
be independent sets of size p · t and let C

andC ′
be independent sets of size q · t . These six sets are pairwise disjoint. In addition, we introduce

vertices α , α ′
and β that are distinct from each other and the remaining vertices. The vertex set of

J is the union of {α,α ′, β} and the sets A, A′
, B, B′

, C and C ′
. As displayed in Figure 9, the edge

set of J is defined as follows. The set of edges M1 between the vertices of A and B forms a perfect

matching (every vertex in A is adjacent to exactly one vertex in B and vice versa). The set of edges

M2 between the vertices of C and C ′
and the edges M3 between the vertices of A′

and B′
form

perfect matchings respectively. Then

E(J) =
⋃
i ∈[3]

Mi ∪

(
B ×C

)
∪

(
B′ ×C ′

)
∪

(
{α } ×A

)
∪

(
{α ′} ×A′

)
∪

(
{β} × (B ∪C ∪C ′ ∪ B′)

)
.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:25

. . .

w1 r1 b r2 w2

d1

д

d2
y1 yk

Fig. 10. The graphHk . Circled sets of vertices are independent sets of possibly looped vertices. Sets of vertices
that are connected by a thick red edge have a complete set of edges between them.

This completes the definition of the graph J .

For any positive integer k let Hk be the graph as shown in Figure 10. The vertex set of Hk is

{w1,d1, r1,w2,d2, r2,b,д,y1, . . . ,yk }. All of these vertices are looped except for d1, d2 and д. The
non-loop edges of Hk are the edges in

{{w1, r1}, {w2, r2}, {d1, r1}, {d2, r2}, {r1,b}, {r2,b}, {b,д}, {д,y1}, . . . , {д,yk }},

together with those in {w1,d1} × {w2,d2}, {w1,d1} × {y1, . . . ,yk } and {w2,d2} × {y1, . . . ,yk }. The
significance of this graph will become clear in the proof of Lemma 2.30.

For a graph J we define the vertex lists Sα = {д}, Sα ′ = {д}, and Sβ = {b}. Also, for all
v ∈ V (J) \ {α,α ′, β}, we define Sv = V (Hk). Finally, we let SJ = {Sv | v ∈ V (J)}. In order to

investigate the number of homomorphisms from (J , SJ) to Hk , we set up the following notation.

Suppose that U and V are subsets of V (J) and that h is a homomorphism h ∈ H((J , SJ),Hk). We

define

• h(V) = {h(x) | x ∈ V } and

• h(U ,V) = {(h(x),h(y)) | x ∈ U ,v ∈ V , {x,y} ∈ E(J)}.

We say that (h(A,B),h(C,C ′),h(B′,A′)) is the type of h. We will partition the setH((J , SJ),Hk)

into different classes by type. Formally, a type is a tuple T = (T1,T2,T3) where each Ti is a subset
of {(x,y) | x ∈ V (Hk),y ∈ V (Hk), {x,y} ∈ E(Hk)}. The type of a homomorphism gives a lot of

information. Given a typeT = (T1,T2,T3), letA(T) = {x | ∃y (x,y) ∈ T1},B(T) = {y | ∃x (x,y) ∈ T1},
C(T) = {x | ∃y (x,y) ∈ T2}, C

′(T) = {y | ∃x (x,y) ∈ T2}, B
′(T) = {x | ∃y (x,y) ∈ T3}, and

A′(T) = {y | ∃x (x,y) ∈ T3}. If a homomorphism h ∈ H((J , SJ),Hk) has type T then it is clear from

the definition of J that h(A) = A(T), h(B) = B(T), h(C) = C(T), h(C ′) = C ′(T), h(B′) = B′(T) and
h(A′) = A′(T). A typeT is called non-empty if there exists a homomorphism from (J , SJ) to Hk that

has type T , otherwise it is called empty. The following observation follows from the definition of J .

Observation 2.18. A type T = (T1,T2,T3) is non-empty if and only if

(1) T1, T2 and T3 are non-empty,

(2) B(T) ∪C(T) ∪C ′(T) ∪ B′(T) ⊆ Γ(b),
(3) A(T) ∪A′(T) ⊆ Γ(д),

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

(4) B(T) ×C(T) ⊆ E(Hk) and B
′(T) ×C ′(T) ⊆ E(Hk).

Given a typeT = (T1,T2,T3)we defineN (T) to be the number of homomorphisms inH((J , SJ),Hk)

that have type T . We also set N̂ (T) = |T1 |
pt |T2 |

qt |T3 |
pt
. In Lemma 2.20 we show that, for non-

empty T , N̂ (T) is a close approximation to N (T).
We use the following technical fact. Let

{a
b

}
be the Stirling number of the second kind, i.e. the

number of surjective functions from a set of a elements to a set of b elements.

Lemma 2.19 ([5, Lemma 18]). If a and b are positive integers and a ≥ 2b lnb, then

ba
(
1 − exp

(
−
a

2b

))
≤

{
a

b

}
≤ ba .

Lemma 2.20. Let p and q be positive integers. There exists a positive integer t0 such that for all

t ≥ t0 and all non-empty types T of the corresponding graph J we have

N̂ (T)

2

≤ N (T) ≤ N̂ (T).

Proof. Let T = (T1,T2,T3) be a non-empty type. Then

N (T) =

{
p · t

|T1 |

}
·

{
q · t

|T2 |

}
·

{
p · t

|T3 |

}
. (5)

For fixed p and q and sufficiently large t0 we know from Lemma 2.19 that for all t ≥ t0 we have

1 − exp

(
−
p · t

2|T1 |

)
≥ (1/2)1/3,

an analogous bound holds for the other two factors in Equation (5). The statement of the lemma

then directly follows from Lemma 2.19. □

Definition 2.21. We say that a type T = (T1,T2,T3) is maximal if it is non-empty and every type

T ′ = (T ′
1
,T ′

2
,T ′

3
) with T ′ , T , T1 ⊆ T ′

1
, T2 ⊆ T ′

2
and T3 ⊆ T ′

3
is empty.

Using this definition ofmaximalitywe prove that the number of homomorphisms inH((J , SJ),Hk)

that have a maximal type is exponentially larger as a function of t than the number of homomor-

phisms that have non-maximal types. Note that the precise value of the fraction
31+12k
32+12k that appears

in the following lemmas is not important, we only need it to be smaller than 1. This particular

bound uses the fact that, for any type (T1,T2,T3), the sets T1, T2 and T3 have cardinality at most

2|E(Hk)| = 32 + 12k .

Constraint 2.22. In our proofs we will need the fact that the parametersp andq of J are sufficiently

large with respect to the number of edges in Hk . In particular, we require that p,q ≥ 2|E(Hk)| =

32 + 12k .

Lemma 2.23. Let T be a non-empty type that is not maximal. Then there exists a non-empty type

T ∗
such that N̂ (T) ≤

(
31+12k
32+12k

)t
N̂ (T ∗).

Proof. Let T = (T1,T2,T3) be a non-empty type that is not maximal. Then there exists a non-

empty typeT ∗ = (T ∗
1
,T ∗

2
,T ∗

3
) withT ∗ , T andTi ⊆ T ∗

i for i ∈ [3]. SinceT ∗ , T there exists an index

i ∈ [3] such that Ti ⊊ T ∗
i , i.e. |Ti | ≤

��T ∗
i

�� − 1. Then (using the fact that p,q ≥ 1)

N̂ (T)

N̂ (T ∗)
=

|T1 |
pt |T2 |

qt |T3 |
pt��T ∗

1

��pt ��T ∗
2

��qt ��T ∗
3

��pt ≤

(��T ∗
i

�� − 1��T ∗
i

��
)t

≤

(
2|E(Hk)| − 1

2|E(Hk)|

)t
≤

(
31 + 12k

32 + 12k

)t
.

□

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:27

Definition 2.24. Let E = E(Hk). For all X ⊆ V (Hk) and Y ⊆ V (Hk) we set E(X ,Y) = {(x,y) | x ∈

X ,y ∈ Y , {x,y} ∈ E}.

For a set of vertices S in a graph H recall the definition of the set of common neighbours Γ(S)
and the set of all neighbours Φ(S) from Section 1.5.

Lemma 2.25. Let T = (T1,T2,T3) be a maximal type. Then

(1) T1 = E(A(T),B(T)), T2 = E(C(T),C ′(T)) and T3 = E(B′(T),A′(T)). Also,
(2) C(T) = Γ

(
Γ(C(T)) ∩ Γ(b)

)
∩ Γ(b) and C ′(T) = Γ

(
Γ(C ′(T)) ∩ Γ(b)

)
∩ Γ(b).

(3) B(T) = Γ(C(T)) ∩ Γ(b) and B′(T) = Γ(C ′(T)) ∩ Γ(b) .
(4) A(T) = Φ(B(T)) ∩ Γ(д) and A′(T) = Φ(B′(T)) ∩ Γ(д).

Proof. Let T = (T1,T2,T3) be a non-empty type.

Proof of (1): It is clear from the definitions that T1 ⊆ E(A(T),B(T)), T2 ⊆ E(C(T),C ′(T))
and T3 ⊆ E(B′(T),A′(T)). Suppose that T2 is a strict subset of E(C(T),C

′(T)). We will show that

T is not maximal. To this end, consider the type T ∗ = (T1, E(C(T),C
′(T)),T3). Note that A(T

∗) =

A(T), B(T ∗) = B(T), C(T ∗) = C(T), C ′(T ∗) = C ′(T), B′(T ∗) = B′(T) and A′(T ∗) = A′(T). Using
Observation 2.18 and the fact that T is non-empty, we conclude that T ∗

is non-empty. Using the

definition of maximality (comparing T to T ∗
) we conclude that T is not maximal. Similarly, if T1 is

a strict subset of E(A(T),B(T)) or if T3 is a strict subset of E(B
′(T),A′(T)) then T is not maximal.

Proof of (2): Let X = Γ
(
Γ(C(T)) ∩ Γ(b)

)
and S = X ∩ Γ(b). If y ∈ Γ(C(T)) ∩ Γ(b) then y is

certainly adjacent to everything in C(T), so C(T) ⊆ X . Since C(T) ⊆ Γ(b) by Observation 2.18, we

conclude thatC(T) is a subset of S . Similarly, defining X ′ = Γ
(
Γ(C ′(T)) ∩ Γ(b)

)
and S ′ = X ′ ∩ Γ(b),

we have C ′(T) ⊆ S ′. Thus, T2 ⊆ E(S, S ′). Consider the type T ∗ = (T1, E(S, S
′),T3).

• Wefirst show thatT ∗
is non-empty. Note thatA(T ∗) = A(T), B(T ∗) = B(T),A′(T ∗) = A′(T) and

B′(T ∗) = B′(T). Also, C(T ∗) ⊆ S ⊆ Γ(b) and C ′(T ∗) ⊆ S ′ ⊆ Γ(b). Using Observation 2.18 and

the fact thatT is non-empty, we must check that B(T) ×C(T ∗) ⊆ E(Hk) and B
′(T) ×C ′(T ∗) ⊆

E(Hk). To do this, we will check that B(T) × S ⊆ E(Hk) and B
′(T) × S ′ ⊆ E(Hk).

We start with the first of these. Since T is non-empty, Observation 2.18 guarantees that

B(T) ⊆ Γ(C(T)) ∩ Γ(b). So it suffices to show that

(
Γ(C(T)) ∩ Γ(b)

)
× S ⊆ E(Hk), which

follows from the definition of S . The proof that B′(T) × S ′ ⊆ E(Hk) is similar. We have shown

that T ∗
is non-empty.

• We next show that C(T ∗) = S . We have already established that C(T ∗) ⊆ S . The vertex b is

adjacent to everything in Γ(b) so it is adjacent to everything in the subset Γ(C ′(T)) ∩ Γ(b)
hence b ∈ X ′

. Since b has a loop, this implies b ∈ S ′. By the definition of T ∗
it follows that

S ⊆ C(T ∗), and hence C(T ∗) = S , as required. We can similarly show that C ′(T ∗) = S ′.

Suppose that C(T) is a strict subset of S . Comparing T to T ∗
, we find that T2 is a strict subset of

E(S, S ′) so T is not maximal. Similarly, if C ′(T) is a strict subset of S ′ then T is not maximal.

Proof of (3): It is immediate from Observation 2.18 that B(T) ⊆ Γ(C(T)) ∩ Γ(b) and B′(T) ⊆
Γ(C ′(T)) ∩ Γ(b).

Suppose that B(T) is a strict subset of Γ(C(T)) ∩ Γ(b). We will show thatT is not maximal. To this

end, let v be any vertex in Γ(C(T)) ∩ Γ(b) \ B(T) and consider the type T ∗ = (T1 ∪ {(b,v)},T2,T3).
Observation 2.18 shows that T ∗

is non-empty, so T is not maximal. Similarly, if B′(T) is a strict
subset of Γ(C ′(T)) ∩ Γ(b) then T is not maximal.

Proof of (4): It is immediate from Observation 2.18 and the definition of a type that A(T) ⊆
Φ(B(T)) ∩ Γ(д) and A′(T) ⊆ Φ(B′(T)) ∩ Γ(д). If either of these subset inclusions is strict then, as in
the proof of (3), it is straightforward to see that T is not maximal. □

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Lemma 2.26. Let T be a maximal type. Then C(T) and C ′(T) are both in the set

{{b}, {r1,b}, {r2,b}{r1, r2,b,д}}.

Proof. We will prove this for C(T). The argument for C ′(T) is the same. From Observation 2.18,

C(T) is a (not necessarily strict) subset of Γ(b) = {r1, r2,b,д} (and it is non-empty).

• Ifд ∈ C(T) then Γ(C(T))∩Γ(b) = {b} so, by item (2) of Lemma 2.25,C(T) = Γ(b) = {r1, r2,b,д}.
• If r1 ∈ C(T) and r2 ∈ C(T) then Γ(C(T)) ∩ Γ(b) = {b} so, again, C(T) = Γ(b) = {r1, r2,b,д}.
• If C(T) = {r1} then Γ(C(T)) ∩ Γ(b) = {r1,b} so, by item (2) of Lemma 2.25, C(T) = {r1,b},
which is a contradiction.

• Similarly, the case C(T) = {r2} gives a contradiction.

This covers all possible cases. □

Definition 2.27. For i ∈ [6] let Xi ⊆ V (Hk). We say that the types (E(X1,X2), E(X3,X4), E(X5,X6))

and (E(X6,X5), E(X4,X3), E(X2,X1)) are symmetric to each other.

Note that if T and T ′
are symmetric to each other it holds that N (T) = N (T ′).

Table 1. Maximal types of the homomorphisms inH(J , SJ),Hk).

A(T) B(T) C(T) C ′(T) B′(T) A′(T) N̂ (T)

T1 {b} ∪ Y {r1, r2,b,д} {b} {b} {r1, r2,b,д} {b} ∪ Y (4 + k)pt · 1qt · (4 + k)pt

T2 {b} ∪ Y {r1, r2,b,д} {b} {r1,b} {r1,b} {b} (4 + k)pt · 2qt · 2pt

T3 {b} ∪ Y {r1, r2,b,д} {b} {r2,b} {r2,b} {b} (4 + k)pt · 2qt · 2pt

T4 {b} ∪ Y {r1, r2,b,д} {b} {r1, r2,b,д} {b} {b} (4 + k)pt · 4qt · 1pt

T5 {b} {r1,b} {r1,b} {r2,b} {r2,b} {b} 2
pt · 3qt · 2pt

T6 {b} {r1,b} {r1,b} {r1,b} {r1,b} {b} 2
pt · 4qt · 2pt

T7 {b} {r2,b} {r2,b} {r2,b} {r2,b} {b} 2
pt · 4qt · 2pt

T8 {b} {r1,b} {r1,b} {r1, r2,b,д} {b} {b} 2
pt · 6qt · 1pt

T9 {b} {r2,b} {r2,b} {r1, r2,b,д} {b} {b} 2
pt · 6qt · 1pt

T10 {b} {b} {r1, r2,b,д} {r1, r2,b,д} {b} {b} 1
pt · 9qt · 1pt

Note: Recall that p, q and t are the parameters of J where p and q satisfy Constraint 2.22. Each line

corresponds to a type

(
E
(
A(T),B(T)

)
, E

(
C(T),C ′(T)

)
, E

(
B′(T),A′(T)

))
. To shorten the notation we

set Y = {yi | i ∈ [k]}.

Lemma 2.28. All maximal types are listed in Table 1 (except for those that are symmetric to a listed

type). Furthermore, for each listed type T we give the corresponding value for N̂ (T).

Proof. First, Lemma 2.26 gives the 4 possibilities forC(T) andC ′(T). Up to symmetry, this gives

the 10 possibilities listed in the table.

Next, for each of the 10 possibilities, we use items (3) and (4) of Lemma 2.25 to compute the

corresponding sets A(T), B(T), B′(T) and A′(T).
Now item (1) of Lemma 2.25 guarantees that T1 = E(A(T),B(T)), T2 = E(C(T),C ′(T)) and T3 =

E(B′(T),A′(T)). So

N̂ (T) = |E(A(T),B(T))|pt |E(C(T),C ′(T))|qt |E(B′(T),A′(T))|pt .

These quantities are all computed in the table. □

Let T1, . . . ,T10 be the types as given in Table 1.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:29

.

r1 b r2

д

y1 yk

Fig. 11. The graph H ′
k .

Lemma 2.29. Let k be a positive integer. Then there is a γ ∈ (0, 1) and positive integers p and q
that satisfy Constraint 2.22 such that, for all i ∈ [10] except i = 4 and all positive integers t , we have

N̂ (Ti) ≤ γ t N̂ (T4).

Proof. We choose integers p,q ≥ 32 + 12k (p and q satisfy Constraint 2.22) such that

log
4
(4 + k) <

q

p
< log

9/4(4 + k). (6)

This is possible as log
4
(4+ k) < log

9/4(4+ k) for all k > 0. Suppose thatT andT ′
are types listed in

Table 1 which are distinct from T4 and have the property that N̂ (T ′) < N̂ (T). Then the sought-for

bound automatically holds for T ′
if it holds for T .

We check the sought-for bound for each i ∈ [10], i , 4:

T1:
N̂ (T1)
N̂ (T4)

= (4 + k)pt (1/4)qt < γ t is fulfilled for some sufficiently large γ < 1 if and only

if (4 + k)p/4q < 1. This is true as log
4
(4 + k) <

q
p by (6).

T2 (and T3):
N̂ (T2)
N̂ (T4)

= 2
pt (1/2)qt < γ t is fulfilled for some sufficiently large γ < 1 if and only if

2
p/2q < 1. This is true as q > p by (6).

T5: N̂ (T5) < N̂ (T6).

T6 (and T7):
N̂ (T6)
N̂ (T4)

= (4/(4 + k))pt < γ t is fulfilled for 4/(4 + k) ≤ 4/5 < γ < 1.

T8 (and T9):
N̂ (T8)
N̂ (T4)

= (2/(4 + k))pt (3/2)qt < γ t is fulfilled for some sufficiently large γ < 1 if and

only if (2/(4 + k))p (3/2)q < 1. This is true as
q
p < log

9/4(4 + k) < log
3/2((4 + k)/2)

by (6) and for all k > 0.

T10:
N̂ (T10)
N̂ (T4)

= (1/(4 + k))pt (9/4)qt < γ t is fulfilled for some sufficiently large γ < 1 if and

only if (1/(4 + k))p (9/4)q < 1. This is true as
q
p < log

9/4(4 + k) by (6).

□

Now we have collected all properties of the gadget graph J that we need to prove Lemma 2.30.

We will see that this lemma is the final piece to show the classification for graphs of girth at least

5 stated in Theorem 1.1. In the statement of the lemma we refer to the graph H ′
k as depicted in

Figure 11.

Lemma 2.30. Let H be graph that has a looped vertex b such that, for some positive integer k , H ′
k

(see Figure 11) is a subgraph of H [Γ2(b)], and H [Γ2(b)] in turn is a subgraph of Hk (see Figure 10).

Then #SAT ≤AP #Ret(H).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

β → b

Cu Se C ′
v

C ′
u S ′e Cv

Fig. 12. The edge gadget for the edge e = {u,v}.

Proof. We use a reduction from #LargeCut, which is known to be #SAT-hard (see [5]). A cut

of a graphG is a partition ofV (G) into two subsets (the order of this pair is ignored) and the size of
a cut is the number of edges that have exactly one endpoint in each of these two subsets.

Name: #LargeCut.

Input: An integer K ≥ 1 and a connected graph G in which every cut has size at most K .
Output: The number of size-K cuts in G.

Let G and K be an input to #LargeCut, n be the number of vertices of G and ε ∈ (0, 1) be the
parameter of the desired precision of approximation in the AP-reduction. From G we construct

an input (G ′, S) to #Ret(H) by introducing vertex and edge gadgets. By the assumption of the

lemma, the vertex b of H has Γ(b) = {b, r1, r2,д} where b, r1 and r2 are looped and д is not and

Γ(д) = {b,y1, . . . ,yk } with k ≥ 1.

Let p, q be positive integers that are chosen such that they fulfil Constraint 2.22 and (6). Note

that p and q only depend on k which is a parameter of the fixed graph H and therefore do not

depend on the input G. We will define the parameter t of the gadget graph J to be t = n4. We also

define a new parameter s = n + 1.
For each vertex v ∈ V (G) we introduce a vertex gadget G ′

v which is a graph J with parame-

ters p, q and t as given in Definition 2.17. We denote the corresponding sets A,B,C,C ′,B′,A′
by

Av ,Bv ,Cv ,C
′
v ,B

′
v and A′

v , respectively. It is fine to keep the notation for the remaining vertices

as α , α ′
and β as technically these vertices can be thought of as identical vertices over all gadgets

because of their pinning. We say that two gadgets G ′
u and G ′

v are adjacent if u and v are adjacent

in G.
We connect vertex gadgets as follows. For every edge e = {u,v} ∈ E(G) we introduce an

edge gadget as follows. We introduce two size-s independent sets, denoted by Se and S
′
e . We set

V ′
e = Se ∪ S ′e . As shown in Figure 12 we construct the set of edges

E ′
e = (Cu × Se) ∪ (C ′

u × S ′e) ∪ (Cv × S ′e) ∪ (C ′
v × Se) ∪ ({β} × Se) ∪ ({β} × S ′e).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:31

Putting the pieces together, G ′
is the graph with

V (G ′) =
⋃

v ∈V (G)

V (G ′
v) ∪

⋃
e ∈E(G)

V ′
e and E(G ′) =

⋃
v ∈V (G)

E(G ′
v) ∪

⋃
e ∈E(G)

E ′
e .

Finally, we define the vertex lists Sα = Sα ′ = {д}, Sβ = {b} and Sv = V (H) for all v ∈ V (G ′) \

{α,α ′, β}. Then S = {Sv | v ∈ V (G ′)}. This completes the definition of the instance (G ′, S).
The pinning of the vertex β (via the list Sβ) ensures that every homomorphism from (G ′, S) to

H is a homomorphism from (G ′, S) to H [Γ2(b)]. By the assumption of the lemma, H [Γ2(b)] is a
subgraph of Hk . We make a case distinction based on the graph H [Γ2(b)].

Case 1: H [Γ2(b)] = Hk . Let h be a homomorphisms from (G ′, S) to H , v be some vertex of G and

G ′
v be the corresponding vertex gadget. Then by our definition of (G ′, S) we observe that h |V (G′

v)

corresponds to a homomorphism from (J , SJ) to Hk and therefore has a type.

We say that a homomorphism from (G ′, S) to H is full if its restriction to each vertex gadget is

either of typeT4 (from Table 1) or of its symmetric type (let us call itT ′
4
). Each full homomorphism h

defines a cut as it partitionsV (G) into those verticesv for whichh |G′
v has typeT4 and those for which

h |G′
v has type T ′

4
. We say that a full homomorphism is K-large if the size of the corresponding cut

is equal to K , otherwise we say that the homomorphism is K-small. Consider a full homomorphism

h from (G ′, S) to Hk .

• For an edge e = {u,v} of G suppose that h |G′
u has type T4 and h |G′

v has type T ′
4
. Note that

by the definition of the edge gadget, we have h(Se) ⊆ Γ(h(Cu)) ∩ Γ(h(C ′
v)). Then the vertices

in Se can be mapped to any of the 4 neighbours of b, whereas all vertices in S ′e have to be

mapped to b (since h(S ′e) ⊆ Γ(h(C ′
u)) ∩ Γ(h(Cv)) where C

′
u = Cv = {r1, r2,b,д} and b is the

sole common neighbour of r1, r2, b and д).
• Suppose instead that h |G′

u and h |G′
v have the same type T4 or T

′
4
. Then the homomorphism h

has to map the vertices in both Se and Sv to b.

Thus, every pair of adjacent gadgets of different types contributes a factor of 4
s
to the number of

full homomorphisms, whereas every pair of adjacent gadgets of the same type only contributes

a factor of 1. Recall the definition of N (T) as the number of homomorphisms from (J , SJ) to Hk
that have type T . Then for ℓ ≥ 1 every size-ℓ cut of G arises in 2 · N (T4)

n · 4sℓ ways as a full

homomorphism from (G ′, S) to Hk .

Let N be the number of solutions to #LargeCut with inputG and K (our goal is to approximate

this number). We partition the homomorphisms from (G ′, S) to Hk into three different sets. Z ∗
is

the number of K-large (full) homomorphisms, Z1 is the number of homomorphisms that are full but

K-small and Z2 is the number of non-full homomorphisms. Then we have N = Z ∗/(2N (T4)
n
4
sK)

and N
(
(G ′, S) → H

)
= N

(
(G ′, S) → Hk

)
= Z ∗ + Z1 + Z2. Thus it remains to show that (Z1 +

Z2)/(2N (T4)
n
4
sK) ≤ 1/4 for our choice of p, q, t and s . Under this assumption we then have

N
(
(G ′, S) → H

)
/(2N (T4)

n
4
sK) ∈ [N ,N +1/4] and a single oracle call to determine N

(
(G ′, S) → H

)
with precision δ = ε/21 suffices to determine N with the sought-for precision as demonstrated

in [5, Proof of Theorem 3].

Now we prove (Z1 + Z2)/(2N (T4)
n
4
sK) ≤ 1/4. As there are at most 2

n
ways to assign a type T4

orT ′
4
to the n vertex gadgets inG ′

we have Z1 ≤ 2
n · N (T4)

n · 4s(K−1)
. We next obtain the following

bound since s = n + 1:

Z1

2N (T4)n4sK
≤

2
nN (T4)

n
4
s(K−1)

2N (T4)n4sK
=

2
n

2 · 4s
≤

1

8

.

We obtain a similar bound for Z2. From Lemmas 2.23, 2.28 and 2.29 we know that for our choice of p

and q there exists γ ∈ (0, 1) such that for every typeT that is notT4 orT
′
4
we have N̂ (T) ≤ γ t N̂ (T4).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Using Lemma 2.20 this gives N (T) ≤ 2γ tN (T4) for sufficiently large t with respect to p, q and k
(which only depend on H but not on the input G). Since t = n4 we can assume that t is sufficiently

large with respect to p and q as otherwise the input size is bounded by a constant (in which case

we can solve #LargeCut in constant time).

For each typeT = (T1,T2,T3), the cardinality of each setTi is bounded above by 2|E(Hk)| = 32+12k

and hence there are at most

(
2
32+12k)3

different types. Furthermore, as Hk has 8 + k vertices, there

are at most (8 + k)2sn
2

possible functions from the at most 2sn2 vertices in
⋃

e ∈E(G)(Se ∪ S ′e) to

vertices in Hk . Since t = n
4
and s = n + 1 we obtain

Z2

2N (T4)n4sK
≤

(
2
32+12k)3n · N (T4)

n−1 · 2γ tN (T4) · (8 + k)
2sn2

2N (T4)n4sK

= γ t ·

(
2
32+12k)3n(8 + k)2sn2

4
sK ≤

1

8

.

The last inequality holds for sufficiently large n as(
2
32+12k)3n(8 + k)2sn2

4
sK ≤ Cn3

for some positive constantC that only depends on H , but not on the inputG , whereas t = n4. (End
of Case 1)

Case 2:H [Γ2(b)] , Hk . By the assumption of the lemma,H [Γ2(b)] is a subgraph ofHk . LetH
′
be the

set of homomorphisms inH((J , SJ),Hk) that are homomorphisms from J toH [Γ2(b)]. Then for each
type T the number of homomorphisms in H ′

of type T is at most the number of homomorphisms

inH((J , SJ),Hk) that have type T .
Note that the typeT4 (and its symmetric type) only uses vertices and edges fromH ′

k and we know

that H ′
k is a subgraph of H [Γ2(b)] by the assumption of the lemma. Therefore each homomorphism

which is of typeT4 is also inH ′
(their number remains unchanged). The analysis is then analogous

to that of Case 1. (The number of K-large and K-small homomorphisms stays the same whereas the

number of non-full homomorphisms can only decrease as we only need to consider a subset of the

previous types and the number of homomorphisms that have a particular type can only decrease.)

(End of Case 2) □

2.3 Putting the Pieces together

Now finally we have all the tools at hand to prove the main classification result for counting

retractions to graphs of girth at least 5, which we restate at this point.

Theorem 1.1. Let H be a graph of girth at least 5.

i) If every connected component of H is an irreflexive star, a single looped vertex, or an edge with

two loops, then #Ret(H) is in FP.

ii) Otherwise, if every connected component of H is an irreflexive caterpillar or a partially bristled

reflexive path, then #Ret(H) is approximation-equivalent to #BIS.

iii) Otherwise, #Ret(H) is approximation-equivalent to #SAT.

Proof. As in the proof of Theorem 2.3, the fact that the classification extends from connected

graphs to graphs with multiple connected components follows from Remark 1.15. Now assume

without loss of generality thatH is a connected graph. IfH is an irreflexive graph then the statement

of the theorem follows from the slightly more general Theorem 2.3 (in the irreflexive case we only

require H to be square-free).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:33

Now suppose that H has at least one looped vertex. From Observation 1.2 we know that, in

general, hardness results for #Hom(H) carry over to #Ret(H) and easiness results carry over from

#LHom(H). Then, by Theorem 1.8, #Ret(H) is in FP if H is a single looped vertex or a single looped

edge. Otherwise, since it is triangle-free, H cannot be a complete reflexive graph, so #Ret(H) is

#BIS-hard with respect to AP-reductions by Theorem 1.9. The #BIS-easiness for partially bristled

reflexive paths follows from our Lemma 2.4. Theorem 1.8 implies that #Ret(H) is always #SAT-easy.

It remains to show the #SAT-hardness result for graphs H that have at least one looped vertex

but are not partially bristled reflexive paths. To this end we distinguish two disjoint cases:

(1) Suppose that every unlooped vertex in H has degree 1. Let H ∗
be the subgraph induced by

the looped vertices of H . As all unlooped vertices have degree 1, the fact that H is connected

implies thatH ∗
is connected. Recall thatWRq is a reflexive star with q leaves. Then, in general,

H ∗
is either a reflexive path, a reflexive cycle or it contains a subgraph WRq for some q ≥ 3.

(a) Suppose that H ∗
is a reflexive path u1, . . . ,ut . By the fact that H is not a partially bristled

reflexive path and all unlooped vertices have degree 1, it follows that either some ui has
more than one unlooped neighbour or at least one of the endpointsu1 orut has an unlooped
neighbour. Then #SAT-hardness follows from Lemma 2.15.

(b) If H ∗
is a reflexive cycle, then by the fact that every unlooped vertex in H has degree 1, it

holds thatH ∗
is the only cycle inH . ThenH is a pseudotree and, asH has girth at least 5, the

reflexive cycle H ∗
has length at least 5. Therefore Ret(H) is NP-complete by Theorem 1.11

and it follows that #Ret(H) is #SAT-hard under AP-reductions by [5, Theorem 1].

(c) If H ∗
contains a subgraph WRq for some q ≥ 3, then H contains a looped vertex with at

least 3 looped neighbours apart from itself. As H is triangle-free, the subgraph WRq is

induced and #SAT-hardness follows either from Lemma 2.14 or Lemma 2.15.

(2) Suppose there exists an unlooped vertex in H that has degree at least 2. As H is connected

and contains at least one looped vertex, it follows that there exists a looped vertex b with an

unlooped neighbour д, which has degree k + 1 for some k ≥ 1, i.e. has neighbours y1, . . . ,yk
apart from b. Then H [Γ(b)] is isomorphic to a 2-Wrench, or otherwise hardness follows from

Lemma 2.15. Therefore b has exactly 2 looped neighbours apart from itself. Let us call them

r1 and r2. Then, as H has girth at least 5, the vertices {r1, r2,b,д,y1, . . . ,yk } are distinct. This
shows that V (H ′

k) ⊆ V (H [Γ2(b)]) and E(H ′
k) ⊆ E(H [Γ2(b)]), i.e. that H ′

k (see Figure 11) is a

subgraph of H [Γ2(b)].
For i = 1, 2 the following hold:

(a) Apart from b and ri itself, the vertex ri has at most 1 other looped neighbour, or otherwise

hardness follows either from Lemma 2.14 or from Lemma 2.15.

(b) If ri has an unlooped neighbour, then H [Γ(ri)] is isomorphic to a 2-Wrench, or otherwise

hardness follows from Lemma 2.15.

From items 2a and 2b it follows that for i = 1, 2 the vertex ri has at most one looped and one un-

looped neighbour apart fromb and ri itself. (If they exist let us call the looped neighbourwi and

the unlooped neighbour di .) Therefore,V (H [Γ2(b)]) ⊆ {w1,d1, r1,w2,d2, r2,b,д,y1, . . . ,yk } ⊆
V (Hk).

Note that d1, d2 and д are unlooped vertices in H . Furthermore, for i = 1, 2 we have shown
the following

• E(H ′
k) ⊆ E(H [Γ2(b)]).

• {wi , ri } ∈ E(H [Γ2(b)]) ifwi ∈ V (H [Γ2(b)]).
• {di , ri } ∈ E(H [Γ2(b)]) if di ∈ V (H [Γ2(b)]).
The edges E(H ′

k) together with {w1, r1}, {w2, r2}, {d1, r1}, {d2, r2} (if these exist) form a tree

on the vertices Γ2(b) (Recall that a tree might have loops but no cycles). By the fact that H

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

has girth at least 5, all named vertices are distinct, and it follows that E(H [Γ2(b)]) ⊆ E(Hk),

which shows that H [Γ2(b)] is a subgraph of Hk .

Summarising, H ′
k is a subgraph of H [Γ2(b)] and H [Γ2(b)] is a subgraph of Hk and we can

apply Lemma 2.30 to obtain #SAT-hardness.

Items 1 and 2 cover all graphs H that have at least one looped vertex but are not partially bristled

reflexive paths. (Note that item 1 includes the case where H is reflexive.) □

3 APPROXIMATELY COUNTING RETRACTIONS IS AS LEAST AS HARD AS

COUNTING SURJECTIVE HOMOMORPHISMS OR COMPACTIONS

This section studies the place of the problem #Ret(H) within the landscape of a number of closely

related counting problems. We now give formal definitions for these problems, which are parame-

terised by a graph H .

Let G be an irreflexive graph. A homomorphism h : G → H is said to be surjective if for every

vertex v ∈ V (H) there is a vertex u ∈ V (G) such that h(u) = v . We use N sur
(
G → H

)
to denote the

number of surjective homomorphisms fromG to H . Similarly, the homomorphism h is a compaction

if it is surjective and for every non-loop edge {v1,v2} ∈ E(H) there is is an edge {u1,u2} ∈ E(G)
such that h(u1) = v1 and h(u2) = v2. We use N comp

(
G → H

)
to denote the number of compactions

from G to H .

Name: #SHom(H).
Input: An irreflexive graph G.
Output: N sur

(
G → H

)
.

Name: #Comp(H).

Input: An irreflexive graph G.
Output: N comp

(
G → H

)
.

We also define the corresponding list versions of these two problems. We use N sur
(
(G, S) → H

)
and N comp

(
(G, S) → H

)
to denote the number of surjective homomorphisms from (G, S) to H and

the number of compactions from (G, S) to H , respectively. Note that the list version of the problem

#Ret(H) is simply the problem #LHom(H).

Name: #LSHom(H).

Input: An irreflexive graph G and a collec-

tion of lists S = {Sv ⊆ V (H) | v ∈ V (G)}.
Output: N sur

(
(G, S) → H

)
.

Name: #LComp(H).

Input: An irreflexive graph G and a collec-

tion of lists S = {Sv ⊆ V (H) | v ∈ V (G)}.
Output: N comp

(
(G, S) → H

)
.

Furthermore, we define a generalisation of the problems #Hom(H), #Ret(H) and #LHom(H). Let

2
V (H) = {S | S ⊆ V (H)} be the power set of V (H). For a fixed graph H and a set L ⊆ 2

V (H)
we

define

Name: #Hom(H ,L).

Input: An irreflexive graph G and a collection of lists S = {Sv ∈ L | v ∈ V (G)}.
Output: N

(
(G, S) → H

)
.

As a measure of distance between two distributions π and π ′
on a finite universe Ω we use the

total variation distance dTV(π , π
′) = 1

2

∑
ω ∈Ω |π (ω) − π

′(ω)|. For a set A ⊆ Ω, Uni(A) is the uniform
distribution on A. Furthermore, Be(p) is the Bernoulli distribution with parameter p. In general, we

write X ∼ D if a random variable X has distribution D.

3.1 Reductions using a Monte Carlo Approach

Themain goal of this section is to prove Corollaries 3.4 and 3.6. Together they constitute Theorem 1.5

which states that both #SHom(H) and #Comp(H) are AP-reducible to #Ret(H).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:35

In the following two lemmas we prove some necessary ingredients that we use in the proof

of Lemma 3.3. From Section 1.5 recall that a RAS for #Hom(H ,L) is an (ε, δ)-approximation for

#Hom(H ,L) with δ = 1/4. First, we point out the well-known fact that this can be powered to

obtain an (ε, δ)-approximation for smaller δ .

Lemma 3.1. Let H be a graph and L ⊆ 2
V (H)

. There is an algorithm CountHomH ,L which uses

oracle access to a RAS for #Hom(H ,L) and has the following properties.

• It is given an input (G, S) to #Hom(H ,L) together with accuracy parameters ε and δ in (0, 1).

• It returns a natural number X with Pr

(
e−ε ≤ X

N
(
(G ,S)→H

) ≤ eε
)
≥ 1 − δ .

• Its running time is bounded by a polynomial in ε−1, logδ−1, and the number of vertices of G.

Proof. The lemma is basically the same as [32, Lemma 6.1] applied to the problem #Hom(H ,L).

The only difference is that [32, Lemma 6.1] gives a precision guarantee of the form

Pr

(
(1 − ε) ≤

X

N
(
(G, S) → H

) ≤ (1 + ε)

)
≥ 1 − δ .

However, by Observation 1.13, using accuracy parameter ε/2 instead of ε in [32, Lemma 6.1] suffices

to obtain the desired result. □

Second, we point out that if L contains the set of singletons {{v} | v ∈ V (H)} then #Hom(H ,L)

is self-reducible. So the technique of Jerrum, Valiant and Vazirani [32] reduces the problem of

approximately sampling homomorphisms with lists in L to the problem of approximately counting

them. The original notion of self-reducibilty, due to Schnorr [42], relies on careful encodings of

instances, so we use instead the more general self-partitionability notion of Dyer and Greenhill.

Dyer and Greenhill show [8] that the technique of Jerrum, Valiant and Vazirani applies to every

self-partitionable problem. Thus, we get the following lemma.

Lemma 3.2. Let H be a graph and L ⊆ 2
V (H)

such that {{v} | v ∈ V (H)} ⊆ L. There is an

algorithm SampleHomH ,L which uses oracle access to a RAS for #Hom(H ,L) and has the following

properties.

• It is given an input (G, S) to #Hom(H ,L) together with an accuracy parameter ε ∈ (0, 1).
• The distribution D of its outputs satisfies dTV

(
D,Uni

(
H((G, S),H)

))
≤ ε .

• Its running time is bounded by a polynomial in log ε−1 and the number of vertices of G.

Proof. Rather than repeating the (lengthy) formal definition of self-partitionability from [8],

we state the (self-evident) relevant properties of #Hom(H ,L) which imply that #Hom(H ,L) is

self-partitionable. The lemma follows immediately from [8].

Let (G, S) be an input to #Hom(H ,L). Ifv ∈ V (G) and s ∈ Sv , then let Sv→s = {Sv→s
u | u ∈ V (G)}

be defined as follows.

Sv→s
u =

{
{s} if u = v

Su otherwise.

Note that (G, Sv→s) is a valid input to #Hom(H ,L) as {{v} | v ∈ V (H)} ⊆ L.
The relevant properties are

(1) If for all v ∈ V (G) we have Sv ∈ {{u} | u ∈ V (H)} then the function τ which maps each

vertexv ∈ V (G) to the single element in the corresponding list Sv is the only mapping fromG
to H that respects the lists. It is then easy to check whether τ is a homomorphism. Therefore,

computing N
(
(G, S) → H

)
and sampling from the set of list homomorphisms from (G, S) to

H is trivial.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:36 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

(2) If v ∈ V (G) then

H((G, S),H) =
⋃
s ∈Sv

H((G, Sv→s),H). (7)

Note that the right-hand-side of (7) is a union of disjoint sets since all of the homomorphisms in

H((G, Sv→s),H) map v to s .
These properties imply that #Hom(H ,L) is self-partitionable in the sense of Dyer and Greenhill,

thus the lemma follows from the technique of Jerrum, Valiant and Vazirani, as demonstrated in [8].

This completes the proof of the lemma, but for the reader who wants to relate the above

properties to the notation of Dyer and Greenhill, we take the size of an instance (G, S) to be

|{v ∈ V (G) | |Sv | > 1}|. The set of smaller instances Ξ(G, S) considered in [8] can be constructed by

fixing any v ∈ V (G) with |Sv | > 1 and then setting Ξ(G, S) = {(G, Sv→s) | s ∈ Sv }. The functions
kξ mentioned in [8] can all be taken to be constant functions, with output 1. The injection ϕ(G ,Sv→s)

is the identity. FinallyW ((G, S), τ) is just the indicator function that is 1 if τ is a homomorphism

from (G, S) to H and 0 otherwise. □

Our first goal is Corollary 3.4 which is anAP-reduction from #Comp(H) to #Ret(H). The reduction

uses a Monte Carlo Algorithm (Algorithm 1). The algorithm is presented more generally, with

lists, so that we can also use it in the reductions of Corollaries 3.5, 3.6 and 3.7. The following

observation provides the basis for the algorithm. Let H be a graph,G be an irreflexive graph and

S be a corresponding set of lists. If there is a compaction from (G, S) to H then there exists a set

U ⊆ V (G) with |U | ≤ |V (H)| + 2|E(H)| and a compaction τ fromG[U] to H . Accordingly, we define

TG ,S = {(U , τ) | U ⊆ V (G), |U | ≤ |V (H)| + 2|E(H)|, (8)

τ is a compaction from G[U] to H such that ∀u ∈ U , τ (u) ∈ Su }

and tG ,S =
��TG ,S

��
. Let (Ui , τi)i ∈[tG ,S] be an arbitrary indexing of the elements of TG ,S. For i ∈ [tG ,S]

we define

ΩG ,S,i =
{
σ ∈ H((G, S),H) | σ |Ui = τi

}
, (9)

Ω+G ,S =
{
(i,σ) | i ∈ [tG ,S] and σ ∈ ΩG ,S,i

}
, and (10)

ΩG ,S =
{
(i,σ) ∈ Ω+G ,S | σ <

i−1⋃
k=1

ΩG ,S,k

}
. (11)

Note that

���Ω+G ,S

��� = ∑
i ∈[tG ,S]

��ΩG ,S,i
��
. As every element of a set ΩG ,S,i is a compaction from (G, S) to

H and every such compaction is contained in a set ΩG ,S,i , we have��ΩG ,S
�� = ��� ⋃

i ∈[tG ,S]

ΩG ,S,i

��� = ���{σ ∈ H((G, S),H) | ∃i ∈ [tG ,S] such that σ ∈ ΩG ,S,i }

���
= N comp

(
(G, S) → H

)
.

It is clear from the definitions that |ΩG ,S | ≥ |Ω+G ,S |/tG ,S. Thus,

N comp
(
(G, S) → H

)
=

��ΩG ,S
�� ≥

���Ω+G ,S

���
tG ,S

. (12)

Intuitively, for some fixed graph H and L ⊆ 2
V (H)

we use this lower bound to construct a Monte

Carlo algorithm (Algorithm 1) in the style of [38, Algorithm 11.2], which approximately samples

from Ω+G ,S to approximately compute

��ΩG ,S
�� = N comp

(
(G, S) → H

)
. To this end the algorithm relies

on access to a RAS oracle for #Hom(H ,L∗) where L∗ = L ∪ {{v} | v ∈ V (H)}.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:37

Algorithm 1 Approximate Computation of

��ΩG ,S
��
. Let H be a fixed graph, L ⊆ 2

V (H)
and L∗ =

L∪{{v} | v ∈ V (H)}. ThenCountHomH ,L∗ and SampleHomH ,L∗ are the routines from Lemma 3.1

and 3.2, respectively. Let TG ,S, tG ,S, ΩG ,S,i , Ω
+
G ,S and ΩG ,S be defined as in Equations (8)-(11). Note

that (Ui , τi) is the i’th element of TG ,S.

Input: Irreflexive graph G with lists S = {Sv ∈ L | v ∈ V (G)} and ε, δ ∈ (0, 1).
if tG ,S = 0

Y = 0.

else

ε ′ = ε
12
, δ ′ = δ

2
, δ ′′ = δ ′

tG ,S
.

for i = 1, . . . , tG ,S
For all v ∈ V (G), if v ∈ Ui , set S

i
v = {τi (v)}, otherwise set S

i
v = Sv .

Si = {S iv | v ∈ V (G)}
ωi = CountHomH ,L∗ (G, Si , ε ′, δ ′′).

ω =

tG ,S∑
i=1

ωi .

m =

⌈
6tG ,S ·

ln(2/δ ′)

ε ′2

⌉
.

for j = 1, . . . ,m
Choose i ∈ [tG ,S] with probability

ωi
ω .

σj = SampleHomH ,L∗ (G, Si , ε ′/(2|V (H)|n)).
Let X j be 1 in the event (i,σj) ∈ ΩG ,S and 0 otherwise.

Y = ω
m

∑m
j=1X j .

Output: Y

Lemma 3.3. Algorithm 1 returns an (ε, δ)-approximation of

��ΩG ,S
��
if it has access to a RAS oracle for

#Hom(H ,L∗) and every list in S is an element of L. For fixed δ , the algorithm runs in time polynomial

in n = |V (G)| and ε−1.

Proof. First note that given oracle access to a RAS for #Hom(H ,L∗), the routinesCountHomH ,L∗

and SampleHomH ,L∗ exist as shown in Lemmas 3.1 and 3.2 (by definition L∗
contains {{v} | v ∈

V (H)}). Furthermore, the input to these routines is valid: A list S iv ∈ Si is either of the form {τi (v)}
or otherwise S iv = Sv ∈ L. Therefore, in general, S iv ∈ L∗

. Thus Algorithm 1 is well-defined.

Next we show that the runtime condition is met. Assume δ to be fixed. Note that we can determine

TG ,S exactly by enumerating all possible assignments of at most |V (H)| + 2|E(H)| vertices of G
to the vertices of H and checking whether the resulting assignment is a compaction. Checking

can be done in polynomial time and tG ,S =
��TG ,S

�� ≤ ∑ |V (H) |+2 |E(H) |

k=1 nk ∈ poly(n). It follows that

m ∈ poly(n, ε−1). The runtime of the routine CountHomH ,L∗ (G, Si , ε ′, δ ′′) is in poly(n, 1/ε ′) by
Lemma 3.1. Finally, the runtime of SampleHomH ,L∗ (G, Si , ε ′/(2|V (H)|n)) is in poly(n, log(1/ε ′)) by
Lemma 3.2. It is essential here that the runtime of SampleHomH ,L∗ has logarithmic dependence on

the precision parameter as the precision we use is ε ′/(2|V (H)|n), which is exponential in n.
If

��TG ,S
�� = tG ,S = 0 then

��ΩG ,S
�� = 0 and the algorithm returns an exact solution. To prove the

correctness of the algorithm it remains to show that otherwise it is an (ε, δ)-approximation.

Note that by the definition of the Si in the first part of the algorithm, ΩG ,S,i = H((G, Si),H).

Then, by Lemma 3.1 and the definition of δ ′′, CountHomH ,L∗ (G, Si , ε ′, δ ′′) returns a number ωi
with Pr(e−ε

′ ��ΩG ,S,i
�� ≤ ωi ≤ eε

′ ��ΩG ,S,i
��) ≥ 1 − δ ′/tG ,S. By the union bound, with probability of at

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:38 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

least 1 − δ ′, we have

e−ε
′ ��ΩG ,S,i

�� ≤ ωi ≤ eε
′ ��ΩG ,S,i

�� (∀i ∈ [tG ,S]). (13)

The following two subclaims are based on this assumption. Let p =
��ΩG ,S

��/���Ω+G ,S

���.
Subclaim 1: Assume that (13) holds. Then for all j ∈ [m] we have X j ∼ Be(p ′) where e−3ε

′

p ≤ p ′ ≤

e3ε
′

p.

Proof of Subclaim 1: Consider fixed ω1, . . . ,ωtG ,S satisfying (13). Note that the distribution of

(i,σj), conditioned on these, does not depend on the index j . Let D be the distribution (conditioned

on ω1, . . . ,ωtG ,S) such that for all j ∈ [m] we have (i,σj) ∼ D. By Lemma 3.2 and the fact that

ΩG ,S,k = H((G, Sk),H) we have

D((k,σ)) = Pr(σj = σ | i = k) · Pr(i = k) ≤

(
1��ΩG ,S,k

�� + ε ′

2|V (H)|n

)
· Pr(i = k)

First using

��ΩG ,S,k
�� ≤ |V (H)|n and then using Observation 1.13 it follows

D((k,σ)) ≤

(
1 +

ε ′

2

)
1��ΩG ,S,k

�� · Pr(i = k) ≤ eε
′ 1��ΩG ,S,k

�� · Pr(i = k) = eε
′ 1��ΩG ,S,k

�� · ωk∑tG ,S
i=1 ωi

.

Using the assumption of this subclaim, we obtain

D((k,σ)) ≤ eε
′ 1��ΩG ,S,k

�� · e2ε ′ ��ΩG ,S,k
��∑

i ∈[tG ,S]

��ΩG ,S,i
�� = e3ε

′ 1���Ω+G ,S

���
and thus

p ′ = Pr(X j = 1) =
∑

(i ,σ)∈ΩG ,S

D((i,σ)) ≤ e3ε
′

∑
(i ,σ)∈ΩG ,S

1���Ω+G ,S

��� = e3ε
′

p.

Analogously we obtain the lower bound e−3ε
′

p ≤ p ′. (End of the proof of Subclaim 1.)

Subclaim 2: Assume that (13) holds. Then e−4ε
′ ��ΩG ,S

�� ≤ E[Y] ≤ e4ε
′ ��ΩG ,S

��
.

Proof of Subclaim 2: Consider fixed ω1, . . . ,ωtG ,S satisfying (13). Conditioned on these, we have

X j ∼ Be(p ′) and

E[Y] =

∑
i ∈[tG ,S]ωi

m

∑
j ∈[m]

E[X j] =
∑

i ∈[tG ,S]

ωi · p
′.

We now use (13) as well as Subclaim 1 to obtain

E[Y] ≤ eε
′

∑
i ∈[tG ,S]

��ΩG ,S,i
�� · e3ε ′p = e4ε

′ ��ΩG ,S
��

and

E[Y] ≥ e−ε
′

∑
i ∈[tG ,S]

��ΩG ,S,i
�� · e−3ε ′p = e−4ε

′ ��ΩG ,S
��.

(End of the proof of Subclaim 2.)

Next we show that, conditioned on computing ωi ’s that satisfy (13), the number of samplesm is

sufficiently large. First, by Subclaim 1, X1, . . . ,Xm are independent indicator random variables that

have distribution Be(p ′) and expected value p ′. By Subclaim 1 and Observation 1.13 we have

(1 − 6ε ′)p ≤ e−3ε
′

p ≤ p ′ ≤ e3ε
′

p ≤ (1 + 6ε ′)p.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

The Complexity of Approximately Counting Retractions 1:39

From the definition of ε ′ it follows that |p ′ − p | ≤ 6ε ′p ≤ εp/2 and consequently p ′ ≥ p/2. Using
this fact and taking into account that by Equation (12) we have tG ,S ≥ 1/p, it follows that

m =

⌈
6tG ,S ·

ln(2/δ ′)

ε ′2

⌉
≥ 6

ln(2/δ ′)

ε ′2p
≥ 3

ln(2/δ ′)

ε ′2p ′
.

Thus, we can use [38, Theorem 11.1] to obtain Pr(|Y − E[Y]| ≥ ε ′E[Y]) ≤ δ ′ which is conditioned

on the fact that (13) holds. Now taking into account the fact that, with probability at least 1 − δ ′,
ω1, . . . ,ωtG ,S satisfy (13), we have shown that, with probability of at least (1−δ ′)2 ≥ 1−δ , we have

|Y − E[Y]| ≤ ε ′E[Y] =
ε

12

E[Y].

By Subclaim 2 and Observation 1.13 we also know that��E[Y] − ��ΩG ,S
���� ≤ 8ε ′

��ΩG ,S
�� = 2ε

3

��ΩG ,S
��.

Summarising, with probability of at least 1 − δ , we have��Y −
��ΩG ,S

���� ≤ |Y − E[Y]| +
��E[Y] − ��ΩG ,S

���� ≤ ε

12

E[Y] +
2ε

3

��ΩG ,S
��

≤
ε

12

(��ΩG ,S
�� + 2ε

3

��ΩG ,S
��) + 2ε

3

��ΩG ,S
�� ≤ ε

��ΩG ,S
��.

Hence, Y is an (ε, δ)-approximation of

��ΩG ,S
��
. □

Corollary 3.4. Let H be a graph. Then #Comp(H) ≤AP #Ret(H).

Proof. Let L = {V (H)}. Then the problem #Hom(H ,L∗) is identical to #Ret(H). Furthermore,

given an irreflexive graph G and a set S = {Sv ∈ L | v ∈ G}, for this choice of L it holds that

N comp
(
(G, S) → H

)
= N comp

(
G → H

)
.

Then, by Lemma 3.3, given a RAS oracle for #Ret(H), Algorithm 1 computes an (ε, δ)-approximation

of

��ΩG ,S
�� = N comp

(
(G, S) → H

)
= N comp

(
G → H

)
. If we choose δ = 1/4 then the algorithm is an

FPRAS for #Comp(H). □

Corollary 3.5. Let H be a graph. Then #LComp(H) ≤AP #LHom(H).

Proof. Let L = 2
V (H)

. Then the problem #Hom(H ,L∗) = #Hom(H ,L) is identical to #LHom(H).

From Lemma 3.3 it follows that given a RAS oracle for #LHom(H), Algorithm 1 returns an

(ε, δ)-approximation of

��ΩG ,S
�� = N comp

(
(G, S) → H

)
. In particular, as L is unrestricted, it does so

for any valid input (G, S) of the problem #LComp(H). Thus, if we choose δ = 1/4, the algorithm is

an FPRAS for #LComp(H). □

To obtain Corollaries 3.4 and 3.5, the only property of compactions we use is the fact that for

every compaction from G to H there exists a preimage U of polynomial size, i.e. a set U ⊆ V (G)
with |U | ≤ |V (H)| + 2|E(H)| and a compaction τ from G[U] to H . (This is used in Equation (8).)

Similarly, for every surjective homomorphism from G to H there exists a set U ⊆ V (G) with
|U | = |V (H)| such that there exists a surjective homomorphism τ from G[U] to H . If we substitute

TG ,S ={(U , τ) | U ⊆ V (G), |U | = |V (H)|,

τ is a surjective homomorphism from G[U] to H such that ∀u ∈ U , τ (u) ∈ Su }

for Equation (8), Lemma 3.3 still holds and now

��ΩG ,S
�� = N sur

(
(G, S) → H

)
.

Therefore, analogously to the previous two corollaries we obtain the following.

Corollary 3.6. Let H be a graph. Then #SHom(H) ≤AP #Ret(H).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:40 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

Corollary 3.7. Let H be a graph. Then #LSHom(H) ≤AP #LHom(H).

Corollaries 3.4 and 3.6 together constitute Theorem 1.5.

3.2 Additional Reductions and Consequences

The following simple reductions complete our current knowledge of the complexity landscape

given in Figure 1.

Lemma 3.8. Let H be a graph. Then #LHom(H) ≤AP #LSHom(H) and #LHom(H) ≤AP #LComp(H).

Proof. Let v1, . . . ,vq be the vertices of H and let (G, S) be an input to #LHom(H). Further, let

H ′
be a copy of H and let u1, . . . ,uq be the vertices of H ′

ordered in the same way as v1, . . . ,vq .
For i ∈ [q] let Sui = {vi } and let S′ = S ∪ {Sui : i ∈ [q]}. Let G ′

be the disjoint union of G and H ′
.

Then N
(
(G, S) → H

)
= N sur

(
(G ′, S′) → H

)
= N comp

(
(G ′, S′) → H

)
. □

From Corollaries 3.5 and 3.7 as well as Lemma 3.8 we immediately obtain Theorem 1.6 which we

restate at this point.

Theorem 1.6. LetH be a graph. Then #LSHom(H) ≡AP #LHom(H) and #LComp(H) ≡AP #LHom(H).

ACKNOWLEDGMENTS

A preliminary version of this paper (without the proofs) appeared in the proceedings of the

Thirtieth Annual ACM-SIAMSymposium onDiscrete Algorithms, SODA 2019, SanDiego, California,

USA, January 6-9, 2019. This preliminary version stated a trichotomy for approximately counting

retractions to trees rather than (more generally) to graphs of girth at least 5.

The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement

no. 334828 and under the European Union’s Horizon 2020 research and innovation programme

(grant agreement No 714532). Jacob Focke has received funding from the Engineering and Physical

Sciences Research Council (grant ref: EP/M508111/1). Stanislav Živný was supported by a Royal

Society University Research Fellowship. The paper reflects only the authors’ views and not the

views of the ERC or the European Commission. The European Union is not liable for any use that

may be made of the information contained therein.

REFERENCES

[1] M. Bíró, M. Hujter, and Zs. Tuza. 1992. Precoloring extension. I. Interval graphs. Discrete Math. 100, 1-3 (1992), 267–279.

DOI:http://dx.doi.org/10.1016/0012-365X(92)90646-W Special volume to mark the centennial of Julius Petersen’s “Die

Theorie der regulären Graphs”, Part I.

[2] Manuel Bodirsky, Jan Kára, and Barnaby Martin. 2012. The complexity of surjective homomorphism problems—a

survey. Discrete Appl. Math. 160, 12 (2012), 1680–1690. DOI:http://dx.doi.org/10.1016/j.dam.2012.03.029

[3] Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi. 2006. Counting graph

homomorphisms. In Topics in discrete mathematics. Algorithms Combin., Vol. 26. Springer, Berlin, 315–371. DOI:
http://dx.doi.org/10.1007/3-540-33700-8_18

[4] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In 58th Annual IEEE Symposium on Foundations

of Computer Science—FOCS 2017. IEEE Computer Soc., Los Alamitos, CA, 319–330.

[5] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. 2004. The Relative Complexity of Approxi-

mate Counting Problems. Algorithmica 38, 3 (2004), 471–500. DOI:http://dx.doi.org/10.1007/s00453-003-1073-y
[6] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. 2004. Counting and sampling H -colourings. Inform. and Comput.

189, 1 (2004), 1–16. DOI:http://dx.doi.org/10.1016/j.ic.2003.09.001
[7] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. 2010. An approximation trichotomy for Boolean ♯CSP. J. Comput.

System Sci. 76, 3-4 (2010), 267–277. DOI:http://dx.doi.org/10.1016/j.jcss.2009.08.003
[8] Martin Dyer and Catherine Greenhill. 1999. Random walks on combinatorial objects. In Surveys in combinatorics, 1999

(Canterbury) (London Math. Soc. Lecture Note Ser.), Vol. 267. Cambridge Univ. Press, Cambridge, 101–136.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://dx.doi.org/10.1016/0012-365X(92)90646-W
http://dx.doi.org/10.1016/j.dam.2012.03.029
http://dx.doi.org/10.1007/3-540-33700-8_18
http://dx.doi.org/10.1007/s00453-003-1073-y
http://dx.doi.org/10.1016/j.ic.2003.09.001
http://dx.doi.org/10.1016/j.jcss.2009.08.003

The Complexity of Approximately Counting Retractions 1:41

[9] Martin E. Dyer and Catherine S. Greenhill. 2000. The complexity of counting graph homomorphisms. Random Struct.

Algorithms 17, 3-4 (2000), 260–289.

[10] Tomas Feder and Pavol Hell. 1998. List homomorphisms to reflexive graphs. J. Combin. Theory Ser. B 72, 2 (1998),

236–250. DOI:http://dx.doi.org/10.1006/jctb.1997.1812
[11] Tomas Feder, Pavol Hell, and Jing Huang. 1999. List Homomorphisms and Circular Arc Graphs. Combinatorica 19, 4

(1999), 487–505. DOI:http://dx.doi.org/10.1007/s004939970003
[12] Tomas Feder, Pavol Hell, and Jing Huang. 2009. Extension problems with degree bounds. Discrete Appl. Math. 157, 7

(2009), 1592–1599. DOI:http://dx.doi.org/10.1016/j.dam.2008.04.006

[13] Tomás Feder, Pavol Hell, Peter Jonsson, Andrei Krokhin, and Gustav Nordh. 2010. Retractions to pseudoforests. SIAM

J. Discrete Math. 24, 1 (2010), 101–112. DOI:http://dx.doi.org/10.1137/080738866
[14] Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný. 2017. The Complexity of Counting Surjective Homomorphisms

and Compactions. CoRR abs/1706.08786 (2017). http://arxiv.org/abs/1706.08786 A preliminary version of this work

appeared in the Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1772-

1781.

[15] Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. 2016. Approximately counting H -colorings is #BIS-hard.

SIAM J. Comput. 45, 3 (2016), 680–711. DOI:http://dx.doi.org/10.1137/15M1020551

[16] Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. 2017. A Complexity Trichotomy for Approximately Counting

List H -Colorings. ACM Trans. Comput. Theory 9, 2 (2017), Art. 9, 22. DOI:http://dx.doi.org/10.1145/3037381
[17] Andreas Galanis, Daniel Štefankovič, Eric Vigoda, and Linji Yang. 2016. Ferromagnetic Potts Model: Refined #BIS-

Hardness and Related Results. SIAM J. Comput. 45, 6 (2016), 2004–2065. DOI:http://dx.doi.org/10.1137/140997580
[18] Leslie Ann Goldberg and Mark Jerrum. 2012. Approximating the Partition Function of the Ferromagnetic Potts Model.

J. ACM 59, 5 (2012), Art. 25, 31. DOI:http://dx.doi.org/10.1145/2371656.2371660
[19] Leslie Ann Goldberg and Mark Jerrum. 2014. The Complexity of Approximately Counting Tree Homomorphisms.

ACM Trans. Comput. Theory 6, 2 (2014), Art. 8, 31. DOI:http://dx.doi.org/10.1145/2600917
[20] Leslie Ann Goldberg, Steven Kelk, and Mike Paterson. 2004. The Complexity of Choosing an H -Coloring (Nearly)

Uniformly at Random. SIAM J. Comput. 33, 2 (2004), 416–432. DOI:http://dx.doi.org/10.1137/S0097539702408363
[21] Petr A. Golovach, Matthew Johnson, Barnaby Martin, Daniël Paulusma, and Anthony Stewart. 2017. Surjective

H -Colouring: New Hardness Results. In Unveiling dynamics and complexity. Lecture Notes in Comput. Sci., Vol. 10307.

Springer, Cham, 270–281.

[22] Petr A. Golovach, Bernard Lidický, Barnaby Martin, and Daniël Paulusma. 2012a. Finding vertex-surjective graph

homomorphisms. Acta Inform. 49, 6 (2012), 381–394. DOI:http://dx.doi.org/10.1007/s00236-012-0164-0
[23] Petr A. Golovach, Daniël Paulusma, and Jian Song. 2012b. Computing vertex-surjective homomorphisms to partially

reflexive trees. Theoret. Comput. Sci. 457 (2012), 86–100. DOI:http://dx.doi.org/10.1016/j.tcs.2012.06.039
[24] Frank Harary and Allen Schwenk. 1971. Trees with Hamiltonian square. Mathematika 18 (1971), 138–140. DOI:

http://dx.doi.org/10.1112/S0025579300008494

[25] Pavol Hell. 1973. Retractions des graphes. ProQuest LLC, Ann Arbor, MI. (no paging) pages.

http://ezproxy-prd.bodleian.ox.ac.uk:2175/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:

dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0289365 Thesis (Ph.D.)–Universite de Montreal (Canada).

[26] Pavol Hell. 1974. Absolute retracts in graphs. (1974), 291–301. Lecture Notes in Math., Vol. 406.

[27] Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H -coloring. J. Combin. Theory Ser. B 48, 1 (1990), 92–110.

DOI:http://dx.doi.org/10.1016/0095-8956(90)90132-J
[28] Pavol Hell and Jaroslav Nešetřil. 2004a. Counting list homomorphisms for graphs with bounded degrees. In Graphs,

morphisms and statistical physics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 63. Amer. Math. Soc.,

Providence, RI, 105–112. DOI:http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
[29] Pavol Hell and Jaroslav Nešetřil. 2004b. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and

its Applications, Vol. 28. Oxford University Press, Oxford. xii+244 pages. DOI:http://dx.doi.org/10.1093/acprof:
oso/9780198528173.001.0001

[30] Pavol Hell and Jaroslav Nešetřil. 2008. Colouring, constraint satisfaction, and complexity. Computer Science Review 2,

3 (2008), 143–163. DOI:http://dx.doi.org/10.1016/j.cosrev.2008.10.003
[31] Pavol Hell and Ivan Rival. 1987. Absolute retracts and varieties of reflexive graphs. Canad. J. Math. 39, 3 (1987),

544–567. DOI:http://dx.doi.org/10.4153/CJM-1987-025-1

[32] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random Generation of Combinatorial Structures from a

Uniform Distribution. Theoret. Comput. Sci. 43, 2-3 (1986), 169–188. DOI:http://dx.doi.org/10.1016/0304-3975(86)90174-
X

[33] Steven Kelk. 2003. On the relative complexity of approximately counting H -colourings. Ph.D. Dissertation. Warwick

University.

[34] Ekkehard G. Köhler. 1999. Graphs without asteroidal triples. Ph.D. Dissertation. Technische Universität Berlin.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://dx.doi.org/10.1006/jctb.1997.1812
http://dx.doi.org/10.1007/s004939970003
http://dx.doi.org/10.1016/j.dam.2008.04.006
http://dx.doi.org/10.1137/080738866
http://arxiv.org/abs/1706.08786
http://dx.doi.org/10.1137/15M1020551
http://dx.doi.org/10.1145/3037381
http://dx.doi.org/10.1137/140997580
http://dx.doi.org/10.1145/2371656.2371660
http://dx.doi.org/10.1145/2600917
http://dx.doi.org/10.1137/S0097539702408363
http://dx.doi.org/10.1007/s00236-012-0164-0
http://dx.doi.org/10.1016/j.tcs.2012.06.039
http://dx.doi.org/10.1112/S0025579300008494
http://ezproxy-prd.bodleian.ox.ac.uk:2175/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0289365
http://ezproxy-prd.bodleian.ox.ac.uk:2175/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0289365
http://dx.doi.org/10.1016/0095-8956(90)90132-J
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198528173.001.0001
http://dx.doi.org/10.1016/j.cosrev.2008.10.003
http://dx.doi.org/10.4153/CJM-1987-025-1
http://dx.doi.org/10.1016/0304-3975(86)90174-X
http://dx.doi.org/10.1016/0304-3975(86)90174-X

1:42 Jacob Focke, Leslie Ann Goldberg, and Stanislav Živný

[35] Jan Kratochvíl and András Sebő. 1997. Coloring precolored perfect graphs. J. Graph Theory 25, 3 (1997), 207–215. DOI:
http://dx.doi.org/10.1002/(SICI)1097-0118(199707)25:3<207::AID-JGT4>3.0.CO;2-P

[36] Barnaby Martin and Daniël Paulusma. 2015. The computational complexity of disconnected cut and 2K2-partition. J.

Combin. Theory Ser. B 111 (2015), 17–37. DOI:http://dx.doi.org/10.1016/j.jctb.2014.09.002
[37] Dániel Marx. 2006. Parameterized coloring problems on chordal graphs. Theoret. Comput. Sci. 351, 3 (2006), 407–424.

DOI:http://dx.doi.org/10.1016/j.tcs.2005.10.008
[38] Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing (second ed.). Cambridge University Press,

Cambridge. xx+467 pages. Randomization and Probabilistic techniques in Algorithms and Data Analysis.

[39] Erwin Pesch. 1988. Retracts of graphs. Mathematical Systems in Economics, Vol. 110. Athenäum Verlag GmbH,

Frankfurt am Main. xii+220 pages.

[40] R. B. Potts. 1952. Some generalized order-disorder transformations. Proc. Cambridge Philos. Soc. 48 (1952), 106–109.

[41] Wolfgang M. Schmidt. 1991. Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics,

Vol. 1467. Springer-Verlag, Berlin. viii+217 pages. DOI:http://dx.doi.org/10.1007/BFb0098246
[42] Claus-Peter Schnorr. 1976. Optimal Algorithms for Self-Reducible Problems. In Third International Colloquium on

Automata, Languages and Programming, University of Edinburgh, UK, July 20-23, 1976, S. Michaelson and Robin Milner

(Eds.). Edinburgh University Press, 322–337.

[43] Zsolt Tuza. 1997. Graph colorings with local constraints—a survey. Discuss. Math. Graph Theory 17, 2 (1997), 161–228.

DOI:http://dx.doi.org/10.7151/dmgt.1049

[44] Narayan Vikas. 2002. Computational Complexity of Compaction to Reflexive Cycles. SIAM J. Comput. 32, 1 (2002/03),

253–280. DOI:http://dx.doi.org/10.1137/S0097539701383522
[45] Narayan Vikas. 2004a. Compaction, Retraction, and Constraint Satisfaction. SIAM J. Comput. 33, 4 (2004), 761–782.

DOI:http://dx.doi.org/10.1137/S0097539701397801
[46] Narayan Vikas. 2004b. Computational complexity of compaction to irreflexive cycles. J. Comput. System Sci. 68, 3

(2004), 473–496. DOI:http://dx.doi.org/10.1016/S0022-0000(03)00034-5
[47] Narayan Vikas. 2005. A complete and equal computational complexity classification of compaction and retraction

to all graphs with at most four vertices and some general results. J. Comput. System Sci. 71, 4 (2005), 406–439. DOI:
http://dx.doi.org/10.1016/j.jcss.2004.07.003

[48] Narayan Vikas. 2013. Algorithms for Partition of Some Class of Graphs under Compaction and Vertex-Compaction.

Algorithmica 67, 2 (2013), 180–206. DOI:http://dx.doi.org/10.1007/s00453-012-9720-9
[49] Narayan Vikas. 2017. Computational complexity of graph partition under vertex-compaction to an irreflexive hexagon.

In 42nd International Symposium on Mathematical Foundations of Computer Science. LIPIcs. Leibniz Int. Proc. Inform.,

Vol. 83. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Art. No. 69, 14.

[50] Narayan Vikas. 2018. Computational Complexity Relationship between Compaction, Vertex-Compaction, and Retrac-

tion. In Combinatorial algorithms. Lecture Notes in Comput. Sci., Vol. 10765. Springer, Cham, 154–166.

[51] Benjamin Widom and John S. Rowlinson. 1970. New Model for the Study of Liquid-Vapor Phase Transitions. The

Journal of Chemical Physics 52, 4 (1970), 1670–1684. DOI:http://dx.doi.org/10.1063/1.1673203
[52] Dmitriy Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In 58th Annual IEEE Symposium on Foundations of

Computer Science—FOCS 2017. IEEE Computer Soc., Los Alamitos, CA, 331–342.

Received October 2018; revised March 2020; accepted March 2020

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://dx.doi.org/10.1002/(SICI)1097-0118(199707)25:3<207::AID-JGT4>3.0.CO;2-P
http://dx.doi.org/10.1016/j.jctb.2014.09.002
http://dx.doi.org/10.1016/j.tcs.2005.10.008
http://dx.doi.org/10.1007/BFb0098246
http://dx.doi.org/10.7151/dmgt.1049
http://dx.doi.org/10.1137/S0097539701383522
http://dx.doi.org/10.1137/S0097539701397801
http://dx.doi.org/10.1016/S0022-0000(03)00034-5
http://dx.doi.org/10.1016/j.jcss.2004.07.003
http://dx.doi.org/10.1007/s00453-012-9720-9
http://dx.doi.org/10.1063/1.1673203

	Abstract
	1 Introduction
	1.1 First Contribution: A Trichotomy for Approximately Counting Retractions to Graphs of Girth at least 5
	1.2 Second Contribution: Locating #Ret(H) in the Approximate Counting Landscape
	1.3 Methods
	1.4 Related Work
	1.5 Preliminaries

	2 Approximately Counting Retractions to Graphs without short Cycles
	2.1 Irreflexive Square-free Graphs
	2.2 Graphs with Loops
	2.3 Putting the Pieces together

	3 Approximately Counting Retractions is as least as hard as Counting Surjective Homomorphisms or Compactions
	3.1 Reductions using a Monte Carlo Approach
	3.2 Additional Reductions and Consequences

	Acknowledgments
	References

