
1

Additive Sparsification of CSPs
EDEN PELLEG, University of Oxford, United Kingdom

STANISLAV ŽIVNÝ, University of Oxford, United Kingdom

Multiplicative cut sparsifiers, introduced by Benczúr and Karger [STOC’96], have proved extremely influential

and found various applications. Precise characterisations were established for sparsifiability of graphs with

other 2-variable predicates on Boolean domains by Filtser and Krauthgamer [SIDMA’17] and non-Boolean

domains by Butti and Živný [SIDMA’20].

Bansal, Svensson and Trevisan [FOCS’19] introduced a weaker notion of sparsification termed “additive

sparsification”, which does not require weights on the edges of the graph. In particular, Bansal et al. designed

algorithms for additive sparsifiers for cuts in graphs and hypergraphs.

As our main result, we establish that all Boolean Constraint Satisfaction Problems (CSPs) admit an additive

sparsifier; that is, for every Boolean predicate 𝑃 : {0, 1}𝑘 → {0, 1} of a fixed arity 𝑘 , we show that CSP(𝑃)

admits an additive sparsifier. Under our newly introduced notion of all-but-one sparsification for non-Boolean

predicates, we show that CSP(𝑃) admits an additive sparsifier for any predicate 𝑃 : 𝐷𝑘 → {0, 1} of a fixed
arity 𝑘 on an arbitrary finite domain 𝐷 .

CCS Concepts: • Theory of computation→ Sparsification and spanners.

Additional Key Words and Phrases: constraint satisfaction, sparsification

ACM Reference Format:

Eden Pelleg and Stanislav Živný. 2023. Additive Sparsification of CSPs. ACM Trans. Algor. 1, 1, Article 1

(January 2023), 19 pages.

1 INTRODUCTION
Graph sparsification is the problem of, given a graph 𝐺 = (𝑉 , 𝐸) with quadratically many (in

|𝑉 |) edges, finding a sparse subgraph 𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸) such that important properties of 𝐺 are

preserved in 𝐺𝜀 . Sparse in this context usually means with sub-quadratically many edges, though

in this work we require (and can achieve) linearly many edges.

One of the most studied properties of preservation is the size of cuts. If 𝐺 = (𝑉 , 𝐸,𝑤) is an
undirected weighted graph with𝑤 : 𝐸 → R>0, given some 𝑆 ⊆ 𝑉 , the cut of 𝑆 in 𝐺 is

Cut𝐺 (𝑆) =
∑︁

{𝑢,𝑣}∈𝐸
| {𝑢,𝑣}∩𝑆 |=1

𝑤 ({𝑢, 𝑣}),

the sum of weights of all edges connecting 𝑆 and 𝑆𝑐 = 𝑉 \ 𝑆 . In an influential paper, Benczúr and

Karger [11] introduced cut sparsification with a multiplicative error. In particular, [11] showed that

for any graph 𝐺 = (𝑉 , 𝐸,𝑤) and any error parameter 0 < 𝜀 < 1, there exists a sparse subgraph

Authors’ addresses: Eden Pelleg, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom;

Stanislav Živný, standa.zivny@cs.ox.ac.uk, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United

Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1549-6325/2023/1-ART1 $15.00

https://doi.org/

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0002-0263-159X
https://orcid.org/0000-0002-0263-159X
https://doi.org/

1:2 Eden Pelleg and Stanislav Živný

𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸,𝑤 ′) with𝑂 (𝑛(log𝑛)𝜀−2) edges (and new weights𝑤 ′
on the edges in 𝐸𝜀), such that

for every 𝑆 ⊆ 𝑉 we have

Cut𝐺𝜀
(𝑆) ∈ (1 ± 𝜀)Cut𝐺 (𝑆).

This was later improved by Batson, Spielman and Srivastava [10] to a subgraph with𝑂 (𝑛𝜀−2) many

edges. Andoni, Chen, Krauthgamer, Qin, Woodruff and Zhang showed that the dependency on 𝜀 is

optimal [4].

The ideas from cut sparsification paved the way to various generalisations, including stream-

ing [1], sketching [4], cuts in hypergraphs [23, 27], spectral sparsification [21, 31–34] and the

consideration of other predicates besides cuts [20]. In this work, we focus on the latter.

The cut sparsification result in [10] was explored for other Boolean binary predicates by Filtser

and Krauthgamer [20], following a suggestion to do so by Kogan and Krauthgamer in [23]. Filtser

and Krauthgamer found [20] a necessary and sufficient condition on the predicate for the graph

to be sparsifiable (in the sense of [10]). In particular, [20] showed that not all Boolean binary

predicates are sparsifiable. Later, Butti and Živný [14] generalised the result from [20] to arbitrary

finite domain binary predicates.

We remark that [14, 20] use the terminology of constraint satisfaction problems (CSPs) with a fixed
predicate 𝑃 . This is is equivalent to a (hyper)graph 𝐺 with a fixed predicate. Indeed, the vertices of

𝐺 correspond to the variables of the CSP and the (hyper)edges of 𝐺 correspond to the constraints

of the CSP. If the fixed predicate 𝑃 is not symmetric, the (hyper)edges of 𝐺 are directed. We will

mostly talk about sparsification of (hyper)graphs with a fixed predicate but this is equivalent to the

CSP view.

Recently, while trying to eliminate the requirement for the introduction of new weights for the

sparse subgraph, Bansal, Svensson and Trevisan [7] have come up with a new sparsification notion

with an additive error term. They have shown (cf. Theorem 3 in Section 2) that under their notion

any undirected unweighted hypergraph has a sparse subhypergraph which preserves all cuts up to

some additive term.

Motivation. The relatively recent notion of additive sparsification has not yet been explored to

the same extent as the notion of multiplicative sparsification has been. We believe that this notion

has a lot of potential for applications as the sparsifiers are not weighted, unlike multiplicative

sparsifiers, and the main restriction of multiplicative sparsifiers in applications appears to be the

number of distinct weights required in sparsifiers. For some graphs (such as the “barbell graph” –

two disjoint cliques joined by a single edge), any nontrivial multiplicative sparsifier requires edges

of different weights. In any case, the authors find the notion of additive sparsification interesting in

its own right, independently of applications. We refer the reader to [7] for further details and a

discussion.

The goal of our work is to understand how the notion of additive sparsification developed in [7]

for cuts behaves on (hyper)graphs with other predicates (beyond cuts), deriving inspiration from

the generalisations of cuts to other predicates in the multiplicative setting established in [14, 20]. In

particular, already Boolean binary predicates include interesting predicates such as the uncut edges
(using the predicate 𝑃 (𝑥,𝑦) = 1 iff 𝑥 = 𝑦), covered edges (using the predicate 𝑃 (𝑥,𝑦) = 1 iff 𝑥 = 1 or

𝑦 = 1), or directed cut edges (using the predicate 𝑃 (𝑥,𝑦) = 1 iff 𝑥 = 0 and 𝑦 = 1). While such graph

problems are well-known and extensively studied, it is not clear whether one should expect them

to be sparsifiable or not. For instance, as mentioned before, not all (even Boolean binary) predicates

are sparsifiable multiplicatively [20]. Are there some predicates that are not additively sparsifiable?

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:3

1.1 Contributions
Boolean predicates. Our main result, Theorem 10 in Section 3, shows that all hypergraphs with

constant uniformity 𝑘 , directed or undirected, admit additive sparsification with respect to all

Boolean predicates 𝑃 : {0, 1}𝑘 → {0, 1}; the number of hyperedges of the sparsifier with error 𝜀 > 0

is𝑂
(
𝑛𝜀−2 log 1

𝜀

)
, where the 𝑂 (·) hides a factor that depends on 𝑘 . This result has three ingredients.

First, we observe that the result in [7] also holds true for directed hypergraphs. Second, we use

a reduction via the 𝑘-partite 𝑘-fold covers of hypergraphs to the already solved case of Boolean

Cut. Finally, we use linear algebra to prove the correctness of the reduction. While the reduction

via the 𝑘-partite 𝑘-fold cover was used in previous works on multiplicative sparsification [14, 20],

the subsequent non-trivial linear-algebraic analysis (Proposition 14) is novel and constitutes our

main technical contribution, as well as our result that, unlike in the multiplicative setting, all

Boolean predicates can be (additively) sparsified. We also show that our results immediately apply

to the more general setting where different hyperedges are associated with different predicates (cf.

Remark 11). This corresponds to CSPs with a fixed constraint language (of a finite size) rather than

just a single predicate.

Non-Boolean predicates. We introduce a notion of sparsification that generalises the Boolean case

to predicates on non-Boolean domains, i.e. a notion capturing predicates of the form 𝑃 : 𝐷𝑘 → {0, 1},
where 𝐷 is an arbitrary fixed finite set with |𝐷 | ≥ 2. We call this type of sparsification “all-but-one”

sparsification since the additive error term includes the maximum volume of |𝐷 | − 1 (out of |𝐷 |)
parts, where the volume of a subset is the sum of the degrees in the subset. (The precise definition

can be found in Section 4.) By building on the techniques used to establish our main result, we

show that all hypergraphs (again, directed or undirected) admit additive all-but-one sparsification

with respect to all predicates. This is stated as Theorem 21 in Section 4. We also show, in Section 5,

that our notion of all-but-one sparsification is, in some sense, optimal.

Comparison to previous work. As mentioned above, our sparsifiability result is obtained by a

reduction via the𝑘-partite𝑘-fold cover to the cut case established in [7]. A reduction via the𝑘-partite

𝑘-fold cover was also used (for 𝑘 = 2) in previous work on multiplicative sparsification [14, 20]. In

particular, the correctness of the reduction for Boolean binary predicates in [20] is done via an ad

hoc case analysis for 11 concrete predicates. In the generalisation to binary predicates on arbitrary

finite domains in [14], the correctness is proved via a combinatorial property of bipartite graphs

without a certain 4-vertex graph
1
as a subgraph and a reduction to cuts with more than two parts.

In our case, we use the same black-box reduction via the 𝑘-partite 𝑘-fold cover. Thus the reduction

itself is pretty straightforward, although the analysis is not. In fact, we find it surprising and

unexpected that the 𝑘-partite 𝑘-fold cover works in the additive setting. Our key contribution is

the proof of its correctness. A few simple reductions get us to the most technically involved case,

in which 𝑘 is even and the 𝑘-ary predicate satisfies 𝑃 (1, . . . , 1) = 0. Additive sparsifiability of such

predicates is established in Proposition 14. Unlike in the multiplicative setting, it is not clear how

to do this in a straightforward way similar to [14, 20]. Instead, we associate with a given predicate

𝑃 a vector 𝑣𝑃 in an appropriate vector space, identify special vectors that can be shown additively

sparsifiable directly, show that linear combinations preserve sparsifiability, and argue that 𝑣𝑃 can

be generated by the special vectors. The latter is the most technical part of the proof. While there

are several natural ideas how to achieve this in a seemingly simpler way (such as arguing that the

special vectors form a basis), we have not managed to produce a simpler or shorter proof.

The result in [7] also works for non-constant 𝑘 . We emphasise that we deal with constant 𝑘 ,

which is standard in the CSP literature in that the predicate (or a set of predicates) is fixed and not

1
A bipartite graph on four vertices with each part of size two and precisely one edge between the two parts.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 Eden Pelleg and Stanislav Živný

part of the input. For constant 𝑘 , the representation of predicates is irrelevant (cf. Remark 18). Thus

we do not keep track of (and have not tried to optimise) the precise dependency of the reduction

on the predicate arity 𝑘 (or the domain size 𝑞 = |𝐷 |).

Related work. The already mentioned spectral sparsification [33] is a stronger notion than cut

sparsification as it requires that not only cuts but also the Laplacian spectrum of a given graph

should be (approximately) preserved [7, 21, 31, 32, 34].

Our focus in this article is on edge sparsifiers (of cuts and generalisations via local predicates).

There are also vertex sparsifiers, in which one reduces the number of vertices. Vertex sparsifiers

have been studied for cut sparsification (between special vertices called terminals) [15, 22, 25, 26]

as well as for spectral sparsification [24].

Sparsification in general is about finding a sparse sub(hyper)graph while preserving important

properties of interest. In addition to cut sparsifiers, another well studied concept is that of spanners.
A spanner of a graph is a (sparse) subgraph that approximately preserves distances of shortest

paths. Spanners have been studied in great detail both in the multiplicative [3, 5, 6, 9, 17, 28, 30]

and additive [2, 8, 12, 16, 18, 35] setting. Emulators are a generalisation of spanners in which the

sparse graph is not required to be a subgraph of the original graph. We refer the reader to a nice

recent survey of Elkin and Neimain for more details [19].

2 PRELIMINARIES
For an integer 𝑘 , we denote by [𝑘] the set {0, 1, . . . , 𝑘 − 1}. All graphs and hypergraphs

2
in this

paper are unweighted.

For an assignment 𝑎 : 𝑉 → 𝑆 from the set of vertices of a (hyper)graph to some set 𝑆 containing

0, we denote by Z𝑎 = {𝑣 ∈ 𝑉 : 𝑎(𝑣) = 0} the set of vertices mapped to 0.

If 0 ≤ 𝑖 ≤ 𝑟𝑘 − 1 is an integer, we denote by rep𝑟,𝑘 (𝑖) the representation of 𝑖 in base 𝑟 as a vector

in R𝑘 , where the first coordinate stands for the most significant digit, and the last coordinate for

the least significant digit. For the special case 𝑟 = 2, we use the notation bin𝑘 (𝑖) for the binary
representation of 𝑖 .

We denote by 𝑣 [𝑗] the 𝑗-th coordinate of the vector 𝑣 , counting from 0.

For an integer 0 ≤ 𝑖 ≤ 2
𝑘 − 1, we use zeros𝑘 (𝑖) = {ℓ ∈ [𝑘] : bin𝑘 (𝑖) [ℓ] = 0}; for example

zeros6 (52) = {2, 4, 5}, since bin6 (52) = (1, 1, 0, 1, 0, 0).
We now define the value of an assignment on a hypergraph with a fixed predicate.

Definition 1. Let 𝐺 = (𝑉 , 𝐸) be a directed 𝑘-uniform hypergraph and let 𝑃 : 𝐷𝑘 → {0, 1} be a
𝑘-ary predicate on a finite set 𝐷 . Given an assignment 𝑎 : 𝑉 → 𝐷 of 𝐺 , the value of 𝑎 is defined by

Val𝐺,𝑃 (𝑎) =
∑

(𝑣1,...,𝑣𝑘) ∈𝐸 𝑃 (𝑎(𝑣1), . . . , 𝑎(𝑣𝑘)). If 𝐺 is undirected and 𝑃 is order invariant,
3
we define

Val𝐺,𝑃 (𝑎) =
∑

{𝑣1,...,𝑣𝑘 }∈𝐸 𝑃 (𝑎(𝑣1), . . . , 𝑎(𝑣𝑘)).4

The notion of additive sparsificationwas first introduced in [7] for cuts in graphs and hypergraphs.

In order to define it, we will need the Cut : {0, 1}𝑘 → {0, 1} predicate defined by Cut(𝑏1, . . . , 𝑏𝑘) =
1 ⇐⇒ ∃𝑖, 𝑗, 𝑏𝑖 ≠ 𝑏 𝑗 . Given a hypergraph 𝐺 = (𝑉 , 𝐸) and a set 𝑈 ⊆ 𝑉 , we denote by vol𝐺 (𝑈) the
volume of𝑈 , defined as the sum of the degrees in 𝐺 of all vertices in𝑈 .

Definition 2. Let𝐺 = (𝑉 , 𝐸) be an undirected 𝑘-uniform hypergraph, and denote |𝑉 | = 𝑛. We say

that𝐺 admits additive cut sparsification with error 𝜀 using 𝑂 (𝑓 (𝑛, 𝜀)) hyperedges if there exists a
subhypergraph𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸) with |𝐸𝜀 | = 𝑂 (𝑓 (𝑛, 𝜀)), called an additive sparsifier of𝐺 , such that

2
We use the standard definition of hypergraphs, in which every hyperedge is an ordered tuple of vertices.

3𝑃 (𝑏1, . . . , 𝑏𝑘) = 𝑃 (𝑏𝜎 (1) , . . . , 𝑏𝜎 (𝑘)) for all 𝑏1, . . . , 𝑏𝑘 ∈ 𝐷 and every permutation 𝜎 on the set {1, . . . , 𝑘 }.
4
The terms are well defined since 𝑃 is order invariant.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:5

for every assignment 𝑎 : 𝑉 → {0, 1} we have���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,Cut (𝑎) − Val𝐺,Cut (𝑎)

���� ≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)), (1)

where 𝑑𝐺 is the average degree of 𝐺 .

Note that (1) can also be written as

|𝐸 |
|𝐸𝜀 |

Val𝐺𝜀 ,Cut (𝑎) ∈ Val𝐺,Cut (𝑎) ± 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)),

which explains the use of the term “additive” for the error.

Bansal, Svensson and Trevisan [7] showed the following sparsification result:

Theorem 3 (Additive Cut Sparsification [7, Theorem 1.3]). Let 𝐺 = (𝑉 , 𝐸) be an undirected
𝑛-vertex 𝑘-uniform hypergraph, and 𝜀 > 0. Then 𝐺 admits additive cut sparsification with error 𝜀
using 𝑂

(
𝑛
𝑘
𝜀−2 log(𝑘

𝜀
)
)
hyperedges.

Remark 4. We call a predicate 𝑃 symmetric if it is order invariant (as in Definition 1). Since

Theorem 3 deals with only undirected hypergraphs, it is not clear how to generalise it to non-

symmetric predicates directly, since the value of such predicates on undirected hypergraphs is not

defined. Therefore, our course of action will be first to prove it for the case of directed hypergraphs,

and then generalise it to other predicates on directed hypergraphs. In fact, by doing this we also

prove the result for undirected hypergraphs with symmetric predicates, since hyperedges can be

given arbitrary directions without changing the average degree of 𝐺 , or the volume in 𝐺 , or the

value of the predicate in any assignment.

Remark 5. Throughout this paper we only discuss the existence of sparsifiers and do not mention

the time complexity to find them. However, the (implicit) time complexity results from [7] apply in

our more general setting as well since the sparsifiers we find are in fact the same sparsifiers for all

predicates, including cuts (cf. Remark 17).

An important tool we use to prove our results is the 𝑘-partite 𝑘-fold cover of a hypergraph. This

construction is a well known one, and has been used for multiplicative sparsification (for 𝑘 = 2)

in [20] and [14].

Definition 6. Let𝐺 = (𝑉 , 𝐸) be a directed 𝑘-uniform hypergraph. The 𝑘-partite 𝑘-fold cover of 𝐺
is the hypergraph 𝛾 (𝐺) = (𝑉𝛾 , 𝐸𝛾) where

𝑉𝛾 = {𝑣 (0) , 𝑣 (1) , . . . , 𝑣 (𝑘−1) : 𝑣 ∈ 𝑉 },

𝐸𝛾 = {(𝑣 (0)
1
, 𝑣

(1)
2
, . . . , 𝑣

(𝑘−1)
𝑘

) : (𝑣1, . . . , 𝑣𝑘) ∈ 𝐸}.

If 𝐺 is undirected we define the cover in the same way except

𝐸𝛾 = {{𝑣 (0)
𝜎 (1) , 𝑣

(1)
𝜎 (2) , . . . , 𝑣

(𝑘−1)
𝜎 (𝑘) } : {𝑣1, . . . , 𝑣𝑘 } ∈ 𝐸}, 𝜎 a permutation on {1, 2, . . . , 𝑘}}

so for each hyperedge in 𝐺 we get 𝑘! hyperedges in 𝛾 (𝐺) in this case.

If 𝑘 = 2 then 𝛾 (𝐺) corresponds to the well-known bipartite double cover of 𝐺 [13].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 Eden Pelleg and Stanislav Živný

3 SPARSIFICATION OF BOOLEAN PREDICATES
As mentioned in Section 1, we begin by observing that Theorem 3 also works for directed hyper-

graphs. (We emphasise that we treat 𝑘 as a constant, cf. Remark 18.)

We will need a notation for the undirected equivalent of a directed hypergraph.

Definition 7. Given a directed 𝑘-uniform hypergraph𝐺 = (𝑉 , 𝐸), the undirected equivalent of𝐺 is

Λ(𝐺) = (𝑉 , 𝐸) where 𝐸 = {{𝑣1, . . . , 𝑣𝑘 } : (𝑣1, . . . , 𝑣𝑘) ∈ 𝐸}.

In other words, Λ(𝐺) is obtained by “forgetting” the directions of the hyperedges of 𝐺 (and

ignoring duplicates if they exist).

Proposition 8. Let 𝐺 = (𝑉 , 𝐸) be a directed 𝑛-vertex 𝑘-uniform hypergraph, and 𝜀 > 0. Then 𝐺
admits additive cut sparsification with error 𝜀 using 𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Proof. Let 𝜀 > 0, and let 𝛾 (𝐺) = (𝑉𝛾 , 𝐸𝛾) be the 𝑘-partite 𝑘-fold cover of 𝐺 . Let Λ(𝛾 (𝐺)) be the
undirected equivalent of𝛾 (𝐺). LetΛ(𝛾 (𝐺))𝜀 = (𝑉𝛾

𝜀 , 𝐸
𝛾
𝜀) be a subhypergraph ofΛ(𝛾 (𝐺)) promised by

Theorem 3. By the construction of the 𝑘-partite 𝑘-fold cover, there are no two directed hyperedges

over the same set of vertices, and so there is a 1-1 correspondence between the hyperedges of

𝐺 and the hyperedges of Λ(𝛾 (𝐺)). Hence we have a subhypergraph 𝐺𝜀 = (𝑉 , 𝐸𝜀) of 𝐺 such that

Λ(𝛾 (𝐺𝜀)) = Λ(𝛾 (𝐺))𝜀 (by taking the hyperedges corresponding to the ones of Λ(𝛾 (𝐺))𝜀). We also

have |𝐸𝛾 | = |𝐸 | and |𝐸𝛾𝜀 | = |𝐸𝜀 |.
Let 𝑎 : 𝑉 → {0, 1}. Define 𝑎′ : 𝑉𝛾 → {0, 1} by 𝑎′ (𝑣 (𝑖)) = 𝑎(𝑣). We have

Val𝐺,Cut (𝑎) = ValΛ(𝛾 (𝐺)),Cut (𝑎′), (2)

which is true for any hypergraph, and in particular for 𝐺𝜀 :

Val𝐺𝜀 ,Cut (𝑎) = ValΛ(𝛾 (𝐺𝜀)),Cut (𝑎′). (3)

Applying Theorem 3 to Λ(𝛾 (𝐺)) and 𝑎′ gives us���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,Cut (𝑎) − Val𝐺,Cut (𝑎)

���� = ����� |𝐸𝛾 ||𝐸𝛾𝜀 |
ValΛ(𝛾 (𝐺𝜀)),Cut (𝑎′) − ValΛ(𝛾 (𝐺)),Cut (𝑎′)

�����
≤ 𝜀 (𝑑Λ(𝛾 (𝐺)) |Z𝑎′ | + volΛ(𝛾 (𝐺)) (Z𝑎′))
= 𝜀 (𝑑𝛾 (𝐺) · 𝑘 |Z𝑎 | + vol𝛾 (𝐺) (Z𝑎′))
= 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)),

where the first line is due to (2) and (3), the second line is by Theorem 3, and the last two lines are

by properties of the 𝑘-partite 𝑘-fold cover. Moreover

|𝐸𝜀 | = |𝐸𝛾𝜀 | = 𝑂
(
𝑘𝑛

𝑘
𝜀−2 log

𝑘

𝜀

)
= 𝑂

(
𝑛𝜀−2 log

1

𝜀

)
,

as required. □

From now on, whenever we say a “hypergraph”, we mean a “directed hypergraph” with 𝑛 vertices.

By Remark 4, the results also apply to undirected hypergraphs (whenever it makes sense, i.e. if the

associated predicate is symmetric). We also omit the word additive when discussing sparsification.

The following notion of sparsification is a natural generalisation of cut sparsification (Definition 2)

to arbitrary predicates.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:7

Definition 9. Let 𝑃 be a 𝑘-ary Boolean predicate and 𝐺 = (𝑉 , 𝐸) a 𝑘-uniform hypergraph. We

say that 𝐺 admits 𝑃-sparsification with error 𝜀 using 𝑂 (𝑓 (𝑛, 𝜀)) hyperedges if there exists a sub-
hypergraph 𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸) with |𝐸𝜀 | = 𝑂 (𝑓 (𝑛, 𝜀)), called a 𝑃-sparsifier of 𝐺 , such that for every

assignment 𝑎 : 𝑉 → {0, 1} we have

���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� ≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)), (4)

where 𝑑𝐺 is the average degree of 𝐺 .

The following theorem is our main result, extending Proposition 8 to all 𝑘-ary predicates with

Boolean domains.

Theorem 10 (Main). For every 𝑘-uniform hypergraph 𝐺 (𝑘 is a constant), every 𝑘-ary Boolean
predicate 𝑃 : {0, 1}𝑘 → {0, 1}, and every 𝜀 > 0, 𝐺 admits 𝑃-sparsification with error 𝜀 using
𝑂
(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Theorem 10 can be informally restated as “every 𝑘-uniform hypergraph is sparsifiable with
respect to all 𝑘-ary Boolean predicates” or “for every Boolean predicate 𝑃 of constant arity, CSP(𝑃) is
sparsifiable”.

Remark 11. It is possible to consider an even more general case where each hyperedge in 𝐺 has

its own predicate. In this case, we can apply Theorem 10 to each of the hypergraphs obtained

by taking only hyperedges corresponding to a specific predicate, and so get a sparsifier for each

such predicate. Taking the union of all their hyperedges, we get a new hypergraph𝐺𝜀 , which is a

sparsifier of the original hypergraph. Indeed, it has 𝑂
(
𝑛𝜀−2 log 1

𝜀

)
hyperedges since it is the union

of a constant number of hypergraphs. (The number of predicates 𝑃 : {0, 1}𝑘 → {0, 1} is constant,
since 𝑘 is constant.) It also satisfies (4) for any given assignment up to some constant factor, since

all the sparsifiers it is composed of do. This constant factor can be eliminated by choosing 𝜀0 =
𝜀
𝑚

for an appropriate𝑚 that depends only on 𝑘 .

The main work in the proof of Theorem 10 is for even values of 𝑘 ; a simple reduction (Proposi-

tion 16) then reduces the case of 𝑘 odd to the even case.

In order to prove Theorem 10 for even 𝑘 , we use the 𝑘-partite 𝑘-fold cover of 𝐺 and apply

Proposition 8 to various assignments of it. For a 𝑘-ary Boolean predicate 𝑃 : {0, 1}𝑘 → {0, 1}, we
consider the vector 𝑣𝑃 ∈ R2𝑘 , defined by 𝑣𝑃 [𝑖] = 𝑃 (bin𝑘 (𝑖)). For instance, for the Cut predicate on
a 3-uniform hypergraph, we have 𝑣Cut = (0, 1, 1, 1, 1, 1, 1, 0).
For a given hypergraph 𝐺 and an assignment 𝑎, we consider the vector 𝑣𝐺,𝑎 ∈ R2𝑘 defined by

𝑣𝐺,𝑎 [𝑖] = |{(𝑣1, . . . , 𝑣𝑘) ∈ 𝐸 : (𝑎(𝑣1), . . . , 𝑎(𝑣𝑘)) = bin𝑘 (𝑖)}|. In other words, each coordinate of 𝑣𝐺,𝑎

counts the hyperedges in 𝐺 whose vertices are assigned some specific set of values by 𝑎.

Example 12. Given the graph 𝐺 = (𝑉 , 𝐸) in Figure 1 (so 𝑘 = 2) and the assignment 𝑎 : 𝑉 → {0, 1}
defined as 𝑎(𝑣1) = 𝑎(𝑣2) = 𝑎(𝑣3) = 0 and 𝑎(𝑣4) = 𝑎(𝑣5) = 𝑎(𝑣6) = 𝑎(𝑣7) = 1, we have 𝑣𝐺,𝑎 =

(2, 3, 1, 5), since there are two edges with assignment (0, 0), namely (𝑣1, 𝑣2) and (𝑣2, 𝑣3), three edges
with assignment (0, 1), namely (𝑣1, 𝑣4), (𝑣2, 𝑣6), and (𝑣2, 𝑣7), etc.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 Eden Pelleg and Stanislav Živný

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

Fig. 1. Graph from Example 12.

Under these notations, we get Val𝐺,𝑃 (𝑎) = ⟨𝑣𝑃 , 𝑣𝐺,𝑎⟩, where ⟨·, ·⟩ is the standard inner product in

R2
𝑘

. We begin by proving the following useful lemma.

Lemma 13. Let 𝐺 = (𝑉 , 𝐸) be a 𝑘-uniform hypergraph, 𝑃1, . . . , 𝑃𝑚 be 𝑘-ary Boolean predicates (𝑚
is a constant). Suppose that for every 𝜀 > 0 and 1 ≤ 𝑖 ≤ 𝑚, 𝐺 admits 𝑃𝑖-sparsification with error 𝜀
using𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges, and that the same subhypergraph𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸) is a 𝑃𝑖 -sparsifier

for all 𝑃𝑖 . Suppose that 𝑃 is some 𝑘-ary Boolean predicate for which we have 𝑣𝑃 =
∑𝑚

𝑖=1 𝜆𝑖𝑣𝑃𝑖 for
some constants 𝜆1, . . . , 𝜆𝑚 ∈ R. Under these conditions, 𝐺 admits 𝑃-sparsification with error 𝜀 using
𝑂
(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Proof. Let 𝜀 > 0 and denote 𝜀𝑖 =
𝜀

𝑚 |𝜆𝑖 | (if 𝜆𝑖 = 0 take 𝜀𝑖 = 1 instead) and 𝜀0 = min{𝜀1, . . . , 𝜀𝑚}.
Let 𝐺𝜀0 = (𝑉 , 𝐸𝜀0) be the common witness subhypergraph for 𝜀0 promised by the assumption. We

know that every 𝑃𝑖 satisfies���� |𝐸 ||𝐸𝜀0 |
Val𝐺𝜀

0
,𝑃𝑖 (𝑎) − Val𝐺,𝑃𝑖 (𝑎)

���� ≤ 𝜀0 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)) (5)

for every assignment 𝑎 : 𝑉 → {0, 1}. We also have

Val𝐺,𝑃 (𝑎) = ⟨𝑣𝑃 , 𝑣𝐺,𝑎⟩ =
〈

𝑚∑︁
𝑖=1

𝜆𝑖𝑣𝑃𝑖 , 𝑣𝐺,𝑎

〉
=

𝑚∑︁
𝑖=1

𝜆𝑖 ⟨𝑣𝑃𝑖 , 𝑣𝐺,𝑎⟩ =
𝑚∑︁
𝑖=1

𝜆𝑖Val𝐺,𝑃𝑖 (𝑎),

and similarly

Val𝐺𝜀
0
,𝑃 (𝑎) =

𝑚∑︁
𝑖=1

𝜆𝑖Val𝐺𝜀
0
,𝑃𝑖 (𝑎).

Therefore, for every assignment 𝑎 we get���� |𝐸 ||𝐸𝜀0 |
Val𝐺𝜀

0
,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� = ����� |𝐸 ||𝐸𝜀0 |

𝑚∑︁
𝑖=1

𝜆𝑖Val𝐺𝜀
0
,𝑃𝑖 (𝑎) −

𝑚∑︁
𝑖=1

𝜆𝑖Val𝐺,𝑃𝑖 (𝑎)
�����

≤
𝑚∑︁
𝑖=1

|𝜆𝑖 |
���� |𝐸 ||𝐸𝜀0 |

Val𝐺𝜀
0
,𝑃𝑖 (𝑎) − Val𝐺,𝑃𝑖 (𝑎)

����
≤

𝑚∑︁
𝑖=1

|𝜆𝑖 |𝜀0 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎))

≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)),
where the second line is due to the triangle inequality, the third is due to (5) and the fourth is by

the definition of 𝜀0.

Furthermore, since𝑚 and all 𝜆𝑖 are constants,

|𝐸𝜀0 | = 𝑂
(
𝑛𝜀−2

0
log

1

𝜀0

)
= 𝑂

(
𝑛𝜀−2 log

1

𝜀

)
,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:9

and so 𝐺𝜀0 is a witness for the 𝑃-sparsification of 𝐺 . □

The core of the proof of Theorem 10 is in the next proposition, which establishes the result for

Boolean predicates on even uniformity hypergraphs, with a small restriction.

Proposition 14. Let 𝑘 be an even number and 𝐺 be a 𝑘-uniform hypergraph. Let 𝑃 be a 𝑘-ary
Boolean predicate with 𝑃 (1, 1, . . . , 1) = 0. Then for every 𝜀 > 0, 𝐺 admits 𝑃-sparsification with error 𝜀
using 𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Proof. Let 𝜀 > 0.We consider𝛾 (𝐺), the𝑘-partite𝑘-fold cover of𝐺 . Let𝛾 (𝐺)𝜀 be a subhypergraph
of 𝛾 (𝐺) promised by Proposition 8, and 𝐺𝜀 = (𝑉 , 𝐸𝜀) the corresponding subhypergraph of 𝐺 , i.e.

the subhypergraph which satisfies 𝛾 (𝐺𝜀) = 𝛾 (𝐺)𝜀 (by taking the hyperedges corresponding to the

ones of 𝛾 (𝐺)𝜀).
Let 𝑎 : 𝑉 → {0, 1}. For every subset𝑇 ⊆ [𝑘], we look at the assignment 𝑎𝑇 : 𝑉𝛾 → {0, 1} defined

by 𝑎𝑇 (𝑣 (𝑖)) = 0 if 𝑖 ∈ 𝑇 and 𝑎(𝑣) = 0, and 𝑎𝑇 (𝑣 (𝑖)) = 1 otherwise. We therefore have���� |𝐸𝛾 ||𝐸𝛾𝜀 |
Val𝛾 (𝐺)𝜀 ,Cut (𝑎𝑇) − Val𝛾 (𝐺),Cut (𝑎𝑇)

���� ≤ 𝜀 (𝑑𝛾 (𝐺) |Z𝑎𝑇 | + vol𝛾 (𝐺) (Z𝑎𝑇)). (6)

Define the vector 𝑢𝑇 ∈ R2𝑘 as follows:

𝑢𝑇 [𝑗] =
{
1 𝑇 ∩ zeros(𝑗) ≠ ∅, [𝑘]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

In other words, the vector 𝑢𝑇 is 1 in index 𝑗 if and only if there exists an index 𝑖 ∈ 𝑇 in which the

binary representation of 𝑗 has a zero, with the exception of 𝑢 [𝑘] [0] = 0. Denote by 𝑃𝑇 the predicate

corresponding to 𝑢𝑇 , that is 𝑃𝑇 (bin𝑘 (𝑗)) = 1 ⇐⇒ 𝑢𝑇 [𝑗] = 1. Observe that

Val𝛾 (𝐺),Cut (𝑎𝑇) = Val𝐺,𝑃𝑇 (𝑎),
since they both count exactly hyperedges (𝑣1, . . . , 𝑣𝑘) which have some vertex 𝑣𝑖 with 𝑎(𝑣𝑖) = 0

with 𝑖 ∈ 𝑇 , but if𝑇 = [𝑘] then they do not count hyperedges which have 𝑎(𝑣𝑖) = 0 for all 𝑖 = 1, . . . , 𝑘

(see example in Figure 2). The same is true for any hypergraph, and in particular for 𝐺𝜀 , that is

Val𝛾 (𝐺𝜀),Cut (𝑎𝑇) = Val𝐺𝜀 ,𝑃𝑇 (𝑎) .
Putting these results in (6), we get���� |𝐸 ||𝐸𝜀 |

Val𝐺𝜀 ,𝑃𝑇 (𝑎) − Val𝐺,𝑃𝑇 (𝑎)
���� ≤ 𝜀 (𝑑𝛾 (𝐺) |Z𝑎𝑇 | + vol𝛾 (𝐺) (Z𝑎𝑇))

≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)),

so 𝐺 admits 𝑃𝑇 sparsification with error 𝜀 using 𝑂
(
𝑛𝜀−2 log 1

𝜀

)
hyperedges for every 𝑇 ⊆ [𝑘], and

for every 𝜀 the sparsification is witnessed by the same subhypergraph 𝐺𝜀 . (Notice that Proposi-

tion 8, when applied to 𝛾 (𝐺) which has 𝑘𝑛 vertices, gives us a subhypergraph with𝑂
(
𝑘𝑛𝜀−2 log 1

𝜀

)
hyperedges, and recall that 𝑘 is a constant.)

Our next goal is to show that the vector 𝑣𝑃 is a linear combination of the vectors𝑢𝑇 for all𝑇 ∈ [𝑘].
To show that, we show that every vector 𝑒𝑟 in the standard basis of R2

𝑘

, with 𝑟 ≠ 2
𝑘 − 1, is a linear

combination of these vectors. This is sufficient since the last coordinate of 𝑣𝑃 is 0 by the assumption.

First we need to order the various sets 𝑇 . We order them in the following decreasing lexicographic

order 𝑇0,𝑇1, . . . ,𝑇2𝑘−1, where 𝑇𝑗 = zeros(𝑗), so 𝑇0 = [𝑘],𝑇1 = [𝑘] \ {𝑘 − 1},𝑇2 = [𝑘] \ {𝑘 − 2},𝑇3 =
[𝑘] \ {𝑘 − 1, 𝑘 − 2},𝑇4 = [𝑘] \ {𝑘 − 3} and so on, until 𝑇

2
𝑘−1 = ∅.

Let 𝑒𝑟 be a vector in the standard basis of R2
𝑘

. We introduce the following coefficients for

0 ≤ 𝑚 ≤ 2
𝑘 − 1:

𝜆𝑟,𝑚 =
1

2

(−1)Ham(𝑟⊕𝑚)+(1−1𝑟&𝑚) ,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 Eden Pelleg and Stanislav Živný

Z
(0)
𝑎

Z

(0)
𝑎

Z
(1)
𝑎

Z

(1)
𝑎

Z
(2)
𝑎

Z

(2)
𝑎

Z
(3)
𝑎

Z

(3)
𝑎

Z
(4)
𝑎

Z

(4)
𝑎

. . .
Z
(𝑘−2)
𝑎

Z

(𝑘−2)
𝑎

Z
(𝑘−1)
𝑎

Z

(𝑘−1)
𝑎

Fig. 2. An example of a representation of an assignment on 𝛾 (𝐺). Z(𝑖)
𝑎 consists of all vertices in 𝑉 (𝑖) which

are a copy of a vertex 𝑣 ∈ 𝑉 with 𝑎(𝑣) = 0, and Z
(𝑖)
𝑎 consists of the rest of 𝑉 (𝑖) . Each hyperedge has a unique

path from left to right (but a path might belong to multiple hyperedges), choosing one of Z(𝑖)
𝑎 ,Z

(𝑖)
𝑎 for each 𝑖 .

Each such path is also in 1-1 correspondence with a coordinate in 𝑢𝑇 . In this example 𝑇 = {0, 3, 𝑘 − 1} and
the shaded sets represent 𝑎−1

𝑇
(0). By green dotted lines we indicated a path corresponding to a hyperedge

counted in Val𝛾 (𝐺),Cut (𝑎𝑇), and by red dashed lines we indicated a path which does not. The green dotted
path corresponds to a value of 1 in the coordinate of 𝑢𝑇 with binary representation (1, 1, 0, 0, 1, . . . , 0, 1), and
the red dashed path to a value 0 in the coordinate with binary representation (1, 0, 1, 1, 0, , . . . , 1, 1). Note that
if 𝑇 = [𝑘] then any hyperedge corresponding to a path only on Z(𝑖)

𝑎 is not counted.

where ⊕,& are the Xor and And binary functions respectively,
5
Ham is the Hamming weight

function, and 1𝑑 returns 1 if 𝑑 ≠ 0 and 0 if 𝑑 = 0. Denote

𝑓1 (𝑚) = Ham(𝑟 ⊕𝑚) , 𝑓2 (𝑚) = (1 − 1𝑟&𝑚).
We shall prove that

𝑒𝑟 =

2
𝑘−1∑︁
𝑚=0

𝜆𝑟,𝑚𝑢𝑇𝑚 . (7)

We start with a claim.

Claim: The sum of all coefficients is 0; i.e.,

∑
2
𝑘−1
𝑚=0 𝜆𝑟,𝑚 = 0.

Proof of the claim. Let 𝑏1𝑏2 . . . 𝑏𝑘 be the binary representation of 𝑟 . Since 𝑟 < 2
𝑘 − 1, there exists

some 1 ≤ 𝑖 ≤ 𝑟 for which 𝑏𝑖 = 0. We can partition the coefficients into pairs, such that 𝜆𝑟,𝑚1
, 𝜆𝑟,𝑚2

is a pair if and only if𝑚1,𝑚2 differ in the 𝑖-th coordinate only. This is clearly a partition. For each

pair, 𝑓1 gives𝑚1,𝑚2 different parity values, and 𝑓2 gives them the same value (since 𝑏𝑖 = 0), so

𝜆𝑟,𝑚1
, 𝜆𝑟,𝑚2

have opposite signs, so their sum is zero. This is true for every pair, so the overall sum

is zero, and the claim is proved. (End of the proof of the claim.)
We prove (7) coordinate-wise. First we look at the coordinate 𝑟 . Consider the set𝑊 of all vectors

𝑢𝑇𝑚 for which the coordinate 𝑟 is 0. If we show that the sum of the corresponding coefficients of the

vectors in𝑊 is −1, using the claim we will deduce the result in this case. We distinguish 2 cases:

Case (I): 𝑟 = 0. By the definition of 𝑢𝑇 , in this case the set𝑊 contains two vectors, 𝑢 [𝑘] and 𝑢∅ .
The corresponding coefficients are 𝜆𝑟,0 = − 1

2
and 𝜆𝑟,2𝑘−1 = − 1

2
(since 𝑘 is even), which sum up to

−1.
Case (II): 𝑟 > 0. As in the proof of the claim, let 𝑏1𝑏2 . . . 𝑏𝑘 be the binary representation of 𝑟 ,

and choose a coordinate 1 ≤ 𝑖 ≤ 𝑘 for which 𝑏𝑖 = 1. Partition the vectors in𝑊 into pairs where

𝑢𝑇𝑚
1

, 𝑢𝑇𝑚
2

is a pair if and only if𝑚1,𝑚2 differ in the 𝑖-th coordinate only. This is clearly a partition

of all vectors, and by the definition of 𝑢𝑇 , each such pair is either contained in𝑊 or disjoint from

𝑊 so this is indeed a partition of𝑊 . (Note that 𝑢𝑇𝑚
1

[𝑟] is determined by 𝑇𝑚1
∩ zeros(𝑟) which is

5
The Xor of two integers is defined as the bitwise Boolean Xor of their binary representations, where the Boolean Xor of

two bits is their sum modulo 2. The And of two integers is defined the same way with the Boolean And function which is

defined as And(𝑖, 𝑗) = 1 ⇐⇒ 𝑖 = 𝑗 = 1.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:11

in fact zeros(𝑚1) ∩ zeros(𝑟), and the same for𝑚2. Since𝑚1,𝑚2 differ in the 𝑖-th coordinate only,

and 𝑟 is not zero in this coordinate, this coordinate contributes nothing to the intersections, and

so both these intersections are empty or non-empty together. The intersection never equals [𝑘]
since 𝑟 > 0.) For every such pair in𝑊 , if it does not contain the negation of bin(𝑟), then there is

some other index 𝑗 ≠ 𝑖 in which 𝑟,𝑚1,𝑚2 are all 1. (This is because in all other coordinates𝑚1,𝑚2

are equal, and since they are not the negation of 𝑟 , there is some coordinate 𝑗 ≠ 𝑖 in which they

are equal to the 𝑗-th coordinate of 𝑟 . These coordinates cannot be all 0, since this would imply

𝑢𝑇𝑚
1

, 𝑢𝑇𝑚
2

∉𝑊 .) This implies that 𝑓2 gives𝑚1,𝑚2 the same value, and clearly 𝑓1 gives them different

parity values, so 𝜆𝑟,𝑚1
+ 𝜆𝑟,𝑚2

= 0. However, for the pair which contains the negation of 𝑟 (this pair

is clearly in𝑊), suppose without loss of generality the negation is𝑚1. Then 𝑓2 gives𝑚1,𝑚2 the

values 1, 0 respectively, and 𝑓1 gives𝑚1 an even value and𝑚2 an odd value (since 𝑘 is even), and so

𝜆𝑟,𝑚1
= 𝜆𝑟,𝑚2

= − 1

2
, and the overall sum is −1. This finishes the proof of (7) in the coordinate 𝑟 .

Now let 𝑟 ′ ≠ 𝑟 be some other coordinate, and let 𝑐1𝑐2 . . . 𝑐𝑘 be its binary representation. First,

if 𝑟 ′ = 2
𝑘 − 1 then for all𝑚 we have 𝑢𝑇𝑚 [𝑟 ′] = 0 by definition, so the linear combination of this

coordinate is 0. So suppose 𝑟 ′ < 2
𝑘 − 1. As before let𝑊 be the set of all vectors 𝑢𝑇𝑚 for which the

coordinate 𝑟 ′ is 0. We show that the sum of the corresponding coefficients is zero, and again deduce

the result using the claim. Now, there exists some index 𝑖 for which 𝑏𝑖 ≠ 𝑐𝑖 . Again we have two

cases:

Case (1): 𝑏𝑖 = 0, 𝑐𝑖 = 1. Partition the vectors in𝑊 into pairs where 𝑢𝑇𝑚
1

, 𝑢𝑇𝑚
2

is a pair if and

only if𝑚1,𝑚2 differ in the 𝑖-th coordinate only. This is clearly a partition of all the vectors, and by

the definition of 𝑢𝑇 , each such pair is either contained in𝑊 or disjoint from𝑊 , so this is indeed a

partition of𝑊 . For every such pair in𝑊 , 𝑓1 gives𝑚1,𝑚2 different parity values, and 𝑓2 gives them

the same value (since 𝑏𝑖 = 0), so 𝜆𝑟,𝑚1
, 𝜆𝑟,𝑚2

have opposite signs, so their sum is zero. This is true

for every pair in𝑊 , so the overall sum is zero.

Case (2) 𝑏𝑖 = 1, 𝑐𝑖 = 0. Here we consider two sub-cases:

Case (2a): 𝑟 ′ = 0. The only vectors in 𝑊 in this case are 𝑢 [𝑘] and 𝑢∅ . The corresponding

coefficients are 𝜆𝑟,0 =
1

2
(−1)Ham(𝑟)+1

and 𝜆𝑟,2𝑘−1 =
1

2
(−1)Ham(¬𝑟)

, where ¬𝑟 denotes the negation of

the binary representation of 𝑟 . Since 𝑘 is even, we know that 𝑟,¬𝑟 have the same parity, and so the

sum of the two coefficients is 0.

Case (2b): 𝑟 ′ ≠ 0. Choose some 𝑗 for which 𝑐 𝑗 = 1. Partition the vectors in𝑊 into pairs where

𝑢𝑇𝑚
1

, 𝑢𝑇𝑚
2

is a pair if and only if𝑚1,𝑚2 differ in the 𝑗-th coordinate only. The argument for this

being a partition of𝑊 is similar to the argument in Case (1). For each pair in𝑊 , 𝑓1 gives𝑚1,𝑚2 a

different parity as always, and 𝑓2 gives them the same value, since 𝑟,𝑚1,𝑚2 are all 1 in the index 𝑖

(similar argument as before), so the sum of coefficients is 0 for each pair, and so for all coefficients

corresponding to vectors in𝑊 .

This finishes the proof of (7), and so 𝑣𝑃 is a linear combination of the vectors 𝑢𝑇 . From the result

above and Lemma 13 we deduce that 𝐺 admits 𝑃-sparsification with error 𝜀 using 𝑂
(
𝑛𝜀−2 log 1

𝜀

)
hyperedges, as required. □

To complete the picture for even 𝑘 , we reduce to Proposition 14 by a simple “complementarity

trick”

Proposition 15. Let 𝑘 be an even number, and𝐺 a 𝑘-uniform hypergraph. Let 𝑃 be a 𝑘-ary Boolean
predicate. Then for every 𝜀 > 0,𝐺 admits 𝑃-sparsification with error 𝜀 using𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Proof. If 𝑃 (1, 1, . . . , 1) = 0 then we are done by Proposition 14. Otherwise, we have that

𝑃 (1, 1, . . . , 1) = 1, and consider 𝑃 : {0, 1}𝑘 → {0, 1} defined by 𝑃 (𝑏1, . . . , 𝑏𝑘) = 1 − 𝑃 (𝑏1, . . . , 𝑏𝑘),
so 𝑣

𝑃
is the negation of 𝑣𝑃 . Since 𝑃 has 𝑃 (1, 1, . . . , 1) = 0, Proposition 14 applies, and gives us a

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 Eden Pelleg and Stanislav Živný

subhypergraph 𝐺𝜀 for each 𝜀 > 0, such that for every assignment 𝑎 : 𝑉 → {0, 1} we have���� |𝐸 ||𝐸𝜀 |
Val

𝐺𝜀 ,𝑃
(𝑎) − Val

𝐺,𝑃
(𝑎)

���� ≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)) . (8)

Now, since 𝑣𝑃 + 𝑣
𝑃
= 1 we have

Val𝐺,𝑃 (𝑎) + Val
𝐺,𝑃

(𝑎) = ⟨𝑣𝑃 , 𝑣𝐺,𝑎⟩ + ⟨𝑣
𝑃
, 𝑣𝐺,𝑎⟩ = ⟨1, 𝑣𝐺,𝑎⟩ = |𝐸 |,

and the same is true for 𝐺𝜀 , and so we get

Val
𝐺,𝑃

(𝑎) = |𝐸 | − Val𝐺,𝑃 (𝑎) (9)

and

Val
𝐺𝜀 ,𝑃

(𝑎) = |𝐸𝜀 | − Val𝐺𝜀 ,𝑃 (𝑎). (10)

Using (9) and (10) in (8), we get���� |𝐸 ||𝐸𝜀 |
(|𝐸𝜀 | − Val𝐺𝜀 ,𝑃 (𝑎)) − (|𝐸 | − Val𝐺,𝑃 (𝑎))

���� ≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)),

and after rearranging, ���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� ≤ 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)),

as required. □

The final piece in the jigsaw shows how to reduce sparsification of 𝑘-uniform hypergraphs with

𝑘 odd to the case of (𝑘 + 1)-uniform hypergraphs by adding a universal vertex and extending the

original predicate by one dimension.

Proposition 16. Let 𝑘 be an odd number, and𝐺 = (𝑉 , 𝐸) a 𝑘-uniform hypergraph. Let 𝑃 be a 𝑘-ary
Boolean predicate. Then for every 𝜀 > 0, 𝐺 admits 𝑃-sparsification with error 𝜀 using 𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Proof. Let 𝜀 > 0 and denote 𝜀0 = 𝜀
𝑘

𝑘+1 . Consider the hypergraph 𝐺
′ = (𝑉 ′, 𝐸′) defined by

𝑉 ′ = 𝑉 ∪ {𝑣0} , 𝐸′ = {(𝑣1, . . . , 𝑣𝑘 , 𝑣0) : (𝑣1, . . . , 𝑣𝑘) ∈ 𝐸},
where 𝑣0 ∉ 𝑉 is a new vertex. Clearly 𝐺 ′

is a (𝑘 + 1)-uniform hypergraph, and 𝑘 + 1 is even. We

define a new predicate 𝑃 ′ : {0, 1}𝑘+1 → {0, 1} by

𝑃 ′ (𝑏1, . . . , 𝑏𝑘+1) =
{
1 𝑃 (𝑏1, . . . , 𝑏𝑘) = 1, 𝑏𝑘+1 = 1

0 otherwise

.

We may therefore apply Proposition 15 for 𝐺 ′, 𝑃 ′, 𝜀0 and deduce that for every assignment 𝑎′ :
𝑉 ′ → {0, 1} we have ���Val𝐺 ′

𝜀
0
,𝑃 ′ (𝑎′) − Val𝐺 ′,𝑃 ′ (𝑎′)

��� ≤ 𝜀0 (𝑑𝐺 ′ |Z𝑎′ | + vol𝐺 ′ (Z𝑎′)) (11)

for some subhypergraph 𝐺 ′
𝜀0

= (𝑉 ′, 𝐸′𝜀0 ⊆ 𝐸′) which does not depend on 𝑎′, and which satisfies

|𝐸′𝜀0 | = 𝑂
(
𝑛𝜀−2

0
log

1

𝜀0

)
= 𝑂

(
𝑛𝜀−2 log 1

𝜀

)
.

Let 𝐺𝜀0 = (𝑉 , 𝐸𝜀0 ⊆ 𝐸) be the corresponding subhypergraph of 𝐺 (so |𝐸𝜀0 | = 𝑂
(
𝑛𝜀−2 log 1

𝜀

)
), and

for every assignment 𝑎 : 𝑉 → {0, 1} define

𝑎′ : 𝑉 ′ → {0, 1} , 𝑎′ (𝑣) =
{
𝑎(𝑣) 𝑣 ∈ 𝑉
1 𝑣 = 𝑣0

.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:13

Since the hyperedge 𝑒 = (𝑣1, . . . , 𝑣𝑘) ∈ 𝐸 is counted in Val𝐺,𝑃 (𝑎) if and only if the hyperedge

𝑒′ = (𝑣1, . . . , 𝑣𝑟 , 𝑣0) ∈ 𝐸′ is counted in Val𝐺 ′,𝑃 ′ (𝑎′), we have that

Val𝐺,𝑃 (𝑎) = Val𝐺 ′,𝑃 ′ (𝑎′),

and the same is true for 𝐺𝜀0 and 𝐺
′
𝜀0
. We get���Val𝐺𝜀

0
,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

��� = ���Val𝐺 ′
𝜀
0
,𝑃 ′ (𝑎′) − Val𝐺 ′,𝑃 ′ (𝑎′)

���
≤ 𝜀0 (𝑑𝐺 ′ |Z𝑎′ | + vol𝐺 ′ (Z𝑎′))

= 𝜀0

(
(𝑘 + 1) |𝐸′ |

|𝑉 ′ | |Z𝑎 | + vol𝐺 (Z𝑎)
)

= 𝜀0

(
(𝑘 + 1) |𝐸 |
|𝑉 | + 1

|Z𝑎 | + vol𝐺 (Z𝑎)
)

≤ 𝜀0
𝑘 + 1

𝑘

(
𝑘 |𝐸 |
|𝑉 | |Z𝑎 | + vol𝐺 (Z𝑎)

)
= 𝜀 (𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎)) ,

where the second line is due to (11), the next two lines are by the definition of 𝐺 ′
and 𝑎′, the fifth

line is by rearranging, and the last line is by the definition of the average degree of 𝐺 . We get the

required result. □

Propositions 15 and 16 complete the proof of Theorem 10.

Remark 17. In the proof of Proposition 14 the hypergraph 𝐺𝜀 was chosen independently of the

predicate 𝑃 . Since Propositions 15 and 16 reduce to that case, we have in fact shown that for every

𝜀 > 0, Theorem 10 is witnessed by the same subhypergraph 𝐺𝜀 for all different predicates 𝑃 . This

will be important in the proof of Theorem 21.

Remark 18. We note that our main result, Theorem 10, extends Theorem 3 in the regime where

𝑘 is a constant, which is the main focus of this paper. However, Theorem 3 also works for non-

constant 𝑘 [7]. If 𝑘 is not a constant, it can be seen from the proof of Lemma 13 that the number

of hyperedges of the sparse subhypergraph is multiplied by a factor of 𝑂 (𝑚2) (since 𝑂 (𝑚) is
the proportion between 𝜀 and 𝜀0 given that the coefficients 𝜆𝑖 are constant). In Proposition 14

we have 𝑚 = 2
𝑘
, and so for 𝑘 not constant we get an additional factor of 4

𝑘
. Furthermore, in

Propositions 8 and 14 we obtain extra factors of 𝑘 , by considering the 𝑘-partite 𝑘-fold cover. While

the regime with non-constant 𝑘 is interesting for cuts, for arbitrary predicates one needs to be

careful about representation as the natural (explicit) representation of (non-symmetric) predicates

requires exponential space in the arity 𝑘 .

Remark 19. As observed by one of the reviewers, our sparsification result (Theorem 10) actually

shows sparsification under a stronger notion of sparsification, in which the right-hand side in (4)

in Definition 9 is tighter. Namely, in the notation of Definition 9, we can require that���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� ≤ 𝜀min(𝑑𝐺 |Z𝑎 | + vol𝐺 (Z𝑎), 𝑑𝐺 |Z𝑎′ | + vol𝐺 (Z𝑎′)), (12)

where 𝑎′ (𝑣) = 1 − 𝑎(𝑣) for every 𝑣 ∈ 𝑉 . In detail, Theorem 3 works for any assignment and thus in

particular for 𝑎′, the value of the Cut predicate is the same on 𝑎 and 𝑎′ (and thus also the left-hand

side of (12) is the same for 𝑎 and 𝑎′), and the rest is reductions that preserve (12).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 Eden Pelleg and Stanislav Živný

4 SPARSIFICATION OF NON-BOOLEAN PREDICATES
We now focus on non-Boolean predicates; i.e., predicates of the form 𝑃 : 𝐷𝑘 → {0, 1} with |𝐷 | > 2.

Without loss of generality, we assume𝐷 = [𝑞] for some 𝑞 ≥ 2. The most natural way of generalising

Theorem 10 to larger domains appears to be to use the same bound with Z𝑎 = {𝑣 ∈ 𝑉 : 𝑎(𝑣) = 0}.
This, however, cannot give the desired sparsification result (cf. Section 5). Instead we use a different

and somewhat weaker kind of generalisation of the Boolean case, and show that all hypergraphs

are still sparsifiable with respect to all predicates using this definition.

Definition 20. Let 𝑃 : 𝐷𝑘 → {0, 1} be a 𝑘-ary predicate where 𝐷 = [𝑞]. We say that a 𝑘-uniform

hypergraph𝐺 = (𝑉 , 𝐸) admits all-but-one 𝑃-sparsification with error 𝜀 using𝑂 (𝑓 (𝑛, 𝜀)) hyperedges
if there exists a subhypergraph 𝐺𝜀 = (𝑉 , 𝐸𝜀 ⊆ 𝐸) with |𝐸𝜀 | = 𝑂 (𝑓 (𝑛, 𝜀)) such that for every

assignment 𝑎 : 𝑉 → 𝐷 we have���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� ≤ 𝜀 (𝑑𝐺 |𝑀𝑎 | + vol𝐺 (𝑁𝑎)), (13)

where𝑀𝑎 is the largest set among the sets {𝑣 ∈ 𝑉 : 𝑎(𝑣) = 𝑖}, 𝑁𝑎 is the set with the largest volume

among the sets {𝑣 ∈ 𝑉 : 𝑎(𝑣) = 𝑖} for 0 ≤ 𝑖 ≤ 𝑞 − 2, and 𝑑𝐺 is the average degree in 𝐺 .

Observe that the maximum in Definition 20 is over 𝑖 = 0, . . . , 𝑞 − 2 without 𝑖 = 𝑞 − 1, hence the

name “all-but-one”. We note that there is nothing special about 𝑞 − 1 and any value from [𝑞] could
be chosen in Definition 20.

Under Definition 20, Theorem 10 generalises.

Theorem 21. For every 𝑘-uniform hypergraph𝐺 = (𝑉 , 𝐸), every 𝑘-ary predicate 𝑃 : 𝐷𝑘 → {0, 1}
with 𝐷 = [𝑞] (𝑘, 𝑞 are constants), and every 𝜀 > 0, 𝐺 admits 𝑃 all-but-one sparsification with error 𝜀
using 𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Note that in the case of 𝑞 = 2 we have 𝑃 : {0, 1}𝑘 → {0, 1}, and Definition 20 and Theorem 21

coincide with Definition 9 and Theorem 10. This is because when 𝑞 = 2 the definitions of𝑀𝑎, 𝑁𝑎

coincide with the definition of Z𝑎 in the Boolean case.

In order to prove Theorem 21, we will generalise our notations from Section 3. For a 𝑘-ary

predicate 𝑃 : 𝐷𝑘 → {0, 1} we consider the vector 𝑣𝑃 ∈ R𝑞𝑘 , defined by 𝑣𝑃 [𝑖] = 𝑃 (rep𝑞,𝑘 (𝑖)).
For a given hypergraph 𝐺 and an assignment 𝑎, we consider the vector 𝑣𝐺,𝑎 ∈ R𝑞𝑘 defined by

𝑣𝐺,𝑎 [𝑖] =
���{(𝑣1, . . . , 𝑣𝑘) ∈ 𝐸 : (𝑎(𝑣1), . . . , 𝑎(𝑣𝑘)) = rep𝑞,𝑘 (𝑖)}

���. In other words, each coordinate of 𝑣𝐺,𝑎

counts the hyperedges in 𝐺 whose vertices are assigned some specific set of values by 𝑎. Under

these notations, just as before, we get Val𝐺,𝑃 (𝑎) = ⟨𝑣𝑃 , 𝑣𝐺,𝑎⟩, where ⟨·, ·⟩ is the standard inner

product in R𝑞
𝑘

.

We start by proving the result for singleton predicates, i.e. for predicates 𝑃 such that 𝑣𝑃 = 𝑒𝑟 for

some 0 ≤ 𝑟 ≤ 𝑞𝑘 − 1.

Lemma 22. Let 𝐺 = (𝑉 , 𝐸) be a 𝑘-uniform hypergraph, and 𝑃 : 𝐷𝑘 → {0, 1} a 𝑘-ary singleton
predicate with 𝐷 = [𝑞] (𝑘, 𝑞 are constants). For every 𝜀 > 0,𝐺 admits 𝑃 all-but-one sparsification with
error 𝜀 using 𝑂

(
𝑛𝜀−2 log 1

𝜀

)
hyperedges.

Proof. Denote 𝜀0 =
𝜀
𝑞
. Let 𝛾 (𝐺) = (𝑉𝛾 , 𝐸𝛾) be the 𝑘-partite 𝑘-fold cover of 𝐺 , and let 𝛾 (𝐺)𝜀0 =

(𝑉𝛾 , 𝐸
𝛾
𝜀0 ⊆ 𝐸𝛾) be the subhypergraph promised by Theorem 10. From Remark 17 we know that this

is the same subhypergraph for all predicates, and it does not depend on the choice of 𝑃 . As before,

let 𝐺𝜀0 = (𝑉 , 𝐸𝜀0 ⊆ 𝐸) be the subhypergraph of 𝐺 which satisfies 𝛾 (𝐺𝜀0) = 𝛾 (𝐺)𝜀0 .
Let 𝑟 be the integer for which 𝑣𝑃 = 𝑒𝑟 , and denote 𝑢𝑟 = rep𝑞,𝑘 (𝑟). Consider the set 𝑇 = {𝑖 ∈

[𝑘] : 𝑢𝑟 [𝑖] = 𝑞 − 1}. For each assignment 𝑎 : 𝑉 → [𝑞], we want to find a Boolean assignment

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:15

𝑎𝑟 : 𝑉
𝛾 → {0, 1} which does not assign 0 to any vertices 𝑣 (𝑖) which have 𝑎(𝑣) = 𝑞 − 1, but which

can also be used to show 𝑃-sparsification. We define

𝑎𝑟 (𝑣 (𝑖)) =


0 𝑖 ∉ 𝑇 and 𝑎(𝑣) = 𝑢𝑟 [𝑖]
0 𝑖 ∈ 𝑇 and 𝑎(𝑣) ≠ 𝑞 − 1

1 otherwise

.

We also define a 𝑘-ary Boolean predicate 𝑃𝑟 : {0, 1}𝑘 → {0, 1} to only have a single truth value (a

singleton) which is (𝑏1, . . . , 𝑏𝑘) where 𝑏𝑖 = 0 if 𝑖 ∉ 𝑇 and 𝑏𝑖 = 1 otherwise.

Observe that

Val𝐺,𝑃 (𝑎) = Val𝛾 (𝐺),𝑃𝑟 (𝑎𝑟), (14)

since both count the same hyperedges. The same is true for any hypergraph, and specifically for

𝐺𝜀0 , that is

Val𝐺𝜀
0
,𝑃 (𝑎) = Val𝛾 (𝐺𝜀

0
),𝑃𝑟 (𝑎𝑟). (15)

Using Theorem 10 for 𝛾 (𝐺), 𝑃𝑟 , 𝜀0 and 𝑎𝑟 we get���� |𝐸 ||𝐸𝜀0 |
Val𝐺𝜀

0
,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� = ����� |𝐸𝛾 ||𝐸𝛾𝜀0 |
Val𝛾 (𝐺𝜀

0
),𝑃𝑟 (𝑎𝑟) − Val𝛾 (𝐺),𝑃𝑟 (𝑎𝑟)

�����
≤ 𝜀0 (𝑑𝛾 (𝐺) |Z𝑎𝑟 | + vol𝛾 (𝐺) (Z𝑎𝑟))

≤ 𝜀0
(
𝑑𝐺

𝑘
· 𝑘𝑞 |𝑀𝑎 | + 𝑞 · vol𝐺 (𝑁𝑎)

)
= 𝜀 (𝑑𝐺 |𝑀𝑎 | + vol𝐺 (𝑁𝑎)) ,

where the first line follows from (14), (15) and Definition 6, the second line is the application of

Theorem 10, the third is again Definition 6 and the definitions of 𝑎𝑟 , 𝑀𝑎, 𝑁𝑎 , and the last is the

definition of 𝜀0. This is true for every assignment 𝑎. In addition we have

|𝐸𝜀0 | = 𝑂
(
𝑛𝜀−2

0
log

1

𝜀0

)
= 𝑂

(
𝑛𝜀−2 log

1

𝜀

)
,

so 𝐺𝜀0 is the required witness. □

The proof of Theorem 21 is now an application of Lemma 22 similar to the proof of Lemma 13.

Proof of Theorem 21. The vector 𝑣𝑃 satisfies

𝑣𝑃 =

𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟𝑒𝑟 ,

for some 𝜆𝑟 ∈ {0, 1} and 𝑒𝑟 vectors of the standard basis of R𝑞
𝑘

. Therefore, for every assignment

𝑎 : 𝑉 → 𝐷 , we have

Val𝐺,𝑃 (𝑎) = ⟨𝑣𝑃 , 𝑣𝐺,𝑎⟩ =
𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟 ⟨𝑒𝑟 , 𝑣𝐺,𝑎⟩ =
𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟Val𝐺,𝑃𝑟 (𝑎) (16)

where 𝑃𝑟 is the predicate corresponding to the vector 𝑒𝑟 . Let𝐺𝜀0 = (𝑉 , 𝐸𝜀0 ⊆ 𝐸) be the subhypergraph
of𝐺 promised by Lemma 22 for 𝜀0 =

𝜀

𝑞𝑘
. Note that this is the same subhypergraph for all predicates

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 Eden Pelleg and Stanislav Živný

𝑃𝑟 (see proof of the lemma). Equation (16) is true for any other hypergraph as well, and in particular

𝐺𝜀0 . Using Lemma 22 for each 𝑃𝑟 , we get���� |𝐸 ||𝐸𝜀0 |
Val𝐺𝜀

0
,𝑃 (𝑎) − Val𝐺,𝑃 (𝑎)

���� =
������ |𝐸 ||𝐸𝜀0 |

𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟Val𝐺𝜀
0
,𝑃𝑟 (𝑎) −

𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟Val𝐺,𝑃𝑟 (𝑎)

������
≤

𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟

���� |𝐸 ||𝐸𝜀0 |
Val𝐺𝜀

0
,𝑃𝑟 (𝑎) − Val𝐺,𝑃𝑟 (𝑎)

����
≤

𝑞𝑘−1∑︁
𝑟=0

𝜆𝑟𝜀0 (𝑑𝐺 |𝑀𝑎 | + vol𝐺 (𝑁𝑎))

≤ 𝑞𝑘𝜀0 (𝑑𝐺 |𝑀𝑎 | + vol𝐺 (𝑁𝑎))
= 𝜀 (𝑑𝐺 |𝑀𝑎 | + vol𝐺 (𝑁𝑎)),

where the first line follows from (16) for the different hypergraphs, the second line from the triangle

inequality, the third from Lemma 22, the fourth is due to 𝜆𝑟 ∈ {0, 1} for all 𝑟 , and the last is the

definition of 𝜀0. Again,

|𝐸𝜀0 | = 𝑂
(
𝑛𝜀−2

0
log

1

𝜀0

)
= 𝑂

(
𝑛𝜀−2 log

1

𝜀

)
,

so we have found an appropriate subhypergraph of 𝐺 . □

Remark 23. Similarly to Remark 18, if 𝑘 and 𝑞 are not constant we get an additional factor of 𝑞2𝑘 .

5 OPTIMALITY OF ALL-BUT-ONE SPARSIFICATION
One might wonder if there is a different, perhaps stronger way to define sparsification for predicates

on non-Boolean domains. The following example shows that all-but-one sparsification is optimal.

For a hypergraph 𝐺 = (𝑉 , 𝐸) and a fixed assignment 𝑎 : 𝑉 → [𝑞] denote 𝑆𝑖 = {𝑣 ∈ 𝑉 : 𝑎(𝑣) = 𝑖}
(so 𝑆0 = Z𝑎). The definition of all-but-one sparsification lets us take a bound which depends on

the sizes and volumes of all the sets 𝑆𝑖 except for 𝑆𝑞−1. In fact, if we try to take a bound which

depends on fewer of these sets, the definition fails to generalise even the most basic case of the

Cut predicate. To see this, it is sufficient to consider the graph case, i.e. 𝑘 = 2. Let us suppose,

without loss of generality, that our bound does not depend on 𝑆𝑞−2, 𝑆𝑞−1. Consider the predicate
Cut : [𝑞]2 → {0, 1} defined by Cut(𝑥,𝑦) = 1 ⇐⇒ 𝑥 ≠ 𝑦. A simple (but lengthy) argument below

shows that cliques do not have a Cut-sparsifier using such a definition. Therefore, no definition

with a bound which depends on “less” is possible, under the current assumptions.

Let𝐺 = 𝐾𝑛 be the complete graph with 𝑛 vertices 𝑣1, . . . , 𝑣𝑛 . Moreover, let𝐺𝜀 be a subgraph of𝐺 ,

and consider the predicate Cut : [𝑞]2 → {0, 1} defined by Cut(𝑥,𝑦) = 1 ⇐⇒ 𝑥 ≠ 𝑦.

We consider two cases:

Case (1): All vertices in 𝐺𝜀 have the same degree 𝑑 > 0.

We look at the assignment 𝑎 : 𝑉 → {0, 1} defined as 𝑎(𝑣1) = 𝑎(𝑣2) = 𝑞 − 2 and for all 𝑖 > 2,

𝑎(𝑣𝑖) = 𝑞 − 1. If 𝐺𝜀 is a Cut-sparsifier of 𝐺 then���� |𝐸 ||𝐸𝜀 |
Val𝐺𝜀 ,Cut (𝑎) − Val𝐺,Cut (𝑎)

���� ≤ 𝜀 (𝑑𝐺 |𝑆 | + vol𝐺 (𝑆)) = 0,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

Additive Sparsification of CSPs 1:17

where 𝑆 is some set which depends only on the empty sets 𝑆0, . . . , 𝑆𝑞−3. If 𝑣1, 𝑣2 are neighbours in
𝐺𝜀 this implies

𝑛 − 1

𝑑
=

𝑛 (𝑛−1)
2

𝑛𝑑
2

=
|𝐸 |
|𝐸𝜀 |

=
Val𝐺,Cut (𝑎)
Val𝐺𝜀 ,Cut (𝑎)

=
2(𝑛 − 2)
2(𝑑 − 1) =

𝑛 − 2

𝑑 − 1

,

and if they are not then

𝑛 − 1

𝑑
=

|𝐸 |
|𝐸𝜀 |

=
Val𝐺,Cut (𝑎)
Val𝐺𝜀 ,Cut (𝑎)

=
2(𝑛 − 2)

2𝑑
=
𝑛 − 2

𝑑
.

The second option is a contradiction, and the first option implies 𝑑 = 𝑛 − 1, which means |𝐸𝜀 | = |𝐸 |,
so 𝐺𝜀 is not a sparsifier.

Case (2): There exist two vertices 𝑣𝑖 , 𝑣 𝑗 with degrees 𝑑𝑖 ≠ 𝑑 𝑗 in 𝐺𝜀 .

We look at two assignments 𝑎1 : 𝑉 → {0, 1} defined by 𝑎1 (𝑣𝑖) = 𝑞 − 2 and 𝑎1 (𝑣) = 𝑞 − 1 for

𝑣 ≠ 𝑣𝑖 , and 𝑎2 : 𝑉 → {0, 1} defined by 𝑎2 (𝑣 𝑗) = 𝑞 − 2 and 𝑎2 (𝑣) = 𝑞 − 1 for 𝑣 ≠ 𝑣 𝑗 . Since

Val𝐺,Cut (𝑎1)
Val𝐺𝜀 ,Cut (𝑎1)

=
𝑛 − 1

𝑑𝑖
≠
𝑛 − 1

𝑑 𝑗
=

Val𝐺,Cut (𝑎2)
Val𝐺𝜀 ,Cut (𝑎2)

,

at least one side of the inequality is different from
|𝐸 |
|𝐸𝜀 | . Suppose without loss of generality this is

the left hand side. Then���� |𝐸 ||𝐸𝜀 |
𝑉𝑎𝑙𝐺𝜀 ,Cut (𝑎1) −𝑉𝑎𝑙𝐺,Cut (𝑎1)

���� > 0 = 𝜀 (𝑑𝐺 |𝑆 | + vol𝐺 (𝑆)),

where again 𝑆 is some set not depending on 𝑆𝑞−2, 𝑆𝑞−1, and so 𝐺𝜀 is not a Cut-sparsifier of 𝐺 .
Note that the same argument works for any predicate 𝑃 with 𝑃 (𝑞 − 2, 𝑞 − 1) = 𝑃 (𝑞 − 1, 𝑞 − 2) = 1

and 𝑃 (𝑞 − 2, 𝑞 − 2) = 𝑃 (𝑞 − 1, 𝑞 − 1) = 0. Thus if a definition does not depend on more than just

𝑆𝑞−2, 𝑆𝑞−1, it specifically does not depend on these two, so the same argument still works.

ACKNOWLEDGMENTS
We would like to thank the anonymous referees of both the conference [29] and this full version

of the paper. Stanislav Živný was supported by a Royal Society University Research Fellowship.

This project has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The paper

reflects only the authors’ views and not the views of the ERC or the European Commission. The

European Union is not liable for any use that may be made of the information contained therein.

This work was also supported by UKRI EP/X024431/1.

REFERENCES
[1] Kook Jin Ahn and Sudipto Guha. 2009. Graph Sparsification in the Semi-streaming Model. In Proceedings of the 36th

International Colloquium on Automata, Languages and Programming (ICALP’09), Part II (Lecture Notes in Computer
Science, Vol. 5556). Springer, 328–338. https://doi.org/10.1007/978-3-642-02930-1_27

[2] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. 1999. Fast Estimation of Diameter and

Shortest Paths (Without Matrix Multiplication). SIAM J. Comput. 28, 4 (1999), 1167–1181. https://doi.org/10.1137/

S0097539796303421

[3] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. 1993. On sparse spanners of weighted

graphs. Discrete & Computational Geometry 9, 1 (1993), 81–100. https://doi.org/10.1007/BF02189308

[4] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin Zhang. 2016. On Sketching

Quadratic Forms. In Proceedings of the 7th ACM Conference on Innovations in Theoretical Computer Science (ITCS’16).
ACM, 311––319. https://doi.org/10.1145/2840728.2840753

[5] Baruch Awerbuch. 1985. Complexity of Network Synchronization. J. ACM 32, 4 (1985), 804–823. https://doi.org/10.

1145/4221.4227

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1007/978-3-642-02930-1_27
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/2840728.2840753
https://doi.org/10.1145/4221.4227
https://doi.org/10.1145/4221.4227

1:18 Eden Pelleg and Stanislav Živný

[6] Baruch Awerbuch, Yossi Azar, Avrim Blum, and Santosh S. Vempala. 1998. New Approximation Guarantees for

Minimum-Weight k-Trees and Prize-Collecting Salesmen. SIAM J. Comput. 28, 1 (1998), 254–262. https://doi.org/10.

1137/S009753979528826X

[7] Nikhil Bansal, Ola Svensson, and Luca Trevisan. 2019. New Notions and Constructions of Sparsification for Graphs

and Hypergraphs. Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science (FOCS’19) (2019),
910–928. https://doi.org/10.1109/FOCS.2019.00059

[8] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. 2005. New constructions of (alpha, beta)-

spanners and purely additive spanners. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’05). SIAM, 672–681. http://dl.acm.org/citation.cfm?id=1070432.1070526

[9] Surender Baswana and Sandeep Sen. 2007. A simple and linear time randomized algorithm for computing sparse

spanners in weighted graphs. Random Struct. Algorithms 30, 4 (2007), 532–563. https://doi.org/10.1002/rsa.20130

[10] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. 2014. Twice-Ramanujan Sparsifiers. SIAM Rev. 56, 2 (2014),
315–334. https://doi.org/10.1137/130949117

[11] András A. Benczúr and David R. Karger. 1996. Approximating s-t Minimum Cuts in 𝑂̃ (𝑛2) Time. In Proceedings of the
28th Annual ACM Symposium on Theory of Computing (STOC’96). ACM, 47–55. https://doi.org/10.1145/237814.237827

[12] Béla Bollobás, Don Coppersmith, and Michael Elkin. 2005. Sparse Distance Preservers and Additive Spanners. SIAM J.
Discret. Math. 19, 4 (2005), 1029–1055. https://doi.org/10.1137/S0895480103431046

[13] Richard A. Brualdi, Frank Harary, and Zevi Miller. 1980. Bigraphs versus digraphs via matrices. Journal of Graph
Theory 4, 1 (1980), 51–73. https://doi.org/10.1002/jgt.3190040107

[14] Silvia Butti and Stanislav Živný. 2020. Sparsification of Binary CSPs. SIAM J. Discret. Math. 34, 1 (2020), 825–842.
https://doi.org/10.1137/19M1242446

[15] Parinya Chalermsook, Syamantak Das, Bundit Laekhanukit, Yunbum Kook, Yang P Liu, Richard Peng, Mark Sellke, and

Daniel Vaz. 2021. Vertex Sparsification for Edge Connectivity. In Proceedings of the 32nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’21). https://arxiv.org/abs/2007.07862

[16] Shiri Chechik. 2013. New Additive Spanners. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA’13). SIAM, 498–512. https://doi.org/10.1137/1.9781611973105.36

[17] Edith Cohen. 1998. Fast Algorithms for Constructing t-Spanners and Paths with Stretch t. SIAM J. Comput. 28, 1 (1998),
210–236. https://doi.org/10.1137/S0097539794261295

[18] Dorit Dor, Shay Halperin, and Uri Zwick. 2000. All-Pairs Almost Shortest Paths. SIAM J. Comput. 29, 5 (2000), 1740–1759.
https://doi.org/10.1137/S0097539797327908

[19] Michael Elkin and Ofer Neiman. 2020. Near-Additive Spanners and Near-Exact Hopsets, A Unified View. Bull. EATCS
130 (2020). http://bulletin.eatcs.org/index.php/beatcs/article/view/608/624

[20] Arnold Filtser and Robert Krauthgamer. 2017. Sparsification of Two-Variable Valued Constraint Satisfaction Problems.

SIAM J. Discret. Math. 31, 2 (2017), 1263–1276. https://doi.org/10.1137/15M1046186

[21] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. 2019. A General Framework for

Graph Sparsification. SIAM J. Comput. 48, 4 (2019), 1196–1223. https://doi.org/10.1137/16M1091666

[22] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. 1998. Characterizing Multiterminal

Flow Networks and Computing Flows in Networks of Small Treewidth. J. Comput. Syst. Sci. 57, 3 (1998), 366–375.
https://doi.org/10.1006/jcss.1998.1592

[23] Dmitry Kogan and Robert Krauthgamer. 2015. Sketching Cuts in Graphs and Hypergraphs. In Proceedings of the 6th
ACM Conference on Innovations in Theoretical Computer Science (ITCS’15). ACM, 367–376. https://doi.org/10.1145/

2688073.2688093

[24] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman. 2016. Sparsified Cholesky and

multigrid solvers for connection laplacians. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing (STOC’16). ACM, 842–850. https://doi.org/10.1145/2897518.2897640

[25] Frank Thomson Leighton and Ankur Moitra. 2010. Extensions and limits to vertex sparsification. In Proceedings of the
42nd ACM Symposium on Theory of Computing (STOC’2010). ACM, 47–56. https://doi.org/10.1145/1806689.1806698

[26] Ankur Moitra. 2009. Approximation Algorithms for Multicommodity-Type Problems with Guarantees Independent of

the Graph Size. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09). IEEE
Computer Society, 3–12. https://doi.org/10.1109/FOCS.2009.28

[27] Ilan Newman and Yuri Rabinovich. 2013. On Multiplicative Lambda-Approximations and Some Geometric Applications.

SIAM J. Comput. 42, 3 (2013), 855–883. https://doi.org/10.1137/100801809

[28] David Peleg and Alejandro A Schäffer. 1989. Graph spanners. Journal of graph theory 13, 1 (1989), 99–116. https:

//doi.org/10.1002/jgt.3190130114

[29] Eden Pelleg and Stanislav Živný. 2021. Additive Sparsification of CSPs. In Proceedings of the 29th Annual European
Symposium on Algorithms (ESA’21) (LIPIcs, Vol. 204). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 75:1–75:15.

https://doi.org/10.4230/LIPIcs.ESA.2021.75

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1137/S009753979528826X
https://doi.org/10.1137/S009753979528826X
https://doi.org/10.1109/FOCS.2019.00059
http://dl.acm.org/citation.cfm?id=1070432.1070526
https://doi.org/10.1002/rsa.20130
https://doi.org/10.1137/130949117
https://doi.org/10.1145/237814.237827
https://doi.org/10.1137/S0895480103431046
https://doi.org/10.1002/jgt.3190040107
https://doi.org/10.1137/19M1242446
https://arxiv.org/abs/2007.07862
https://doi.org/10.1137/1.9781611973105.36
https://doi.org/10.1137/S0097539794261295
https://doi.org/10.1137/S0097539797327908
http://bulletin.eatcs.org/index.php/beatcs/article/view/608/624
https://doi.org/10.1137/15M1046186
https://doi.org/10.1137/16M1091666
https://doi.org/10.1006/jcss.1998.1592
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1145/1806689.1806698
https://doi.org/10.1109/FOCS.2009.28
https://doi.org/10.1137/100801809
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.4230/LIPIcs.ESA.2021.75

Additive Sparsification of CSPs 1:19

[30] Liam Roditty, Mikkel Thorup, and Uri Zwick. 2005. Deterministic Constructions of Approximate Distance Oracles and

Spanners. In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP’05)
(Lecture Notes in Computer Science, Vol. 3580). Springer, 261–272. https://doi.org/10.1007/11523468_22

[31] Tasuku Soma and Yuichi Yoshida. 2019. Spectral Sparsification of Hypergraphs. In Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’19). 2570–2581. https://doi.org/10.1137/1.9781611975482.159

[32] Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsification by Effective Resistances. SIAM J. Comput. 40, 6
(2011), 1913–1926. https://doi.org/10.1137/080734029

[33] Daniel A. Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for graph partitioning, graph sparsifica-

tion, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04).
ACM, 81–90. https://doi.org/10.1145/1007352.1007372

[34] Daniel A. Spielman and Shang-Hua Teng. 2011. Spectral Sparsification of Graphs. SIAM J. Comput. 40, 4 (2011),

981–1025. https://doi.org/10.1137/08074489X

[35] David P. Woodruff. 2010. Additive Spanners in Nearly Quadratic Time. In Proceedings of the 37th International
Colloquium on Automata, Languages and Programming (ICALP’10) (Lecture Notes in Computer Science, Vol. 6198).
Springer, 463–474. https://doi.org/10.1007/978-3-642-14165-2_40

Received 29 June 2021; revised 9 July 2023; accepted 19 September 2023

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1007/11523468_22
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1137/080734029
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1137/08074489X
https://doi.org/10.1007/978-3-642-14165-2_40

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	3 Sparsification of Boolean Predicates
	4 Sparsification of Non-Boolean Predicates
	5 Optimality of All-But-One Sparsification
	Acknowledgments
	References

