
Improved hardness for H-colourings of G-colourable graphs∗

Marcin Wrochna and Stanislav Živný†

Abstract
We present new results on approximate colourings of graphs
and, more generally, approximate H-colourings and promise
constraint satisfaction problems.

First, we show NP-hardness of colouring k-colourable
graphs with

(
k
bk/2c

)
− 1 colours for every k ≥ 4. This im-

proves the result of Buĺın, Krokhin, and Opršal [STOC’19],
who gave NP-hardness of colouring k-colourable graphs
with 2k − 1 colours for k ≥ 3, and the result of Huang
[APPROX-RANDOM’13], who gave NP-hardness of colour-

ing k-colourable graphs with 2Ω(k1/3) colours for sufficiently
large k. Thus, for k ≥ 4, we improve from known linear/sub-
exponential gaps to exponential gaps.

Second, we show that the topology of the box complex
of H alone determines whether H-colouring of G-colourable
graphs is NP-hard for all (non-bipartite, H-colourable) G.
This formalises the topological intuition behind the result
of Krokhin and Opršal [FOCS’19] that 3-colouring of G-
colourable graphs is NP-hard for all (3-colourable, non-
bipartite)G. We use this technique to establish NP-hardness
of H-colouring of G-colourable graphs for H that include
but go beyond K3, including square-free graphs and circular
cliques (leaving K4 and larger cliques open).

Underlying all of our proofs is a very general observa-
tion that adjoint functors give reductions between promise
constraint satisfaction problems.

The full version [55] containing detailed proofs is avail-
able at https://arxiv.org/abs/1907.00872.

1 Introduction

Graph colouring is one of the most fundamental and
studied problems in combinatorics and computer sci-
ence. A graph G is called k-colourable if there is an
assignment of colours {1, 2, . . . , k} to the vertices of G
so that any two adjacent vertices are assigned different
colours. The chromatic number of G, denoted by χ(G),
is the smallest integer k for which G is k-colourable. De-
ciding whether χ(G) ≤ k appeared on Karp’s original
list of 21 NP-complete problems [35], and is NP-hard
for every k ≥ 3. In particular, it is NP-hard to decide
whether χ(G) ≤ 3 or χ(G) > 3. Put differently (thanks
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to self-reducibility of graph colouring), it is NP-hard
to find a 3-colouring of G even if G is promised to be
3-colourable.

In the approximate graph colouring problem, we
are allowed to use more colours than needed. For
instance, given a 3-colourable graph G on n vertices,
can we find a colouring of G using significantly fewer
than n colours? On the positive side, the currently
best polynomial-time algorithm of Kawarabayashi and
Thorup [36] finds a colouring using O(n0.19996) colours.
Their work continues a long line of research and is
based on a semidefinite relaxation. On the negative
side, it is believed that finding a c-colouring of a k-
colourable graph is NP-hard for all constants 3 ≤ k ≤ c.
Already in this regime (let alone for non-constant c)
our understanding remains rather limited, despite lots
of work and the development of complex techniques, as
we will survey in Section 1.1.

A natural and studied generalisation of graph
colourings is that of graph homomorphisms and, more
generally, constraint satisfaction problems [32].

Given two graphs G and H, a map h : V (G) →
V (H) is a homomorphism from G to H if h preserves
edges; that is, if {h(u), h(v)} ∈ E(H) whenever {u, v} ∈
E(G) [31]. A celebrated result of Hell and Nešetřil
established a dichotomy for the homomorphism problem
with a fixed target graph H, also known as the H-
colouring problem: deciding whether an input graph G
has a homomorphism to H is solvable in polynomial
time if H is bipartite or if H has a loop; for all other H
this problem is NP-hard [30]. Note that the H-colouring
problem for H = Kk, the complete graph on k vertices,
is precisely the graph colouring problem with k colours.

The constraint satisfaction problem (CSP) is a gen-
eralisation of the graph homomorphism problem from
graphs to arbitrary relational structures. One type
of CSP that has attracted a lot of attention is the
one with a fixed target structure, also known as the
non-uniform CSP; see, e.g., the work of Jeavons, Co-
hen, and Gyssens [34], Bulatov [14, 16], and Barto and
Kozik [5, 6]. Following the above mentioned dichotomy
of Hell and Nešetřil for the H-colouring [30] and a di-
chotomy result of Schaefer for Boolean CSPs [48], Feder
and Vardi famously conjectured a dichotomy for all non-
uniform CSPs [23]. The Feder-Vardi conjecture was
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recently confirmed independently by Bulatov [17] and
Zhuk [57]. In fact, both proofs establish the so-called
“algebraic dichotomy”, conjectured by Bulatov, Jeav-
ons, and Krokhin [15], which delineates the tractabil-
ity boundary in algebraic terms. A high-level idea of
the tractability boundary is that of higher-order sym-
metries, called polymorphisms, which allow to combine
several solutions to a CSP instance into a new solution.
The lack of non-trivial1 polymorphisms guarantees NP-
hardness, as shown already in [15]. The work of Bula-
tov and Zhuk show that any non-trivial polymorphism
guarantees tractability. We refer the reader to a recent
accessible survey by Barto, Krokhin, and Willard on the
algebraic approach to CSPs [7].

Given two graphs G an H such that G is H-
colourable (i.e., there is a homomorphism from G
to H), the promise constraint satisfaction problem
parametrised by G and H, denoted by PCSP(G,H),
is the following computational problem: given a G-
colourable graph, find an H-colouring of this graph.2

More generally, G and H do not have to be graphs but
arbitrary relational structures. Note that if G = H
then we obtain the (search version of the) standard H-
colouring and constraint satisfaction problem.

PCSPs have been studied as early as in the classic
work of Garey and Johnson [26] on approximate graph
colouring but a systematic study originated in the paper
of Austrin, Guruswami, and H̊astad [3], who studied a
promise version of (2k+1)-SAT, called (2+ε)-SAT. In a
series of papers [10, 12, 13], Brakensiek and Guruswami
linked PCSPs to the universal-algebraic methods devel-
oped for the study of non-uniform CSPs [7]. In par-
ticular, the notion of weak polymorphisms, identified
in [3], allowed for some ideas developed for CSPs to be
be used in the context of PCSPs. The algebraic theory
of PCSPs was then lifted to an abstract level by Buĺın,
Krokhin, and Opršal in [18]. Consequently, this theory
was used by Ficak, Kozik, Oľsák, and Stankiewicz to
obtain a dichotomy for symmetric Boolean PCSPs [24],
thus improving on an earlier result from [12], which gave
a dichotomy for symmetric Boolean PCSP with folding
(negations allowed).

1We note that projections/dictators are not the only trivial

polymorphims, cf. [7, Example 41].
2What we described is the “search version” of PCSPs. In

the “decision version”, the goal is to say YES if the input graph
is G-colourable and NO if the input graph is not H-colourable.

The decision PCSP reduces to the search PCSP but they are not
known to be equivalent in general. However, as far as we know, all
known positive results are for the search version, while all known

negative results, including the new results from this paper, are for
the decision version.

1.1 Prior and related work While the NP-
hardness of finding a 3-colouring of a 3-colourable graph
was obtained by Karp [35] in 1972, the NP-hardness of
finding a 4-colouring of a 3-colourable graph was only
proved in 2000 by Khanna, Linial, and Safra [37] (see
also the work of Guruswami and Khanna for a different
proof [27]). This result implied NP-hardness of finding
a (k+ 2bk/3c− 1)-colouring of a k-colourable graph for
k ≥ 3 [37]. Early work of Garey and Johnson estab-
lished NP-hardness of finding a (2k − 5)-colouring of a
k-colourable graph for k ≥ 6 [26]. In 2016, Braken-
siek and Guruswami proved NP-hardness of a (2k− 2)-
colouring of a k-colourable graph for k ≥ 3 [10]. Only
very recently, Buĺın, Krokhin, and Opršal showed that
finding a 5-colouring of a 3-colourable graph, and more
generally, finding a (2k − 1)-colouring of a k-colourable
graph for any k ≥ 3, is NP-hard [18].

In 2001, Khot proved an asymptotic result: for
sufficiently large k, finding a k

1
25 (log k)-colouring of a

k-colourable graph is NP-hard [38]. In 2013, Huang
improved the gap by showing the hardness of finding a

2Ω(k1/3)-colouring of a k-colourable graph [33].
The NP-hardness of colouring (k-colourable graphs)

with (2k − 1) colours for k ≥ 3 from [18] and with

2Ω(k1/3) colours for sufficiently large k from [33] consti-
tute the currently strongest known NP-hardness results
for approximate graph colouring.

Under stronger assumptions (Khot’s 2-to-1 Conjec-
ture [39] for k ≥ 4 and its non-standard variant for
k = 3), Dinur, Mossel, and Regev showed that finding
a c-colouring of a k-colourable graph is NP-hard for all
constants 3 ≤ k ≤ c [20] A variant of Khot’s 2-to-1 Con-
jecture with imperfect completeness has recently been
proved [19, 40], which implies hardness for approximate
colouring variants where most but not all of the graph
is guaranteed to be k-colourable.

Hypergraphs colourings, a special case of PCSPs, is
another line of work intensively studied. A k-colouring
of a hypergraph is an assignment of colours {1, 2, . . . , k}
to its vertices that leaves no hyperedge monochromatic.
Dinur, Regev, and Smyth showed that for any constants
2 ≤ k ≤ c, it is NP-hard to find a c-colouring of
given 3-uniform k-colourable hypergraph [21]. Other
notions of colourings (such as different types of rainbow
colourings) for hypergraphs were studied by Brakensiek
and Guruswami [10, 11], Guruswami and Lee [28], and
Austrin, Bhangale, and Potukuchi [2].

Some results are also known for colourings with a
super-constant number of colours. For graphs, condi-
tional hardness was obtained by Dinur and Shinkar [22].
For hypergraphs, NP-hardness results were obtained in
recent work of Bhangale [8] and Austrin, Bhangale, and
Potukuchi [1].
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2 Results

For two graphs or digraphs G, H, we write G → H if
there exists a homomorphism from G to H.3 We are
interested in the following computational problem.

Definition 2.1. Fix two graphs G and H with G→ H.
The (decision variant of the) PCSP(G,H) is, given an
input graph I, output YES if I → G, and NO if I 6→ H.

To state our results it will be convenient to use the
following definition.

Definition 2.2. A graph H is left-hard if for every
non-bipartite graph G with G → H, PCSP(G,H) is
NP-hard. A graph G is right-hard if for every loop-less
graph H with G→ H, PCSP(G,H) is NP-hard.

If G → G′ and H ′ → H, then PCSP(G,H) trivially
reduces to PCSP(G′, H ′) (this is called homomorphic
relaxation [18]; intuitively, increasing the promise gap
makes the problem easier). Therefore, if H is a left-
hard graph, then all graphs left of H (that is, H ′ such
that H ′ → H) are trivially left-hard.4 If G is right-hard,
then all graphs right of G are right-hard.

For the same reason, since every non-bipartite
graph admits a homomorphism from an odd cycle,
to show that H is left-hard it suffices to show that
PCSP(Cn, H) is NP-hard for arbitrarily large odd n,
where Cn denotes the cycle on n vertices. Dually,
since every loop-less graph admits a homomorphism to
a clique, to show that G is right-hard it suffices to show
that PCSP(G,Kk) is NP-hard for arbitrarily large k.

Brakensiek and Guruswami conjectured that all
non-trivial PCSPs for (undirected) graphs are NP-hard,
greatly extending Hell and Nešetřil’s theorem:

Conjecture 2.1. ([12]) PCSP(G,H) is NP-hard for
every non-bipartite loop-less G,H. Equivalently, every
loop-less graph is left-hard. Equivalently, every non-
bipartite graph is right-hard.

In addition to the results on classical colourings
discussed above (the case where G and H are cliques),
the following result was recently obtained in a novel
application of topological ideas.

Theorem 2.1. (Krokhin and Opršal [41]) K3 is
left-hard.

3In this paper, we allow graphs to have loops: the existence

of homomorphisms for such graphs is trivial, but this allows us
to make statements about graph constructions that will work

without exceptions.
4Note that by our definition, bipartite graphs are vacuously

left-hard.

2.1 Improved hardness of classical colouring In
Section 3, we focus on right-hardness. We use a simple
construction called the arc digraph or line digraph,
which decreases the chromatic number of a graph in
a controlled way. The construction allows to conclude
the following, in a surprisingly simple way:

Proposition 2.1. There exists a right-hard graph if
and only if K4 is right-hard.5

More concretely, we show in particular that
PCSP(K6,K2k) log-space reduces to PCSP(K4,Kk), for
all k ≥ 4. This contrasts with [4, Proposition 10.3],6

where it is shown to be impossible to obtain such a re-
duction with minion homomorphisms: an algebraic re-
duction, described in the full version [55], central to the
framework of [18, 4] (in particular, there exists a k such
that PCSP(K4,Kk) admits no minion homomorphism
to any PCSP(Kn′ ,Kk′) for 4 < n′ ≤ k′).

Furthermore, we strengthen the best known asymp-
totic hardness: Huang [33] showed that for all suf-
ficiently large n, PCSP(Kn,K2n1/3 ) is NP-hard. We
improve this in two ways, using Huang’s result as a
black-box. First, we improve the asymptotics from

sub-exponential 2n
1/3

to single-exponential
(

n
bn/2c

)
∼

2n√
πn/2

. Second, we show the claim holds for n as low

as 4.

Theorem 2.2. (Main Result #1) For all n ≥ 4,
PCSP(Kn,K(

n
bn/2c

)
−1

) is NP-hard.

In comparison, the previous best result relevant for
all integers n was proved in [18]: PCSP(Kn,K2n−1) is
NP-hard for all n ≥ 3. For n = 3 we are unable to obtain
any results; for n = 4 the new bound

(
n
bn/2c

)
− 1 = 5 is

worse than 2n− 1 = 7, while for n = 5 the two bounds
coincide at 9. However, already for n = 6 we improve
the bound from 2n− 1 = 11 to

(
n
bn/2c

)
− 1 = 19.

2.2 Left-hardness and topology In Section 4, we
focus on left-hardness. The main idea behind Krokhin
and Opršal’s [41] proof that K3 is left-hard is simple
to state. To prove that PCSP(Cn, H) is NP-hard
for all odd n, the algebraic framework of [18] shows
that it is sufficient to establish certain properties of
polymorphisms: homomorphisms f : CLn → H for L ∈ N

5Jakub Opršal and Andrei Krokhin realised that in this Propo-

sition, 4 can be improved to 3 by using the fact that δ(δ(K4)) is
3-colourable, as proved by Rorabaugh, Tardif, Wehlau, and Za-

guia [46]. Details will appear in a future journal version.
6[4] is a full version of [18]. Proposition 10.3 in [4] is

Proposition 5.31 in the previous two versions of [4].
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(where GL = G×· · ·×G is the L-fold tensor product7).
For large n the graph CLn looks like an L-torus: an L-fold
product of circles, so the pertinent information about f
seems to be subsumed by its topological properties (such
as winding numbers, when H is a cycle). We refer to [41]
for further details, but this general principle applies to
any H and in fact we prove (in Theorem 2.3 below)
that whether H is left-hard or not depends only on its
topology.

The topology we associate with a graph is its box
complex. See the full version [55] for formal definitions
and statements. Intuitively, the box complex |Box(H)|
is a topological space built from H by taking the tensor
product H×K2 and then gluing faces to each four-cycle
and more generally, gluing higher-dimensional faces to
complete bipartite subgraphs. The added faces ensure
that the box complex of a product of graphs is the same
as the product space of their box complexes: thanks
to this,

∣∣Box(CLn )
∣∣ is indeed equivalent to the L-torus.

The product with K2 equips the box complex with a
symmetry that swaps the two sides of H × K2. This
make the resulting space a Z2-space: a topological space
together with a continuous involution from the space
to itself, which we denote simply as −. A Z2-map
between two Z2-spaces is a continuous function which
preserves this symmetry: f(−x) = −f(x). This allows
to concisely state that a given map is “non-trivial” (in
contrast, there is always some continuous function from
one space to another: just map everything to a single
point). The main use of the box complex is then the
statement that every graph homomorphism G → H
induces a Z2-map from |Box(G)| to |Box(H)|. Graph
homomorphisms can thus be studied with tools from
algebraic topology.

The classical example of this is an application of
the Borsuk-Ulam theorem: there is no Z2-map from Sn
to Sm for n > m, where Sn denotes the n-dimensional
sphere with antipodal symmetry. Hence if G and H are
graphs such that |Box(G)| and |Box(H)| are equivalent
to Sn and Sm, respectively, then there can be no graph
homomorphism G→ H. See Figure 1.

This is essentially the idea in Lovász’ proof [42]
of Kneser’s conjecture that the chromatic number of
Kneser graphs KG(n, k) is n− 2k + 2. In the language
of box complexes, the proof amounts to showing that the
box complex of a clique Kc is equivalent to Sc−2, while
the box complex of a Kneser graph contains Sn−2k. We
refer to [43] for an in-depth, yet accessible reference.

7The tensor (or categorical) product G×H of graphs G,H has
pairs (g, h) ∈ V (G) × V (H) as vertices and (g, h) is adjacent to

(g′, h′) whenever g is adjacent to g′ (in G) and h is adjacent to
h′ (in H).

We show that the left-hardness of a graph depends
only on the topology of its box complex (in fact, it
is only important what Z2-maps it admits, which is
significantly coarser than Z2-homotopy equivalence):

Theorem 2.3. (Main Result #2) If H is left-hard
and H ′ is a graph such that |Box(H ′)| admits a Z2-map
to |Box(H)|, then H ′ is left-hard.

Using Krokhin and Opršal’s result that K3 is left-
hard (Theorem 2.1), since |Box(K3)| is the circle S1 (up
to Z2-homotopy equivalence), we immediately obtain
the following:

Corollary 2.1. Every graph H for which |Box(H)|
admits a Z2-map to S1 is left-hard.

Two examples of such graphs (other than 3-
colourable graphs) are loop-less square-free graphs and
circular cliques Kp/q with 2 < p

q < 4 (see the full ver-

sion [55] for proofs), which we introduce next. Square-
free graphs are graphs with no cycle of length exactly 4.
In particular, this includes all graphs of girth at least 5
and hence graphs of arbitrarily high chromatic number
(but incomparable to K4 and larger cliques, in terms
of the homomorphism → relation). The circular clique
Kp/q (for p, q ∈ N, pq > 2) is the graph with vertex
set Zp and an edge from i to every integer at least q
apart: i + q, i + q + 1, . . . , i + p − q. They generalise
cliques Kn = Kn/1 and odd cycles C2n+1 ' K(2k+1)/k.
Their basic property is that Kp/q → Kp′/q′ if and only if
p
q ≤

p′

q′ . Thus circular cliques refine the chain of cliques
and odd cycles, corresponding to rational numbers be-
tween integers. For example:

· · · → C7 → C5 → C3 =

= K3 → K7/2 → K4 → K9/2 → K5 → . . .

The circular chromatic number χc(G) is the infimum
over p

q such that G→ Kp/q. Therefore:

Corollary 2.2. For every 2 < r ≤ r′ < 4, it is NP-
hard to distinguish graphs G with χc(G) ≤ r from those
with χc(G) > r′.

In this sense, we conclude that K4−ε is left-hard,
thus extending the result for K3. However, the closeness
to K4 is only deceptive and no conclusions on 4-
colourings follow. For K4, since the box complex is
equivalent to the standard 2-dimensional sphere, we can
at least conclude that to prove left-hardness of K4 it
would be enough to prove left-hardness of any other
graph with the same topology: these include all non-
bipartite quadrangulations of the projective plane, in
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Figure 1: The box complex of K4 is the hollow cube (informally speaking; the drawing skips some irrelevant
faces). It is equivalent (Z2-homotopy equivalent) to the sphere. The box complex of the circular clique K7/2 is
equivalent to the circle. Thus there cannot be a homomorphism from K4 to K7/2 (of course in this case it is easier
to show this directly).

particular the Grötzsch graph, 4-chromatic generalised
Mycielskians, and 4-chromatic Schrijver graphs [43, 9].
In this sense, the exact geometry of K4 is irrelevant.
However, the fact that it is a finite graph, with only
finitely many possible maps from CLn for any fixed n,L
should still be relevant, as it is for K3. It is also quite
probable that any proof for a “spherical” graph would
apply just as well to K4, where the proof could be just
notationally much simpler.

In the full version [55] we rephrase Krokhin and
Opršal’s [41] proof of Theorem 2.1 in terms of the box
complex. In particular, left-hardness of K3 follows from
some general principles and the fact that |Box(K3)|
is a circle. The proof also extends to all graphs H
such that |Box(H)| admits a Z2-map to S1, giving an
independent, self-contained proof of Corollary 2.1 (and
Theorem 2.1 in particular).

The general principle is that a homomorphism
CLn → H induces a Z2-map (S1)L → |Box(H)|, in a
way that preserves minors (identifications within the L
variables) and automorphisms. (In the language of cat-
egory theory, the box complex is a functor from the
category of graphs to that of Z2-spaces, and the func-
tor preserves products). In turn, the Z2-map induces a
group homomorphism between the fundamental group
of (S1)L, which is just ZL, and that of |Box(H)|. This is
essentially the map ZL → Z obtained in [41]. While this
rephrasing requires a bit more technical definitions, the
main advantage is that it allows to replace a tedious
combinatorial argument (about winding numbers pre-

serving minors) with straightforward statements about
preserving products.

2.3 Methodology – adjoint functors While the
proof of the first main result is given elementarily in
Section 3, it fits together with the second main result in
a much more general pattern. The underlying principle
is that pairs of graph constructions satisfying a simple
duality condition give reductions between PCSPs. To
introduce them, let us consider a concrete example.
For a graph G and an odd integer k, ΛkG is the
graph obtained by subdividing each edge into a path
of k edges; ΓkG is the graph obtained by taking
the k-th power of the adjacency matrix (with zeroes
on the diagonal); equivalently, the vertex set remains
unchanged and two vertices are adjacent if and only if
there is a walk of length exactly k in G. (For example
Γ3G has loops if G has triangles).

We say a graph construction Λ (a function from
graphs to graphs) is a thin (graph) functor if G → H
implies ΛG→ ΛH (for all G,H). A pair of thin functors
(Λ,Γ) is a thin adjoint pair if

ΛG→ H if and only if G→ ΓH.

We call Λ the left adjoint of Γ and Γ the right adjoint
of Λ.

For all odd k, (Λk,Γk) are a thin adjoint pair. For
example, since Γ3C5 = K5, we have G → K5 if and
only if ΛkG→ C5. This is a basic reduction that shows
the NP-hardness of C5-colouring; in fact adjointness of
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various graph construction is the principal tool behind
the original proof of Hell and Nešetřil’s theorem (char-
acterising the complexity of H-colouring) [30].

In category theory, there is a stronger and more
technical notion of (non-thin) functors and adjoint
pairs. A thin graph functor is in fact a functor in
the thin category of graphs, that is, the category whose
objects are graphs, and with at most one morphism
from one graph to another, indicating whether a ho-
momorphism exists or not. In other words, we are
only interested in the existence of homomorphisms, and
not in their identity and how they compose. Equiva-
lently, we look only at the preorder of graphs by the
G→ H relation (we can also make this a poset by con-
sidering graphs up to homomorphic equivalence). In
order-theoretic language, thin functors are just order-
preserving maps, while thin adjoint functors are known
as Galois connections. We prefer the categorical lan-
guage as most of the constructions we consider are in
fact functors (in the non-thin category of graphs), which
is important for connections to the algebraic framework
of [18], as we discuss in the full version [55]. While
unnecessary for our main results, we believe it may be
important to understand these deeper connections to
resolve the conjectures completely.

Thin adjoint functors give us a way to reduce one
PCSP to another. We say that a graph functor Γ is
log-space computable if, given a graph G, ΓG can be
computed in logarithmic space in the size of G.

Observation 2.1. Let Λ,Γ be thin adjoint graph func-
tors and suppose Λ is log-space computable. Then
PCSP(G,ΓH) reduces to PCSP(ΛG,H) in log-space,
for all graphs G,H.

Proof. Let F be an instance of PCSP(G,ΓH). Then ΛF
is an appropriate instance of PCSP(ΛG,H). Indeed, if
F → G, then ΛF → ΛG (because Λ is a thin functor).
If ΛF → H, then F → ΓH by adjointness.

In some cases, a thin functor Γ that is a thin right
adjoint in a pair (Λ,Γ) is also a thin left adjoint in a pair
(Γ,Ω). This allows to get a reduction in the opposite
direction:

Observation 2.2. Let (Λ,Γ) and (Γ,Ω) be thin ad-
joint pairs of functors. Then PCSP(ΓG,H) and
PCSP(G,ΩH) are log-space equivalent (assuming Λ and
Γ are log-space computable).

Proof. The previous observation gives a reduction from
PCSP(G,ΩH) to PCSP(ΓG,H). For the other direc-
tion, let F be an instance of PCSP(ΓG,H). Then ΛF
is an appropriate instance of PCSP(G,ΩH). Indeed,

if F → ΓG, then ΛF → G. If ΛF → ΩH, then
F → ΓΩH → H. The last arrow follows from the trivial
ΩH → ΩH.

The proofs of Observations 2.1 and 2.2 of course
extend to digraphs and general relational structures.
Note that the above proofs reduce decision problems;
they work just as well for search problems: all the thin
adjoint pairs (Λ,Γ) we consider with Λ log-space com-
putable also have the property that a homomorphism
ΛF → H can be computed from a homomorphism
F → ΓH and vice versa, in space logarithmic in the
size of F .

As we discuss in Section 4, all of our results follow
from reductions that are either trivial (homomorphic
relaxations) or instantiations of Observation 2.1. While
for the first main result we prefer to first give a direct
proof that avoids this formalism (in Section 3), it will be
significantly more convenient for the second main result
(in Section 4), where we use a certain thin right adjoint
Ωk to the k-th power Γk.

2.4 Hedetniemi’s conjecture Another leitmotif of
this paper is the application of various tools developed
in research around Hedetniemi’s conjecture. A graph
K is multiplicative if G × H → K implies G → K
or H → K. The conjecture states that all cliques
K = Kn are multiplicative. Equivalently, χ(G ×H) =
min(χ(G), χ(H)); see [56, 47, 51] for surveys. In a
very recent breakthrough, Shitov [49] proved that the
conjecture is false (for large n).

The arc digraph construction, which we will use in
Section 3 to prove Theorem 2.2, was originally used
by Poljak and Rödl [45] to show certain asymptotic
bounds on chromatic numbers of products. The func-
tors Λk,Γk,Ωk were applied by Tardif [50] to show that
colourings to circular cliques Kp/q (2 < p

q < 4) satisfy

the conjecture. Matsushita [44] used the box complex
to show that Hedetniemi’s conjecture would imply an
analogous conjecture in topology. This was indepen-
dently proved by the first author [54] using Ωk functors,
while the box complex was used to show that square-
free graphs are multiplicative [53]. See [25] for a survey
on applications of adjoint functors to the conjecture.

The refutation of Hedetniemi’s conjecture and the
fact that methods for proving the multiplicativity of
K3 extend to K4−ε and square-free graphs, but fail to
extend to K4, might suggest that the Conjecture 2.1 is
doomed to the same fate. However, it now seems clear
that proving multiplicativity requires more than just
topology [52]: known methods do not even extend to all
graphs H such that |Box(H)| is a circle. This contrasts
with Theorem 2.3: topological tools work much more
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gracefully in the setting of PCSPs.

3 The arc digraph construction

Let D be a digraph. The arc digraph (or line digraph)
of D, denoted δD , is the digraph whose vertices are
arcs (directed edges) of D and whose arcs are pairs of
the form ((u, v), (v, w)). We think of undirected graphs
as symmetric relations: digraphs in which for every arc
(u, v) there is an arc (v, u). So for an undirected graph
G, δ(G) has 2|E(G)| vertices and is a directed graph:
the directions will not be important in this section, but
will be in the full version [55]. The chromatic number
of a digraph is the chromatic number of the underlying
undirected graph (obtained by symmetrising each arc;
so χ(D) ≤ n if and only if D → Kn).

The crucial property of the arc digraph construction
is that it decreases the chromatic number in a controlled
way (even though it is computable in log-space!). We
include a short proof for completeness. We denote by
[n] the set {1, 2, . . . , n}.

Lemma 3.1. (Harner and Entringer [29]) For
any graph G:

• if χ(δ(G)) ≤ n, then χ(G) ≤ 2n,

• if χ(G) ≤
(

n
bn/2c

)
, then χ(δ(G)) ≤ n.

Proof. Suppose δG has an n-colouring. Recall that we
think of G as a digraph with two arcs (u, v) and (v, u) for
each edge {u, v} ∈ E(G); thus δG contains two vertices
(u, v) and (v, u), as well as (by definition of δ) two arcs
from one pair to the other. In particular, an n-colouring
of δG gives distinct colours to (u, v) and (v, u). Define
a 2n-colouring φ of G by assigning to each vertex v
the set φ(v) of colours of incoming arcs. For any edge
{u, v} of G, φ(v) contains the colour c of the arc (u, v).
Since every arc incoming to u gets a different colour
from (u, v), the set φ(u) does not contain c. Hence
φ(u) 6= φ(v), so φ is a proper colouring.

Suppose G has a
(

n
bn/2c

)
-colouring φ. We interpret

colours φ(v) as bn/2c-element subsets of [n]. Define
an n-colouring of δG by assigning to each arc (u, v)
an arbitrary colour in φ(u) \ φ(v) (the minimum,
say). Such a colour exists because φ(u) 6= φ(v). For
arcs (u, v), (v, w) clearly φ(u) \ φ(v) is disjoint from
φ(v) \ φ(w), so this is a proper colouring of δ(G).

The proofs in fact works for digraphs as well.
For graphs, it is not much harder to show an exact
correspondence (we note however that most conclusions
only require the above approximate correspondence).
Let us denote b(n) :=

(
n
bn/2c

)
.

Lemma 3.2. (Poljak and Rödl [45]) For a (sym-
metric) graph G, χ(δ(G)) = min{n | χ(G) ≤ b(n)}.
In other words, δG→ Kn if and only if G→ Kb(n).

This immediately gives the following implication for
approximate colouring:

Lemma 3.3. PCSP(Kb(n),Kb(k)) log-space reduces to
PCSP(Kn,Kk), for all n, k ∈ N.

Proof. Let G be an instance of the first problem. Then
δG is a suitable instance of PCSP(Kn,Kk): if G →
Kb(n), then δG → Kn. If δG → Kk, then G → Kb(k).

Remark 3.1. As a side note, adding a universal vertex
gives the following obvious reduction: PCSP(Kn,Kk)
log-space reduces to PCSP(Kn+1,Kk+1), for n, k ∈ N.

Recall also that if n ≤ n′ ≤ k′ ≤ k, then
PCSP(Kn,Kk) trivially reduces to PCSP(Kn′ ,Kk′).
One corollary of Lemma 3.3 is that if any clique of size
at least 4 is right-hard, then all of them are:

Proposition 3.1. For all integers n, n′ ≥ 4,
PCSP(Kn,Kk) is NP-hard for all k ≥ n if and only
if PCSP(Kn′ ,Kk′) is NP-hard for all k′ ≥ n′.

Proof. Let n ≤ n′. For one direction, right-hardness of
Kn trivially implies right-hardness of Kn′ .

On the other hand, we claim that if Kb(n) is right-
hard, then so is Kn. Indeed, suppose PCSP(Kb(n),Kk)
is hard for all k ≥ b(n). In particular it is hard for all
k of the form k = b(k′) for an integer k′ ≥ n. Hence by
Lemma 3.3, PCSP(Kn,Kk′) is hard for all k′ ≥ n.

Suppose Kn is not right-hard. Then Kb(n) is not
right-hard, Kb(b(n)) is not right-hard and so on. Since
starting with n ≥ 4, the sequence b(b(. . . n . . . )) grows
to infinity, we conclude that Kn′′ is not right-hard for
some n′′ ≥ n′. Therefore, trivially Kn′ is not right-hard.

In other words if any loop-less graph H is right-hard,
then trivially some large enough clique Kχ(H) is right-
hard; by the above, K4 and all graphs right of it are
right-hard. This proves Proposition 2.1. The proof fails
to extend to K3 because b(3) =

(
3
b3/2c

)
is not strictly

greater than 3.
The other consequence we derive from Lemma 3.3

is a strengthening of Huang’s result:

Theorem 3.1. (Huang [33]) For all sufficiently large
n, PCSP(Kn,K2Ω(n1/3)) is NP-hard.

Theorem 3.2. (Main Result #1) For all n ≥ 4,
PCSP(Kn,K(

n
bn/2c

)
−1

) is NP-hard.
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We thus improve the asymptotics from sub-exponential

f(n) := 2n
1/3

to single-exponential b(n) =
(

n
bn/2c

)
∼

2n√
πn/2

. The informal idea of the proof (delayed to the

full version [55]) is as follows. Suppose n vs f(n)-
colouring is hard (that is, PCSP(Kn,Kf(n)) is NP-
hard for all sufficently large n). Substituting n =
b(m), we conclude that b(m) vs f(b(m)) is hard (for
sufficiently large m). Trivially, we can then replace
f(b(m)) with any smaller number of the form b(k).
So b(m) vs b(k) is hard for k = b−1(f(b(m))) where
b−1(x) := max{k : b(k) ≤ x}. By Lemma 3.3, we con-
clude that m vs k is hard. That is, m vs b−1(f(b(m)))
is hard for all sufficiently large m.

Thus any f(n) can be improved to b−1(f(b(n))).
Since b(n) is roughly exponential and b−1(n) is roughly
logarithmic, starting from a function f(n) of order

exp(i+1)(α · log(i)(n)) with i-fold compositions and a

constant α > 0, such as f(n) = 2n
1/3

= 22
1
3

log n

from
Huang’s hardness, results in

b−1(f(b(n))) ≈ log
(

exp(i+1)
(
α · log(i)(exp(n))

))
= exp(i)(α · log(i−1)(n)),

so a similar composition but with i decreased. In
a constant number of steps, this results in a single-
exponential function. In fact using one more step, but
without approximating the function b(n), this results in
exactly b(n) − 1. We note it would not be sufficient
to start from a quasi-polynomial f(n), like nΘ(logn) in
Khot’s [38] result. To relax the requirement from “for
sufficiently large n” to “for all n ≥ 4”, the argument is
similar as in Proposition 3.1.

4 Adjoint functors and topology

Recall that Λk and Γk denote k-subdivision and the k-th
power of a graph; they are thin adjoints:

ΛkG→ H if and only if G→ ΓkH.

(for all odd k). More surprisingly, Γk is itself the thin
left adjoint of a certain thin functor Ωk:

ΓkG→ H if and only if G→ ΩkH.

This characterizes ΩkG up to homomorphic equivalence;
the exact definition will be irrelevant (we give it in the
full version [55]). We note that Λk and Γk are log-space
computable, for all odd k; however, Ωk is not: ΩkG is
exponentially larger than G. See [54] for more about
the thin functors Λk,Γk,Ωk and their properties.

Observation 2.1 tells us that PCSP(G,ΩkH) log-
space reduces to PCSP(ΓkG,H). To give conclusions
on left-hardness, we will need only two more facts about

these functors. First, ΩkG → G; second, ΛkG → ΩkG
for all G and odd k (see Lemma 2.3(iv) and (vi) in [54]).

Lemma 4.1. For every odd k, ΩkH is left-hard if and
only if H is left-hard.

Proof. If H is left-hard, then trivially so is ΩkH because
ΩkH → H. For the other implication, suppose ΩkH is
left-hard, that is, PCSP(G,ΩkH) is hard for every non-
bipartite G such that G → ΩkH. By Observation 2.1,
this implies PCSP(ΓkG,H) is hard. Let G′ be any
non-bipartite graph such that G′ → H. We want
to show that PCSP(G′, H) is hard. Observe that
ΩkG

′ is non-bipartite, because ΛkG
′ → ΩkG

′ and Λk
subdivides each edge of G′ an odd number of times.
Since ΩkG

′ → ΩkH, using G := ΩkG
′ we conclude that

PCSP(ΓkΩkG
′, H) is hard. Since ΓkΩkG

′ → G′, this
implies PCSP(G′, H) is hard.

As an example, consider the circular clique K7/2

(we have K3 → K7/2 → K4). Knowing that K3 is left-
hard, one could check that Ω3(K7/2) is 3-colorable and
hence left-hard as well; the above lemma then allows
to conclude that K7/2 is left-hard. What other graphs
could one use in place of K7/2? The answer turns
out to be topological. Intuitively, while the operation
Γk gives a “thicker” graph, the operation Ωk gives a
“thinner” one. In fact, Ωk behaves like barycentric
subdivision in topology: it preserves the topology of
a graph (formally: its box complex is Z2-homotopy
equivalent to the original graph’s box complex) but
refines its geometry. With increasing k, this eventually
allows to model any continuous map with a graph
homomorphism; in particular:

Theorem 4.1. ([54]) There exists a Z2-map
|Box(G)| →Z2

|Box(H)| if and only if for some
odd k, ΩkG→ H.

This concludes our second main result:

Proof. [Proof of Theorem 2.3] Let H be left-hard and
let H ′ be a graph s.t. |Box(H ′)| →Z2

|Box(H)|. By
Theorem 4.1, ΩkH

′ → H for some odd k. Hence ΩkH
′

is left-hard. By Lemma 4.1, H ′ is left-hard.

Conclusions In the full version [55], we consider other
examples of thin adjoint functors. In particular we dis-
cuss how results of Section 3 follow from Observation 2.1
by considering a thin right adjoint δR of δ. We also
introduce the algebraic framework of [18] and contem-
plate how Observation 2.1 and 2.2 could fit into it. A
few of the thin adjoint functors we considered are in fact
adjoint functors, in the category-theoretic sense. This
does allow to deduce some instances of Obs. 2.1 and 2.2
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from algebraic reductions known as minion homomor-
phisms. However, the most useful examples: (δ, δR) and
(Γk,Ωk), are only thin adjoint. Hence the question re-
mains whether the notion of minion homomorphisms
can be extended to account for them. It could also be
interesting to consider how δ or δR affect the topology of
a graph. Another direction could be to look at Huang’s
Theorem 3.1 not as a black-box: could constructions
like δ be useful to say something directly about PCPs?
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Dichotomy for symmetric Boolean PCSPs. In Pro-
ceedings of the 46th International Colloquium on Au-
tomata, Languages, and Programming (ICALP’19),
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019, arXiv:1904.12424. (to appear).

[25] J. Foniok and C. Tardif. Hedetniemi’s conjecture and
adjoint functors in thin categories. Applied Categorical
Structures, 26:113–128, 2018, arXiv:1608.02918.

[26] M. R. Garey and D. S. Johnson. The complexity of
near-optimal graph coloring. J. ACM, 23(1):43–49,
1976.

[27] V. Guruswami and S. Khanna. On the hardness of 4-
coloring a 3-colorable graph. SIAM J. Discrete Math.,
18(1):30–40, 2004.

[28] V. Guruswami and E. Lee. Strong inapproximability
results on balanced rainbow-colorable hypergraphs.
Combinatorica, 38(3):547–599, 2018.

[29] C. Harner and R. Entringer. Arc colorings of digraphs.
J. Comb. Theory, Ser. B, 13(3):219–225, 1972.
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[45] S. Poljak and V. Rödl. On the arc-chromatic number
of a digraph. J. Comb. Theory, Ser. B, 31(2):190–198,
1981.

[46] D. Rorabaugh, C. Tardif, D. Wehlau, and I. Za-
guia. Iterated arc graphs. Technical report, 2016,
arXiv:1610.01259.

[47] N. Sauer. Hedetniemi’s conjecture – a survey. Discrete
Math., 229(1-3):261–292, 2001.

[48] T. J. Schaefer. The Complexity of Satisfiability Prob-
lems. In Proceedings of the 10th Annual ACM Sympo-
sium on Theory of Computing (STOC’78), pages 216–
226. ACM, 1978.

[49] Y. Shitov. Counterexamples to Hedetniemi’s conjec-
ture. Annals of Mathematics, 190(2):663–667, 2019,
arXiv:1905.02167.

[50] C. Tardif. Multiplicative graphs and semi-lattice endo-
morphisms in the category of graphs. J. Comb. Theory,
Ser. B, 95(2):338–345, 2005.

[51] C. Tardif. Hedetniemi’s conjecture, 40 years later.
Graph Theory Notes NY, 54(46-57):2, 2008.

[52] C. Tardif and M. Wrochna. Hedetniemi’s conjecture
and strongly multiplicative graphs. SIAM J. Discrete
Math., 2019, arXiv:1808.04778. (to appear).

[53] M. Wrochna. Square-free graphs are multiplica-
tive. J. Comb. Theory, Ser. B, 122:479–507, 2017,
arXiv:1601.04551.

[54] M. Wrochna. On inverse powers of graphs and topolog-
ical implications of Hedetniemi’s conjecture. J. Comb.
Theory, Ser. B, 2019, arXiv:1712.03196.

[55] M. Wrochna and S. Živný. Improved hardness for H-
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