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Joël Ouaknine
St Cross College and University College

Thesis submitted for the degree of Doctor of Philosophy
at the University of Oxford, Michaelmas 2000



Abstract

This thesis concerns the relationship between continuous and discrete mod-
elling paradigms for timed concurrent systems, and the exploitation of this
relationship towards applications, in particular model checking. The frame-
work we have chosen is Reed and Roscoe’s process algebra Timed CSP, in
which semantic issues can be examined from both a denotational and an
operational perspective. The continuous-time model we use is the timed fail-
ures model; on the discrete-time side, we build a suitable model in a CSP-like
setting by incorporating a distinguished tock event to model the passage of
time. We study the connections between these two models and show that
our framework can be used to verify certain specifications on continuous-time
processes, by building upon and extending results of Henzinger, Manna, and
Pnueli’s. Moreover, this verification can in many cases be carried out directly
on the model checker FDR1. Results are illustrated with a small railway level
crossing case study. We also construct a second, more sophisticated discrete-
time model which reflects continuous behaviour in a manner more consistent
with one’s intuition, and show that our results carry over this second model
as well.
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Chapter 1

Introduction

The motivations for undertaking the work presented in this thesis originate
from two distinct sources. The more abstract was a desire to embark on a
project with some relevance, however vague, to the ‘real world’. Real-time
concurrent systems, composed of several components interacting with each
other subject to timing constraints, certainly seemed a good candidate to
fulfill this ambition: after all, such systems appear in an increasingly large
number of applications, from kitchen appliances to nuclear power, telecom-
munications, aeronautics, and so on. Moreover, in many instances it is in
fact crucial that these systems behave exactly as they were intended to, lest
catastrophic consequences ensue. Unfortunately, the complexities involved
often mean that it is very difficult—if not impossible—to satisfy oneself that
a system will indeed always behave as intended.

The field of formal methods, which seeks to apply rigorous mathematical
techniques to the understanding and analysis of computerised systems, was
therefore an exciting area in which to undertake research. A prominent mod-
elling paradigm within formal methods is that of process algebra, which in
the case of timed systems splits into two branches, according to whether time
is modelled in a discrete or continuous/dense fashion.

Although much work has been carried out in both the discrete and con-
tinuous instances, much less is known about the relationship between them.
This fact provided a second incentive for the author to immerse himself into
the subject.

The question remained of which framework to choose. Reed and Roscoe’s
timed failures model for Timed CSP [RR86, Ree88, RR99, Sch00] seemed an
excellent candidate to act as the continuous-time process algebra represen-
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tative. Not only was it already quite well understood, having been the focus
of a considerable amount of prior work, but it also encompassed most of
the salient features found in other timed process algebras, and often more; it
boasts, for instance, congruent denotational and operational models, whereas
many process algebras are predicated solely upon an operational semantics.

An additional advantage of Timed CSP was that it is a natural extension
of Hoare’s CSP [Hoa85, Ros97], which Roscoe had used to describe discrete-
time systems with the help of a CSP-coded fictitious clock. The project
quickly evolved into one aimed at elucidating the relationship between these
two distinct methods for modelling time.

One of the foremost applications of this research lies in model checking.
Model checking consists in a (usually automated) graph-theoretic analysis of
the state space of a system, with the goal of establishing whether or not a
given specification on the system actually holds. Its main overall aim is to
ensure reliability and correctness, properties which we argued earlier can be
of paramount importance.

Model checking has a rich history, with one of the first reported instances
of it dating back almost twenty years [QS81]. It has achieved a number
of spectacular successes, yet formidable obstacles still remain in its path.
The situation is yet worse when time is considered, as the following example
demonstrates. Consider a trivial process such as a −→ STOP : it can commu-
nicate the event a at any time, and then deadlock. Under a continuous-time
interpretation, this process has an uncountable number of behaviours, and
hence an uncountably large state space. Mechanical exploration of the lat-
ter will therefore not be possible until some drastic reductions are effected.
These sorts of difficulties explain why the first model checking algorithm for
continuous-time systems only arose approximately a decade ago, fruit of the
pioneering work of Alur, Courcoubetis, and Dill [ACD90, ACD93].

Discrete-time modelling, being a much more straightforward extension
of untimed modelling, poses considerably fewer problems: model checking
techniques developed for the untimed world are reasonably easy to extend to
discrete-time frameworks. In particular, our proposed enterprise potentially
entailed that one could employ the CSP model checker FDR to verify spec-
ifications on continuous-time systems described in Timed CSP. Although
Jackson [Jac92] gave an algorithm, based on that of Alur et al.’s, to model
check continuous-time processes written in a significantly restricted subset
of Timed CSP, no actual implementation of his or any other approach exists
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to this day.1

The object of this thesis is therefore twofold: the first goal is to study
the relationship between continuous-time and discrete-time models for timed
process algebras, focussing on (Timed and untimed) CSP-based formalisms;
the second goal is to apply the results gathered thus towards applications, in
particular model checking.

The thesis is structured as follows:

In Chapter 2 we introduce the basic notation and concepts of Timed CSP
and semantic modelling, and list a number of definitions and conventions
which apply throughout the thesis.

Chapter 3 is devoted to the timed failures model and its congruent op-
erational counterpart. We establish a crucial result, the digitisation lemma,
which says that the continuous-time operational behaviour of any Timed
CSP process is so-called closed under digitisation; this fact is the main in-
gredient allowing us later on to relate the discrete-time and continuous-time
denotational behaviours of processes to each other. We conclude Chapter 3
by discussing process specification and verification.

Chapter 4 presents and considers the main issues which arise when one
attempts to emulate as faithfully as possible the timed failures model in a
discrete CSP-based setting.

Building on these observations, we then carefully construct a suitable
discrete-time denotational model in Chapter 5. A congruent operational
semantics is also given, and specifications as well as verification and the
applicability of the model checker FDR are discussed.

Chapter 6 addresses the central question of the relationship between our
discrete-time model and the continuous-time model of Chapter 3, and the
impact of this relationship on verification. An intuitive and straightforward
approach is first presented, providing insight and interesting results, but
found to be wanting in certain respects. We then offer a more sophisti-
cated (if more specialised) verification method which builds upon, and sub-
sequently extends, a result of Henzinger, Manna, and Pnueli’s. This prob-
ably constitutes the most important and significant application of our work
to continuous-time system verification. A small railway level crossing case
study is presented to illustrate our findings.

1However, a small number of continuous-time model checking tools, such as
Cospan [AK96], UppAal [BLL+96], Kronos [DOTY96], and HyTech [HHWT97] have
since been developed in settings other than Timed CSP.
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In Chapter 7, we build a second discrete-time model which circumvents
some shortcomings observed in the first model with respect to our ‘straight-
forward’ approach to verification. The treatment is similar to that of Chap-
ter 5, if brisker.

Chapter 8, likewise, offers a streamlined version of Chapter 6 in which we
discuss the connections between this new model and the timed failures model,
as well the upshots in terms of verification. We derive a crisper qualitative
understanding of the scope and limitations of our discrete-time approach to
modelling continuous-time systems, as well as of the costs associated with
more faithful discrete-time modelling.

Lastly, we sum-up the entire enterprise in Chapter 9, compare our re-
sults with related work appearing in the literature, and propose a number of
avenues for further research.

The reader will also find three appendices, regrouping technical proofs, a
presentation of a model checking algorithm for our discrete-time models, and
a congruent operational semantics for the more sophisticated timed failures-
stability model for Timed CSP. The latter is referred to in the ‘further work’
section of Chapter 9.

This thesis is essentially self-contained. However, some basic familiarity
with CSP would be useful, particularly in Chapter 4.



Chapter 2

Notation and Basic Concepts

We begin by laying out the syntax of Timed CSP and stating a few con-
ventions. We then continue with some remarks on semantic modelling, and
conclude by introducing some standard notation about sequences.

2.1 Timed CSP

We assume that we are given a finite1 set of events Σ, with tock /∈ Σ and
X /∈ Σ. We write ΣX to denote Σ ∪ {X}, Σtock to denote Σ ∪ {tock}, and
ΣX

tock
to denote Σ∪{X, tock}. In the notation below, we have a ∈ Σ, A ⊆ Σ,

and B ⊆ ΣX. The parameter n ranges over the set of non-negative integers
N. f represents a function f : Σ −→ Σ; it can also be viewed as a function
f : ΣX

tock
−→ ΣX

tock
, lifted in the obvious way. The variable X is drawn from

a fixed infinite set of process variables VAR =̂ {X,Y, Z, . . .}.

Timed CSP terms are constructed according to the following grammar:

P := STOP | SKIP | WAIT n | P1

n
� P2 |

a −→ P | a : A −→ P (a) | P1 2 P2 | P1 u P2 |

P1 ‖
B

P2 | P1 9 P2 | P1 ; P2 | P \ A |

f−1(P ) | f(P ) | X | µX � P [if P is time-guarded for X].

These terms have the following intuitive interpretations:
1Our restriction that Σ be finite is perhaps not absolutely necessary, but is certainly

sensible from a practical (i.e., automated verification) point of view.
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• STOP is the deadlocked, stable process which is only capable of letting
time pass.

• SKIP intuitively corresponds to the process X −→ STOP , i.e., a pro-
cess which at any time is willing to terminate successfully (the latter
being represented by communication of the event X), and then do
nothing.

• WAIT n is the process which will idle for n time units, and then become
SKIP (and offer to terminate).

• a −→ P initially offers at any time to engage in the event a, and subse-
quently behaves like P ; note that when the process P is thus ‘activated’,
it considers that time has just started, even if the occurrence of a took
place some positive amount of time after one first started to observe
a −→ P—in other words, P is not ‘turned on’ until a is witnessed.
The general prefixed process a : A −→ P (a) is initially prepared to en-
gage in any of the events a ∈ A, at the choice of the environment, and
thereafter behave like P (a); this corresponds to STOP when A = ∅.

• P
n
� Q is the process that initially offers to become P for n time units,

after which it silently becomes Q if no visible event (necessarily from
P ) has occurred. P is initially turned on, and Q gets turned on after n
time units if P has failed to communicate any event in the meantime.

• P u Q represents the nondeterministic (or internal) choice between
P and Q. Which of these two processes P u Q chooses to become
is independent of the environment, and how this choice is resolved is
considered to be outside the domain of discourse. This choice is effected
without delay.

• P 2 Q, on the other hand, denotes a process which is willing to behave
either like P or like Q, at the choice of the environment. This decision is
taken on the first visible event (and not before), and is nondeterministic
only if this initial event is possible for both P and Q. Both P and Q
are turned on as soon as P 2 Q is.

• The parallel composition P1 ‖
B

P2 of P1 and P2, over the interface set

B, forces P1 and P2 to agree and synchronise on all events in B, and
to behave independently of each other with respect to all other events.
When X /∈ B, P1 ‖

B

P2 terminates (and makes no further communi-

cations) as soon as either of its subcomponents does. P1 and P2 are
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turned on throughout. P19P2 corresponds to parallel composition over
an empty interface—each process behaves independently of the other,
except again for termination, which halts any further progress alto-
gether. Note however that it is assumed that time flows at a universal
and constant rate, the same for all processes that are turned on.

• P ; Q corresponds to the sequential composition of P and Q: it denotes
a process which behaves like P until P chooses to terminate (silently),
at which point the process seamlessly starts to behave like Q. The
process Q is turned on precisely when P terminates.

• P \ A is a process which behaves like P but with all communications in
the set A hidden (made invisible to the environment); the assumption of
maximal progress, or τ -urgency, dictates that no time can elapse while
hidden events are on offer—in other words, hidden events happen as
soon as they become available.

• The renamed processes f−1(P ) and f(P ) derive their behaviours from
those of P in that, whenever P can perform an event a, f−1(P ) can
engage in any event b such that f(b) = a, whereas f(P ) can perform
f(a).

• The process variable X has no intrinsic behaviour of its own, but can
imitate any process P under certain conditions—it is however best
interpreted as a formal variable for the time being.

• Lastly, the recursion µX �P represents the unique solution to the equa-
tion X = P (where the variable X usually appears freely within P ’s
body). The operator µX binds every free occurrence of X in P . The
condition (“if P is time-guarded for X”) ensures that the recursion is
well-defined and has a unique solution; the formal definition of time-
guardedness follows shortly.

Following [DS95], we will normally refer to the closed terms2 of the free
syntactic algebra thus generated as programs, rather than processes, reserving
the latter terminology for the elements of the denotational models we will be
considering. The two concepts are very closely related however, and since the
distinction between them is often not explicitly made in the literature, we
will on occasion abuse this convention ourselves and refer to both as processes
(as we have done above).

2A closed term is a term with no free variable: every process variable X in it is within
the scope of a µX operator.
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We will occasionally use the following derived constructs: abbreviating
a −→ STOP as simply ā, and writing a

n
−→ P instead of a −→ WAIT n ; P ,

and similarly for the general prefix operator. P ‖ Q stands for P ‖
ΣX

Q. In

the case of hiding a single event a, we write P \ a rather than P \ {a}. The
‘conditional choice’ construct T <I bool>I F denotes the process T if bool is
true, and the process F otherwise. Lastly, from time to time, we express
recursions by means of the equational notation X = P , rather than the
functional µX � P prescribed by the definition.

Except where explicitly noted, we are only interested in well-timed pro-
grams (the definition of which we give below). Recall also that we require

all delays (parameter n in the terms WAIT n and P1

n
� P2) to be integral.

This restriction (in the absence of which the central problems considered in
this thesis become theoretically intractable3) is in practice extremely benign,
because of the freedom to scale time units—its only real effects are to forbid,
within a single program, either incommensurable delays (e.g., rational and
irrational), or infinite sets of delays with arbitrarily small modular fractional
differences4; both cases would clearly be unrealistic when dealing with real-
world programs. For these reasons, many authors adopt similar conventions.

The following definitions are adapted from [Sch00]. A term is time-active
if some strictly positive amount of time must elapse before it terminates. A
term is time-guarded for X if any execution of it must consume some strictly
positive amount of time before a recursive call for X can be reached. Lastly,
a program is well-timed when all of its recursions are time-guarded. Note
that, because all delays are integral, some “strictly positive amount of time”
in this context automatically means at least one time unit.

Definition 2.1 The collection of time-active terms is the smallest set of
terms such that:

• STOP is time-active;

• WAIT n is time-active for n > 1;

3As an example, let γ denote the famous Euler-Mascheroni constant, and consider the

processes N = WAIT 1 ; ā
0

� N and E = WAIT γ ; ā
0

� E. If we let P = N ‖ E,
deciding whether or not P can communicate an a is equivalent to deciding whether or not
γ is rational, a well-known open problem.

4This second situation could in fact only occur were we to allow infinite (parameterised)
mutual recursion.
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• If P is time-active, then so are a −→ P , P ‖
{X}∪A

Q, Q ‖
{X}∪A

P , P ; Q,

Q ; P , P \ A, f−1(P ), f(P ), µX � P , as well as P
n
� Q for n > 1;

• If P1 and P2 are time-active, then so are P1

n
� P2, P1 2 P2, P1 u P2,

P1 ‖
B

P2, and P1 9 P2;

• If P (a) is time-active for each a ∈ A, then a : A −→ P (a) is time-
active.

Definition 2.2 For any program variable X, the collection of terms which
are time-guarded for X is the smallest set of terms such that:

• STOP, SKIP, WAIT n, and µX � P are time-guarded for X;

• Y 6= X is time-guarded for X;

• If P is time-guarded for X, then so are a −→ P , P \ A, f−1(P ), f(P ),

µY � P , as well as P
n
� Q for n > 1;

• If P1 and P2 are time-guarded for X, then so are P1

n
� P2, P1 2 P2,

P1 u P2, P1 ; P2, P1 ‖
B

P2, and P1 9 P2;

• If P (a) is time-guarded for X for each a ∈ A, then a : A −→ P (a) is
time-guarded for X;

• If P is time-guarded for X and time-active, then P ; Q is time-guarded
for X.

Definition 2.3 A term is well-timed if every subterm of the form µX � P
is such that P is time-guarded for X.

The collection of well-timed Timed CSP terms is denoted TCSP, whereas
the set of well-timed Timed CSP programs is written TCSP. Note that
our grammar only allows us to produce well-timed terms; thus it is always
understood that terms and programs are well-timed unless explicitly stated
otherwise.
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2.2 Semantic Modelling

Semantic models for process algebras come in many different flavours, the
main characteristics of which we briefly sketch below.

• An algebraic semantics attempts to capture the meaning of a program
through a series of laws which equate programs considered different
only in an ‘inessential’ way. One such law, for example, might be
SKIP ; P = P . Surprisingly little work has been carried out on alge-
braic semantics for Timed CSP; we will briefly examine the question
later on.

• An operational semantics typically models programs as labelled tran-
sition systems, with nodes corresponding to machine states and edges
corresponding to actions. This semantics represents most concretely
the possible executions of a program, and figures prominently in the de-
sign of model checking algorithms. This semantics is often augmented
with some notion of bisimulation which provides a mechanism for deter-
mining when two processes are equivalent. We will present and study
several operational semantic models for Timed CSP in this thesis.

• A denotational semantics maps programs into some abstract model
(typically a structured set or a category). This model is itself equipped
with the operators present in the language, and the map is required
to be compositional, i.e., it must be a homomorphism preserving these
operators. In other words, the denotational value, or meaning, of any
program is entirely determined by the meanings of its subcomponents.
A denotational semantics is often predicated upon an algebraic or oper-
ational semantics, and the relationship between these models is usually
carefully studied. Denotational semantics have typically been the main
modelling devices for CSP-based languages, and figure prominently in
this work. In essence, a Timed CSP program is represented by its set
of behaviours, which are timed records of both the communications the
program has been observed to engage in as well as those it has shunned.

• Other types of semantics, such as testing and game semantics, are not
dealt with in this work.

One of the first decisions to take when modelling timed systems is whether
time will be modelled in a dense (usually continuous), or discrete, fashion.
Since the aim of this thesis is to study the interplay between these two
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paradigms, we naturally consider models of both types. The timed failures
model MTF , first described in [RR86, Ree88], augmented with an opera-
tional semantics in [Sch95], and presented in the Chapter 3, serves as the
continuous-time representative. Time is modelled by a global continuous
clock, and recorded via a non-negative real-numbered timestamp on commu-
nicated or refused events.

We also develop denotational and operational semantics for two discrete-
time models, the discrete-time refusal testing model MR and the discrete-
time unstable refusal testing model MUR, in which time is modelled by the
regular communication of the special event tock 5, which processes are re-
quired to synchronise on. These models are developed in Chapters 5 and
7 respectively, and their relationship to the timed failures model studied in
Chapters 6 and 8.

2.3 Notation

We list a number of definitions and conventions. These apply throughout the
thesis, with further, more specific definitions introduced along as needed.

Sequences and sequence manipulations figure prominently in our models,
thus the need for a certain amount of notation. Sequences can be either finite
or infinite. We will primarily write 〈a1, a2, . . . , ak〉 to denote a finite sequence
of length k comprising the elements a1, a2, . . . , ak, although on occasion we
will also use the notation [a1, a2, . . . , ak], to distinguish between different
types of sequences. In the context of operational semantics we will even
represent executions by sequences devoid of any brackets. Most of what
follows applies equally to all three types of notation, with the context usually
clarifying any ambiguity.

The empty sequence is written 〈〉 (or [], etc.).

Let u = 〈a1, a2, . . . , ak〉 and v = 〈b1, b2, . . . , bk′〉. Their concatenation
u_v is the sequence 〈a1, a2, . . . , ak, b1, b2, . . . , bk′〉. If u is infinite we let
u_v =̂ u. v can also be infinite, with the obvious interpretation.

We now define an exponentiation operation as follows: for u a sequence,
we let

5‘tock ’ rather than ‘tick ’, since the latter could be confused with the termination event
X.
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u0 =̂ 〈〉

uk+1 =̂ u_uk.

We also let u∞ =̂ u_u_u_ . . ..

The sequence u is a prefix of the sequence v if there exists a sequence u′

such that u_u′ = v. In this case we write u ≤ v.

The sequence u appears in the sequence v if there exist sequences u′ and
u′′ such that u′_u_u′′ = v. In this case we write u in v.

For u = 〈a1, a2, . . . , ak〉 a non-empty finite sequence, ǔ =̂ 〈a2, a3, . . . , ak〉
and û =̂ 〈a1, a2, . . . , ak−1〉 represent respectively u minus its first element and
u minus its last element. We will never apply these operators to empty or
infinite sequences.

The operator ] returns the number of elements in a given sequence (tak-
ing on the value ∞ if the sequence is infinite), including repetitions. Thus
]〈a1, a2, . . . , ak〉 =̂ k.

The operator � denotes the restriction of a sequence to elements of a given
set. Specifically, if A is a set, then we define inductively

〈〉 � A =̂ 〈〉

(〈a〉_u) � A =̂ 〈a〉_(u � A) if a ∈ A

(〈a〉_u) � A =̂ u � A if a /∈ A.

(This definition can be extended in the obvious way to infinite sequences,
although we will not need this.) If A is the singleton {a} we write u � a
instead of u � {a}. We will further overload this notation in Chapters 3, 5,
and 7; the context, however, should always make clear what the intended
meaning is.

If A and B are sets of sequences, we write AB to denote the set {u_v |u ∈
A ∧ v ∈ B}.

Lastly, if A is a set, we write A? to represent the set of finite sequences
all of whose elements belong to A: A? =̂ {u | ]u < ∞ ∧ ∀〈a〉 in u � a ∈ A}.



Chapter 3

The Timed Failures Model

The timed failures model was developed by Reed and Roscoe as a continuous-
time denotational model for the language of Timed CSP, which they had pro-
posed as an extension of CSP [RR86, RR87, Ree88]. A number of different
semantic models in the same vein have since appeared, with fundamentally
minor overall differences between them; references include, in addition to
the ones just mentioned, [Sch89, Dav91, DS95, RR99, Sch00]. The denota-
tional model MTF which we present here incorporates the essential features
common to all of these continuous-time models.

MTF also has a congruent operational semantics, given by Schneider in
[Sch95], which we reproduce along with a number of results and a synopsis of
the links to the denotational model that it enjoys. A particularly important
result for us is the digitisation lemma (Lemma 3.11), which we present in a
separate section.

Lastly, we review the notions of refinement, specification, and verification.
In addition to the sources already mentioned, [Jac92] provided a slice of the
material presented here.

Our presentation is expository in nature and rather brief—the only state-
ment we prove is the digitisation lemma, which is original and requires a
significant amount of technical machinery. We otherwise refer the reader to
the sources above for a more thorough and complete treatment.
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3.1 Denotational Semantics

We lay out the denotational model MTF for Timed CSP and the associ-
ated semantic function FT J·K : TCSP −→ MTF . Sources include [Ree88],
[RR99], and [Sch00].

Timed failures are pairs (s,ℵ), with s a timed trace and ℵ a timed refusal.
A timed trace is a finite sequence of timed events (t, a) ∈ R+×ΣX, such that
the times are in non-decreasing order. A timed refusal is a set of timed events
consisting of a finite union of refusal tokens [t, t′) × A (with 0 6 t 6 t′ < ∞
and A ⊆ ΣX). A timed failure (s,ℵ) is interpreted as an observation of a
process in which the events that the process has engaged in are recorded
in s, whereas the intervals during which other events have been refused are
recorded in ℵ. The set of timed traces is denoted by TT , the set of timed
refusals by RSET , and the set of timed failures by TF .

We define certain operations on these objects. We overload some opera-
tors, although context usually makes clear what the intended meaning is. In
what follows s ∈ TT , ℵ ∈ RSET , t, t′ ∈ R+ ∪ {∞}, A ⊆ ΣX, and a ∈ ΣX.

s � t =̂ s � [0, t] × ΣX

s |� t =̂ s � [0, t) × ΣX

s � A =̂ s � [0,∞) × A

s \ A =̂ s � (Σ − A)

σ(s) =̂ {a | s � {a} 6= 〈〉}

begin(〈〉) =̂ ∞

begin(〈(t, a)〉_s) =̂ t

end(〈〉) =̂ 0

end(s_〈(t, a)〉) =̂ t

ℵ � [t, t′) =̂ ℵ ∩ [t, t′) × ΣX

ℵ |� t =̂ ℵ � [0, t)

ℵ � A =̂ ℵ ∩ [0,∞) × A

σ(ℵ) =̂ {a | ℵ � {a} 6= ∅}

begin(ℵ) =̂ inf({t | ∃ a � (t, a) ∈ ℵ} ∪ {∞})

end(ℵ) =̂ sup({t | ∃ a � (t, a) ∈ ℵ} ∪ {0})

(s,ℵ) |� t =̂ (s |� t,ℵ |� t)

begin((s,ℵ)) =̂ min(begin(s), begin(ℵ))

end((s,ℵ)) =̂ max{begin(s), begin(ℵ)}.
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We also define the information ordering ≺ on timed failures as follows:
(s′,ℵ′) ≺ (s,ℵ) if there exists s′′ ∈ TT such that s = s′_s′′ and ℵ′ ⊆ ℵ |�
begin(s′′).

Definition 3.1 The timed failures model MTF is the set of all P ⊆ TF
satisfying the following axioms, where s, s′ ∈ TT, ℵ,ℵ′ ∈ RSET, a ∈ ΣX,
and t, u ∈ R+.

TF1 (〈〉, ∅) ∈ P

TF2 ((s,ℵ) ∈ P ∧ (s′,ℵ′) ≺ (s,ℵ)) ⇒ (s′,ℵ′) ∈ P

TF3 ((s,ℵ) ∈ P ∧ u > 0) ⇒

∃ℵ′ ∈ RSET � ℵ ⊆ ℵ′ ∧ (s,ℵ′) ∈ P ∧ ∀(t, a) ∈ [0, u) × ΣX�

((t, a) /∈ ℵ′ ⇒ (s � t_〈(t, a)〉,ℵ′ |� t) ∈ P ) ∧

((t > 0 ∧ @ ε > 0 � [t − ε, t) × {a} ⊆ ℵ′) ⇒

(s |� t_〈(t, a)〉,ℵ′ |� t) ∈ P )

TF4 ∀ t > 0 � ∃n ∈ N � ((s,ℵ) ∈ P ∧ end(s) 6 t) ⇒ ](s) 6 n

TF5 (s_〈(t,X)〉_s′,ℵ) ∈ P ⇒ s′ = 〈〉.

These axioms have the following intuitive interpretations:

TF1 : The least we can observe about a process is that it has communicated
no events and refused none.

TF2 : Any observation could have been replaced by another observation con-
taining less information.

TF3 : Tells us how observations can be extended, and postulates the existence
of complete behaviours up to time u (for any u), which are maximal
observations under the information ordering ≺. Specifically, this axiom
says that any event not refusable at a certain time could have been
performed at that time (albeit possibly only ‘after’ a number of events
also occurring at that precise time); however, if the event in question
was not refusable over some interval, however small, leading to the time
in question, then that event could have been the ‘first’ to occur at that
time. The fact that complete behaviours always exist also indicates that
any behaviour can be extended to one in which no event is infinitely
repeatedly offered and withdrawn over a finite period of time, since
refusals are finite unions of refusal tokens.
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TF4 : A process cannot perform infinitely many events in a finite time. This
axiom (known as finite variability) precludes such anomalies as Zeno
processes.

TF5 : Stipulates that a process which has terminated may not communicate
any further.

Note that Axiom TF3 implies that processes (can be observed to) run
indefinitely. In other words, MTF processes cannot exhibit timestops.

We will return to these axioms later on when building our discrete-time
models and compare them to their discrete-time counterparts.

We now list a few more definitions before presenting the denotational
mapping FT J·K.

For s = 〈(t1, a1), (t2, a2), . . . , (tk, ak)〉 and t > −begin(s) = −t1, we let
s + t =̂ 〈(t1 + t, a1), (t2 + t, a2), . . . , (tk + t, ak)〉. (Of course, s − t means
s + (−t)). For any t ∈ R, define ℵ + t =̂ {(t′ + t, a) | (t′, a) ∈ ℵ ∧ t′ > −t}.
Lastly, if t > −begin(s), then (s,ℵ) + t =̂ (s + t,ℵ + t).

Given B ⊆ ΣX, we define an untimed merging operator (·) ‖̃
B

(·) : TT ×

TT −→ P((R+ × ΣX)?), en route to defining an adequate parallel operator
on timed traces. In what follows, s ∈ (R+×ΣX)?, s1, s2, s

′
1, s

′
2 ∈ TT , t ∈ R+,

and a ∈ ΣX.

〈〉 ∈ s1 ‖̃
B

s2 ⇔ s1 = s2 = 〈〉

〈(t, a)〉_s ∈ s1 ‖̃
B

s2 ⇔ (a ∈ B ∧ s1 = 〈(t, a)〉_s′1 ∧

s2 = 〈(t, a)〉_s′2 ∧ s ∈ s′1 ‖̃
B

s′2) ∨

(a /∈ B ∧ s1 = 〈(t, a)〉_s′1 ∧ s ∈ s′1 ‖̃
B

s2) ∨

(a /∈ B ∧ s2 = 〈(t, a)〉_s′2 ∧ s ∈ s1 ‖̃
B

s′2).

We now define (·) ‖
B

(·) : TT × TT −→ P(TT ) by imposing the proper

ordering on timed events, and throwing out traces which fail to satisfy Ax-
iom TF5. The notation is as above.

s ∈ s1 ‖
B

s2 ⇔ s ∈ s1 ‖̃
B

s2 ∧ s ∈ TT ∧ (s = s′_〈(t,X)〉_s′′ ⇒ s′′ = 〈〉).

We let s1 9 s2 =̂ s1 ‖
∅

s2, for any s1, s2 ∈ TT .
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A renaming function f : Σ −→ Σ has an obvious extension to timed
traces and timed refusals: if s = 〈(t1, a1), (t2, a2), . . . , (tk, ak)〉 ∈ TT and
ℵ ∈ RSET , then f(s) =̂ 〈(t1, f(a1)), (t2, f(a2)), . . . , (tk, f(ak))〉, f(ℵ) =̂
{(t, f(a)) | (t, a) ∈ ℵ}, and f−1(ℵ) =̂ {(t, a) | (t, f(a)) ∈ ℵ}. Here f is
extended to ΣX by setting f(X) =̂ X.

The lambda abstraction λx.F (x) formally represents the function F . For
example, λx.(x2+3) denotes the function F such that, for all x, F (x) = x2+3.

A semantic binding is a function ρ : VAR −→ MTF . Given a semantic
binding ρ and a process P ∈ MTF , we write ρ[X := P ] to denote a further
semantic binding that is the same as ρ except that it returns P for X instead
of ρ(X). Naturally, if x is a variable ranging over MTF (i.e., x is a bona
fide variable, not an element of VAR!), λx.ρ[X := x] represents a function
which, when fed an element P of MTF , returns a semantic binding (one that
is identical to ρ but for mapping X to P ).

If F : MTF −→ MTF has a unique fixed point, we denote it by fix(F ).
(P ∈ MTF is a fixed point of F if F (P ) = P .)

We now define the function FT J·K inductively over the structure of Timed
CSP terms. Since a term P ∈ TCSP may contain free variables, we also
require a semantic binding ρ in order to assign MTF processes to the free
variables of P .1 In what follows, s, s1, s2 ∈ TT , ℵ,ℵ1,ℵ2 ∈ RSET , t ∈ R+,
a ∈ Σ, A ⊆ Σ, and B ⊆ ΣX. The rules are as follows:

FT JSTOPKρ =̂ {(〈〉,ℵ)}

FT JSKIPKρ =̂ {(〈〉,ℵ) |X /∈ σ(ℵ)}∪

{(〈(t,X)〉,ℵ) | t > 0 ∧ X /∈ σ(ℵ |� t)}

FT JWAIT nKρ =̂ {(〈〉,ℵ) |X /∈ σ(ℵ � [n,∞))}∪

{(〈(t,X)〉,ℵ) | t > n ∧ X /∈ σ(ℵ � [n, t))}

FT JP1

n
� P2Kρ =̂ {(s,ℵ) | begin(s) 6 n ∧ (s,ℵ) ∈ FT JP1Kρ}∪

{(s,ℵ) | begin(s) > n ∧ (〈〉,ℵ |� n) ∈ FT JP1Kρ ∧

(s,ℵ) − t ∈ FT JP2Kρ}

1In reality, we are actually defining FT : TCSP × BIND −→ MTF , where BIND

stands for the set of all semantic bindings. Since our interest ultimately lies exclusively
in the subset TCSP of TCSP (in which case the choice of semantic binding becomes
irrelevant), we shall not be overly concerned with this point.
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FT Ja −→ P Kρ =̂ {(〈〉,ℵ) | a /∈ σ(ℵ)}∪

{(〈(t, a)〉_s,ℵ) | t > 0 ∧ a /∈ σ(ℵ |� t) ∧

begin(s) > t ∧ (s,ℵ) − t ∈ FT JP Kρ}

FT Ja : A −→ P (a)Kρ =̂ {(〈〉,ℵ) | A ∩ σ(ℵ) = ∅}∪

{(〈(t, a)〉_s,ℵ) | a ∈ A ∧ t > 0 ∧

A ∩ σ(ℵ |� t) = ∅ ∧ begin(s) > t ∧

(s,ℵ) − t ∈ FT JP (a)Kρ}

FT JP1 2 P2Kρ =̂ {(〈〉,ℵ) | (〈〉,ℵ) ∈ FT JP1Kρ ∩ FT JP2Kρ}∪

{(s,ℵ) | s 6= 〈〉 ∧ (s,ℵ) ∈ FT JP1Kρ ∪ FT JP2Kρ ∧

(〈〉,ℵ |� begin(s)) ∈ FT JP1Kρ ∩ FT JP2Kρ}

FT JP1 u P2Kρ =̂ FT JP1Kρ ∪ FT JP2Kρ

FT JP1 ‖
B

P2Kρ =̂ {(s,ℵ) | ∃ s1, s2,ℵ1,ℵ2 � s ∈ s1 ‖
B

s2 ∧

ℵ1 � (Σ − B) = ℵ2 � (Σ − B) = ℵ � (Σ − B) ∧

ℵ1 � B ∪ ℵ2 � B = ℵ � B ∧

(s1,ℵ1 |� begin(s � {X})) ∈ FT JP1Kρ ∧

(s2,ℵ2 |� begin(s � {X})) ∈ FT JP2Kρ}

FT JP1 9 P2Kρ =̂ {(s,ℵ) | ∃ s1, s2 � s ∈ s1 9 s2 ∧

(s1,ℵ |� begin(s � {X})) ∈ FT JP1Kρ ∧

(s2,ℵ |� begin(s � {X})) ∈ FT JP2Kρ}

FT JP1 ; P2Kρ =̂ {(s,ℵ) |X /∈ σ(s) ∧

(s,ℵ ∪ ([0, end((s,ℵ))) × {X})) ∈ FT JP1Kρ}∪

{(s1
_s2,ℵ) |X /∈ σ(s1) ∧ (s2,ℵ) − t ∈ FT JP2Kρ ∧

(s1
_〈(t,X)〉,ℵ |� t ∪ ([0, t) × {X})) ∈ FT JP1Kρ}

FT JP \ AKρ =̂ {(s \ A,ℵ) | (s,ℵ ∪ ([0, end((s,ℵ))) × A)) ∈ FT JP Kρ}

FT Jf−1(P )Kρ =̂ {(s,ℵ) | (f(s), f(ℵ)) ∈ FT JP Kρ}

FT Jf(P )Kρ =̂ {(f(s),ℵ) | (s, f−1(ℵ)) ∈ FT JP Kρ}

FT JXKρ =̂ ρ(X)

FT JµX � P Kρ =̂ fix(λx.FT JP K(ρ[X := x])).

The following results are due to Reed [Ree88].

Proposition 3.1 Well-definedness: for any term P , and any semantic bind-
ing ρ, FT JP Kρ ∈ MTF .
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Proposition 3.2 If P is a Timed CSP program (i.e., P ∈ TCSP), then,
for any semantic bindings ρ and ρ′, FT JP Kρ = FT JP Kρ′.

We will henceforth drop mention of semantic bindings when calculating
the semantics of programs.

3.2 Operational Semantics

The contents and style of this section derive essentially from [Sch95]. We
present a collection of inference rules with the help of which any TCSP pro-
gram can be assigned a unique labelled transition system, or LTS . Such LTS’s
are the operational counterparts of denotational process representations. A
fuller and more formal discussion of operational semantics (especially in CSP
contexts) can be found in [Ros97].

An operational semantics can usually ascribe behaviours to programs that
are not necessarily well-timed; moreover, because it is state-based, we must
equip it with a means to describe intermediate computational states which
in certain cases TCSP notation is unable to do. For this reason, we will
consider terms generated by the following less restrictive grammar:

P := STOP | SKIP | WAIT t | P1

t
� P2 |

a −→ P | a : A −→ P (a) | P1 2 P2 | P1 u P2 |

P1 ‖
B

P2 | P1 9 P2 | P1 ; P2 | P \ A |

f−1(P ) | f(P ) | X | µX � P.

Here t can be any non-negative real number, and we have dropped any
requirement of well-timedness.2 The remainder of our conventions about
Timed CSP syntax (see Section 2.1) however apply. We denote the set of
terms which this grammar generates by NODETF and the set of closed terms
(not containing free variables) by NODETF , dropping the subscripts when
no confusion is likely. Elements of NODE are called (open) nodes whereas
elements of NODE are called (closed) nodes. We insist that our inference

2Forgoing well-timedness is not absolutely necessary, but does no harm and certainly
greatly simplifies matters in the presence of fractional delays; in addition, we will see later
on why it is convenient to be able to write certain specifications in terms of non-well-timed
nodes.
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rules only apply to closed nodes. Note that TCSP ⊆ NODE and TCSP ⊆
NODE .

We list a few notational conventions: a and b stand for (non-tock) visible
events, i.e., belong to ΣX. A ⊆ Σ and B ⊆ ΣX. µ can be a visible event

or a silent one (µ ∈ ΣX ∪ {τ}). P
µ

−→ P ′ means that the closed node P
can perform an immediate and instantaneous µ-transition, and become the

closed node P ′ (communicating µ in the process if µ is a visible event). P
µ

X−→

means that P cannot possibly do a µ at that particular time. P
t
 P ′ means

that P can become P ′ simply by virtue of letting t units of time elapse, where
t is a non-negative real number. If P and Q are open nodes and X ∈ VAR,
P [Q/X] represents the node P with Q substituted for every free occurrence
of X.

The inference rules take the general form

antecedent(s)

conclusion
[ side condition ]

where either antecedents or side condition, or both, can be absent. (The
side condition is an antecedent typically dealing with matters other than
transitions or evolutions.) The rules are as follows.

STOP
t
 STOP

(3.1)

SKIP
t
 SKIP

(3.2)

SKIP
X

−→ STOP
(3.3)

WAIT u
t
 WAIT (u − t)

[ t 6 u ] (3.4)

WAIT 0
τ

−→ SKIP
(3.5)
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P1
t
 P ′

1

P1

u
� P2

t
 P ′

1

u−t
� P2

[ t 6 u ] (3.6)

P1

0
� P2

τ
−→ P2

(3.7)

P1
τ

−→ P ′
1

P1

u
� P2

τ
−→ P ′

1

u
� P2

(3.8)

P1
a

−→ P ′
1

P1

u
� P2

a
−→ P ′

1

(3.9)

(a −→ P )
t
 (a −→ P )

(3.10)

(a −→ P )
a

−→ P
(3.11)

(a : A −→ P (a))
t
 (a : A −→ P (a))

(3.12)

(a : A −→ P (a))
b

−→ P (b)
[ b ∈ A ] (3.13)

P1
t
 P ′

1 P2
t
 P ′

2

P1 2 P2
t
 P ′

1 2 P ′
2

(3.14)

P1
τ

−→ P ′
1

P1 2 P2
τ

−→ P ′
1 2 P2

P2
τ

−→ P ′
2

P1 2 P2
τ

−→ P1 2 P ′
2

(3.15)
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P1
a

−→ P ′
1

P1 2 P2
a

−→ P ′
1

P2
a

−→ P ′
2

P1 2 P2
a

−→ P ′
2

(3.16)

P1 u P2
τ

−→ P1 P1 u P2
τ

−→ P2

(3.17)

P1
t
 P ′

1 P2
t
 P ′

2

P1 ‖
B

P2
t
 P ′

1 ‖
B

P ′
2

(3.18)

P1
µ

−→ P ′
1

P1 ‖
B

P2
µ

−→ P ′
1 ‖

B

P2

[ µ /∈ B, µ 6= X ] (3.19a)

P2
µ

−→ P ′
2

P1 ‖
B

P2
µ

−→ P1 ‖
B

P ′
2

[ µ /∈ B, µ 6= X ] (3.19b)

P1
a

−→ P ′
1 P2

a
−→ P ′

2

P1 ‖
B

P2
a

−→ P ′
1 ‖

B

P ′
2

[ a ∈ B ] (3.20)

P1
X

−→ P ′
1

P1 ‖
B

P2
X

−→ P ′
1

[X /∈ B ]
P2

X
−→ P ′

2

P1 ‖
B

P2
X

−→ P ′
2

[X /∈ B ] (3.21)

P1
t
 P ′

1 P2
t
 P ′

2

P1 9 P2
t
 P ′

1 9 P ′
2

(3.22)

P1
µ

−→ P ′
1

P1 9 P2
µ

−→ P ′
1 9 P2

[ µ 6= X ] (3.23a)

P2
µ

−→ P ′
2

P1 9 P2
µ

−→ P1 9 P ′
2

[ µ 6= X ] (3.23b)
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P1
X

−→ P ′
1

P1 9 P2
X

−→ P ′
1

P2
X

−→ P ′
2

P1 9 P2
X

−→ P ′
2

(3.24)

P1
t
 P ′

1 P1
X

X−→

P1 ; P2
t
 P ′

1 ; P2

(3.25)

P1
X

−→ P ′
1

P1 ; P2
τ

−→ P2

(3.26)

P1
µ

−→ P ′
1

P1 ; P2
µ

−→ P ′
1 ; P2

[ µ 6= X ] (3.27)

P
t
 P ′ ∀ a ∈ A � P

a
X−→

P \ A
t
 P ′ \ A

(3.28)

P
a

−→ P ′

P \ A
τ

−→ P ′ \ A
[ a ∈ A ] (3.29)

P
µ

−→ P ′

P \ A
µ

−→ P ′ \ A
[ µ /∈ A ] (3.30)

P
t
 P ′

f−1(P )
t
 f−1(P ′)

(3.31)

P
µ

−→ P ′

f−1(P )
µ

−→ f−1(P ′)
[ µ ∈ {τ,X} ] (3.32)

P
f(a)
−→ P ′

f−1(P )
a

−→ f−1(P ′)
(3.33)
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P
t
 P ′

f(P )
t
 f(P ′)

(3.34)

P
µ

−→ P ′

f(P )
µ

−→ f(P ′)
[ µ ∈ {τ,X} ] (3.35)

P
a

−→ P ′

f(P )
f(a)
−→ f(P ′)

(3.36)

µX � P
τ

−→ P [(µX � P )/X].
(3.37)

The reader may have noticed that Rules 3.25 and 3.28 incorporate nega-

tive premisses (P1
X

X−→ and P
a

X−→), which could potentially yield an inconsis-
tent definition. This does not occur, for the following reason: notice that the

x
−→ relation can be defined, independently of the

t
 relation, as the smallest

relation satisfying the relevant subset of rules, since no negative premisses
are involved in its definition. Once the

x
−→ relation has been defined, the

t
 relation can then itself be defined. Since the negative premisses are all
phrased in terms of the previously defined (and fixed)

x
−→ relation, they do

not pose any problem.

We now present a number of results about the operational semantics. We
begin with some definitions.

If P and Q are open nodes, we write P ≡ Q to indicate that P and Q
are syntactically identical.

If P is a closed node, we define initτ
TF

(P ) to be the set of visible and silent

events that P can immediately perform: initτ
TF

(P ) =̂ {µ | P
µ

−→}. We also
write initTF (P ) to represent the set of visible events that P can immediately
perform: initTF (P ) =̂ initτ

TF
(P ) ∩ ΣX. We will usually write initτ (P ) and

init(P ) for short when no confusion is likely.

For P a closed node, we define an execution of P to be a sequence e =
P0

z17−→ P1
z27−→ . . .

zn7−→ Pn (with n > 0), where P0 ≡ P , the Pi’s are nodes,

and each subsequence Pi

zi+1
7−→ Pi+1 in e is either a transition Pi

µ
−→ Pi+1 (with
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zi+1 = µ), or an evolution Pi
t
 Pi+1 (with zi+1 = t). In addition, every such

transition or evolution must be validly allowed by the operational inference
Rules 3.1–3.37. The set of executions of P is written execTF (P ), or exec(P )
for short when no confusion with notation introduced later on is likely. By
convention, writing down a transition (or sequence thereof) such as P

a
−→ P ′

is equivalent to stating that P
a

−→ P ′ ∈ exec(P ); the same, naturally, goes
for evolutions.

For P a closed node, the P -rooted graph, or labelled transition system,
incorporating all of P ’s possible executions is denoted LTSTF (P ), or LTS(P )
if no confusion is likely.

Every execution e gives rise to a timed τ -trace abs(e) in the obvious way,
by removing nodes and evolutions from the execution, but recording events’
time of occurrence in agreement with e’s evolutions. (A timed τ -trace is a
timed trace over ΣX ∪ {τ}.) The formal inductive definition of abs is as
follows:

abs(P ) =̂ 〈〉

abs((P
µ

−→)_e) =̂ 〈(0, µ)〉_abs(e)

abs((P
t
 )_e) =̂ abs(e) + t.

The duration of an evolution e is equal to the sum of its evolutions:
dur(e) =̂ end(abs(e)).

We then have the following results, adapted from [Sch95]. (Here P, P ′, P ′′

are closed nodes, t, t′ are non-negative real numbers, etc.).

Proposition 3.3 Time determinacy:

(P
t
 P ′ ∧ P

t
 P ′′) ⇒ P ′ ≡ P ′′.

Proposition 3.4 Persistency—the set of possible initial visible events re-
mains constant under evolution:

P
t
 P ′ ⇒ init(P ) = init(P ′).

Proposition 3.5 Time continuity:

P
t+t′

 P ′ ⇔ ∃P ′′ � P
t
 P ′′ t′

 P ′.
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Proposition 3.6 Maximal progress, or τ -urgency:

P
τ

−→ ⇒ ∀ t > 0 � @ P ′ � P
t
 P ′.

Corollary 3.7

(P
t
 P ′ τ

−→ ∧ P
t′

 P ′′ τ
−→) ⇒ t = t′.

Proposition 3.8 A node P can always evolve up to the time of the next τ
action, or up to any time if no τ action lies ahead:

∀ t > 0 � (@ P ′ � P
t
 P ′) ⇒ (P

τ
−→ ∨ ∃ t′ < t, P ′′ � P

t′

 P ′′ τ
−→).

Proposition 3.9 Finite variability—a program P ∈ TCSP cannot perform
unboundedly many actions in a finite amount of time:

∀ t > 0 � ∃n = n(P, t) ∈ N � ∀ e ∈ exec(P ) � dur(e) 6 t ⇒ ]abs(e) 6 n.

We remark that we owe this result to the fact that programs are well-
timed. Note also that this notion of finite variability is stronger than that
postulated by Axiom TF4, since it concerns both visible and silent events.

In [Sch95], it is shown that the operational semantics just given is congru-
ent to the denotational semantics of Section 3.1, in a sense which we make
precise below. We begin with some definitions.

A set of visible events is refused by a node P if P is stable (cannot perform
a τ -transition) and has no valid initial transition labelled with an event from
that set. Thus for A ⊆ ΣX, we write P ref A if P

τ
X−→ ∧ A ∩ init(P ) = ∅.

An execution e of a node P is said to fail a timed failure (s,ℵ) if the
timed trace s corresponds to the execution e, and the nodes of e can always
refuse the relevant parts of ℵ; we then write e fail (s,ℵ). The relation is
defined inductively on e as follows:

P fail (〈〉, ∅) ⇔ true

(P
τ

−→)_e′ fail (s,ℵ) ⇔ e′ fail (s,ℵ)

(P
a

−→)_e′ fail (〈(0, a)〉_s′,ℵ) ⇔ a 6= τ ∧ e′ fail (s′,ℵ)

(P
t
 )_e′ fail (s,ℵ) ⇔ P ref σ(ℵ |� t) ∧ e′ fail (s − t,ℵ − t).

Finally, we define the function ΦTF , which extracts the denotational rep-
resentation of a node from its set of executions.
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Definition 3.2 For P ∈ NODE, we set

ΦTF (P ) =̂ {(s,ℵ) | ∃ e ∈ execTF (P ) � e fail (s,ℵ)}.

We can now state the chief congruence result:

Theorem 3.10 For any TCSP program P , we have

ΦTF (P ) = FT JP K.

3.3 The Digitisation Lemma

The single result of this section, which we call the digitisation lemma, will
enable us to relate this chapter’s continuous-time semantics for Timed CSP
to the discrete-time semantics introduced in Chapters 5 and 7. We first need
a small piece of notation. Let t ∈ R+, and let 0 6 ε 6 1 be a real number.
Decompose t into its integral and fractional parts, thus: t = btc+ ṫ. (Here btc
represents the greatest integer less than or equal to t.) If ṫ < ε, let [t]ε =̂ btc,
otherwise let [t]ε =̂ dte. (Naturally, dte denotes the least integer greater than
or equal to t.) The [·]ε operator therefore shifts the value of a real number
t to the preceding or following integer, depending on whether the fractional
part of t is less than the ‘pivot’ ε or not.

Lemma 3.11 Let P ∈ TCSP, and let e = P0
z17−→ P1

z27−→ . . .
zn7−→ Pn ∈

execTF (P ). For any 0 6 ε 6 1, there exists an execution [e]ε = P ′
0

z′17−→

P ′
1

z′27−→ . . .
z′n7−→ P ′

n ∈ execTF (P ) with the following properties:

1. The transitions and evolutions of e and [e]ε are in natural one-to-one

correspondence. More precisely, whenever Pi

zi+1
7−→ Pi+1 in e is a tran-

sition, then so is P ′
i

z′i+1
7−→ P ′

i+1 in [e]ε, and moreover z′
i+1 = zi+1. On

the other hand, whenever Pi

zi+1
7−→ Pi+1 in e is an evolution, then so is

P ′
i

z′i+1
7−→ P ′

i+1 in [e]ε, with |zi+1 − z′i+1| < 1.

2. All evolutions in [e]ε have integral duration.

3. P ′
0 ≡ P0 ≡ P ; in addition, P ′

i ∈ TCSP and initTF (P ′
i ) = initTF (Pi) for

all 0 6 i 6 n.
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4. For any prefix e(k) = P0
z17−→ P1

z27−→ . . .
zk7−→ Pk of e, the corresponding

prefix [e]ε(k) of [e]ε is such that dur([e]ε(k)) = [dur(e(k))]ε.

Executions all of whose evolutions have integral duration are called inte-
gral executions. The integral execution [e]ε as constructed above is called the
ε-digitisation of e.3 The special case ε = 1 is particularly important: each
transition in [e]1 happens at the greatest integer time less than or equal to
the time of occurrence of its vis-à-vis in e; for this reason [e]1 is termed the
lower digitisation of e.

Proof (Sketch.) The proof proceeds by structural induction over Timed
CSP syntax. Among the tools it introduces and makes substantial use of
figures the notion of indexed bisimulation. It is interesting to note that the
crucial property of P required in the proof is the fact that all delays in P are
integral; well-timedness is irrelevant. Details can be found in Appendix A.

�

3.4 Refinement, Specification, Verification

An important partial order can be defined on P(TF ), as follows:

Definition 3.3 For P,Q ⊆ TF (and in particular for P,Q ∈ MTF ), we
let P vTF Q if P ⊇ Q. For P,Q ∈ TCSP, we write P vTF Q to mean
FT JP K vTF FT JQK, and P =TF Q to mean FT JP K = FT JQK.

We may drop the subscripts and write simply P v Q, P = Q whenever the
context is clear.

This order, known as timed failure refinement, has the following central
property (as can be verified by inspection of the relevant definitions). Here
P and Q are processes:

P v Q ⇔ P u Q = P. (3.38)

For this reason, v is also referred to as the order of nondeterminism—P v Q
if and only if P is ‘less deterministic’ than Q, or in other words if and only
if Q’s behaviour is more predictable (in a given environment) than P ’s.

3Although [e]ε is not necessarily unique for a given execution e, we consider any two
such executions to be interchangeable for our purposes.
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Similar refinement orders (all obeying Equation (3.38) above) can be de-
fined in most other (timed and untimed) CSP models. These orders are
often of significantly greater importance in untimed models as they consti-
tute the basis for the computation of fixed points (whereas timed models are
usually predicated upon ultrametric spaces which rely on a different fixed-
point theory). Refinement orders also play a central rôle as specification
formalisms within untimed or discrete-time CSP models, whereas they can
prove problematic for that purpose in dense timed models (as we demonstrate
below). Nonetheless, because this work specifically studies the relationship
between discrete and continuous modelling paradigms for timed systems, it
is imperative to include refinement in our investigations. In addition, since
P = Q ⇔ (P v Q ∧ Q v P ), a decision procedure for refinement yields a
decision procedure for process equivalence, a central and perennial problem
in Computer Science. (Incidentally, the converse—deciding refinement from
process equivalence—follows from Equation (3.38).)

For P ⊆ TF , let TTraces(P ) be the set of timed traces of P . Using this,
we define a second notion of refinement—timed trace refinement—between
sets of timed failures (and in particular MTF processes):

Definition 3.4 For any P,Q ⊆ TF, we let P vTT Q if TTraces(P ) ⊇
TTraces(Q).

We overload the notation and extend vTT to TCSP programs in the obvious
way.

A major aim of the field of process algebra is to model systems so as to
be able to formulate and establish assertions concerning them. Such asser-
tions are usually termed specifications. Depending upon the model under
consideration, specifications can take wide-ranging forms. Our principal in-
terest in this thesis concerns denotational models, and accordingly we will
deal exclusively with specifications expressed in terms of these models.

In general, a specification S = S(P ) on processes is simply a predicate
on P ; for example it could be S(P ): ‘P cannot perform any events’. This
can be expressed in English (as we have done here), mathematically ((s,ℵ) ∈
P ⇒ s = 〈〉), refinement-theoretically (STOP vTT P or STOP vTF P ), or
using some other formalism such as temporal logic4. All these formulations
are easily seen to be equivalent over MTF , and in this work we shall not

4An excellent account of the use of temporal logic(s) as a specification formalism in
both Timed and untimed CSP can be found in [Jac92].
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be overly concerned with the particular formalism chosen. We do remark,
however, that expressing specifications in terms of refinement can lead to
problematic situations. For instance, one would naturally want to express the
specification S(P ): ‘P cannot perform the event a’ as RUN ΣX−{a} vTT P ,
where RUN A = a : A −→ RUN A. The problem is that RUN A is not a
well-timed process, and even if, as we have seen, it can easily be modelled in
an operational semantics, no-one has yet produced a consistent denotational
model in which such Zeno processes could be interpreted.5

Note that even models allowing unbounded nondeterminism (see, e.g.,
[MRS95]) place restrictions disallowing, among others, an internal choice
over the set of processes unable to perform an a. The attempt to express
S(P ) asu{Q ∈ TCSP| ∀ s ∈ TTraces(FT JQK)�a /∈ σ(s)} vTF P is therefore
also doomed.

Thus while in practice one could conceivably still express, for a given
process P , the desired specification as a refinement between P and a well-
timed process, this example shows that one cannot rigorously do so on a
general basis. We shall return to this question later on.

A process P meets, or satisfies, a specification S, if S(P ) is true; in that
case we write P � S.

Specifications fall naturally into certain categories. A timed trace specifi-
cation, for example, is one that can be stated exclusively in terms of timed
traces. We are particularly (though not exclusively) interested in a type of
specifications known as behavioural specifications. A behavioural specifica-
tion is one that is universally quantified over the behaviours of processes. In
other words, S = S(P ) is a behavioural specification if there is a predicate
S ′(s,ℵ) on timed failures such that, for any P ,

P � S ⇔ ∀(s,ℵ) ∈ P � S ′(s,ℵ).

In this case we may abuse notation and identify S with S ′. Note that S ′

itself may be identified with a subset of TF , namely the set of (s,ℵ) ∈ TF
such that S ′(s,ℵ).

A safety property is a requirement that ‘nothing bad happen’. For us
this will translate as a behavioural timed trace specification: certain timed
traces are prohibited.6 A liveness property is one that says ‘something good

5Aside from finite variability, the dual requirement that refusals should consist in fi-

nite unions of left-closed, right-open intervals makes embedding MTF into a domain a
challenging problem. Contrast this with our discussion on the same topic in Section 5.3.

6It can be argued that certain specifications, which cannot be expressed entirely in
terms of timed traces, are in fact safety properties, but we will for simplicity nonetheless
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is not prevented from happening’. Thus a liveness property in general simply
corresponds to a behavioural timed failure specification, although in practice
we expect such a specification to primarily concern refusals.

Any specification S = S(P ) which can be expressed, for a fixed process
Q, as Q v P , is automatically behavioural. (Note that the reverse refine-
ment, P v Q, is not.) Thus behavioural specifications are identified with
requirements : the implementation (P ) must have all the safety and liveness
properties of the requirement (Q).

The discussion in the remainder of this section concerns behavioural spec-
ifications exclusively.

A number of techniques have been devised to help decide when a given
Timed CSP process meets a particular specification. Schneider [Sch89] and
Davies [Dav91] have produced complete proof systems, sets of rules enabling
one to derive specification satisfaction, for various models of Timed CSP. A
case study illustrating the use of such proof systems is presented in [Sch94].
These techniques, along with an impressive array of related methodologies,
however require significant prior insight before they can be reasonably applied
to particular problems, and do not appear likely to be mechanisable in their
present form.

Another technique is that of timewise refinement, introduced by Reed
in [Ree88, Ree89] and developed by Schneider in [Sch89, RRS91, Sch97]. It
can sometimes be used to establish certain untimed properties of timed pro-
cesses, by removing all timing information from them, and verifying that the
corresponding (untimed) CSP processes exhibits the properties in question.
Simple criteria exist to decide when this technique can be soundly applied. It
is clearly mechanisable (since the verification of (untimed) CSP processes it-
self is), but suffers from obvious restrictions in its applicability. Nonetheless,
it can prove enormously useful in those cases where it can be employed.

A third approach was taken by Jackson in [Jac92], in which he devel-
ops full-fledged temporal-logic-based specification languages, and, invoking
the seminal region graphs methods of Alur, Courcoubetis, and Dill [ACD90,
ACD93], shows how a restricted subset of Timed CSP yields processes for
which the verification of certain temporal logic specifications can always a pri-
ori be model checked. His restrictions on Timed CSP ensure that processes
remain, in a certain sense, finite state. He then translates such processes into
timed graphs, and constructs an equivalence relation which identifies states
that essentially cannot be distinguished by the clocks at hand. This yields a

stick with the proposed terminology in this work.
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finite quotient space which can then be mechanically explored. Some current
disadvantages of this technique are the sharp syntactic restrictions it imposes
on Timed CSP, as well as the constraints on the sort of specifications which
are allowable (excluding, for instance, refinement checks). It should be added
that the complexity of the resulting model checking algorithm is quite high;
we shall return to this point in Chapter 9.



Chapter 4

Discrete-Time Modelling:
Motivation

In this chapter, we aim to provide the intuition behind the constructions of
the discrete-time models presented in Chapters 5 and 7. We will look at each
of the Timed CSP operators in turn, and discuss how best to interpret them
within a CSP-based discrete-time framework. We assume some familiarity
with the standard CSP semantics ([Ros97, Sch00] are two good references),
which we will invoke throughout; however, the rest of this thesis is self-
contained (with the exception of sections 5.4 and 6.7), so that this chapter
may be skipped with no significant loss of continuity.

We will define a ‘translation’ function Ψ converting Timed CSP syntax
into CSP syntax, in such a way that the behaviours of Ψ(P ), interpreted
in a CSP framework, approximate as closely as possible those of the TCSP
program P , interpreted in the timed failures model. This translation, in other
words, should preserve as much timing information as possible. (We will not
later explicitly require Ψ, nor any other of the constructs introduced in this
chapter, except in sections 5.4 and 6.7, to describe how TCSP programs can
be model checked on the automated tool FDR.)

We define Ψ inductively over Timed CSP syntax in the following few
sections.
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4.1 Event Prefixing

Consider the program Q = a −→ P . Interpreted in MTF , this process is
initially prepared to let time pass at will; there is no requirement for a to
occur within any time period. In standard CSP models, however, such a
process is of course incapable of initially communicating any tocks, which we
would interpret as ‘forcing’ a to occur within at most one time unit.

An adequate translation of Q, therefore, has to ensure the unhindered
passage of time, or in other words that tock events are always permissible.
The desired new program, then, should be written: Q′ = (a −→ P ) 2

(tock −→ Q′). We abbreviate this construct as Q′ = a −→t P (where the
subscript ‘t’ stands for tock). In other words,

a −→t P =̂ µX � ((a −→ P ) 2 (tock −→ X)).

Of course, P must also be suitably translated as the process makes
progress. We thus set, in general

Ψ(a −→ P ) =̂ a −→t Ψ(P ).

Extending this to the case of the general prefix operator yields

Ψ(a : A −→ P (a)) =̂ a : A −→t Ψ(P (a)).

4.2 Deadlock, Termination, Delay

Naturally, the treatment of STOP must follow a similar path: its interpre-
tation in MTF allows time to pass at will. Hence

Ψ(STOP) =̂ µX � tock −→ X =̂ STOP t.

It should be equally clear how to handle SKIP :

Ψ(SKIP ) =̂ X −→t STOP t =̂ SKIP t.

As for WAIT n, a little thought reveals that

Ψ(WAIT n) =̂

n tocks︷ ︸︸ ︷
tock −→ . . . −→ tock −→ SKIP t =̂ WAIT t n

is the only reasonable proposal. Note, importantly, that this definition uses
the −→ operator (rather than −→t), so as to guarantee that a X be on offer
after exactly n tocks.
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4.3 External Choice

The program Q = P1 2 P2 poses some slightly more intricate problems. Over
MTF , Q will wait however long it takes for either P1 or P2 to communicate
a visible event, at which point the choice will be resolved in favour of that
process. Unfortunately, if tocks are interpreted as regular events, the choice
will ipso facto be made within at most one time unit under CSP semantics.

The solution is to postulate a new operator 2t that behaves like 2 in
all respects, except that it lets tocks ‘seep through’ it without forcing the
choice to be resolved. Here we are assuming, in addition, that P1 and P2

synchronise on every tock communication, for reasons discussed in the next
section.

Direct operational and denotational definitions of 2t can be given, but
the following construct (due to Steve Schneider) shows that 2t can in fact
be expressed in terms of standard CSP operators, if we assume that P1 and
P2 can never refuse tock :

First let Σ1 = {1.a | a ∈ Σ} and Σ2 = {2.a | a ∈ Σ}. Next, define two
functions f1, f2 : Σtock ∪ Σ1 ∪ Σ2 −→ Σtock ∪ Σ1 ∪ Σ2 such that

fi(a) = i.a if a ∈ Σ
= a otherwise.

Finally, we have

P1 2t P2 = f−1
1 (f−1

2 ((f1(P1) ‖
{tock}

f2(P2)) ‖
Σ1∪Σ2

(RUN Σ1
2 RUN Σ2

)))

where RUN A = a : A −→ RUN A.

Naturally, we set

Ψ(P1 2 P2) =̂ Ψ(P1) 2t Ψ(P2).

Note, however, that in most cases a much simpler translation can be
obtained: (a −→t P1) 2t (b −→t P2), for instance, is equivalent to Q =
(tock −→ Q) 2 (a −→ P1) 2 (b −→ P2) in CSP models.

4.4 Concurrency

The main point concerning the parallel operators ‖
B

and 9 is that they should

ensure a uniform rate of passage of time: no process in a parallel composition
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should be allowed to run ‘faster’ than another. This is achieved, naturally,
by forcing processes to synchronise on tock . Thus

Ψ(P1 ‖
B

P2) =̂ Ψ(P1) ‖
B∪{tock}

Ψ(P2) =̂ Ψ(P1) ‖t
B

Ψ(P2).

Since interleaving normally corresponds to parallel composition over an
empty interface, we set

Ψ(P1 9 P2) =̂ Ψ(P1) ‖
{tock}

Ψ(P2) =̂ Ψ(P ) 9t Ψ(Q).

4.5 Hiding and Sequential Composition

An adequate discrete-time treatment of hiding and sequential composition
pits us against greater difficulties than the other operators. This is a direct
consequence of the assumption of maximal progress, or τ -urgency: hidden
events must happen as quickly as possible.1

As an illustration, consider the program

P = ((a −→ STOP) 2 WAIT 1) ; b −→ STOP .

Interpreted over MTF , P initially offers the event a for exactly one time unit,
after which (if a has not occurred) the offer is instantly withdrawn and an
open-ended offer of b is made. (This is one of the simplest possible examples
of a timeout.)

Unfortunately, the behaviours of

P ′ = ((a −→t STOP t) 2t (tock −→ SKIP t)) ; b −→t STOP t,

in CSP models, are easily seen to allow an a to be communicated after
an arbitrary number of tocks; this is because the hidden X, which SKIP t

can potentially communicate, is not made urgent by sequential composition,
contrary to the situation with P in MTF . In other words, P ′ is not an
adequate translation of P .

In order to faithfully capture, in a discrete-time setting, the timed be-
haviours of hiding and sequential composition, it is necessary to postulate

1The reasons for requiring the maximal progress assumption (in the absence of which
it is impossible, for instance, to implement proper timeouts) are well-known and discussed
in most expository texts on timed systems—see, for instance, [Sch00].
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the urgency of hidden events. By this we mean that the event tock should
not be allowable so long as a silent (τ) event is on offer.

Although it is easy to capture this requirement operationally (as we shall
see in Chapter 5), it is impossible to render it in either the traces or the
failures models, which are the main denotational models for CSP. (Traces
are sequences of events that a process can be observed to communicate,
whereas a failure is trace augmented by a refusal at the end of the trace: a
record of events that the process cannot perform after the given trace.) The
following example (originally due to Langerak [Lan90], and reproduced in
[Sch00]) shows why failures are unable support τ -urgency in a compositional
way.

Consider the programs P and Q, defined in terms of TEA and COFFEE :

TEA = tea −→t STOP t

COFFEE = coffee −→t STOP t

P = TEA u COFFEE

Q = ((coffee −→ STOP t) 2 (tock −→ TEA)) u

((tea −→ STOP t) 2 (tock −→ COFFEE )).

P and Q have the same set of failures: they can both perform any number
of tocks followed by a tea or a coffee (followed by further tocks); and, at any
stage before a drink is delivered, either tea or coffee, but not both, can be
refused.

However, there is a difference in their behaviour: P is always committed
to the drink it first chooses to offer, whereas after one tock Q switches the
drink it offers. Failure information is not detailed enough to identify this
difference.

Nevertheless, this difference in behaviour means that, under τ -urgency,
P \ tea can provide a coffee after a tock , whereas Q \ tea cannot—the hidden
tea will occur either immediately or after one tock , in both cases preventing
the possibility of coffee after tock . Hence we conclude that, under τ -urgency,
the failures alone of a process P are not sufficient to determine even the
traces of P \ A, let alone the failures.

The question then arises as how to capture τ -urgency denotationally. It
turns out that, although τ events are introduced by other operators besides
hiding and sequential composition, it is sufficient to require urgent behaviour
of hiding and sequential composition alone to ensure τ -urgency in general.
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Recall that behaviours of P \ A are derived from those of P . To guarantee
urgency, it is sufficient, in calculating the behaviours of P \ A, to dismiss
any behaviour of P in which a tock is recorded while events from the set A
were on offer. A similar proposal handles sequential composition.

In order to know whether events in A were refusable prior to an occurrence
of tock or not, one must record refusal information throughout a trace, rather
than exclusively at the end of it. This type of modelling, known as refusal
testing, was introduced by Phillips [Phi87] and served as the basis for the
refusal testing models of Mukarram [Muk93]. The denotational models we
present in Chapter 5 and 7 are thus also refusal testing based.

As a reminder (especially when using an automated model checker) that
τ -urgency is required, we will use the symbols \t and ;t to represent respec-
tively urgent hiding and urgent sequential composition within CSP. Thus
we set

Ψ(P \ A) =̂ Ψ(P ) \t A

Ψ(P1 ; P2) =̂ Ψ(P1) ;t Ψ(P2).

4.6 Timeout

The MTF behaviour of the timeout operator exhibits characteristics of both
external choice and sequential composition; the problems it presents can
therefore be tackled using techniques similar to those shown above. In prac-
tice, assuming that the event trig does not figure in the alphabet of either P1

or P2, one has the identity P1

n
� P2 = (P1 2 (WAIT n ; trig −→ P2)) \ trig ,

and thus

Ψ(P1

n
� P2) =̂ (Ψ(P1) 2t (WAIT t n ;t trig −→t Ψ(P2))) \t trig

=̂ Ψ(P1)
n
�t Ψ(P2).

4.7 Others

The remaining operators, namely internal choice, renaming, and recursion,
pose no difficulties: each is left unchanged. Naturally, the same goes for
program variables. We recapitulate the full definition of Ψ after listing the
new constructs introduced in this chapter.
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4.8 Summary

Definition 4.1 We have defined the following syntactic operators.

a −→t P =̂ µX � ((a −→ P ) 2 (tock −→ X))

a : A −→t P (a) =̂ µX � ((a : A −→ P (a)) 2 (tock −→ X))

STOP t =̂ µX � tock −→ X

SKIP t =̂ X −→t STOP t

WAIT t n =̂

n tocks︷ ︸︸ ︷
tock −→ . . . −→ tock −→ SKIP t

P1 2t P2 — [Cf. Section 4.3]

P ‖t
B

Q =̂ P ‖
B∪{tock}

Q

P1 9t P2 =̂ P1 ‖
{tock}

P2

P \t A, P1 ;t P2 — [Cf. Section 4.5]

P1

n
�t P2 =̂ (P1 2t (WAIT t n ;t trig −→t P2)) \t trig .

Definition 4.2 The syntactic function Ψ is defined inductively as follows.

Ψ(STOP) =̂ STOP t

Ψ(SKIP) =̂ SKIP t

Ψ(WAIT n) =̂ WAIT t n

Ψ(P1

n
� P2) =̂ Ψ(P1)

n
�t Ψ(P2)

Ψ(a −→ P ) =̂ a −→t Ψ(P )

Ψ(a : A −→ P (a)) =̂ a : A −→t Ψ(P (a))

Ψ(P1 2 P2) =̂ Ψ(P1) 2t Ψ(P2)

Ψ(P1 u P2) =̂ Ψ(P1) u Ψ(P2)

Ψ(P1 ‖
B

P2) =̂ Ψ(P1) ‖t
B

Ψ(P2)

Ψ(P1 9 P2) =̂ Ψ(P1) 9t Ψ(P2)

Ψ(P1 ; P2) =̂ Ψ(P1) ;t Ψ(P2)

Ψ(P \ A) =̂ Ψ(P ) \t A

Ψ(f−1(P )) =̂ f−1(Ψ(P ))

Ψ(f(P )) =̂ f(Ψ(P ))

Ψ(X) =̂ X

Ψ(µX � P ) =̂ µX �Ψ(P ).
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We point out once more that we have defined Ψ mainly as an aid to
illustrate the issues at hand, and will not make any formal use of this function
in the remainder of this work, other than as a tool to encode programs into
FDR in Sections 5.4 and 6.7.

We have shown in this chapter that a number of points need to be ad-
dressed when attempting to build discrete-time operational and denotational
semantics for TCSP programs. They are:

• The unhindered passage of time;

• The temporal soundness of external choice;

• The uniform rate of passage of time; and

• The assumption of maximal progress, or τ -urgency.



Chapter 5

The Discrete-Time Refusal
Testing Model

We present a discrete-time denotational model for Timed CSP, MR, together
with a congruent operational semantics; both of these are constructed in
accordance with the remarks made in the previous chapter.

The use of the distinguished tock event to discretely model time in CSP
was first proposed by Roscoe, and an excellent account of how this tech-
nique is applied within standard CSP models is given in [Ros97]. A refusal
testing model for CSP was developed by Mukarram in [Muk93], drawing
on the work of Phillips [Phi87]. The model we present here builds upon
both these approaches. We also use ultrametric spaces to compute fixed
points, a technique which has long been known and figures prominently,
among others, in Reed and Roscoe’s treatment of continuous Timed CSP
[RR86, RR87, Ree88, RR99]. This technique, of course, was instrumental in
the construction of MTF .

As seen in Chapter 3, MTF has also been endowed with a congruent
operational semantics by Schneider [Sch95]. Likewise, we present a congruent
operational semantics of a similar flavour, thus offering denotational and
operational models for Timed CSP which approximate as closely as possible
the continuous-time models described in Chapter 3.

For obvious reasons, notation used in the present chapter overloads that
of Chapter 3. We trust that the gains in simplicity outweigh the potential
for confusion, which the context should help prevent.
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5.1 Denotational Semantics

We define the discrete-time refusal testing model MR and the associated
semantic mapping RJ·K : TCSP −→ MR.

As with most CSP-based denotational models, the basic philosophy un-
derlying MR is one of experimentation and observation. We think of a process
as a ‘black box’, equipped with a number of labelled buttons, together with
a red light and a buzzer. The red light, when lit, indicates internal activity.
If no notice is (was) taken of the light then one must assume that it is (was)
lit; only when the light is actually seen turned off can one conclude that the
process has reached stability.1 The light is guaranteed to go off shortly after
the process reaches stability, although not necessarily at the same instant.

Pressing buttons corresponds to experimenting with the process. If the
button goes down, the corresponding event is deemed accepted, and a record
is made to that effect. If the button does not go down, then two cases arise:
if the red light is on, the process is deemed (potentially) unstable, and no
firm conclusion as to the rejection of the corresponding event can be reached;
on the other hand, if the red light is off, then we know that the process is in
a stable state—the corresponding event will therefore forever be refused (at
least until further buttons are pushed or the buzzer goes off), and a record of
refusal of the event in question is made. This applies, naturally, to individual
buttons as well as sets of such, although we insist that the black box only
allow at most one button to be down at any one time.

The buzzer, finally, can go off at any time, and in fact does so with
regularity. We record this occurrence, as explained earlier, by the event
tock—this represents the passage of one time unit. Since we have no control
over the buzzer, tocks never appear in refusals. We assume furthermore that
the buzzer never goes off at exactly the same time as some button is being
depressed.

We will see that several other assumptions, such as the impossibility of
infinitely many events taking place in a finite amount of time, follow from our
definitions; they are therefore listed explicitly as axioms of the denotational
model.

The recorded observations thus consist of alternating sequences of refusals
and events, with the understanding that no refusal information be recorded

1Stability here refers to the presence of hidden events on offer—it is related, but not
identical, to Reed and Roscoe’s notion of stability as invariance under the passage of time.



5.1 Denotational Semantics 43

unless the red light is seen turned off. A logical consequence of this philoso-
phy is that observations should be downward-closed : any observation could
instead have given rise to another observation containing ‘less’ information.

We begin with some notation.2 An event is an element of ΣX
tock

. A refusal
is either a subset of ΣX or the null refusal •; the set {•} ∪P(ΣX) is denoted
REF . A test is an alternating finite sequence of refusals and events, of length
at least 1, beginning and ending with a refusal. In other words, tests are
generated by the grammar T := 〈A〉 | T_〈a,A〉, where a and A respectively
stand for events and refusals. The set of all tests is denoted TEST .

If u = 〈A0, a1, A1, . . . , ak, Ak〉 ∈ TEST , we let trace(u) =̂ 〈a1, a2, . . . , ak〉
denote the test u stripped of its refusals.

We define the following •-friendly extensions of standard set-theoretic
operations: ∈∗, ⊆∗, ∪∗, and ∩∗. The underlying principle is that these
operators essentially treat • like an empty set, while retaining the usual
properties of their un-starred counterparts. Rather than give comprehensive
definitions, we list the salient •-properties enjoyed by these operators; in
what follows a is an event, and A is a non-• refusal. a /∈∗ •, • ⊆∗ • ⊆∗ A,
A *∗ •, •∪∗ • = •, •∪∗ A = A, and •∩∗ • = •∩∗ A = •.

We also define an ‘absolute set-value’ on refusals: let |•| =̂ ∅, and |A| =̂ A
if • 6= A ∈ REF .

Let u = 〈A0, a1, A1, . . . , ak, Ak〉 and v = 〈B0, b1, B1, . . . , bk′ , Bk′〉 be tests.
We define the information ordering ≺ as follows: u ≺ v if 0 6 k 6 k ′ and
A0 ⊆∗ B0 and ∀(1 6 i 6 k) � ai = bi ∧ Ai ⊆

∗ Bi. Note that this makes ≺ a
partial order on TEST .

Lastly, recall from Section 2.3 the definitions of ǔ and û, which remove
respectively the first and last elements of the test u (viewed as a sequence).

Definition 5.1 The discrete-time refusal testing model MR is the set of all
P ⊆ TEST satisfying the following axioms, where u, v ∈ TEST, A ∈ REF,
and a ∈ ΣX

tock
.

2Some of the definitions presented here will be slightly altered in Chapter 7; the context
should however always make clear what application we have in mind.
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R1 〈•〉 ∈ P

R2 (u ∈ P ∧ v ≺ u) ⇒ v ∈ P

R3 û_〈•〉 ∈ P ⇒ û_〈∅〉 ∈ P

R4 (A 6= • ∧ û_〈A〉_v̌ ∈ P ∧ û_〈A, a, •〉 /∈ P ) ⇒

û_〈A ∪ {a}〉_v̌ ∈ P

R5 (A 6= • ∧ û_〈A, a, •〉 ∈ P ) ⇒ û_〈A, tock , •, a, •〉 ∈ P

R6 û_〈A, a〉_v ∈ P ⇒ a /∈∗ A

R7 ∀ k ∈ N � ∃n ∈ N � (u ∈ P ∧ ](trace(u) � tock) 6 k) ⇒ ]trace(u) 6 n

R8 u_〈X〉_v ∈ P ⇒ trace(v) ≤ 〈tock〉∞.

We now give intuitive explanations of each of these axioms, and compare
them to the axioms of the timed failures model MTF .

R1 : A non-emptiness condition which states that the least we can observe
of a process is that it has not stabilised (or at least that we have failed
to record that it has) and that no events have been communicated.
This corresponds to Axiom TF1 of MTF .

R2 : Postulates the downward-closed nature of observations. This corre-
sponds to Axiom TF2 of MTF .

R3 : States that all processes eventually stabilise, and moreover, that it is
always possible to reach stability before the next event (in particular
tock) occurs. One interpretation of this axiom is that divergences are
excluded.3 This axiom has no direct counterpart in MTF , since dense
modelling of time precludes having a notion of ‘next instant’.

R4 : Tells us how observations can be extended; paraphrasing the contra-
positive, it informs us that if an event cannot be stably refused within
a test, then it would have been possible to witness it. A subtle point is
the assumption of stability (A 6= •) at the junction in question, to cater
for the possibility that the first event of the remainder (v̌) of the test
may only be communicable while the process is unstable (the option
to perform this event, and ergo the rest of v̌, being removed once the
process stabilises). The matching axiom in MTF is TF3.

R5 : States that any event which can stably occur at the end of some test
cannot be prohibited from occurring after a further tock . The justifica-
tion for this axiom lies in the fact that cessation of availability results

3This statement, while correct, can be misleading in that certain models will treat
diverging processes as being capable of any behaviour, including stabilising.
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from an internal change of state, i.e., a silent action; instability thus
ensues. Again, this axiom has no exact counterpart in MTF since that
model lacks a notion of ‘next instant’. Note nonetheless that, by R6,
the refusal A appearing in Axiom R5 cannot contain the event a. In
this respect, MTF ’s Axiom TF3 mirrors R5 in that an event which
cannot be refused at a certain time has to be allowed to occur at some,
possibly very early, strictly later time in the future.

R6 : Enshrines the principle that a stable refusal is indeed stable: if an
event is refused and the process has stabilised, this event will never
be accepted later on (i.e., not until another event, possibly tock , is
witnessed). Again, translating this axiom in MTF would require a
notion of next instant. This phenomenon is different from that of global
stability discussed in Appendix C and Chapter 9. Notice, too, that
in MTF an event may both be refused and occur at the same time:
consider the occurrence of a in a −→ STOP .

R7 : Postulates that processes are non-Zeno; in other words, it is impossible
for infinitely many events to occur in a finite amount of time.4 The
corresponding axiom in MTF is TF4. This axiom is also known as
finite variability.

R8 : Stipulates that termination in effect ends the progress of a process: no
event (apart from tocks, enabling the passage of time) can be witnessed
after a X. This is MTF ’s Axiom TF5.

We now show that, as in the case of the model MTF , processes are free of
timestops, i.e., can always, at any time, run on forever only communicating
tock events. It follows that signals cannot be defined in MR.

Proposition 5.1 Let P ∈ MR be a process, and let w ∈ P be a test of P .
For any k > 0, we have w_〈tock, ∅〉k ∈ P .

Proof We proceed by induction on k. Note that we can assume that the
last refusal of w is non-•, thanks to Axiom R3 (we can always restore it to
• later on, if need be, by invoking Axiom R2 ).

4Note, however, that no fixed bound is imposed on the number of non-tock events
which can be performed between two tocks—achieving this would require some very severe
syntactic restrictions, namely removing one of recursion, sequential composition, or the
concurrency operators.
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The base case k = 0 is, by our assumptions, trivial. For the inductive step
k + 1, let u = w_〈tock , ∅〉k, and suppose that u ∈ P but u_〈tock , ∅〉 /∈ P .
Let A be the last refusal of u (the empty set except, possibly, if k = 0). In
any case, we have A 6= •. We can invoke Axiom R4 (with a trivial v = 〈•〉) to
conclude that û_〈A∪{tock}〉 ∈ P . This, of course, contradicts the definition
of refusals, which are not allowed to contain the event tock . Consequently,
we must have u_〈tock , ∅〉 = w_〈tock , ∅〉k+1 ∈ P , as required. �

In order to define the semantic mapping RJ·K, we need another set of
definitions.

If u = 〈A0, a1, A1, . . . , ak, Ak〉 is a test, we let refusals(u) =̂
⋃k

i=0{|Ai|}.
Note that refusals(u) is always a set, namely the set of events that are ex-
plicitly refused, at one point or another, in u.

We also need the auxiliary function (·) ‖
B

(·) : TEST × TEST −→

P(TEST ). Here B ⊆ ΣX, and a, c ∈ Σtock . Let us write Bt = B ∪ {tock}.
We proceed inductively on both u and u′ (in defining u ‖

B

u′).

〈A〉 ‖
B

〈C〉 =̂ {〈D〉 | D ⊆∗ (B ∩∗ A)∪∗

(B ∩∗ C)∪∗(A∩∗ C)}

〈A, a〉_u ‖
B

〈C〉 =̂ 〈A〉 ‖
B

〈C〉 if a ∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈a〉}(u ‖
B

〈C〉) if a /∈ Bt

〈A,X〉_u ‖
B

〈C〉 =̂ 〈A〉 ‖
B

〈C〉 if X ∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈X〉_u} if X /∈ Bt

〈A〉 ‖
B

〈C, c〉_u =̂ 〈C, c〉_u ‖
B

〈A〉

〈A〉 ‖
B

〈C,X〉_u =̂ 〈C,X〉_u ‖
B

〈A〉
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〈A, a〉_u1 ‖
B

〈C, c〉_u2 =̂ (〈A〉 ‖
B

〈C〉){〈a〉}(u1 ‖
B

u2) if a = c ∈ Bt

=̂ 〈A〉 ‖
B

〈C〉 if a, c ∈ Bt ∧ a 6= c

=̂ (〈A〉 ‖
B

〈C〉){〈c〉}

(〈A, a〉_u1 ‖
B

u2) if a ∈ Bt ∧ c /∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈a〉}

(u1 ‖
B

〈C, c〉_u2) if a /∈ Bt ∧ c ∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈a〉}

(u1 ‖
B

〈C, c〉_u2)∪

(〈A〉 ‖
B

〈C〉){〈c〉}

(〈A, a〉_u1 ‖
B

u2) if a, c /∈ Bt

〈A,X〉_u1 ‖
B

〈C,X〉_u2 =̂ (〈A〉 ‖
B

〈C〉){〈X〉_u1}

〈A,X〉_u1 ‖
B

〈C, c〉_u2 =̂ (〈A〉 ‖
B

〈C〉) if X ∈ Bt ∧ c ∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈c〉}

(〈A,X〉_u1 ‖
B

u2) if X ∈ Bt ∧ c /∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈X〉_u1} if X /∈ Bt ∧ c ∈ Bt

=̂ (〈A〉 ‖
B

〈C〉){〈X〉_u1}∪

(〈A〉 ‖
B

〈C〉){〈c〉}

(〈A,X〉_u1 ‖
B

u2) if X /∈ Bt ∧ c /∈ Bt

〈A, a〉_u1 ‖
B

〈C,X〉_u2 =̂ 〈C,X〉_u2 ‖
B

〈A, a〉_u1.

Likewise, we define the auxiliary function (·) 9 (·) : TEST × TEST −→
P(TEST ). Here a, c ∈ Σ. We proceed in a manner similar to the above:

〈A〉 9 〈C〉 =̂ {〈D〉 | D ⊆∗ A∩∗ C}

〈A, a〉_u 9 〈C〉 =̂ (〈A〉 9 〈C〉){〈a〉}(u 9 〈C〉)

〈A,X〉_u 9 〈C〉 =̂ (〈A〉 9 〈C〉){〈X〉_u}

〈A, tock〉_u 9 〈C〉 =̂ 〈A〉 9 〈C〉
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〈A〉 9 〈C, c〉_u =̂ 〈C, c〉_u 9 〈A〉

〈A〉 9 〈C,X〉_u =̂ 〈C,X〉_u 9 〈A〉

〈A〉 9 〈C, tock〉_u =̂ 〈C, tock〉_u 9 〈A〉

〈A, a〉_u1 9 〈C, c〉_u2 =̂ (〈A〉 9 〈C〉){〈a〉}

(u1 9 〈C, c〉_u2)∪

(〈A〉 9 〈C〉){〈c〉}

(〈A, a〉_u1 9 u2)

〈A, a〉_u1 9 〈C,X〉_u2 =̂ (〈A〉 9 〈C〉){〈a〉}

(u1 9 〈C,X〉_u2)∪

(〈A〉 9 〈C〉){〈X〉_u2}

〈A, a〉_u1 9 〈C, tock〉_u2 =̂ (〈A〉 9 〈C〉){〈a〉}

(u1 9 〈C, tock〉_u2)

〈A,X〉_u1 9 〈C,X〉_u2 =̂ (〈A〉 9 〈C〉){〈X〉_u1}

〈A,X〉_u1 9 〈C, tock〉_u2 =̂ (〈A〉 9 〈C〉){〈X〉_u1}

〈A, tock〉_u1 9 〈C, tock〉_u2 =̂ (〈A〉 9 〈C〉){tock}(u1 9 u2)

〈A,X〉_u1 9 〈C, c〉_u2 =̂ 〈C, c〉_u2 9 〈A,X〉_u1

〈A, tock〉_u1 9 〈C, c〉_u2 =̂ 〈C, c〉_u2 9 〈A, tock〉_u1

〈A, tock〉_u1 9 〈C,X〉_u2 =̂ 〈C,X〉_u2 9 〈A, tock〉_u1.

We define inductively a hiding operator on tests, of the form (·) \ A :
TEST −→ TEST . Here A ⊆ Σ.

〈B〉 \ A =̂ 〈B〉 if A ⊆∗ B

=̂ 〈•〉 if A *∗ B

(〈B, a〉_u) \ A =̂ u \ A if a ∈ A

=̂ (〈B〉 \ A)_〈a〉_(u \ A) if a /∈ A.

Let A ⊆ ΣX. A test u is A-urgent if, whenever 〈B, tock〉 in u, then
A ⊆∗ B. If A = {a} is a singleton, we write a-urgent instead of {a}-urgent.

We define a function RefCl : TEST −→ P(TEST ): for u a test, we let
v ∈ RefCl(u) if v ≺ u ∧ trace(v) = trace(u). We extend the definition of RefCl

to sets of tests by setting, for P ⊆ TEST , RefCl(P ) =̂
⋃
{RefCl(u) | u ∈ P}.

If f : Σ −→ Σ is a renaming function and u = 〈A0, a1, A1, . . . , ak, Ak〉 ∈
TEST , we define f(u) =̂ 〈f(A0), f(a1), f(A1), . . . , f(ak), f(Ak)〉, where f is
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extended to ΣX
tock

so that f(tock) =̂ tock and f(X) =̂ X, and f(Ai) is either
• if Ai = •, or {f(a) | a ∈ Ai} otherwise.

As one would expect, semantic bindings in this model are functions ρ :
VAR −→ MR. Again, we write ρ[X := P ] to denote the semantic binding
that is the same as ρ except that it returns P for X instead of ρ(X). Similarly,
λx.ρ[X := x] represents a function which, when fed an element P of MR,
returns the semantic binding ρ[X := P ]. Here X ∈ VAR, and x is a bona
fide variable (not an element of VAR!) ranging over MR.

For F : MR −→ MR, we define fix(F ) to be the unique fixed point of F
in MR. We stipulate for convenience that, should F not have a fixed point,
or should this fixed point not be unique, fix(F ) should denote an arbitrary,
but fixed, element of MR.

We now define the function RJ·K inductively over the structure of Timed
CSP terms. Since a term P may contain free variables, we also require a
semantic binding ρ in order to assign MR processes to the free variables of
P .5 In what follows, u, u1, u2, v, w ∈ TEST , a, ci ∈ ΣX

tock
, A ⊆ Σ, B ⊆ ΣX,

and Ci ∈ REF . The rules are as follows:

RJSTOPKρ =̂ {u | trace(u) ≤ 〈tock〉∞}

RJSKIPKρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ X /∈ refusals(u)}∪

{u_〈X〉_v | trace(u) ≤ 〈tock〉∞ ∧

X /∈ refusals(u) ∧ trace(v) ≤ 〈tock〉∞}

RJWAIT nKρ =̂ {u | 0 6 k < n ∧ trace(u) = 〈tock〉k}∪

{û_v | trace(u) = 〈tock〉n ∧

trace(v) ≤ 〈tock〉∞ ∧ X /∈ refusals(v)}∪

{û_v_〈X〉_w | trace(u) = 〈tock〉n ∧

trace(v) ≤ 〈tock〉∞ ∧ X /∈ refusals(v) ∧

trace(w) ≤ 〈tock〉∞}

5As was the case for the timed failures model, what we are really defining here is a
mapping R : TCSP × BIND −→ MR, where BIND stands for the set of all semantic
bindings. However, since it again turns out that the denotational values of TCSP programs

are independent of semantic bindings, this point should not overly concern us.
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RJP1

n
� P2Kρ =̂ {u | 〈tock〉n � trace(u) ∧ u ∈ RJP1Kρ}∪

{û_〈•〉_v̌ | trace(u) = 〈tock〉n ∧

〈tock〉 � trace(v) ∧ û_v ∈ RJP1Kρ}∪

{û_v | trace(u) = 〈tock〉n ∧ u ∈ RJP1Kρ ∧

v ∈ RJP2Kρ}

RJa −→ P Kρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ a /∈ refusals(u)}∪

{u_〈a〉_v | trace(u) ≤ 〈tock〉∞ ∧

a /∈ refusals(u) ∧ v ∈ RJP Kρ}

RJa : A −→ P (a)Kρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ A ∩ refusals(u) = ∅}∪

{u_〈a〉_v | a ∈ A ∧ trace(u) ≤ 〈tock〉∞ ∧

A ∩ refusals(u) = ∅ ∧ v ∈ RJP (a)Kρ}

RJP1 2 P2Kρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ u ∈ RJP1Kρ ∩RJP2Kρ}∪

{u_〈a〉_v | trace(u) ≤ 〈tock〉∞ ∧ a 6= tock ∧

u_〈a〉_v ∈ RJP1Kρ ∪RJP2Kρ ∧

u ∈ RJP1Kρ ∩RJP2Kρ}

RJP1 u P2Kρ =̂ RJP1Kρ ∪RJP2Kρ

RJP1 ‖
B

P2Kρ =̂ {u | ∃u1, u2 � u ∈ u1 ‖
B

u2 ∧

u1 ∈ RJP1Kρ ∧ u2 ∈ RJP2Kρ}

RJP1 9 P2Kρ =̂ {u | ∃u1, u2 � u ∈ u1 9 u2 ∧

u1 ∈ RJP1Kρ ∧ u2 ∈ RJP2Kρ}

RJP1 ; P2Kρ =̂ RefCl({u \ X | trace(u) � X = 〈〉 ∧

u is X-urgent ∧ u ∈ RJP1Kρ})∪

RefCl({ ̂(u1 \ X)_u2 | trace(u1) � X = 〈〉 ∧

u1 is X-urgent ∧ u1
_〈X, •〉 ∈ RJP1Kρ ∧

u2 ∈ RJP2Kρ})

RJP \ AKρ =̂ RefCl({u \ A | u is A-urgent ∧ u ∈ RJP Kρ})

RJf−1(P )Kρ =̂ {u | f(u) ∈ RJP Kρ}

RJf(P )Kρ =̂ {〈C0, f(c1), C1, . . . , f(ck), Ck〉 | k > 0 ∧

〈f−1(C0), c1, f
−1(C1), . . . , ck, f

−1(Ck)〉 ∈ RJP Kρ}

RJXKρ =̂ ρ(X)

RJµX � P Kρ =̂ fix(λx.RJP K(ρ[X := x])).

We first need to show that FT J·K is well-defined.
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Proposition 5.2 For any term P ∈ TCSP, and any semantic binding ρ,
RJP Kρ ∈ MR.

Proof (Sketch.) The proof is a structural induction over terms. One must
verify in turn that each term, under an arbitrary semantic binding ρ, satisfies
the axioms of MR. The details can be found in Appendix A. �

Proposition 5.3 If P is a Timed CSP program (i.e., P ∈ TCSP), then
for any semantic bindings ρ and ρ′, RJP Kρ = RJP Kρ′.

Proof (Sketch.) This follows easily by structural induction on terms. The
induction hypothesis states that RJP Kρ = RJP Kρ′ as long as ρ and ρ′ agree
on all the free variables of P . Since a program has no free variables, the
result follows. �

We will henceforth drop mention of semantic bindings when calculating
the semantics of programs.

We now show that recursions have unique fixed points. Our treatment is
slightly more detailed than what is usually found in similar situations in the
literature, making explicit some of the steps occasionally omitted elsewhere.
We first require a number of preliminaries.

Let us define the duration of a test as the number of tocks that are
recorded in its trace. If P ∈ MR, the restriction of P to behaviours of
duration k or less is defined thus:

P (k) =̂ {u ∈ P | ](trace(u) � tock) 6 k}.

If P ∈ TCSP, we let P (k) =̂ RJP K(k).

We define a metric d on MR:

d(P,Q) =̂ inf({2−k | P (k) = Q(k)} ∪ {1}).

Proposition 5.4 (MR, d) is a complete ultrametric space.

Proof It is clear that d(P,Q) = 0 ⇔ P = Q since tests are finite, and
that d(P,Q) = d(Q,P ). To see that the strong triangle inequality d(P,R) 6
max{d(P,Q), d(Q,R)} also holds, assume P 6= R (otherwise the result is
trivial). It is now easy to see that there must be k ∈ N such that d(P,R) =
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2−k. In other words, P (k) = R(k) but P (k + 1) 6= R(k + 1). If Q =
P , the result follows. Otherwise, we argue again that P and Q have the
same behaviour up to, but not exceeding, duration k′: P (k′) = Q(k′) but
P (k′ + 1) 6= Q(k′ + 1). Now if k′ 6 k, we are done. Otherwise, we must have
P (k+1) = Q(k+1), which of course implies that Q(k+1) 6= R(k+1). Thus
d(Q,R) = 2−k, and again the triangle inequality is satisfied.

To establish completeness, let 〈Pi〉i∈N be a Cauchy sequence in MR. Let
〈nj〉j∈N be a sequence of positive integers such that, for all j, and for all
m > nj, d(Pnj

, Pm) 6 2−j. Let P =
⋃

j>0{Pnj
(j)}.

We claim that P ∈ MR and that P = lim
i→∞

Pi. All of the axioms of MR,

with the possible exception of R7, are plain consequences of the definition of
P and the fact that each Pi ∈ MR. For R7, note that whenever u ∈ P is a
test of duration k, then u ∈ Pnk

(k). Since Pnk
satisfies R7, then so must P .

Lastly, we show that the Pi’s converge to P . Let j > 0 be given. By
definition of P we have Pnj

(j) ⊆ P (j), and therefore for all m > nj we
have Pm(j) ⊆ P (j). On the other hand, if u ∈ P (j) is a test of duration
k(6 j), we must have u ∈ Pm(k) for some m and hence for all m sufficiently
large (in fact, it clearly suffices that m > nj). Since Pm(k) ⊆ Pm(j), we get
Pm(j) = P (j) for all sufficiently large m, or in other words d(Pm, P ) 6 2−j

for all sufficiently large m, as required. �

Note that ultrametric spaces are of course also metric spaces.

It is clear from the definition of the semantic mapping FT J·K above that
every Timed CSP operator apart from X and µX can be defined as an
operator of the appropriate parity on MR. For example, STOP corresponds
to a nullary operator, a −→ (·) corresponds to a unary operator, and (·) 2 (·)
corresponds to a binary operator. The definition of these over MR can be
lifted verbatim from the definition of FT J·K, with an identical proof of well-
definedness.

Terms in TCSP may be viewed as ‘formal functions’ in a certain algebra,
with variables taken from the set VAR. By the above, each term represents
a bona fide function F : MR

k −→ MR, for some k ∈ N. The µX operator
is once again interpreted as computing unique fixed points (yielding an arbi-
trary, but fixed, value should no unique fixed point exist). The value of k is
the arity of the formal function. a −→ X, for instance, has arity 1, STOP

has arity 0, and µX � b
3

−→ (X ‖ Y ) has arity 1, since the variable X in it is
bound. Note that the formal functions X and Y , both of arity 1, technically
represent the same function Id : MR −→ MR, but are formally considered
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to be distinct; and indeed, the functions associated with the terms X 9 Y
and X 9 X are clearly different. From now on, we will abuse notation and
identify terms with functions, while keeping track of the names of the free
variables.

For any k ∈ N, we construe the space MR
k as an ultrametric space by

imposing the ‘sup’ metric on it: if ~P = (P1, P2, . . . , Pk), and similarly for ~Q,

we let d( ~P , ~Q) =̂ sup{d(Pi, Qi) | 1 6 i 6 k}.

Let F : (M1, d1) −→ (M2, d2) be a mapping of metric spaces. We say
that F is non-expanding if, for all x, y ∈ M1, d2(F (x), F (y)) 6 d1(x, y), and
that F is a contraction if there exists δ < 1 such that, for all x, y ∈ M1,
d2(F (x), F (y)) 6 δd1(x, y).

If F = F (X, ~Y ) represents a function of arity k + 1, we denote by

F~Y = F~Y (X) the associated function of arity 1 in which ~Y is fixed. (Strictly
speaking, there is a whole family of such functions, one for each possible
value that ~Y could take in MR

k.)

A function F = F (X, ~Y ) is non-expanding in X if F~Y is non-expanding

for each choice of ~Y ∈ MR
k, and likewise F is a contraction in X if F~Y is

a contraction for all ~Y . Note that a function is always a contraction in any
variable which does not occur freely in it.

Lemma 5.5

1. Any contraction is non-expanding.

2. A function is non-expanding (resp. a contraction) if and only if it is
non-expanding (resp. a contraction) in each variable separately.

3. The composition of non-expanding functions is non-expanding.

4. If all the arguments to a non-expanding function represent contractions
in a given variable, then the whole composition is a contraction in that
variable.

5. Likewise, if all the arguments to a contraction are non-expanding func-
tions, then the result is still a contraction.

We omit the straightforward proof. Note that these results hold in arbi-
trary metric spaces, provided (for 2.) that we use the sup metric in product
spaces.
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Lemma 5.6 Every term in TCSP is (i.e., corresponds to) a non-expanding

function. Moreover, if P = P (X, ~Y ) is a term which is time-guarded for X,
then P is a contraction in X.

Proof (Sketch.) We show that every Timed CSP operator apart from
recursion is non-expanding by noting that every behaviour of duration k pre-
scribed by the operator originates from behaviours of duration no greater
than k in its arguments. In the case of µX, an examination of the construc-
tion of the fixed point as per the Banach fixed point theorem (Theorem A.8)
yields the required result. This rests on the fact that time-guardedness for
a variable corresponds to contraction in that variable. We demonstrate this
by observing that, if P is time-guarded for X, it follows that behaviours of
X of duration k give rise to behaviours of P of duration at least k + 1; this
entails that P is a contraction in X. Details can be found in Appendix A.

�

Proposition 5.7 Let P = P (X, ~Y ) be a TCSP term which is time-guarded

for X. Then µX � P is the unique function F = F (~Y ) such that F (~Y ) =

P (F (~Y ), ~Y ).

Proof (Sketch.) This follows from the previous lemma and the Banach
fixed point theorem. Details are in Appendix A. �

A noteworthy special case arises when P = P (X) has only one free vari-
able. Proposition 5.7 then asserts that µX � P ∈ MR is the unique solution
to the equation X = P .

5.2 Operational Semantics

We now present an operational semantics for TCSP programs and establish
a congruence theorem relating it to the denotational semantics given in the
previous section. The format is similar to that of Section 3.2, listing a set of
rules of inference from which one can construct the labelled transition system
(LTS) of any program.

In contrast with the operational semantics laid out in Chapter 3, here it
would be possible to develop an operational semantics in which all internal
computational states (or nodes) have representations as TCSP programs.
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However, both for consistency and for convenience when we later discuss
specifications, let us define the set NODER of (open) nodes to contain all
integral-delayed Timed CSP terms but without any well-timedness require-
ment. NODER, naturally, will represent the subset of all (closed) nodes.
These sets may respectively be abbreviated NODE and NODE if no confu-
sion is likely. The remainder of our conventions on Timed CSP syntax, as
listed in Section 2.1, apply. We again insist that our inference rules only
apply to closed nodes. Note that TCSP ⊆ NODE and TCSP ⊆ NODE .

Other conventions are as follows: a and b represent visible non-tock
events, i.e., elements of ΣX. µ can be a visible non-tock event or a silent
one (µ ∈ ΣX ∪ {τ}), and x can be a µ or a tock . P

x
−→ P ′ means that

the node P can perform an immediate x-transition, and become the node P ′

(communicating x in the process if x is a visible event). P
x

X−→ means that
P cannot possibly do an x.

The transition rules are as follows:

STOP
tock
−→ STOP

(5.1)

SKIP
tock
−→ SKIP

(5.2)

SKIP
X

−→ STOP
(5.3)

WAIT n
tock
−→ WAIT (n − 1)

[ n > 1 ] (5.4)

WAIT 0
τ

−→ SKIP
(5.5)

P1
tock
−→ P ′

1

P1

n
� P2

tock
−→ P ′

1

n−1
� P2

[ n > 1 ] (5.6)
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P1

0
� P2

τ
−→ P2

(5.7)

P1
τ

−→ P ′
1

P1

n
� P2

τ
−→ P ′

1

n
� P2

(5.8)

P1
a

−→ P ′
1

P1

n
� P2

a
−→ P ′

1

(5.9)

(a −→ P )
tock
−→ (a −→ P )

(5.10)

(a −→ P )
a

−→ P
(5.11)

(a : A −→ P (a))
tock
−→ (a : A −→ P (a))

(5.12)

(a : A −→ P (a))
b

−→ P (b)
[ b ∈ A ] (5.13)

P1
tock
−→ P ′

1 P2
tock
−→ P ′

2

P1 2 P2
tock
−→ P ′

1 2 P ′
2

(5.14)

P1
τ

−→ P ′
1

P1 2 P2
τ

−→ P ′
1 2 P2

P2
τ

−→ P ′
2

P1 2 P2
τ

−→ P1 2 P ′
2

(5.15)

P1
a

−→ P ′
1

P1 2 P2
a

−→ P ′
1

P2
a

−→ P ′
2

P1 2 P2
a

−→ P ′
2

(5.16)
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P1 u P2
τ

−→ P1 P1 u P2
τ

−→ P2

(5.17)

P1
tock
−→ P ′

1 P2
tock
−→ P ′

2

P1 ‖
B

P2
tock
−→ P ′

1 ‖
B

P ′
2

(5.18)

P1
µ

−→ P ′
1

P1 ‖
B

P2
µ

−→ P ′
1 ‖

B

P2

[ µ /∈ B, µ 6= X ] (5.19a)

P2
µ

−→ P ′
2

P1 ‖
B

P2
µ

−→ P1 ‖
B

P ′
2

[ µ /∈ B, µ 6= X ] (5.19b)

P1
a

−→ P ′
1 P2

a
−→ P ′

2

P1 ‖
B

P2
a

−→ P ′
1 ‖

B

P ′
2

[ a ∈ B ] (5.20)

P1
X

−→ P ′
1

P1 ‖
B

P2
X

−→ P ′
1

[X /∈ B ]
P2

X
−→ P ′

2

P1 ‖
B

P2
X

−→ P ′
2

[X /∈ B ] (5.21)

P1
tock
−→ P ′

1 P2
tock
−→ P ′

2

P1 9 P2
tock
−→ P ′

1 9 P ′
2

(5.22)

P1
µ

−→ P ′
1

P1 9 P2
µ

−→ P ′
1 9 P2

[ µ 6= X ] (5.23a)

P2
µ

−→ P ′
2

P1 9 P2
µ

−→ P1 9 P ′
2

[ µ 6= X ] (5.23b)

P1
X

−→ P ′
1

P1 9 P2
X

−→ P ′
1

P2
X

−→ P ′
2

P1 9 P2
X

−→ P ′
2

(5.24)
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P1
tock
−→ P ′

1 P1
X

X−→

P1 ; P2
tock
−→ P ′

1 ; P2

(5.25)

P1
X

−→ P ′
1

P1 ; P2
τ

−→ P2

(5.26)

P1
µ

−→ P ′
1

P1 ; P2
µ

−→ P ′
1 ; P2

[ µ 6= X ] (5.27)

P
tock
−→ P ′ ∀ a ∈ A � P

a
X−→

P \ A
tock
−→ P ′ \ A

(5.28)

P
a

−→ P ′

P \ A
τ

−→ P ′ \ A
[ a ∈ A ] (5.29)

P
µ

−→ P ′

P \ A
µ

−→ P ′ \ A
[ µ /∈ A ] (5.30)

P
tock
−→ P ′

f−1(P )
tock
−→ f−1(P ′)

(5.31)

P
µ

−→ P ′

f−1(P )
µ

−→ f−1(P ′)
[ µ ∈ {τ,X} ] (5.32)

P
f(a)
−→ P ′

f−1(P )
a

−→ f−1(P ′)
(5.33)

P
tock
−→ P ′

f(P )
tock
−→ f(P ′)

(5.34)
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P
µ

−→ P ′

f(P )
µ

−→ f(P ′)
[ µ ∈ {τ,X} ] (5.35)

P
a

−→ P ′

f(P )
f(a)
−→ f(P ′)

(5.36)

µX � P
τ

−→ P [(µX � P )/X].
(5.37)

The remark made in Section 3.2 concerning negative premisses (appearing
in Rules 5.25 and 5.28) applies here as well.

The effects of these rules follow our intuition: Rule 5.10, for instance,
ensures the unhindered passage of time in a prefixed process; Rule 5.14 guar-
antees the temporal soundness of external choice; Rules 5.18 and 5.22 force
time to flow at a uniform rate; and Rules 5.25 and 5.28 implement τ -urgency.
Notice, too, the one-to-one correspondence between these rules and their
counterparts in Section 3.2; this will be formally exploited in Proposition 6.2
in the next chapter.

The operational semantics enjoys a number of properties, which we list
after the following definitions.

If P and Q are open nodes, we write P ≡ Q to indicate that P and Q
are syntactically identical.

If P is a closed node, we define initτ
R(P ) (initτ (P ) for short) to be the

set of visible non-tock and silent events that P can immediately perform:

initτR(P ) =̂ {µ ∈ ΣX ∪ {τ} | P
µ

−→}. We also write initR(P ) (init(P ) for
short) to represent the set of visible non-tock events that P can immediately
perform: initR(P ) =̂ initτR(P ) ∩ ΣX.

For P a closed node, we define an execution of P to be a sequence e =
P0

x1−→ P1
x2−→ . . .

xn−→ Pn (with n > 0), where P0 ≡ P , the Pi’s are nodes,

and each transition Pi

xi+1
−→ Pi+1 in e is validly allowed by the operational

inference Rules 5.1–5.37. Here we have each xi ∈ ΣX
tock

∪ {τ}. The set of
executions of P is written execR(P ), or exec(P ) for short when no confusion
is likely. By convention, writing down a transition (or sequence thereof) such
as P

a
−→ P ′ is equivalent to stating that P

a
−→ P ′ ∈ exec(P ).
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For P a closed node, the P -rooted graph, or labelled transition system,
incorporating all of P ’s possible executions is denoted LTSR(P ), or LTS(P )
if no confusion is likely.

If tr = 〈x1, x2, . . . , xn〉 is a τ -trace (i.e., tr ∈ (ΣX
tock

∪ {τ})?), we write

P
tr

=⇒ P ′ to mean that there is some execution P0
x1−→ P1

x2−→ . . .
xn−→ Pn of

P , with P ≡ P0 and P ′ ≡ Pn, which communicates the τ -trace tr . P
tr

=⇒

means that there is some node P ′ such that P
tr

=⇒ P ′, where P
〈〉

=⇒ P simply
represents the trivial execution P ∈ exec(P ).

The proofs of several of the propositions below are straightforward struc-
tural inductions on nodes, carried out in a manner similar to that of [Sch95];
in such cases we will therefore omit the details, with the exception of Propo-
sition 5.13 (finite variability), the proof of which is quite interesting and in-
structive. Alternatively, these propositions can also be seen to follow directly
from their counterparts in Section 3.9, thanks to Proposition 6.2, presented
in the next chapter.

The following propositions are universally quantified over P, P ′, P ′′, which
represent closed nodes; we are also using n,m, k, k′ to represent natural num-
bers, etc. As mentioned above, the reader will notice the correspondence
between the propositions listed here and those of Section 3.2; it is equally
interesting to remark on the propositions of Section 3.2 which do not have
counterparts here, such as Proposition 3.5 (time continuity)—this, of course,
was to be expected given that the model studied in this chapter is discrete
in nature.

Proposition 5.8 Time determinacy:

(P
tock
−→ P ′ ∧ P

tock
−→ P ′′) ⇒ P ′ ≡ P ′′.

Note that a trivial induction extends this result to an arbitrary number of
tocks.

Proof (Sketch.) Let us illustrate two cases of the structural induction.

case P1 9 P2: Observe that the only rule allowing P1 9 P2 to communicate

a tock is Rule 5.22, whose conclusion is P1 9 P2
tock
−→ P ′

1 9 P ′
2. The

antecedents of this rule require that P1
tock
−→ P ′

1 and P2
tock
−→ P ′

2. Apply-
ing the induction hypothesis to P1 and P2 tells us that P ′

1 and P ′
2 are

unique, and therefore that so too is P ′
1 9 P ′

2, as required.
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case µX � P : This case follows vacuously since no operational rule allows a
recursive term to communicate a tock ; the only behaviour permitted is
the unwinding of the recursion, which results in a τ action.

Note that structural inductions such as the one above must technically
be carried out over open nodes, together with syntactic bindings. However in
many situations, including the one at hand, the case of recursion is discharged
vacuously under any syntactic binding, which greatly simplifies matters. �

Proposition 5.9 Persistency—the set of possible initial visible events re-
mains constant under the occurrence of tocks:

P
tock
−→ P ′ ⇒ init(P ) = init(P ′).

Again, this generalises to an arbitrary number of tocks. We omit the proof,
but remark that a change in the set of possible initial visible events can only
arise after the occurrence of a non-tock , visible or hidden, event.

Proposition 5.10 Maximal progress, or τ -urgency:

P
τ

−→ ⇒ P
tock
X−→.

Proof (Sketch.) This is again a straightforward structural induction. We
cover the case of the hiding operator as an illustration.

First note that any tock -transition of P \ A (with A ⊆ Σ) can only occur
as a result of an application of Rule 5.28. Now suppose that P \ A

τ
−→. Two

cases arise, depending on whether this τ -transition results from Rule 5.29 or
from Rule 5.30. The first case violates the second antecedent of Rule 5.28,
which therefore disallows P \ A from performing a τ action. In the second

case, we can apply the induction hypothesis (which informs us that P
tock
X−→)

to conclude that the first antecedent of Rule 5.28 fails to be satisfied. In
either case, therefore, P \ A is unable to communicate a tock . �

Corollary 5.11

(P
〈tock〉n

=⇒ P ′ τ
−→ ∧ P

〈tock〉m

=⇒ P ′′ τ
−→) ⇒ n = m.
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Proposition 5.12 A node P can always perform a sequence of tocks up to
the point of the next τ action, or up to any point if no τ action lies ahead:

∀ k > 1 � (@ P ′ � P
〈tock〉k

=⇒ P ′) ⇒ ∃ k′ < k, P ′′ � P
〈tock〉k

′

=⇒ P ′′ τ
−→.

Proposition 5.13 Finite variability—a program P ∈ TCSP cannot per-
form unboundedly many actions within a finite number of tocks:

∀ k > 0 � ∃n = n(P, k) � ∀ tr ∈ (ΣX
tock

∪ {τ})?�

(P
tr

=⇒ ∧ ](tr � tock) 6 k) ⇒ ]tr 6 n.

We remark that this result holds on account of the fact that programs are
well-timed. Note also that this formulation of finite variability is stronger
than that postulated by Axiom R7, since the latter does not take silent events
into account.

Proof (Sketch.) Two proofs of this proposition can be given. The easiest
one, by contradiction, is to observe that any failure of finite variability in the
current operational semantics would entail a similar failure of finite variability
(Proposition 3.9) in the operational semantics for MTF , via Proposition 6.2.
This proof is unfortunately not self-contained, since it hinges on an outside
result (Proposition 3.9, taken from [Sch95]).

The second proof, this one direct, proceeds by structural induction. The
difficult case is that of recursion, for which the notion of time-bisimulation,
similar to that of indexed bisimulation, is introduced and extensively em-
ployed. We present the details in Appendix A. �

We now establish a congruence theorem between the operational and
denotational semantics presented in this chapter. Such a theorem provides
instructions to elicit, from the labelled transition system of a program, a set
of tests, and then asserts that this set is in fact equal to the denotational
representation of the program in MR.

The techniques required to prove congruence theorems of this kind within
CSP frameworks are well-known and described in, among others, [Ros97] (for
standard, untimed CSP), [Muk93] (for the refusal testing model), and [Sch95]
(for the timed failures model). Our result relies on similar methods.

A refusal A ∈ REF is refused by a node P if either A is the null refusal
•, or P is stable (cannot perform a τ -transition) and has no valid initial



5.3 Refinement and Specification 63

transition labelled with an event from A: P ref A if A = • ∨ (P
τ

X−→ ∧
|A| ∩ init(P ) = ∅).

Any execution of a program P gives rise to a set of tests by removing
programs and τ -transitions from the execution, and inserting as refusals,
between the remaining transitions, sets of events that cannot be performed.
In detail, letting e be an execution of P and u a test, we define inductively
the relation e test u by induction on e:

P test 〈A〉 ⇔ P ref A

(P
τ

−→)_e′ test u ⇔ e′ test u

(P
x

−→)_e′ test 〈A, x〉_u′ ⇔ x 6= τ ∧ P ref A ∧ e′ test u′.

We can now define the function ΦR, which extracts the denotational rep-
resentation of a program from its set of executions.

Definition 5.2 For P ∈ NODER, we set

ΦR(P ) =̂ {u | ∃ e ∈ execR(P ) � e test u}.

The chief congruence result now reads:

Theorem 5.14 For any TCSP program P , we have

ΦR(P ) = RJP K.

Proof (Sketch.) The statement must first be rephrased in slightly more
general terms, as an assertion about TCSP terms and syntactic bindings
rather than simply programs. In doing so, it proves convenient to temporar-
ily abandon the axioms of MR and work in the raw superspace P(TEST )
instead. A structural induction is then carried out, establishing the stronger
statement, which then yields the desired result. Details are in Appendix A.

�

5.3 Refinement and Specification

We can define a partial order on P(TEST ) in the same way as we did on
P(TF ):
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Definition 5.3 For P,Q ⊆ TEST (and in particular for P,Q ∈ MR), we
let P vR Q if P ⊇ Q. For P,Q ∈ TCSP, we write P vR Q to mean
RJP K vR RJQK, and P =R Q to mean RJP K = RJQK.

We may drop the subscripts and write simply P v Q, P = Q whenever the
context is clear.

This order is known as test refinement, or the order of nondeterminism.
It has the central property:

P v Q ⇔ P u Q = P.

In [Oua97] we showed that this order makes MR into a complete partial
order, or cpo6. Moreover, we showed that every Timed CSP operator, apart
from X and µX, corresponds to a continuous function7. µX, on the other
hand, can be seen to be a continuous operator from the space of continuous
endofunctions on MR to MR.

MR, however, is not a domain because it lacks a least element, as a
direct consequence of finite variability—Axiom R7 . Finite variability, of
course, follows from the fact that processes are required to be well-timed. It
can be shown that it is possible to drop this requirement (as we have done
for instance in the operational setting) and still get a consistent denotational
model, although in that case it proves useful to include a divergence compo-
nent in the representation of processes—a set of tests after the completion
of any of which the process may exhibit divergent behaviour, corresponding
to an unbounded sequence of internal (silent) transitions.

This model can be shown to be a domain—a cpo with a least element. MR

is then identified with the subset of processes which satisfy finite variability
and never diverge. The continuity results we have quoted above persist in
the larger model, which entails that any recursion has a least fixed point,
as per Tarski’s theorem (see, e.g., [Ros97]). Of course, this least fixed point
agrees with the unique fixed point computed in MR in the case of well-timed
processes. An adequate congruence theorem between this model and the
operational semantics given in the previous section can be established, which
shows that it is possible to model Zeno processes in a manner which is fully
consistent with MR. Not only is this an interesting result in its own right, it

6A partial order M is complete if every directed subset (D ⊆ M is directed if for all
x, y ∈ D there exists z ∈ D such that x, y v z) of M has a least upper bound in M .

7A continuous function is one that is monotone and preserves least upper bounds of
directed sets.
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also enables us to use refinement as a versatile specification tool, as we shall
shortly see.

We first define a second refinement order—known as trace refinement—
between sets of tests (and in particular between MR processes):

Definition 5.4 For any P,Q ⊆ TEST, we let P vT Q ⇔ trace(P ) ⊇
trace(Q).

(Here the trace operator was naturally extended to apply to sets of tests.)
We overload the notation and extend vT to TCSP programs in the obvious
way.

Specifications are assertions concerning processes. We write P � S to
express the fact that process P (or RJP K if P is a program) meets, or satisfies,
the specification S.

As in the case of MTF , MR specifications fall naturally into certain cat-
egories. We are particularly (though not exclusively) interested in a type of
specification known as behavioural specifications. A behavioural specification
is one that is universally quantified over the behaviours of processes. In other
words, S = S(P ) is a behavioural specification if there is a predicate S ′(u)
on tests such that, for any P ,

P � S ⇔ ∀ u ∈ P � S ′(u).

In this case we may abuse notation and identify S with S ′. Note that S ′

itself may be identified with a subset of TEST , namely the set of u ∈ TEST
such that S ′(u).

A behavioural trace specification S = S(P ) is one for which there exists
a predicate S ′(tr) on (ΣX

tock
)? such that, for any P ,

P � S ⇔ ∀u ∈ P � S ′(trace(u)).

Once again we may identify S with S ′ if no confusion arises as a result.

Behavioural trace specifications are paradigmatic examples of safety prop-
erties, requirements of the type: ‘Nothing bad happens’. We will in fact
not consider any other sort of safety properties in this work. Other types
of behavioural specifications include liveness properties, requirements that
‘something good not be prevented from happening’. Such specifications are
typically primarily concerned with refusal information.
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We remark as before that any specification S = S(P ) which can be ex-
pressed, for a fixed process Q, as Q v P , is automatically behavioural.
As an example, let us again consider the safety property S(P ): ‘P cannot
perform the event a’. Thanks to our earlier discussion, we can validly ex-
press this specification as RUN ΣX−{a} vT P , where RUN A = a : A −→
RUN A. We can even express the specification as CHAOSΣX−{a} vR P ,

where CHAOSA = (u{a −→ CHAOSA | a ∈ A} u STOP)
1
� CHAOSA.8

As we shall see in the next section, the advantage of the refinement for-
malism is that it enables us to automatically verify the specification by per-
forming a refinement check on a model checker such as FDR.

5.4 Verification

This section addresses the question of automatically checking whether a pro-
cess meets a given specification. Since this is not the primary focus of this
thesis, the exposition will remain rather brief and far from exhaustive.

Let P be a TCSP program. Even though the set RJP K of P ’s behaviours
is always infinite, in many cases P ’s labelled transition system LTSR(P ) is
finite. A specification S on P can thus often be checked by examining P ’s
LTS. We demonstrate this by considering behavioural specifications of the
type Q vR P (for a fixed Q ∈ MR).

In [Muk93], it is shown that there is a natural projection from the re-
fusal testing model for (untimed) CSP into the standard failures model, and
moreover that the semantic mapping for the failures model factors through
this projection. A similar result can be shown to hold for our discrete-time
refusal testing model MR provided that the four conditions listed at the end
of Chapter 4—unhindered passage of time, temporal soundness of external
choice, uniform rate of passage of time, and maximal progress—are somehow
adequately incorporated to the failures model. As discussed in Chapter 4,
this cannot be done in a purely denotational setting, but can still be achieved
operationally, via a suitable syntactic translation (Ψ), together with the pos-

8Note that our use of the general internal choice operator u, in the definition of

CHAOSA, is simply shorthand for repeated use of the usual internal choice operator
u, since A ⊆ ΣX is finite. We also remark that this definition of CHAOSA, meant to
capture the vR-least process with alphabet A, is slightly more complicated than the usual
definition seen in standard models of (untimed) CSP, owing to the fact that refusal testing
information is more discriminating than mere failure information.
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tulation of τ -urgency—the prioritising of silent events over tocks.

Let us therefore consider a specification S on MR processes which is only
concerned with failures, i.e., traces together with a final refusal. For any
P ∈ TCSP, to verify that P � S in MR (i.e., that RJP K � S), it is sufficient
to show that Ψ(P ) � S in the prioritised failures model, by which we mean the
model in which failures are derived from the prioritised operational semantics.
Since this last check can be performed on the model checker FDR, we are
already able to mechanically verify a large class of behavioural specifications.9

(In general this may also involve a suitable translation of the specification
S).

An important subclass of such specifications are safety properties, since
these are exclusively concerned with traces (and can therefore obviously be
expressed in terms of failures). Thus to verify for example that RJP K never
communicates the event a (i.e., that RUN ΣX−{a} vT P ), it is sufficient to
check that Ψ(RUN ΣX−{a}) vT Ψ(P ) using FDR. Note that the second re-
finement must hold if RJP K meets the specification, although the FDR check
will succeed only if P has a finite (in fact manageable) LTS. We provide a
concrete example of this technique in Section 6.7.

In general, however, we cannot always depend on this sort of analysis,
since there are TCSP programs which have distinct interpretations in MR

but have identical sets of failures. In the rare cases where this is likely to
cause a problem (namely, in those cases in which the specification on tests
under consideration cannot be expressed purely in terms of failures), one must
directly perform an analysis of the LTS of the program to determine whether
the specification holds or not. We provide an algorithm which achieves this
task in Appendix B, drawing on the notion of power-simulation which lies at
the heart of FDR checks.

9A ‘priority’ operator has been included in beta versions of FDR, but has not, to our
knowledge, been officially released. The incorporation of priority in future versions of
FDR2 is understood to be currently under consideration by Formal Systems Europe Ltd.



Chapter 6

Timed Analysis (I)

We now address the task of extracting information about the continuous-time
behaviour FT JP K of a TCSP program P from its discrete-time representation
RJP K.

In Section 6.1 we introduce the notion of the timed denotational expansion
of an MR process. This is an entirely straightforward attempt to elicit, or
more precisely to approximate, the continuous-time behaviour of a process
from its set of tests. We then continue with a section examining a number
of examples highlighting the types of inaccuracies that timed denotational
expansions exhibit with respect to exact process behaviour.

In Section 6.3, we focus our analysis on timed traces, and develop tools en-
abling us to quantitatively assess how closely timed denotational expansions
match exact process behaviour. We obtain soundness and quasi-completeness
theorems which essentially show that timed denotational expansions are con-
servative approximations of exact behaviour, and moreover that these ap-
proximations get better and better as ‘time granularity’ (the number of tocks
postulated to occur within one time unit) gets finer and finer.

Section 6.4 then seeks to exploit these observations and results towards
automated verification, concentrating, once again, on timed traces. Several
avenues are explored, with the most important and mature approach building
upon a result of Henzinger, Manna, and Pnueli’s. A number of examples are
presented, many of which illustrating the limitations of the various techniques
under consideration.

Section 6.5 studies the applicability of our techniques and results to full—
i.e., timed failures, or safety and liveness—automated verification. This sec-
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tion in some sense represents the culmination of our work. We extend the
previously cited result of Henzinger et al. from timed traces to timed failures,
and use it as a foundation to produce exact verification theorems (as well as
a corresponding model checking algorithm, described in Appendix B).

Section 6.6 answers many questions regarding the scope and limitations of
the techniques thus described, particularly in the context of refinement-based
specifications.

Finally, Section 6.7 offers a small verification case study illustrating the
results and algorithm derived in Sections 6.4 and 6.5.

6.1 Timed Denotational Expansion

If P is a TCSP program, we would like to convert the refusal testing in-
formation contained in RJP K into useful information concerning the timed
failures of FT JP K. The general intuition behind our approach is in essence
captured by the following example: suppose that in a particular test of RJP K,
the event a occurs after three tocks, followed by a b, and then a further tock .
We would conclude that a and b occurred at times ta and tb, respectively,
such that 3 6 ta 6 tb < 4.1 Ideally we would then expect there to be timed
failures in FT JP K accounting for these behaviours, and vice-versa.

To this end, we define a function Expk : MR −→ P(TF ) (where Exp

stands for ‘expansion’, and the integral subscript k indicates how many tocks
are meant to be signalled per time unit), to transform MR processes into
sets of compatible timed failures.

In detail, the construction goes as follows. Let P ∈ MR and let u =
〈A0, a1, A1, a2, . . . , an, An〉 be a test of P . We first define preExpk(u) to be
the set of timed failures (s,ℵ) ∈ TF satisfying the following:

1For technical reasons, we require the third inequality to be strict, but otherwise there
can be no guarantee that events, such as a and b or even tock , did not in fact happen
‘simultaneously’.
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∃(ti ∈ R+)06i6n+1�

0 = t0 6 t1 6 . . . 6 tn < tn+1 = (1 + ](〈a1, a2, . . . , ai〉 � tock))/k ∧

s = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 \ tock ∧

(∀(1 6 i 6 n)�

ai = tock ⇒ (ti = ](〈a1, a2, . . . , ai〉 � tock)/k ∧ ti−1 6= ti)) ∧

ℵ ⊆
n⋃

i=0

{[ti, ti+1) × |Ai|}.

We can now give

Definition 6.1 For any P ∈ MR and k > 1, we define the timed denota-
tional expansion Expk(P ) of P to be

Expk(P ) =̂
⋃

{preExpk(u) | u ∈ P}.

(We will usually omit the subscript k when it is equal to 1.)

Note how the basic idea laid out earlier has been extended to refusal sets
in the definition of Expk. A point worthy of mention is that the refusal • is
treated as if it were the empty refusal set; we will return to this later on.

We also point out that in general, for P ∈ MR, it is not the case that
Expk(P ) is an MTF process, as we shall soon see.

6.2 Timing Inaccuracies

One would ideally like to have the equality FT JP K = Exp(RJP K) for all
P ∈ TCSP. Unfortunately this cannot be, for a variety of reasons, as we
now demonstrate. In the analysis below we shall freely switch back and forth
between denotational and operational interpretations of process execution.

Consider the program P1, defined as follows:

P1 = (ā 2 WAIT 1) ; STOP .

The behaviour of P1 in the timed failures model essentially consists in offering
a for one time unit, at which point, if a has not occurred, the subprocess
WAIT 1 offers a X. Sequential composition then forces this X to occur,
silently, on the spot, unless a occurs instead at that very instant. This
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latter choice is nondeterministic (and in theory also subject to environmental
cooperation). What is certain is that a cannot occur at any time t > 1.2

The tests of RJP1K exhibit some subtle but important differences: until
the first tock is recorded, a does not appear in refusals, i.e., a is continuously
on offer, as expected. However, this situation persists after the occurrence of
tock , right up to the time when, operationally, a silentX is performed (by the
subprocess WAIT 1). Refusals in the interim (i.e., between the first tock and
the silent X) are null (•), and a is certainly not prevented from occurring.
Our semantics only prescribes that the hidden X occur before the next tock ,
which implies that in certain cases P1 will still be able to communicate a
at times which are arbitrarily close to that of the second tock occurrence.
Accordingly, the timed denotational expansion of RJP1K is unable to rule
out a purported occurrence of a before two full time units have elapsed.
In some sense, the nondeterministic uncertainty witnessed throughout the
half-open time interval of one time unit between the first and second tocks
corresponds precisely to the point nondeterminism observed at the instant
t = 1 in the timed failures model.

This example also shows that Exp(RJP1K) cannot possibly be an MTF

process; for example, the failure (〈(1.5, a)〉, [0, 1)×(ΣX−{a})) ∈ Exp(RJP1K)
is ≺-maximal over the interval [0, 1.5); however, the failure (〈(1, b)〉, [0, 1) ×
(ΣX −{a})) does not appear in Exp(RJP1K), violating Axiom TF3. Inciden-
tally, note that, for any P ∈ MR, Axiom TF3 is the only one that Expk(P )
will possibly fail to satisfy.

The following program exemplifies a slightly different kind of timing un-
faithfulness:

P2 = a
1

−→ b̄.

The timed failures of FT JP2K clearly indicate that the time difference between
the occurrences of a and b must be greater than or equal to one time unit.
In contrast, the tests of RJP2K require that there should be at least one
tock between the two events. An application of Exp therefore yields (among
many others) the timed trace 〈(0.99, a), (1, b)〉, in which the time difference
between a and b is almost nil! (This difference can in fact be ‘made’ as small
as desired, but never zero as the definition of denotational expansion requires
a to ‘occur’ strictly before the following tock .)

A slightly more dramatic demonstration of the effect of the timing inac-

2P1 in effect implements the timeout process ā
1

� STOP , but the lengthier expression
we have chosen for it better illustrates the situation at hand.
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curacies described above is achieved with the program P3 below:

P3 = (a
1

−→ (ā
0
� STOP)) 9 (b

1
−→ (b̄

0
� STOP)).

FT JP3K consists of two interleaved processes, each of which can, at any
time, communicate an event, and then communicate it again exactly one time
unit later, or not at all. If we suppose that two a’s and two b’s are witnessed
in a given timed failure of FT JP3K, with the first a occurring strictly before
the first b, then the last event to be communicated will have to be a b.

However, it is easy to see that Exp(RJP3K) contains timed failures whose
timed traces are, for example, 〈(0, a), (0.9, b), (1, b), (1.9, a)〉. Here the second
a ought to have occurred 0.9 time units before the second b, rather than 0.9
time units after it! We do note, however, that FT JP3K does contain timed
failures whose untimed traces are 〈a, b, b, a〉; but for this to happen one must
have the initial a and b occurring simultaneously.

One might think that the rather disconcerting state of affairs exposed in
the previous few paragraphs should spell doom for any sustained or valuable
use of MR for accurate analysis of process behaviour in MTF . But it turns
out that the discrepancies noted are themselves worst-case scenarios, and in
general the ‘timing fuzziness’ that our discrete analysis necessarily entails
does not accumulate and remains satisfactorily bounded. This statement is
made precise in Theorem 6.6 below.

The examples above have exclusively focused on (timed) traces. We now
show that refusals bring their own unruly twist to the picture. Here problems
arise because MR fails to offer a satisfactory treatment of instability—the
transient state a process finds itself in while hidden events are on offer. This
is remedied with the model MUR, presented in the next chapter.

The presence of instability is dealt with in MR by sweeping all refusal
information under the rug, only allowing • as refusals. As far as the definition
of Exp went, this left us with a choice of two evils: either conservatively treat •
as if it were the maximum refusal set, ΣX, or (as we did) ignore • altogether
and treat it as the empty refusal set. The first alternative would clearly
have made any refusal information in the timed denotational expansion of
a process useless, since •, as per Axiom R1 , is always an allowable refusal.
Unfortunately, the path we have chosen is only slightly better, as we must
now cope with the eventuality of under-refusing events.

As an example, let us once more consider P2 = a
1

−→ b̄. Suppose that an
a is recorded at time 0.7 in a particular timed failure of FT JP2K. Then b can
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be validly refused over the interval [0, 1.7), as some other timed failure will
bear out. In the timed denotational expansion of RJP2K, however, b will at
best only be refused over the interval [0, 1) (again assuming a was decreed
to have happened at time 0.7). Afterwards, a silent X is on offer, leaving a
• refusal until such time as it occurs, at which point any event but b will be
stably refused.

6.3 Timed Trace Analysis

We now present some general results about the correspondence between MR

and MTF , mostly concerning (timed) traces.

Proposition 6.1 Let P ∈ TCSP, and let e ∈ execTF (P ) be an integral
execution. There exists an integral execution e′ ∈ execTF (P ) all of whose
evolutions have unit duration, and such that, for any timed failure (s,ℵ),
e′ fail (s,ℵ) if and only if e fail (s,ℵ).

Although e′ is technically not necessarily unique, we will pretend that it is
(choosing a particular execution if necessary) and call it the normalisation
of e. Any integral execution only comprising unit duration evolutions, such
as e′, is termed a normal execution.

Proof One first shows by structural induction on Q that, whenever Q
0
 Q′,

then Q′ ≡ Q. It also follows from Proposition 3.5 that, whenever Q
n
 Q′ (for

n > 1), there is a unique sequence 〈Qi〉
n
i=0 such that Q0 ≡ Q, Qn ≡ Q′, and

Q0
1
 Q1

1
 . . .

1
 Qn. Moreover, for all 0 6 i 6 n, initTF (Qi) = initTF (Q).

Given e ∈ execTF (P ) as above, one then replaces every Q
0
 Q′ in e by Q

and every Q
n
 Q′ in e by Q0

1
 Q1

1
 . . .

1
 Qn. The resulting execution is

clearly the required e′. �

Proposition 6.2 For any P ∈ TCSP, the set of normal executions of P
(in the operational semantics associated with MTF ) is in natural one-to-one
correspondence with the set execR(P ) of executions of P (in the operational
semantics associated with MR).

More precisely, this bijection takes a normal execution e = P0
z17−→ P1

z27−→
. . .

zn7−→ Pn ∈ execTF (P ) to the execution e′ = P0
x1−→ P1

x2−→ . . .
xn−→ Pn ∈
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execR(P ), where for all 1 6 i 6 n, xi = tock when
zi7−→ =

1
 , and xi = µ

when
zi7−→ =

µ
−→.

In particular, initτ
TF

(P ) = initτR(P ).

Proof (Sketch.) This is a straightforward inspection which rests on the
perfect bijective correspondence between the operational inference Rules 3.1–
3.37 and 5.1–5.37. A formal proof proceeds by structural induction on P .

�

We next define an integral multiplication operation on terms: for P ∈
TCSP and k > 1, kP ∈ TCSP is identical to P except that every delay n
in P has been replaced by a delay of kn (in all subprocesses WAIT n and

P1

n
� P2) in kP . This operation can be given a straightforward inductive

definition, which we omit. Note that integral multiplication takes programs
to programs.

We can also define an integral multiplication operation on timed failures.
If (s,ℵ) = (〈(ti, ai)〉

n
i=1,

⋃m

i=1{[bi, ei)×Ai}) ∈ TF and k > 1, we let k(s,ℵ) =
(〈(kti, ai)〉

n
i=1,

⋃m

i=1{[kbi, kei)×Ai}) ∈ TF . This definition extends to sets of
timed failures in the obvious way.

Lemma 6.3 For any P ∈ TCSP and k > 1, FT JkP K = kFT JP K.

Proof (Sketch.) One first extends integral multiplication to executions, as
follows. If e = P0

z17−→ P1
z27−→ . . .

zn7−→ Pn ∈ execTF (P ), for some arbitrary

program P , we let ke = kP0
kz17−→ kP1

kz27−→ . . .
kzn7−→ kPn, where each transition

kPi

kzi+1
7−→ kPi+1 in ke is kPi

µi+1
−→ kPi+1 if Pi

zi+1
7−→ Pi+1 = Pi

µi+1
−→ Pi+1, and is

kPi

kti+1
 kPi+1 if Pi

zi+1
7−→ Pi+1 = Pi

ti+1
 Pi+1. This operation naturally extends

to sets of executions.

One then shows by structural induction that, for any term P , and any
syntactic binding η with the property that execTF (kη(X)) = kexecTF (η(X))
for all X ∈ VAR, the equality execTF (k(Pη)) = kexecTF (Pη) holds. All
inductive cases are straightforward apart from recursion, which is handled
using the indexed bisimulation techniques which figured prominently in the
proofs of the digitisation lemma (Lemma 3.11) and Proposition 5.13 (where
time-bisimulations, rather than indexed bisimulations, were used for the lat-
ter).

One then concludes that, for any Q ∈ TCSP, initTF (Q) = initTF (kQ).
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The result then follows immediately from Theorem 3.10. �

We also have the following result:

Lemma 6.4 For any P ∈ MR and k > 1, Exp(P ) = kExpk(P ).

Proof (Sketch.) Follows immediately from the definitions. �

We can now give:

Theorem 6.5 For any P ∈ TCSP and k > 1,

Expk(RJkP K) vTT FT JP K.

Proof We first observe that, due to Lemmas 6.3 and 6.4, it suffices to prove
the result for k = 1.

Fix P ∈ TCSP, and let s ∈ TTraces(FT JP K). Pick an execution e ∈
execTF (P ) such that e fail (s,ℵ) for some refusal ℵ, as per Theorem 3.10.
Let e′ = [e]1 ∈ execTF (P ) be the lower digitisation of e as per the digi-
tisation lemma (Lemma 3.11), and let e′′ be the normalisation of e′, as
per Proposition 6.1. By Proposition 6.2, there is a canonical execution
o ∈ execR(P ) matching each of e′′’s unit-duration evolutions with tock -
transitions, and identical to e′′ in all other respects. Let u ∈ RJP K be such
that o test u, as per Theorem 5.14. It is easy to verify, given u’s construction
and the definition of preExp, that s ∈ TTraces(preExp(u)), and therefore that
s ∈ TTraces(Exp(RJP K)), completing the proof. �

This theorem can be interpreted as a (timed trace) soundness result:
if a (presumably undesirable) behaviour is ruled out by the denotational
expansion of RJP K, then it is certainly not a possible behaviour of FT JP K.
(Timed trace) completeness, on the other hand, would be the assertion that
the reverse refinement holds, i.e., that the only timed traces absent from
the denotational expansion of RJP K are precisely those which FT JP K cannot
perform. But as we have seen in the previous section, this is something we
have to forgo. Nonetheless, we can get a good approximation to (timed trace)
completeness, which we present below.

We first need to define a metric td on the space TT of timed traces. Let
s = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 and s′ = 〈(t′1, a1), (t

′
2, a2), . . . , (t

′
n, an)〉 be

timed traces. We define the timed distance td(s, s′) between them as follows:
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td(s, s′) =̂ max{(|t′i − ti|) | 1 6 i 6 n}. In all other situations (namely, when
the untimed versions of s and s′ do not agree), we set td(s, s′) = ∞. td

clearly makes TT into a (complete) metric space.

Theorem 6.6 For any P ∈ TCSP, k > 1, and s ∈ TTraces(Expk(RJkP K)),
there exists s′ ∈ TTraces(FT JP K) such that td(s′, s) < 1/k. In fact, s′ can be
chosen so that each of its events is recorded earlier than or at the same time
as its vis-à-vis in s.

Proof Here again it follows easily from Lemmas 6.4 and 6.3 that it suffices
to prove the result in the case k = 1.

So let s ∈ TTraces(Exp(RJP K)), and let u be a test of RJP K yielding
(s,ℵ) (for some refusal ℵ) under preExp. Theorem 5.14 assures us there is an
execution e ∈ execR(P ) such that e test u, and Proposition 6.2 then informs
us that there is an execution e′ ∈ execTF (P ) identical to e but for having
unit-duration evolutions wherever e had tock -transitions. By Theorem 3.10,
there is (s′,ℵ′) ∈ FT JP K such that e fail (s′,ℵ′).

Now, by definition, preExp decrees that the time of occurrence of any
event in a given test must lie in a unit interval consistent with the number of
tocks witnessed prior to the event. Clearly, then, the timing of correspond-
ing events in preExp(u) and s′ cannot differ by more than one time unit. We
observe that the inequality is strict since events in preExp(u) must by defi-
nition ‘happen’ strictly before the time postulated for the occurrence of the
following tock . �

Note that in the case k = 1, each event in s′, as constructed in the
proof, happens at the greatest integral time less than or equal to the time of
occurrence of its vis-à-vis in s; in other words, s′ is the lower digitisation of
s.

Theorem 6.6 is a (timed trace) quasi-completeness result, as it gives us
sharp bounds regarding the extent to which timed denotational expansions
can stray from the MTF -computed timed traces of a given TCSP program P .
Together with Theorem 6.5, it also shows that, as k increases, Expk(RJkP K)
‘converges’ towards FT JP K (at least as far as timed traces are concerned),
enabling one’s analysis of FT JP K to become arbitrarily ‘precise’, albeit po-
tentially at an expense in computational complexity.

We point out, perhaps surprisingly, that k 6 k′ does not necessarily
entail that Expk(RJkP K) vTT Expk′(RJk′P K) for an arbitrary program P .
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For example, let P = a −→ (b̄
1
� STOP), and compare RJ2P K and RJ3P K

(i.e., k = 2 and k′ = 3). If the original time units are minutes, then two
consecutive tocks by the first process are meant to delineate a 30s interval,
whereas two consecutive tocks by the second process signify that 20s have
elapsed between them. On the trace 〈(25s, a)〉, therefore, E2 = Exp2(RJ2P K)
will ‘simulate’ a tock , after a, ahead of E3 = Exp3(RJ3P K). Because of
this, the latest possible occurrence of b in E2 will arrive sooner than in E3.
And indeed, a simple inspection shows that the traces 〈(25s, a), (t, b)〉, with
90s 6 t < 100s, are all possible for E3, but not for E2. Hence it is not the
case that E2 vTT E3.

Of course, under certain conditions the expected relationship will hold:

Proposition 6.7 Let P ∈ TCSP, and let 1 6 k 6 k′ be such that k divides
k′. Then Expk(RJkP K) vTT Expk′(RJk′P K).

Proof (Sketch.) It clearly suffices to prove the result in the case k = 1,
thanks to Lemma 6.4. Let s ∈ TTraces(Expk′(RJk′P K)). We must show that
s ∈ TTraces(Exp(RJP K)). Let u ∈ RJk′P K with s ∈ TTraces(preExpk′(u)). By
Theorem 5.14, there is e ∈ execR(k′P ) such that e test u. Proposition 6.2
then provides a corresponding normal execution e′ ∈ execTF (k′P ). As in
the proof of Lemma 6.3, we then therefore have that e′/k′ ∈ execTF (P ). Let
o ∈ execTF (P ) be the lower digitisation of e′/k′, as per the digitisation lemma,
and let o′ ∈ execTF (P ) be the normalisation of o, as per Proposition 6.1.
We can then invoke Proposition 6.2 again to obtain o′′ ∈ execR(P ), which
then yields v ∈ RJP K, with o′′ test v, by Theorem 5.14. It is then not
difficult to trace through this sequence of transformations and verify that
one has s ∈ TTraces(preExp(v)), and therefore that s ∈ TTraces(Exp(RJP K)),
as required. �

It is interesting to note how the above proposition, which is stated entirely
in terms of the discrete-time refusal testing model MR, is established using
results, such as the digitisation lemma, which are themselves stated purely
in terms of the timed failures model MTF .

6.4 Applications to Verification

We show how the results of the previous section can be exploited to reduce
proof obligations in MTF to proof obligations in MR.



6.4 Applications to Verification 78

The most natural instance concerns behavioural specifications. Specifi-
cally, if S is a behavioural timed trace specification on MTF processes, Theo-
rem 6.5 guarantees that, for any P ∈ TCSP and any k > 1, if Expk(RJkP K) �
S, then FT JP K � S as well. The definition of Expk, on the other hand, makes
it simple to manufacture a conservative specification C(S), derived from S,
such that if RJkP K � C(S), then Expk(RJkP K) � S.

As an example, let us consider the following timed trace specification
S1: ‘Whenever the event b is observed, it must have been preceded at most
10 time units earlier by the event a’. This is a behavioural timed trace
specification because it is a predicate required to hold for all the timed traces
of a process.

A TCSP program P will satisfy S1 if RJP K satisfies the test specification
C(S1) that reads: ‘Whenever the event b is observed, it must have been
preceded by the event a, with at most 9 tocks occurring between them.’ Note
how the time constraint was converted into a requirement on the number of
tocks; it is in fact not hard to see intuitively that there is a systematic way to
perform such conservative conversions (although making this precise would
require us to set up a formal specification formalism). The drawback, on the
other hand, is that there may be some programs P such that FT JP K � S1

but RJP K 2 C(S1).

In the case at hand, for example, a sharper analysis reveals that it is suffi-
cient to consider the weaker test specification ZR(S1) that reads: ‘Whenever
the event b is observed, it must have been preceded by the event a, with at
most 10 tocks occurring between them.’ Indeed, suppose that FT JP K 2 S1

for some program P . Then there is s ∈ TTraces(FT JP K) with 〈(tb, b)〉 in s,
and such that whenever 〈(ta, a)〉 in s with ta 6 tb, tb−ta > 10. Let us assume
that there is at least one such instance 〈(ta, a)〉 in s (in which case we pick
the one with largest ta value), otherwise we trivially have RJP K 2 ZR(S1).
If ṫb denotes the fractional part of tb, we can apply the digitisation lemma
to (any execution yielding) the timed trace s, with pivot ṫb, to obtain (an
integral execution yielding) the timed trace [s]ṫb ∈ TTraces(FT JP K). It is
then clear that the corresponding a and b events in [s]ṫb occur respectively
at times btac and dtbe, i.e., at least 11 time units apart. We can then invoke
Proposition 6.2 to obtain a test u ∈ execR(P ) with at least 11 tocks occurring
between these very a and b events. In other words, RJP K 2 ZR(S1).

Since, on the other hand, it is clear (again thanks to Proposition 6.2)
that for all P ∈ TCSP, FT JP K � S1 implies that RJP K � ZR(S1), we find
ourselves in the highly desirable situation of having S1-satisfiability equivalent
to ZR(S1)-satisfiability.
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This state of affairs is a particular instance of Theorem 6.10, which we
give below after introducing the necessary terminology.

For T a set of timed traces, let Z(T ) denote the subset of integral timed
traces of T , in other words those timed traces in T all of whose events occur
at integral times. For 0 6 ε 6 1, the operator [·]ε, defined in Section 3.3,
naturally extends to timed traces (as was implicit in our use of the notation
[s]ṫb above), by pointwise application to the time component of each of the
trace’s elements. We can therefore extend [·]ε further by applying it to sets
of timed traces. We then say that the set T is closed under digitisation if,
for any 0 6 ε 6 1, [T ]ε ⊆ T . On the other hand, we say that T is closed
under inverse digitisation if, whenever a timed trace s is such that [s]ε ∈ T
for all 0 6 ε 6 1, then s ∈ T .

The following result is due to Henzinger, Manna, and Pnueli [HMP92]:

Theorem 6.8 If P ⊆ TT is closed under digitisation and S ⊆ TT is closed
under inverse digitisation, then

Z(P ) ⊆ Z(S) ⇔ P ⊆ S.

The next result is a direct consequence of the digitisation lemma:

Theorem 6.9 For any program P ∈ TCSP, TTraces(FT JP K) is closed un-
der digitisation.

For any set S ⊆ TT of timed traces, it is easy to see that one can always
find a set of tests ZR(S) ⊆ TEST having the property

Z(S) = Z(TTraces(Exp(ZR(S)))).

(There will always be several choices for ZR(S); let us pick one for each
S ⊆ TT , and thus think of ZR as a function from P(TT ) to P(TEST ).)

Recall that any behavioural timed trace specification can be identified
with a set of timed traces: for S such a specification and P a TCSP program,
P � S if and only if TTraces(FT JP K) ⊆ S. Given a timed trace specification
S, let us therefore also write ZR(S) to denote the corresponding behavioural
test specification. We now give our main (timed trace) result:

Theorem 6.10 Let S = S(P ) be a behavioural timed trace specification
closed under inverse digitisation. Then, for any program P ∈ TCSP,

RJP K � ZR(S) ⇔ FT JP K � S.
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Proof (Sketch.) Let S be as above. By Theorem 6.8, we have FT JP K �
S ⇔ Z(TTraces(FT JP K)) � Z(S). Suppose that RJP K � ZR(S), and let
s ∈ Z(TTraces(FT JP K)) be an integral trace of P . We aim to show that
s ∈ Z(S). It is easy to show (by structural induction on P ) that there is some
integral execution e ∈ execTF (P ) such that e fail (s, ∅). We can then invoke
Propositions 6.1 and 6.2 to obtain a corresponding execution o ∈ execR(P )
such that o test u, where u ∈ RJP K is a test of P with the property that
s ∈ TTraces(preExp(u)). Since RJP K � ZR(S), we have u ∈ ZR(S), and
therefore s ∈ Z(S) by definition of ZR(S), remembering that s is an integral
timed trace. This establishes the left-to-right implication.

The procedure which yielded u from s can equally be carried out in the
reverse direction—we leave the details to the reader. This takes care of the
right-to-left implication and completes the proof. �

Note that the behavioural timed trace specification S1 defined earlier is
closed under inverse digitisation; an application of Theorem 6.10 therefore
immediately yields our earlier conclusion that S1-satisfiability is equivalent
to ZR(S1)-satisfiability.

Theorem 6.10 yields the following central corollary:

Corollary 6.11 Let Q ∈ TCSP be a program whose set of timed traces
TTraces(FT JQK) is closed under inverse digitisation. Then, for any program
P ∈ TCSP,

RJQK vT RJP K ⇔ FT JQK vTT FT JP K.

Proof (Sketch.) This result rests on the fact that RJQK satisfies the
crucial property Z(TTraces(FT JQK)) = Z(TTraces(Exp(RJQK))), which can
be shown using the line of reasoning offered in the proof of Theorem 6.10.
The desired conclusion then follows from Theorem 6.10. �

An interesting fact is that closure under inverse digitisation characterises
those (downward-closed) behavioural timed trace specifications3 that obey
the conclusion of Theorem 6.10, as the following proposition indicates:

Proposition 6.12 Let S = S(P ) be a downward-closed behavioural timed
trace specification which is not closed under inverse digitisation. Then there
is a program P ∈ TCSP such that RJP K � ZR(S) but FT JP K 2 S.

3It makes little sense for behavioural specifications not to be downward-closed, since
processes themselves are always downward-closed.
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Proof (Sketch.) Let the specification S be as above. There must then be
a trace tr = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 /∈ S such that, for all 0 6 ε 6 1,
[tr ]ε ∈ S. We now construct a program P with the following property: any
digitisation of a trace of FT JP K is equal to some digitisation of a prefix of tr ,
and moreover FT JP K contains the trace tr .

The idea is fairly simple: we build P in stages, by specifying increasingly
stronger restrictions on the allowable times of occurrence of the successive
events of tr . For any given index 1 6 j 6 n, the allowable times of occur-
rence of aj depend on the occurrence times of all events preceding it. These
restrictions are captured by processes Bj

i , each of which subordinates the
allowable times of occurrence of aj to the time of occurrence of ai. (We al-
low i to be 0 to also subordinate the occurence of aj to an imaginary event
a0 occurring at time 0.) Those time bounds are then combined by simply
putting the Bj

i ’s in parallel.

To illustrate the idea, consider the allowable times of the first event, a1. If
a1 has occurred at some integral time (i.e., if t1 ∈ N), then the only allowable
time for a1 is t1. Otherwise, a1 should be free to occur at any time t′1 such
that bt1c 6 t′1 6 dt1e: any digitisation of t′1 is a digitisation of t1 (although
not necessarily involving the same pivot ε). This restriction is captured by
the process B1

0 .

Consider now the allowable times of occurrence of the second event, a2.
Like a1, it must be constrained by some B2

0 specifying its ‘absolute’ allowable
times of occurrence. Moreover, it must also be constrained with respect to
t′1 (a1’s time of occurrence). For instance, if the difference between t2 and t1
(in tr) is integral, then any digitisation of tr must have a1 and a2 occurring
exactly the same number of time units apart. In case t2 − t1 is not integral,
a2 should be allowed to occur at any time t′2 such that t′2− t′1 lies in the same
integral unit interval as t2 − t1. This second restriction, captured by the
process B2

1 , ensures that any uniform digitisation of t′2 and t′1 yields the same
difference as some uniform digitisation of t2 and t1. An appropriate parallel
combination of B2

0 and B2
1 then gives us exactly the required restrictions on

a2.

This procedure can be repeated for all the events of tr . The resulting
compound process is the required P .

We now give the details of the construction. We first define processes Bj
i ,

for 0 6 i < j 6 n, as follows:
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Bj
0 = WAIT btjc ;

aj

0
� STOP <I tj ∈ N>I aj

1
� STOP for 1 6 j 6 n

Bj
i = ai −→ WAIT btj − tic ;

aj

0
� STOP <I tj − ti ∈ N>I aj

1
� STOP for 1 6 i < j 6 n.

We now recursively define processes Pk, for 1 6 k 6 n, as follows:

Pn = ||
{an}

{Bn
i | 0 6 i 6 n − 1}

Pk = ||
{ak}

{Bk
i | 0 6 i 6 k − 1} ‖

{a1,a2,...,ak}
Pk+1 for 1 6 k 6 n − 1.

(Note that the induction starts at n and moves downward to 1.)

Finally, we simply let P = P1.

The reader may wish to verify the following: tr ∈ TTraces(FT JP K), and
Z(TTraces(FT JP K)) = {[u]ε | u ≤ tr ∧ 0 6 ε 6 1}.

Since S is downward closed, it follows that RJP K � ZR(S). However,
FT JP K 2 S since tr ∈ TTraces(FT JP K), which completes the proof. �

Proposition 6.12 tells us that, insofar as verifying exclusively those (be-
havioural and downward-closed) timed trace specifications that are closed
under inverse digitisation, the trace component of representations of pro-
cesses in MR is as abstract as can be. In other words, no redundant or
irrelevant information is encapsulated within the discrete traces of processes.
Together with Theorem 6.10, this constitutes a (timed trace) full abstraction
result (with respect to the verification of specifications closed under inverse
digitisation). We will see shortly (cf. Proposition 6.18) that MR is unfortu-
nately not fully abstract in this sense when it comes to timed failures, but
discuss in Chapter 9 a proposed alternative to MR which would be. One of
the chief practical benefits of full abstraction is that, by having as simple, or
abstract, a model as possible, model checking algorithms are correspondingly
more efficient.

One may ask, on the other hand, why one should a priori choose the
criterion of closure under inverse digitisation to distinguish the specifications
that one is interested in verifying. This is certainly a good question, since
it is possible to verify specifications which are not closed under inverse digi-
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tisation, as we demonstrate below.4 Closure under inverse digitisation does
appear to be the ‘right’ level to aim for when it comes to techniques involving
discretisation, but the question certainly warrants further investigation. We
shall return to this matter later on.

In view of Theorem 6.10 and Corollary 6.11, it is clear that it would be
highly desirable to produce a procedure for deciding when a specification is
closed under inverse digitisation. Henzinger et al. offer partial results to that
effect in [HMP92], indentifying a large class of behavioural timed trace spec-
ifications which are closed under inverse digitisation. These include so-called
qualitative properties, which are specifications not incorporating timing in-
formation, as well as bounded-response and bounded-invariance properties.
Moreover, this class is closed under arbitrary intersections (corresponding
to logical conjunction). Lastly, if a set P ⊆ TT is closed under digitisa-
tion, then its complement TT − P is itself closed under inverse digitisation.
Thanks to Theorem 6.10 and Corollary 6.11, we are therefore able to verify
exactly a large class of behavioural timed trace specifications over the MTF

representations of TCSP programs.

This technique does have certain limitations. Not only does it apply
exclusively to behavioural specifications, but it does not, in general, apply
to behavioural specifications S(P ) of the form Q vTT P (for some fixed
program Q), since these are not necessarily closed under inverse digitisation,
as our next example shows. In addition, by restricting themselves to a timed
trace semantics, Henzinger et al. are unable to model nondeterminism and
handle liveness issues.5 As we shall see in Section 6.5 and also in Chapters 7
and 8, the inclusion of refusal information complicates the analysis, although
we are able to offer satisfactory extensions of Theorems 6.8, 6.9, and 6.10, as
well as Corollary 6.11.

We now turn our attention to a second example. Consider the following
behavioural timed trace specification S2: ‘The only event that may be wit-
nessed is a single communication of a, which may only occur precisely at time
n, for n ∈ N’. Note that this specification (on P ) can be expressed as the

refinement Q vTT P , where Q = ā
0
� WAIT 1 ; Q.6 The conservative trans-

4In fact, region graphs techniques [ACD90, ACD93] allow one to verify much wider-
ranging specifications than simply those closed under inverse digitisation, albeit at a cost
in complexity. This will be discussed in Chapter 9.

5This being said, the timed transition systems model featured in [HMP92] allows them
to express certain properties, such as bounded response, which could only be formulated
via liveness in the timed failures model.

6We remark that the fact that S2 only allows an a in transient form is not essential
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lation of S2 as a test specification yields the specification C(S2) = false—
not something very useful! However, other trace-based test specifications on
RJP K, such as ZR(S2) : RJQK vT RJP K, hardly seem better: in this case we
have, for example, RJāK � ZR(S2) but FT JāK 2 S2.

Naturally, this unfortunate situation has arisen because S2 is not closed
under inverse digitisation, so that Theorem 6.10 does not apply. We do
however have that RJP K 2 ZR(S2) ⇒ FT JP K 2 S2, for any P ∈ TCSP,
by a direct application of Proposition 6.2.7 As discussed earlier, the spec-
ification ZR(S2) is equivalent to a requirement on the integral traces of
P : Z(TTraces(FT JP K)) ⊆ Z(S2). A natural course of action is therefore
to strengthen this specification into a similar requirement on all the ‘half-
integral’ traces of P , namely those timed traces all of whose events occur
at times that are integral multiples of 1/2. Translated as a requirement on
tests, this specification becomes Z2

R(S2) = (Z2
R(S2))(P ) : RJ2QK vT RJ2P K.

It is an easy consequence of Lemma 6.3 that the implication RJP K 2
Z2

R(S2) ⇒ FT JP K 2 S2, for any P ∈ TCSP, continues to hold. Naturally,
Z2

R(S2)-satisfiability, on the other hand, entails ZR(S2)-satisfiability. But the
pleasant surprise is that in fact Z2

R(S2)-satisfiability entails S2-satisfiability;
in other words, for any P ∈ TCSP, FT JP K � S2 if and only if RJP K �
Z2

R(S2). (This follows from the fact that TTraces(FT J2QK) is closed under
inverse digitisation, as the reader may wish to verify.) This state of affairs, it
turns out, does not always hold. In general, given a behavioural timed trace
specification S, one can manufacture increasingly stronger test specifications
of the form Zk

R(S), each of which is (not necessarily strictly) weaker than
S. One can in fact construct examples where the desired S- and Zk

R(S)-
equivalence occurs arbitrarily late, or even not at all. In addition, in the worst
case the computational complexity of model checking a program against a
specification of the form Zk

R(S) will increase exponentially as a function of
k. This technique is therefore likely to be useful only in a restricted number
of situations.

Returning to our specification S2, it is interesting to see that there ex-
ists a behavioural test specification on RJP K which is equivalent to S2: let
ZR(S2) = (ZR(S2))(P ) be the specification RJQK vR RJP K, which differs
from ZR(S2) in that we require full test refinement instead of mere trace

refinement. (Here again Q = (ā
0
� WAIT 1) ; Q). Rather surprisingly, we

have, for any P ∈ TCSP, that P � ZR(S2) ⇒ P � S2. (The converse also

to our argument; the same effect would be achieved by setting the allowable occurrence
intervals for a to be [2n, 2n + 1] for n ∈ N.

7This implication holds for any behavioural timed trace specification S2.
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holds, but our interest primarily lies in the left-to-right implication.) Note
that P = ā, which served as counterexample in the case of ZR(S2), is not
a problem here: 〈∅, a, •〉 ∈ RJāK, whereas 〈∅, a, •〉 /∈ RJQK (although, of
course, 〈•, a, •〉 ∈ RJQK). In other words, any a that Q communicates nec-
essarily originates from an unstable state, which is not the case for ā. The
refinement RJQK vR RJāK therefore does not hold, i.e., ā 2 ZR(S2).

To see that P � ZR(S2) ⇒ P � S2, assume the contrary, and consider
a program P ∈ TCSP which violates the implication. It is not hard to see
that any such violation must have (〈(t, a)〉,ℵ) ∈ FT JP K, for some t /∈ N and
some refusal ℵ. Let e ∈ execTF (P ) be such that e fail (〈(t, a)〉,ℵ). e must
consist in random evolutions interspersed with τ -transitions, followed by an
a-transition, and then possibly further behaviour which we can freely ignore.
One first shows (by structural induction on P ) that all τ -transitions in e oc-
curring prior to the a-transition must ‘take place’ at integral times. It follows
that the a-transition must have been immediately preceded by an evolution,
which we can clearly assume to have non-zero duration. We can then invoke
the digitisation lemma to stretch this evolution into one having positive and
integral duration. The corresponding normalised execution e′ ∈ execTF (P )

is therefore of the form e′ = o_(Pn−2
1
 Pn−1

a
−→ Pn). Since Pn−2

1
 , max-

imal progress implies that Pn−2
τ

X−→. On the other hand, persistency shows
that a ∈ initTF (Pn−2). Since we know that initτ

R(Pn−2) = initτ
TF

(Pn−2), one
has an execution e′′ = o′_(Pn−2

a
−→ P ′) ∈ execR(P ). Since Pn−2

τ
X−→, i.e.,

since Pn−2 is stable, we have e′′ test û_〈∅, a, •〉 (for some test u whose trace
consists of a sequence of tock events.) Denoting this test by v, we conclude
that v ∈ RJP K, whereas, for reasons stated earlier, we cannot have v ∈ RJQK.
Hence RJQK v6 R RJP K, i.e., P 2 ZR(S2), the required contradiction.

We have shown that RJQK vR RJP K implies that FT JQK vTT FT JP K.
Since FT JQK can always refuse any set of events over any time period, we in
fact have the stronger implication RJQK vR RJP K ⇒ FT JQK vTF FT JP K.

Both implications hold with Q = (ā
0
� WAIT 1) ; Q and any P ∈ TCSP.

From this example and others, one could be led to conjecture that these impli-
cations actually hold for any pair of programs P and Q. As Proposition 6.19
of Section 6.6 shows, this is however unfortunately not the case.

The previous paragraph raises an interesting question: can one devise a
discrete model, obviously less abstract than MR, which would uncondition-
ally yield the above implications? We believe that no discretisation-based
framework could achieve this, a view partially supported by Propositions 6.12
and 6.22. We shall return to this question in Chapter 9.
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We conclude this section by mentioning that certain non-behavioural
timed trace specifications can also be handled within our framework. A very
important class of non-behavioural specifications, in particular, consists in
‘reachability’ assertions such as S3: ‘It is possible to witness the event a’. S3

can clearly be verified exactly by examining whether the MR representation
of a given process satisfies it or not. In cases where the specification contains
specific timing information, a conservative conversion may be necessary.

6.5 Timed Failure Analysis

We now turn to the question of the relationship between refusal information
in MR and refusal information in MTF .

The observations we have made in Section 6.2 concerning the process P2 =

a
1

−→ b̄ clearly show that, for any k > 1, the sets Expk(RJkP K) and FT JP K are
in general vTF -incomparable. Consequently, no soundness result extending
Theorem 6.5 can possibly exist. As discussed in Section 6.2, this is because
MR does not offer a satisfactory treatment of stability: while a process
is in an unstable state, it is difficult to extract precise and reliable refusal
information from its representation in MR. This problem is remedied with
the introduction of the discrete-time unstable refusal testing model MUR in
the next chapter, which then provides us with the timed failure soundness
result sought.

Surprisingly, we are nonetheless able to produce a quasi-completeness
result extending Theorem 6.6. We first extend the metric td to timed failures,
by letting td((s,ℵ), (s′,ℵ′)) =̂ max{td(s, s′), dH(ℵ,ℵ′)}, for (s,ℵ), (s′,ℵ′) ∈
TF ; dH(ℵ,ℵ′) =̂ max{sup

x∈ℵ
inf
y∈ℵ′

d(x, y), sup
y∈ℵ′

inf
x∈ℵ

d(x, y)} is the Hausdorff metric

on timed refusals, with d((t, a), (t′, a′)) =̂ |t − t′| provided a = a′, and is ∞
otherwise. We also stipulate that dH(∅, ∅) =̂ 0. It is then easy to see that td

makes TF into a (non-complete) metric space.

Theorem 6.13 For any P ∈ TCSP, k > 1, and (s,ℵ) ∈ Expk(RJkP K),
there exists (s′,ℵ′) ∈ FT JP K such that td((s′,ℵ′), (s,ℵ)) < 1/k.

Proof (Sketch.) The proof proceeds in a manner very similar to that of
Theorem 6.6, with refusal information now incorporated. It may be necessary
to use the downward-closedness of refusals to ‘trim’ ℵ′ to a suitable size. �
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We now present what is in our view the most important and effective
approach to extract useful information from the MR representation of pro-
cesses.

Let 0 6 ε 6 1 be given. For (s,ℵ) ∈ TF , we define the ε-digitisation of
(s,ℵ) to be [(s,ℵ)]ε =̂ ([s]ε, [ℵ]ε), where [ℵ]ε =̂

⋃
{[[bi]ε, [ei]ε)×Ai |1 6 i 6 n}

if ℵ =
⋃
{[bi, ei) × Ai | 1 6 i 6 n}8. Naturally, this definition extends to sets

of timed failures in the obvious way. We now say that a set P ⊆ TF is closed
under digitisation if, for any 0 6 ε 6 1, [P ]ε ⊆ P . On the other hand, we
say that P is closed under inverse digitisation if, whenever a timed failure
(s,ℵ) is such that [(s,ℵ)]ε ∈ P for all 0 6 ε 6 1, then (s,ℵ) ∈ P .

Theorem 6.14 For any P ∈ TCSP, FT JP K is closed under digitisation.

Proof (Sketch.) Follows easily from the digitisation lemma and the con-
gruence theorem. �

For P ⊆ TF , let Z(P ) denote the subset of integral timed failures of P , in
other words those timed failures in P consisting of an integral trace together
with a refusal all of whose tokens have integral time bounds. We can now
extend Henzinger et al.’s result (Theorem 6.8) to timed failures:

Theorem 6.15 If P ⊆ TF is closed under digitisation and S ⊆ TF is closed
under inverse digitisation, then

Z(P ) ⊆ Z(S) ⇔ P ⊆ S.

Proof The right-to-left implication is immediate (and in fact requires no
assumptions on either P or S). For the converse, assume Z(P ) ⊆ Z(S),
and let (s,ℵ) ∈ P . Since P is closed under digitisation, [(s,ℵ)]ε ∈ P for
all 0 6 ε 6 1. But since each [(s,ℵ)]ε is an integral timed failure, it must
belong to Z(P ), and hence to Z(S). Since the latter is closed under inverse
digitisation, (s,ℵ) ∈ S follows, as required. �

For any set S ⊆ TF of timed failures, it is straightforward to show that
there always exists a largest set of tests ZR(S) ⊆ TEST with the property

Z(S) = Z(Exp(ZR(S))).

8Note that this definition is independent of the particular representation of ℵ as a finite
union of refusal tokens.
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ZR therefore represents a function from P(TF ) to P(TEST ).

Recall that any behavioural timed failure specification can be identified
with a set of timed failures: for S such a specification and P a TCSP
program, P � S if and only if FT JP K ⊆ S. Given a timed failure specification
S, let us therefore also write ZR(S) to denote the corresponding behavioural
test specification. Our main result reads:

Theorem 6.16 Let S = S(P ) be a behavioural timed failure specification
closed under inverse digitisation. Then, for any program P ∈ TCSP,

RJP K � ZR(S) ⇔ FT JP K � S.

Proof The proof proceeds in a manner almost identical to that of Theo-
rem 6.10, resting on Theorem 6.15 rather than Theorem 6.8. �

This theorem allows us to handle both safety and liveness specifications
on Timed CSP processes, as long as the specifications in question are closed
under inverse digitisation. An example of how this technique can be applied
in practice will be given in Section 6.7.

Theorem 6.16 yields the following central corollary:

Corollary 6.17 Let Q ∈ TCSP be a program such that FT JQK is closed
under inverse digitisation. Then, for any program P ∈ TCSP,

RJQK vR RJP K ⇔ FT JQK vTF FT JP K.

Proof (Sketch.) This result rests on the fact that RJQK satisfies the crucial
property Z(FT JQK) = Z(Exp(RJQK)), which can be shown using the line of
reasoning offered in the proof of Theorem 6.10. (Note for the right-to-left
implication that, even though RJQK may fail to equal ZR(FT JQK), all we need
is the downward-closedness of RJQK.) The desired conclusion then follows
from Theorem 6.16. �

We remark that closure under inverse digitisation does not here char-
acterise those downward-closed behavioural timed failure specifications that
obey the conclusion of Theorem 6.16, as the following proposition shows:

Proposition 6.18 There exists a program Q ∈ TCSP with FT JQK not
closed under inverse digitisation, but such that, for any program P ∈ TCSP,
RJQK vR RJP K ⇔ FT JQK vTF FT JP K.
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Proof Recall the program Q = (ā
0
� WAIT 1) ; Q of Section 6.4. The

left-to-right implication has already been observed. The other direction is
left to the reader. �

Proposition 6.18 suggests that the model MR contains extraneous infor-
mation with respect to the goal of verifying exclusively those specifications
that are closed under inverse digitisation. However, we discuss in Chapter 9
a proposal for a simpler discrete-time model which we believe will lead to a
full abstraction result extending Proposition 6.12. As a result, it should be
possible to improve the efficiency of the model checking algorithm described
in Appendix B.

6.6 Refinement Analysis

Even though Corollaries 6.11 and 6.17 have provided us with powerful exact
verification tools, we still have no means to handle refinement-based specifi-
cations in general. The results of this section suggest that this is in fact a
very difficult goal, at least within our discretisation context.

The proof of the following proposition is based on a counterexample sug-
gested by Bill Roscoe.

Proposition 6.19 There are programs P,Q ∈ TCSP such that Q vR P
but Q v6 TF P .9

Proof We first let T = (ā
0
� WAIT 1) ; T , and then define Q = T 9 b̄

and P = (T 9 b −→ T ) ‖
{a}

ā. We now show that RJQK = RJP K but

TTraces(FT JQK) 6= TTraces(FT JP K) (which of course implies the desired re-
sult).

To see that RJQK = RJP K, note that either process may communicate,
in any order, a single a and a single b. In either process, communication of
an a necessarily occurs from an unstable state, whereas communication of a
b can always happen from a stable state in which the event a is refused.

9As also pointed out by Bill Roscoe, one can even require in addition that P and Q

be free of transient events: let R = (WAIT 1 u WAIT 2) ; ā, and define Q = R 9 b̄ and
P = (R9 b −→ (STOP u WAIT 1 ; ā)) ‖

{a}
ā. It is then easy to verify that P and Q, both

free of transient events, satisfy the statement of the proposition.
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On the other hand, the timed trace 〈(0.5, b), (1.5, a)〉 is a timed trace of
FT JP K but not of FT JQK, which concludes the proof. �

Together with Proposition 6.19, the next proposition shows that the or-
ders vR and vTF are incomparable over TCSP.10

Proposition 6.20 There are programs P,Q ∈ TCSP such that Q vTF P
but Q v6 R P .

Proof Define

P = ā u (ā 2 c̄) u ((b̄
1
� STOP) ‖

{b}
(a

1
−→ b̄))

Q = ā u (ā 2 c̄) u ((b̄
1
� STOP) ‖

{b}
((a

1
−→ b̄) 2 c̄)).

We claim that P =TF Q. To see this, observe that any distinction in P
and Q’s behaviours must originate from the third term of their respective
constructions as internal choices. In that component, either process can
communicate an a at any time, or an a at time 0 possibly followed by a b at
time 1. Note that both processes are in any case able to continuously refuse
b, since b is only available in transient form. In addition, Q can communicate
c on the empty trace, whereas P can refuse c on the empty trace. But thanks
to P ’s second term, P too can communicate a c on the empty trace while
recording any refusal Q could have, whereas thanks to Q’s first term, Q too
is able to refuse c on the empty trace and communicate a later on. Lastly, on
the trace where a happens at time 0 and b happens at time 1, both processes
are able to refuse a, b, and c throughout. They therefore have exactly the
same set of timed failures as claimed.

However, Q v6 R P , because the test 〈{c}, a, •, tock , •, b, •〉 clearly belongs
to RJP K but not to RJQK (RJQK is unable to stably refuse c, prior to com-
municating a, on any test where b is communicated later on). �

The following result offers an interesting partial converse to Proposi-
tion 6.19.

Theorem 6.21 Let P,Q ∈ TCSP, and suppose that kQ vR kP for arbi-
trarily large values of k. Then Q vTF P .

10We discuss in Chapter 9 a proposal for an alternative simpler discrete-time model
equipped with a refinement order strictly coarser than both test and timed failure refine-
ment, but nonetheless strong enough for an equivalent version of Theorem 6.16 to hold.
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Proof (Sketch.) Let (s,ℵ) ∈ FT JP K, with ℵ =
⋃n

i=1{[bi, ei)×Ai|1 6 i 6 n},
where the union is taken over non-empty sets. (The case in which ℵ itself
is empty is addressed below.) Choose k large enough so that kQ vR kP
and k · min{(|ei − bi|) | 1 6 i 6 n} > 2.11 Imitating the idea of the proofs of
Theorems 6.6 and 6.13, pick ekP ∈ execTF (kP ) such that ekP fail k(s,ℵ). Let
e′kP ∈ execTF (kP ) be the lower digitisation of ekP . There is then (s′,ℵ′) ∈
FT JP K such that e′kP fail k(s′,ℵ′) and td(k(s′,ℵ′), k(s,ℵ)) < 1, which clearly
implies that td((s′,ℵ′), (s,ℵ)) < 1/k. (If ℵ is empty, ℵ′ must be chosen empty
as well for the estimate to hold.)

Let e′′kP ∈ execTF (kP ) be the normalisation of e′kP . There is then a
corresponding execution okP ∈ execR(kP ), as per Proposition 6.2. Let u be
the ≺-maximal test of RJkP K such that okP test u. By our assumption that
kQ vR kP , we have u ∈ RJkQK. Let okQ ∈ execR(kQ) be such that okQ test
u, and let ekQ ∈ execTF (kQ) be the normal execution corresponding to okQ.
Using the fact that, for any program R, initR(R) = initTF (R), the reader will
easily verify that ekQ fail k(s′,ℵ′), and therefore that (s′,ℵ′) ∈ FT JQK.

Since this procedure can be repeated for arbitrarily large k, we get a
sequence {(s′i,ℵ

′
i)} ⊆ FT JQK such that td((s′i,ℵ

′
i), (s,ℵ)) < 1/i, for i > 1.

We finish the proof by showing that this implies that (s,ℵ) ∈ FT JQK, in
other words that the set FT JQK is a closed subset of the metric space (TF , td).
Since (s,ℵ) was an arbitrary timed failure of P , this will establish the required
refinement Q vTF P .

We proceed by structural induction on Q, over all timed failures (s,ℵ) ∈
TF . This requires letting Q range over the set TCSP of terms, together
with the introduction of suitable syntactic bindings. The inductive case for
recursion then follows via the indexed bisimulation techniques which we have
used in previous proofs, and we shall therefore be omitting those details. Se-
lect remaining cases of the structural induction (in which syntactic bindings
are omitted) are presented below.

case a −→ Q: We assume that Q satisfies the induction hypothesis (for any
timed failure). Let (s,ℵ) ∈ TF be the limit of timed failures {(si,ℵi)},
where each (si,ℵi) ∈ FT Ja −→ QK. Either s is the empty trace, in
which case the result trivially holds, or s = 〈(t, a)〉_s′, since each si

can only begin with an a. The induction hypothesis easily yields that
(s′,ℵ) − t ∈ FT JQK, and the required result follows.

11The second condition on k is necessary for our forthcoming estimate
td(k(s′,ℵ′), k(s,ℵ)) < 1 to hold, since the Hausdorff distance between an empty
set and a non-empty set is infinite.
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case Q1 ‖
B

Q2: Follows from the induction hypothesis on Q1 and Q2 and the

denotational definition of parallel composition.

case Q1 ; Q2: Let (s,ℵ) be the limit of {(si,ℵi)} ⊆ FT JQ1 ; Q2K. We can
assume that only a finite number (and hence, without loss of generality,
none) of the timed failures (si,ℵi ∪ ([0, end((si,ℵi))) × {X})) actually
belong entirely to FT JQ1K, otherwise the result follows immediately
from the induction hypothesis. We therefore have, for each i, si =
s1

i
_s2

i , where each (s1
i
_〈(ti,X)〉,ℵi |� ti ∪ ([0, ti) × {X})) ∈ FT JQ1K,

and each (s2
i ,ℵi) − ti ∈ FT JQ2K.

Note that the ti’s must be bounded, otherwise we could find arbitrar-
ily large values of i such that ti > end((s,ℵ)) + 1. Since si con-
verges to s, s2

i would eventually have to be the empty trace, and
(si,ℵi ∪ ([0, end((si,ℵi))) × {X})) would belong entirely to FT JQ1K,
contradicting our earlier assumption.

Since s is finite there must exist some division s = s1_s2 of s and some
infinite subsequence {sij} of {si} such that {s1

ij
} converges to s1.

The set {tij} is bounded, and hence has an infinite subsequence which
converges to some t, by the Bolzano-Weierstrass theorem (cf., e.g.,
[Mar74]). For ease of notation, let us assume that the sequence {tij}
itself has this property.

It then follows that the sequence {(s1
ij
_〈(tij ,X)〉,ℵij |� tij ∪ ([0, tij) ×

{X}))} converges to (s1_〈(t,X)〉,ℵ |� t ∪ ([0, t) × {X})). By the in-
duction hypothesis on Q1, we then have (s1_〈(t,X)〉,ℵ |� t ∪ ([0, t) ×
{X})) ∈ FT JQ1K.

On the other hand, we also have the sequence {(s2
ij
,ℵij)−tij} converging

to (s2,ℵ) − t, and therefore we conclude by the induction hypothesis
on Q2 that (s2,ℵ) − t ∈ FT JQ2K.

The desired result, (s,ℵ) ∈ FT JQ1 ; Q2K, then follows by the denota-
tional definition of sequential composition.

case Q \ A: This case essentially uses the same ideas as those introduced for
sequential composition, above, to handle maximal progress. No other
particular difficulties are encountered.

�

A legitimate question is whether, given a program Q, one can always find
some k such that FT JkQK is closed under inverse digitisation. This is not
the case, as the following proposition indicates. In view of Proposition 6.12,
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this means that Theorem 6.21 above is, in some sense, the sharpest possible
partial converse to Proposition 6.19, at least as far as timed trace refinement
is concerned.

Proposition 6.22 There exists a program Q ∈ TCSP such that FT JkQK is
not closed under inverse digitisation, for any k > 1.

Proof Let T = (ā
0
� WAIT 1) ; T , and let Q = (a −→ T ) 9 ā. Let

s = 〈(0.1, a), (0.2, a), (0.3, a)〉. Observe that, for any k > 1, we have (s, ∅) /∈
FT JkQK, even though every digitisation of (s, ∅) clearly belongs to FT JkQK.
FT JkQK is therefore not closed under inverse digitisation. �

It is interesting to note that sequential programs—programs in which
the parallel or interleaving operators do not figure—have the property that
P vR Q implies that kP vR kQ for any k > 1 (here both P and Q are
assumed to be sequential). This follows from the fact that for such programs
P , there is a simple, vR-monotone procedure to calculate RJkP K from RJP K.
Indeed, a sequential program is one which always ever has at most one ‘clock’
running; and moreover it is straightforward to know at any point whether
a clock is in fact running or not. Concurrent programs, on the other hand,
can have arbitrarily many clocks running simultaneously, and it seems to be
very difficult to systematically keep track of all of them at the same time.

It follows from Theorem 6.21 that, whenever P and Q are sequential
programs, one can establish that Q vTF P merely by showing that Q vR P .
This in itself is a result of relatively minor significance, since one would expect
most interesting Timed CSP processes to exhibit some form of concurrency,
but it draws one’s attention to an interesting contrast between CSP and
Timed CSP: standard untimed models for CSP, as well as extensions such as
refusal testing, have the desirable property that any process is equivalent to
a sequential one. Typically, the sequential process in question is some kind
of normal form of the original one [Ros97, Muk93]. This of course cannot
be the case for timed models, in view of Proposition 6.19 and Theorem 6.21.
In fact, [RR99] observe that the process ā 9 b̄, for example, does not have
an equivalent sequential form in their version of the timed failures model.
While this is of course true in their model, owing to the fact that every
communication of an event in a sequential process is postulated to be followed
by a small period of ‘inaction’, ā 9 b̄ = (a −→ b̄) 2 (b −→ ā) in any other
model, such as MR and MTF , which exhibits instant causality. Nonetheless,
these models still fail to admit sequential normal forms, as the following
proposition shows directly:
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Proposition 6.23 There exist TCSP programs which are not equivalent to
any sequential program, in either MR or MTF .12

Proof (Sketch.) Consider the program P = ā 9 (WAIT 1 ; b̄). Let
N ∈ TCSP be a sequential program. Show by induction on N that

1. If (〈(0.5, a)〉, [0.5, 1)×{b}) ∈ FT JNK, then (〈(0.5, a)〉, [0.5, 1.5)×{b}) ∈
FT JNK.

2. If 〈∅, a, {b}〉 ∈ RJNK, then 〈•, tock , •, a, {b}〉 ∈ RJNK.

Conclude that P 6=TF N and P 6=R N . �

6.7 Example: Railway Level Crossing

We conclude this chapter by presenting a larger verification example based
on a simplified version of the well-known railway level crossing problem
[HJL93].13

We describe in Timed CSP a closed system made up of four distinct
components: trains, travelling at bounded speeds on a stretch of rail incor-
porating a level crossing; cars, able to cross the tracks in a bounded amount
of time; a traffic light, meant to signal cars not to attempt crossing the rail-
way when a train is nearby; and a monitor, whose rôle is to signal that a
collision has happened. For simplicity we assume that only at most one train
and one car are present at any one time within the system.

Trains are modelled via the process T : in its initial state, this process
assumes that there are no trains on the tracks, and offers the event t .in.
This event represents a sensor signal which indicates that an incoming train
is at least 60s away from the crossing. When the train reaches the crossing,
the event t .on is triggered, and as soon as the train is a safe distance past
the crossing, the event t .out registers. We assume that the train takes at

12A ‘head standard form’ for Timed CSP processes has been proposed in [Sch92], and
any process in MTF can be shown equivalent to one in head standard form. Processes
in head standard form are built from unbounded nondeterministic choice, timeout, and a
generalised prefix operator.

13A ‘tock -time’ version of this problem is studied in [Ros97]; it is an interesting example
to look at as it highlights many of the differences between our approach to discrete-time
modelling and Roscoe’s, the latter being much closer to untimed CSP.
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least 20s to cross the crossing, and that the process T returns to its initial
state (allowing further trains to arrive) 1s after the event t .out is received.

The process C models the cars: initially there are no cars on the crossing,
and C offers the event c.on, subject to synchronisation with the traffic light,
indicating that a car is just about to drive onto the crossing. The car stays in
this vulnerable position for at most 10s, sending out the event c.out as soon
as it is safely on the other side. For simplicity we will make the conservative
assumption that the time taken to cross the tracks is actually exactly 10s.
In order to ensure that the car does step out immediately after this time,
however, we will later on hide the event c.out , to enforce its urgency. A new
car is allowed on the crossing 1s after the car ahead has left it.

The traffic light is green to start with, modelled by the process GL, and
becomes red as soon as a train (t .in) is detected. While it is red, the event
c.on is disabled (modelling the assumption that any car not yet on the cross-
ing obeys the red light), and is only re-enabled 1s after t .out has registered.

A collision will occur if the train enters the crossing while a car is already
there, or vice-versa; in either case this will cause the monitoring process M
to send out the catastrophic event coll .

The entire level crossing system LC is modelled as the parallel composi-
tion of these four components, with c.out hidden.

Translating this description into Timed CSP, we get:

T = t .in
60
−→ t .on

20
−→ t .out

1
−→ T

C = c.on
10
−→ c.out

1
−→ C

GL = (t .in −→ RL) 2 (c.on −→ ((t .in −→ RL)
1
� GL))

RL = t .out
1

−→ GL

M = (t .on −→ Mt) 2 (c.on −→ Mc)

Mt = (c.on −→ coll −→ STOP) 2 (t .out
1

−→ M)

Mc = (t .on −→ coll −→ STOP) 2 (c.out
1

−→ M)

LC = ((T ‖
U

(GL ‖
V

C)) ‖
W

M) \ {c.out}

where U = {t .in, t .out}, V = {c.on}, and W = {t .on, c.on, t .out , c.out}.

We would now like to prove that this system is both safe and efficient.

Safety means that no collision can ever occur. Since a useless process
such as STOP (forbidding cars from moving at all!) is clearly ‘safe’, we also
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require that our system be efficient, in the sense that it not block car traffic
any longer than it has to.

The safety condition S, on FT JLC K, is expressed thus: ‘The event coll is
never witnessed’.

S is a qualitative behavioural timed trace specification, and is therefore
closed under inverse digitisation, as seen in Section 6.4. Theorem 6.10 then
tells us that FT JLC K � S if and only RJLC K � Z(S). For model check-
ing purposes, we express the latter as the refinement RJRUN Σ−{coll}K vT

RJLC K, where Σ = {t .in, t .on, t .out , c.on, c.out , coll} represents LC ’s al-
phabet. As discussed in Section 5.4, this is equivalent to the assertion
Ψ(RUN Σ−{coll}) vT Ψ(LC ) in the prioritised version of the traces model
for CSP. Since Ψ(LC ) is clearly a finite-state process (as it only comprises
tail-recursions), this last refinement can be established using FDR.

Efficiency is slightly more complicated. If (s,ℵ) is a particular run of
the system (i.e., (s,ℵ) ∈ FT JLC K), we first determine whether a car has
entered the crossing in the last 10s (i.e., whether c.in ∈ σ(s � [end(s) −
10, end(s)] × ΣX), and then whether the event t .in has at some point been
witnessed with no subsequent t .out event. If neither eventuality is the case,
a car should be allowed on the crossing within at most 1s; in other words,
c.in /∈ ℵ − (end(s) + 1). We write this specification as E.

E is a liveness specification, i.e., a behavioural timed failure specification.
It is closed under inverse digitisation: indeed, if (s,ℵ) is a behaviour banned
by E, then so is ([s]ε, [ℵ]ε), where ε represents the fractional part of end(s).
We can therefore apply Theorem 6.16 to conclude that FT JLC K � E if and
only if RJLC K � Z(E).

Rather than express the assertion RJLC K � Z(E) mathematically, we
will write it as the refinement RJEFF K vF RJLC K, where EFF is a process
displaying all of the behaviours specified by Z(E), and vF denotes failure
refinement, the logical choice since we are exclusively interested in refusals
occurring at the end of traces.

To construct the process EFF , we reason as follows. EFF will have five
different types of states, to represent each of the different situations described
by the specification Z(E):

1. The initial state, GO , is the one in which cars are immediately allowed
onto the crossing.

2. The state TRN is reached when a train has been detected and has not
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yet exited. This state is also understood to indicate that no car is on
the crossing.

3. The indexed states CARn , for 1 6 n 6 10, represent the situation in
which a car has most recently driven onto the crossing 10 − n tocks
(representing seconds) earlier. These states also indicate that no train
is currently on the tracks.

4. To describe the situation in which both a train and a car have been
detected (in either order), we use the indexed states TCn , for 1 6 n 6
10, which have obvious meanings.

5. Lastly, to effect the transition back from one of these non-GO states
into GO , we define the state GO 1, which holds up the free passage of
cars for exactly one tock , representing the small delay it takes for the
system to settle back into its initial state after the exit of a car or a
train.

The process EFF will move from state to state in the expected way; for
example, it will move from GO to CAR10 upon communication of the c.on
event; it will move from CAR4 to CAR3 upon communication of a tock ; it will
move from TRN to GO1 upon communication of t .out ; it will stay in CAR8

upon communication of t .out (even though this is a behaviour that should
have earlier led to a collision in LC !), and so on. EFF will be so designed
as never to refuse the event c.on when in the state GO , whereas events
(apart from tocks) in all other situations will (nondeterministically) both
be refusable and acceptable, to reflect the fact that EFF ’s behaviour is as
nondeterministic as possible outside of what is prescribed by the specification
Z(E).

Without further ado, we give

GO = (c.on −→ CAR10) 2

((t .in −→ TRN ) u

(a : Σ − {c.on, t .in} −→ GO) u

STOP)

TRN = (t .out −→ GO1) u

(c.on −→ TC 10) u

(a : Σ − {t .out , c.on} −→ TRN ) u

STOP
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CARn = ((t .in −→ TC n) u

(c.on −→ CAR10) u

(a : Σ − {t .in, c.on} −→ CARn))
0
�

WAIT 1 ; (GO1 <I n = 1>I CARn−1)

TC n = ((t .out −→ CARn) u

(c.on −→ TC 10) u

(a : Σ − {t .out , c.on} −→ TC n))
0
�

WAIT 1 ; (TRN <I n = 1>I TC n−1)

GO1 = ((c.on −→ CAR10) u

(t .in −→ TRN ) u

(a : Σ − {c.on, t .in} −→ GO 1))
0
�

WAIT 1 ; GO .

We now simply set EFF = GO .

We remark that, in this construction, we have taken advantage of the fact
that EFF is intended for failure comparison, rather than test comparison.
Had this not been the case, our set of equations would have had to be slightly
more complex in order to achieve maximum nondeterminism outside of the
behaviour prescribed by Z(E).

As discussed in Section 5.4, checking whether RJEFF K vF RJLC K is
equivalent to checking whether Ψ(EFF ) vF Ψ(LC ) in the prioritised version
of the failures model for CSP. Here again, it is not difficult to see that both
the processes involved are finite-state, and therefore that the check can be
carried out on FDR.

The system LC can thus be shown to be both safe and efficient, as sur-
mised.



Chapter 7

The Discrete-Time Unstable
Refusal Testing Model

We now present an extension of the discrete-time refusal testing model MR

which is able to satisfactorily model unstable refusal information. We recall
that a process is in an unstable state if it is immediately offering silent events.
In MR, the only refusal that such a process could record was the null refusal
•. In this new model, called the discrete-time unstable refusal testing model,
denoted MUR, sequences of unstable refusals are recorded prior to reaching
stability, at which point the modelling becomes similar to that of MR. As we
shall see, the extra information provides some useful insight into a process’s
behaviour, and in particular will allow us in the next chapter to derive a
timed failure soundness result extending Theorem 6.5.

Aside from the denotational model MUR, we present a congruent opera-
tional semantics, in the same style as that associated with the model MR.

As expected, the model MUR is strictly less abstract than MR. MUR

representations of programs therefore offer greater insight into their ‘true’,
continuous-time behaviour, albeit at a significant cost in complexity (within
the denotational and operational models, and also in terms of model check-
ing). If, as we believe, the paradigm of concentrating exclusively on specifi-
cations that are closed under inverse digitisation constitutes the ‘right’ way
to exploit our general discretisation approach, then the model MUR is clearly
inferior to MR. On the other hand, the broader goal of this thesis being the
study of the relationship between continuous-time and discrete-time mod-
elling approaches to real-time concurrent systems, we would be remiss not
to investigate possible alternatives to MR, especially given the ‘inaccuracies’



7.1 Denotational Semantics 100

observed in the latter. Two further discrete-time model proposals will in fact
be briefly discussed in Chapter 9.

Proofs in this chapter are, for the most part, essentially omitted, as they
often follow the same patterns as their counterparts in Chapter 5. Our no-
tation also almost systematically either borrows from, overloads, or extends,
that used earlier. We trust this enhances the clarity of our exposition.

7.1 Denotational Semantics

We define the semantic model MUR and the associated semantic mapping
RUJ·K : TCSP −→ MUR.

The philosophy underlying the model is once again one of experimentation
and observation. Processes are black boxes equipped with labelled buttons,
together with a red light and a buzzer. This red light, when lit, indicates
potential internal activity. We are allowed to experiment with the process
while the red light is on, and record our observations as follows: if a button
does not go down when pressed upon, either individually or as part of a
group, a corresponding event or set of events is recorded as an unstable
refusal. However, since the red light is on, it is possible at any time for
the process to silently change states; we can therefore repeat the experiment
(with either the same set or a different set of buttons), and record a further
unstable refusal (assuming no button goes down), and so on. These unstable
refusals are then collated into a finite unstable refusal sequence.

At any point, it is possible, if pressed upon, for a single button to go
down, in which case the corresponding event is recorded as having occurred
in our ongoing observation of the process. A second possibility is for the
red light to go off. In that case, we conclude that the process has reached
stability, and therefore that any further refusal observed will not be subject
to change until either some other button goes down or the buzzer goes off.
Any such refusal is then recorded as a single stable refusal. Note that if a
button goes down while the red light is on, we must record the null refusal
• in lieu of a stable refusal. Lastly, a third possibility is for the buzzer to
go off, which in fact is assumed to happen regularly. This is then recorded
as the event tock . We assume that the black box is so designed as never to
allow the buzzer to go off at exactly the same time as some button is being
depressed, so that events are recorded in unambiguous linear order.

Observations therefore consist of sequences, known as tests, in which un-
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stable refusal sequences, stable refusals, and events, cycle in order. Naturally,
we require that the set of possible observations be downward-closed.

A few comments on the temporal nature of instability are in order. Con-

sider the processes P1 = ā u b̄, P2 = b̄
0
� ā, and P3 = ((c −→ (ā 2 b̄)) 2 b̄) \

c, depicted operationally below, with solid disks representing unstable states.
(We have omitted the evolutions/tock -transitions which should appear from
each stable state back to itself.)
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Let us now investigate what consequences instability would have on the
denotational modelling of these processes, with the caveat that this prelimi-
nary analysis will subsequently be revised.

In the unstable initial state P1, any unstable refusal sequence can be
recorded, since no visible events are on offer. As soon as one of the τ -
transitions is taken, however, the process is able to stabilise and offer an
appropriate stable refusal.

The situation is slightly more subtle when it comes to the second process.
In the initial state P2, the unstable refusals recorded should not normally
include the event b, since it is on offer. However, if and when the τ -transition
to state P ′

2 is taken, we see that b can be stably refused. Since we may however
fail to realise immediately that the process has indeed stabilised, it is possible
for us to then record a refusal, deemed unstable, of b. Note, however, that
while in state P2 an unstable refusal of a can be recorded, as soon as a (stable
or unstable) refusal of b is recorded, a cannot be refused any further.

The third process exhibits yet a different behaviour. In the initial state
P3, b cannot be recorded as part of an unstable refusal since it is, once again,
on offer. But when the τ -transition is taken, b can still not be (stably or
unstably) refused, which means that no refusal of b whatsoever is possible
on the empty trace.

While modelling processes along these lines is perfectly feasible, and
would in fact yield the requisite soundness result along with most of the
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other properties we have been seeking, this interpretation of instability is
more severe than need be, and has some unfortunate side-effects, such as
voiding fundamental laws like P u P = P and SKIP ; P = P .

The primary motivation for seeking an alternative treatment of instability

originates in processes such as P4 = a −→ (b̄
1
� c̄), depicted below:
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If P4 were modelled in MTF , c would be refusable for exactly one time
unit after an occurrence of a, precisely the same period during which b would
be available. To ensure that such a behaviour is appropriately ‘reflected’
when P4 is modelled in MUR, we would like to consider that the τ -transition
emerging from the unstable state P ′

4 can be slightly ‘delayed’. The problem
is that, in MR, precisely because P ′

4 is unstable, we cannot know whether
neither, either, or both events b and c are refusable from state P ′

4 or not.
And certainly, to account for the possibility of the earlier a occurring ‘just
before’ the communication of tock , we would like to be able to delay τ by a
corresponding amount, while considering that b is on offer and c is refused.
This, of course, is precisely what unstable refusal modelling allows us to do.

We are therefore led to the following proposal: whereas in MTF , as a
consequence of maximal progress and dense modelling of time, processes can
essentially only be unstable at individual, discrete instants, in MUR we would
like to allow certain unstable states to linger briefly (although no longer
than until the following tock), enabling us in the interim to collect accurate
and complete unstable refusal information. Other unstable states, such as
those arising in processes P1, P2, and P3, should instantaneously be resolved,
without giving rise to any unstable refusal information. More precisely, the
only unstable states from which we allow the collection of unstable refusal
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information should be those, such as P ′
4, arising from strictly positive prior

delays; such states are then termed robustly unstable. All other unstable
states are deemed fleetingly unstable. Thanks to this softer treatment of
instability, fundamental laws such P u P = P , SKIP ; P = SKIP , (a −→
P ) \ a = P \ a, etc., are all preserved in MUR.1

We now introduce some necessary notation. An event is an element of
ΣX

tock
. A refusal is an element of REF =̂ {•}∪P(ΣX). An unstable refusal se-

quence is a finite (possibly empty) sequence of non-• refusals, i.e., an element
of URS =̂ (P(ΣX))?; to avoid confusion, such sequences will be enclosed in
square brackets (as in [A,B,C], rather than the usual 〈A,B,C〉), and repre-
sented by lowercase Greek letters. A refusal pair is an (ordered) pair (α,A)
where α ∈ URS and A ∈ REF ; the set of all such is denoted RPAIR. A test
is an alternating finite sequence (written in the usual way) of refusal pairs
and events, of length at least 1, beginning and ending with a refusal pair.
In other words, tests are generated by the grammar T := 〈R〉 | T_〈a,R〉,
where a and R respectively stand for events and refusal pairs. The set of all
tests is denoted TESTU .

If u = 〈(α0, A0), a1, (α2, A2), . . . , ak, (αk, Ak)〉 ∈ TESTU , let trace(u) =̂
〈a1, a2, . . . , ak〉 denote the test u stripped of its refusals.

We define the infix relation ∼ on URS to be the smallest equivalence
relation such that [] ∼ [∅] and ∀(α, β ∈ URS , A ⊆ ΣX) � α_[A]_β ∼
α_α′_[A]_α′′_β, where ∀[A′] in α′_α′′ � A′ ⊆ A. In other words, two
unstable refusal sequences are deemed equivalent if we can infer from either
that the other could also have been observed. Note that ∼ preserves the _

operation.

Next, for two unstable refusal sequences α = [A1, A2, . . . , Ak] and β =
[B1, B2, . . . , Bk′ ], we set α ≺ β if there exists unstable refusal sequences
γ = [C1, C2, . . . , Ck′′ ] and δ = [D1, D2, . . . , Dk′′′ ] such that α ∼ γ, β ∼ δ,
k′′ 6 k′′′, and ∀(1 6 i 6 k′′) � Ci ⊆ Di.

We then extend ≺ to RPAIR as follows: given two refusal pairs (α,A) =
([A1, A2, . . . , Ak], A) and (β,B) = ([B1, B2, . . . , Bk′ ], B), we set (α,A) ≺
(β,B) if either A = B = • and α ≺ β, or if B 6= • and A ⊆∗ B and
α ≺ β_[B].

Lastly, we extend ≺ to TESTU by setting 〈R0, a1, R1, . . . , ak, Rk〉 ≺ 〈R′
0, a

′
1, R

′
1, . . . , a

′
k′ , Rk′〉

1Of course, we do expect MUR to distinguish more processes than MR, as a result of
the additional information it provides, but it is reassuring to know that we are able to
achieve our goals without levelling the basic algebraic landscape which MR and MTF live
in.
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if k 6 k′ and R0 ≺ R′
0 and ∀(1 6 i 6 k) � ai = a′

i ∧ Ri ≺ R′
i.

Note that this makes ≺ a preorder rather than a partial order relation,
owing to the rôle played by ∼.

Definition 7.1 The discrete-time unstable refusal testing model MUR is the
set of all P ⊆ TESTU satisfying the following axioms, where u, v ∈ TESTU ,
A ∈ REF, α ∈ URS, a ∈ ΣX

tock
, k ∈ N and for all 1 6 i 6 k, Ai ∈ REF,

αi ∈ URS, and ai ∈ ΣX—in particular, ai 6= tock.

UR1 〈([], •)〉 ∈ P

UR2 (u ∈ P ∧ v ≺ u) ⇒ v ∈ P

UR3 û_〈(α, •)〉 ∈ P ⇒ û_〈(α, ∅)〉 ∈ P

UR4 (A 6= • ∧ û_〈(α,A)〉_v̌ ∈ P ∧ û_〈(α,A), a, ([], •)〉 /∈ P ) ⇒

û_〈(α,A ∪ {a})〉_v̌ ∈ P

UR5 (A 6= • ∧ û_〈(α,A), a, ([], •)〉 ∈ P ) ⇒

û_〈(α,A), tock , ([], •), a, ([], •)〉 ∈ P

UR6 û_〈(α,A), a〉_v ∈ P ⇒ a /∈∗ A

UR7 ∀ k ∈ N � ∃n ∈ N � (u ∈ P ∧ ](trace(u) � tock) 6 k) ⇒

(]trace(u) 6 n ∧ (û_〈(α, •)〉 ∈ P ⇒ ∃α′ � α ∼ α′ ∧ ]α′ 6 n))

UR8 u_〈X〉_v ∈ P ⇒ trace(v) ≤ 〈tock〉∞

UR9 〈(α0, A0), a1, (α1, A1), . . . , ak, (αk, Ak)〉 ∈ P ⇒

∃(A′
i ∈ REF )k

i=1 � 〈(α0, A
′
0), a1, (α1, A

′
1), . . . , ak, (αk, A

′
k)〉 ∈ P ∧

∀(1 6 i 6 k) � Ai ⊆
∗ A′

i ∧ αi ≺ [|Ai|].

We give short intuitive explanations of each of these axioms; as expected,
the first eight are very closely related to the corresponding axioms of MR

and, to a looser extent, MTF .

UR1 : A basic non-emptiness condition specifying the least observation of any
process. Corresponds to Axioms R1 and TF1.

UR2 : Postulates the downward-closed nature of observations. Note that this
axiom entails that any stable refusal could also have been recorded as
an unstable one. Corresponds to Axioms R2 and TF2.

UR3 : States that all processes eventually stabilise, and moreover, that it is
always possible to reach stability before the next event (in particular
tock) occurs. One interpretation of this axiom is that divergences are
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excluded. This axiom corresponds to Axiom R3, but has no counterpart
in MTF .

UR4 : Tells us how observations can be extended. Essentially, any event that
could not have been performed must have been refusable. Corresponds
to Axioms R4 and TF3.

UR5 : States that events which can stably occur at the end of some test can-
not be prohibited from occurring after a further tock . Corresponds
to Axiom R5 of MR. MTF , as discussed where R5 was introduced,
exhibits a somewhat similar property via Axiom TF3.

UR6 : Stipulates that if an event is found to be stably refused, then it cannot
immediately thereafter be performed. Corresponds to Axiom R6 of
MR. MTF , being a dense model, cannot entertain such a concept.

UR7 : Finite variability, corresponding to Axioms R7 and TF4. However,
Axiom UR7 improves upon R7 in that it prescribes a bound on the
number of effectively distinct unstable refusals which may be recorded
within a single unstable refusal sequence. In MTF , this property is a
consequence of Axiom TF3.

UR8 : Stipulates that termination in effect ends the progress of a process.
Corresponds to Axioms R8 and TF5.

UR9 : Asserts that, prior to the occurrence of the first tock , any unstable
refusal information is redundant. This reflects the principle that robust
stability can only be achieved as a result of strictly positive prior delays;
it also justifies our claim that all ‘fundamental laws’, such as P u P =
P , involving the resolution of some choices prior to the first occurrence
of a tock , continue to hold in MUR. Naturally, Axiom UR9 has no
counterpart in either MR or MTF , since the former does not have a
notion of unstable refusal, and the latter draws no distinction between
unstable and stable refusals.

Note that, as in MR, tock may not, by definition, belong to (unstable or
stable) refusals.2 It therefore again follows that MUR processes are free of
timestops and signals, as the following proposition indicates.

2An interesting alternative could have been to allow tocks to belong to unstable refusals.
This would have yielded yet more information about processes since an observed refusal
of tock would imply instability. On the other hand, given that our avowed goal in design-
ing MUR was to obtain a satisfactory timed failure soundness result—something which
we achieve in the form of Theorem 8.1—it makes sense to stick with the more abstract
implementation.
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Proposition 7.1 Let P ∈ MUR be a process, and let w ∈ P be a test of P .
For any k > 0, we have w_〈tock, ([], ∅)〉k ∈ P .

The proof is entirely similar to that of Proposition 5.1, and is therefore
omitted.

If u = 〈(α0, A0), a1, (α2, A2), . . . , ak, (αk, Ak)〉 is a test, let refusals(u) =̂⋃k

i=0{|Ai| ∪
⋃

αi}. In other words, refusals(u) consists of the set of all events
which are at some point either stably or unstably refused in u.

Define an auxiliary function (·) ‖
B

(·) : TESTU ×TESTU −→ P(TESTU ).

Here B ⊆ ΣX and a, c ∈ Σtock . Let us write Bt = B ∪ {tock}. We proceed
inductively on both u and u′ (in defining u ‖

B

u′), using R and S to stand for

refusal pairs.

〈([A1, A2, . . . , Ak], A)〉
〈([C1, C2, . . . , Ck′ ], C)〉

‖
B

=̂ {〈([D1, D2, . . . , Dk′ ], D)〉 |

(∀(1 6 i 6 k)�

Di ⊆ (B ∩ Ai)∪

(B ∩ Ci) ∪ (Ai ∩ Ci)) ∧

(∀(k + 1 6 j 6 k′)�

Dj ⊆ (B ∩ |A|)∪

(B ∩ Cj) ∪ (|A| ∩ Cj)) ∧

D ⊆∗ (B ∩∗ A)∪∗

(B ∩∗ C)∪∗(A∩∗ C)} if 0 6 k 6 k′

=̂

{
〈([C1, C2, . . . , Ck′ ], C)〉
〈([A1, A2, . . . , Ak], A)〉

‖
B

if 0 6 k′ < k

〈R, a〉_u ‖
B

〈S〉 =̂ 〈R〉 ‖
B

〈S〉 if a ∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈a〉}(u ‖
B

〈S〉) if a /∈ Bt

〈R,X〉_u ‖
B

〈S〉 =̂ 〈R〉 ‖
B

〈S〉 if X ∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈X〉_u} if X /∈ Bt

〈R〉 ‖
B

〈S, c〉_u =̂ 〈S, c〉_u ‖
B

〈R〉

〈R〉 ‖
B

〈S,X〉_u =̂ 〈S,X〉_u ‖
B

〈R〉
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〈R, a〉_u1 ‖
B

〈S, c〉_u2 =̂ (〈R〉 ‖
B

〈S〉){〈a〉}(u1 ‖
B

u2) if a = c ∈ Bt

=̂ 〈R〉 ‖
B

〈S〉 if a, c ∈ Bt ∧ a 6= c

=̂ (〈R〉 ‖
B

〈S〉){〈c〉}

(〈R, a〉_u1 ‖
B

u2) if a ∈ Bt ∧ c /∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈a〉}

(u1 ‖
B

〈S, c〉_u2) if a /∈ Bt ∧ c ∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈a〉}

(u1 ‖
B

〈S, c〉_u2)∪

(〈R〉 ‖
B

〈S〉){〈c〉}

(〈R, a〉_u1 ‖
B

u2) if a, c /∈ Bt

〈R,X〉_u1 ‖
B

〈S,X〉_u2 =̂ (〈R〉 ‖
B

〈S〉){〈X〉_u1}

〈R,X〉_u1 ‖
B

〈S, c〉_u2 =̂ 〈R〉 ‖
B

〈S〉 if X ∈ Bt ∧ c ∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈c〉}

(〈R,X〉_u1 ‖
B

u2) if X ∈ Bt ∧ c /∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈X〉_u1} if X /∈ Bt ∧ c ∈ Bt

=̂ (〈R〉 ‖
B

〈S〉){〈X〉_u1}∪

(〈R〉 ‖
B

〈S〉){〈c〉}

(〈R,X〉_u1 ‖
B

u2) if X /∈ Bt ∧ c /∈ Bt

〈R, a〉_u1 ‖
B

〈S,X〉_u2 =̂ 〈S,X〉_u2 ‖
B

〈R, a〉_u1.

Likewise, we define the auxiliary function (·)9(·) : TESTU ×TESTU −→
P(TESTU ). Here a, c ∈ Σ. We proceed in a manner similar to the above:
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〈([A1, A2, . . . , Ak], A)〉
〈([C1, C2, . . . , Ck′ ], C)〉

9 =̂ {〈([D1, D2, . . . , Dk′ ], D)〉 |

(∀(1 6 i 6 k)�

Di ⊆ Ai ∩ Ci) ∧

(∀(k + 1 6 j 6 k′)�

Dj ⊆ |A| ∩ Cj) ∧

D ⊆∗ A∩∗ C} if 0 6 k 6 k′

=̂

{
〈([C1, C2, . . . , Ck′ ], C)〉
〈([A1, A2, . . . , Ak], A)〉

9 if 0 6 k′ < k

〈R, a〉_u 9 〈S〉 =̂ (〈R〉 9 〈S〉){〈a〉}(u 9 〈S〉)

〈R,X〉_u 9 〈S〉 =̂ (〈R〉 9 〈S〉){〈X〉_u}

〈R, tock〉_u 9 〈S〉 =̂ 〈R〉 9 〈S〉

〈R〉 9 〈S, c〉_u =̂ 〈S, c〉_u 9 〈R〉

〈R〉 9 〈S,X〉_u =̂ 〈S,X〉_u 9 〈R〉

〈R〉 9 〈S, tock〉_u =̂ 〈S, tock〉_u 9 〈R〉

〈R, a〉_u1 9 〈S, c〉_u2 =̂ (〈R〉 9 〈S〉){〈a〉}

(u1 9 〈S, c〉_u2)∪

(〈R〉 9 〈S〉){〈c〉}

(〈R, a〉_u1 9 u2)

〈R, a〉_u1 9 〈S,X〉_u2 =̂ (〈R〉 9 〈S〉){〈a〉}

(u1 9 〈S,X〉_u2)∪

(〈R〉 9 〈S〉){〈X〉_u2}

〈R, a〉_u1 9 〈S, tock〉_u2 =̂ (〈R〉 9 〈S〉){〈a〉}

(u1 9 〈S, tock〉_u2)

〈R,X〉_u1 9 〈S,X〉_u2 =̂ (〈R〉 9 〈S〉){〈X〉_u1}

〈R,X〉_u1 9 〈S, tock〉_u2 =̂ (〈R〉 9 〈S〉){〈X〉_u1}

〈R, tock〉_u1 9 〈S, tock〉_u2 =̂ (〈R〉 9 〈S〉){〈tock〉}(u1 9 u2)

〈R,X〉_u1 9 〈S, c〉_u2 =̂ 〈S, c〉_u2 9 〈R,X〉_u1

〈R, tock〉_u1 9 〈S, c〉_u2 =̂ 〈S, c〉_u2 9 〈R, tock〉_u1

〈R, tock〉_u1 9 〈S,X〉_u2 =̂ 〈S,X〉_u2 9 〈R, tock〉_u1.

We now aim to define a hiding operator on tests; to this end we first
define it on unstable refusal sequences:
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[] \ A =̂ []

([B]_β) \ A =̂ [B]_(β \ A) if A ⊆ B

=̂ [∅]_(β \ A) if A * B.

Next, we define the following glueing operator, which pastes an unstable
refusal sequence to the left of a test:

β glue 〈(α0, A0), a1, (α1, A1), . . . , ak, (αk, Ak)〉 =̂

〈(β_α0, A0), a1, (α1, A1), . . . , ak, (αk, Ak)〉.

Finally,

〈(β,B)〉 \ A =̂ 〈(β \ A,B)〉 if A ⊆ B

=̂ 〈(β \ A, •)〉 if A * B

(〈(β,B), a〉_u) \ A =̂ (β \ A) glue (u \ A) if a ∈ A

=̂ (〈(β,B)〉 \ A)_〈a〉_(u \ A) if a /∈ A.

Let A ⊆ ΣX. A test u is A-urgent if, whenever 〈(α,B), tock〉 in u, then
A ⊆ B. If A = {a} is a singleton, we write a-urgent instead of {a}-urgent.

We define a function RefCl : TESTU −→ P(TESTU ), as follows. For u
a test, we let v ∈ RefCl(u) if v ≺ u ∧ trace(v) = trace(u). We extend the
definition of RefCl to sets of tests by setting, for P ⊆ TESTU , RefCl(P ) =̂⋃
{RefCl(u) | u ∈ P}.

If f : Σ −→ Σ is a renaming function and β = [B1, B2, . . . , Bl] ∈
URS , we let f(β) =̂ [f(B1), f(B2), . . . , f(Bl)], where f(X) is defined to
be X. Next, for (β,B) ∈ RPAIR, we let f(β,B) =̂ (f(β), f(B)), where
f(•) =̂ •. Lastly, if u = 〈R0, a1, R1, . . . , ak, Rk〉 ∈ TESTU , we define
f(u) =̂ 〈f(R0), f(a1), f(R1), . . . , f(ak), f(Rk)〉, where f(tock) =̂ tock .

Semantic bindings are functions ρ : VAR −→ MUR. We have the usual
substitution operations on bindings, such as ρ[X := P ] (with X ∈ VAR,
P ∈ MUR), etc.

For F : MUR −→ MUR, we let fix(F ) denote the unique fixed point of F .
Should such a thing not exist, we let fix(F ) denote an arbitrary, but fixed,
element of MUR.

We now define the function RUJ·K inductively over the structure of Timed
CSP terms.
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RUJSTOPKρ =̂ {u | trace(u) ≤ 〈tock〉∞}

RUJSKIPKρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ X /∈ refusals(u)}∪

{u_〈X〉_v | trace(u) ≤ 〈tock〉∞ ∧

X /∈ refusals(u) ∧ trace(v) ≤ 〈tock〉∞}

RUJWAIT 0Kρ =̂ RUJSKIPKρ

RUJWAIT nKρ =̂ {u | 0 6 k < n ∧ trace(u) = 〈tock〉k}∪

(n > 1) {û_〈(α,A)〉_v̌ | trace(u) = 〈tock〉n ∧

trace(v) ≤ 〈tock〉∞ ∧ X /∈∗ A ∧

X /∈ refusals(v)}∪

{û_〈(α,A)〉_v̌_〈X〉_w | trace(u) = 〈tock〉n ∧

trace(v) ≤ 〈tock〉∞ ∧ X /∈∗ A ∧ X /∈ refusals(v) ∧

trace(w) ≤ 〈tock〉∞}

RUJP1

0
� P2Kρ =̂ {〈([], •)〉_ǔ | 〈tock〉 � trace(u) ∧ u ∈ RUJP1Kρ}∪

RUJP2Kρ

RUJP1

n
� P2Kρ =̂ {u | 〈tock〉n � trace(u) ∧ u ∈ RUJP1Kρ}∪

(n > 1) {û_〈(α, •)〉_v̌ | trace(u) = 〈tock〉n ∧

〈tock〉 � trace(v) ∧ û_〈(α, •)〉_v̌ ∈ RUJP1Kρ}∪

{û_〈(α_β,A)〉_v̌ | trace(u) = 〈tock〉n ∧

û_〈(α, •)〉 ∈ RUJP1Kρ ∧ 〈(β,A)〉_v̌ ∈ RUJP2Kρ}

RUJa −→ P Kρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ a /∈ refusals(u)}∪

{u_〈a〉_v | trace(u) ≤ 〈tock〉∞ ∧

a /∈ refusals(u) ∧ v ∈ RUJP Kρ}

RUJa : A −→ P (a)Kρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧ A ∩ refusals(u) = ∅}∪

{u_〈a〉_v | a ∈ A ∧ trace(u) ≤ 〈tock〉∞ ∧

A ∩ refusals(u) = ∅ ∧ v ∈ RUJP (a)Kρ}

RUJP1 2 P2Kρ =̂ {u | trace(u) ≤ 〈tock〉∞ ∧

u ∈ RUJP1Kρ ∩RUJP2Kρ}∪

{u_〈a〉_v | trace(u) ≤ 〈tock〉∞ ∧ a 6= tock ∧

u_〈a〉_v ∈ RUJP1Kρ ∪RUJP2Kρ ∧

u ∈ RUJP1Kρ ∩RUJP2Kρ}

RUJP1 u P2Kρ =̂ RUJP1Kρ ∪RUJP2Kρ

RUJP1 ‖
B

P2Kρ =̂ {u | ∃u1, u2 � u ∈ u1 ‖
B

u2 ∧

u1 ∈ RUJP1Kρ ∧ u2 ∈ RUJP2Kρ}
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RUJP1 9 P2Kρ =̂ {u | ∃u1, u2 � u ∈ u1 9 u2 ∧

u1 ∈ RUJP1Kρ ∧ u2 ∈ RUJP2Kρ}

RUJP1 ; P2Kρ =̂ RefCl({u \ X | trace(u) � X = 〈〉 ∧

u is X-urgent ∧ u ∈ RUJP1Kρ})∪

RefCl({ ̂(u1 \ X)_u2 | trace(u1) � X = 〈〉 ∧

u1 is X-urgent ∧ u1
_〈X, ([], •)〉 ∈ RUJP1Kρ ∧

u2 ∈ RUJP2Kρ})

RUJP \ AKρ =̂ RefCl({u \ A | u is A-urgent ∧ u ∈ RUJP Kρ})

RUJf−1(P )Kρ =̂ {u | f(u) ∈ RUJP Kρ}

RUJf(P )Kρ =̂ {〈R0, f(a1), R1, . . . , f(ak), Rk〉 | k > 0 ∧

〈f−1(R0), a1, f
−1(R1), . . . , ak, f

−1(Rk)〉 ∈

RUJP Kρ}

RUJXKρ =̂ ρ(X)

RUJµX � P Kρ =̂ fix(λx.RUJP K(ρ[X := x])).

Proposition 7.2 For any term P ∈ TCSP, and any semantic binding ρ,
RUJP Kρ ∈ MUR. Moreover, if P is a TCSP program, then RUJP Kρ =
RUJP Kρ′ for any semantic binding ρ′.

Proof (Sketch.) The proof of the first part, by structural induction on
P , proceeds in almost identical manner as in the case of MR, since the
Axioms UR1–UR8 are very similar to Axioms R1–R8. Axiom UR9, on the
other hand, poses no difficulties whatsoever. The only part worth examining
is the case of unstable refusals in Axiom UR7 (finite variability), in the
context of parallel composition and hiding. The result follows from the fact
that both these operators preserve the ∼ relation when specialised to unstable
refusal sequences. �

The proof of the next proposition can be adapted almost verbatim from
the corresponding results in MR; a complete ultrametric d is defined on
MUR, TCSP terms correspond to non-expanding functions, and terms which
are time-guarded correspond to contractions. We omit the details.

Proposition 7.3 Recursions have unique fixed points in MUR.

Let us make the connection between MUR and MR more explicit. We
need to define a projection mapping Π : TESTU −→ TEST by dropping
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all unstable refusals, as follows: Π(〈(α0, A0), a1, (α1, A1), . . . , ak, (αk, Ak)〉) =̂
〈A0, a1, A1, . . . , ak, Ak〉. Π extends naturally to sets of tests.

Proposition 7.4 For any P ∈ MUR, Π(P ) ∈ MR. Moreover, Π is non-
expanding (hence continuous). Lastly, for P ∈ TCSP, Π(RUJP K) = RJP K.

Proof (Sketch.) The first part follows trivially from Axioms UR1–UR8.
The second part is clear, whereas the third part is easily shown by structural
induction. �

As expected, however, MUR distinguishes strictly more programs than
MR.

Proposition 7.5 There exist programs P,Q ∈ TCSP such that RUJP K 6=
RUJQK but RJP K = RJQK.

Proof Consider P = (ā 2 b̄)
1
� STOP and Q = (ā

1
� STOP) 2

(b̄
1
� STOP). A simple inspection reveals that RJP K = RJQK. But if

u = 〈([], •), tock , ([{b}], •), a, ([], •)〉, it is easy to see that u ∈ RUJQK yet
u /∈ RUJP K. �

7.2 Operational Semantics

We now present an operational semantics and show it to be congruent to the
denotational semantics of the previous section. Once again, the format is
very similar to that of Section 5.2.

In order to capture operationally the twin notions of fleeting and robust
stability, we need to introduce two different kinds of silent events: τ will
stand for ‘fleeting’ silent events, i.e., those which cannot be delayed at all,
whereas τ ∗ will stand for ‘robust’ silent events, allowed to remain on offer
until just before the following tock . The availability of either event makes
a state unstable, fleetingly in the case of τ , robustly in the case of τ ∗. We
use ‘variables’ ? and ¿ to uniformly denote the presence or absence of the
superscript ∗ on select objects appearing in a given equation. Thus τ ?, for
instance, can stand for either τ or τ ∗, the choice being uniform over the
equation in which it appears.
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We also need to define fleeting and robust versions of the nodes WAIT 0

and P1

0
� P2. Thus WAIT 0 and P1

0
� P2 will stand for the fleetingly

stable versions of these nodes, identified with the programs by the same

syntax, whereas WAIT ∗ 0 and P1

0
�

∗ P2 will denote their robustly stable
counterparts. Naturally, we will have, for example, WAIT 0

τ
−→ SKIP and

WAIT ∗ 0
τ∗

−→ SKIP , which we express more concisely as WAIT ? 0
τ?

−→
SKIP . In order to ease the syntax, we will also carry in general the nodes

WAIT n, WAIT ∗ n, P1

n
� P2, and P1

n
�

∗ P2.

Thus our set NODEUR of (open) nodes is generated by Timed CSP syntax
together with the above additions, and without any well-timedness require-
ments. NODEUR naturally represents the subset of (closed) nodes. As usual,
these sets are abbreviated NODE and NODE if no confusion is likely. The
remainder of our conventions on Timed CSP, as listed in Section 2.1, apply.
We again insist that our inference rules only apply to closed nodes.

Other notational conventions are very similar to those of Section 5.2: a
and b represent visible non-tock event, i.e., member of ΣX. µ can be a visible
non-tock event or a silent one (µ ∈ ΣX ∪{τ, τ ∗}), and x can be a µ or a tock .
P

x
−→ P ′ means that the node P can perform an immediate x-transition, and

become P ′ (communicating x in the process if x is a visible event). P
x

X−→
means that P cannot possibly do an x.

The transition rules are as follows:

STOP
tock
−→ STOP

(7.1)

SKIP
tock
−→ SKIP

(7.2)

SKIP
X

−→ STOP
(7.3)

WAIT ? n
tock
−→ WAIT ∗ (n − 1)

[ n > 1 ] (7.4)



7.2 Operational Semantics 114

WAIT ? 0
τ?

−→ SKIP
(7.5)

P1
tock
−→ P ′

1

P1

n
�

? P2
tock
−→ P ′

1

n−1
�

∗ P2

[ n > 1 ] (7.6)

P1

0
�

? P2
τ?

−→ P2

(7.7)

P1
τ?

−→ P ′
1

P1

n
�

¿ P2
τ?

−→ P ′
1

n
�

¿ P2

(7.8)

P1
a

−→ P ′
1

P1

n
�

? P2
a

−→ P ′
1

(7.9)

(a −→ P )
tock
−→ (a −→ P )

(7.10)

(a −→ P )
a

−→ P
(7.11)

(a : A −→ P (a))
tock
−→ (a : A −→ P (a))

(7.12)

(a : A −→ P (a))
b

−→ P (b)
[ b ∈ A ] (7.13)

P1
tock
−→ P ′

1 P2
tock
−→ P ′

2

P1 2 P2
tock
−→ P ′

1 2 P ′
2

(7.14)
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P1
τ?

−→ P ′
1

P1 2 P2
τ?

−→ P ′
1 2 P2

P2
τ?

−→ P ′
2

P1 2 P2
τ?

−→ P1 2 P ′
2

(7.15)

P1
a

−→ P ′
1

P1 2 P2
a

−→ P ′
1

P2
a

−→ P ′
2

P1 2 P2
a

−→ P ′
2

(7.16)

P1 u P2
τ

−→ P1 P1 u P2
τ

−→ P2

(7.17)

P1
tock
−→ P ′

1 P2
tock
−→ P ′

2

P1 ‖
B

P2
tock
−→ P ′

1
‖
B

P ′
2

(7.18)

P1
µ

−→ P ′
1

P1 ‖
B

P2
µ

−→ P ′
1 ‖

B

P2

[ µ /∈ B, µ 6= X ] (7.19a)

P2
µ

−→ P ′
2

P1 ‖
B

P2
µ

−→ P1 ‖
B

P ′
2

[ µ /∈ B, µ 6= X ] (7.19b)

P1
a

−→ P ′
1 P2

a
−→ P ′

2

P1 ‖
B

P2
a

−→ P ′
1 ‖

B

P ′
2

[ a ∈ B ] (7.20)

P1
X

−→ P ′
1

P1 ‖
B

P2
X

−→ P ′
1

[X /∈ B ]
P2

X
−→ P ′

2

P1 ‖
B

P2
X

−→ P ′
2

[X /∈ B ] (7.21)

P1
tock
−→ P ′

1 P2
tock
−→ P ′

2

P1 9 P2
tock
−→ P ′

1 9 P ′
2

(7.22)

P1
µ

−→ P ′
1

P1 9 P2
µ

−→ P ′
1 9 P2

[ µ 6= X ] (7.23a)
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P2
µ

−→ P ′
2

P1 9 P2
µ

−→ P1 9 P ′
2

[ µ 6= X ] (7.23b)

P1
X

−→ P ′
1

P1 9 P2
X

−→ P ′
1

P2
X

−→ P ′
2

P1 9 P2
X

−→ P ′
2

(7.24)

P1
tock
−→ P ′

1 P1
X

X−→

P1 ; P2
tock
−→ P ′

1 ; P2

(7.25)

P1
X

−→ P ′
1

P1 ; P2
τ

−→ P2

(7.26)

P1
µ

−→ P ′
1

P1 ; P2
µ

−→ P ′
1 ; P2

[ µ 6= X ] (7.27)

P
tock
−→ P ′ ∀ a ∈ A � P

a
X−→

P \ A
tock
−→ P ′ \ A

(7.28)

P
a

−→ P ′

P \ A
τ

−→ P ′ \ A
[ a ∈ A ] (7.29)

P
µ

−→ P ′

P \ A
µ

−→ P ′ \ A
[ µ /∈ A ] (7.30)

P
tock
−→ P ′

f−1(P )
tock
−→ f−1(P ′)

(7.31)

P
µ

−→ P ′

f−1(P )
µ

−→ f−1(P ′)
[ µ ∈ {τ, τ ∗,X} ] (7.32)
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P
f(a)
−→ P ′

f−1(P )
a

−→ f−1(P ′)
(7.33)

P
tock
−→ P ′

f(P )
tock
−→ f(P ′)

(7.34)

P
µ

−→ P ′

f(P )
µ

−→ f(P ′)
[ µ ∈ {τ, τ ∗,X} ] (7.35)

P
a

−→ P ′

f(P )
f(a)
−→ f(P ′)

(7.36)

µX � P
τ

−→ P [(µX � P )/X].
(7.37)

The remark made in Section 3.2 concerning negative premisses (appearing
in Rules 7.25 and 7.28) applies here as well.

Note once again the one-to-one correspondence between these rules and
those associated with the operational semantics for MR and MTF .

The operational semantics enjoys a number of properties, which we list
after the following definitions.

If P is a closed node, we define initτ
UR

(P ) (initτ (P ) for short) to be the
set of visible non-tock and silent events that P can immediately perform:

initτ
UR

(P ) =̂ {µ ∈ ΣX ∪ {τ, τ ∗} | P
µ

−→}. We also write initUR(P ) to rep-
resent the set of non-tock visible events that P can immediately perform:
initUR(P ) =̂ initτ

UR
(P ) ∩ ΣX.

For P a closed node, we define an execution of P to be a sequence e =
P0

x1−→ P1
x2−→ . . .

xn−→ Pn (with n > 0), where P0 ≡ P , the Pi’s are nodes,

and each transition Pi

xi+1
−→ Pi+1 in e is validly allowed by the operational

inference Rules 7.1–7.37. Here we have each xi ∈ ΣX
tock

∪ {τ, τ ∗}. The set of
executions of P is written execUR(P ), or exec(P ) for short when no confusion
is likely.

For P a closed node, the P -rooted graph, or labelled transition system,
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incorporating all of P ’s possible executions is denoted LTSUR(P ), or LTS(P )
if no confusion is likely.

If tr = 〈x1, x2, . . . , xn〉 is a τ ?-trace (i.e., tr ∈ (ΣX
tock

∪{τ, τ ∗})?), we write

P
tr

=⇒ P ′ to mean that there is some execution P0
x1−→ P1

x2−→ . . .
xn−→ Pn of

P , with P ≡ P0 and P ′ ≡ Pn, which communicates the τ ?-trace tr . P
tr

=⇒

means that there is some node P ′ such that P
tr

=⇒ P ′, and P
〈〉

=⇒ P simply
represents the trivial execution P ∈ exec(P ).

Structural induction proofs proceed here exactly as they did in Sec-
tion 5.2. In particular, the bisimulation techniques which we have developed
carry over seamlessly. We therefore now list a number of results, the proofs
of which are left to the conscientious reader.

The following propositions are universally quantified over P, P ′, P ′′, which
represent closed nodes; we are also using n,m, k, k′ to represent natural num-
bers, etc.

Proposition 7.6 Time determinacy:

(P
tock
−→ P ′ ∧ P

tock
−→ P ′′) ⇒ P ′ ≡ P ′′.

Of course, this result extends to an arbitrary number of tocks.

Proposition 7.7 Persistency—the set of possible initial visible events re-
mains constant under the occurrence of tocks:

P
tock
−→ P ′ ⇒ init(P ) = init(P ′).

Proposition 7.8 Maximal progress, or τ -urgency:

P
τ?

−→ ⇒ P
tock
X−→.

Corollary 7.9

(P
〈tock〉n

=⇒ P ′ τ?

−→ ∧ P
〈tock〉m

=⇒ P ′′ τ¿

−→) ⇒ n = m.

Proposition 7.10 A node P can always perform a sequence of tocks up to
the point of the next τ ? action, or up to any point if no τ ? action lies ahead:

∀ k > 1 � (@ P ′ � P
〈tock〉k

=⇒ P ′) ⇒ ∃ k′ < k, P ′′ � P
〈tock〉k

′

=⇒ P ′′ τ?

−→).

In fact, τ ? = τ ∗ in the above unless k′ = 0, as the next proposition shows.
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Proposition 7.11 A state immediately reachable via a tock-transition can-
not be fleetingly unstable:

P
tock
−→ P ′ ⇒ P ′ τ

X−→.

Proposition 7.12 Finite variability—a program P ∈ TCSP cannot per-
form unboundedly many actions within a finite number of tocks:

∀ k > 0 � ∃n = n(P, k) � ∀ tr ∈ (ΣX
tock

∪ {τ, τ ∗})?�

(P
tr

=⇒ ∧ ](tr � tock) 6 k) ⇒ ]tr 6 n.

Note also that this formulation of finite variability implies Axiom UR7,
via Theorem 7.13 below.

For A ∈ REF , we write P ref A if A = • ∨ (P
τ?

X−→ ∧ |A| ∩ init(P ) = ∅).
We overload this notation by writing, for α ∈ URS , P ref α if

⋃
{A | [A] in

α} = ∅ ∨ (P
τ

X−→ ∧
⋃
{A | [A] in α} ∩ init(P ) = ∅). Finally, for (α,A) ∈

RPAIR, we write P ref (α,A) if P ref α ∧ P ref A.

Any execution of a program P gives rise to a set of tests in a manner
consistent with our understanding of instability. In detail, letting e be an
execution of P and u a test, we define inductively the relation e testU u by
induction on e:

P testU 〈(α,A)〉 ⇔ P ref (α,A)

(P
τ

−→)_e′ testU u ⇔ e′ testU u

(P
τ∗

−→)_e′ testU α glue u ⇔ P ref α ∧ e′ testU u

(P
x

−→)_e′ testU 〈(α,A), x〉_u′ ⇔ x 6= τ ? ∧ P ref (α,A) ∧ e′ testU u′.

We can now define the function ΦUR, which extracts the denotational
representation of a program from its set of executions.

Definition 7.2 For P ∈ NODER, we set

ΦUR(P ) =̂ {u | ∃ e ∈ execUR(P ) � e testU u}.

The chief congruence result now reads:

Theorem 7.13 For any TCSP program P , we have

ΦUR(P ) = RUJP K.

The proof, while requiring a little more bookkeeping, follows the same
pattern as that of Theorem 5.14, and is therefore omitted.
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7.3 Refinement, Specification, Verification

Let us conclude this chapter by saying a few words about specification sat-
isfiability and verification. Much of our discussion on this topic in the case
of MR could be lifted directly to MUR, and it therefore seems unnecessary
to reproduce it here in great detail.

The nondeterministic refinement order can be defined on P(TESTU ) in
the expected manner:

Definition 7.3 For P,Q ⊆ TESTU (and in particular for P,Q ∈ MUR),
we let P vUR Q if P ⊇ Q. For P,Q ∈ TCSP, we write P vUR Q to mean
RUJP K vUR RUJQK, and P =UR Q to mean RUJP K = RUJQK.

We may drop the subscripts and write simply P v Q, P = Q whenever the
context is clear.

This partial order naturally satisfies

P v Q ⇔ P u Q = P.

Specifications, of course, are assertions about processes, and behavioural
specifications, such as process refinement, are specifications that are univer-
sally quantified in the behaviours of the process. Behavioural specifications
can be identified with sets of tests, with a process meeting the specification if
it is a subset of it. Note that if a behavioural specification does not concern
unstable refusals, Proposition 7.4 implies that it can simply be verified in
MR.

Although we have not fully verified this, we strongly suspect, and will
presume, that MUR can be embedded into a domain in the same manner as
MR, by dropping Axiom UR7. Consequently, a large class of behavioural
specifications should be expressible as refinements; moreover, these should
be model checkable via the operational semantics using the algorithmic tech-
niques which we describe in Appendix B.



Chapter 8

Timed Analysis (II)

We revisit some of the analysis carried out earlier in Chapter 6, and show
that MUR does circumvent, as claimed, certain of the problems we encoun-
tered earlier. We concentrate exclusively on timed failure soundness, since
completeness, as well as the verification of specifications closed under inverse
digitisation, were shown to be adequately handled within MR.

The main result of this chapter, Theorem 8.1, is interesting and valuable
in that it confirms that refining timing granularity does lead to increasingly
and arbitrarily precise approximations of true continuous-time process be-
haviour. This result does however come at a significant expense in modelling
and algorithmic complexity and is likely to be less useful than the other
verification techniques described in Chapter 6.

8.1 Timed Denotational Expansion

We first define a timed denotational expansion function Expk : MUR −→
P(TF ) which extends Chapter 6’s version of Expk in a manner consistent
with unstable refusal information.

The construction goes as follows. Let P ∈ MUR and let the test u =
〈(α0, A0), a1, (α1, A1), a2, . . . , an, (αn, An)〉 belong to RUJP K. Let us write
each αi as αi = [A1

i , A
2
i , . . . , A

ki

i ]. We first define preExpk(u) to be the set of
timed failures (s,ℵ) ∈ TF satisfying the following:
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∃(tji ∈ R+ | 0 6 i 6 n ∧ 0 6 j 6 ki), t
0
n+1 ∈ R+�

t00 = 0 ∧ t0n+1 = (1 + ](〈a1, a2, . . . , ai〉 � tock))/k ∧

(∀(i, j, l,m) � tj
i 6 tmi+l ⇔ l > 0 ∨ (l = 0 ∧ m > j)) ∧ tkn

n < t0n+1 ∧

s = 〈(t1, a1), (t2, a2), . . . , (tn, an)〉 \ tock ∧

(∀(1 6 i 6 n)�

ai = tock ⇒ (t0i = ](〈a1, a2, . . . , ai〉 � tock)/k ∧ t
ki−1

i−1 6= t0i )) ∧

ℵ ⊆
n⋃

i=0

{
ki−1⋃

j=0

{[tji , t
j+1
i ) × Aj+1

i } ∪ [tki

i , t0i+1) × |Ai|}.

We can now give

Definition 8.1 For any P ∈ MUR and k > 1, we define the timed denota-
tional expansion Expk(P ) of P to be

Expk(P ) =̂
⋃

{preExpk(u) | u ∈ P}.

(We will usually omit the subscript k when it is equal to 1.)

Note that the null refusal • is still treated as the empty refusal set.

8.2 Timed Failure Soundness

The timing inaccuracies pertaining to traces which we observed in Section 6.2
naturally persist in the current setting. However, the problems having to do
with under-refusing events—which had ruled out any timed failure soundness
result—have now vanished, thanks to unstable refusal information. As an
illustration, consider once more the program

P = a
1

−→ b̄.

We had observed that on the timed trace (0.7, a), the timed denotational
expansion of RJP K was incapable of refusing b past time 1. However, the sit-
uation is different with the timed denotational expansion of RUJP K: after the
first tock , a τ ∗-transition is on offer, while b is robustly refused. Exp(RUJP K)
will therefore have the behaviours (〈(0.7, a)〉, [0, t)), for all t < 2. (Note,
however, that t is not allowed to equal 2, since the τ ∗-transition must occur
strictly before the second tock .) These behaviours certainly cover the timed
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failure (〈(0.7, a)〉, [0, 1.7)) ∈ FT JP K. And the corresponding test in RUJP K is
simply 〈([], {b}), a, ([], {b}), tock , ([{b}], •)〉.

This situation is captured in general in Theorem 8.1, which we present
after the following preliminaries.

Recall how the operational semantics for MUR is derived from the op-
erational semantics for MR in such a way as to allow us to ‘keep track’ of
whether nodes are in fleeting or robust states of instability (or, of course,
in neither). This information is then encapsulated, respectively, in whether
a node can perform τ -transitions or τ ∗-transitions (or neither). Naturally,
the operational semantics for MTF can be altered in exactly the same way,
by adopting precisely the same conventions as to the communications of τ ?

events as the operational semantics for MUR. Let us consider such an altered
operational semantics for the remainder of this section.

One can then establish an analogue of Proposition 7.11, to the effect
that any state immediately reachable via an evolution cannot be fleetingly
unstable: for P, P ′ ∈ NODETF and t > 0,

P
t
 P ′ ⇒ P ′ τ

X−→.

The proof is a simple structural induction on P .

We have commented earlier how operational inference Rules 7.1–7.37 are
in one-to-one correspondence with Rules 3.1–3.37. This naturally leads to
a one-to-one correspondence between MUR-executions and normal MTF -
executions. More precisely, this bijection takes a normal execution e =
P0

z17−→ P1
z27−→ . . .

zn7−→ Pn ∈ execTF (P ) to the execution e′ = P0
x1−→

P1
x2−→ . . .

xn−→ Pn ∈ execUR(P ), such that, for all 1 6 i 6 n, xi = tock when
zi7−→ =

1
 , and xi = µ when

zi7−→ =
µ

−→ (where µ ∈ ΣX ∪ {τ, τ ∗}).

Of course, we have, for any P ∈ MUR and k > 1, Exp(P ) = kExpk(P ).

We can now state:

Theorem 8.1 For any P ∈ TCSP and k > 1,

Expk(RUJkP K) vTF FT JP K.

Proof (Sketch.) As usual, it suffices to prove the result for k = 1.

Let P be fixed, and pick (s,ℵ) ∈ FT JP K. There is some execution e =
P0

z17−→ P1
z27−→ . . .

zn7−→ Pn ∈ execTF (P ) such that e fail (s,ℵ). Let e′ = [e]1
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be the lower digitisation of e, let e′′ be the normalisation of e′, and let o ∈
execUR(P ) be the canonical execution corresponding to e′′. Let u ∈ RUJP K
be a ≺-maximal test such that o testU u.

We have already seen, in Theorem 6.5, that s ∈ TTraces(preExp(u)). We
would like to show that in fact (s,ℵ) ∈ preExp(u). We proceed as in the
timed trace case, and consider an arbitrary element (t, a) ∈ ℵ. We reason

that there must be Pk
t′

 Pk+1 in e such that dur(ek) 6 t, dur(ek) + t′ > t,

and Pk
a

X−→. (Here ek = P0
z17−→ P1

z27−→ . . .
zk7−→ Pk ≤ e represents the prefix

of e up to node Pk.) Under digitisation, the evolution Pk
t′

 Pk+1 becomes

P ′
k

l
 P ′

k+1 in e′, with l ∈ N. Without loss of generality, let us assume that
l = 0 or l = 1, the second of which could be achieved via normalisation in
case l > 1.

If l = 0, then dur(e′k) = [t]1 = dur(e′k+1). Since Pk
a

X−→ by assumption,

P ′
k

a
X−→, by the properties of digitisation. But init(P ′

k) = init(P ′
k+1) by persis-

tency, and thus P ′
k+1

a
X−→. On the other hand, our earlier discussion lets us

conclude that P ′
k+1 cannot be fleetingly unstable, i.e., P ′

k+1
τ

X−→. It follows
that a must figure in the unstable refusal immediately following P ′

k+1, and
therefore that a is refusable from dur(e′k+1) = [t]1 to any time strictly less
than dur(e′k+1) + 1 = [t]1 + 1. Naturally, this interval comprises t, which
entails that (t, a) is able to appear in the refusals of preExp(u).

If l = 1, then either [t]1 = dur(P ′
k+1), in which case we repeat the above

argument, or [t]1 = dur(P ′
k), in which case a is stably refused after P ′

k for up
to one time unit. The result follows.

It is clear that this procedure can be carried out uniformly and con-
currently for all (t, a) ∈ ℵ, as well as for the trace s. We conclude that
(s,ℵ) ∈ preExp(u) ⊆ Exp(P ), as required. �

Theorem 8.1 is the timed failure soundness result which we had sought. It
informs us that if some undesirable timed failure behaviour is ruled out by the
denotational expansion of RUJP K, then it is certainly not a possible behaviour
of FT JP K. Together with quasi-completeness (Theorem 6.13, which can easily
be lifted to MUR), it allows us to ‘zero in’ on FT JP K by letting, if need be, k
increase. Eventual applications to specification verification would follow the
same pattern as in Chapter 6.



Chapter 9

Discussion, Comparisons,
Future Work

The object of this thesis was to study the relationship between continuous-
time and discrete-time models for timed process algebras, and to exploit this
relationship towards applications, in particular model checking. Our main
accomplishments are twofold: firstly, we have produced a stand-alone CSP-
based discrete-time denotational model, equipped with a congruent opera-
tional semantics, and compatible with the model checker FDR. Secondly, we
have linked this model to the standard continuous-time denotational and op-
erational models for Timed CSP, and have shown how this connection could
be exploited to reduce continuous-time verification problems to discrete-time,
model checkable verification problems.

In greater detail, our work can be summarised as follows.

We introduced Timed CSP as our prototypical process algebra, together
with congruent continuous-time denotational and operational semantics, and
established an important result, the digitisation lemma, which later allowed
us to develop a powerful model checking technique with wide-ranging appli-
cability.

We then discussed the principal issues pertaining to discrete-time mod-
elling, and explained how the main difficulties could be overcome in certain
models for untimed CSP.

We proceeded to carefully construct such a model, the discrete-time re-
fusal testing model MR, offering congruent denotational and operational
semantics which incorporated the properties previously identified. Refine-
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ment, specifications and verification were discussed, and a model checking
algorithm—presented in Appendix B—was described. We also remarked that
in the majority of the verification cases one was likely to meet in practice,
the model checker FDR could be used directly.

We followed up with a chapter in which the exact links between this
model and the continuous-time model MTF were studied, with once again
an underlying emphasis towards verification. We discovered that the relation-
ship between these continuous-time and discrete-time models for Timed CSP
was a very tight one, enabling us in a large number of instances to reduce
verification problems in MTF to corresponding model checkable problems
in MR. More precisely, we built upon and later extended a result of Hen-
zinger, Manna, and Pnueli’s to reduce specification satisfiability problems
from continuous-time to discrete-time, provided the specifications in ques-
tion are closed under inverse digitisation. Since many specifications have
that property, this provided us with an efficient model checking algorithm,
mentioned above, implementable on FDR in most cases. These results, which
constitute the most important contribution of our work, were then illustrated
in a simple railway level crossing case study. We also identified and discussed
the limitations of our discretisation approach.

A further chapter was devoted to constructing an extension of MR, the
discrete-time unstable refusal testing model MUR, to overcome certain short-
comings of MR relating to unstable refusal information. Our treatment par-
alleled that of MR, and we were able to show that MUR captured continuous-
time behaviour more accurately and smoothly than MR. However it remains
to be shown how substantial the eventual practical benefits of this observa-
tion will prove to be.

We elected to focus on Timed CSP for a number of reasons. Firstly,
Timed CSP comes endowed with continuous-time denotational and opera-
tional semantics, has been the focus of a considerable body of previous work,
and is a natural extension of (untimed) CSP. The latter, of course, has been
even more widely studied and is equipped with denotational, operational,
and algebraic semantics, as well automated model checking tools. The com-
bination of Timed and untimed CSP therefore seemed likely to be a fertile
terrain in which to conduct our investigations.

Secondly, Timed CSP possesses a large number of the properties and
characteristics usually found in other timed process algebras. The robustness
of the methods used in our analysis makes it very plausible that our results
should apply to a wide range of similar process algebras, as well as to a
number of proposed extensions and variants of Timed CSP, discussed below.
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Lastly, denotational CSP-based models typically have an internal speci-
fication mechanism rooted in refinement. This allowed us to avoid having to
introduce an independent formal specification formalism, such as temporal
logic, and concentrate instead on the task at hand. Handling specifications
via refinement has the additional appeal of being much closer to the top-down
approach usually adopted in system design and implementation; refinement-
based formal methods are consequently more likely to prove useful through-
out a project’s production cycle. Temporal-logic-based formalisms, on the
other hand, can be more flexible (enabling one, for example, to express as-
sertions about internal state variables), and can be studied independently of
any model, making them more portable. For an in-depth account of the use
of temporal logics in Timed and untimed CSP, we refer the reader to [Jac92].

A number of continuous-time process algebras other than Timed CSP ap-
pear in the literature. These include the algebras of [Wan91, Che92], which
are timed extensions of CCS [Mil89], and predicated upon an operational
semantics which uses strong bisimulation for process equivalence. In [BB91],
Baeten and Bergstra combine a similar approach together with a congruent
complete algebraic semantics, while Gerth and Boucher [GB87] complement
their operational semantics with a timed-failures-based denotational seman-
tics similar to that of MTF . A more abstract denotational model, subsuming
timed failures, is offered in [Jef91a], once again together with a congruent
operational semantics.

Discrete-time process algebras have also been widely studied. In [MT90,
NS94, CLM97], we find process algebras rooted in operational semantics and
strong bisimulation, whereas the process algebra of [HR91] uses instead an
operational semantics in which testing equivalence defines the notion of equal-
ity between processes. Jeffrey [Jef91b] proposes a process algebra incorpo-
rating infinite nondeterminism and Zeno processes, rooted in a failures-based
denotational semantics, and equipped with a congruent complete algebraic
semantics. Naturally, some of the continuous-time process algebras noted
above also have discrete-time interpretations.

Although these lists are far from exhaustive, they give an idea of the
range of alternative process algebraic formalisms available in the literature.
More thorough overviews can be found in [NS91, Sch95, Ver97].

The discrete-time models which we have constructed in this thesis build
upon ideas appearing in [RR86, RR87, Ree88, RR99, Phi87, Muk93, Ros97]
(on the denotational side), and [Sch95, NS91, NS94] (on the operational
side). Denotationally, MR and MUR share a number of characteristics with
Jeffrey’s model for Discrete timed CSP [Jef91b].
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Other formalisms for modelling timed systems include timed transition
systems [HMP90], timed graphs [ACD90, ACD93], timed automata [AD94],
hybrid systems [NOSY93, Hen96, HHWT97], etc. Unlike process algebras,
these tend to be intrinsically rooted in state-based models, and are usually
closer to the implementation level. One could argue that process algebras,
being more abstract, are more versatile and better suited to algebraic and
modular (i.e., compositional) reasoning, while retaining state-based inter-
pretations via their operational semantics (together with, if need be, con-
gruence theorems). On the other hand, the price paid for this higher level
of abstraction is often a significant overhead in rigorously establishing cer-
tain operational properties of processes—cf., for instance, the proofs of the
digitisation lemma or finite variability. One is also sometimes faced with un-
wanted phenomena which are not always easy—if at all possible—to get rid
of, such as Zeno behaviours, divergence, point nondeterminism, unbounded
nondeterminism, and so on.

One of the earliest attempts to discretise continuous-time models with
a view towards verification was the technique of timewise refinement, in-
troduced in [Ree88, Ree89] and developed in [Sch89, RRS91, Sch97]. This
method is essentially a translation from Timed to untimed CSP which drops
all timing information, retaining only (and loosely) the relative order in which
events occur. Although of course not suitable for every verification purpose,
timewise refinement, when applicable, is a spectacularly economical proof
technique, often able to handle problems for which it is not computationally
feasible to apply straightforward model checking algorithms.

Alur, Courcoubetis, and Dill’s seminal work on region graphs [ACD90,
ACD93] provided the first algorithm to model check (continuous-time) timed
graphs with respect to satisfiability of formulas expressed in the temporal
logic TCTL. Timed graphs consist of a finite set of nodes together with a
finite set of real-valued clocks, giving rise to an uncountable number of states.
However, Alur et al. showed that it was possible to construct an equivalence
relation on the state space, partitioning it into a finite number of regions,
in such a way that no TCTL formula can distinguish states belonging to
the same region. This led naturally to a model checking algorithm. The
technique is however computationally expensive—deciding satisfiability of
TCTL formulas by timed graphs can be shown to be PSPACE-complete—
and much subsequent research has concentrated on finding ways to curb the
resulting complexity [HNSY94, LL95, SS95, HKV96, HK97].

Jackson [Jac92] showed how to apply the region graphs algorithm in the
timed failures model for a restricted subset of Timed CSP. The idea es-
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sentially consists in curtailing Timed CSP syntax, yielding the sub-process-
algebra FTCSP, all of whose programs can then be translated into equivalent
timed graphs. (Going in the other direction, the constructions of [CG95] in-
dicate how to translate timed automata into Timed CSP—the latter is thus
at least as expressive as the former.)

According to Cook’s thesis, the problem of deciding satisfiability of TCTL
formulas by timed graphs, being PSPACE-complete, is ‘intractable’. How-
ever, in many practical cases the actual complexity turns out to be manage-
able, for two reasons. The first is that the systems in which we tend to be
interested often exhibit symmetry and regularity, which significantly reduces
the complexity. The second reason is that, even though the equivalence re-
lation associated with region graphs cannot be made any coarser if arbitrary
TCTL formulas are considered, in many cases (such as reachability analy-
sis, or specifications that are closed under inverse digitisation), verifying the
specification in question does not necessarily require the full discriminative
power of regions, consequently reducing the complexity. This has been ex-
ploited, among others, in [BSV95], leading to a general technique of iterative
refinement which could easily also be employed in our setting.

We will not give a precise and comprehensive account of how the work
carried out in this thesis compares with region graphs, as such an account
would have to be quite lengthy. However, a rough overview can be offered as
follows. Each parallel component of a compound system has a clock associ-
ated to it. Regions are then basically constructed by comparing respectively
the integral and fractional parts of these clocks, where for fractional parts
the allowable comparison predicates are equality with zero, equality, and less
than. In our setup, on the other hand, our use of the tock event faithfully
captures the integral part of a single clock, and furthermore any subsequent
information concerning the clock’s fractional part can only be expressed in
terms of a single predicate, less than or equal to. It follows that the equiva-
lence relation which this induces on the state space is much coarser than that
of region graphs, with the twin corollaries that the analysis offered within our
framework should be computationally more efficient than full-fledged region
graphs algorithms, but may also occasionally fail to produce an answer in
situations where a region graphs investigation would be successful. This be-
ing said, we recall that, by refining the time granularity of the discrete-time
interpretations of programs, increasing precision can be achieved. We shall
return to this question shortly.

In [HMP92], Henzinger et al. address the important question of which
dense-time properties can be investigated with integral-time methods, and
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how. They carry out their work in the realm of timed transition systems,
together with the temporal logic MTL. We have used one of their main
results—Theorem 6.8, dealing with timed traces—which we later extended
in Theorem 6.15 to incorporate timed failures. We then built on these results
to produce the central Theorems 6.10 and 6.16 and Corollaries 6.11 and 6.17,
allowing us to reduce the verification of any specification closed under inverse
digitisation to our discrete-time setting.

Much research has gone into temporal logics and their relation to model
checking. Excellent and thorough accounts can be found in [HMP90, AH93,
AH94, Hen98]. In [HK97], Henzinger and Kupferman show that model check-
ing TCTL formulas can be carried out on any tool which allows CTL model
checking. As they point out, since such tools are typically much more so-
phisticated (not to mention widespread) than TCTL model checkers, this
reduction amounts to more than just an interesting theoretical result. Like-
wise, an advantage of the work which we have carried out is that efficient and
competitive model checking tools such as FDR can (in most cases) directly
be employed to verify specifications on Timed CSP processes.

An interesting distinctive approach to using temporal logics towards ver-
ification has been the development of TLA and TLA+, together with the
model checker TLC [YML99]. Rather than expressing system and specifi-
cation using two different formalisms (such as timed graphs and temporal
logic), the idea here is to translate the system itself into the temporal logic
TLA+, the very language used to express specifications. The satisfiability
check is then carried out entirely within a single temporal logic framework.
(This approach is in some sense dual to ours, where system and specification
are both expressed as processes, with satisfiability corresponding to refine-
ment.)

Symbolic model checking and related techniques have attracted much
attention in recent years. Examples include [BCM+92], using binary de-
cision diagrams, [BLP+99], introducing clock difference diagrams, a timed
analogue of binary decision diagrams, [HNSY94, NOSY93], focussing on hy-
brid systems, and [HKV96, AHR98], focussing on dense-time timed transi-
tion systems. Other formal methods include proof systems [Sch89, Dav91,
Sch94], property preserving abstractions [LGS+95], and applications of data-
independence [Laz99]. Whether and how such techniques can be adapted to
our framework are very interesting and relevant research questions.

Let us now consider in turn a number of avenues along which our frame-
work could be extended, and discuss other opportunities for future research.
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An intrinsic limitation of the original formulation of CSP and Timed
CSP has to do with the need for the environment to cooperate on all events.
Although this difficulty can usually be circumvented in practice, as we argue
below, it does lead to unnatural situations. As pointed out by Davies [Dav91],
not all events are appropriately modelled as synchronisations: a telephone
may ring, for instance, even if no-one is prepared to actively participate in
listening to it.1 However it is impossible in Timed CSP to describe a system
in which, for example, the event SprinklerOn is guaranteed to occur at most
5s after the event FireAlarm is observed; in general it is even impossible to
guarantee that events occur as soon as they become available.

Current solutions to this problem fall in three categories. The first is
to bypass the need for environmental cooperation by hiding the event in
question, as we did in our railway level crossing example (Section 6.7) to
ensure that cars drove off the dangerous crossing after exactly 10s. Un-
fortunately, such events, being hidden, can then by definition no longer be
observed. A second, more sophisticated solution is to postulate an assume-
guarantee framework, which lets us draw appropriate conclusions, or guar-
antees, from environmental assumptions; this is discussed, among others, in
[KR91, Dav91], and applied in [Sch94]. From a model checking perspective,
a possible implementation could consist in ascribing a certain priority to such
events to ensure that time cannot pass while they are on offer. The third
and most radical option is to redesign the semantic models to incorporate
broadcast concurrency, or signals, as is done in [Dav91]. We expect that
any of these approaches would successfully mesh with the relatively robust
constructions and techniques described in this thesis.

Another point worth addressing is the extent to which we can push the
paradigm of specification-as-refinement in Timed CSP, and how it compares
with temporal logic, particularly in terms of expressiveness. This difficult is-
sue is obviously very important, given the nature of our denotational models
as well as the mode of operation of FDR, if we are serious about applying
our efforts to real-world problems. As we have seen, the main difficulties
stem from the fact that Zeno behaviours and unrestricted unbounded non-
determinism sit uneasily with our denotational semantics (particularly in
continuous time). We have argued that it is not Zeno behaviours per se that
are problematic, but the fact that they potentially lead to divergence under
hiding. Of course, the fact that our models are predicated upon ultrametric
spaces and invoke the contraction mapping theorem to compute fixed points

1Then again... This echoes the age-old metaphysical query, “if a tree falls in a forest
with no-one nearby, does it make a noise?”
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means that some definite work will be required to integrate Zeno features
into the denotational semantics. A starting point seems to lie in the fact
that our discrete-time models have alternative cpo-based constructions.

An interesting question is whether our discrete-time model MR is canon-
ical in any way; i.e., whether it is the most abstract model with respect to
some outside criterion, such as some testing equivalence, or the verification of
specifications that are closed under inverse digitisation. As far as the second
criterion is concerned, Proposition 6.18 hints strongly that the answer is
negative. Steve Schneider has suggested a discrete-time model similar to
MR but with refusals recorded only prior to tock events. It seems that it
should be possible to build such a model and employ it as we have MR to
verify exactly specifications closed under inverse digitisation. Moreover, we
believe that such a model would in fact be fully abstract with respect to this
criterion. Since this model would clearly be coarser than MR, it is natural
to believe that its corresponding model checking algorithm should be more
efficient than MR’s as well.

On the other hand, we have seen that MR can be used to verify exactly
certain specifications that are not closed under inverse digitisation. Can
we characterise these specifications? Can we characterise specifications, or
perhaps processes, that are closed under inverse digitisation?2

Another interesting research direction is to look for less abstract models
than MR, together with correspondingly larger natural classes of specifica-
tions that such models could verify exactly. Bill Roscoe in particular has
suggested a model similar ro MR but with the tock event split into two ‘si-
multaneous’ sub-events, representing respectively the beginning and the end
of a standard tock . In this way, it would be possible to determine whether
other events occur strictly before, at the same time as, or strictly after tock .
It seems clear that such a model would induce a finer equivalence than MR

on the continuous-time state space of processes, although it would clearly
not correspond to the still finer equivalence of region graphs. Whether the
latter equivalence can be captured in a discretisation framework is a very
interesting question, the answer to which we believe to be negative. (By
“discretisation” we essentially mean discrete-time modelling in which time is
represented via a single fictitious digital clock.) In support of our negative
conjecture, note that, according to Proposition 6.22, there are specifications
which fail to become closed under inverse digitisation at any level of timing

2In [HMP92], Henzinger et al. offer sufficient criteria for a specification to be closed
under inverse digitisation, but there is no suggestion that these criteria are in fact neces-
sary.
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granularity. This also suggests that it is impossible to obtain a discrete-time
model in which every refinement-based Timed CSP specification can be ver-
ified exactly. We believe all these questions to be very interesting and well
worthy of further research.

A difficult problem seems to be the development of an algebraic seman-
tics for Timed CSP. Propositions 6.19 and 6.20 imply that MTF and MR

would actually have to have different such semantics. Unfortunately, defin-
ing a suitable notion of normal form seems complicated since any normal
form would necessarily have to incorporate parallel operators, in view of
Proposition 6.23.3 An interesting question is whether there is a good in-
herent notion of minimal degree of parallelism for timed processes (per-
haps related to minimal sets of clocks in corresponding timed automata—see
[ACH94, KR96, CG95]). As a related note, we point out that all the “laws
of Timed CSP” listed in [RR99] can easily be shown to hold in each of MTF ,
MR, and MUR (with δ = 0).

Full abstraction has been discussed earlier with respect to criteria such
as the verification of specifications that are closed under inverse digitisation.
A dual concern is that of the density of the denotational image of the set
TCSP of programs in the denotational model (whether MTF or MR). To
our knowledge, very little work has been carried out in this direction in the
past (in the case of MTF ), which suggests that it is not easy to identify
an adequately constraining set of axioms. For example, a process such as
P = WAIT 0.5 could not, in our syntax, be reached as the limit of a sequence
of TCSP programs (with respect to the standard ultrametric on MTF ). Note
however that P satisfies Axioms TF1–TF5, i.e., P is a bona fide element of
MTF . A solution could be to ban P by imposing the digitisation lemma as
a sixth axiom. Would there then still be MTF processes which could not
be approximated by TCSP programs? And if so, can one find a sufficiently
constraining set of axioms that would achieve density of TCSP? These
questions, of course, can also be asked of MR and MUR. We remark, while on
the topic, that there is no particular reason to prefer to enunciate properties
such as Axioms R1–R8 as axioms rather than establish them as propositions,
other than to derive a density result of the type described above. In fact,
as we saw in the proof of the congruence theorem for MR, there is probably
less work to do if one has as few axioms to start with as possible.

A rather deep and difficult problem in Timed CSP concerns the study
of nondeterminism, particularly in the continuous-time case (see [RR99]).

3Schneider’s ‘head standard form’ [Sch92] incorporates unbounded nondeterministic
choice as well as a generalised prefix operator, neither of which are allowed in our syntax.
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It is interesting to ask whether these questions could be clarified via the
links between the continuous-time and discrete-time models. For instance, is
determinism an invariant whether a process is interpreted in MTF or MR?
The answers to such questions potentially have important applications to the
study of non-interference in computer security [Ros95]. This is a research
programme which we are already involved in.

Throughout this work, we have exclusively been concerned with the timed
failures model MTF . One possible extension would be to move over to the
more sophisticated timed failures-stability model MTFS [RR99], able to han-
dle ‘global’ stability (invariance with respect to the passage of time). The
bedrock of our constructions and analyses has lain in having a congruent op-
erational semantics complementing our denotational continuous-time model,
together with an appropriate digitisation lemma. The first of these (in the
case of MTFS ) is achieved in Appendix C, and we are confident that the
second should easily follow.

A further extension could be the inclusion of fairness. A traditional solu-
tion to this problem is achieved via infinite traces models (see, e.g., [Ros97]),
which for obvious reasons are not an ideal framework for model checking.
A less subtle, but more forcible approach consists in prioritising events, for
example by lowering the priority of certain events if they are seen to occur
‘a lot’. As we have seen, achieving priority in our models, which allowed us
to implement maximal progress, is not difficult. The framework could easily
be extended and authoritarian renditions of fairness subsequently enacted.

Another possibility could be the addition of functional programming ca-
pabilities to the syntax, as is done for instance in [Laz99] in untimed CSP.

A much more ambitious, if speculative, extension would see the incor-
poration of probability to the framework. A good starting point might be
[Low95].

We conclude by pointing out that, however interesting the theoretical
results and speculations we have presented here are, it would also certainly
be desirable to apply them to a number of case studies and find out exactly
how closely theory matches practice.



Appendix A

Mathematical Proofs

A.1 Proofs for Chapter 3

Lemma A.1 (3.11) Let P ∈ TCSP, and let e = P0
z17−→ P1

z27−→ . . .
zn7−→

Pn ∈ execTF (P ). For any 0 6 ε 6 1, there exists an execution [e]ε = P ′
0

z′17−→

P ′
1

z′27−→ . . .
z′n7−→ P ′

n ∈ execTF (P ) with the following properties:

1. The transitions and evolutions of e and [e]ε are in natural one-to-one

correspondence. More precisely, whenever Pi

zi+1
7−→ Pi+1 in e is a tran-

sition, then so is P ′
i

z′i+1
7−→ P ′

i+1 in [e]ε, and moreover z′
i+1 = zi+1. On

the other hand, whenever Pi

zi+1
7−→ Pi+1 in e is an evolution, then so is

P ′
i

z′i+1
7−→ P ′

i+1 in [e]ε, with |zi+1 − z′i+1| < 1.

2. All evolutions in [e]ε have integral duration.

3. P ′
0 ≡ P0 ≡ P ; in addition, P ′

i ∈ TCSP and initTF (P ′
i ) = initTF (Pi) for

all 0 6 i 6 n.

4. For any prefix e(k) = P0
z17−→ P1

z27−→ . . .
zk7−→ Pk of e, the corresponding

prefix [e]ε(k) of [e]ε is such that dur([e]ε(k)) = [dur(e(k))]ε.

We present the proof after a number of preliminaries.

We first define an operational analogue to the notion of semantic binding.
A syntactic binding is a function η : VAR −→ NODETF . Any open node P
together with a syntactic binding η give rise to a closed node Pη via sub-
stitution in the obvious way. We also have standard operations on syntactic
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bindings, such as η[X := P ] (for P a closed node), defined in exactly the
same manner as in the denotational case.

Let {Rk | k ∈ N} be a family of relations between closed nodes. This set
is an indexed bisimulation if, for any k > 1, any P, P ′, Q,Q′′ ∈ NODETF ,
any µ ∈ ΣX ∪ {τ}, and any t > 0, the following four conditions are met:

(P Rk Q ∧ P
t
 P ′) ⇒ ∃Q′ �Q

t
 Q′ ∧ P ′ Rk−1 Q′

(P Rk Q ∧ P
µ

−→ P ′) ⇒ ∃Q′ �Q
µ

−→ Q′ ∧ P ′ Rk−1 Q′

(P Rk Q ∧ Q
t
 Q′′) ⇒ ∃P ′′ � P

t
 P ′′ ∧ P ′′ Rk−1 Q′′

(P Rk Q ∧ Q
µ

−→ Q′′) ⇒ ∃P ′′ � P
µ

−→ P ′′ ∧ P ′′ Rk−1 Q′′.

Given an indexed bisimulation {Rk} and two open nodes P and Q, we for-
mally write P Rk Q if, for any syntactic binding η, Pη Rk Qη. Nonetheless,
unless specified otherwise or clear from the context, indexed bisimulations
shall be understood to relate closed rather than open nodes.

Let us now define a family {∼k | k ∈ N} as follows: for any i > 0,

∼i =̂
⋃

{R | ∃ {Sk | k ∈ N} an indexed bisimulation � R = Si}.

We then have the following string of lemmas.

Lemma A.2

1. {∼k} is an indexed bisimulation, the strongest such.

2. Each ∼k is an equivalence relation.

3. Any nodes P and P ′ are ∼0-related.

4. For any k, k′ > 0, if k 6 k′ then ∼k′ ⊆ ∼k.

Proof

1. Routine inspection.

2. If ≡k denotes, for any k, the syntactic identity relation on NODE , then
{≡k} is easily seen to be an indexed bisimulation; reflexivity ensues.
Symmetry and transitivity follow from the observation that, if {Rk} and
{R′

k} are indexed bisimulations, then so are {R−1
k } and {Rk ◦ R′

k}.
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3. If we let R0 = NODE × NODE , and let, for any k > 1, Rk = ∅, we
easily find that {Rk} is an indexed bisimulation. The result follows by
maximality of {∼k}.

4. For any k > 0, let Rk =
⋃
{∼i | i > k}. One easily verifies that {Rk} is

an indexed bisimulation, and thus that Rk ⊆ ∼k for any k; the result
follows.

�

If η and η′ are syntactic bindings and k ∈ N, let us write η ∼k η′ if, for
all X ∈ VAR, η(X) ∼k η′(X). We then have:

Lemma A.3 Let P ∈ NODE and η ∼k η′ for some syntactic bindings η, η′,
and some fixed k > 0. Then Pη ∼k Pη′.

Proof (Sketch.) We proceed by induction on k. For a given k, we define a
family {≈n} as follows: for n 6 k, ≈n = {(Rρ,Rρ′) |R ∈ NODE ∧ ρ ∼n ρ′}.
And for n > k, ≈n = ∅. We remark that the definition of ≈i, for any fixed i,
is uniform over all k > i.

We aim to show that, for any particular value of k, {≈n} is an indexed
bisimulation. By the previous lemma, this will entail that any pair of nodes
that are ≈i-related are in fact ∼i-related. The result will then follow by
choosing i = k, P = R, ρ = η, and ρ′ = η′.

The base case k = 0 is trivial: {≈n} is clearly—in fact, vacuously—an
indexed bisimulation.

For the induction step (k + 1), we proceed by structural induction on
R. We need to show that, whenever Rρ ≈n Rρ′, Rρ and Rρ′ satisfy the
conditions for {≈n} to be an indexed bisimulation.

The structural induction cases are fairly easy. We tackle parallel compo-
sition and recursion in illustration:

Let R = R1 ‖ R2. We assume that ρ ∼k+1 ρ′ (for greater values of n
than k + 1 the result vacuously holds, and for lesser values the result follows
by the induction hypothesis on k) and thus that Rρ ≈k+1 Rρ′. Suppose
that Rρ

a
−→ Q, for some a ∈ ΣX. Since Rρ ≡ (R1 ‖ R2)ρ ≡ R1ρ ‖ R2ρ,

we find, according to the operational rules of inference, that we must have
R1ρ

a
−→ Q1, R2ρ

a
−→ Q2, and Q ≡ Q1 ‖ Q2.

By the structural induction hypothesis, since R1ρ
a

−→ Q1, it must be the
case that R1ρ

′ a
−→ Q′

1, with Q1 ≈k Q′
1. We can now invoke the induction
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hypothesis on k to conclude that Q1 ∼k Q′
1. Likewise, since R2ρ

a
−→ Q2, it

must be the case that R2ρ
′ a
−→ Q′

2, with Q2 ∼k Q′
2.

Write Q′ ≡ Q′
1 ‖ Q′

2. It is clear that Rρ′ a
−→ Q′.

Now define syntactic bindings ν and ν ′ as follows: ν and ν ′ agree on all
variables other than X and Y , and ν(X) = Q1, ν(Y ) = Q2, ν ′(X) = Q′

1, and
ν ′(Y ) = Q′

2. Clearly, ν ∼k ν ′. We have

Q ≡ Q1 ‖ Q2 ≡ (X ‖ Y )ν ≈k (X ‖ Y )ν ′ ≡ Q′
1 ‖ Q′

2 ≡ Q′

as required.

The other cases (τ -transitions, evolutions, and symmetry) are entirely
similar.

We now consider the case of recursion (in our structural induction).

Note that (µX � R)ρ
τ

−→ R[µX � R/X]ρ and likewise (µX � R)ρ′ τ
−→

R[µX �R/X]ρ′ (and these are the only allowable behaviours). But if ρ ∼k+1 ρ′

(as we are assuming), then ρ ∼k ρ′ (as per Lemma A.2), and we are done:
R[µX �R/X]ρ ≈k R[µ X �R/X]ρ′, as required. �

The following result will not directly be needed elsewhere in this work,
but has been included because of its independent central importance in oper-
ational semantics, and because its proof is now only a small step away from
the results already contained in this section.

Proposition A.4 For any k > 0, ∼k is a congruence over Timed CSP
syntax. In other words, all Timed CSP operators are preserved by ∼k.

Proof (Sketch.) One proceeds by case analysis, considering each Timed
CSP operator in turn. The result is trivial in the case of nullary operators.
For binary operators, and unary operators other than recursion, the argument
is reasonably straightforward; we consider the case of external choice as an
illustration. We then conclude by tackling recursion.

Let P ≡ P1 2 P2 and Q ≡ Q1 2 Q2, where for simplicity we are only
considering closed nodes. Suppose that P1 ∼k Q1 and P2 ∼k Q2. We claim
that P ∼k Q follows. To see this, define, for any n > 0,

≈n = ∼n ∪ {(R1 2 R2, S1 2 S2) | R1 ∼n S1 ∧ R2 ∼n S2}.

It now clearly suffices to show that {≈n} is an indexed bisimulation. This
is a simple inspection. For instance, suppose that R ≈n S for some n > 1.
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If this is already an instance of ∼n, we are done. Otherwise, we must have
R ≡ R1 2 R2 and S ≡ S1 2 S2, with R1 ∼n S1 and R2 ∼n S2. Now
consider the various transitions and evolutions available to R. For example,

suppose that (R1 2 R2)
t
 R′, for some some t > 0. Consulting the rules

of inference, we conclude that it must have been the case that R1
t
 R′

1,

R2
t
 R′

2, and R′ ≡ R′
1 2 R′

2. Since R1 ∼n S1, we must have S1
t
 S ′

1 for
some node S ′

1 with R′
1 ∼n−1 S ′

1. Likewise, there must be some node S ′
2 such

that S2
t
 S ′

2 and R′
2 ∼n−1 S ′

2. Writing S ′ ≡ S ′
1 2 S ′

2, it then follows that

(S1 2 S2)
t
 S ′ and that R′ ≈n−1 S ′. Other cases are equally easy; {≈n} is

therefore a time-bisimulation, as required.

The recursion operator is handled by induction on k. Specifically, we
show that, for any P,Q ∈ NODE , P ∼k Q implies that µX � P ∼k µX �Q.

The base case (k = 0) is trivial. For the induction step, we consider open
nodes P and Q such that P ∼k+1 Q. Since this entails that P ∼k Q (as
per Lemma A.2), we can invoke the induction hypothesis to conclude that
µX � P ∼k µX �Q. We must show that in fact µX � P ∼k+1 µX �Q.

Let η be some fixed syntactic binding. We have (µX � P )η
τ

−→ P [µX �
P/X]η ≡ Pη[X := (µX �P )η]. Likewise, (µX �Q)η

τ
−→ Qη[X := (µX �Q)η].

So we need to show that Pη[X := (µX � P )η] ∼k Qη[X := (µX �Q)η]. But
Pη[X := (µX � P )η] ∼k Pη[X := (µX �Q)η] by Lemma A.3, since we know
that µX �P ∼k µX �Q. And by definition, Pη[X := (µX �Q)η] ∼k Qη[X :=
(µX �Q)η], since P ∼k Q. The result follows by transitivity of ∼k. �

Proposition A.4 easily entails that strong bisimilarity (cf., for example,
[Mil89]) is a congruence for Timed CSP. This remains true even in non-
finitely branching operational semantics, although in that case one must use
ordinals in indexed bisimulations rather than simply positive integers. We
end our digression here and now return to our main thread.

Let P ∈ NODE , and let η be a syntactic binding. We define a function
F = FP,X,η : NODE −→ NODE , as follows: F (Q) =̂ (SKIP ; P )[Q/X]η. In
essence, FP,X,η mimics the unwinding of recursion in P over the variable X,
under the binding η, and then substitutes its argument for all free instances
of X in P . This leads to the following:

Lemma A.5 Let P ∈ NODE and let η be a syntactic binding. For any
k ∈ N, F k(STOP) ∼k (µX � P )η, where F = FP,X,η is as above.

Proof We proceed by induction on k. The base case k = 0 is trivial since,
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according to Lemma A.2, all programs are ∼0-related. For the induction
step, we first make the simple observations that, for any nodes R and R′, if
R ∼k R′ then (SKIP ; R) ∼k+1 (SKIP ; R′), as an immediate calculation of
the possible executions easily reveals.

So assume that the result holds for k. We have the following sequence of
deductions, select justifications of which follow.

F k+1(STOP) ≡ F (F k(STOP))

≡ (SKIP ; P )[F k(STOP)/X]η

≡ SKIP ; (P [F k(STOP)/X]η)

≡ SKIP ; (P (η[X := F k(STOP)]))

∼k+1 SKIP ; (P (η[X := (µX � P )η])) (1)

≡ SKIP ; (P [(µX � P )η/X]η)

∼k+1 (µX � P )η. (2)

This concludes the induction step. (1) follows from our earlier observation
together with Lemma A.3, using the fact that F k(STOP) ∼k (µX � P )η by
the induction hypothesis. (2) rests on the observation that SKIP ; (P [(µX �
P )η/X]η) ∼n (µX � P )η for any n > 0, as a straightforward calculation will
attest. �

Lemma A.6 Let P,Q ∈ NODE, k > 1, and suppose that P ∼k Q. Then,
for any execution e = P0

z17−→ P1
z27−→ . . .

zn7−→ Pn of P with n < k, there is a
corresponding execution u = Q0

z17−→ Q1
z27−→ . . .

zn7−→ Qn of Q, with identical
transitions and evolutions, and such that, for all 0 6 i 6 n, init(Pi) =
init(Qi).

The executions e and u are said to be bisimilar.

Proof (Sketch.) This is a routine induction on n; the inductive statement
is strengthened to require that Pi ∼k−i Qi, for all i. �

We can now give the proof of Lemma A.1.

Proof Let us agree that programs satisfying the conclusion of the lemma
be termed digitisable. Recall also that, given an execution e and a pivot ε as
in the lemma statement, the execution [e]ε is called the ε-digitisation of e.

We proceed by structural induction on P , as follows: for any syntactic
binding η such that η(X) is a digitisable TCSP program for all X ∈ VAR,
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we claim that Pη is digitisable as well. Here P ∈ TCSP, and in particular
only contains integral delays. The principal cases are presented below.

case WAIT n: The result follows easily from the fact that n is an integer.

case a −→ P : Let e be an execution of (a −→ P )η ≡ a −→ Pη, and let ε be
fixed. If e is either trivial or begins immediately with an a-transition,
the result follows by the induction hypothesis. On the other hand, a
string of initial evolutions give rise to no greater difficulties, thanks
to Rule 3.10, than a single initial evolution; thus let us assume for

simplicity that e = (a −→ Pη)
t
 (a −→ Pη)

a
−→ e′, where e′ ∈

exec(Pη).

Writing again ṫ to designate the fractional part of t, we now apply the
induction hypothesis to P , with syntactic binding η, execution e′, and
pivot ε′ = ε − ṫ + [ṫ]ε, to get the digitisation [e′]ε′ of e′. It is then easy
to verify that the execution

eε = (a −→ P )η
[t]ε
 (a −→ P )η

a
−→ _[e′]ε′

is itself a valid ε-digitisation of e, i.e., eε = [e]ε.

Let us omit explicit mention of the syntactic binding η in the next three
cases to alleviate the notation.

case P1 2 P2: An execution of P1 2 P2 is eventually only an execution of
P1 or of P2, at which point the induction hypothesis finishes up the
job. What must therefore be examined is what happens in the interim,
namely prior to the commitment to one or the other process in the
external choice construct. Consulting the relevant operational rules
reveals that only evolutions and τ -transitions are permitted during that
period. But then we can again apply the induction hypothesis to both
processes to turn such evolutions into integral-duration ones, ensuring
in doing so that the relevant τ -transitions occur at the required integral
times.

case P1 ‖
B

P2: The crux of the argument in this case is similar to that of

the previous one, and rests on the following observation: if P1 and P2

can synchronise on event a at time t, and both can also independently
communicate a at time btc (or dte), then both can also synchronise on
a at time btc (or dte).
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case P \ A: The only source of difficulty here stems from the fact that, while
a process which only offers visible events can perfectly well choose in-
stead to evolve, a process offering a hidden event must perform some-
thing (rather than evolve) on the spot. Since hidden events of P \ A
potentially have A-transitions of P for origin, the worry is that while
these A-transitions may have been delayable in P , as urgent hidden
events in P \ A they are required to occur as soon as possible.

The key observation to make is that, thanks to Rule 3.28, any execution
of P \ A derives from an execution of P in which evolutions took place
solely when no A-transitions were available; and conversely, any such
execution of P gives rise to a valid execution of P \ A.

So let e be an execution of P \ A, deriving directly from such a suitable
execution u of P , so that every A-transition in u has been turned into a
τ -transition in e (and with e and u otherwise transition- and evolution-
wise identical). Apply the induction hypothesis to P and u, yielding
digitisation u′. Since by definition the matching nodes of u and u′ have
the same events available to them, we conclude that evolutions in u′

also only take place while no A-transition is enabled. u′ thus validly
gives rise, through hiding, to an execution of P \ A, one which, by
construction, is a digitisation of e.

case X: This case follows immediately from our assumptions on η: Xη ≡
η(X) is required to be digitisable.

case µX � P : Let F = FP,X,η be the recursion-unwinding-mimicking func-
tion defined earlier: F (Q) = (SKIP ; P )[Q/X]η. We first show that
F k(STOP) is a digitisable program for all k ∈ N. This simple induc-
tion on k has a trivial base case of k = 0 since F 0(STOP) ≡ STOP .
For the induction step, assuming the result holds for k, we write

F k+1(STOP) ≡ F (F k(STOP))

≡ (SKIP ; P )[F k(STOP)/X]η

≡ (SKIP ; P )η[X := F k(STOP)]

≡ SKIP ; (Pη[X := F k(STOP)]).

By the induction hypothesis on k and our assumptions on η, η[X :=
F k(STOP)] is itself a syntactic binding taking variables to digitisable
programs. We can thus invoke the induction hypothesis on P to con-
clude that Pη[X := F k(STOP)] is digitisable as well, and thus clearly
that so is F k+1(STOP), as required. This completes the induction on
k.
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Let us now consider an execution e of (µX � P ) containing n tran-
sitions and evolutions, and let pivot ε be fixed. By Lemma A.5,
we have that F n+1(STOP) ∼n+1 (µX � P )η. We can thus invoke
Lemma A.6 to extract an execution u ∈ F n+1(STOP) bisimilar to
e. But since F n+1(STOP) is digitisable, we can find a digitisation
u′ ∈ exec(F n+1(STOP)) of u. Invoking Lemma A.6 again, there exists
an execution e′ of (µX � P )η which is bisimilar to u′. It is easy to see
that e′ is a digitisation of e, as required.

This completes the induction step, and hence the proof, since it is obvi-
ous that syntactic bindings are irrelevant insofar as the set of executions of
programs are concerned. �

A.2 Proofs for Chapter 5

Proposition A.7 (5.2) For any term P ∈ TCSP, and any semantic bind-
ing ρ, RJP Kρ ∈ MR.

Proof The proof is a structural induction over terms. One must verify
in turn that each term, under an arbitrary semantic binding ρ, satisfies the
axioms of MR. Cases are in general tedious but straightforward, so let us
only consider a few illustrating examples (the most interesting of which being
that of the hiding operator).

case P1 2 P2: The induction hypothesis states that RJP1Kρ,RJP2Kρ ∈ MR.
Therefore, by R1, 〈•〉 ∈ RJP1Kρ∩RJP2Kρ, and clearly trace(〈•〉) = 〈〉 ≤
〈tock〉∞. Thus 〈•〉 ∈ RJP1 2 P2Kρ, establishing R1.

R2, R3, R5, R6, R7, and R8 also follow immediately from the induc-
tion hypothesis. To establish R4, consider a refusal A 6= •, and assume
that û_〈A〉_v̌ ∈ RJP1 2 P2Kρ and û_〈A, a, •〉 /∈ RJP1 2 P2Kρ. We
can discount the possibility that a = tock since that would quickly
lead us to conclude, via R4 and the induction hypothesis, that one of
RJP1Kρ or RJP2Kρ has tests in which tock is refused, which in turn
would violate the induction hypothesis since, by definition, tock can-
not appear in the refusal of a test and MR exclusively contains sets
of tests. Three subcases now arise, of which we only consider the fol-
lowing: trace(u) ≤ 〈tock〉∞ and trace(v) � 〈tock〉∞. Moreover, for
simplicity let us assume that in fact the first element in trace(v) is not
a tock . The first condition implies that û_〈A〉 ∈ RJP1Kρ ∩ RJP2Kρ.
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Since û_〈A, a, •〉 /∈ RJP1 2 P2Kρ and a 6= tock , û_〈A, a, •〉 /∈ RJP1Kρ
and û_〈A, a, •〉 /∈ RJP2Kρ. Hence, invoking the induction hypoth-
esis and R4, û_〈A ∪ {a}〉 ∈ RJP1Kρ ∩ RJP2K. Since û_〈A〉_v̌ ∈
RJP1 2 P2Kρ and trace(v) � 〈tock〉∞, û_〈A〉_v̌ ∈ RJP1Kρ ∪ RJP2Kρ.
By what has been established and the induction hypothesis, this en-
tails that û_〈A ∪ {a}〉_v̌ ∈ RJP1Kρ ∪ RJP2Kρ, from which we eas-
ily conclude, collecting the various facts and assumptions above, that
û_〈A ∪ {a}〉_v̌ ∈ RJP1 2 P2Kρ. This establishes R4.

Therefore RJP1 2 P2Kρ ∈ MR.

case P \ A: It is easy to see that R1, R5, R6, R7, and R8 follow quickly
from the induction hypothesis.

To see that R2 holds, consider an arbitrary test v ∈ RJP \ AKρ. If v ′

is a test such that v′ ≺ v ∧ trace(v′) = trace(v), then v′ ∈ RJP \ AKρ
by application of RefCl. Otherwise (still with v ′ ≺ v) we must have
trace(v′) ≤ trace(v). Since v ∈ RJP \ AKρ, there exists u an A-urgent
test in RJP Kρ such that v = u \ A. It is clear from the definition of
\ on tests that there must therefore be a test u′ such that u′ ≤ u and
trace(v′) = trace(u′ \ A). It is equally clear that u′ must be A-urgent
since u is, and that v′ ≺ u′ \ A. By the induction hypothesis and R2,
u′ ∈ RJP Kρ, and thus by the above and another application of RefCl

we get that v′ ∈ RJP \ AKρ, as required.

For R3, let v ∈ RJP \ AKρ be a test whose last refusal is •. Then
there exists u ∈ RJP Kρ an A-urgent test such that v ≺ u \ A—in fact
there is clearly no harm in assuming v = u \ A. Let us denote the last
refusal of u by B. By R3 and the induction hypothesis, we can assume
that B 6= •. By definition of \ on tests we then have that A * B
(since the last refusal of u \ A is •). We now invoke R4 (repeatedly
if needed; strictly speaking this also involves an implicit use of R2 )
to replace B in u by a maximal refusal B ′, something we can achieve
since Σ is finite. If A ⊆ B ′, then by definition of \ the last refusal of
(û_〈B′〉) \ A is B′, and clearly û_〈B′〉 is A-urgent (since u was) and
belongs to RJP Kρ by construction. Thus (û_〈B′〉) \ A ∈ RJP \ AKρ,
and only differs from v in its last refusal. An application of RefCl would
then yield v̂_〈∅〉 ∈ RJP \ AKρ.

We must however also consider the alternative, namely A * B ′. By the
induction hypothesis and the contrapositive of R4, recalling that B ′ is
maximal, we conclude that there exists a ∈ A such that û_〈B′, a, •〉 ∈
RJP Kρ. Note that since a 6= tock by definition (tocks cannot be hid-
den), the test û_〈B′, a, •〉 is A-urgent since u is. Moreover, we clearly
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have (û_〈B, a, •〉) \ A = u \ A = v. We then repeat the above algo-
rithm, namely invoke R3 and R4 to find a maximal non-• refusal B ′′

such that û_〈B′, a, B′′〉 ∈ RJP Kρ. If A ⊆ B ′′, as argued above, we
we are done. Otherwise we keep repeating the process until the desir-
able situation is reached. The reason this algorithm must eventually
terminate successfully is that, if it did not, it would imply that there
is an unbounded sequence of events, all drawn from the set A, which
can be performed after u (amongst the tests of RJP Kρ). This is in
direct contradiction with Axiom R7, assumed to hold of RJP Kρ by the
induction hypothesis. This establishes that RJP \ AKρ satisfies R3.

Lastly, we tackle R4. Let B 6= •, and suppose that v̂_〈B〉_w̌ ∈
RJP \ AKρ and v̂_〈B, b, •〉 /∈ RJP \ AKρ. We want to conclude
that v̂_〈B ∪ {b}〉_w̌ ∈ RJP \ AKρ. Let us assume that the test
v̂_〈B〉_w̌ is maximal with this property; in particular, it did not
arise as an application of RefCl. (It is harmless to make this assumption
since we can later ‘degrade’ it via RefCl if we want, once the desired
conclusion has been reached.) Since B 6= •, we must have that A ⊆ B,
by definition of \ on tests and maximality of B. Since v̂_〈B〉_w̌ ∈
RJP \ AKρ, there must be A-urgent tests u, u′ such that v = u \ A,
w = u′ \ A, and û_〈B〉_ǔ′ ∈ RJP Kρ. Recall that v̂_〈B, b, •〉 /∈
RJP \ AKρ. Therefore we also must have û_〈B, b, •〉 /∈ RJP Kρ, since
b /∈ A as A ⊆ B and RJP Kρ is assumed to obey Axiom R6. Invoking
R4, we conclude that û_〈B ∪ {b}〉_ǔ′ ∈ RJP Kρ. This test is clearly
A-urgent, and by construction (û_〈B ∪ {b}〉_ǔ′) \ A = v̂_〈B ∪
{b}〉_w̌ ∈ RJP Kρ as required.

We conclude that RJP \ AKρ ∈ MR.

case f(P ): There are no deep-seated difficulties with this operator. As an
illustration, we establish Axioms R4 and R5. For the former, as-
sume that A 6= •, and suppose that û_〈A〉_v̌ ∈ RJf(P )Kρ and
û_〈A, a, •〉 /∈ RJf(P )Kρ. We claim that û_〈A∪{a}〉_v̌ ∈ RJf(P )Kρ.
Let us say that the test û_〈A〉_v̌ ∈ RJf(P )Kρ derives in the obvious
manner from the test û′_〈f−1(A)〉_v̌′ ∈ RJP Kρ. Let C = f−1(a).
Since û_〈A, a, •〉 /∈ RJf(P )Kρ, it must be the case that, for all c ∈ C,
û′_〈f−1(A), c, •〉 /∈ RJP Kρ. Then, by repeatedly invoking Axiom R4
(and, implicitly, R2 ), recalling that Σ (and hence C) is finite, we get
û′_〈f−1(A)∪C〉_v̌′ ∈ RJP Kρ. Since f−1(A)∪C = f−1(A)∪f−1(a) =
f−1(A ∪ {a}), we get that û_〈A ∪ {a}〉_v̌ ∈ RJf(P )Kρ as required.

Let us now consider the case of R5. Let v̂_〈A, f(a), •〉 ∈ RJf(P )Kρ,
and assume A 6= •. We claim that v̂_〈A, tock , •, f(a), •〉 ∈ RJf(P )Kρ.
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Our hypothesis implies that û_〈f−1(A), a, •〉 ∈ RJP Kρ, where u is
any test corresponding to v under the semantic application of f . Since
A 6= •, f−1(A) 6= •. By the induction hypothesis, we can invoke R5
on RJP Kρ to conclude that û_〈f−1(A), tock , •, a, •〉 ∈ RJP Kρ. It then
follows that v̂_〈A, tock , •, f(a), •〉 ∈ RJf(P )Kρ, as required.

case µX � P : Our definition of fix makes checking this case trivial: by the
induction hypothesis, RJP Kρ ∈ MR for any semantic binding ρ, and
therefore λx.RJP K(ρ[X := x]) is clearly an MR selfmap. Applying fix

yields an element of MR, since fix is defined even when its argument
does not have a unique fixed point.

�

Theorem A.8 (Banach fixed point theorem) If F : M −→ M is a con-
traction on a non-empty complete metric space, then F has a unique fixed
point a ∈ M . Moreover, for any b ∈ M , a = limi→∞ F i(b).

This theorem is also known as the contraction mapping theorem. A proof
can be found in any standard Analysis or Topology text, such as [Mar74].

Lemma A.9 (5.6) Every term in TCSP is (i.e., corresponds to) a non-

expanding function. Moreover, if P = P (X, ~Y ) is a term which is time-
guarded for X, then P is a contraction in X.

Proof We proceed, for the first part, by structural induction over the
structure of terms. By lemma 5.5 it suffices to show that every Timed CSP
operator is non-expanding in each of its arguments. In case of the µX
operator, we shall assume the second part, which we will prove independently
afterwards.

It is plain that all nullary operators (such as STOP) are non-expanding
as they have no free variables. The proof that the other operators (apart
from recursion) are also non-expanding is straightforward; we shall examine
the case of interleaving as a typical representative. Note that hiding, usually
the most troublesome operator in cpo-based models, is easily seen to be non-
expanding as tocks cannot be hidden.

Let Q ∈ MR be fixed, and consider 9Q(·) = (·) 9 Q : MR −→ MR. Let
P, P ′ ∈ MR be such that d(P, P ′) = 2−k for some k ∈ N. Let v ∈ 9Q(P )
be such that ](v � tock) 6 k. By definition of 9 on processes there must be
u1 ∈ P , u2 ∈ Q such that v ∈ u1 9 u2. It is easy to see, from the definition
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of 9 on tests, that ](u1 � tock) 6 ](v � tock) 6 k since u1 and u2 synchronise
on every tock to produce tocks in v. (The only exception is if X happens to
be communicated by u2, which then makes the remainder of u1 irrelevant.
But then we can replace u1 by a prefix u′

1 ∈ P of duration less than or equal
to the duration of u2, which itself must then be less than or equal to k, with
v ∈ u′

1 9 u2 still holding.)

Since d(P, P ′) 6 2−k, it follows from the above that u1 ∈ P ′, and thus
that v ∈ 9Q(P ′). Since this holds for arbitrary v of duration less than or
equal to k, we conclude that 9Q(P )(k) ⊆ 9Q(P ′)(k). Likewise the reverse
containment holds, and hence d(9Q(P ),9Q(P ′)) 6 k, establishing that 9 is
non-expanding in its first argument. The case of 9Q(·) = Q 9 (·) is entirely
symmetric. It therefore follows that 9 is non-expanding, as required.

The case of the µX operator is slightly more involved. Recall that our

syntax requires us to apply it only to terms P = P (X,Y, ~Z) which are time-
guarded for X. We shall assume, and then prove afterwards, that every such
P corresponds to a contraction in X over MR. The induction hypothesis,
on the other hand, asserts that P is non-expanding in each of its variables.
(Note that if X is the only free variable of P , then µX �P , being a constant,
is trivially non-expanding.)

So let ~S ∈ MR × . . . ×MR be fixed, and let F~S(Y ) = µX � P (X,Y, ~S) :
MR −→ MR. Let Q,Q′ ∈ MR be such that d(Q,Q′) 6 2−k. By definition of

µX, F~S(Q) = fix(λx.P (x,Q, ~S)). By our assumption above, this represents
an application of fix to a contraction mapping having, by the Banach fixed
point theorem (Theorem A.8), a unique fixed point Plim = P (Plim , Q, ~S) =
F~S(Q). In addition, if P0 ∈ MR is arbitrary, the Banach fixed point theorem

asserts that the sequence 〈P0, P1 = P (P0, Q, ~S), P2 = P (P1, Q, ~S), . . . , Pi+1 =

P (Pi, Q, ~S), . . .〉 converges to Plim .

Similarly, we let P ′
lim

be the unique fixed point of the contraction map-
ping P calculated using Q′ instead of Q, i.e., P ′

lim
= F~S(Q′). Again, we

have a sequence converging to P ′
lim

, where the starting point P ′
0 = P0 is the

same one as above: 〈P ′
0, P

′
1 = P (P ′

0, Q
′, ~S), P ′

2 = P (P ′
1, Q

′, ~S), . . . , P ′
i+1 =

P ′(P ′
i , Q

′, ~S), . . .〉. Invoking the induction hypothesis, and recalling that
d(Q,Q′) 6 2−k, it is easy to see that d(Pi, P

′
i ) 6 2−k for all i > 0; from

this one concludes that the respective limits of the two sequences cannot be
further apart than 2−k either, which shows that F~S(Y ) = µX � P (X,Y, ~S) is
non-expanding in Y as required. TCSP terms therefore indeed correspond
to non-expanding functions.
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We now establish the second part of the lemma, namely the assertion
that, if P is time-guarded for X, then P is a contraction in X. (Here the
variable X is arbitrary, but fixed.) We will prove this result by means of
a double induction, as follows. Our first induction will be on the number
of µZ operators appearing in P , for any Z ∈ VAR. Within each such
step, we will carry out a structural induction over the recursive definition
of time-guardedness (Definition 2.2). Our precise inductive statement is:
‘If P contains k recursion operators and P is time-guarded for X, then P
represents a contraction in X’. We aim to show that, for each k > 0, this
statement is in fact true of terms which are time-guarded in X. This second
part is accomplished via the structural induction.

The base case k = 0 corresponds to terms P which are recursion-free:

• Clearly, STOP , SKIP , and WAIT n are contractions in X as they do
not have X as a free variable. The case µX � P is vacuously true as it
contains one (rather than zero) recursion operator.

• If Y 6= X, then Y is a contraction in X, again because X does not
appear as a free variable in it.

• Assume that the induction hypothesis holds for P , and suppose that the
antecedent holds (i.e., P contains no recursion operators and is time-
guarded for X), otherwise the result follows vacuously. Then a −→ P ,
P \ A, f−1(P ), and f(P ) are clearly contractions in X, since, as shown
earlier, the relevant operators are all non-expanding—note that this
result was obtained independently of any assumption about recursion—
and since, as per lemma 5.5, the composition of a contraction and a
non-expanding function produces a contraction.

The case µY � P is vacuously true as the term contains a recursion
operator.

• The conclusion also follows in the cases of timeout, external and inter-
nal choice, parallel and sequential composition, and interleaving, since
those operators were all independently shown to be non-expanding.

• Lastly, assume that the induction hypothesis holds for P , and that P is
time-guarded for X and time-active. Assume furthermore that neither
P nor Q contains a recursion operator (otherwise the result is vacuously
true). We want to conclude that P ; Q is a contraction in X.

Since Q is a term not containing a recursion operator, we can invoke the
first part of this lemma to conclude that it represents a non-expanding
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function, as that part, once again, is easily seen to have been established
independently of any assumption about recursion. The induction hy-
pothesis and our assumption that P is time-guarded for X imply that
P is a contraction in X. Let us write P = P (X) and Q = Q(X),
ignoring for simplicity any other free variable (which at any rate would
be considered fixed). One can then prove by a simple structural in-
duction over the recursive definition of time-activity that behaviours of
duration j in R ∈ MR give rise to behaviours of duration at least j +1
in P (R) ; Q(R): it suffices to show that behaviours of P (R) ; Q(R)
consist of behaviours of P (R) of duration at least 1, followed by be-
haviours of Q(R), and then recall that P is a contraction and that Q
is non-expanding. One then concludes that P ; Q must be a contrac-
tion mapping in X with contraction factor at most 1/2. We omit the
details.

This concludes the base case.

The induction step proceeds in a nearly identical manner, except that
we can now assume that time-guarded terms containing k or fewer recursion
operators correspond to contraction mappings. We can then repeat the sort
of reasoning involving the Banach fixed point theorem which we carried out
earlier to discharge our proof obligations. As an illustration, let us show how
to handle the case µY � P in the recursive definition of time-guardedness in
X.

Our induction hypothesis states that, whenever P ′ is time-guarded in X
and contains k or fewer recursion operators, then P ′ represents a contraction
in X. We now assume that the term µY �P contains k+1 recursion operators
and that P is time-guarded in X; we must show that µY � P corresponds to
a contraction in X.

Observe that P = P (Y,X, ~Z) must contain exactly k recursion operators.
Since it is time-guarded in X, we can apply the induction hypothesis and
conclude that P is a contraction in X. Moreover, P must be time-guarded in
Y since our syntactic rules only allow an application of the operator µY to

such terms. Make a change of free variables in order to rewrite P (Y,X, ~Z) as

P ′(X,W, ~Z), where W ∈ VAR is a fresh variable. As P was time-guarded in
Y , P ′ is time-guarded in X, and clearly contains k recursion operator. Ap-
plying the induction hypothesis again, we conclude that P ′ corresponds to a
contraction in X, and therefore that P is a contraction in Y . Calculating the
fixed point by successive iterations, as we did earlier, enables us to conclude
that µY � P is non-expanding. And since P is a contraction in X, the same
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iteration technique easily yields that µY �P is also a contraction in X, which
is what we were required to show.

This completes the induction step and the proof of the lemma. �

Proposition A.10 (5.7) Let P = P (X, ~Y ) be a TCSP term which is time-

guarded for X. Then µX � P is the unique function F = F (~Y ) such that

F (~Y ) = P (F (~Y ), ~Y ).

Proof This follows immediately from the previous lemma and the Banach
fixed point theorem. If G = G(~Y ) is any other function that is a fixed point

of P when substituted for X, we find that, whenever we fix ~Y = ~S, we must
have F (~S) = G(~S) by the uniqueness part of the Banach fixed point theorem
and the fact that P~S(X) : MR −→ MR is a contraction. Therefore F = G
as claimed. �

Proposition A.11 (5.13) Finite variability—a program P ∈ TCSP can-
not perform unboundedly many actions within a finite number of tocks:

∀ k > 0 � ∃n = n(P, k) � ∀ tr ∈ (ΣX
tock

∪ {τ})?�

(P
tr

=⇒ ∧ ](tr � tock) 6 k) ⇒ ]tr 6 n.

We first require a number of preliminaries, definitions and lemmas alike.

The notion of syntactic binding which we will use is quite similar to that
introduced in the previous section: it consists in functions η : VAR −→
TCSP. Note however that, since well-timedness is here a crucial property,
we cannot merely constrain the range of our bindings to NODER.

We have standard applications of bindings to terms, substitutions, etc.

We now define the notion of time-bisimulation, an analogue to indexed
bisimulations which keeps tracks of time elapsed (number of tocks communi-
cated), rather than number of transitions and evolutions witnessed. Since our
treatment is in many respects similar to that of indexed bisimulations, our
exposition will be terser; omitted proofs, for instance, should be understood
to proceed here more or less as they did earlier.

Let {Rk | k ∈ N} be a family of relations between programs. This set is
a time-bisimulation if, for any k > 1, any P, P ′, Q,Q′′ ∈ TCSP, and any
µ ∈ ΣX ∪ {τ}, the following four conditions are met:
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(P Rk Q ∧ P
tock
−→ P ′) ⇒ ∃Q′ �Q

tock
−→ Q′ ∧ P ′ Rk−1 Q′

(P Rk Q ∧ P
µ

−→ P ′) ⇒ ∃Q′ �Q
µ

−→ Q′ ∧ P ′ Rk Q′

(P Rk Q ∧ Q
tock
−→ Q′′) ⇒ ∃P ′′ � P

tock
−→ P ′′ ∧ P ′′ Rk−1 Q′′

(P Rk Q ∧ Q
µ

−→ Q′′) ⇒ ∃P ′′ � P
µ

−→ P ′′ ∧ P ′′ Rk Q′′.

Given a time-bisimulation {Rk} and two terms P and Q, we formally
write P Rk Q if, for any syntactic binding η, Pη Rk Qη.

We define a family {∼k | k ∈ N} as follows: for any i > 0,

∼i =̂
⋃

{R | ∃ {Sk | k ∈ N} a time-bisimulation � R = Si}.

We now have:

Lemma A.12

1. {∼k} is a time-bisimulation, the strongest such.

2. Each ∼k is an equivalence relation.

3. Any nodes P and P ′ are ∼0-related.

4. For any k, k′ > 0, if k 6 k′ then ∼k′

⊆ ∼k.

Lemma A.13 For any k > 0, ∼k is preserved by all Timed CSP operators
other than recursion—in other words, ∼k is a congruence with respect to
these operators.1

We omit the straightforward proof, which proceeds in a manner very
similar to that of Proposition A.4.

Let {Rk | k ∈ N} be a family of relations between nodes and, for any

k, write R̃k to denote the composition ∼k ◦ Rk ◦ ∼k. The set {Rk} is a
time-bisimulation up to ∼ if, for any k > 1, any P, P ′, Q,Q′′ ∈ TCSP, and
any µ ∈ ΣX ∪ {τ}, the following four conditions are met:

1In fact, it is possible to show that, as with indexed bisimulations, each ∼k is a con-
gruence with respect to all of the operators of Timed CSP, but we will not require this
more complicated result here. A proof is given in [Oua00].
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(P Rk Q ∧ P
tock
−→ P ′) ⇒ ∃Q′ �Q

tock
−→ Q′ ∧ P ′ R̃k−1 Q′

(P Rk Q ∧ P
µ

−→ P ′) ⇒ ∃Q′ �Q
µ

−→ Q′ ∧ P ′ R̃k Q′

(P Rk Q ∧ Q
tock
−→ Q′′) ⇒ ∃P ′′ � P

tock
−→ P ′′ ∧ P ′′ R̃k−1 Q′′

(P Rk Q ∧ Q
µ

−→ Q′′) ⇒ ∃P ′′ � P
µ

−→ P ′′ ∧ P ′′ R̃k Q′′.

Lemma A.14 If {Rk |k ∈ N} is a time-bisimulation up to ∼, then, for each
k > 0, Rk ⊆ ∼k.

Proof (Sketch.) One first shows that {R̃k} is a full-fledged time-bisimula-
tion. This is a straightforward diagram chase requiring only the transitivity
of each ∼k (as per Lemma A.12).

Next, one notices that, for any k, Rk ⊆ R̃k, since each ∼k is reflexive
(Lemma A.12 again).

The result then follows by combining both these observations and invok-
ing the maximality of {∼k}. �

If η and η′ are syntactic bindings and k > 0, we write η ∼k η′ if, for all
X ∈ VAR, η(X) ∼k η′(X). We then have:

Lemma A.15 Let P ∈ TCSP and η ∼k η′ for some syntactic bindings η,
η′, and some fixed k > 0. Then Pη ∼k Pη′.

Proof (Sketch.) Define a family of relations {≈n} as follows. For n 6 k,
let ≈n = ≈k = {(Rη,Rη′) |R ∈ TCSP}. For greater values of n, let ≈n = ∅.

We need only show that {≈n} is a time-bisimulation up to ∼. The result
will follow by taking R = P and invoking Lemma A.14.

We proceed by structural induction on R. Let us tackle the cases of tock -
transitions on external choice, along with recursion, in illustration; all other
cases are at least as easy.

Without loss of generality, we pick n = k > 1 and thus consider the
relation ≈k. Let R = R1 2 R2. Our structural induction hypothesis states
that (R1η,R1η

′) and (R2η,R2η
′) both fulfill the four conditions for {≈k} to be

a time-bisimulation up to ∼. We must show the same holds for (Rη,Rη ′). As
stated above, we shall limit ourselves to (half of) the case of tock -transitions.
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So suppose that Rη
tock
−→ Q. Consulting the relevant inference rules, we

find that we must have R1η
tock
−→ Q1, R2η

tock
−→ Q2, and Q ≡ Q1 2 Q2.

By the induction hypothesis, we then conclude that R1η
′ tock
−→ Q′

1, with

Q1 ≈̃
k−1

Q′
1, i.e., Q1 ∼

k−1 S1 ≈
k−1 S ′

1 ∼
k−1 Q′

1.

Since S1 ≈
k−1 S ′

1, there is by definition some term E1 such that S1 ≡ E1η
and S ′

1 ≡ E1η
′.

Likewise, we find R2η
′ tock
−→ Q′

2, with Q2 ∼k−1 S2 ≡ E2η ≈k−1 E2η
′ ≡

S ′
2 ∼

k−1 Q′
2.

Let Q′ ≡ Q′
1 2 Q′

2. We clearly have Rη′ tock
−→ Q′. Moreover, since

∼k−1 preserves the external choice operator (as per Lemma A.13), we have
(Q1 2 Q2) ∼

k−1 (S1 2 S2), and likewise for the primed expression.

Stringing everything together, we get

Q ≡ (Q1 2 Q2) ∼
k−1 (S1 2 S2) ≡ (E1η 2 E2η) ≡ (E1 2 E2)η

≈k−1

(E1 2 E2)η
′ ≡ (E1η

′
2 E2η

′) ≡ (S ′
1 2 S ′

2) ∼
k−1 (Q′

1 2 Q′
2) ≡ Q′

i.e., Q ≈̃
k−1

Q′, as required.

We now consider the case of recursion. Note that (µX �R)η
τ

−→ (R[µX �
R/X])η and likewise (µX � R)η′ τ

−→ (R[µX � R/X])η′ (and these are the
only allowable behaviours). But (R[µX � R/X])η ≈k (R[µX � R/X])η′ by
definition, so we are done. �

Lemma A.16 If P is a TCSP term which is time-guarded for X, and η
is a syntactic binding, then for any programs Q and Q′, and any k > 0, if
Q ∼k Q′, then P [Q/X]η ∼k+1 P [Q′/X]η.

Proof This is a done by structural induction on the definition of time-
guardedness. All cases are straightforward save for the last one, which we
tackle here.

We must show that the result holds for P ≡ P1 ; P2 if it holds for P1 and
P2. Here P1 is time-guarded for X and time-active, whereas no assumptions
are made about P2.

We are assuming that Q ∼k Q′. From the induction hypothesis, we get
that P1[Q/X]η ∼k+1 P1[Q

′/X]η. Moreover, since P1 is time-active, so are
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P1[Q/X]η and P1[Q
′/X]η. (This is easily shown by structural induction on

time-activity.)

By Lemma A.15, we also have that P2[Q/X]η ≡ P2η[X := Q] ∼k

P2η[X := Q′] ≡ P2[Q
′/X]η, since it is assumed that Q ∼k Q′.

Let us define a function g : TCSP −→ N ∪ {∞} to give us, for any
program R, the smallest number of tocks that R must communicate before
it is potentially able to terminate successfully:

g(R) = inf{](tr � tock) | R
tr

=⇒ ∧ 〈X〉 in tr}.

We remark that, since P1[Q/X]η is time-active, g(P1[Q/X]η) > 1. (This can
be shown via a simple induction on time-activity.)

We now define a family of relations {≈n | n ∈ N} between programs, as
follows: for any n, let

≈n = ∼n ∪{((R1 ; S1), (R2 ; S2)) | ∃ i, j > 0 � n = i + j ∧

S1 ∼
i S2 ∧ R1 ∼

i+j R2 ∧ g(R1) > j}.

From our earlier observations, we immediately have that P [Q/X]η ≡
(P1[Q/X]η ; P2[Q/X]η) ≈k+1 (P1[Q

′/X]η ; P2[Q
′/X]η) ≡ P [Q′/X]η. The

result follows by observing that {≈n} is easily verified to be a time-bisimu-
lation. �

Let P ∈ TCSP be time-guarded for X, and let η be a syntactic binding.
We define a function F = FP,X,η : TCSP −→ TCSP, as follows: F (Q) =̂
(SKIP ; P )[Q/X]η. We have:

Lemma A.17 Let P ∈ TCSP be time-guarded for X, and let η be a syn-
tactic binding. For any k > 0, F k(STOP) ∼k (µX � P )η, where F = FP,X,η

is as above.

Proof We proceed by induction on k. The base case k = 0 is trivial
since, according to Lemma A.12, all programs are ∼0-related. Assume that
the result holds for k. We have the following sequence of deductions, select
justifications of which follow.
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F k+1(STOP) ≡ F (F k(STOP))

≡ (SKIP ; P )[F k(STOP)/X]η

≡ SKIP ; (P [F k(STOP)/X]η)

∼k+1 SKIP ; (P [(µX � P )η/X]η) (1)

∼k+1 (µX � P )η. (2)

This concludes the induction step. (1) follows from Lemma A.16, using the
fact that F k(STOP) ∼k (µX � P )η by the induction hypothesis, and the
fact that left sequential composition with SKIP preserves time-bisimulation
(thanks to Lemma A.13). (2) rests on the observation that SKIP ; (P [(µX �
P )η/X]η) ∼n (µX � P )η for any n > 0, as an immediate calculation of the
possible executions will attest. �

Lemma A.18 Let P, P ′ ∈ TCSP, k > 1, and suppose that P ∼k P ′. Then

for any τ -trace tr with ](tr � tock) < k and such that P
tr

=⇒, we have P ′ tr
=⇒.

Proof The τ -trace tr must originate from some execution e ∈ execR(P ).
Since P ∼k P ′, this execution can be matched for a duration of k tocks by
some execution e′ ∈ execR(P ′). It is plain that e′ also gives rise to tr . �

We are now in a position to give the proof of Proposition A.11.

Proof (Sketch.) We proceed by structural induction on terms. Specifi-
cally, let us call a program finitely variable if it satisfies the conclusion of
Proposition A.11. We show by induction on P that whenever η is a syntac-
tic binding such that η(X) is finitely variable for all X ∈ VAR, then Pη is
finitely variable. Here P ∈ TCSP, and in particular is well-timed.

All cases of the structural induction are straightforward save for recursion,
which we handle below.

We are assuming that Pη is finitely variable whenever η is pointwise
finitely variable, and aim to show that (µX � P )η is also finitely variable
whenever η is pointwise finitely variable. Note that our grammar requires P
to be time-guarded for X.

Let k > 0 be given, and let η be fixed. By Lemma A.16, (µX �P )η ∼k+1

F k+1(STOP), where F = FP,X,η is the function satisfying F (Q) = (SKIP ;
P )[Q/X]η defined earlier.

We first show that F n(STOP) is finitely variable for all n > 0. This is a
simple induction on n which has a trivial base case n = 0. For the induction
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step, assuming the statement holds for n, we have

F n+1(STOP) ≡ F (F n(STOP))

≡ (SKIP ; P )[F n(STOP)/X]η

≡ SKIP ; (P (η[X := F n(STOP)])).

Now P (η[X := F n(STOP)]) is finitely variable by the structural induction
hypothesis on P , our assumptions on η, and the induction hypothesis on
n. Therefore SKIP ; (P (η[X := F n(STOP)])) ≡ F n+1(STOP) are finitely
variable as well, which completes the induction on n.

Let us now consider any τ -trace tr with ](tr � tock) 6 k and such

that (µX � P )η
tr

=⇒. Since (µX � P )η ∼k+1 F k+1(STOP), we can invoke

Lemma A.18 to conclude that F k+1(STOP)
tr

=⇒. But since F k+1(STOP) is
finitely variable, we must have ]tr 6 n, for some uniform n = n(k). Since
tr was an arbitrary τ -trace of (µX � P )η containing k tocks or fewer, we
conclude that (µX � P )η is indeed finitely variable, as required. �

Theorem A.19 (5.14) For any TCSP program P , we have

ΦR(P ) = RJP K.

Proof We first need some preliminaries. Define a syntactic binding to
be a function η : VAR −→ TCSP. Syntactic bindings are the operational
analogue of semantic bindings.

For P ∈ TCSP, the application Pη ∈ TCSP is obtained via substitution
of programs for free variables in the obvious way.

Given a syntactic binding η, define the associated semantic binding η as
follows: for any X ∈ VAR, η(X) = ΦR(η(X)). (See, however, the caveat
below.)

The more general statement we would then like to prove is that, for any
P ∈ TCSP, and any syntactic binding η,

ΦR(Pη) = RJP Kη. (A.1)

It is plain that this would establish the theorem, since programs have no free
variables and therefore make bindings irrelevant.

The problem with this approach is that, in spite of our claim two para-
graphs ago, there is no a priori guarantee that η is indeed a semantic binding,
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in the sense that its range be contained in MR, because we do not yet know
that the function ΦR’s range (when considered over domain TCSP) is itself
contained in MR. Therefore, we cannot be sure that the right-hand side
RJP Kη of Equation (A.1) is even well-defined!

There are two ways to circumvent this difficulty. The most obvious is to
prove directly, from the operational semantics and the definition of ΦR, that,
for any P ∈ TCSP, ΦR(P ) ∈ MR. This approach, which is implicitly taken
in [Sch95] in the proof of that paper’s congruence result, boils down to a
somewhat tedious verification of the denotational axioms. Proposition 5.13
(the operational version of finite variability), for instance, readily implies
Axiom R7 (the denotational version of finite variability) for ΦR(P ); all the
other axioms of MR must likewise be shown to hold.

An alternative device can be employed, as follows. First, observe that
every Timed CSP operator (apart from X and µX) can easily be extended
to the whole of P(TEST ) (as opposed to MR). Consequently, semantic
bindings can too be defined to assume values in P(TEST ) rather than being
restricted to MR. Moreover, P(TEST ) is itself easily seen to be a complete
ultrametric space under the ‘same’ metric as MR. TCSP terms again cor-
respond to non-expanding functions, and terms that are time-guarded for
X naturally correspond to contractions in X. (These facts are all readily
verified by examining the relevant definitions and proofs, and noting that
nowhere in the course of dealing with these statements was the fact that we
were working in MR—rather than P(TEST )—used in any essential way.) It
then follows that recursions have unique fixed points, which is the one crucial
fact we will need to establish the theorem. Note that, since MR is a subset
of P(TEST ), the unique fixed points computed in both spaces must agree.

We now show that, for any term P ∈ TCSP, and any syntactic binding
η, Equation (A.1) is satisfied. We proceed by structural induction on P .
Most instances are easy if occasionally tedious, and we therefore concentrate
on four select cases.

case P ‖
B

Q: We must show that each of ΦR((P ‖
B

Q)η) and RJP ‖
B

QKη

is a subset of the other. Since bindings play no real rôle here, let us
for simplicity dispense with η and η by assuming that P and Q are
themselves programs.

Let u ∈ ΦR(P ‖
B

Q). Then there is some e ∈ exec(P ‖
B

Q) such that

e test u. Write e = R0
z1−→ R1

z2−→ . . .
zn−→ Rn. Each Rk must be of

the form Pi ‖
B

Qj, and each zk+1 must have been performed either by
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both of Pi and Qj (precisely when zk+1 ∈ B ∪ {tock}) or by exactly
one of Pi and Qj.

We can thus decompose the execution e into executions eP = P0
x1−→

P1
x2−→ . . .

xl−→ Pl ∈ exec(P ) and eQ = Q0
y1
−→ Q1

y2
−→ . . .

ym
−→ Qm ∈

exec(Q). Write eP test uP and eQ test uQ, where uP and uQ are
maximal such tests under the information ordering ≺; that is to say,
the refusals in these tests are as large as possible.

We now claim that u ∈ uP ‖
B

uQ. This is a simple inspection of the

definitions. Consider, for instance, Rk

zk+1
−→ Rk+1, where Rk = Pi ‖

B

Qj.

If zk+1 = τ , then this particular transition of e contributes nothing
to u, and can be dismissed. Note that the corresponding xi+1 or yj+1

will itself also be a τ and contribute nothing to uP or uQ. Let us
therefore first suppose that zk+1 ∈ B ∪ {tock}. If D is a refusal such
that Rk test 〈D〉, it easily follows from the fact that Rk ≡ Pi ‖

B

Qj

that there are (maximal) refusals A and C such that Pi test 〈A〉 and
Qj test 〈C〉 and 〈D〉 ∈ 〈A〉 ‖

B

〈C〉. And since zk+1 ∈ B ∪ {tock}, we

must have xi+1 = yj+1 = zk+1 and Rk+1 ≡ Pi+1 ‖
B

Qj+1. We therefore

see that the contribution 〈D, zk+1〉 of e in u is accounted for by the
contributions 〈A, zk+1〉 and 〈C, zk+1〉, respectively of eP and eQ to uP

and uQ.

A similar argument handles the case zk+1 /∈ B ∪ {tock , τ}. We con-
clude that indeed u ∈ uP ‖

B

uQ. Since eP ∈ exec(P ) and eP test uP , we

have, by definition, that uP ∈ ΦR(P ). We can then invoke the induc-
tion hypothesis to conclude that uP ∈ RJP K. Likewise, uQ ∈ RJQK.
Naturally, it follows by definition that u ∈ RJP ‖

B

QK, as required.

To establish the reverse containment, one starts with u ∈ RJP ‖
B

QK

and then essentially retraces one’s steps back into the statement that
u ∈ ΦR(P ‖

B

Q). This simple procedure requires little else than careful

bookkeeping, and is left to the reader.

case P \ A: Here again let us disregard syntactic and semantic bindings
which are at any rate of little importance. Let v ∈ ΦR(P \ A). We
must then have e = P0 \ A

x1−→ P1 \ A
x2−→ . . .

xn−→ Pn \ A ∈
exec(P \ A) such that e test v. It is an easy matter to show that

the execution e ‘originates’ from some execution e′ = P0
y1
−→ P1

y2
−→



A.2 Proofs for Chapter 5 159

. . .
yn
−→ Pn ∈ exec(P ), where xi = yi if yi /∈ A, and otherwise xi = τ ,

for all 1 6 i 6 n. Note, in addition, that, thanks to Rule 5.28 and

Proposition 5.10, whenever Pi
tock
−→ Pi+1, it must have been the case

that initτ (Pi) ∩ (A ∪ {τ}) = ∅.

Let u be a ≺-maximal test with the property that e′ test u. Note that,
by the property of e′ quoted above, it must be the case that u is A-
urgent. And since u ∈ ΦR(P ), we can invoke the induction hypothesis
to conclude that u ∈ RJP K. It remains to show that v ≺ u \ A. But
this easily follows from the definition of hiding on tests together with
the definition of the relation test.

The reverse containment is easily obtained by reversing the argument
just given.

case X: We have that ΦR(Xη) = ΦR(η(X)) = η(X) = RJXKη as required.

case µX � P : We recall our induction hypothesis which states that, if ρ is
any syntactic binding, then ΦR(Pρ) = RJP Kρ. We now have

ΦR((µX � P )η) = ΦR(P [µX � P/X]η) (1)

= ΦR(P (η[X := (µX � P )η])) (2)

= RJP Kη[X := (µX � P )η] (3)

= RJP K(η[X := ΦR((µX � P )η)]). (4)

To see (1), notice first that the only initial operational step allowed
(µX �P )η is a τ -transition into P [µ X �P/X]η. Since the test relation
discards τ -transitions from executions, (1) follows. (2) is an immediate
consequence of the fact that P [µ X � P/X]η ≡ P (η[X := (µX � P )η]).
(3) is an application of the induction hypothesis, and (4) follows from
the fact that η[X := (µX � P )η](Y ) is by definition equal to ΦR(η[X :=
(µX � P )η](Y )), which is ΦR((µX � P )η) if Y ≡ X, and ΦR(η(Y )) =
η(Y ) otherwise.

This string of equalities implies that ΦR((µX � P )η) is a fixed point of
the function λx.RJP K(η[X := x]) : P(TEST ) −→ P(TEST ). Since
we know that RJµX � P Kη is the unique fixed point of this function,
we must conclude that ΦR((µX � P )η) = RJµX � P Kη as required.

�



Appendix B

Power-Simulations and Model
Checking

We define a power-simulation relation on the labelled transition systems of
programs and show that it corresponds precisely to test refinement in MR.
This provides us with a model checking algorithm for deciding refinement
of processes with finite LTS’s. The ideas presented here are, in much less
sophisticated form, similar to those upon which FDR refinement checks are
based—more on this topic can be found in [Ros97].

Let P ∈ NODER be fixed. For u ∈ TEST , let P/û represent the set of
nodes reachable from P upon observing the test û_〈•〉 (the last refusal of u
being discarded). Formally:

P/û =̂ {Q ∈ NODER | ∃ ê_Q ∈ execR(P ) � ê_Q test û_〈•〉}.

We use this to build the power labelled transition system PLTSR(P ) of P ,
as follows. Its set of power nodes is PLTSN

R =̂ {P/û | u ∈ TEST}, with an
oriented edge (A, a)—where A ∈ REF and a ∈ ΣX

tock
—from P/û to P/v̂ if

P/(û_〈A, a, •〉) = P/v̂; we represent this with the notation P/û
A,a
−→ P/v̂.

We remark that PLTSR(P ) is finite whenever LTSR(P ) is. Note moreover
that PLTSR(P ) is always deterministic: no power node ever has two distinct
identically labelled edges emerging from it.

Given a power node p ∈ PLTSN
R (P ), we let refs(p) =̂ {A ∈ REF | ∃Q ∈

p �Q ref A}.

Let P,Q ∈ NODER. We say that a relation R on PLTSN
R (P )×PLTSN

R (Q)
is a power-simulation if the following condition holds:
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∀ q ∈ PLTSN
R (Q) � ∀ p ∈ PLTSN

R (P ) � p R q ⇒

(refs(q) ⊆ refs(p) ∧

∀(q
e

−→ q′) ∈ PLTSR(Q)�

∃ p′ � p
e

−→ p′ ∈ PLTSR(P ) ∧ p′ R q′).

We now have:

Definition B.1 For P,Q ∈ NODER, we say that P power-simulates Q,
written P psimR Q, if there exists R a power-simulation on PLTSN

R (P ) ×
PLTSN

R (Q) such that P/〈〉 R Q/〈〉.

Finally, we have the following main result:

Theorem B.1 For any P,Q ∈ TCSP,

P psimR Q ⇔ P vR Q.

Proof (Sketch.) Follows easily from Theorem 5.14 and the definition of
power-simulation. �

Theorem B.1 yields an algorithm to decide the refinement P vR Q when-
ever the labelled transition systems of P and Q are finite. Consider the finite
set PLTSN

R (P ) × PLTSN
R (Q), and let Check and Pend be two ‘set-variables’,

both intended as subsets of PLTSN
R (P ) × PLTSN

R (Q), with Check initially
empty and Pend initially containing the single pair (P/〈〉, Q/〈〉). Repeat the
following steps until Pend is empty:

1. Pick a pair (p, q) ∈ Pend.

2. Check whether refs(q) ⊆ refs(p). If this is not the case, exit immediately
with the answer P v6 R Q.

3. For each edge q
e

−→ q′ in PLTSR(Q), check whether there is an edge
p

e
−→ p′ in PLTSR(P ). If this is not the case, exit immediately with

the answer P v6 R Q.

4. Add (p, q) to Check.

5. For each edge q
e

−→ q′ in PLTSR(Q) and corresponding unique edge
p

e
−→ p′ in PLTSR(P ), add (p′, q′) to Pend unless (p′, q′) is in Check.
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It is not difficult to see that this algorithm will always terminate. If the
loop is successfully exited (i.e., upon finding Pend empty), then Check is a
power-simulation and thus P vR Q. On the other hand, if P v6 R Q, then
the loop will necessarily be exited with this answer at some point. The easy
verification of these claims is left to the reader.

We conclude by pointing out that refinement in MUR can be decided,
whenever the labelled transition systems of the processes involved are finite,
by using similar definitions and a similar algorithm.



Appendix C

Operational Semantics for the
Timed Failures-Stability Model

We give an operational semantics for Reed and Roscoe’s timed failures-
stability model for Timed CSP, denoted here MTFS , with associated semantic
map FTSJ·K. This model, presented in [RR87, Ree88, RR99], improves upon
MTF in that it associates a stability value to every timed failure, which value
represents the least time by which a process, given its observed behaviour,
can be guaranteed to have become stable. Stability here refers to invariance
under the passage of time.

To capture this notion operationally, two different types of evolutions are
introduced: stable evolutions (implying that the process has already reached
stability), as well as unstable evolutions (implying that the process is headed
towards some eventual internal transition, and is therefore unstable).

The style and conventions of this appendix are very similar to those of
Section 3.2. We use as nodes the previously defined collection NODETF of
Timed CSP programs with fractional delays and no well-timedness require-
ments. Open nodes, likewise, are elements of NODETF . a and b stand for
(non-tock) visible events, i.e., belong to ΣX. A ⊆ Σ and B ⊆ ΣX. µ can be a

visible event or a silent one (µ ∈ ΣX ∪ {τ}). P
µ

−→ P ′ means P can perform
an immediate and instantaneous µ-transition, and become P ′ (communicat-

ing µ in the process if µ is a visible event). P
µ

X−→ means that P cannot

possibly do a µ at that particular time. P
t
 1 P ′ implies that P is a stable

node, and can become P ′ (also stable) simply by virtue of letting t units of

time elapse, where t is a non-negative real number. P
t
 2 P ′ states that the
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unstable node P can become P ′ by letting t time units elapse. When using

the generic notation
t
 x, it is understood that x stands for either 1 or 2.

The transition rules are as follows:

STOP
t
 1 STOP

(C.1)

SKIP
t
 1 SKIP

(C.2)

SKIP
X

−→ STOP
(C.3)

WAIT u
t
 2 WAIT (u − t)

[ t 6 u ] (C.4)

WAIT 0
τ

−→ SKIP
(C.5)

P1
t
 x P ′

1

P1

u
� P2

t
 2 P ′

1

u−t
� P2

[ t 6 u ] (C.6)

P1

0
� P2

τ
−→ P2

(C.7)

P1
τ

−→ P ′
1

P1

u
� P2

τ
−→ P ′

1

u
� P2

(C.8)

P1
a

−→ P ′
1

P1

u
� P2

a
−→ P ′

1

(C.9)
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(a −→ P )
t
 1 (a −→ P )

(C.10)

(a −→ P )
a

−→ P
(C.11)

(a : A −→ P (a))
t
 1 (a : A −→ P (a))

(C.12)

(a : A −→ P (a))
b

−→ P (b)
[ b ∈ A ] (C.13)

P1
t
 x P ′

1 P2
t
 y P ′

2

P1 2 P2
t
 max{x,y} P ′

1 2 P ′
2

(C.14)

P1
τ

−→ P ′
1

P1 2 P2
τ

−→ P ′
1 2 P2

P2
τ

−→ P ′
2

P1 2 P2
τ

−→ P1 2 P ′
2

(C.15)

P1
a

−→ P ′
1

P1 2 P2
a

−→ P ′
1

P2
a

−→ P ′
2

P1 2 P2
a

−→ P ′
2

(C.16)

P1 u P2
τ

−→ P1 P1 u P2
τ

−→ P2

(C.17)

P1
t
 x P ′

1 P2
t
 y P ′

2

P1 ‖
B

P2
t
 max{x,y} P ′

1 ‖
B

P ′
2

(C.18)

P1
µ

−→ P ′
1

P1 ‖
B

P2
µ

−→ P ′
1
‖
B

P2

[ µ /∈ B, µ 6= X ] (C.19a)
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P2
µ

−→ P ′
2

P1 ‖
B

P2
µ

−→ P1 ‖
B

P ′
2

[ µ /∈ B, µ 6= X ] (C.19b)

P1
a

−→ P ′
1 P2

a
−→ P ′

2

P1 ‖
B

P2
a

−→ P ′
1
‖
B

P ′
2

[ a ∈ B ] (C.20)

P1
X

−→ P ′
1

P1 ‖
B

P2
X

−→ P ′
1

[X /∈ B ]
P2

X
−→ P ′

2

P1 ‖
B

P2
X

−→ P ′
2

[X /∈ B ] (C.21)

P1
t
 x P ′

1 P2
t
 y P ′

2

P1 9 P2
t
 max{x,y} P ′

1 9 P ′
2

(C.22)

P1
µ

−→ P ′
1

P1 9 P2
µ

−→ P ′
1 9 P2

[ µ 6= X ] (C.23a)

P2
µ

−→ P ′
2

P1 9 P2
µ

−→ P1 9 P ′
2

[ µ 6= X ] (C.23b)

P1
X

−→ P ′
1

P1 9 P2
X

−→ P ′
1

P2
X

−→ P ′
2

P1 9 P2
X

−→ P ′
2

(C.24)

P1
t
 x P ′

1 P1
X

X−→

P1 ; P2
t
 x P ′

1 ; P2

(C.25)

P1
X

−→ P ′
1

P1 ; P2
τ

−→ P2

(C.26)

P1
µ

−→ P ′
1

P1 ; P2
µ

−→ P ′
1 ; P2

[ µ 6= X ] (C.27)
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P
t
 x P ′ ∀ a ∈ A � P

a
X−→

P \ A
t
 x P ′ \ A

(C.28)

P
a

−→ P ′

P \ A
τ

−→ P ′ \ A
[ a ∈ A ] (C.29)

P
µ

−→ P ′

P \ A
µ

−→ P ′ \ A
[ µ /∈ A ] (C.30)

P
t
 x P ′

f−1(P )
t
 x f−1(P ′)

(C.31)

P
µ

−→ P ′

f−1(P )
µ

−→ f−1(P ′)
[ µ ∈ {τ,X} ] (C.32)

P
f(a)
−→ P ′

f−1(P )
a

−→ f−1(P ′)
(C.33)

P
t
 x P ′

f(P )
t
 x f(P ′)

(C.34)

P
µ

−→ P ′

f(P )
µ

−→ f(P ′)
[ µ ∈ {τ,X} ] (C.35)

P
a

−→ P ′

f(P )
f(a)
−→ f(P ′)

(C.36)

µX � P
τ

−→ P [(µX � P )/X].
(C.37)

The remark made in Section 3.2 concerning negative premisses (appearing
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in Rules C.25 and C.28) applies here as well.

We now present, without proof, a number of properties enjoyed by this
operational semantics.

If P and Q are open nodes, we write P ≡ Q to indicate that P and Q
are syntactically identical.

If P is a closed node, we define initTFS (P ) to be the set of visible events
that P can immediately perform: initTFS (P ) =̂ {a ∈ ΣX | P

a
−→}.

For P a closed node, we define an execution of P to be a sequence e =
P0

z17−→ P1
z27−→ . . .

zn7−→ Pn (with n > 0), where P0 ≡ P , the Pi’s are nodes,

and each subsequence Pi

zi+1
7−→ Pi+1 in e is either a transition Pi

µ
−→ Pi+1

(with zi+1 = µ), or an evolution Pi
t
 x Pi+1 (with zi+1 = t). In addition,

every such transition or evolution must be validly allowed by the operational
inference Rules C.1–C.37. The set of executions of P is written execTFS (P ),
or exec(P ) for short. By convention, writing down a transition (or sequence
thereof) such as P

a
−→ P ′, is equivalent to stating that P

a
−→ P ′ ∈ exec(P );

the same, naturally, goes for evolutions.

Every execution e gives rise to a timed τ -trace abs(e) in the obvious way,
by removing nodes and evolutions from the execution, but recording events’
time of occurrence in agreement with e’s (stable and unstable) evolutions.

The duration dur(e) of an execution e is equal to the sum of its (stable
and unstable) evolutions.

Proposition C.1 A node cannot be both stable and unstable:

(P
t
 x P ′ ∧ P

t′

 y P ′′) ⇒ x = y.

Proposition C.2 A stable node is invariant under the passage of time, and
can evolve up to any time:

P
t
 1 P ′ ⇔ (P ≡ P ′ ∧ ∀ t′ > 0 � P

t′

 1 P ).

Proposition C.3 Time determinacy:

(P
t
 x P ′ ∧ P

t
 x P ′′) ⇒ P ′ ≡ P ′′.

Proposition C.4 Persistency—the set of possible initial visible events re-
mains constant under evolution:

P
t
 x P ′ ⇒ init(P ) = init(P ′).
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Proposition C.5 Time continuity:

P
t+t′

 x P ′ ⇔ ∃P ′′ � P
t
 x P ′′ t′

 x P ′.

Proposition C.6 Maximal progress, or τ -urgency:

P
τ

−→ ⇒ ∀ t > 0 � @ P ′ � P
t
 x P ′.

Corollary C.7

(P
t
 x P ′ τ

−→ ∧ P
t′

 x P ′′ τ
−→) ⇒ (t = t′ ∧ x = 2).

Proposition C.8 A node P can always evolve up to the time of the next τ
action, or up to any time if no τ action lies ahead:

∀ t > 0 � (@ P ′ � P
t
 x P ′) ⇒ (P

τ
−→ ∨ ∃ t′ < t, P ′′ � P

t′

 2 P ′′ τ
−→).

Proposition C.9 An unstable node cannot evolve forever:

P
t
 2 P ′ ⇒ ∃ t′, P ′′ � P

t′

 2 P ′′ τ
−→.

Proposition C.10 Finite variability—a program P ∈ TCSP cannot per-
form unboundedly many action in a finite amount of time:

∀ t > 0 � ∃n = n(P, t) ∈ N � ∀ e ∈ exec(P ) � dur(e) 6 t ⇒ ]abs(e) 6 n.

Unsurprisingly, this operational semantics has tight connections with the
other operational semantics presented in this thesis, and in particular with
that associated with MTF :

Proposition C.11 For any program P ∈ TCSP,

P
µ

−→ P ′ ∈ execTF ⇔ P
µ

−→ P ′ ∈ execTFS

P
t
 P ′ ∈ execTF ⇔ ∃x � P

t
 x P ′ ∈ execTFS .
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A set of visible events is refused by a node P if P cannot immediately
perform a τ -transition and has no valid initial transition labelled with an
event from that set. Thus for A ⊆ ΣX, we write P ref A if P

τ
X−→ ∧

A ∩ init(P ) = ∅.

An execution e of a node P is said to fail a timed failure-stability triple
(s, α,ℵ) (where α ∈ R+ represents an approximation from below of the sta-
bility value of P on (s,ℵ)) if the timed trace s corresponds to the execution
e, the nodes of e can always refuse the relevant parts of ℵ, and α is the least
time following the completion of all transitions in e by which P is not ob-
served to be unstable. We write this relation as e failS (s, α,ℵ). It is defined
inductively on e as follows:

P failS (〈〉, 0, ∅) ⇔ true

(P
τ

−→)_e′ failS (s, α,ℵ) ⇔ e′ failS (s, α,ℵ)

(P
a

−→)_e′ failS (〈(0, a)〉_s′, α,ℵ) ⇔ a 6= τ ∧ e′ failS (s′, α,ℵ)

(P
t
 2)_e′ failS (s, α,ℵ) ⇔ P ref σ(ℵ |� t) ∧

e′ failS (s − t, α − t,ℵ − t)

(P
t
 1)_e′ failS (〈〉, 0,ℵ) ⇔ abs(e′) = 〈〉 ∧ P ref σ(ℵ) ∧

end(ℵ) 6 t + dur(e′)

(P
t
 1)_e′ failS (s, α,ℵ) ⇔ abs(e′) 6= 〈〉 ∧ P ref σ(ℵ |� t) ∧

e′ failS (s − t, α − t,ℵ − t).

The SUP operator on sets of timed failure-stability triples is taken from
[RR99]:

SUP(S) =̂ {(s, α,ℵ) | (s,ℵ) ∈ TFailures(S) ∧ α = sup{β | (s, β,ℵ) ∈ S}}

where TFailures((s, α,ℵ)) =̂ (s,ℵ), etc.

Finally, we define the function ΦTFS , which extracts the timed failure-
stability denotational representation of a program from its set of executions.

Definition C.1 For P ∈ TCSP, we set

ΦTFS (P ) =̂ SUP{(s, α,ℵ) | ∃ e ∈ execTFS (P ) � e failS (s, α,ℵ)}.

We can now state the chief congruence result:

Theorem C.12 For any TCSP program P , we have

ΦTFS (P ) = FTSJP K.
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