
Solving promise equations over monoids and groups

ALBERTO LARRAURI, University of Oxford, United Kingdom

STANISLAV ŽIVNÝ, University of Oxford, United Kingdom

We give a complete complexity classification for the problem of finding a solution to a given system of

equations over a fixed finite monoid, given that a solution over a more restricted monoid exists. As a corollary,

we obtain a complexity classification for the same problem over groups.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Problems, reductions

and completeness; Constraint and logic programming.

Additional Key Words and Phrases: constraint satisfaction, promise constraint satisfaction, equations, minions

ACM Reference Format:

Alberto Larrauri and Stanislav Živný. 2024. Solving promise equations over monoids and groups. 1, 1

(September 2024), 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Constraint satisfaction problems (CSPs) form a large class of fundamental computational problems

studied in artificial intelligence, database theory, logic, graph theory, and computational complexity.

Since CSPs (with infinite domains) capture, up to polynomial-time Turing reductions, all computa-

tional problems [11], some restrictions need to be imposed on CSPs in order to have a chance to

obtain complexity classifications. One line of work, pioneered in the database theory [36], restricts

the interactions of the constraints in the instance [30, 41].

Another line of work, pioneered in [26, 34], restricts the types of relations used in the instance;

these CSPs are known as nonuniform CSPs, or as having a fixed template/constraint language. Such

CSPs with infinite domains capture graph acyclicity, systems of linear equations over the rationals,

and many other problems [10]. Already fixed-template CSPs with finite domains form a large class

of fundamental problems, including graph colourings [32], variants of the Boolean satisfiability

problem, and, more generally, systems of equations over different types of finite algebraic structures.

Even then, the class of finite-domain CSPs avoided a complete complexity classification for two

decades despite a sustained effort.

In 2017, Bulatov [20] and, independently, Zhuk [47] classified all finite-domain CSPs as either

solvable in polynomial time orNP-hard, thus answering in the affirmative the Feder-Vardi dichotomy

conjecture [26]. In the effort to answer the Feder-Vardi conjecture, complexity dichotomies were

established for restricted fragments of CSPs, e.g., conservative CSPs [19], and equations over

finite algebraic structures such as groups [29] and monoids [35]. In particular, while systems of

Authors’ Contact Information: Alberto Larrauri, alberto.larrauri@cs.ox.ac.uk, University of Oxford, Department of Computer

Science, Oxford, United Kingdom; Stanislav Živný, standa.zivny@cs.ox.ac.uk, University of Oxford, Department of Computer

Science, Oxford, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2024/9-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0002-5935-4917
HTTPS://ORCID.ORG/0000-0002-0263-159X
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0002-5935-4917
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Alberto Larrauri and Stanislav Živný

equations
1
over Abelian groups are solvable in polynomial time, they areNP-hard over non-Abelian

groups [29].

One of the recent research directions in constraint satisfaction that has attracted a lot of attention

is the area of promise CSPs (PCSPs) [3, 5, 13]. The idea is that each constraint has two versions, a

strong version and a weak version. Given an instance, one is promised that a solution satisfying all

strict constraints exists and the goal is to find a solution satisfying all weak constraints, which may

be an easier task. The prototypical example is the approximate graph colouring problem [28]: Given a

3-colourable graph, can one find a 6-colouring? The complexity of this problem is open (but believed

to be NP-hard). Despite a flurry of papers on PCSPs, e.g., [1, 2, 4, 6, 14, 15, 17, 21, 22, 24, 27, 43, 44],

the PCSP complexity landscape is widely open and unexplored. It is not even clear whether a

dichotomy should be expected. Even the case of Boolean PCSPs remain open, the state-of-the-art

being a dichotomy for Boolean symmetric PCSPs [27]. This should be compared with Boolean (non-

promise) CSPs, which were classified by Schaefer in 1978 [45]. Schaefer’s tractable cases include

the classic and well-known examples of CSPs: equations and graph colouring. Both have been

studied on non-Boolean domains and their complexity is well understood. However, the complexity

of the promise variant of these fundamental problems is open. The first problem, graph colouring,

leads to the already mentioned approximate graph colouring problem, which is a notorious open

problem, despite recent progress [5, 38]. In this paper, we look at the second problem, and study

PCSPs capturing systems of equations.

Contributions. The precise statements of all our main results are presented in Section 3.

As our most important contribution, in Section 5 we establish a complexity dichotomy for PCSPs

capturing promise systems of equations over finite monoids, and over finite groups as a special

case. Perhaps unsurprisingly, the tractability boundary is linked to the notion of Abelianness, just

like in the non-promise setting, but the result is non-trivial and requires some care. Our main

tool for studying the computational complexity of PCSPs is the so-called “algebraic approach”,

relying crucially on the notion of a polymorphism. Polymorphisms can be seen as high-dimensional

symmetries of a PCSP template and capture the complexity of the underlying computational

problem [5, 13]. Polymorphisms of a PCSP template form a minion [5]; that is, a family of functions

that is closed under permuting arguments, identifying arguments, and adding dummy arguments.

As we shall see later, it is useful to study more abstract minions, not only families of functions,

cf. [5, 16]. Following the approach from [5], hardness of a PCSP is established by showing that

the associated polymorphism minion is, in some sense, limited. Conversely, if this minion is rich

enough then the PCSP can be shown to be solvable via some efficient algorithm [5, 15, 16, 22].

To prove our main result, we study a class of minions that arise naturally from monoids, which

we call monoidal minions. In Section 4 we show a complexity dichotomy for PCSPs whose poly-

morphism minions are homomorphically equivalent to some monoidal minion. This is our second

contribution, which may be of independent interest. In particular, the concept of monoidal minions

captures studied minions, cf. Remark 1 in Section 3.

All our tractability results use solvability by the BLP + AIP algorithm [16]. In fact, tractable

PCSPs corresponding to promise systems of equations over monoids are finitely tractable in the

sense of [1, 13]. In the special case of promise systems of equations over groups, the affine integer

programming (AIP) algorithm [5, 13] suffices, rather than BLP +AIP. However, AIP is provably not

enough to solve promise equations over general monoids.

As our final contribution, in Section 6 we show that our dichotomy for systems of equations

over monoids cannot be easily extended to semigroups, as this would imply a dichotomy for all

1
Some papers use the term a linear equation.

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 3

PCSPs. We do so by showing that every PCSP is polynomial-time equivalent to a PCSP capturing

systems of equations over semigroups, a phenomenon observed for CSPs in [35].

Related work. PCSPs are a qualitative approximation of CSPs; the goal is still to satisfy all con-

straints, but in a weaker form. A recent related line of work includes the series [7–9]. A traditional

approach to approximation is quantitative: maximising the number of satisfied constraints. Regard-

ing approximation of equations, Håstad showed that, for any Abelian group 𝐺 and any 𝜀 > 0, it

is NP-hard to find a solution satisfying 1/|𝐺 | + 𝜀 constraints [31] even if 1 − 𝜀 constraints can be

satisfied. Hence, the random assignment, which satisfies 1/|𝐺 | constraints, is optimal! Håstad’s

result has been extended to non-Abelian groups in [7, 25]. Systems of equations have been studied,

e.g., over semigroups in [46], over monoids and semigroups in [35], and over arbitrary finite algebras

in [12, 37, 39, 42].

The work of Nakajima and Živný on symmetric functional PCSPs [43] is somewhat related to

PCSPs and equations but is incomparable to the work in the present article. Since we do not need

it, we do not use the language of category theory but we remark that minions and other concepts

can be presented in a category-theoretical way, cf. [24, 43].

2 Preliminaries
We denote by [𝑘] the set {1, 2, . . . , 𝑘}. We write id𝑋 for the identity map on a set 𝑋 . We use the

lowercase boldface font for tuples; e.g., we write 𝒃 for a tuple (𝑏1, . . . , 𝑏𝑛). We say that a function 𝑓

extends another function 𝑔 if dom(𝑔) ⊆ dom(𝑓), and 𝑓 |
dom(𝑔) = 𝑔.

Algebraic structures. A semigroup 𝑆 is a set equipped with an associative binary operation, for

which we use multiplicative notation. Two elements 𝑎, 𝑏 ∈ 𝑆 commute if 𝑎𝑏 = 𝑏𝑎. An element 𝑎 is

idempotent if 𝑎𝑎 = 𝑎. An Abelian semigroup is a semigroup in which every two elements commute.

A semigroup homomorphism from a semigroup 𝑆1 to a semigroup 𝑆2 is a map 𝜑 : 𝑆1 → 𝑆2 satisfying

𝜑 (𝑠 ·𝑆1 𝑡) = 𝜑 (𝑠) ·𝑆2 𝜑 (𝑡).2 Given two elements 𝑠, 𝑡 ∈ 𝑆 we write 𝑠 ⊑ 𝑡 if 𝑠 = 𝑡 or there is an element

𝑟 ∈ 𝑆 satisfying 𝑡𝑟 = 𝑠 . Note that ⊑ constitutes a preorder over any semigroup, i.e., ⊑ is reflexive

and transitive. We define the equivalence relation ∼ by 𝑠 ∼ 𝑡 whenever 𝑠 ⊑ 𝑡 and 𝑡 ⊑ 𝑠 .
A monoid is a semigroup containing an identity element for its binary operation, denoted by

𝑒 . A monoid homomorphism from a monoid 𝑀1 to a monoid𝑀2 is a map 𝜑 : 𝑀1 → 𝑀2 satisfying

𝜑 (𝑥 ·𝑀1
𝑦) = 𝜑 (𝑥) ·𝑀2

𝜑 (𝑦) and 𝜑 (𝑒𝑀1
) = 𝑒𝑀2

. We say that 𝜑 is Abelian if its image Im(𝜑) is an
Abelian monoid.

A group is a monoid in which each element has an inverse. A group homomorphism from a group

𝐺1 to a group 𝐺2 is a map 𝜑 : 𝐺1 → 𝐺2 satisfying 𝜑 (𝑥 ·𝐺1
𝑦) = 𝜑 (𝑥) ·𝐺2

𝜑 (𝑦) (which implies that

also the inverses and the identity element are preserved).

Given a semigroup 𝑆 , a subset𝐺 ⊆ 𝑆 is called a subgroup if𝐺 equipped with 𝑆 ’s binary operation is

a group, meaning that there is a distinguished element 𝑒𝐺 ∈ 𝐺 satisfying that (1) 𝑒𝐺 ·𝑀𝑔 = 𝑔 ·𝑀 𝑒𝐺 = 𝑔

for each 𝑔 ∈ 𝐺 , and (2) for each element 𝑔 ∈ 𝐺 there exists ℎ ∈ 𝐺 satisfying 𝑔 ·𝑀 ℎ = ℎ ·𝑀 𝑔 = 𝑒𝐺 .

We say that 𝑆 is a union of subgroups if every element 𝑠 ∈ 𝑆 belongs to a subgroup of 𝑆 .

We call an element 𝑠 of a semigroup 𝑆 regular3 if 𝑠2𝑡 = 𝑠 for some 𝑡 in 𝑆 .4 Intuitively, 𝑡 acts as

some type of inverse of 𝑠 . It is known that 𝑠 belongs to a subgroup of 𝑆 if and only if 𝑠 is regular [33,

Theorem 2.2.5]. We will make use of the following equivalent characterisations of regularity.

2
I.e., the multiplication on the LHS is in 𝑆1, whereas the multiplication on the RHS is in 𝑆2.

3
In the extended abstract of this work [40], we required that 𝑠2𝑡 = 𝑠 and 𝑠𝑡 = 𝑡𝑠 for some 𝑡 ∈ 𝑆 . For a finite semigroup 𝑆 ,

this is equivalent to requiring that 𝑠2𝑡 = 𝑠 for some 𝑡 ∈ 𝑆 as if this second condition holds, then 𝑠𝑘 = 𝑠 for some 𝑘 > 1

by Lemma 1 (2), implying the existence of 𝑡 that commutes with 𝑠 and satisfies 𝑠2𝑡 = 𝑠 .
4
The usual definition of a regular element in a semigroup, which is weaker, requires that 𝑠𝑡𝑠 = 𝑠 for some 𝑡 [33]. What we

call regular is often called completely regular.

, Vol. 1, No. 1, Article . Publication date: September 2024.

4 Alberto Larrauri and Stanislav Živný

Lemma 1. Let 𝑆 be a finite semigroup and 𝑠 ∈ 𝑆 . Then the following are equivalent:

(1) 𝑠 is regular,

(2) 𝑠𝑘 = 𝑠 for some 𝑘 > 1,

(3) 𝑠 belongs to a subgroup of 𝑆 ,

(4) 𝑠 ⊑ 𝑠2.

Proof. (3) =⇒ (2): For any finite group 𝐺 there exists number 𝑘 > 1 such that 𝑔𝑘 = 𝑔 for all

𝑔 ∈ 𝐺 .
(2) =⇒ (3): Consider the set𝐺 = {𝑠ℓ | 1 ≤ ℓ < 𝑘}. We claim that 𝐺 is a group whose identity is

𝑠𝑘−1. By (2), 𝑠𝑘−1 acts as a multiplicative identity in 𝐺 . Moreover, given any 1 ≤ ℓ < 𝑘 − 1,

the inverse of 𝑠ℓ in 𝐺 is simply 𝑠𝑘−1−ℓ .
(1) =⇒ (4): By the definition of regularity, there is some element 𝑡 such that 𝑠2𝑡 = 𝑠 , meaning

that 𝑠 ⊑ 𝑠2.
(2) =⇒ (1): If 𝑘 = 2, let 𝑡 = 𝑠 . Otherwise, if 𝑘 > 2, let 𝑡 = 𝑠𝑘−2. Then we have 𝑠2𝑡 = 𝑠 .

(4) =⇒ (2): By assumption, 𝑠2𝑡 = 𝑠 for some 𝑡 ∈ 𝑆 . Note that this implies that 𝑠𝑘+1𝑡𝑘 = 𝑠 for all

𝑘 ≥ 1. As 𝑆 is finite, there must be numbers 𝑘 > ℓ > 1 satisfying that 𝑠𝑘 = 𝑠ℓ . Then, the

following chain of identities holds

𝑠 = 𝑠𝑘𝑡𝑘−1 = 𝑠ℓ𝑡𝑘−1 = 𝑠ℓ𝑡 ℓ−1𝑡𝑘−ℓ = 𝑠𝑡𝑘−ℓ .

In particular, this means that 𝑠𝑘
′
= 𝑠𝑘

′
𝑡𝑘−ℓ for any 𝑘 ′ ≥ 1. Finally, it also holds that 𝑠 =

𝑠𝑘−ℓ+1𝑡𝑘−ℓ , which together with the last equality yields that 𝑠 = 𝑠𝑘−ℓ+1. Since ℓ < 𝑘 , we have
𝑘 − ℓ + 1 > 1, thus establishing (2).

□

We use the standard product (and also the power) of a semigroup (monoid, group), where

the operation is defined component-wise. We use the symbol ⪯ for a substructure; e.g., if 𝑆 is a

semigroup then we write𝑇 ⪯ 𝑆 to indicate that𝑇 is a subsemigroup of 𝑆 (and similarly for monoids

and groups).

Unless stated explicitly otherwise, all semigroups, monoids, and groups in this paper are finite.

Relational structures. A relational signature 𝜎 consists of a finite set of relation symbols 𝑅, each

with a finite arity ar(𝑅) ∈ N. A relational structure 𝑨 over the signature 𝜎 , or a 𝜎-structure, consists

of a finite set 𝐴 and a relation 𝑅𝑨 ⊆ 𝐴𝑘
of arity 𝑘 = ar(𝑅) for every 𝑅 ∈ 𝜎 . Let 𝑨 and 𝑩 be two

𝜎-structures. A map ℎ : 𝐴 → 𝐵 is called a homomorphism from 𝑨 to 𝑩 if ℎ preserves all relations

in 𝑨; i.e., if, for every 𝑅 ∈ 𝜎 , ℎ(x) ∈ 𝑅𝑩 whenever x ∈ 𝑅𝑨, where ℎ is applied component-wise.

We denote the existence of a homomorphism from 𝑨 to 𝑩 by writing 𝑨 → 𝑩. A template is a pair

(𝑨,𝑩) of relational structures such that 𝑨 → 𝑩.
A 𝑘-ary polymorphism of a template (𝑨,𝑩) over signature 𝜎 is a map 𝑝 : 𝐴𝑘 → 𝐵 that preserves

all relations 𝑅𝑨 from 𝑨 in the following sense: For any ar(𝑅) × 𝑘 matrix whose columns belong to

𝑅𝑨, applying 𝑝 row-wise results in a tuple that belongs to 𝑅𝑩 . We denote by Pol(𝑨,𝑩) the set of all
polymorphisms of (𝑨,𝑩).5
The 𝑖-th coordinate of a map 𝑝 : 𝐴𝑘 → 𝐴 is called essential if there exist 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴 and

𝑎′𝑖 ∈ 𝐴 such that 𝑝 (𝑎1, . . . , 𝑎𝑘) ≠ 𝑝 (𝑎1, . . . , 𝑎𝑖−1, 𝑎′𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑘). A coordinate that is not essential is

called inessential. A map 𝑝 : 𝐴𝑘 → 𝐴 is called idempotent if 𝑝 (𝑥, . . . , 𝑥) = 𝑥 .

Minions. A minion M is a collection of sets M (𝑛), one for each positive number 𝑛, such that,

for each map 𝜋 : 𝑛 → 𝑚, there is a map 𝜋M
: M (𝑛) → M (𝑚) satisfying (1) id

M
[𝑛] = idM (𝑛) for

every 𝑛 ≥ 10, and (2) 𝜋M ◦𝜏M = (𝜋 ◦𝜏)M for every pair of suitable maps 𝜋, 𝜏 . When the minion is

5
Equivalently, 𝑝 is a polymorphism of (𝑨,𝑩) if 𝑝 is a homomorphism from the 𝑘-th power of 𝑨 to 𝑩.

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 5

clear from the context, we write 𝑝 (𝜋)
for 𝜋M (𝑝). Elements 𝑝 ∈ M (𝑛) are called 𝑛-ary or as having

arity 𝑛. Whenever 𝑝 (𝜋) = 𝑞 we say that 𝑞 is a minor of 𝑝 . A minion homomorphism 𝜉 : M → N is

a collection of maps 𝜉𝑛 : M (𝑛) → N (𝑛) for each 𝑛 ≥ 1 that preserve minor operations; that is,

𝜉𝑚 (𝑝 (𝜋)) = (𝜉𝑛, (𝑝)) (𝜋) for every minor 𝑝 (𝜋)
, where 𝜋 : [𝑛] → [𝑚].

Given a template (𝑨,𝑩), its set of polymorphisms Pol(𝑨,𝑩) can be equipped with a minion

structure in a natural way: The 𝑛-ary elements of Pol(𝑨,𝑩) are just 𝑛-ary polymorphisms 𝑝 : 𝐴𝑛 →
𝐵. Additionally, given an 𝑛-ary polymorphism 𝑝 and a map 𝜋 : [𝑛] → [𝑚], the minor 𝑝 (𝜋)

is

the polymorphism 𝑞 : 𝐴𝑚 → 𝐵 given by (𝑎1, . . . , 𝑎𝑚) ↦→ 𝑝 (𝑏1, . . . , 𝑏𝑛), where 𝑏𝑖 = 𝑎𝜋 (𝑖) for each
𝑖 ∈ [𝑛].

Given a minion M , we define two special types of elements. An element 𝑝 ∈ M (2𝑘 + 1) is called
alternating if 𝑝 (𝜋) = 𝑝 for any permutation 𝜋 : [2𝑚 + 1] → [2𝑚 + 1] that preserves parity, and
𝑝 (𝜋1) = 𝑝 (𝜋2)

, where for each 𝑖 = 1, 2 the map 𝜋𝑖 is given by 1 ↦→ 𝑖 , 2 ↦→ 𝑖 and 𝑗 ↦→ 𝑗 for all 𝑗 > 2.

An element 𝑝 ∈ M (2𝑘 + 1) is called 2-block-symmetric if the set [2𝑘 + 1] can be partitioned into

two blocks of size 𝑘 + 1 and 𝑘 in such a way that 𝑝 (𝜋) = 𝑝 for any map 𝜋 : [2𝑚 + 1] → [2𝑚 + 1]
that preserves each block

Constraint satisfaction. Let (𝑨,𝑩) be a template with common signature 𝜎 . The promise constraint

satisfaction problem (PCSP) with template (𝑨,𝑩) is the following computational problem, denoted

by PCSP(𝑨,𝑩). Given a 𝜎-structure 𝑿 , output Yes if 𝑿 → 𝑨 and output No if 𝑿 ̸→ 𝑩. This is
the decision version. In the search version, one is given a 𝜎-structure 𝑿 with the promise that

𝑿 → 𝑨; the goal is to find a homomorphism from 𝑿 to 𝑩 (which necessarily exists, as 𝑿 → 𝑨 and

𝑨 → 𝑩, and homomorphisms compose). It is known that the decision version polynomial-time

reduces to the search version (but it is not known whether the two variants are polynomial-time

equivalent) [5]. In our results, the positive (tractability) results are for the search version, whereas

the hardness (intractability) results are for the decision version. We denote by CSP(𝑨) the problem
PCSP(𝑨,𝑨); this is the standard (non-promise) constraint satisfaction problem (CSP). For CSPs,

the decision version and the search version are polynomial-time equivalent [18].

We need two existing algorithms for PCSPs, namely the AIP algorithm [5] and the strictly more

powerful BLP + AIP algorithm [16]. Their power is captured by the following results.

Theorem 1 ([5]). Let (𝑨,𝑩) be a template. Then PCSP(𝑨,𝑩) is solved by AIP if and only if Pol(𝑨,𝑩)
contains alternating maps of all odd arities.

Theorem 2 ([16]). Let (𝑨,𝑩) be a template. Then PCSP(𝑨,𝑩) is solved by BLP + AIP if and only if

Pol(𝑨,𝑩) contains 2-block-symmetric maps of all odd arities.

3 Overview of Results
Promise equations over monoids and groups. Our first and main result is a dichotomy theorem for

solving promise equations over finite monoids and thus also, as a special case, over finite groups.

We first define equations in the standard, non-promise setting as it is useful for mentioning previous

work and for our own proofs.

An equation over a semigroup 𝑆 is an expression of the form 𝑥1 . . . 𝑥𝑛 = 𝑦1 . . . 𝑦𝑚 , where each

𝑥𝑖 , 𝑦𝑖 is either a variable or some element from 𝑆 , referred to as a constant. A system of equations

over 𝑆 is just a set of equations. A solution to such a system is an assignment of elements of 𝑆 to

the variables of the system that makes all equations hold. Equations and systems of equations are

defined similarly for monoids and groups. The only difference is that for groups we allow “inverted

variables” 𝑥−1 in the equations, which are interpreted as inverses of the elements assigned to 𝑥 .

In the context of CSPs, it is common to consider only restricted “types” of equations that can

then express all other equations. The following definition captures systems of equations where

, Vol. 1, No. 1, Article . Publication date: September 2024.

6 Alberto Larrauri and Stanislav Živný

each equation is either of the form 𝑥1𝑥2 = 𝑥3, for three variables, or 𝑥 = 𝑐 , fixing a variable to a

constant. It is well known that restricting to systems of equations of this kind is without loss of

generality, cf. Appendix A.

Definition 1. Let 𝑆 be a semigroup and 𝑇 ⪯ 𝑆 a subsemigroup. The relational structure Eqn(𝑆,𝑇)
has universe 𝑆 , and the following relations:

• A ternary relation 𝑅× = {(𝑠1, 𝑠2, 𝑠3) ∈ 𝑆3 | 𝑠1𝑠2 = 𝑠3}, and
• a singleton unary relation 𝑅𝑡 = {𝑡} for each 𝑡 ∈ 𝑇 .

This template captures systems of equations of the kind described above when we allow only

constants in a subsemigroup 𝑇 of the ambient semigroup 𝑆 . Similarly, we define the templates

Eqn(𝑀, 𝑁), Eqn(𝐺,𝐻) in the same way when𝑀 is a monoid and 𝑁 ⪯ 𝑀 a submonoid, and when

𝐺 is a group and 𝐻 ⪯ 𝐺 is a subgroup. Observe that the definition of subgroup is more restrictive

than the one of submonoid and this in turn is more restrictive than the notion of subsemigroup.

We slightly abuse the notation and write Eqn(𝑆,𝑇) for CSP(Eqn(𝑆,𝑇)).
Previous works focused on problems Eqn(𝐺) = Eqn(𝐺,𝐺) and Eqn(𝑀) = Eqn(𝑀,𝑀). Given

a group 𝐺 , it is known that Eqn(𝐺) is solvable in polynomial time (by AIP) if 𝐺 is Abelian, and

NP-hard otherwise [29]. Similarly, when𝑀 is a monoid, Eqn(𝑀) is solvable in polynomial time if

𝑀 is Abelian and it is the union of its subgroups, and NP-hard otherwise [35]. These results were

shown before the Dichotomy Theorem for CSPs was proved [20, 47]. The original proofs relied on

ad-hoc reductions and various notions from the theory of groups and the theory of monoids. For

the sake of completeness, we present simplified proofs of those previous results as corollaries of

the Dichotomy Theorem in Appendix B.

We now define promise equations.

Definition 2. Let 𝑆1, 𝑆2 be semigroups, and let𝜑 be a semigroup homomorphism with dom(𝜑) ⪯ 𝑆1
and Im(𝜑) ⪯ 𝑆2. The promise system of equations over semigroups problem PEqn(𝑆1, 𝑆2, 𝜑) is the
PCSP(𝑨,𝑩), where 𝐴 = 𝑆1, 𝐵 = 𝑆2, and the relations are defined as follows:

• A ternary relation 𝑅𝑨× = {(𝑠1, 𝑠2, 𝑠3) ∈ 𝑆3
1
| 𝑠1𝑠2 = 𝑠3}, and 𝑅𝑩× = {(𝑠1, 𝑠2, 𝑠3) ∈ 𝑆3

2
| 𝑠1𝑠2 = 𝑠3}.

• For each 𝑡 ∈ dom(𝜑), a unary relation given by 𝑅𝑨𝑡 = {𝑡}, and 𝑅𝑩𝑡 = {𝜑 (𝑡)}.
For this template to be well defined there should be a homomorphism from 𝑨 to 𝑩, which is

equivalent to the existence of a semigroup homomorphism𝜓 : 𝑆1 → 𝑆2 that extends 𝜑 .

Analogously, we also define the promise system of equations over monoids problem and the

promise system of equations over groups problem by replacing semigroup-related notions with

monoid-related notions and group-related notions respectively. Observe that the problem Eqn(𝑆,𝑇)
described before corresponds precisely to PEqn(𝑆, 𝑆, id𝑆).

We can now state our main result.

Theorem 3 (Main). Let 𝑀1, 𝑀2 be monoids and 𝜑 a monoid homomorphism with dom(𝜑) ⪯
𝑀1, Im(𝜑) ⪯ 𝑀2. Then PEqn(𝑀1, 𝑀2, 𝜑) is solvable in polynomial time by BLP + AIP if and only

if there is an Abelian homomorphism𝜓 : 𝑀1 → 𝑀2 extending 𝜑 and Im(𝜓) is a union of subgroups. If

no such homomorphism𝜓 exists, then PEqn(𝑀1, 𝑀2, 𝜑) is NP-hard.
For the special case of groups, we get a simpler tractability criterion and a simpler algorithm.

Corollary 1. Let 𝐺1, 𝐺2 be groups and 𝜑 a group homomorphism with dom(𝜑) ⪯ 𝐺1, Im(𝜑) ⪯
𝐺2. Then PEqn(𝐺1,𝐺2, 𝜑) is solvable in polynomial time by AIP if and only if there is an Abelian

homomorphism𝜓 : 𝐺1 → 𝐺2 extending 𝜑 . If no such homomorphism𝜓 exists, then PEqn(𝐺1,𝐺2, 𝜑) is
NP-hard.

As easy corollaries, Theorem 3 applies in the special case of non-promise setting.

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 7

Corollary 2. Given two monoids 𝑁 ⪯ 𝑀 , Eqn(𝑀, 𝑁) is solvable in polynomial time by BLP + AIP if

and only if there is an Abelian endomorphism of𝑀 extending id𝑁 whose image is a union of subgroups.

If no such endomorphism exists, then Eqn(𝑀, 𝑁) is NP-hard.
Corollary 3. Given two groups 𝐻 ⪯ 𝐺 , Eqn(𝐺,𝐻) is solvable in polynomial time by AIP if and only

if there is an Abelian endomorphism of 𝐺 that extends id𝐻 . If no such endomorphism exists, then

Eqn(𝐺,𝐻) is NP-hard.
Example 1. Let 𝐺 be the dihedral group on four elements, and 𝐻 be the symmetric group on

four elements. Observe that 𝐺 can be seen as a subgroup of 𝐻 in a natural way: 𝐻 consists of all

permutations on four elements, while𝐺 contains only those that are symmetries of the square. The

group 𝐺 is generated by the right 90-degree rotation 𝑟 and an arbitrary reflection 𝑓 that leaves no

element fixed. We consider two group homomorphisms 𝜑1, 𝜑2 with dom(𝜑𝑖) ⪯ 𝐺 and Im(𝜑𝑖) ⪯ 𝐻 .

The domain of both homomorphisms is the subgroup {𝑒, 𝑟, 𝑟 2, 𝑟 3} ⪯ 𝐺 . Then, 𝜑1 is given by 𝑟 ↦→ 𝑟 2,

and 𝜑2 is given by 𝑟 ↦→ 𝑟 . The following hold:

• Both Eqn(𝐺, dom(𝜑1)) and Eqn(𝐻, Im(𝜑1)) are NP-hard. PEqn(𝐺,𝐻, 𝜑1) is tractable and

solvable by AIP.

• PEqn(𝐺,𝐻, 𝜑2) is NP-hard.
To see the first item, observe that the group homomorphism 𝜓 : 𝐺 → 𝐻 given by 𝑟 ↦→ 𝑟 2 and

𝑓 ↦→ 𝑓 is Abelian (its image is isomorphic to the direct product Z2 × Z2) and extends 𝜑1. Hardness

of Eqn(𝐺, dom(𝜑1)) is a consequence of the fact that the commutator subgroup of 𝐺 is {𝑒, 𝑟 2}, so
𝑟 2 ∈ dom(𝜑1) is included in the kernel of any Abelian endomorphism of𝐺 . Similarly, hardness of

Eqn(𝐻, Im(𝜑1)) follows from the fact that the commutator subgroup of 𝐻 is the alternating group

on four elements, and has Im(𝜑1) as a subgroup.
The second item can be proved by observing that the only normal subgroup of𝐺 that does not

intersect dom(𝜑2) is the trivial subgroup, so any homomorphism𝜓 : 𝐺 → 𝐻 that extends 𝜑2 needs

to be injective, and thus non-Abelian.

We say that PCSP(𝑨,𝑩) is finitely tractable if there is 𝑪 such that 𝑨 → 𝑪 → 𝑩 and CSP(𝑪) is
solvable in polynomial time. The tractable cases in Theorem 3 are in fact finitely tractable, as the

next result shows.

Lemma 2. Assume that PEqn(𝑀1, 𝑀2, 𝜑) is in the positive part of Theorem 3; i.e., there is an Abelian

homomorphism𝜓 : 𝑀1 → 𝑀2 extending 𝜑 and Im(𝜓) is a union of subgroups. Then, PEqn(𝑀1, 𝑀2, 𝜑)
is finitely tractable.

Proof. By Theorem 3 there must be some Abelian homomorphism𝜓 : 𝑀1 → 𝑀2 extending 𝜑

and Im(𝜓) is a union of subgroups. Let 𝑀 ⪯ 𝑀2 be the submonoid Im(𝜓). By assumption 𝑀 is

Abelian and a union of subgroups. Let 𝑁 ⪯ 𝑀 be the submonoid Im(𝜑). We claim that Eqn(𝑀, 𝑁) is
solvable in polynomial time. Indeed, consider the map id𝑀 . This map is an Abelian endomorphism of

𝑀 , whose image is a union of subgroups. Moreover, id𝑀 extends id𝑁 . So, by Theorem 3, Eqn(𝑀, 𝑁)
is solvable in polynomial time by BLP + AIP.

The idea now is that Eqn(𝑀, 𝑁) can be “sandwiched” by the template (𝑨,𝑩) (defined in Defi-

nition 2) of PEqn(𝑀1, 𝑀2, 𝜑). To make this formal, we need to produce a template 𝑪 in the same

signature as 𝑨 and 𝑩 such that CSP(𝑪) is Eqn(𝑀, 𝑁) up to relabeling some relations. The set 𝐶

equals 𝑀 . The relation 𝑅𝑪× consists of the triples (𝑠1, 𝑠2, 𝑠3) ∈ 𝑀3
such that 𝑠1𝑠2 = 𝑠3. Finally, for

each 𝑠 ∈ dom(𝜑), we define 𝑅𝑪𝑠 = {𝜑 (𝑠)}. By construction, it holds that 𝑨 ↦→ 𝑪 ↦→ 𝑩: the map𝜓 is

a homomorphism from 𝑨 to 𝑪 , and the inclusion map is a homomorphism from 𝑪 to 𝑩. On the

other hand, CSP(𝑪) is easily seen to be equivalent to Eqn(𝑪). Indeed, we can obtain Eqn(𝑪) from
𝑪 by relabeling each relation 𝑅𝑠 to 𝑅𝜑 (𝑠) and removing duplicate relations, which does not change

the complexity of the related CSP. □

, Vol. 1, No. 1, Article . Publication date: September 2024.

8 Alberto Larrauri and Stanislav Živný

The power of BLP + AIP is necessary in Theorem 3 in the sense that AIP does not suffice for all

monoids, even for (non-promise) CSPs, unlike in the case of groups. Indeed, adding a fresh element

to a group that serves as the monoid identity fools AIP.

Lemma 3. Let 𝐺 be an arbitrary Abelian group. Let𝑀 be the monoid resulting from adding to 𝐺 a

fresh element 𝑒 that serves as the monoid identity. Then Eqn(𝑀,𝑀) is solvable by BLP + AIP but not

by AIP.

Proof. The fact that BLP + AIP solves the Eqn(𝑀,𝑀) follows by Theorem 3 from the fact

that 𝑀 is Abelian and a union of subgroups. To rule out AIP, we show that Eqn(𝑀,𝑀) has no
alternating polymorphisms; this suffices by Theorem 1.We begin with the following observation. Let

𝑝 : 𝑀𝑛 → 𝑀 be a polymorphism whose 𝑖-th coordinate is inessential. Consider the homomorphism

𝜏𝑝,𝑖 that sends each element 𝑠 ∈ 𝑀 to 𝑝 (𝑒, . . . , 𝑠, . . . , 𝑒), where all arguments are equal to 𝑒 except for

the 𝑖-th one, which is equal to 𝑠 . Then it must be that 𝜏𝑝,𝑖 is constant and equal to 𝑒 . Now suppose that

𝑝 is a (2𝑛+1)-ary alternating polymorphism. Then define 𝑞(𝑥1, . . . , 𝑥2𝑛) = 𝑝 (𝑥1, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥2𝑛−1).
As 𝑝 is alternating, the first coordinate is inessential in𝑞. By our previous observation, 𝜏𝑞,1 is constant

and equal to 𝑒 . By definition,

𝜏𝑞,1 (𝑠) = 𝑞(𝑠, 𝑒, . . . , 𝑒) = 𝑝 (𝑠, 𝑠, 𝑒, . . . , 𝑒) = 𝑝 (𝑠, 𝑒, . . . , 𝑒)𝑝 (𝑒, 𝑠, 𝑒, . . . , 𝑒) = 𝜏𝑝,1 (𝑠)𝜏𝑝,2 (𝑠).

Hence 𝜏𝑝,1 (𝑠)𝜏𝑝,2 (𝑠) = 𝑒 for all 𝑠 ∈ 𝑀 . The only way that the product of two elements equals 𝑒 in

𝑀 is that both elements are equal to 𝑒 . Thus, both 𝜏𝑝,1 and 𝜏𝑝,2 are constant and equal to 𝑒 . This

means that the first and the second coordinate are inessential in 𝑝 . However, as 𝑝 is alternating, 𝑝

is preserved under parity preserving permutations of its arguments, so the fact that its first and

second coordinates are inessential means that in fact all its coordinates are inessential. However, if

all coordinates of 𝑝 are inessential, then 𝑝 is constant, but this contradicts the fact that 𝑝 must be

idempotent, as singleton unary relations are in Eqn(𝑀,𝑀) and thus preserved by 𝑝 . □

Promise equations over semigroups. As our next result, we prove that every PCSP is polynomial-

time equivalent to a problem of the form PEqn(𝑆1, 𝑆2, 𝜑) over some semigroups 𝑆1, 𝑆2. Hence,

extending our classification of promise equations beyond monoids is difficult in the sense that

understanding the computational complexity of promise equations over semigroups is as hard

as classifying all PCSPs. This result is analogous to the one known in the non-promise setting

obtained in [35], whose proof we closely follow. One difficulty in lifting the result from [35] is the

lack of constants in the promise setting. The details can be found in Section 6.

Theorem 4. Let (𝑨,𝑩) be a template. Then there are semigroups 𝑆1, 𝑆2 and a semigroup homomor-

phism 𝜑 with dom(𝜑) ⪯ 𝑆1 and Im(𝜑) ⪯ 𝑆2 such that PCSP(𝑨,𝑩) is polynomial-time equivalent to

PEqn(𝑆1, 𝑆2, 𝜑).

Monoidal minions. As our third result, we investigate minions based on monoids. For PCSPs

whose polymorphism minions are homomorphically equivalent to such minions, we establish a

dichotomy. This is a building block in the proof of our main result, but may be interesting in its

own right. In this direction, we show that for each monoidal minion M , there are PCSP templates

whose polymorphism minions are isomorphic to M . For a finite set [𝑛], a tuple (𝑎𝑖)𝑖∈[𝑛] ∈ 𝑀𝑛
is

called commutative if each pair of its elements commute.

Definition 3. Given an element 𝑎 ∈ 𝑀 of a monoid𝑀 , themonoidal minion M𝑀,𝑎 is the one where

for each 𝑛 ∈ N the elements 𝒃 ∈ M𝑀,𝑎 (𝑛) are commutative tuples 𝒃 ∈ 𝑀𝑛
with

∏
𝑖∈[𝑛] 𝑏𝑖 = 𝑎,

and where for each𝑚 ≥ 1 and each 𝜋 : [𝑛] → [𝑚] the minor 𝒃 (𝜋)
is the tuple 𝒄 ∈ 𝑀𝑚

given by

𝑐 𝑗 =
∏

𝑖∈𝜋−1 (𝑗) 𝑏𝑖 , and the empty product equals the identity element 𝑒 .

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 9

Theorem 5. Let 𝑀 be a finite monoid and let 𝑎 ∈ 𝑀 . Consider a template (𝑨,𝑩) with Pol(𝑨,𝑩)
homomorphically equivalent to M𝑀,𝑎 . Then PCSP(𝑨,𝑩) is solvable in polynomial time by BLP + AIP

if and only if 𝑎 is regular in𝑀 . If 𝑎 is not regular, then PCSP(𝑨,𝑩) is NP-hard.

Next, we show that there are templates whose polymorphism minions are of the considered type

(up to isomorphism).

Theorem 6. Let𝑀 be a monoid, and 𝑎 ∈ 𝑀 an arbitrary element. Then the template (𝑨,𝑩) described
below satisfies that Pol(𝑨,𝑩) ≃ M𝑀,𝑎 .

6
The signature 𝜎 of 𝑨 and 𝑩 contains three relation symbols: a

ternary symbol 𝑅, and two unary ones 𝐶0,𝐶1. We define 𝐴 = {0, 1}, 𝑅𝑨 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
𝐶𝑨
0

= {0} and 𝐶𝑨
1

= {1}. The universe 𝐵 of 𝑩 is M𝑀,𝑎 (2). We define 𝑅𝑩 as the set of triples in(
M𝑀,𝑎 (2)

)
3

of the form ((𝑐1, 𝑐2𝑐3), (𝑐2, 𝑐1𝑐3), (𝑐3, 𝑐1𝑐2)), where 𝑐1, 𝑐2, 𝑐3 ∈ 𝑀 commute pairwise, and

𝑐1𝑐2𝑐3 = 𝑎. Finally, the unary relations 𝐶
𝑩
0
and 𝐶𝑩

1
are the singleton sets containing the tuples (𝑒, 𝑎)

and (𝑎, 𝑒) respectively.7

Finally, we remark that monoidal minions are natural objects of study, as they include other

relevant previously studied minions.

Remark 1. Consider the Abelian monoid 𝑀 = {0, 1, 𝜖}, whose multiplicative identity is 0, and

where 1 · 1 = 1 · 𝜖 = 𝜖 · 𝜖 = 𝜖 . The elements of M𝑀,1 are tuples with all zero entries except

for a single 1 entry. HenceM𝑀,1, corresponds to the so-called trivial minion T consisting of all

projections (also known as dictators) on a two-element set. This minion represents the hardness

boundary for CSPs, in the sense that a CSP is NP-hard if and only if its polymorphism minion maps

homomorphically to T [18, 47].

Another example of a monoidal minion is the one capturing the power of arc consistency

from [24]. In fact, every linear minion (in the sense of [23]) is a union of monoidal minions.
8

If we allow infinite monoids to be considered, then monoidal minions include important minions

that capture solvability via relevant algorithms. Consider the monoid 𝑀 = {(𝑟, 𝑧) ∈ Q × Z | 𝑟 ∈
[0, 1], and 𝑟 = 0 implies 𝑧 = 0}, where the binary operation is given by coordinate-wise addition,

and the identity is (0, 0). Then M𝑀,(1,1) is precisely the minion MBLP+AIP described in [16], which

expresses the power of BLP + AIP. Similarly, the minions described in [5] to capture the power of

BLP and AIP are monoidal minions as well.

4 Monoidal Minions: Proof of Theorem 5
Solvability by BLP +AIP We show both directions. First we prove that 𝑎 being regular implies

that PCSP(𝑨,𝑩) is solvable by BLP + AIP. We use the characterisation of the power of BLP +
AIP from Theorem 2 for the tractability part of Theorem 5. Observe that if there is a minion

homomorphism 𝜉 : M𝑀,𝑎 → Pol(𝑨,𝑩) and 𝑝 ∈ M𝑀,𝑎 is a (2𝑖 + 1)-ary 2-block-symmetric element,

then so is 𝜉 (𝑝). Hence, showing that M𝑀,𝑎 has 2-block-symmetric elements of all odd arities proves

that PCSP(𝑨,𝑩) is solvable in polynomial time by BLP+AIP. By Lemma 1 (2), 𝑎 𝑗 = 𝑎 for some 𝑗 > 1.

Let 𝑏 = 𝑎 𝑗−2, where 𝑎0 = 𝑒 . Then 𝑎2𝑏 = 𝑎, and 𝑎𝑏 = 𝑏𝑎. For each 𝑖 ≥ 1 consider the (2𝑖 + 1)-ary
element of M𝑀,𝑎 consisting of 𝑖 + 1 consecutive 𝑎’s followed by 𝑖 consecutive 𝑏’s. To see that this

this is indeed an element of M𝑀,𝑎 , observe that 𝑎 and 𝑏 commute, and 𝑎𝑖+1𝑏𝑖 = 𝑎 follows from

𝑎2𝑏 = 𝑎. This tuple is 2-block-symmetric, with the blocks corresponding to 𝑎’s and 𝑏’s (of sizes 𝑖 + 1

and 𝑖 , respectively).

6
We use ≃ to denote the isomorphism relation, i.e., the existence of a bijection between the minions that preserves arities

and minor operations.

7
The map 𝑓 : 𝐴 → 𝐵 given by 0 ↦→ (𝑒, 𝑎) and 1 ↦→ (𝑎, 𝑒) is a homomorphism from 𝑨 to 𝑩. The structure 𝑨 corresponds to

the “1-in-3” template, where both constants are added, and 𝑩 is the so-called “free structure” [5] of M𝑀,𝑎 generated by 𝑨.
8
We thank Lorenzo Ciardo for this observation.

, Vol. 1, No. 1, Article . Publication date: September 2024.

10 Alberto Larrauri and Stanislav Živný

Now we prove that if PCSP(𝑨,𝑩) is solvable by BLP+AIP, then 𝑎 must be regular. If PCSP(𝑨,𝑩),
then Pol(𝑨,𝑩) has a (2𝑖 +1)-ary 2-block symmetric polymorphism 𝑝𝑖 for each 𝑖 ≥ 1. As Pol(𝑨,𝑩) is
homomorphically equivalent to M𝑀,𝑎 , we conclude there must be a (2𝑖 + 1)-ary 2-block symmetric

element 𝒄 𝒊 for each 𝑖 ≥ 1. Observe that 𝒄 𝒊 is a tuple in 𝑀2𝑖+1
of the form (𝛼𝑖 , . . . , 𝛼𝑖 , 𝛽𝑖 , . . . , 𝛽𝑖),

where the first 𝑖 + 1 elements are equal to some 𝛼𝑖 ∈ 𝑀 , and the last 𝑖 elements are equal to some

𝛽𝑖 ∈ 𝑀 . By the definition of M𝑀,𝑎 it must hold that 𝛼𝑖+1𝑖 𝛽𝑖𝑖 = 𝑎, and that 𝛼𝑖𝛽𝑖 = 𝛽𝑖𝛼𝑖 . As𝑀 is finite,

there must be a pair (𝛼, 𝛽) ∈ 𝑀2
that appears infinitely often in the sequence (𝛼𝑖 , 𝛽𝑖)𝑖≥1. Then,

there must be two indices 𝑗 > 2𝑖 +1, with 𝑖 ≥ 1, satisfying (𝛼, 𝛽) = (𝛼𝑖 , 𝛽𝑖) = (𝛼 𝑗 , 𝛽 𝑗). The following
chain of identities holds

𝑎 = 𝛼𝑖+1𝛽𝑖 = 𝛼 𝑗+1𝛽 𝑗 =
(
𝛼𝑖+1𝛽 𝑗

)
2
(
𝛼 𝑗−2𝑖−1𝛽 𝑗−2𝑖

)
= 𝑎2

(
𝛼 𝑗−2𝑖−1𝛽 𝑗−2𝑖

)
.

This shows that 𝑎 is regular.

NP-hardness We prove the intractability part of Theorem 5 (as well as other hardness results

later in this paper) using the following result.

Theorem 7 ([5]). Let M = Pol(𝑨,𝑩), and let 𝐾, 𝐿 ≥ 1 be any fixed integers. Suppose that M
satisfies the following conditions:

(1) M =
⋃

ℓ∈[𝐿] Mℓ ;

(2) for each ℓ ∈ [𝐿], there is a map 𝑝 ↦→ Iℓ (𝑝) that sends each 𝑝 ∈ Mℓ to a set of its coordinates

Iℓ (𝑝) of size at most 𝐾 ;

(3) for each ℓ ∈ [𝐿] and for each minor 𝑝 (𝜋) = 𝑞, where 𝑝, 𝑞 ∈ Mℓ , 𝜋 (Iℓ (𝑝))
⋂Iℓ (𝑞) ≠ ∅.

Then PCSP(𝑨,𝑩) is NP-complete.

Given a template (𝑨,𝑩), if there is a minion homomorphism 𝜉 : Pol(𝑨,𝑩) → M𝑀,𝑎 and M𝑀,𝑎

satisfies the conditions in Theorem 7, so does Pol(𝑨,𝑩). Indeed, if M𝑀,𝑎 =
⋃

ℓ∈[𝐿] Mℓ , then we

can write Pol(𝑨,𝑩) = ⋃
ℓ∈[𝐿] 𝜉

−1 (Mℓ). Additionally, if the map Iℓ witnesses the condition in the

theorem forMℓ , then the map I′
ℓ given by 𝑝 ↦→ Iℓ (𝜉 (𝑝)) witnesses the same condition for 𝜉−1 (Mℓ).

Hence, we show the hardness part of Theorem 5 by proving that M𝑀,𝑎 satisfies the assumptions

in Theorem 7 when 𝑎 ∈ 𝑀 is not regular.

For a monoid𝑀 , we we write 𝑎 @ 𝑏 when 𝑎 ⊑ 𝑏 holds but 𝑏 ⊑ 𝑎 does not. We use the following

simple observation.

Observation 1. Let𝑀 be a monoid and 𝑎, 𝑏, 𝑐 ∈ 𝑀 three elements that commute pairwise. Suppose

that 𝑎𝑏𝑐 @ 𝑎𝑏. Then 𝑎𝑐 @ 𝑎.

Proof. We prove the contrapositive. Suppose that 𝑎 ⊑ 𝑎𝑐 . That is, there is some 𝑑 ∈ 𝑀 that

satisfies 𝑎𝑐𝑑 = 𝑎. We have (𝑎𝑏𝑐)𝑑 = (𝑏𝑎𝑐)𝑑 = 𝑏 (𝑎𝑐𝑑) = 𝑏𝑎 = 𝑎𝑏, proving that 𝑎𝑏 ⊑ 𝑎𝑏𝑐 . □

Assume that 𝑎 is not regular. That is, that 𝑎2𝑏 ≠ 𝑎 for every 𝑏 ∈ 𝑀 . Let 𝒃 ∈ M𝑀,𝑎 (𝑛) for
some number 𝑛 ≥ 1. Using the fact that the elements 𝑏𝑖 commute pairwise one can deduce that∏

𝑖∈𝐼 𝑏𝑖 ⊑
∏

𝑗∈ 𝐽 𝑏 𝑗 for all 𝐽 ⊆ 𝐼 ⊆ [𝑛]. A coordinate 𝑗 ∈ [𝑛] is called relevant in 𝒃 if𝑎 @ ∏
𝑖∈[𝑛]\{ 𝑗 } 𝑏𝑖 .

Consider the map I that assigns to each 𝒃 ∈ M𝑀,𝑎 its set of relevant coordinates. Claims 1 through

3 proved below establish the required assumptions in Theorem 7 with 𝐿 = 1 and 𝐾 = |𝑀 |, thus
showing NP-hardness of PCSP(𝑨,𝑩). Throughout the proof we adopt the convention that empty

products over a monoid equal the identity element.

Claim 1: 𝒃 has at most |𝑀 | relevant coordinates. Let {𝑖1, . . . , 𝑖ℎ} ⊆ [𝑛] be the set of relevant
coordinates of 𝒃 . Given 𝑘 ∈ [ℎ] we define

𝑐𝑘 =
∏

𝑗∈[𝑘−1]
𝑏𝑖 𝑗 , and 𝑑𝑘 =

∏
𝑗∈[𝑛]\{𝑖1,...,𝑖𝑘 }

𝑏 𝑗 .

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 11

The following hold: (1) 𝑎 = 𝑑𝑘𝑐𝑘𝑏𝑖𝑘 , (2) 𝑏𝑖𝑘 , 𝑐𝑘 and 𝑑𝑘 commute pairwise, and (3) as 𝑖𝑘 is a

relevant coordinate, it holds that 𝑑𝑘𝑐𝑘𝑏𝑖𝑘 @ 𝑑𝑘𝑐𝑘 . Applying Observation 1, we obtain that

𝑐𝑘𝑏𝑖𝑘 @ 𝑐𝑘 . Expanding the definition of 𝑐𝑘 this means that∏
𝑗∈[𝑘]

𝑏𝑖 𝑗 @
∏

𝑗∈[𝑘−1]
𝑏𝑖 𝑗 .

This holds for all 𝑘 ∈ [ℎ], so in particular the products

∏
𝑗∈[𝑘] 𝑏𝑖 𝑗 must be pairwise different

and the number ℎ of relevant coordinates is at most |𝑀 |, proving the claim.

Claim 2: Minors preserve relevant coordinates. Let 𝒄 = 𝒃 (𝜋)
, where 𝜋 : [𝑛] → [𝑚] is a map

and let 𝑖 ∈ [𝑛] be a relevant coordinate of 𝒃 . We want to show that 𝑗 = 𝜋 (𝑖) is a relevant
coordinate of 𝒄 . Indeed, if that were not the case, using the equality

∏
𝑘∈[𝑛]\𝜋−1 (𝑗) 𝑏𝑘 =∏

ℓ∈[𝑚]\{ 𝑗 } 𝑐ℓ , we would have that ∏
𝑘∈[𝑛]\𝜋−1 (𝑗)

𝑏𝑘 ⊑ 𝑎.

Using this together with the fact that

∏
𝑘∈[𝑛]\{𝑖 } 𝑏𝑘 ⊑ ∏

𝑘∈[𝑛]\𝜋−1 (𝑗) 𝑏𝑘 , where 𝑖 ∈ 𝜋−1 (𝑗),
shows that ∏

𝑘∈[𝑛]\{𝑖 }
𝑏𝑘 ⊑ 𝑎,

thus contradicting the fact that 𝑖 was a relevant coordinate of 𝒃 .

Claim 3: 𝒃 has at least one relevant coordinate. Suppose otherwise for the sake of contradic-

tion. Then for each 𝑖 ∈ [𝑛] there is an element 𝑐𝑖 ∈ 𝑀 such that 𝑎𝑐𝑖 =
∏

𝑖∈[𝑛]\{ 𝑗 } 𝑏𝑖 . Let
𝑐 =

∏
𝑖∈[𝑛] 𝑐𝑖 . One can check that that 𝑎2𝑐 = 𝑎, contradicting our assumption that 𝑎 was not

regular. Indeed,

𝑎2𝑐 =

(
𝑛∏
𝑖=1

𝑏𝑖

)
(𝑎𝑐1)

(
𝑛∏
𝑖=2

𝑐𝑖

)
=

(
𝑛∏
𝑖=1

𝑏𝑖

) ©­«
∏

𝑖∈[𝑛]\{1}
𝑏𝑖

ª®¬
(

𝑛∏
𝑖=2

𝑐𝑖

)

=

(
𝑛∏
𝑖=2

𝑏𝑖

)
(𝑎𝑐2)

(
𝑛∏
𝑖=3

𝑐𝑖

)
=

(
𝑛∏
𝑖=2

𝑏𝑖

) ©­«
∏

𝑖∈[𝑛]\{2}
𝑏𝑖

ª®¬
(

𝑛∏
𝑖=3

𝑐𝑖

)

=

(
𝑛∏
𝑖=3

𝑏𝑖

)
(𝑎𝑐3)

(
𝑛∏
𝑖=4

𝑐𝑖

)
=

(
𝑛∏
𝑖=3

𝑏𝑖

) ©­«
∏

𝑖∈[𝑛]\{3}
𝑏𝑖

ª®¬
(

𝑛∏
𝑖=4

𝑐𝑖

)

= · · · =
(

𝑛∏
𝑖=𝑛

𝑏𝑖

) ©­«
∏

𝑖∈[𝑛]\{𝑛}
𝑏𝑖

ª®¬ = 𝑎.

Here we have repeatedly used the fact that the elements𝑏𝑖 commute pairwise and in particular

they commute with 𝑎 =
∏

𝑖∈[𝑛] 𝑏𝑖 .

5 Equations Over Monoids and Groups: Proofs of Theorem 3 and Corollary 1
We begin with a simple characterisation of the polymorphisms of promise equation templates.

Lemma 4. Consider a template PEqn(𝑍1, 𝑍2, 𝜑) of promise equations over semigroups, monoids, or

groups, respectively. A map 𝑝 : 𝑍𝑛
1
→ 𝑍2 is a polymorphism of PEqn(𝑍1, 𝑍2, 𝜑) if and only if 𝑝 is a

semigroup, monoid, or group homomorphism, respectively, and 𝑝 (𝑠, 𝑠, . . . , 𝑠) = 𝜑 (𝑠) for all 𝑠 ∈ dom(𝜑).

, Vol. 1, No. 1, Article . Publication date: September 2024.

12 Alberto Larrauri and Stanislav Živný

Proof. We show the statement for the semigroup, monoid and the group case. The semigroup

case is straightforward: 𝑝 is a polymorphism if and only if it preserves 𝑅× and 𝑅𝑠 for all 𝑠 ∈ dom(𝜑).
Preserving 𝑅× is equivalent to preserving the product operation from 𝑍𝑛

1
to 𝑍2, and preserving 𝑅𝑠

means that 𝑝 (𝑠, . . . , 𝑠) = 𝜑 (𝑠).
Themonoid case follows in the sameway. Using the same reasoningwe obtain that 𝑝 preserves the

product operation from 𝑍𝑛
1
to 𝑍2, and that 𝑝 (𝑠, . . . , 𝑠) = 𝜑 (𝑠) for all 𝑠 ∈ dom(𝜑). The only additional

requirement is that 𝑝 (𝑒𝑍1
, . . . , 𝑒𝑍1

) = 𝑒𝑍2
. This follows from the facts that 𝑒𝑍1

∈ dom(𝜑), and 𝜑 is a

monoid homomorphism, so it must preserve identity elements. This means that 𝑝 (𝑒𝑍1
, . . . , 𝑒𝑍1

) =
𝜑 (𝑒𝑍1

) = 𝑒𝑍2
.

Finally, the group case is shown as the monoid case using that preserving inverse elements is

just a consequence of preserving the product operation and preserving identity elements. □

Let us discuss some key properties of polymorphisms that will be used in the proof of Theorem 5.

Given an𝑛-ary polymorphism 𝑝 of PEqn(𝑀1, 𝑀2, 𝜑), we defineN(𝑝) as the submonoid {𝑝 (𝑠, . . . , 𝑠) |
𝑠 ∈ 𝑀1} ⪯ 𝑀2. Given 𝑖 ∈ [𝑛], we also define the submonoid N(𝑝, 𝑖) ⪯ 𝑀2 as

{𝑝 (𝑠1, . . . , 𝑠𝑛) | 𝑠𝑖 ∈ 𝑀1, and 𝑠 𝑗 = 𝑒 when 𝑗 ≠ 𝑖}.

We give some facts about these submonoids that follow directly from the definitions.

Observation 2. Let𝑀1, 𝑀2 be monoids and 𝜑 a monoid homomorphism with dom(𝜑) ⪯ 𝑀1, Im(𝜑) ⪯
𝑀2. Let 𝑝 be a 𝑛-ary polymorphism of PEqn(𝑀1, 𝑀2, 𝜑). Then the following statements hold:

(1) Themap𝜙 :

∏
𝑖∈[𝑛] N(𝑝, 𝑖) → 𝑀2 given by (𝑠1, . . . 𝑠𝑛) ↦→

∏
𝑖∈[𝑛] 𝑠𝑖 is amonoid homomorphism.

In particular, given 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, any two elements 𝑡1 ∈ N (𝑝, 𝑖), 𝑡2 ∈ N (𝑝, 𝑗) commute.

(2) If N(𝑝, 𝑖) = N(𝑝, 𝑗) for some 𝑖 ≠ 𝑗 ∈ [𝑛] then N(𝑝, 𝑖) is Abelian.
(3) The submonoid N(𝑝) is contained in Im(𝜙), where 𝜙 is as defined in Item 1. In particular, if

N(𝑝) is not Abelian, some N(𝑝, 𝑖) must be non-Abelian.

We are ready to prove our main result.

Theorem 3 (Main). Let 𝑀1, 𝑀2 be monoids and 𝜑 a monoid homomorphism with dom(𝜑) ⪯
𝑀1, Im(𝜑) ⪯ 𝑀2. Then PEqn(𝑀1, 𝑀2, 𝜑) is solvable in polynomial time by BLP + AIP if and only

if there is an Abelian homomorphism𝜓 : 𝑀1 → 𝑀2 extending 𝜑 and Im(𝜓) is a union of subgroups. If

no such homomorphism𝜓 exists, then PEqn(𝑀1, 𝑀2, 𝜑) is NP-hard.

Proof. First we show that the existence of such homomorphism𝜓 is equivalent to solvability

by BLP + AIP. We prove both implications. Suppose that such homomorphism𝜓 exists. As Im(𝜓)
is a union of subgroups, by Lemma 1 there is some number 𝑘 > 1 such that 𝑠𝑘 = 𝑠 for all 𝑠 ∈ Im(𝜓).
Let 𝑛 ≥ 1 be arbitrary. Consider the map 𝑝 : 𝑀2𝑛+1

1
→ 𝑀2 given by

(𝑠𝑖)𝑖∈[2𝑛+1] ↦→
©­«

∏
𝑖∈[𝑛+1]

𝜓 (𝑠𝑖)
ª®¬ ©­«

∏
𝑖∈[𝑛]

𝜓 (𝑠𝑖+𝑛+1)𝑘−2
ª®¬ ,

where the convention is that the zero-th power of an element equals the identity of the monoid.

We claim that 𝑝 is a 2-block-symmetric polymorphism of PEqn(𝑀1, 𝑀2, 𝜑) with the first block

consisting of the first 𝑛 + 1 coordinates, and the second block consisting of the rest. The fact

that 𝑝 is a 2-block-symmetric map with the blocks as claimed follows from the fact that 𝜓 is

Abelian. To complete the argument, we show that 𝑝 is a polymorphism of PEqn(𝑀1, 𝑀2, 𝜑) using
the characterisation from Lemma 4. First, observe that the fact that𝜓 is Abelian implies that 𝑝 is a

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 13

monoid homomorphism. Indeed,

𝑝 (𝑠1, . . . , 𝑠2𝑛+1)𝑝 (𝑡1, . . . , 𝑡2𝑛+1)

=
©­«

∏
𝑖∈[𝑛+1]

𝜓 (𝑠𝑖)𝜓 (𝑡𝑖)ª®¬ ©­«
∏
𝑖∈[𝑛]

𝜓 (𝑠𝑖+𝑛+1)𝑘−1𝜓 (𝑡𝑖+𝑛+1)𝑘−1ª®¬
= 𝑝 (𝑠1𝑡1, . . . , 𝑠2𝑛+1𝑡2𝑛+1),

so 𝑝 preserves products. Now we only need to prove that 𝑝 (𝑠, . . . , 𝑠) = 𝜑 (𝑠) for all 𝑠 ∈ dom(𝜑) in
order to show that 𝑝 is a polymorphism. To see that this holds, observe that

𝑝 (𝑠, . . . , 𝑠) = 𝜓 (𝑠)𝑛 (𝑘−1)+1 = 𝜓 (𝑠) = 𝜑 (𝑠),
where the last equality uses the fact that𝜓 extends𝜑 . This completes the proof of the first implication

via Theorem 2.

In the other direction, suppose that PEqn(𝑀1, 𝑀2, 𝜑) is solvable by BLP + AIP. That is, by Theo-

rem 2, there is a 2-block-symmetric polymorphisms 𝑝𝑖 of PEqn(𝑀1, 𝑀2, 𝜙) of arity 2𝑖 + 1 for each

𝑖 ≥ 1. For each 𝑖 , we define three homomorphisms 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 from𝑀1 to𝑀2. Given 𝑎 ∈ 𝑀1, we define

𝛼𝑖 (𝑎) as the element 𝑝𝑖 (𝒂), where 𝑎1 = 𝑎 and 𝑎 𝑗 = 𝑒 for all 𝑗 ≠ 1. Similarly, 𝛽𝑖 (𝑎) is the element

𝑝𝑖 (𝒂′), where 𝑎′𝑖+2 = 𝑎, and 𝑎′𝑗 = 𝑒 for all 𝑗 ≠ 𝑖 + 2. This way, given an arbitrary 𝒃 ∈ 𝑀2𝑖+1
1

, it holds

that

𝑝𝑖 (𝒃) =
(
𝑖+1∏
𝑗=1

𝛼𝑖 (𝑏 𝑗)
) (

2𝑖+1∏
𝑗=𝑖+2

𝛽𝑖 (𝑏 𝑗)
)
.

Finally, given 𝑎 ∈ 𝑀1, the element 𝛾𝑖 (𝑎) equals 𝑝𝑖 (𝑎, 𝑎, . . . , 𝑎), so, 𝛾𝑖 (𝑎) = 𝛼𝑖 (𝑎)𝑖+1𝛽𝑖 (𝑎)𝑖 . As the
number of possible triples (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) is finite, there is a choice (𝛼, 𝛽,𝛾) that appears infinitely often

in the family (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖)∞𝑖=0. Let 𝑖, 𝑗 be such that (𝛼, 𝛽,𝛾) = (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) = (𝛼 𝑗 , 𝛽 𝑗 , 𝛾 𝑗) and 𝑗 ≥ 2𝑖 + 1. We

claim that 𝛾 has all the properties of the map Ψ in the statement. We need to check that (I) 𝛾 extends

𝜑 , (II) 𝛾 has Abelian image, and (III) Im(𝛾) is a union of subgroups. Property (I) follows from the

fact that 𝑝𝑖 is a polymorphism. To show property (II), we first need to make some observations

about Im(𝛼) and Im(𝛽). By definition, Im(𝛼) = N(𝑝 𝑗 , 1) and Im(𝛽) = N(𝑝 𝑗 , 𝑗 + 2). By Item 1

in Observation 2, this implies that 𝑎𝑏 = 𝑏𝑎 for all 𝑎 ∈ Im(𝛼), 𝑏 ∈ Im(𝛽). Using the fact that 𝑝 𝑗 is 2-
block symmetric and 𝑗 ≥ 2, we can deduce thatN(𝑝 𝑗 , 1) = N(𝑝 𝑗 , 2) andN(𝑝 𝑗 , 𝑗 + 2) = N(𝑝 𝑗 , 𝑗 + 3).
By Item 2 in Observation 2, this implies that both Im(𝛼) and Im(𝛽) are Abelian monoids. Having

shown these properties of Im(𝛼) and Im(𝛽) we are ready to show (II). We need to prove that

𝛾 (𝑎)𝛾 (𝑏) = 𝛾 (𝑏)𝛾 (𝑎) for all 𝑎, 𝑏 ∈ 𝑀1. Indeed,

𝛾 (𝑎)𝛾 (𝑏) =
(
𝛼 (𝑎 𝑗+1)𝛽 (𝑎 𝑗)

) (
𝛼 (𝑏 𝑗+1)𝛽 (𝑏 𝑗)

)
= 𝛾 (𝑏)𝛾 (𝑎),

where the second equality uses the fact that all terms in the second expression commute due to

our observations about Im(𝛼) and Im(𝛽). Finally, let us show that (III) holds. By Lemma 1, we just

need to show that for each 𝑎 ∈ 𝑀1 there is some 𝑏 ∈ 𝑀2 satisfying 𝛾 (𝑎)2𝑏 = 𝛾 (𝑎). By our choice of

𝑖 and 𝑗 , for all 𝑎 ∈ 𝑀1 it holds that

𝛾 (𝑎) = 𝛼 (𝑎𝑖+1)𝛽 (𝑎𝑖) = 𝛼 (𝑎 𝑗+1)𝛽 (𝑎 𝑗)
= 𝛼 (𝑎𝑖+1)2𝛼 (𝑎 𝑗−2𝑖−1)𝛽 (𝑎𝑖)2𝛽 (𝑎 𝑗−2𝑖) = 𝛾2 (𝑎)

(
𝛼 𝑗−2𝑖−1 (𝑎)𝛽 𝑗−2𝑖 (𝑎)

)
,

where the fourth equality uses that all the terms in the fourth expression commute by our observa-

tions about Im(𝛼) and Im(𝛽).
Finally, let us prove the second part of the theorem. We show that PEqn(𝑀1, 𝑀2, 𝜑) is NP-hard

assuming there is no Abelian homomorphism𝜓 : 𝑀1 → 𝑀2 extending 𝜑 whose image is a union of

subgroups. LetM be the polymorphismminion of PEqn(𝑀1, 𝑀2, 𝜑). Given a polymorphism 𝑝 ∈ M ,

, Vol. 1, No. 1, Article . Publication date: September 2024.

14 Alberto Larrauri and Stanislav Živný

we define N(𝑝) as the submonoid {𝑝 (𝑠, . . . , 𝑠) | 𝑠 ∈ 𝑀1} ⪯ 𝑀2. Observe that by assumption, for a

given polymorphism 𝑝 it holds that the monoid N(𝑝) is non-Abelian or that N(𝑝) is not a union
of subgroups. Define Ω as the set of monoid homomorphisms𝜓 : 𝑀1 → 𝑀2 for which Im(𝜓) is not
a union of subgroups. By Lemma 1, this happens precisely when Im(𝜓) contains some non-regular

element 𝑎 ∈ 𝑀2. Let 𝐿 = |Ω | + 1, and let 𝐾 = max(|𝑀2 |, |{𝑁 ⪯ 𝑀2 | 𝑁 is non-Abelian }|). We

use Theorem 7 with the constants 𝐿, 𝐾 to show NP-hardness. We define the following subminions

of M .

MA = {𝑝 ∈ M , | N (𝑝) is not Abelian},
and given any monoid homomorphism𝜓 ∈ Ω we set

M𝜓 = {𝑝 ∈ M , | 𝑝 (𝑠, . . . , 𝑠) = 𝜓 (𝑠) for all 𝑠 ∈ 𝑀1}.
By the previous observation it holds that

M = MA

⋃
𝜓 ∈Ω

M𝜓 .

We give selection functions I for each of these sub-minions satisfying the assumptions of The-

orem 7. Let 𝑝 be any 𝑛-ary polymorphism in MA. Given 𝑖 ∈ [𝑛] we define N(𝑝, 𝑖) ⪯ 𝑀2 as the

submonoid

{𝑝 (𝑠1, . . . , 𝑠𝑛) | 𝑠𝑖 ∈ 𝑀1, and 𝑠 𝑗 = 𝑒 when 𝑗 ≠ 𝑖}.
We give some facts about these submonoids.

Given an 𝑛-ary polymorphism 𝑝 ∈ MA, we define IA (𝑝) ⊆ [𝑛] as the set of coordinates 𝑖 for
which N(𝑝, 𝑖) is non-Abelian. We claim that IA satisfies the assumptions of Theorem 7. Indeed,

given some 𝑛-ary 𝑝:

• IA (𝑝) is non empty by Item 3 in Observation 2.

• |IA (𝑝) | ≤ 𝐾 . Otherwise it would be that N(𝑝, 𝑖) = N(𝑝, 𝑗) for some different 𝑖, 𝑗 ∈ IA (𝑝),
contradicting the fact that N(𝑝, 𝑖) is non-Abelian (by Item 2 in Observation 2).

• Suppose that 𝑝 = 𝑞 (𝜋) for some𝑚-ary 𝑞 and some 𝜋 : [𝑚] → [𝑛]. Let 𝑖 ∈ IA (𝑝), then

N(𝑝, 𝑖) ⊆


∏
𝑗∈𝜋−1 (𝑖)

𝑠 𝑗 | 𝑠 𝑗 ∈ N (𝑠, 𝑗) for all 𝑗 ∈ 𝜋−1 (𝑖)
 .

As N(𝑝, 𝑖) is non-Abelian, some submonoid N(𝑞, 𝑗) with 𝑗 ∈ 𝜋−1 (𝑖) must be non-Abelian as

well. This means that IA (𝑝) ⊆ 𝜋 (IA (𝑞)).
Now consider an arbitrary homomorphism 𝜓 ∈ Ω for which M𝜓 is non-empty. We define a

selection function I𝜓 satisfying the assumptions of Theorem 7. Let 𝑡 ∈ Im(𝜓) be a non-regular
element, and let 𝑠 ∈ 𝑀1 be such that𝜓 (𝑠) = 𝑡 . Let M𝑀2,𝑡 be the monoidal minion defined in Defi-

nition 3. Consider the map 𝜉 : M𝜓 → M𝑀2,𝑡 that sends any 𝑛-ary polymorphism 𝑝 ∈ M𝜓 to the

tuple (𝑟1, . . . , 𝑟𝑛) ∈ M𝑀2,𝑡 (𝑛) where for each 𝑖 ∈ [𝑛]
𝑟𝑖 = 𝑝 (𝑠1, . . . , 𝑠𝑛), where 𝑠𝑖 = 𝑠, and 𝑠 𝑗 = 𝑒 for all 𝑗 ≠ 𝑖 .

Observe that this is a well-defined minion homomorphism fromM𝜓 toM𝑀2,𝑡 . Indeed, first note that

(𝑟1, . . . , 𝑟𝑛) belongs to the second minion. This holds because 𝑟1𝑟2 . . . 𝑟𝑛 = 𝑝 (𝑠, . . . , 𝑠) = 𝜓 (𝑠) = 𝑡 ,
and, for each 𝑖 ∈ [𝑛], the element 𝑟𝑖 belongs to N(𝑝, 𝑖), so the 𝑟𝑖 ’s commute pairwise by Item 1

in Observation 2. One can also check that 𝜉 preserves minors.

From the proof of Theorem 5 there is some selection function I on M𝑀2,𝑡 satisfying the hy-

potheses of Theorem 7 for some constant 𝐾 ′ = |𝑀2 | ≤ 𝐾 and 𝐿 = 1. Thus, we can define I𝜓 on M𝜓

simply by setting I𝜓 (𝑝) = I(𝜉 (𝑝)) for each polymorphism 𝑝 ∈ M𝜓 .

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 15

Hence, have defined selection functions IA and I𝜓 for each𝜓 ∈ Ω that satisfy the requirements

of Theorem 7, showing that PEqn(𝑀1, 𝑀2, 𝜑) is NP-hard. □

Corollary 1. Let 𝐺1, 𝐺2 be groups and 𝜑 a group homomorphism with dom(𝜑) ⪯ 𝐺1, Im(𝜑) ⪯
𝐺2. Then PEqn(𝐺1,𝐺2, 𝜑) is solvable in polynomial time by AIP if and only if there is an Abelian

homomorphism𝜓 : 𝐺1 → 𝐺2 extending 𝜑 . If no such homomorphism𝜓 exists, then PEqn(𝐺1,𝐺2, 𝜑) is
NP-hard.

Proof. We prove both directions.

The hardness case follows from Theorem 3. Indeed, PEqn(𝐺1,𝐺2, 𝜑) is a template of promise

equations over monoids (where the monoids just happen to be groups). Suppose that there is no

Abelian group homomorphism 𝜓 : 𝐺1 → 𝐺2 that extends 𝜑 . Observe that a monoid homomor-

phism between two groups must also be a group homomorphism, so there is no Abelian monoid

homomorphism𝜓 : 𝐺1 → 𝐺2 that extends 𝜑 . Thus, by Theorem 3, PEqn(𝐺1,𝐺2, 𝜑) is NP-hard.
In the other direction, suppose that such a 𝜓 exists. We show that PEqn(𝐺1,𝐺2, 𝜑) is solved

by AIP using Theorem 1. Let 𝑛 be any odd arity and let 𝑝 : 𝐺𝑛
1

→ 𝐺2 be the map given by

𝑝 (𝑔1, . . . , 𝑔𝑛) ↦→
∏

𝑖∈[𝑛] 𝑡𝑖 , where 𝑡𝑖 = 𝜓 (𝑔𝑖) for every odd 𝑖 , and 𝑡𝑖 = 𝜓 (𝑔𝑖)−1 for every even 𝑖 . Then

𝑝 is an alternating polymorphism of PEqn(𝐺1,𝐺2, 𝜑). □

6 Equations over Semigroups: Proof of Theorem 4
A digraph 𝑫 is a relational structure whose signature consists of a single binary relation symbol 𝐸.

We follow closely the ideas from [35, Theorem 7]. That result states that every CSP is polynomial-

time equivalent to a problem of the form Eqn(𝑆, 𝑆) for some semigroup 𝑆 . Their proof uses the fact

that every CSP is polynomial-time equivalent to another CSP whose template is a digraph 𝑫 with

all singleton unary relations [26]. The fact that they consider these unary relations on 𝑫 yields

equations in Eqn(𝑆, 𝑆) where all constants are allowed. For PCSPs, however, this is our starting
point.

Theorem 8 ([13]). For every template (𝑨1,𝑨2) there is a template (𝑫1,𝑫2) of digraphs such that

PCSP(𝑨1,𝑨2) is polynomial-time equivalent to PCSP(𝑫1,𝑫2).

The fact that we lack singleton unary relations in the templates (𝑫1,𝑫2) is the main obstacle for

applying the techniques from [35]. We overcome this by extending our digraphs with an additional

edge joining two fresh distinguished vertices. The relational signature 𝜎+ contains one binary

relation symbol 𝐸, and two unary relation symbols 𝑃,𝑄 . Given a digraph 𝑫 , we write 𝑫+
for the

𝜎+ structure defined by 𝐷+ = 𝐷 ∪ {𝑝, 𝑞}, where 𝑝 and 𝑞 are fresh vertices, 𝐸𝑫
+
= 𝐸𝑫 ∪ {(𝑝, 𝑞)},

𝑃𝑫
+
= {𝑝}, and 𝑄𝑫+

= {𝑞}.

Lemma 5. Let (𝑫1,𝑫2) be a template of digraphs. Then PCSP(𝑫1,𝑫2) is polynomial-time Turing-

equivalent to PCSP(𝑫+
1
,𝑫+

2
).

Proof. We give polynomial-time Turing reductions in both directions. First, we reduce from

PCSP(𝑫1,𝑫2) to PCSP(𝑫+
1
,𝑫+

2
). We consider two cases. First, suppose that 𝐸𝑫2

is empty. Then

PCSP(𝑫1,𝑫2) amounts to deciding whether a given instance 𝑰 has an edge or not, which takes

polynomial time. Otherwise, assume that 𝐸𝑫2
is non-empty. Then our reduction takes any instance

𝑰 of PCSP(𝑫1,𝑫2) and considers it as an instance of PCSP(𝑫+
1
,𝑫+

2
) where the unary relations are

empty. Clearly, if 𝑰 maps homomorphically to 𝑫1 then it also maps homomorphically to 𝑫+
1
using

the same homomorphism. Otherwise, if 𝑰 does not map homomorphically to 𝑫2 then it cannot

map homomorphically to 𝑫+
2
. Indeed, to see this observe that the digraph resulting from of 𝑫+

2
(by

forgetting about the 𝑃,𝑄 relations) maps homomorphically to 𝑫2: it suffices to send the edge (𝑝, 𝑞)
to an arbitrary edge in 𝐸𝑫2

, which is non-empty by assumption.

, Vol. 1, No. 1, Article . Publication date: September 2024.

16 Alberto Larrauri and Stanislav Živný

Now we describe a polynomial-time reduction from PCSP(𝑫+
1
,𝑫+

2
) to PCSP(𝑫1,𝑫2). The re-

duction considers an instance 𝑰 of PCSP(𝑫+
1
,𝑫+

2
) and checks in polynomial time whether every

connected component of 𝑰 that intersects 𝑃 𝑰 or 𝑄 𝑰
maps homomorphically to the edge structure

𝑾 with𝑊 = {𝑝, 𝑞}, 𝐸𝑾 = {(𝑝, 𝑞)}, 𝑃𝑾 = {𝑝}, and 𝑄𝑾 = {𝑞}. If this is not the case, 𝑰 is rejected.
Otherwise, we remove from 𝑰 the components that intersect 𝑃 𝑰 or𝑄 𝑰

. Next, we check in polynomial

time whether each remaining component of 𝑰 can be mapped homomorphically to𝑾 , and remove

the ones that do. The resulting instance 𝑰 ′ is equivalent to the original 𝑰 in the sense that 𝑰 maps

to 𝑫+
𝑖 if and only if 𝑰 ′ does so as well. Furthermore, observe that a homomorphism from 𝑰 ′ to 𝑫+

𝑖

cannot include 𝑝 and 𝑞 in its image, as there are no components in 𝑰 ′ that map homomorphically

to𝑾 . This means that 𝑰 ′ maps to 𝑫+
𝑖 if and only if it maps to 𝑫𝑖 . Hence, as the last step in our

reduction we simply use 𝑰 ′ as an instance of PCSP(𝑫1,𝑫2). □

A semigroup 𝑆 is a right-normal band if 𝑠𝑠 = 𝑠 for all 𝑠 ∈ 𝑆 and 𝑟𝑠𝑡 = 𝑠𝑟𝑡 for all 𝑟, 𝑠, 𝑡 ∈ 𝑆 . Recall
that we write 𝑠 ∼ 𝑟 if 𝑠 ⊑ 𝑟 and 𝑟 ⊑ 𝑠 hold. It follows from the definitions that the quotient 𝑆 = 𝑆/∼
inherits the semigroup structure from 𝑆 . Moreover, 𝑆 is a semilattice, meaning that it is an Abelian

semigroup where every element is idempotent. Given an instance 𝑰 of Eqn(𝑆, 𝑆) we denote by �̂�
the corresponding instance over 𝑆 , where every constant 𝑠 is substituted by its ∼ class 𝑠 .

We need two lemmas from [35] and a simple observation.

Lemma 6 ([35]). Let 𝑆 be a semilattice. Then Eqn(𝑆, 𝑆) can be solved in polynomial time. Moreover,

if an instance 𝑰 has a solution, it also has a unique minimal one (with respect to the ⊑ preorder) that

can be obtained in polynomial time.

Lemma 7 ([35]). Let 𝑆 be a right-normal band. Then an instance 𝑰 of Eqn(𝑆, 𝑆) is solvable if it has
a solution 𝑓 satisfying 𝑓 (𝑥) ∈ 𝑠𝑥 , for all 𝑥 ∈ 𝐼 , where the map 𝑥 ↦→ 𝑠𝑥 is the minimal solution of �̂� in
Eqn(𝑆, 𝑆).

Observation 3. Let 𝑆 be a right-normal band, and let 𝑠, 𝑠′, 𝑡 ∈ 𝑆 be three arbitrary elements with

𝑠 ∼ 𝑠′. Then 𝑠𝑡 = 𝑠′𝑡 .

Proof. As 𝑠 ∼ 𝑠′, it must hold that 𝑠 = 𝑠′𝑟 ′ and 𝑠′ = 𝑠𝑟 for some 𝑟, 𝑟 ′ ∈ 𝑆 . Thus, 𝑠𝑡 = 𝑠′𝑟 ′𝑡 = 𝑠𝑟𝑟 ′𝑡 ,
and 𝑠′𝑡 = 𝑠𝑟𝑡 = 𝑠′𝑟 ′𝑟𝑡 = 𝑠𝑟𝑟 ′𝑟𝑡 = 𝑠𝑟𝑟 ′𝑡 , where the last equality holds since 𝑆 is a right-normal

band. □

Let 𝑫 be a digraph. We define a semigroup 𝑆𝐷 related to 𝑫 in a similar fashion as [35]. The main

difference is that we need to “plant” a special subsemigroup 𝑆𝑊 inside 𝑆𝐷 that is used later as the

set of constants in our promise equations. The semigroup 𝑆 = 𝑆𝐷 is a right-normal band. It has the

following ∼-classes: 𝑉 L,𝑉 R,𝑉 LC,𝑉 LR,𝑉 CR, 𝐸C, 0, described as follows. Given □ ∈ {L, R, LC, LR,CR}
the class𝑉 □ is a copy of 𝐷 ∪ {𝑝, 𝑞}. That is,𝑉 □ = {𝑣□ | 𝑣 ∈ 𝐷} ∪ {𝑝□, 𝑞□}. The class 𝐸C is a copy of

𝐸𝐷 ∪{(𝑝, 𝑞)}, meaning that 𝐸C = {(𝑢, 𝑣)C | (𝑢, 𝑣) ∈ 𝐸𝐷 }∪{(𝑝, 𝑞)C}. The letters L, R, and C stand for

left, right, and center, respectively. Finally, the class 0 contains a single element 0. By Observation 3,

in a right-normal band 𝑇 it must hold that 𝑠𝑡 = 𝑠′𝑡 for all 𝑠, 𝑠′, 𝑡 ∈ 𝑇 with 𝑠 ∼ 𝑠′. Hence, given a

∼-class 𝐶 ⊆ 𝑇 and an element 𝑡 we abuse the notation and write 𝐶𝑡 to denote the product of an

arbitrary element from 𝐶 with 𝑡 . The product operation in 𝑆 is given by the following rules:

𝑉 R𝑣L = 𝑉 L𝑣R =𝑉 LR𝑣R = 𝑉 LR𝑣L = 𝑉 L𝑣LR = 𝑉 R𝑣LR = 𝑣LR

𝑉 L𝑣LC = 𝑉 LC𝑣L = 𝐸C𝑣L = 𝐸C𝑣LC = 𝑣LC

𝑉 R𝑣CR = 𝑉 CR𝑣R = 𝐸C𝑣R = 𝐸C𝑣CR = 𝑣CR,

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 17

where 𝑣 is an arbitrary element in 𝐷 ∪ {𝑝, 𝑞}. Additionally,
𝑉 L (𝑢, 𝑣)C = 𝑉 LC (𝑢, 𝑣)C = 𝑢LC, and 𝑉 R (𝑢, 𝑣)C = 𝑉 CR (𝑢, 𝑣)C = 𝑣CR,

where (𝑢, 𝑣) belongs to 𝐸𝐷 ∪ {(𝑝, 𝑞)}. Finally, all other products not described above have 0 as their
result.

Let us give some intuition about the semigroup 𝑆𝐷 . Our goal is to encode the incidence structure of

the digraph𝐷 in a semigroup. The construction 𝑆𝐷 achieves this as follows. The rule𝑉 L (𝑢, 𝑣)C = 𝑢LC

states that multiplying any L-copy of a vertex 𝑤L
with an edge (𝑢, 𝑣)C results in the LC-copy of

the edge’s source 𝑢LC. Similarly, we can extract information about an edge’s target by multiplying

with an R-copy of a vertex using the rule𝑉 R (𝑢, 𝑣)C = 𝑣CR. Finally, the identities𝑉 R𝑣L = 𝑉 L𝑣R = 𝑣LR

show that an L-copy of a vertex 𝑣L and an R-copy of a vertex 𝑢R commute if and only if they are

copies of the same vertex (i.e., 𝑣 = 𝑢).

We define the subsemigroup 𝑆𝑊 ⪯ 𝑆𝐷 as the one containing the elements 0, (𝑝, 𝑞)C, 𝑝□, 𝑞□ for
□ ∈ {L, R, LC, LR,CR}. Observe that for any digraph 𝐷 , the quotient 𝑆𝐷 = 𝑆𝐷/∼ is isomorphic to

𝑆𝑊 = 𝑆𝑊 /∼. This semilattice is depicted in Figure 1.

V
L

V
R

E
C

V
LC

V
CR

V
LR

0

Fig. 1. The semilattice 𝑆𝐷 , where lines indicate the order.

Lemma 8. There is a polynomial-time algorithm Φ that takes as an input a 𝜎+-structure 𝑰 and

outputs a system of equations Φ(𝑰) with constants in 𝑆𝑊 satisfying that, for any digraph 𝑫 , 𝑰 maps

into 𝑫+
if and only if Φ(𝑰) has a solution over 𝑆𝐷 .

Proof. This follows the first reduction in [35, Theorem 7] while making sure that all constants

remain in 𝑆𝑊 . We construct the system Φ(𝑰). For every vertex 𝑣 ∈ 𝐼 we include variables 𝑣L, 𝑣R.
For each □ ∈ {L, R} we include the constraint 𝑣□ ∈ 𝑉 □, which is a shorthand for the equations

𝑝□𝑣□ = 𝑣□ and 𝑣□𝑝□ = 𝑝□. We also include the equation 𝑝LR𝑣L = 𝑝LR𝑣R. If 𝑣 ∈ 𝑃 𝑰 we include the
constraints 𝑣□ = 𝑝□ for □ ∈ {L, R}. Similarly, if 𝑣 ∈ 𝑄 𝑰

, then we include the constraints 𝑣□ = 𝑞□. For

each edge (𝑢, 𝑣) ∈ 𝐸𝑰 we include a variable (𝑢, 𝑣)C in Φ(𝑰), together with the constraint (𝑢, 𝑣)C ∈ 𝐸C,
which is a shorthand for the equations (𝑢, 𝑣)C (𝑝, 𝑞)C = (𝑝, 𝑞)C and (𝑝, 𝑞)C (𝑢, 𝑣)C = (𝑢, 𝑣)C. Finally,
we also add the equations 𝑝LC (𝑢, 𝑣)C = 𝑝LC𝑢L and 𝑝CR (𝑢, 𝑣)C = 𝑝CR𝑣R. The resulting system Φ(𝑰)
satisfies the statement of the theorem. □

Lemma 9. There is a polynomial-time algorithm Ψ that takes as an input a system of equations 𝑿
with constants in 𝑆𝑊 and produces one of the following outcomes:

(I) It outputs a 𝜎+-structure Ψ(𝑿) that maps into 𝑫+
for a digraph 𝑫 if and only if𝑿 has a solution

over 𝑆𝐷 , or

(II) it rejects 𝑿 and 𝑿 has no solution over 𝑆𝐷 for any digraph 𝑫 .

Proof. We describe the algorithm Ψ. This algorithm is meant to transform the system 𝑿 into

a system of the form Φ(𝑰), for the algorithm Φ given in Lemma 8 and some 𝜎+-structure 𝑰 . This

, Vol. 1, No. 1, Article . Publication date: September 2024.

18 Alberto Larrauri and Stanislav Živný

time we follow the second reduction in [35, Theorem 7] while making sure that all constants in 𝑿
remain in 𝑆𝑊 throughout all the transformations.

Without loss of generality, we may assume that every equation in 𝑿 is initially of the form

𝑥1𝑥2 = 𝑥3, for some variables 𝑥1, 𝑥2, 𝑥3, or of the form 𝑥 = 𝑠 , for some variable 𝑥 and some element

𝑠 ∈ 𝑆𝑊 . Consider the system 𝑿 with constants in 𝑆𝑊 = 𝑆𝑊 /∼. By Lemma 6 we can find a minimal

solution of 𝑿 in polynomial time. If such a solution does not exist, then the system 𝑿 is not

satisfiable over 𝑆𝐷 for any digraph 𝑫 , and the algorithm Ψ just rejects it. Otherwise, suppose that

the system 𝑿 has some minimal solution. This solution maps each variable 𝑥 ∈ 𝑋 to a ∼-class𝐶𝑥 of

𝑆𝑊 . Consider an arbitrary digraph 𝑫 . Using the observation that 𝑆𝑊 ≃ 𝑆𝐷 and Lemma 7, we deduce

that 𝑿 has a solution over 𝑆𝐷 if and only if it has a solution where the value of each variable 𝑥 ∈ 𝑋
belongs to the class 𝐶𝑥 . Given a class 𝐶𝑥 , we define the constant 𝑐𝑥 ∈ 𝑆𝑊 as

• 𝑝□ if 𝐶𝑥 is the class 𝑉 □ for □ ∈ {L, R, LC, LR,CR},
• (𝑝, 𝑞)C if 𝐶𝑥 = 𝐸C, or

• 0 if 𝐶𝑥 = 0.

For each variable 𝑥 ∈ 𝑋 we add the equations 𝑐𝑥𝑥 = 𝑥 and 𝑥𝑐𝑥 = 𝑐𝑥 . These equations are equivalent

to the constraint that 𝑥 ∈ 𝐶𝑥 (and we use 𝑥 ∈ 𝐶𝑥 as a shorthand for those equations), so the

resulting system is satisfiable over a semigroup 𝑆𝐷 if and only if the original one was. Additionally,

once every variable 𝑥 is constrained to take values inside 𝐶𝑥 , we can replace every equation of

the form 𝑥1𝑥2 = 𝑥3 in 𝑿 with the equation 𝑐𝑥3𝑥2 = 𝑐𝑥3𝑥3 to yield an equivalent system. Indeed, it

must hold that 𝑐𝑥𝑖𝑥𝑖 = 𝑥𝑖 , so the equation 𝑥1𝑥2 = 𝑥3 is equivalent to 𝑐𝑥1𝑥1𝑐𝑥2𝑥2 = 𝑐𝑥3𝑥3. Not only

that, but 𝑆𝐷 is a normal band and 𝑥1𝑐𝑥1 = 𝑐𝑥1 , so last equation is equivalent to 𝑐𝑥1𝑐𝑥2𝑥2 = 𝑐𝑥3𝑥3.

Finally, the classes 𝐶𝑥1 ,𝐶𝑥2 ,𝐶𝑥3 were part of a solution to 𝑿 , so it must be that 𝑐𝑥1𝑐𝑥2 ∼ 𝑐𝑥3 , and

by Observation 3 it holds that 𝑐𝑥1𝑐𝑥2𝑐𝑥1 = 𝑐𝑥3𝑐𝑥1 .

Every resulting equation of the form 0𝑥1 = 0𝑥2 is trivially satisfied and can be discarded. Consider

a variable 𝑥 ∈ 𝑋 whose corresponding class 𝐶𝑥 is 0. As we have removed every equation of the

form 0𝑥1 = 0𝑥2, 𝑥 can only appear in constraints of the form 𝑥 ∈ 0, and 𝑥 = 0. These are trivially

satisfiable by any assignment that maps 𝑥 to 0, so we can remove the variable 𝑥 and all equations

containing it.

We are left with a system 𝑿 where each variable is bound to a class𝑉 □ for □ ∈ {L, R, LC, LR,CR}
or 𝐸C. Consider a variable 𝑥 ∈ 𝑋 bound to the class 𝑉 LC

. Suppose this variable appears in some

equation of the form 𝑐1𝑥 = 𝑐1𝑦, and consider the class 𝐶 of 𝑐1. By construction, it must be that

𝐶 ⊒ 𝑉 LC
in 𝑆𝑊 . However, we have removed all equations containing 0, so the only possibility left

is that 𝐶 = 𝑉 LC
. Suppose that we replace the requirement 𝑥 ∈ 𝑉 LC

with 𝑥 ∈ 𝑉 L
and every equation

of the form 𝑥 = 𝑣LC, where 𝑣LC ∈ 𝑆𝑊 is a constant, with 𝑥 = 𝑣L. We claim the system 𝑿 remains

equivalent after these changes. Indeed, this results from the observation that 𝑉 LC𝑣L = 𝑉 LC𝑣LC in

any semigroup 𝑆𝐷 for any vertex 𝑣 ∈ 𝐷+
. By the same logic we can also replace any requirement of

the kind 𝑥 ∈ 𝑉 LR
or 𝑥 ∈ 𝑉 CR

with 𝑥 ∈ 𝑉 R
.

Consider any equation of the form 𝑥 = (𝑢, 𝑣)C for a constant (𝑢, 𝑣)C. This equation is equivalent

to the constraints 𝑝LC𝑥 = 𝑝LC𝑦, 𝑝CR𝑥 = 𝑝CR𝑧, 𝑦 = 𝑢L and 𝑧 = 𝑣R, where 𝑦 and 𝑧 are fresh variables,

further restricted to 𝑦 ∈ 𝑉 L, 𝑧 ∈ 𝑉 R
. Hence, we can substitute in 𝑋 the original equation with these

constraints to obtain an equivalent system.

Consider an equation of the form 𝑐𝑥 = 𝑐𝑦, where both 𝑥,𝑦 are constrained to be in 𝑐’s ∼-class.
This equation holds if and only if 𝑥 = 𝑦. Hence, we may remove this equation and identify both

variables 𝑥,𝑦 together.

This far we have obtained a system 𝑿 where each variable is bound to either 𝑉 L,𝑉 R
or 𝐸C, and

the only constants are among 𝑝L, 𝑝R, 𝑞L, 𝑞R. After identifying variables and adding dummy variables

if necessary we can assume the following:

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 19

• For each variable 𝑥 ∈ 𝑋 constrained by 𝑥 ∈ 𝐸C there is exactly one variable 𝑥L constrained

by 𝑥L ∈ 𝑉 L
in an equation of the form 𝑝LC𝑥 = 𝑝LC𝑥L, and exactly one variable 𝑥R constrained

by 𝑥R ∈ 𝑉 R
that appears in an equation of the form 𝑝CR𝑥 = 𝑝CR𝑥R.

• For any variable 𝑥L constrained by 𝑥L ∈ 𝑉 L
, there is exactly one variable 𝑥R constrained by

𝑥R ∈ 𝑉 R
that appears in an equation of the form 𝑝LR𝑥L = 𝑝

LR𝑥R. The same remains true after

swapping R and L.

• No two different variables 𝑥,𝑦 ∈ 𝑋 constrained by 𝑥,𝑦 ∈ 𝐸C satisfy 𝑥L = 𝑦L and 𝑥R = 𝑦R.

• Not considering equations that are part of the constraints 𝑥 ∈ 𝐶 for some ∼-class 𝐶 , each
equation is of the form (i) 𝑝LR𝑥 = 𝑝LR𝑦 with 𝑥 ∈ 𝑉 L

and 𝑦 ∈ 𝑉 R
, (ii) 𝑝LC𝑥 = 𝑝LC𝑥L or

𝑝CR𝑥 = 𝑝CR𝑥R for some 𝑥 ∈ 𝐸C, or (iii) 𝑥 = 𝑝□ or 𝑥 = 𝑞□ for □ ∈ {L, R}.
One can see that such a system corresponds to Φ(𝑰) for some 𝜎+-structure 𝑰 that can be built in

polynomial time. Then Ψ returns 𝑰 , which satisfies our requirements by Lemma 8. □

Corollary 4. Let (𝑫1,𝑫2) be a template of digraphs. Then PCSP(𝑫1,𝑫2) is polynomial-time Turing-

equivalent to PEqn(𝑆𝐷1
, 𝑆𝐷2

, 𝜑), where 𝜑 = id𝑆𝑊 .

Proof. We show that PEqn(𝑆𝐷1
, 𝑆𝐷2

, 𝜑) is polynomial-time equivalent to PCSP(𝑫+
1
,𝑫+

2
), which

suffices by Lemma 5. Observe that algorithm Φ given in Lemma 8 is a polynomial-time Tur-

ing reduction from PCSP(𝑫+
1
,𝑫+

2
) to PEqn(𝑆𝐷1

, 𝑆𝐷2
, 𝜑), and algorithm Ψ, given in Lemma 9 is a

polynomial-time Turing reduction in the other direction. □

Corollary 4 and Theorem 8 establish Theorem 4.

7 Explicit Templates: Proof of Theorem 6
We describe a bijective minion homomorphism 𝜉 : Pol(𝑨,𝑩) → M𝑀,𝑎 . Let us introduce some

notation before the start. We identify the powerset 2
[𝑛]

with the set of tuples {0, 1}𝑛 by associating

each set 𝑆 ⊆ [𝑛] to the 𝑛-tuple whose 𝑖-th entry is one if and only if 𝑖 ∈ 𝑆 (i.e., the characteristic
vector of 𝑆). Thus, we see a 𝑛-ary polymorphism 𝑝 ∈ Pol(𝑨,𝑩) as a map from 2

[𝑛]
to M𝑀,𝑎 (2).

Following this convention, three sets 𝑋1, 𝑋2, 𝑋3 ⊆ [𝑛] belong to the relation 𝑅𝑨
𝑛

if and only if

they are a partition of [𝑛]. Similarly, the unary relation 𝐶𝑨𝑛

0
contains only the empty set, and 𝐶𝑨𝑛

1

contains only the whole set [𝑛].
Let us carry on with the description of 𝜉 . Given a 𝑛-ary polymorphism 𝑝 ∈ Pol(𝑨,𝑩), 𝜉 maps it

to the tuple 𝒃𝑝 = (𝑏𝑝,1, . . . , 𝑏𝑝,𝑛) ∈ M𝑀,𝑎 defined as follows. For each 𝑖 ∈ [𝑛], let (𝑐𝑖,1, 𝑐𝑖,2) = 𝑝 ({𝑖}).
Then we set 𝑏𝑝,𝑖 = 𝑐𝑖,1. In order to prove that 𝜉 is a bijective minion homomorphism we need

to show that (I) 𝒃𝑝 is an element of M𝑀,𝑎 for all polymorphisms 𝑝 , (II) that 𝜉 preserves minor

operations, and (III) that 𝜉 is a bijection.

Before moving on with the rest of the proof, we recall the definition of 𝑅𝑩 :

((𝑟1, 𝑠1), (𝑟2, 𝑠2), (𝑟3, 𝑠3)) ∈ 𝑅𝑩 if and only if

𝑟1, 𝑟2, 𝑟3 commute pairwise, and 𝑠1 = 𝑟2𝑟3, 𝑠2 = 𝑟3𝑟1, 𝑠3 = 𝑟1𝑟2. (1)

Below we prove some claims about the map 𝜉 and polymorphisms of (𝑨,𝑩) that are used to show

(I), (II), and (III). Fix some 𝑛-ary polymorphism 𝑝 .

Claim 1:𝑏𝑝,𝑖 and𝑏𝑝,𝑗 commute in𝑀 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Fix different indices 𝑖, 𝑗 ∈ [𝑛]. Clearly,
the sets {𝑖}, { 𝑗}, [𝑛] \ {𝑖, 𝑗} form a partition of [𝑛], so (𝑝 ({𝑖}), 𝑝 ({ 𝑗}), 𝑝 ([𝑛] \ {𝑖, 𝑗}) must

belong to 𝑅𝑩 . Thus, there are elements 𝑟1, 𝑟2, 𝑟3 ∈ 𝑀 witnessing Equation (1). In particular,

𝑏𝑝,𝑖 = 𝑟1 and 𝑏𝑝,𝑗 = 𝑟2, so 𝑏𝑝,𝑖 and 𝑏𝑝,𝑗 commute, establishing the claim.

Claim 2: 𝑝 ([𝑛]) = (𝑎, 𝑒), and 𝑝 (∅) = (𝑒, 𝑎). In general, let (𝑐1, 𝑐2) = 𝑝 (𝑋) for some 𝑋 ⊆ [𝑛].
Then 𝑝 ([𝑛] \ 𝑋) = (𝑐2, 𝑐1). The facts that 𝑝 ([𝑛]) = (𝑎, 𝑒), and 𝑝 (∅) = (𝑒, 𝑎) follow from the

requirements that 𝑝 must preserve 𝐶1 and 𝐶0 respectively. Let us show the second part of

, Vol. 1, No. 1, Article . Publication date: September 2024.

20 Alberto Larrauri and Stanislav Živný

the claim. Observe that (𝑋, [𝑛] \ 𝑋, ∅) ∈ 𝑅𝑨𝑛

so the image of this triple through 𝑝 belongs

to 𝑅𝑩 . Hence, there are elements 𝑟1, 𝑟2, 𝑟3 ∈ 𝑀 witnessing Equation (1). It also holds that

𝑝 (∅) = (𝑒, 𝑎), so 𝑟3 = 𝑒 , and 𝑝 (𝑋) = (𝑟1, 𝑟2), 𝑝 ([𝑛] \ 𝑋) = (𝑟2, 𝑟1), as desired.
Claim 3: Let (𝑏1, 𝑏2) = 𝑝 (𝑋) (𝑐1, 𝑐2) = 𝑝 (𝑌) (𝑑1, 𝑑2) = 𝑝 (𝑋 ∪ 𝑌) for two disjoint sets 𝑋,𝑌 ⊆ [𝑛].

Then 𝑑1 = 𝑏1𝑐1. Indeed, consider the set 𝑍 = [𝑛] \ (𝑋 ∪ 𝑌). By Claim 2 it holds that

𝑝 (𝑍) = (𝑑2, 𝑑1). Moreover, it holds that (𝑋,𝑌, 𝑍) ∈ 𝑅𝑨𝑛

, so using the characterisation given

in Equation (1) we obtain that 𝑑1 = 𝑏1𝑐1, as desired.

Claim 4:

∏
𝑖=1𝑛 𝑏𝑝,𝑖 = 𝑎 Observe that [𝑛] is the disjoint union of the singleton sets {𝑖} for each

𝑖 ∈ [𝑛]. Using Claim 3 iteratively, we obtain that

∏
𝑖=1𝑛 𝑏𝑝,𝑖 equals the first element of the

pair 𝑝 ([𝑛]) = (𝑎, 𝑒), proving the claim.

Now we move on to proving (I), (II), and (III). Claims 1 and 4 show that for any 𝑛-ary polymorphism

𝑝 ∈ Pol(𝑨,𝑩), the tuple (𝑏𝑝,𝑖)𝑛𝑖=0 is an element of M𝑀,𝑎 , as stated in (I). As for fact (II), consider

some 𝑛-ary polymorphism 𝑝 ∈ Pol(𝑨,𝑩), a map 𝜋 : [𝑛] → [𝑚], and the minor 𝑞 = 𝑝 (𝜋)
. We will

now show that the fact that 𝜉 preserves minors is equivalent to 𝑏𝑞,𝑖 =
∏

𝑗∈𝜋−1 (𝑖) 𝑏𝑝,𝑗 for all 𝑖 ∈ [𝑚].
Indeed, by definition, 𝑏𝑞,𝑖 is the first element of the pair 𝑞({𝑖}) = 𝑝 (𝜋−1 (𝑖)). However, expressing
𝜋−1 (𝑖) as a disjoint union of singletons and using Claim 3 we obtain that the first element of

𝑝 (𝜋−1 (𝑖)) is the product of the first elements of the pairs 𝑝 ({ 𝑗}) for each 𝑗 ∈ 𝜋−1 (𝑖), as we wanted
to show.

So far we have established that 𝜉 is indeed a minion homomorphism, following (I) and (II).

Lastly, we prove that 𝜉 is a bijection, as stated in (III). To see that 𝜉 is surjective, consider a tuple

(𝑏1, . . . , 𝑏𝑛) ∈ M𝑀,𝑎 (𝑛). Then the map 𝑝 : 2
𝑛 ↦→ M𝑀,𝑎 (𝑛) given by

𝑋 ↦→ (
∏
𝑖∈𝑋

𝑏𝑖 ,
∏

𝑖∈[𝑛]\𝑋
𝑏𝑖)

is a polymorphism of (𝑨,𝑩). Not only that but 𝜉 (𝑝) = (𝑏1, . . . , 𝑏𝑛). In the other direction, to prove

that 𝜉 is injective, we show that an 𝑛-ary polymorphism 𝑝 ∈ Pol(𝑨,𝑩) is completely determined

by (𝑏𝑝,1, . . . , 𝑏𝑝,𝑛). Consider an arbitrary set 𝑋 ⊆ [𝑛], and let 𝑝 (𝑋) = (𝑐, 𝑑). Expressing 𝑋 as a

disjoint union of singletons and using Claim 3 we obtain that 𝑐 =
∏

𝑖∈𝑋 𝑏𝑝,𝑖 . Additionally, by
Claim 2 we know that 𝑝 ([𝑛] \ 𝑋) = (𝑑, 𝑐) and using the same argument as before we obtain that

𝑑 =
∏

𝑖∈[𝑛]\𝑋 𝑏𝑝,𝑖 . Thus, 𝑝 (𝑋) is completely determined by the tuple (𝑏𝑝,1, . . . , 𝑏𝑝,𝑛), showing that 𝜉
is injective.

Acknowledgments
We thank the reviewers of the extended abstract [40] and in particular of this full version for

comments, suggestions, and spotting several typos and mistakes. This work was supported by

UKRI EP/X024431/1. For the purpose of Open Access, the authors have applied a CC BY public

copyright licence to any Author Accepted Manuscript version arising from this submission. All

data is provided in full in the results section of this paper.

A Reduction to Special Equations
By definition, instances of Eqn(𝑆,𝑇) can be seen as systems of equations over 𝑆 where all constants

belong to 𝑇 . Any system of equations can be transformed into an equivalent system by adding

new variables and breaking larger equations into smaller ones until every equation is of the form

𝑥1𝑥2 = 𝑥3, for three variables 𝑥1, 𝑥2, 𝑥3, or of the form 𝑥 = 𝑡 for a variable 𝑥 and some constant

𝑡 ∈ 𝑇 . For instance, the equation

𝑥1𝑐1𝑥2𝑐2 . . . 𝑥𝑘𝑐𝑘 = 𝑐𝑘+1,

, Vol. 1, No. 1, Article . Publication date: September 2024.

Solving promise equations over monoids and groups 21

where all 𝑐1, . . . , 𝑐𝑘+1 ∈ 𝑇 can be transformed into the system

𝑥1𝑦 = 𝑥, 𝑦 = 𝑐1,

𝑥𝑐2 . . . 𝑥𝑘𝑐𝑘 = 𝑐𝑘+1,

where 𝑥,𝑦 are fresh variables. Applying these steps in succession yields a system where every

equation is of the desired form.

When considering equations over groups the same idea works, but one needs to take into account

inverted variables 𝑥−1. Given a system of equations over a group 𝐺 with constants in a subgroup

𝐻 ⪯ 𝐺 , we can substitute any instance of the inverted variable 𝑥−1 with instances of a fresh variable

𝑦 after adding the equations 𝑥𝑦 = 𝑧, 𝑧 = 𝑒 to the system, where 𝑧 is another fresh variable.

B Dichotomies For Equations over Monoids and Groups
In this section we classify the complexity of Eqn(𝐺) for a group 𝐺 and Eqn(𝑀) for a monoid𝑀 as

corollaries of the Dichotomy Theorem for CSPs. These results where obtained previously in [29]

and [35]. We begin by stating the Dichotomy Theorem. A 𝑛-ary map 𝑝 : 𝐴𝑛 → 𝐴 is called cyclic if

𝑝 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑝 (𝑎𝑛, 𝑎1, . . . , 𝑎𝑛−1) for all 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴.

Theorem 9 ([18, 20, 47]). Let 𝑨 be a finite relational structure. Then CSP(𝑨) is tractable if Pol(𝑨)
contains a cyclic polymorphism of arity at least 2. Otherwise CSP(𝑨) is NP-hard.

Theorem 10. Let 𝐺 be a group. Then Eqn(𝐺) has a cyclic polymorphism 𝑝 of arity at least 2 if and

only if 𝐺 is Abelian.

Proof. Suppose that 𝐺 is Abelian. Let 𝑛 ≥ 2 be such that 𝑔𝑛 = 𝑔 for all 𝑔 ∈ 𝐺 . Then the 𝑛-ary

map 𝑝 : 𝐺𝑛 → 𝐺 given by (𝑔1, . . . , 𝑔𝑛) ↦→
∏𝑛

𝑖=1 𝑔𝑖 is a cyclic polymorphism of Eqn(𝐺).
In the other direction, suppose that 𝑝 : 𝐺𝑛 → 𝐺 is a cyclic polymorphism of Eqn(𝐺) and 𝑛 ≥ 2.

Let 𝑔1, 𝑔2 ∈ 𝐺 . As 𝑝 is idempotent, we have that 𝑔1 = 𝑝 (𝑔1, 𝑔1, . . . , 𝑔1). Using the fact that 𝑝 is a

group homomorphism and is cyclic, we obtain that

𝑝 (𝑔1, 𝑔1, . . . , 𝑔1) = 𝑝 (𝑔1, 𝑒, . . . , 𝑒)𝑝 (𝑒, 𝑔1, . . . , 𝑒) · · · 𝑝 (𝑒, 𝑒, . . . , 𝑔1) = 𝑝 (𝑔𝑛1 , 𝑒, . . . , 𝑒).

Similarly, we can obtain that 𝑔2 = 𝑝 (𝑒, 𝑔𝑛2 , . . . , 𝑒). This way,

𝑔1𝑔2 = 𝑝 (𝑔𝑛1 , 𝑔𝑛2 , . . . , 𝑒) = 𝑔2𝑔1.

As our initial choice of 𝑔1, 𝑔2 was arbitrary, this proves that 𝐺 is Abelian. □

Theorem 11. Let 𝑀 be a monoid. Then Eqn(𝑀) has a cyclic polymorphism 𝑝 of arity at least 2 if

and only if𝑀 is Abelian and regular.

Proof. In one direction, if𝑀 is regular then, by the second item in Lemma 1 there is some 𝑛 ≥ 2

satisfying 𝑔𝑛 = 𝑔 for all 𝑔 ∈ 𝑀 . This way, we can define a cyclic polymorphism of Eqn(𝑀) exactly
as in the proof of Theorem 10.

In the other direction, let 𝑝 : 𝑀𝑛 → 𝑀 be a 𝑛-ary cyclic polymorphism of Eqn(𝑀), where 𝑛 ≥ 2.

By the same arguments as in the the proof of Theorem 10,𝑀 must be Abelian. Let us show now

that𝑀 is regular. Let𝜓 : 𝑀 → 𝑀 be the homomorphism given by 𝑔 ↦→ 𝑝 (𝑔, 𝑒, . . . , 𝑒). Using the fact
that 𝑝 is cyclic and idempotent it must hold that 𝑔 = 𝜓 (𝑔)𝑛 . This shows that 𝜓 is a bijection and

that 𝜓 (𝑔) ⊒ 𝑔 for all 𝑔 ∈ 𝑀 . As 𝑀 is finite, the only way this is possible is that 𝜓 (𝑔) ∼ 𝑔 for all 𝑔.
However, from𝜓 (𝑔)𝑛 = 𝑔 and 𝑛 ≥ 2 we deduce that𝜓 (𝑔) ∼ 𝜓 (𝑔)2, so𝜓 (𝑔) is a regular element by

the fourth item in Lemma 1. This holds for an arbitrary 𝑔, so every element in𝑀 is regular. □

, Vol. 1, No. 1, Article . Publication date: September 2024.

22 Alberto Larrauri and Stanislav Živný

References
[1] Kristina Asimi and Libor Barto. 2021. Finitely Tractable Promise Constraint Satisfaction Problems. In Proc. 46th

International Symposium on Mathematical Foundations of Computer Science (MFCS’21) (LIPIcs, Vol. 202). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, 11:1–11:16. https://doi.org/10.4230/LIPIcs.MFCS.2021.11 arXiv:2010.04618

[2] Albert Atserias and Víctor Dalmau. 2022. Promise Constraint Satisfaction and Width. In Proc. 2022 ACM-SIAM

Symposium on Discrete Algorithms (SODA’22). 1129–1153. https://doi.org/10.1137/1.9781611977073.48 arXiv:2107.05886

[3] Per Austrin, Venkatesan Guruswami, and Johan Håstad. 2017. (2+𝜖)-Sat Is NP-hard. SIAM J. Comput. 46, 5 (2017),

1554–1573. https://doi.org/10.1137/15M1006507

[4] Libor Barto, Diego Battistelli, and Kevin M. Berg. 2021. Symmetric Promise Constraint Satisfaction Problems: Beyond

the Boolean Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21) (LIPIcs,

Vol. 187). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 10:1–10:16. https://doi.org/10.4230/LIPIcs.STACS.2021.10

arXiv:2010.04623

[5] Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. 2021. Algebraic approach to promise constraint

satisfaction. J. ACM 68, 4 (2021), 28:1–28:66. https://doi.org/10.1145/3457606 arXiv:1811.00970

[6] Libor Barto and Marcin Kozik. 2022. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc.

2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22). 1204–1220. https://doi.org/10.1137/1.9781611977073.50

arXiv:2107.09423

[7] Amey Bhangale and Subhash Khot. 2021. Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian Groups.

In Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC’21). ACM, 1615–1628. https://doi.org/10.1145/

3406325.3451003 arXiv:2009.02815

[8] Amey Bhangale, Subhash Khot, and Dor Minzer. 2023. On Approximability of Satisfiable k-CSPs: II. In Proc. 55th

Annual ACM Symposium on Theory of Computing (STOC’23). ACM, 632–642. https://doi.org/10.1145/3564246.3585120

[9] Amey Bhangale, Subhash Khot, and Dor Minzer. 2023. On Approximability of Satisfiable k-CSPs: III. In Proc. 55th

Annual ACM Symposium on Theory of Computing (STOC’23). ACM, 643–655. https://doi.org/10.1145/3564246.3585121

[10] Manuel Bodirsky. 2021. Complexity of infinite-domain constraint satisfaction. Vol. 52. Cambridge University Press.

[11] Manuel Bodirsky and Martin Grohe. 2008. Non-dichotomies in Constraint Satisfaction Complexity. In Proc. 35th

International Colloquium on Automata, Languages and Programming (ICALP’08) (Lecture Notes in Computer Science,

Vol. 5126). Springer, 184–196. https://doi.org/10.1007/978-3-540-70583-3_16

[12] Manuel Bodirsky and Thomas Quinn-Gregson. 2021. Solving equation systems in 𝜔-categorical algebras. J. Math. Log.

21, 3 (2021). https://doi.org/10.1142/S0219061321500203

[13] Joshua Brakensiek and Venkatesan Guruswami. 2021. Promise Constraint Satisfaction: Algebraic Structure and a

Symmetric Boolean Dichotomy. SIAM J. Comput. 50, 6 (2021), 1663–1700. https://doi.org/10.1137/19M128212X

arXiv:1704.01937

[14] Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. 2023. Conditional Dichotomy of Boolean Ordered

Promise CSPs. TheoretiCS 2 (2023). https://doi.org/10.46298/theoretics.23.2 arXiv:2102.11854

[15] Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. 2023. SDPs and Robust Satisfiability of Promise CSP.

In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23). ACM, 609–622. https://doi.org/10.1145/

3564246.3585180 arXiv:2211.08373

[16] Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. 2020. The power of the combined

basic LP and affine relaxation for promise CSPs. SIAM J. Comput. 49 (2020), 1232–1248. Issue 6. https://doi.org/10.

1137/20M1312745 arXiv:1907.04383

[17] Alex Brandts and Stanislav Živný. 2022. Beyond PCSP(1-in-3,NAE). Inf. Comput. (2022). https://doi.org/10.1016/j.ic.

2022.104954 arXiv:2104.12800

[18] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. 2005. Classifying the Complexity of Constraints using Finite

Algebras. SIAM J. Comput. 34, 3 (2005), 720–742. https://doi.org/10.1137/S0097539700376676

[19] Andrei A. Bulatov. 2011. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log. 12, 4

(2011), 24:1–24:66. https://doi.org/10.1145/1970398.1970400

[20] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’17). 319–330. https://doi.org/10.1109/FOCS.2017.37 arXiv:1703.03021

[21] Lorenzo Ciardo and Stanislav Živný. 2023. Approximate Graph Colouring and the Hollow Shadow. In Proc. 55th

Annual ACM Symposium on Theory of Computing (STOC’23). ACM, 623–631. https://doi.org/10.1145/3564246.3585112

arXiv:2211.03168

[22] Lorenzo Ciardo and Stanislav Živný. 2023. CLAP: A New Algorithm for Promise CSPs. SIAM J. Comput. 52, 1 (2023),

1–37. https://doi.org/10.1137/22M1476435 arXiv:2107.05018

[23] Lorenzo Ciardo and Stanislav Živný. 2023. Hierarchies of minion tests for PCSPs through tensors. In Proc. 2023

ACM-SIAM Symposium on Discrete Algorithms (SODA’23). 568–580. https://doi.org/10.1137/1.9781611977554.ch25

arXiv:2207.02277

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://arxiv.org/abs/2010.04618
https://doi.org/10.1137/1.9781611977073.48
https://arxiv.org/abs/2107.05886
https://doi.org/10.1137/15M1006507
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://arxiv.org/abs/2010.04623
https://doi.org/10.1145/3457606
https://arxiv.org/abs/1811.00970
https://doi.org/10.1137/1.9781611977073.50
https://arxiv.org/abs/2107.09423
https://doi.org/10.1145/3406325.3451003
https://doi.org/10.1145/3406325.3451003
https://arxiv.org/abs/2009.02815
https://doi.org/10.1145/3564246.3585120
https://doi.org/10.1145/3564246.3585121
https://doi.org/10.1007/978-3-540-70583-3_16
https://doi.org/10.1142/S0219061321500203
https://doi.org/10.1137/19M128212X
https://arxiv.org/abs/1704.01937
https://doi.org/10.46298/theoretics.23.2
https://arxiv.org/abs/2102.11854
https://doi.org/10.1145/3564246.3585180
https://doi.org/10.1145/3564246.3585180
https://arxiv.org/abs/2211.08373
https://doi.org/10.1137/20M1312745
https://doi.org/10.1137/20M1312745
https://arxiv.org/abs/1907.04383
https://doi.org/10.1016/j.ic.2022.104954
https://doi.org/10.1016/j.ic.2022.104954
https://arxiv.org/abs/2104.12800
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1109/FOCS.2017.37
https://arxiv.org/abs/1703.03021
https://doi.org/10.1145/3564246.3585112
https://arxiv.org/abs/2211.03168
https://doi.org/10.1137/22M1476435
https://arxiv.org/abs/2107.05018
https://doi.org/10.1137/1.9781611977554.ch25
https://arxiv.org/abs/2207.02277

Solving promise equations over monoids and groups 23

[24] Víctor Dalmau and Jakub Opršal. 2024. Local consistency as a reduction between constraint satisfaction problems. In

Proc. 39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’24). ACM, 29:1–29:15. https://doi.org/10.

1145/3661814.3662068 arXiv:2301.05084

[25] Lars Engebretsen, Jonas Holmerin, and Alexander Russell. 2004. Inapproximability results for equations over finite

groups. Theor. Comput. Sci. 312, 1 (2004), 17–45. https://doi.org/10.1016/S0304-3975(03)00401-8

[26] Tomás Feder and Moshe Y. Vardi. 1998. The Computational Structure of Monotone Monadic SNP and Constraint

Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput. 28, 1 (1998), 57–104. https://doi.org/10.

1137/S0097539794266766

[27] Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz. 2019. Dichotomy for Symmetric Boolean PCSPs.

In Proc. 46th International Colloquium on Automata, Languages, and Programming (ICALP’19), Vol. 132. Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, 57:1–57:12. https://doi.org/10.4230/LIPIcs.ICALP.2019.57 arXiv:1904.12424

[28] M. R. Garey and David S. Johnson. 1976. The Complexity of Near-Optimal Graph Coloring. J. ACM 23, 1 (1976), 43–49.

https://doi.org/10.1145/321921.321926

[29] Mikael Goldmann and Alexander Russell. 2002. The Complexity of Solving Equations over Finite Groups. Inf. Comput.

178, 1 (2002), 253–262. https://doi.org/10.1006/INCO.2002.3173

[30] Martin Grohe. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the other side.

J. ACM 54, 1 (2007), 1–24. https://doi.org/10.1145/1206035.1206036

[31] Johan Håstad. 2001. Some optimal inapproximability results. J. ACM 48, 4 (2001), 798–859. https://doi.org/10.1145/

502090.502098

[32] Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of H-coloring. J. Comb. Theory, Ser. B 48, 1 (1990), 92–110.

https://doi.org/10.1016/0095-8956(90)90132-J

[33] John M Howie. 1995. Fundamentals of semigroup theory. Oxford University Press.

[34] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. 1997. Closure Properties of Constraints. J. ACM 44, 4 (1997),

527–548. https://doi.org/10.1145/263867.263489

[35] Ondřej Klíma, Pascal Tesson, and Denis Thérien. 2007. Dichotomies in the Complexity of Solving Systems of Equations

over Finite Semigroups. Theory Comput. Syst. 40, 3 (2007), 263–297. https://doi.org/10.1007/S00224-005-1279-2

[36] Phokion G. Kolaitis and Moshe Y. Vardi. 2000. Conjunctive-Query Containment and Constraint Satisfaction. J. Comput.

Syst. Sci. 61, 2 (2000), 302–332. https://doi.org/10.1006/jcss.2000.1713

[37] Michael Kompatscher. 2018. The equation solvability problem over supernilpotent algebras with Mal’cev term. Int. J.

Algebra Comput. 28, 06 (2018), 1005–1015. https://doi.org/10.1142/S0218196718500443

[38] Andrei Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. 2023. Topology and adjunction in promise

constraint satisfaction. SIAM J. Comput. 52, 1 (2023), 37–79. https://doi.org/10.1137/20M1378223 arXiv:2003.11351

[39] Benoît Larose and László Zádori. 2006. Taylor Terms, Constraint Satisfaction and the Complexity of Polynomial

Equations over Finite Algebras. Int. J. Algebra Comput. 16, 3 (2006), 563–582. https://doi.org/10.1142/S0218196706003116

[40] Alberto Larrauri and Stanislav Živný. 2024. Solving Promise Equations over Monoids and Groups. In Proc. 51st

International Colloquium on Automata, Languages, and Programming (ICALP’24) (LIPIcs, Vol. 297). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 146:1–146:18. https://doi.org/10.4230/LIPICS.ICALP.2024.146

[41] Dániel Marx. 2013. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM 60, 6

(2013). https://doi.org/10.1145/2535926 arXiv:0911.0801 Article No. 42.

[42] Peter Mayr. 2023. On the Complexity Dichotomy for the Satisfiability of Systems of Term Equations over Finite

Algebras. In Proc. 48th International Symposium on Mathematical Foundations of Computer Science (MFCS’23) (LIPIcs,

Vol. 272). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 66:1–66:12. https://doi.org/10.4230/LIPICS.MFCS.2023.66

[43] Tamio-Vesa Nakajima and Stanislav Živný. 2024. On the complexity of symmetric vs. functional PCSPs. ACM Trans.

Algorithms 20, 4 (2024), 33:1–33:29. https://doi.org/10.1145/3673655 arXiv:2210.03343

[44] Tamio-Vesa Nakajima and Stanislav Živný. 2022. Linearly Ordered Colourings of Hypergraphs. ACM Trans. Comput.

Theory 13, 3–4 (2022). Issue Article no. 12. https://doi.org/10.1145/3570909 arXiv:2204.05628

[45] Thomas Schaefer. 1978. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on the Theory

of Computing (STOC’78). 216–226. https://doi.org/10.1145/800133.804350

[46] Steve Seif and Csaba Szabó. 2003. Algebra complexity problems involving graph homomorphism, semigroups and the

constraint satisfaction problem. J. Complex. 19, 2 (2003), 153–160. https://doi.org/10.1016/S0885-064X(02)00027-4

[47] Dmitriy Zhuk. 2020. A Proof of the CSP Dichotomy Conjecture. J. ACM 67, 5 (2020), 30:1–30:78. https://doi.org/10.

1145/3402029 arXiv:1704.01914

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://doi.org/10.1145/3661814.3662068
https://doi.org/10.1145/3661814.3662068
https://arxiv.org/abs/2301.05084
https://doi.org/10.1016/S0304-3975(03)00401-8
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://arxiv.org/abs/1904.12424
https://doi.org/10.1145/321921.321926
https://doi.org/10.1006/INCO.2002.3173
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1145/263867.263489
https://doi.org/10.1007/S00224-005-1279-2
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1142/S0218196718500443
https://doi.org/10.1137/20M1378223
https://arxiv.org/abs/2003.11351
https://doi.org/10.1142/S0218196706003116
https://doi.org/10.4230/LIPICS.ICALP.2024.146
https://doi.org/10.1145/2535926
https://arxiv.org/abs/0911.0801
https://doi.org/10.4230/LIPICS.MFCS.2023.66
https://doi.org/10.1145/3673655
https://arxiv.org/abs/2210.03343
https://doi.org/10.1145/3570909
https://arxiv.org/abs/2204.05628
https://doi.org/10.1145/800133.804350
https://doi.org/10.1016/S0885-064X(02)00027-4
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029
https://arxiv.org/abs/1704.01914

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview of Results
	4 Monoidal Minions: Proof of th:main
	5 Equations Over Monoids and Groups: Proofs of th:promisemonoids and th:promisegroups
	6 Equations over Semigroups: Proof of th:semigroups
	7 Explicit Templates: Proof of th:examples
	Acknowledgments
	A Reduction to Special Equations
	B Dichotomies For Equations over Monoids and Groups
	References

