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Chapter 6

The Complexity of
Constraint Languages

David Cohen & Peter Jeavons

6.1 Introduction and Outline

One of the most fundamental challenges in constraint programming is to understand the
computational complexity of problems involving constraints. It has been shown that the
class of all constraint satisfaction problem instances is NP-hard [71], so it is unlikely
that efficient general-purpose algorithms exist for solving all forms of constraint prob-
lem. However, in many practical applications the instances that arise have special forms
that enable them to be solved more efficiently [11, 25, 69, 82].

One way in which this occurs is that there is some special structure in the way that the
constraints overlap and intersect each other. The natural theory for discussing the structure
of such interaction between constraints is the mathematical theory of hypergraphs. Much
work has been done in this area, and many tractable classes of constraint problems have
been identified based on structural properties (see Chapter 5). There are strong parallels
between this work and similar investigations into the structure of so-calledconjunctive
queriesin relational databases [41, 58].

Another way in which constraint problems can be defined which are easier to solve
than in the general case is when thetypes of constraintsare limited. The natural theory
for discussing the properties of constraint types is the mathematical theory of relations and
their associated algebras. Again considerable progress has been made in this investigation
over the past few years. For example, a complete characterisation of tractable constraint
types is now known for both 2-element domains [85] and 3-element domains [14]. In
addition, a number of novel efficient algorithms have been developed for solving particular
types of constraint problems over both finite and infinite domains [3, 8, 16, 25, 26, 28, 63].

In this chapter we will focus on the second approach. That is, we will investigate
how the complexity of solving constraint problems varies with the types of constraints
which are allowed. One fundamental open research problem in this area is to characterise
exactly which types of constraints give rise to constraint problems which can be solved
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in polynomial time. This problem is important from a theoretical perspective, because
it helps to clarify the boundary between tractability and intractability in a wide range of
combinatorial search problems [27, 37, 49, 62]. It is also important from a practical per-
spective, as it allows the development of constraint programming languages which exploit
the existence of diverse families of tractable constraints to provide more efficient solution
techniques [69, 82].

In this chapter a set of types of constraints will be called aconstraint language. Sec-
tion 6.2 gives the basic definitions, and Section 6.3 lists some typical examples of tractable
(and intractable) constraint languages.

In Section 6.4 we present the mathematical theory that leads us to the major results in
the area: we will characterise the complexity of constraint languages (over finite domains)
in terms of properties of associated finite algebras.

In Section 6.5 we show how the algebraic theory can be used to identify tractable
constraint languages and select an appropriate algorithm. This section presents a strong
conjecture for a simple algebraic characterisation of all tractable constraint languages. We
will also show that a direct result of the theory is that if the decision problem for a constraint
language can be solved in polynomial time, then so can the search problem. In other words,
for any language for which it can be decided in polynomial time whether a solution exists,
a solution can be found in polynomial time.

In Section 6.6 we consider how the algebraic theory can be extended to deal with
constraint languages over infinite domains, and in Section 6.7 we consider multi-sorted
constraint languages (where different variables can take their values from different sets).

Finally, in Section 6.8 we briefly consider some alternative approaches, including a
constructive approach which builds new tractable constraint languages by combining sim-
pler languages. This theory applies to constraint languages over both finite and infinite
domains. This constructive approach has a rather different flavour from the more descrip-
tive algebraic approach, and the two approaches have not yet been fully unified.

We conclude the chapter in Section 6.9 with a discussion of possible future work in
this exciting area.

6.2 Basic Definitions

In this section we begin by defining the fundamental decision problem associated with any
given constraint language. It is the complexity of this decision problem that is the main
focus of this chapter.

The central notion in the study of constraints and constraint satisfaction problems is
the notion of arelation.

Definition 1. For any setD, and any natural numbern, the set of alln-tuples of elements
of D is denoted byDn. Theith component of a tuplet will be denoted byt[i].

A subset ofDn is called ann-ary relation overD. The set of all finitary relations over
D is denoted byRD.

A constraint languageoverD is a subset ofRD.

The ‘constraint satisfaction problem’ was introduced by Montanari [75] in 1974 and
has been widely studied [33, 37, 65, 71, 72, 73] (see Chapter 2). In this chapter we study a
parameterised version of the standard constraint satisfaction problem, in which the param-
eter is a constraint language specifying the possible forms of the constraints.
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Definition 2. For any setD and any constraint languageΓ overD, theconstraint satis-
faction problemCSP(Γ) is the combinatorial decision problem with

Instance: A triple 〈V,D, C〉, where

• V is a set ofvariables;

• C is a set ofconstraints, {C1, . . . , Cq}.
• Each constraintCi ∈ C is a pair 〈si, Ri〉, where

– si is a tuple of variables of lengthni, called theconstraint scope;
– Ri ∈ Γ is anni-ary relation overD, called theconstraint relation.

Question: Does there exist asolution, that is, a functionϕ, from V to D, such that, for
each constraint〈s,R〉 ∈ C, with s = 〈v1, . . . , vn〉, the tuple〈ϕ(v1), . . . , ϕ(vn)〉
belongs to the relationR?

The setD, specifying the possible values for the variables, is called thedomain of the
problem. The set of solutions to a CSP instanceP = 〈V, D, C〉 will be denotedSol(P).

In order to determine the computational complexity of a constraint satisfaction problem
we need to specify how instances are encoded as finite strings of symbols. Thesizeof a
problem instance can be taken to be the length of a string specifying the variables, the
domain, all constraint scopes and corresponding constraint relations. We shall assume in
all cases that this representation is chosen so that the complexity of determining whether
a constraint allows a given assignment of values to the variables in its scope is bounded
by a polynomial function of the length of the representation. For finite domains it is most
straightforward to assume that the tuples in the constraint relations are listed explicitly
(although in practice the constraint relations are likely to be defined implicitly).

Throughout the chapter we shall be concerned with distinguishing between constraint
languages which give rise to tractable problems (i.e., problems for which there exists a
polynomial-time solution algorithm) and those which do not. To ensure that tractability
does not depend on the way in which the relations are encoded, we define the notion of a
tractable constraint language in a way that depends on finite subsets only.

Definition 3. A constraint language,Γ, is said to betractableif CSP(Γ′) can be solved in
polynomial time, for each finite subsetΓ′ ⊆ Γ.

A constraint language,Γ, is said to beNP-completeif CSP(Γ′) is NP-complete, for
some finite subsetΓ′ ⊆ Γ.

There are known to be infinitely many computational problems which are neither solv-
able in polynomial time nor NP-complete [66], but we shall see below that all constraint
languages over domains of size 2 and 3 are known to be either tractable or NP-complete.
The same dichotomy is conjectured to hold for all constraint languages over any finite
domain (see Conjecture 52 below), although this question is still open [11, 37].

6.3 Examples of Constraint Languages

This section introduces some typical constraint languages that we will be concerned with
in this chapter. For each language mentioned we simply state in this section whether it
is known to be tractable or NP-complete. A more detailed discussion of many of these
languages can be found later in the chapter.
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Example 4. Let D be anyfield (that is, a set on which the operations of addition, sub-
traction, multiplication and division are defined, such as the rational numbers). LetΓL IN

be the constraint language consisting of all those relations overD which consist of all the
solutions to some system oflinear equationsoverD.

Any relation fromΓL IN , and therefore any instance ofCSP(ΓL IN), can be represented
by a system of linear equations1 overD, and so can be solved in polynomial time (e.g., by
Gaussian elimination). HenceΓL IN is a tractable constraint language. ¤

Example 5. A constraint language over a two-element setD = {d0, d1} is known as a
Booleanconstraint language. Using such languages we can express the standard proposi-
tional SATISFIABILITY problem [38, 77] as a constraint satisfaction problem, by identify-
ing the 2 elements ofD with the logical valuesTRUE andFALSE.

It was established by Schaefer in 1978 [85] that a Boolean constraint language,Γ, is
tractable if (at least) one of the following six conditions holds:

1. Every relation inΓ contains a tuple in which all entries are equal tod0;

2. Every relation inΓ contains a tuple in which all entries are equal tod1;

3. Every relation inΓ is definable by a conjunction of clauses, where each clause has
at most one negative literal;

4. Every relation inΓ is definable by a conjunction of clauses, where each clause has
at most one positive literal (i.e., a conjunction ofHorn clauses);

5. Every relation inΓ is definable by a conjunction of clauses, where each clause con-
tains at most 2 literals;

6. Every relation inΓ is the set of solutions of a system of linear equations over the
finite field with 2 elements, GF(2).

In all other casesΓ is NP-complete.
This result establishes adichotomyfor Boolean constraint languages: any Boolean con-

straint language is either tractable or NP-complete. Hence this result is known asSchae-
fer’s Dichotomy Theorem [85].

Similar dichotomy results have also been obtained for many other combinatorial prob-
lems over a Boolean domain which are related to the Boolean constraint satisfaction prob-
lem [62, 27]. ¤

Example 6. It follows from Schaefer’s Dichotomy Theorem [85] (Example 5) that some
Boolean constraint languages containing just asingle relationare NP-complete.

For example, for any 2-element setD = {d0, d1}, let ND be the ternarynot-all-equal
relation overD defined by

ND = D3 \ {〈d0, d0, d0〉 , 〈d1, d1, d1〉}
= {〈d0, d0, d1〉 , 〈d0, d1, d0〉 , 〈d0, d1, d1〉 , 〈d1, d0, d0〉 , 〈d1, d0, d1〉 , 〈d1, d1, d0〉}.

The problemCSP({ND}) corresponds to theNOT-ALL -EQUAL SATISFIABILITY prob-
lem [85] which is known to be NP-complete2.

1Moreover, this system of equations can be computed from the relations in polynomial time - see [11]
2The standard version ofNOT-ALL -EQUAL SATISFIABILITY given in [38, 77] is slightly more general, but

can be shown to be polynomial-time equivalent toCSP({ND}).
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Similarly, letTD be the ternaryone-in-threerelation overD defined by

TD = {〈d0, d0, d1〉 , 〈d0, d1, d0〉 , 〈d1, d0, d0〉}.

The problemCSP({TD}) corresponds to theONE-IN-THREE SATISFIABILITY problem
(with positive literals) [85, 38, 27] which is known to be NP-complete. ¤

Example 7. The class of constraints known asmax-closedconstraints was introduced
in [54] and shown to be tractable. This class of constraints has been used in the analysis
and development of a number of industrial scheduling tools [69, 82].

Max-closed constraints are defined in [54] for arbitrary finite domains which are totally
ordered. This class of constraints includes all of the ‘basic constraints’ over the natural
numbers in the constraint programming language CHIP [89], as well as many other forms
of constraint. The following are examples of max-closed constraints over a domainD
which can be any fixed finite set of natural numbers:

3x1 + x5 + 3x4 ≥ 2x2 + 10,
4x1 6= 8,

x1 ∈ {1, 2, 3, 5, 7, 11, 13},
2x1x3x5 ≥ 3x2 + 1,

(3x1 ≥ 7) ∨ (2x1 ≥ 4) ∨ (5x2 ≤ 7).

Hence the constraint language comprising all relations of these forms is tractable.¤

Example 8. Let D be any finite set, and letΓZOA be the set of all relations of the following
forms:

• All unary relations;

• All binary relations of the formD1 ×D2 for subsetsD1, D2 of D;

• All binary relations of the form{〈d, π(d)〉 | d ∈ D1}, for some subsetD1 of D and
some permutationπ of D;

• All binary relations of the form{〈a, b〉 ∈ D1 × D2 | a = d1 ∨ b = d2} for some
subsetsD1, D2 of D and some elementsd1 ∈ D1, d2 ∈ D2.

These relations were introduced in [26], where they are called0/1/all relations.
It was shown in [26] thatΓ ZOA is tractable, and that for any binary relationR overD

which isnot in ΓZOA, ΓZOA ∪ {R} is NP-complete. ¤

Example 9. The class of binary constraints known asconnected row-convexconstraints
was introduced in [35] and shown to be tractable. This class properly includes the ‘mono-
tone’ relations, identified and shown to be tractable by Montanari in [75].

Let the domainD be the ordered set{d1, d2, . . . , dm}, whered1 < d2 < · · · < dm.
The definition of connected row-convex constraints given in [35] uses a standard matrix
representation for binary relations: the binary relationR over D is represented by the
m × m 0-1 matrixM , by settingMij = 1 if the relation contains the pair〈di, dj〉, and
Mij = 0 otherwise.

A relation is said to be connected row-convex if the following property holds: the pat-
tern of 1’s in the matrix representation (after removing rows and columns containing only
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0’s) is connected along each row, along each column, and forms a connected 2-dimensional
region (where some of the connections may be diagonal).

Here are some examples of connected row-convex relations:



0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 0 1 0
0 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0







1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0







0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0




¤

Example 10. The binaryinequality relation over an ordered setD is defined as follows:

<D = {〈d1, d2〉 ∈ D2 | d1 < d2}.

When D is the set of natural numbers,N, the class of constraint satisfaction problem
instancesCSP({<D}) corresponds to theACYCLIC DIGRAPH problem [4]. An instance
of this problem is a directed graphG, and the question is whetherG is acyclic, that is,
contains no directed cycles. Note that a directed graph is acyclic if and only if its vertices
can be numbered in such a way that every arc leads from a vertex with smaller number to
a vertex with a greater one.

Since theACYCLIC DIGRAPH problem is tractable, it follows that{<N} is a tractable
constraint language. ¤

Example 11. The binarydisequality relation over a setD is defined as follows:

6=D = {〈d1, d2〉 ∈ D2 | d1 6= d2}.

The class of constraint satisfaction problem instancesCSP({6=D}) corresponds to the
GRAPH COLORABILITY problem [38, 77] with|D| colours. This problem is tractable
when|D| ≤ 2 or |D| = ∞, and NP-complete when3 ≤ |D| < ∞. ¤

Example 12. The ternarybetweennessrelation over an ordered setD is defined as fol-
lows:

BD = {〈x, y, z〉 ∈ D3 | x < y < z or x > y > z}.

For a finite setD, the constraint language{BD} is tractable when|D| ≤ 4 and is NP-
complete when|D| ≥ 5 (see Example 45).

For an infinite setD, the constraint language{BD} is NP-complete because the class of
constraint satisfaction problem instancesCSP({BD}) corresponds to theBETWEENNESS

problem, which is known to be NP-complete [38]. An instance of this problem is a pair
〈A, T 〉 whereA is a finite set andT ⊆ A3; the question is whether there is a function
f : A → {1, . . . , |A|} such that, for every triple〈a, b, c〉 ∈ T , we have eitherf(a) <
f(b) < f(c) or f(a) > f(b) > f(c). ¤
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Example 13. The class of constraints known aslinear Horn constraints was introduced
in [55, 61] and shown to be tractable.

The constraint relation of a linear Horn constraint is a relation over an infinite ordered
set which is specified by a disjunction of an arbitrary finite number of linear disequali-
ties and at most one weak linear inequality. The following are examples of linear Horn
constraints:

3x1 + x5 − 3x4 ≤ 10,
x1 + x3 + x5 6= 7,

(3x1 + x5 − 4x3 ≤ 7) ∨ (2x1 + 3x2 − 4x3 6= 4) ∨ (x2 + x3 + x5 6= 7),
(4x1 + x3 6= 3) ∨ (5x2 − 3x5 + x4 6= 6).

Linear Horn constraints are an important class of linear constraints for expressing problems
in temporal reasoning [55]. In particular, the class of linear Horn constraints properly
includes the point algebra of [90], the (quantitative) temporal constraints of [59, 60] and
the ORD-Horn constraints of [76]. ¤

6.4 Developing an Algebraic Theory

A series of papers by Jeavons and co-authors [50, 51, 52, 54] has shown that the complexity
of constraint languages over a finite domain can be characterised using algebraic properties
of relations (see Figure 6.1).

The first step in the algebraic approach to constraint languages exploits the well-known
idea that, given an initial set of constraint relations, there will often be further relations that
can be added to the set without changing the complexity of the associated problem class.
In fact, it has been shown that it is possible to add all the relations that can be derived from
the initial relations using certain simple rules. The larger sets of relations obtained using
these rules are known asrelational clones[34, 80]. Hence the first step in the analysis is
to note that it is sufficient to analyse the complexity only for those sets of relations which
are relational clones (see Section 6.4.1).

The next step in the algebraic approach is to note that relational clones can be char-
acterised by theirpolymorphisms, which are algebraicoperationson the same underlying
set [49, 52] (see Section 6.4.2). As well as providing a convenient and concise method
for describing large families of relations, the polymorphisms also reflect certain aspects of
the structure of the relations that can be used for designing efficient algorithms. This link
between relational clones and polymorphisms has already played a key role in identifying
many tractable constraint classes and developing appropriate efficient solution algorithms
for them [14, 15, 17, 19, 28, 50].

The final step in the algebraic approach links constraint languages with finite univer-
sal algebras (see Section 6.4.3). The language of finite algebras provides a number of
very powerful new tools for analysing the complexity of constraints, including the deep
structural results developed for classifying the structure of finite algebras [45, 74, 87].

6.4.1 Step I: From relations to relational clones

As stated above, the first step in the algebraic approach is to consider what additional re-
lations can be added to a constraint language without changing the complexity of the cor-
responding problem class. This technique has been widely used in the analysis of Boolean
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Complexity of a constraint language

m
Properties of the corresponding relational clone

m
Properties of polymorphisms

m
Structural properties of a corresponding algebra

Figure 6.1: Translating questions about the complexity of constraint languages into ques-
tions about the properties of algebras.

constraint satisfaction problems [27, 85], and in the analysis of temporal and spatial con-
straints [36, 76, 83, 63, 64]; it was introduced for the study of constraints over arbitrary
finite sets in [49].

Definition 14. A constraint languageΓ expressesa relation R if there is an instance
P = 〈V,D, C〉 ∈ CSP(Γ) and a list〈v1, . . . , vn〉 of variables inV such that

R = {〈ϕ(v1), . . . , ϕ(vn)〉 | ϕ ∈ Sol(P)}

For any constraint languageΓ, the set of all relations which can be expressed byΓ will
be called theexpressive powerof Γ. The expressive power of a constraint languageΓ can
be characterised in a number of different ways [53]. For example, it is equal to the set of all
relations that can be obtained from the relations inΓ using therelational join andproject
operations from relational database theory [43]. It has also been shown to be equal to the
set of relations definable byprimitive positive formulasover the relations inΓ together with
the equality relation, where a primitive positive formula is a first-order formula involving
only conjunction and existential quantification [11]. In algebraic terminology [34, 80], this
set of relations is called therelational clonegenerated byΓ, and is denoted by〈Γ〉.
Example 15. Consider the Boolean constraint languageΓ = {R1, R2} whereR1 =
{〈0, 1〉 , 〈1, 0〉 , 〈1, 1〉} andR2 = {〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉}.

It is straightforward to check that all 16 binary Boolean relations can be expressed
by a primitive positive formula involvingR1 andR2. For example, the relationR3 =
{〈0, 0〉 , 〈1, 0〉 , 〈1, 1〉} can be expressed by the formulaR3 = ∃yR1(x, y) ∧ R2(y, z).
Hence〈Γ〉, the relational clone generated byΓ, includes all 16 binary Boolean relations.

In fact it can be shown that, for this constraint languageΓ, the set〈Γ〉 consists of
precisely those Boolean relations (of any arity) that can be expressed as a conjunction of
unary or binary Boolean relations [81, 87]. This is equivalent to saying that the constraint
languageΓ expresses precisely this set of relations. ¤
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The link between these notions and the complexity of constraint languages is estab-
lished by the next result.

Theorem 16 ([11, 49]). For any constraint languageΓ and any finite subsetΓ0 ⊆ 〈Γ〉
there is a polynomial time reduction fromCSP(Γ0) to CSP(Γ).

Corollary 17. A constraint languageΓ is tractable if and only if〈Γ〉 is tractable. Similarly,
Γ is NP-complete if and only if〈Γ〉 is NP-complete.

This result reduces the problem of characterising tractable constraint languages to the
problem of characterising tractable relational clones.

6.4.2 Step II: From relational clones to sets of operations

We have shown in the previous section that to analyse the complexity of arbitrary constraint
languages over finite domains it is sufficient to consider only relational clones. This con-
siderably reduces the variety of languages to be studied. However, it immediately raises
the question of how to represent and describe relational clones. For many relational clones
the only known generating sets are rather sophisticated, and in some cases no generating
sets are known.

Very conveniently, it turns out that there is a well-known alternative way to represent
and describe any relational clone: usingoperations.

Definition 18. LetD be a set, andk a natural number. A mappingf : Dk → D is called
a k-ary operationonD. The set of all finitary operations onD is denoted byOD.

We first describe a fundamental algebraic relationship between operations and rela-
tions. First, observe that any operation on a setD can be extended in a standard way
to an operation on tuples of elements fromD, as follows. For any (k-ary) operation
f and any collection of tuplest1, . . . , tk ∈ Dn, definef(t1, . . . , tk) to be the tuple
〈f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])〉.
Definition 19 ([34, 74, 80, 87]).A k-ary operationf ∈ OD preservesan n-ary relation
R ∈ RD (or f is a polymorphismof R, or R is invariant underf ) if f(t1, . . . , tk) ∈ R
for all choices oft1, . . . , tk ∈ R.

For any given setsΓ ⊆ RD andF ⊆ OD, we define the mappingsPol andInv as
follows:

Pol(Γ) = {f ∈ OD | f preserves each relation fromΓ},
Inv(F ) = {R ∈ RD | R is invariant under each operation fromF}.

We remark that the mappingsPol and Inv form a Galois correspondencebetween
RD andOD (see Proposition 1.1.14 of [80]). Brief introductions to this correspondence
can be found in [34, 79], and a comprehensive study in [80]. We note, in particular, that
Inv(F ) = Inv(Pol(Inv(F ))), for any set of operationsF .

It is a well-known result in universal algebra that the relational clone generated by a set
of relations over a finite set is determined by the polymorphisms of those relations [80].
Here we will establish this key result using purely constraint-based reasoning.



10 6.

∅∅∅∅

Sets of 

relations

Sets of 

operations

RD

G

Pol(G)Inv(Pol(G))

Pol

Inv
= ·GÒ

OD

∅∅∅∅

Figure 6.2: The operatorsInv andPol.

Definition 20. LetΓ be a finite constraint language over a finite setD.
For any positive integerk, the indicator problem of orderk for Γ is the CSP instance

P = 〈V,D, C〉 ∈ CSP(Γ) where:

• V = Dk (in other words, each variable inP is ak-tuple of domain elements).

• C = {〈s,R〉 | R ∈ Γ ands matchesR}.
In this definition we say that that a list ofk-tupless = 〈v1, . . . , vn〉matchesa relationR if
n is equal to the arity ofR and for eachi ∈ {1, 2, . . . , k} then-tuple〈v1[i], . . . , vn[i]〉 is
in R. Hence the CSP instanceP has constraints from the constraint languageΓ on every
possible scope which matches a relation fromΓ.

Note that the solutions to the indicator problem of orderk for Γ are mappings fromDk

to D that preserve each of the relations inΓ, hence they are precisely thek-ary elements
of Pol(Γ).

Indicator problems are described in more detail in [48], where a number of concrete
examples are given. A software system for constructing and solving indicator problems for
given constraint languages is described in [39].

Theorem 21 ([49, 80]).For any constraint languageΓ over a finite set,〈Γ〉 = Inv(Pol(Γ)).

Proof. If two relations both have a polymorphismf , then their conjunction also has the
polymorphismf . Similarly, if a relation has a polymorphismf , then any relation obtained
by existential quantification of that relation also has the polymorphismf . Finally the
equality relation has every operation as a polymorphism. It follows from these observations
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that for anyR in the relational clone ofΓ we havePol({R}) ⊇ Pol(Γ). Hence〈Γ〉 ⊆
Inv(Pol(Γ)).

To establish the converse, letΓ be a constraint language over a finite setD, let R be
an arbitrary relation inInv(Pol(Γ)), and letn be the arity ofR. We need to show that
R ∈ 〈Γ〉, or in other words thatR can be expressed using the constraint languageΓ.

Let k be the number of tuples in the relationR, and construct the indicator problem
P of orderk for Γ. Choose a list of variablest = 〈v1, . . . , vn〉 in P such that each of
then-tuples〈v1[i], . . . , vn[i]〉, for i = 1, . . . , k, is a distinct element of our target relation
R. Consider the relationRt = {〈f(v1), . . . , f(vn)〉 | f ∈ Sol(P)}. By the observation
above, the elements ofSol(P) are thek-ary polymorphisms ofΓ, and these include thek
projection operations which simply return one of their arguments. By the choice oft, each
of these projection operations results in a distinct tuple ofR being included inRt, and so
R ⊆ Rt. Conversely, by the choice ofR, every polymorphism ofΓ preservesR, and hence
every element ofRt is contained inR.

Since the relational clone〈Γ〉 consists of those relations that can be expressed by the
constraint languageΓ, we immediately obtain the following strong link between polymor-
phisms and expressive power.

Corollary 22. A relationR over a finite set can be expressed by a constraint languageΓ
precisely whenPol(Γ) ⊆ Pol({R}).

Combining Theorem 16 and Theorem 21 we obtain the following link between poly-
morphisms and complexity.

Corollary 23. For any constraint languagesΓ, Γ0 over a finite set, ifΓ0 is finite and
Pol(Γ) ⊆ Pol(Γ0), thenCSP(Γ0) is reducible toCSP(Γ) in polynomial time.

This result implies that, for any finite constraint languageΓ over a finite set, the com-
plexity of CSP(Γ) is determined, up to polynomial-time reduction, by the polymorphisms
of Γ. Hence we can translate our original problem of characterising tractable constraint
languages into an equivalent problem for sets of operations.

Definition 24. A set of operationsF ⊆ OD is said to be tractable ifInv(F ) is tractable.
A setF ⊆ OD is said to be NP-complete ifInv(F ) is NP-complete.

With this definition we have translated our basic challenge into characterising tractable
sets of operations.

6.4.3 Step III: From sets of operations to algebras

We have seen in the previous section that the problem of analysing the complexity of a
constraint language can be translated into the problem of analysing the complexity of the
set of operations which preserve all of the relations in that language. In this section we
shall open the way to the use of a further set of powerful analytical tools by making the
final translation step, from sets of operations to algebras.

Definition 25. An algebrais an ordered pairA = 〈D, F 〉 such thatD is a nonempty set
andF is a family of finitary operations onD. The setD is called theuniverseofA, and
the operations fromF are calledbasic. An algebra with a finite universe is referred to as
a finite algebra.
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To make the translation from sets of operations to algebras we simply note that any set
of operationsF on a fixed setD can be associated with the algebra〈D,F 〉. Hence, we
will define what it means for an algebra to be tractable by considering the tractability of
the basic operations.

Definition 26. An algebraA = 〈D,F 〉 is said to be tractable if the set of basic operations
F is tractable. An algebraA = 〈D, F 〉 is said to be NP-complete ifF is NP-complete.

Our basic task is now translated as: characterise all tractable algebras.
It will be useful to describe an equivalence relation linking algebras that correspond

to the same constraint language. As we noted earlier, the mappingsPol andInv have the
property thatInv(Pol(Inv(F ))) = Inv(F ), so we can extend a set of operationsF to the
setPol(Inv(F )) without changing the associated invariant relations. The setPol(Inv(F ))
consists of all operations that can be obtained from the operations inF , together with the
set of all projection operations, by forming arbitrary compositions of operations3. Note
that any set of operations which includes all the projection operations and is closed under
composition is referred to by algebraists as acloneof operations. The clone of operations
obtained from a setF in this way is usually referred to as the set ofterm operationsover
F , so we will make the following definition.

Definition 27. For any algebraA = 〈D, F 〉, an operationf on D will be called aterm
operationofA if f ∈ Pol(Inv(F )).

The set of all term operations ofA will be denotedTerm(A).

Two algebras with the same universe are calledterm equivalentif they have the same set
of term operations. Since, for any algebraA = 〈D, F 〉, we haveInv(F ) = Inv(Term(A)),
two algebras are term equivalent if and only if they have the same set of associated invari-
ant relations. It follows that we need to characterise tractable algebras only up to term
equivalence.

We will now show that we can restrict our attention to certain special classes of alge-
bras.

The first simplification we apply is to note that any unary polymorphism of a con-
straint language can be applied to all of the relations in the language without changing the
complexity.

Proposition 28 ([52, 49]). Let Γ be a constraint language over a setD, and letf be a
unary operation inPol(Γ).

CSP(Γ) is polynomial-time equivalent toCSP(f(Γ)), wheref(Γ) = {f(R) | R ∈ Γ}
andf(R) = {f(t) | t ∈ R}.

If we apply Proposition 28 with a unary polymorphismf which has the smallest pos-
sible range out of all the unary polymorphisms ofΓ, then we obtain a constraint language
f(Γ) whose unary polymorphisms are all surjective. Such a language will be called a
reducedconstraint language.

Definition 29. We call an algebrasurjectiveif all of its term operations are surjective4.

3If f is an m-ary operation on a setD, and g1, g2, . . . , gm are k-ary operations onD, then the
composition off and g1, g2, . . . , gm is the k-ary operationh on D defined byh(a1, a2, . . . , ak) =
f(g1(a1, . . . , ak), . . . , gm(a1, . . . , ak)).

4Some authors call an algebra surjective if all of itsbasicoperations are surjective. However, such algebras
can have non-surjective term operations, so our definition is more restrictive.
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It is easy to verify that a finite algebra is surjective if and only if its unary term opera-
tions are all surjective, and hence form a group of permutations. It follows that an algebra
A = 〈D, F 〉 is surjective if and only ifInv(F ) is a reduced constraint language. Using
Proposition 28, this means that we can restrict our attention to surjective algebras.

The next theorem shows that for many purposes we need consider only those surjective
algebras with the additional property of being idempotent.

Definition 30. An operationf on D is calledidempotentif it satisfiesf(x, . . . , x) = x for
all x ∈ D.

Thefull idempotent reductof an algebraA = 〈D, F 〉 is the algebra〈D, Termid(A)〉,
whereTermid(A) consists of all idempotent operations fromTerm(A).

An operationf on a set D is idempotent if and only if it preserves all the relations in the
setΓCON = {{〈a〉} | a ∈ D}, consisting of all unary one-element relations onD. Hence,
Inv(Termid(A)) is the relational clone generated byInv(F ) ∪ ΓCON.

That is, considering only the full idempotent reduct of an algebra is equivalent to con-
sidering only those constraint languages in which we can arbitrarily fix variables to partic-
ular values from the domain.

Theorem 31 ([11]). A finite surjective algebraA is tractable if and only if its full idempo-
tent reductA0 is tractable. Moreover,A is NP-complete if and only ifA0 is NP-complete.

Next we link the complexity of a finite algebra with the complexity of its sub-algebras
and homomorphic images. In many cases, we can use these results to reduce the problem
of analysing the complexity of an algebra to a similar problem involving an algebra with a
smaller universe. In such cases we can reduce the problem of analysing the complexity of
a constraint language to a similar problem for a constraint language over a smaller domain.

Definition 32. LetA = 〈D,F 〉 be an algebra andU a subset ofD such that, for any
f ∈ F and for anyb1, . . . , bk ∈ B, wherek is the arity off , we havef(b1, . . . , bk) ∈ B.
Then the algebraB = 〈B, F |B〉 is called asub-algebraofA, whereF |B consists of the
restrictions of all operations inF toB. If B 6= A, thenB is said to be apropersub-algebra.

Definition 33. LetA1 = 〈D1, F1〉 andA2 = 〈D2, F2〉 be such thatF1 = {f1
i | i ∈ I}

andF2 = {f2
i | i ∈ I}, where bothf1

i andf2
i areki-ary, for all i ∈ I.

A mapΦ : A1 → A2 is called ahomomorphismfromA1 toA2 if

f1
i (a1, . . . , aki) = f2

i (Φ(a1), . . . , Φ(aki))

holds for alli ∈ I and alla1, . . . , aki ∈ A1.
If the mapΦ is surjective, thenA2 is said to be ahomomorphic imageofA1.

Definition 34. A homomorphic image of a sub-algebra of an algebraA is called afactor
ofA.

Theorem 35 ([11]). If A is a tractable finite algebra, then so is every factor ofA.
If A has any factor which is NP-complete, thenA is NP-complete.
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6.5 Applications of the Algebraic Theory

6.5.1 A pre-processing algorithm

The theory described in the previous section has shown that many key properties of a
constraint language are determined by its polymorphisms. Hence calculating the polymor-
phisms of the constraint language used in a given CSP instance can be a useful step in
analysing that instance.

For example, using Construction 20 and Proposition 28 we can design a pre-processing
algorithm which can sometimes simplify the presentation of a constraint satisfaction prob-
lem (Algorithm 1).

Since the indicator problem of order 1 only has|D| variables, this pre-processing step
is efficient for many problems and can result in an equivalent problem instance with a
considerably smaller domain.

Algorithm 1 : Pre-processing to reduce the domain size

Input : An instanceP = 〈V,D, C〉 of CSP(Γ) whereD is finite.
Output : An equivalent instanceP ′.

1. Find all unary polymorphisms ofΓ by generating and solving the indicator
problem of order 1 forΓ;

2. Choose a unary polymorphismf with the smallest number of values in its range;

3. If the range off is smaller thanD, applyf to each constraint relation inP to
obtain a new problem instanceP ′ over a smaller domain.

6.5.2 Tractable cases: using polymorphisms as algorithm selectors

In many cases, it has been shown that the existence of a single polymorphism satisfying
certain simple conditions is sufficient to ensure the tractability of a constraint language and
to identify an appropriate polynomial-time algorithm.

Definition 36. Letf be ak-ary operation a setD.

• If k = 2 andf satisfies the identitiesf(x, f(y, z)) = f(f(x, y), z) (associativity),
f(x, y) = f(y, x) (commutativity), andf(x, x) = x (idempotency), thenf is called
a semilatticeoperation.

• If f satisfies the identityf(x1, . . . , xk) ∈ {x1, . . . , xk}, thenf is called aconser-
vativeoperation.

• If k ≥ 3 andf satisfies the identitiesf(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · =
f(x, . . . , x, y) = x, thenf is called anear-unanimityoperation.

• If k = 3 andf satisfies the identitiesf(y, y, x) = f(x, y, y) = x, thenf is called a
Mal’tsevoperation.
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Proposition 37 ([52]). For any constraint languageΓ over a finite setD, if Pol(Γ) con-
tains a semilattice operation, thenΓ is tractable, and all instances inCSP(Γ) can be
solved by enforcing generalised arc consistency5.

This result has been extended to more generalsemigroupoperations in [12, 31].

Example 38. The Boolean constraint language consisting of all relations that can be spec-
ified by Horn clauses, as described in Example 5, has the binary polymorphism∧ (con-
junction) [54], and so is tractable by Proposition 37. Any collection of Horn clauses can
be solved byunit resolution, which is a specialised form of arc consistency. ¤
Example 39. The max-closed constraints defined in [54] and described in Example 7 all
have the binary polymorphism,max, which is a semilattice operation, so they are tractable
by Proposition 37. Any collection of max-closed constraints can be solved by enforcing
generalised arc consistency. ¤

Any constraint language which containsall unary relationsover a finite set has the
property that all the operations inPol(Γ) are conservative, by Definition 19.

Proposition 40 ([16]). For any constraint languageΓ over a finite setD, if Pol(Γ) con-
tains a conservative commutative binary operation, thenΓ is tractable.

The algorithm for solving a collection of constraints preserved by a conservative com-
mutative binary operation is based on a generalisation of local consistency techniques [16].

Proposition 41 ([50]). For any constraint languageΓ over a finite setD, if Pol(Γ) con-
tains ak-ary near-unanimity operation, thenΓ is tractable, and all instances inCSP(Γ)
can be solved by enforcingk-consistency, which makes them globally consistent6.

In fact, it is shown in [50] that theonly finite domain languages for which enforcing
k-consistency guarantees global consistency are those which have a near-unanimity poly-
morphism.

Example 42. Let Γ be the Boolean constraint language consisting of all relations that can
be specified by clauses with at most 2 literals. This language has the ternary polymorphism,
d, given byd(x, y, z) = (x∧y)∨ (y∧z)∨ (x∧z), which is a near-unanimity operation, so
Γ is tractable by Proposition 41. A satisfying assignment for any collection of such clauses
can be obtained in a backtrack-free way after enforcing path consistency. ¤
Example 43. The 0/1/all relations defined in [26] and described in Example 8 all have
the ternary polymorphism,d, given byd(x, y, z) = x wheny 6= z andd(x, y, z) = y
otherwise, which is a near-unanimity operation, so they are tractable by Proposition 41. A
solution for any collection of 0/1/all constraints can be obtained in a backtrack-free way
after enforcing path consistency [26, 50]. ¤
Example 44. The connected row-convex relations defined in [35] and described in Exam-
ple 9 all have the ternary polymorphism,m, given bym(x, y, z) = themedianof x, y and
z, which is a near-unanimity operation, so they are tractable by Proposition 41. A solution
for any collection of connected row-convex constraints can be obtained in a backtrack-free
way after enforcing path consistency [50]. ¤

5See Chapter 3 for a definition of this standard procedure, and a discussion of possible algorithms.
6See Chapter 3 for definitions and algorithms.
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Example 45. The betweenness relationBD on an ordered setD, described in Example 12,
has a ternary near-unanimity polymorphism when|D| ≤ 4, so the constraint language
containing just this relation is tractable when|D| ≤ 4, by Proposition 41.

The projection ofBD onto its second co-ordinate is the unary relation containing all
elements ofD except the largest and smallest. Hence the algebra〈D, Pol({BD})〉 has a
subalgebra of size|D|−2. When|D| ≥ 5 this subalgebra can be shown to be NP-complete.
Hence, by Theorem 35,{BD} is NP-complete for finite setsD with |D| ≥ 5. ¤

Proposition 46 ([15, 8]). For any constraint languageΓ over a finite setD, if Pol(Γ)
contains a Mal’tsev operation, thenΓ is tractable.

The algorithm for solving a collection of constraints preserved by a Mal’tsev operation
is based on a generalisation of Gaussian elimination [15]. A much more straightforward
version of the algorithm is given in [8]. Note that no fixed level of consistency is sufficient
to solve all problems involving constraints of this type.

Example 47. The linear constraints described in Example 4 all have the ternary polymor-
phismp given byp(x, y, z) = x−y+z, which is a Mal’tsev operation, so they are tractable
by Proposition 46. A solution for any collection of linear constraints can be obtained by a
Gaussian elimination algorithm on the corresponding linear equations. ¤

A unified approach to Mal’tsev operations and near-unanimity operations, which gen-
eralises Proposition 41 and Proposition 46 is given in [29].

6.5.3 Towards a complete classification of complexity

We have seen that the polymorphisms of a constraint language can identify many different
tractable cases and suggest an appropriate efficient solution algorithm for those cases.

However, what can be said about a constraint languageΓ wherePol(Γ) doesnot con-
tain a semilattice operation, a conservative commutative binary operation, a near-unanimity
operation or a Mal’tsev operation? We cannot in general immediately conclude thatΓ is
intractable. However, using Rosenberg’s analysis of minimal clones [84, 87], we do have
the following result (adapted slightly from [49]).

Definition 48. Letf be ak-ary operation a setD.

• If there exists a (non-constant) unary operationg onD and an indexi ∈ {1, 2, . . . , k}
such thatf satisfies the identityf(x1, x2, . . . , xk) = g(xi), thenf is called anes-
sentially unaryoperation. Ifg is the identity operation, thenf is called aprojection.

• If k ≥ 3 andf satisfies the identityf(x1, . . . , xk) = xi for some fixedi whenever
|{x1, x2, . . . , xk}| < k, butf is nota projection, thenf is called asemiprojection.
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Theorem 49. For any reduced constraint languageΓ on a finite setD, at least one of the
following conditions must hold:

1. Pol(Γ) contains a constant operation;

2. Pol(Γ) contains a near-unanimity operation of arity 3;

3. Pol(Γ) contains a Malt’sev operation;

4. Pol(Γ) contains an idempotent binary operation (which is not a projection);

5. Pol(Γ) contains a semiprojection;

6. Pol(Γ) contains essentially unary surjective operations only.

If Pol(Γ) contains a constant operation, thenΓ is trivially tractable, since each (non-
empty) relation inΓ contains a tuple〈d, d, . . . , d〉, whered is the value of the constant
operation. By Propositions 37 and 46, the second and third cases also guarantee tractability.
Hence the first three cases in Theorem 49 all guarantee tractability.

In the final case of Theorem 49 we observe thatInv(Pol(Γ)) includes the disequality
relation, 6=D, defined in Example 11, and when|D| = 2 it includes the not-all-equal
relation,ND, defined in Example 6. Hence in this case we have thatInv(Pol(Γ)) is NP-
complete for all finite setsD, so by Theorem 21 and Corollary 17 we conclude thatΓ is NP-
complete in this case. Hence the final case of Theorem 49 guarantees NP-completeness.

A similar argument gives the following slightly more general result.

Proposition 50 ([49]). Any set of essentially unary operations over a finite set is NP-
complete.

Cases 4 and 5 of Theorem 49 are inconclusive, in general, although for a Boolean
domain there are only two binary idempotent operations which are not projections: the
two semilattice operations∧ and∨ (conjunction and disjunction). Hence, over a Boolean
domain, case 4 guarantees tractability by Proposition 37. Moreover, over a Boolean domain
there are no semiprojection operations, so case 5 cannot occur. These observations mean
that Theorem 49 is sufficient to classify the complexity of any constraint language over a
Boolean domain, and hence derive Schaefer’s Dichotomy Theorem [85] (see Example 5).

Corollary 51 ([11]). An algebra with a 2-element universe is NP-complete if all of its
basic operations are essentially unary. Otherwise it is tractable.

The single condition described in Proposition 50 is the only condition needed to estab-
lish the NP-completeness of all known NP-complete constraint languages, and has been
used to establish a dichotomy theorem for several broad classes of languages [11]. There
is a longstanding conjecture [18] that this condition is sufficient to characteriseall forms
of intractability in constraint languages. We state this conjecture for the special case of
idempotent algebras, where the only essentially unary operations are projections.

Conjecture 52 ([18, 11]). Tractable algebras conjecture:A finite idempotent algebra
A is NP-complete if it has a nontrivial factorB all of whose operations are projections.
Otherwise it is tractable.

By Proposition 28 and Theorem 31, the problem of determining the complexity of
an arbitrary constraint language can be reduced to an equivalent problem for a certain
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idempotent algebra associated with the language. Therefore, this conjecture, if true, would
completely solve the fundamental question of analysing the complexity of any constraint
language over a finite set.

Conjecture 52 has been verified [11] for algebras with a 2-element universe, algebras
with a 3-element universe, conservative algebras (i.e., those whose operations preserve all
unary relations), and strictly simple surjective algebras (i.e. those with no non-trivial fac-
tors). If Conjecture 52 is true in general, then it yields an effective procedure to determine
whether any finite constraint language is tractable or NP-complete, as the following result
indicates.

Proposition 53 ([11]). Let D be a fixed finite set. If Conjecture 52 is true, then for any
finite constraint languageΓ over D, there is a polynomial-time algorithm to determine
whetherΓ is NP-complete or tractable.

In another direction, Proposition 50 was used in [70] to show that most non-trivial con-
straint languages over a finite domain are NP-complete. More precisely, letR(n, k) denote
a randomn-ary relation on the set{1, . . . , k}, for which the probability that〈a1, . . . , an〉 ∈
R(n, k) is equal to 1/2 independently for eachn-tuple 〈a1, . . . , an〉 where not allai’s
are equal; also, set〈a, a, . . . , a〉 6∈ R(n, k) for all a (this is necessary to ensure that
CSP({R(n, k)}) is non-trivial). It is shown in [70] that the probability thatPol {R(n, k)}
contains only projections tends to 1 as eithern or k tends to infinity.

6.5.4 Search is no harder than decision

In this chapter we have formulated the constraint satisfaction problem as a decision prob-
lem in which the question is to decide whether or not a solution exists. However, the
correspondingsearch problem, in which the question is to find a solution, is often the real
practical question. Using the algebraic theory in Section 6.4, we can now show that the
tractable cases of these two forms of the problem coincide.

Theorem 54 ([11, 20]). Let Γ be a constraint language over a finite set. The decision
problemCSP(Γ) is tractable if and only if the corresponding search problem can be solved
in polynomial time.

Proof. Obviously, tractability of the search problem implies tractability of the correspond-
ing decision problem.

For the converse, letΓ be a tractable set of relations over a finite domainD.
Consider any instanceP in CSP(Γ). By the choice ofΓ, we can decide in polynomial

time whetherP has a solution. If it does not then the search returns with no solution.
Otherwise, using Proposition 28 we can transform this instance to an instanceP ′ over a

reduced languageΓ′ which has a solution. Furthermore we can arrange that every solution
toP ′ is a solution toP.

SinceP ′ has a solution we know that for each variablev of P ′ there must be some
domain valuea ∈ D for which we can add the constraint〈〈v〉 , {〈a〉}〉 and still have a
solvable instance. By considering each variable in turn, and each possible value for that
variable, we can add such a constraint to each variable in turn, and hence obtain a solution
toP ′. Checking for solvability for each possible value at each variable requires us to solve
an instance of the decision problemCSP(Γ ∪ ΓCON) at most|P ′| times. By Theorem 31,
this can be completed in polynomial time in the size ofP.
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6.6 Constraint Languages Over an Infinite Set

Some computational problems can be formulated as constraint satisfaction problems only
by using a constraint language over aninfiniteset (see Examples 10 and 12).

Many of the results of the algebraic theory described in Section 6.4 hold for both
finite and infinite domains. However, Theorem 21 does not hold, in general, for arbi-
trary constraint languages over an infinite set. It is not hard to check that the inclusion
〈Γ〉 ⊆ Inv(Pol(Γ)) still holds. However, for constraint languages over an infinite set this
inclusion can be strict, as the next example7 shows.

Example 55. ConsiderΓ = {R1, R2, R3} onN, whereR1 = {〈a, b, c, d〉 | a = b or c =
d}, R2 = {〈1〉}, andR3 = {〈a, a + 1〉 | a ∈ N}. It is not difficult to show that every
polymorphism ofΓ is a projection, and henceInv(Pol(Γ)) is the set ofall relations on
N. However, one can check that, for example, the unary relation consisting of all even
numbers does not belong to〈Γ〉. ¤

However, if we impose some additional conditions, then the required equality does
hold, as the next result indicates. Arelational structureconsists of a universeD, to-
gether with a collection of relations overD. A relational structure with a countably infinite
universe is calledω-categoricalif it is determined (up to isomorphism) by its first-order
theory [46].

Theorem 56 ([4]). LetΓ = {R1, . . . , Rk} be a finite constraint language over a countably
infinite setD.

If the relational structure〈D,R1, . . . , Rk〉 is ω-categorical, then〈Γ〉 = Inv(Pol(Γ)).

Examples ofω-categorical structures, as well as remarks on the complexity of the cor-
responding constraint satisfaction problems, can be found in [3], including a complete
analysis of the countably infiniteω-categorical structures with a single binary relation.

6.6.1 Allen’s Interval Algebra

One form of infinite-valued CSP which has been widely studied is the case where the val-
ues taken by the variables areintervalson some totally ordered set. This setting is used
to model the temporal behaviour of systems, where the intervals represent time intervals
during which events occur. The most popular such formalism isAllen’s Interval Algebra ,
introduced in [1], which concerns binary qualitative relations between intervals. This al-
gebra contains 13 basic relations (see Table 6.1), corresponding to the 13 distinct ways in
which two given intervals can be related. The complete set of relations in Allen’s Interval
Algebra consists of the213 = 8192 possibleunionsof the basic relations. This set of
relations will be denotedΓAIA

The constraint languageΓAIA is NP-complete, and the problem of classifying the com-
plexity of subsets of this language has attracted much attention (see, for example, [86]).

Allen’s Interval Algebra has three operations on relations: composition, intersection,
and inversion. Note that these three operations can each be represented by using con-
junction and existential quantification, so, for any subset∆ of ΓAIA , the subalgebra∆′

generated by∆ has the property that∆′ ⊆ 〈∆〉. It follows from Theorem 16 thatCSP(∆)

7This example is from [3], where it is credited to F. Börner.
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Basic relation Example Endpoints

I precedesJ p III I+ < J−

J preceded byI p−1 JJJ

I meetsJ m IIII I+ = J−

J met byI m−1 JJJJ

I overlapsJ o IIII I− < J− < I+,
J overl. byI o−1 JJJJ I+ < J+

I duringJ d III I− > J−,
J includesI d−1 JJJJJJJ I+ < J+

I startsJ s III I− = J−,
J started byI s−1 JJJJJJJ I+ < J+

I finishesJ f III I+ = J+,
J finished byI f−1 JJJJJJJ I− > J−

I equalsJ ≡ IIII I− = J−,
JJJJ I+ = J+

Table 6.1: The 13 basic relations in Allen’s Interval Algebra.

andCSP(∆′) are polynomial-time equivalent. Hence it is sufficient to classify all subsets
of ΓAIA which aresubalgebrasof Allen’s Interval Algebra.

Theorem 57 ([63]). For any constraint languageΓ ⊆ ΓAIA , if Γ is contained in one of the
eighteen subalgebras listed in Table 6.2, then it is tractable; otherwise it is NP-complete.

The domain for Allen’s Interval Algebra can be taken to be the countably infinite set
of intervals with rational endpoints. It was noted in [4] that the relational structure asso-
ciated with Allen’s Interval Algebra (without its operations) isω-categorical. Therefore,
by Theorem 56, the complexity classification problem for subsets ofΓAIA can be tackled
using polymorphisms. Such an approach might provide a route to simplifying the involved
classification proof given in [63].

6.7 Multi-Sorted Constraint Languages

In practical constraint programming it is often the case that different variables have differ-
ent domains. So far in this chapter we have considered a simplified situation in which all
of the variables are assumed to have the same domain. This apparently minor simplifica-
tion can have serious consequences for the analysis of the complexity of different forms of
constraint; it can in fact mask the difference between tractability and NP-completeness for
some languages, as we will demonstrate in this section.

The algebraic approach described in Section 6.4 has been extended to deal with the
case when different variables have different domains [10], and we will now present the
main results of the extended theory.

Definition 58. For any collection of setsD = {Di | i ∈ I}, and any list of indices
〈i1, i2, . . . , in〉 ∈ In, a subset ofDi1×Di2×· · ·×Din , together with the list〈i1, i2, . . . , in〉,
will be called amulti-sorted relationoverD with arity n andsignature〈i1, i2, . . . , in〉.
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Sp = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (p)±1 ⊆ r}
Sd = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (d−1)±1 ⊆ r}
So = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (o)±1 ⊆ r}
A1 = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (s−1)±1 ⊆ r}
A2 = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (s)±1 ⊆ r}
A3 = {r | r ∩ (pmodf)±1 6= ∅ ⇒ (s)±1 ⊆ r}
A4 = {r | r ∩ (pmodf−1)±1 6= ∅ ⇒ (s)±1 ⊆ r}

Ep = {r | r ∩ (pmods)±1 6= ∅ ⇒ (p)±1 ⊆ r}
Ed = {r | r ∩ (pmods)±1 6= ∅ ⇒ (d)±1 ⊆ r}
Eo = {r | r ∩ (pmods)±1 6= ∅ ⇒ (o)±1 ⊆ r}
B1 = {r | r ∩ (pmods)±1 6= ∅ ⇒ (f−1)±1 ⊆ r}
B2 = {r | r ∩ (pmods)±1 6= ∅ ⇒ (f)±1 ⊆ r}
B3 = {r | r ∩ (pmod−1s−1)±1 6= ∅ ⇒ (f−1)±1 ⊆ r}
B4 = {r | r ∩ (pmod−1s)±1 6= ∅ ⇒ (f−1)±1 ⊆ r}

E∗ =

{
r

∣∣∣∣∣
1) r ∩ (pmod)±1 6= ∅ ⇒ (s)±1 ⊆ r, and

2) r ∩ (ff−1) 6= ∅ ⇒ (≡) ⊆ r

}

S∗ =

{
r

∣∣∣∣∣
1) r ∩ (pmod−1)±1 6= ∅ ⇒ (f−1)±1 ⊆ r, and

2) r ∩ (ss−1) 6= ∅ ⇒ (≡) ⊆ r

}

H =





r

∣∣∣∣∣∣∣

1) r ∩ (os)±1 6= ∅ & r ∩ (o−1f)±1 6= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (ds)±1 6= ∅ & r ∩ (d−1f−1)±1 6= ∅ ⇒ (o)±1 ⊆ r, and

3) r ∩ (pm)±1 6= ∅ & r 6⊆ (pm)±1 ⇒ (o)±1 ⊆ r





A≡ = {r | r 6= ∅ ⇒ (≡) ⊆ r}

For the sake of brevity, relations are written as collections of basic relations. So, for
instance, we write(pmod) instead ofp ∪ m ∪ o ∪ d. We also use the symbol±,
which should be interpreted as follows: a condition involving± means the conjunction
of two conditions, one corresponding to+ and one corresponding to−. For example,
the condition(o)±1 ⊆ r ⇔ (d)±1 ⊆ r means that both(o) ⊆ r ⇔ (d) ⊆ r and
(o−1) ⊆ r ⇔ (d−1) ⊆ r.

Table 6.2: The 18 maximal tractable subalgebras of Allen’s Interval Algebra
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For any multi-sorted relationR, the signature ofR will be denotedσ(R).
In the special case whereD contains just a single setD we will call a multi-sorted

relation overD aone-sortedrelation overD.

Example 59. Let R be a 5-ary relation with 17 tuples defined as follows:

R = { 〈3, 1, 2, c, b〉 , 〈3, 3, 2, c, b〉 , 〈1, 0, 2, c, b〉 , 〈1, 2, 2, c, b〉 ,
〈1, 1, 0, c, b〉 , 〈1, 3, 0, c, b〉 , 〈3, 0, 0, c, b〉 , 〈3, 2, 0, c, b〉 ,
〈3, 1, 2, c, a〉 , 〈3, 3, 2, c, a〉 , 〈1, 0, 2, c, a〉 , 〈1, 2, 2, c, a〉 ,
〈3, 1, 2, a, b〉 , 〈3, 3, 2, a, b〉 , 〈1, 1, 0, a, b〉 , 〈1, 3, 0, a, b〉 , 〈3, 3, 2, a, a〉 }

This relation can be considered in the usual way as a one-sorted relation over the setD =
{0, 1, 2, 3, a, b, c}. Alternatively, it can be seen as a multi-sorted relation with signature
〈1, 1, 1, 2, 2〉 over the collection of setsD = 〈D1, D2〉, whereD1 = {0, 1, 2, 3} and
D2 = {a, b, c}. ¤

Given any set of multi-sorted relations, we can define a corresponding class of multi-
sorted constraint satisfaction problems, in the following way.

Definition 60. LetΓ be a set of multi-sorted relations over a collection of setsD = {Di |
i ∈ I}. Themulti-sorted constraint satisfaction problemoverΓ, denotedMCSP(Γ), is
defined to be the decision problem with

Instance: A quadruple〈V, D, δ, C〉, where

• V is a finite set of variables;

• δ is a mapping fromV to I called thedomain function;

• C is a set of constraints, where each constraintC ∈ C is a pair〈s, R〉 such that

– s, is a tuple of variables of lengthnC called the constraint scope, and
– R is an element ofΓ with arity nC and signature〈δ(s[1]), . . . , δ(s[nC ])〉

called the constraint relation.

Question: Does there exist a solution, that is a functionϕ from V to
⋃

i∈I Di such that,
for each variablev ∈ V, ϕ(v) ∈ Dδ(v), and for each constraint〈s,R〉 ∈ C with
s = 〈v1, . . . , vn〉, the tuple〈ϕ(v1), . . . , ϕ(vn)〉 belongs to the multi-sorted relation
R.

It might be tempting to assume that the complexity of a set of multi-sorted relations
could be determined by considering each of the domains involved separately; in other
words, by separating the relations into a number of one-sorted relations, and analysing the
complexity of each of these. However, in general this simple approach does not work, as
the next example demonstrates.

Example 61. Consider the setsD1 = {0, 1} andD2 = {a, b, c}, and the multi-sorted
relationsR1, R2, R3 overD = {D1, D2}, each with signature〈1, 2〉, where

R1 = { 〈1, a〉 , R2 = { 〈0, a〉 , R3 = { 〈0, a〉 ,
〈0, b〉 , 〈1, b〉 , 〈0, b〉 ,
〈0, c〉} 〈0, c〉} 〈1, c〉}.
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If we divide each of these multi-sorted relations into two separate one-sorted relations, then
we obtain just the unary relations{0, 1} and{a, b, c} over the setsD1 andD2 respectively.
Each of these unary relations individually is clearly tractable.

However, by establishing a reduction from the NP-complete problemONE-IN-THREE

SATISFIABILITY (see Example 6), it can be shown that the set of multi-sorted relations
Γ = {R1, R2, R3} is NP-complete. (Details of this reduction are given in [10].) ¤

It is often desirable to convert a multi-sorted constraint satisfaction problem into a one-
sorted problem. The most straightforward way to do this for a given multi-sorted problem
instance〈V, D, δ, C〉, is to takeD =

⋃
Di∈D Di, and replace each constraint relation with

a one-sorted relation overD containing exactly the same tuples.
However, this straightforward conversion method doesnot necessarily preserve the

tractability of a multi-sorted constraint languageΓ, as the next example indicates.

Example 62. Let D1 andD2 be two distinct supersets of a setD0, and letΓ be the con-
straint language containing the single binary disequality relation6=D0 , as defined in Exam-
ple 11, but now considered as a multi-sorted relation over{D1, D2} with signature〈1, 2〉.

Because of the signature, this constraint can only be imposed between two variables
when one of them has domainD1 and the other has domainD2. Hence, in this case
MCSP(Γ) corresponds to the problem of colouring abipartite graphwith |D0| colours,
which is clearly tractable for any setD0. Note that the tractability is entirely due to the
signature of the relation rather than the tuples it contains.

If we convertΓ to a one-sorted constraint language by considering the relation6=D0

as a one-sorted relation over the setD = D1 ∪ D2, then we obtain the usual disequality
relation overD0, which for |D0| > 2 is NP-complete (see Example 11). ¤

To ensure that we do preserve tractability when converting a multi-sorted constraint
language to a one-sorted constraint language, we make use of a more sophisticated conver-
sion technique, based on the following definition.

Definition 63. Let D = {D1, . . . , Dp} be a finite collection of sets, and defineD∗ =
D1 ×D2 × · · · ×Dp.

For any n-ary relation R over D with signatureσ(R) = 〈i1, . . . , in〉, we define the
one-sortedn-ary relationχ(R) overD∗ as follows:

χ(R) = {〈t1, t2, . . . , tn〉 ∈ (D∗)n | 〈t1[i1], t2[i2], . . . , tm[im]〉 ∈ R}.
Note that for any one-sorted relationR, we haveχ(R) = R.

Example 64. Let R be the binary disequality relation6=D0 over {D1, D2} with signa-
ture 〈1, 2〉, as in Example 62. In this caseχ(R) is the relation consisting of all pairs
〈〈a, a′〉 , 〈b, b′〉〉 ∈ (D1 ×D2)× (D1 ×D2) such thata, b′ ∈ D0 anda 6= b′. ¤

Proposition 65 ([10]). LetΓ be a multi-sorted constraint language over a finite collection
of finite sets. The languageΓ is tractable if and only if the corresponding one-sorted
constraint language{χ(R) | R ∈ Γ} is tractable.

To extend the algebraic results of Section 6.4 to the multi-sorted case, we need to define
a suitable extension of the notion of a polymorphism. As we have shown in Example 61,
we cannot simply separate out different domains and consider polymorphisms on each one
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separately; we must ensure that all of the domains are treated in a co-ordinated way. In
the following definition, this is achieved by defining differentinterpretationsfor the same
operation symbol applied to different sets.

Definition 66. Let D = {Di | i ∈ I} be a collection of sets. Ak-ary multi-sorted
operationf on D is defined by a collection ofinterpretations{fDi | i ∈ I}, where each
fDi is ak-ary operation on the corresponding setDi.

For any multi-sorted relationR with signature〈i1, . . . , in〉, and any collection of tuples
t1, . . . , tk ∈ R, definef(t1, . . . , tk) to be

〈
fDi1 (t1[1], . . . , tk[1]), . . . , fDin (t1[n], . . . , tk[n])

〉
.

Definition 67. A k-ary multi-sorted operationf on D is said to be amulti-sorted poly-
morphism of a multi-sorted relationR over D if f(t1, . . . , tk) ∈ R for all choices of
t1, . . . , tk ∈ R.

For any given multi-sorted constraint languageΓ, the set of all multi-sorted polymor-
phisms ofeveryrelation inΓ is denotedMPol(Γ).

The next theorem is the main result of this section. It establishes the remarkable fact
that many of the polymorphisms that ensure tractability in the one-sorted case can be com-
bined in almost arbitrary ways to obtain new tractable multi-sorted constraint languages.

Note that a multi-sorted operation,f , is said to beidempotentif all of its interpretations
fD satisfy the identityfD(x, x, . . . , x) = x.

Theorem 68 ([10]). LetΓ be a multi-sorted constraint language over a finite collection of
finite setsD = {D1, . . . , Dn}.

If, for eachDi ∈ D, MPol(Γ) contains a multi-sorted operationfi such that

• fDi
i is a constant operation; or

• fDi
i is a semilattice operation; or

• fDi
i is a near-unanimity operation; or

• fi is idempotent andfDi
i is an affine operation,

thenMCSP(Γ) is tractable.

Example 69. Recall the relationR defined in Example 59.
If we considerR as a one-sorted relation over the domain{0, 1, 2, 3, a, b, c}, then it

does not fall into any of the many known (one-sorted) tractable classes described in Sec-
tion 6.5.2 above8.

However if we considerR as a multi-sorted relation with signature〈1, 1, 1, 2, 2〉 over
the setsD1 = {0, 1, 2, 3} and D2 = {a, b, c}, then we can use Theorem 68 to show
that {R} is tractable. To see this, it is sufficient to check thatR has two multi-sorted
polymorphismsf(x, y, z) andg(x, y), where

• fD1 is the affine operation of the groupZ4, andfD2 is the (ternary) maximum
operation onD2, with respect to the ordera < b < c (which is idempotent).

8This was established by using the programPolyanna described in [39], which is available from
http://www.comlab.ox.ac.uk/oucl/research/areas/constraints/software/.



David Cohen & Peter Jeavons 25

• gD1(x, y) = y, andgD2 is the (binary) maximum operation onD2, with respect to
the ordera < b < c (which is a semilattice operation).

¤

Further developments in the algebraic approach to multi-sorted constraints, and applica-
tions to the standard one-sorted CSP where the constraints limit the domain of each vari-
able, are given in [10].

6.8 Alternative Approaches

6.8.1 Homomorphism problems

An important reformulation of the CSP is theHOMOMORPHISMproblem: the question of
deciding whether there exists a homomorphism between tworelational structures(see [3,
37, 41, 58]). Recall that a relational structure is simply a set, together with a list of relations
over that set.

Definition 70. Let A1 =
〈
D1, R

1
1, R

1
2, . . . , R

1
q

〉
andA2 =

〈
D2, R

2
1, R

2
2, . . . , R

2
q

〉
be

relational structures where bothR1
i andR2

i areni-ary, for all i = 1, 2, . . . , q.
A mappingΦ : D1 → D2 is called ahomomorphismfromA1 toA2 if it has the prop-

erty that〈Φ(a1), . . . , Φ(ani)〉 ∈ R2
i whenever〈a1, . . . , ani〉 ∈ R1

i , for all i = 1, 2, . . . , q.
TheHOMOMORPHISM PROBLEMfor 〈A1,A2〉 is to decide whether there exists a ho-

momorphism fromA1 toA2

To see that theHOMOMORPHISM PROBLEMis the same as the CSP, think of the el-
ements inA1 as variables, the elements inA2 as values, tuples in the relations ofA1 as
constraint scopes, and the relations ofA2 as constraint relations. With this correspondence,
the solutions to this CSP instance are precisely the homomorphisms fromA1 toA2.

Example 71. A relational structure with a single binary relation〈V, E〉 is usually known
as a (directed)graph.

An instance of theGRAPH H -COLORING problem consists of a finite graphG. The
question is whether there is a homomorphism fromG to H. WhenH is the complete graph
on k vertices, theGRAPH H -COLORING problem corresponds to the standardGRAPH

COLORABILITY problem withk colours (see Example 11). For an arbitrary graphH =
〈V, E〉, theGRAPHH -COLORINGproblem precisely corresponds to the problemCSP({E}).

For undirectedgraphsH, where the edge relationE is symmetric, the complexity
of GRAPH H -COLORING has been completely characterised [44]: it is tractable ifH is
bipartite or contains a loop; otherwise it is NP-complete. (Note that this characterisation
also follows from Conjecture 52, see [7].) However, if we allowH andG to be directed
graphs, then the complexity ofGRAPH H -COLORINGhas not yet been fully characterised.
Moreover, it was shown in [37] that every problemCSP(Γ) with finite Γ is polynomial-
time equivalent toGRAPH H -COLORING for some suitable directed graphH. ¤

6.8.2 Constraint languages and logic

In the field ofdescriptive complexity[47] the computational complexity of a problem is
investigated by studying the forms oflogic which can be used to express that problem. The
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use of descriptive complexity techniques to analyse the complexity of constraint languages
was initiated by the pioneering work of Feder and Vardi [37].

As shown in Section 6.8.1, for any finite constraint languageΓ = {R1, . . . , Rq} over
a setD, the problemCSP(Γ) can be represented as the problem of deciding whether a
given relational structure has a homomorphism to the relational structure〈D, R1, . . . , Rq〉,
Hence the class of instances ofCSP(Γ) which do have a solution can be viewed as a class
of relational structures (sometimes called the “yes-instances”). If this class of relational
structures can be characterised in some restricted logic, then this can sometimes be used to
show thatCSP(Γ) is tractable, as the following example illustrates.

Example 72. Recall from Example 11 thatCSP({6=D}) is equivalent to the problem of
colouring a graph with|D| colours. The class of instances which have a solution is the class
of |D|-colourable graphs, which is a class of relational structures with a single symmetric
binary relationE (specifying which vertices are connected by edges).

Now assume thatD = {0, 1}. It is well-known that a graph(V, E) is 2-colourable
if and only if it does not have any odd-length cycles. The property of having an odd-
length cycle can be expressed in the logic programming languageDatalog [37] using the
following set of rules:

P (x, y) : − E(x, y)
P (x, y) : − P (x, z) ∧ E(z, u) ∧ E(u, y)

Q : − P (x, x)

These rules give a recursive specification of two predicates,P andQ. PredicateP (x, y)
holds exactly when there exists an odd-length path in(V, E) from x to y. Predicate Q,
which acts as goal predicate, holds if there exists any odd-length cycle.

Hence, the class of structures for whichCSP({6={0,1}}) has a solution can be charac-
terised as the set of structures(V, E) for which the goal predicate in this Datalog program
does not hold. It was shown in [37] that any CSP problem whose yes-instances can be
characterised by a Datalog program in this way is tractable.

It has recently been shown that any CSP problem whose yes-instances can be char-
acterised in first-order logic can be characterised by a Datalog program in this way [2].

¤

The techniques of descriptive complexity can also be used to obtain a more refined de-
scription of the complexity of a constraint language. For example, Dalmau has shown [30]
that if a finite constraint languageΓ has a logical property which he calls “bounded path
duality”, then the problemCSP(Γ) is in the complexity class NL, and so can be solved
very efficiently using parallel algorithms.

6.8.3 Disjunctive combinations of constraint languages

Another approach to the analysis of constraint languages has been to consider how they
can be built up from combinations of simpler languages whose properties are more eas-
ily analyzed [25, 6]. This approach has successfully unified several important classes of
tractable languages including five of the six tractable Boolean languages (Example 5), the
max-closed constraints (Example 7), the 0/1/all constraints (Example 8), the connected
row-convex constraints (Example 9) and the linear Horn constraints (Example 13). One
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advantage of this constructive approach is that it works equally well for both finite and
infinite domains.

The key step in this approach is to define how relations can be combined disjunctively.

Definition 73. Let R1 be ann-ary relation andR2 an m-ary relation over a common set
D. Thedisjunctionof R1 andR2, denotedR1 ∨R2, is the relation of arityn + m overD
defined as follows:

R1 ∨R2 = 〈〈x1, . . . , xn+m〉 | (〈x1, . . . , xn〉 ∈ R1) ∨ (〈xn+1, . . . , xn+m〉 ∈ R2)}〉
This definition of disjunction can be extended to constraint languages as follows.

Definition 74. For any two constraint languagesΓ and∆, over the same domainD, define
the constraint languageΓ×∨∆ as follows:

Γ×∨∆ = Γ ∪∆ ∪ {R1 ∨R2 | R1 ∈ Γ, R2 ∈ ∆}
The constraint languageΓ×∨∆ (pronouncedΓ “or-times”∆) contains all of the relations

in Γ and∆, together with the disjunction of each possible pair of relations fromΓ and∆.
The next example shows that when tractable constraint languages are combined using

the disjunction operation defined in Definition 74 the resulting constraint language may or
may not be tractable.

Example 75. Let Λ be the set of all relations over the domain{TRUE, FALSE} which can
be specified by a formula of propositional logic consisting of a singleliteral (where a literal
is either a variable or a negated variable).

The constraint languageΛ is clearly tractable, as it is straightforward to verify in linear
time whether a collection of simultaneous single literals has a solution.

Now consider the constraint languageΛ∨2 = Λ×∨Λ. This set contains all Boolean
constraints specified by a disjunction of (at most) 2 literals. The problemCSP(Λ∨2) cor-
responds to the2-SATISFIABILITY problem, which is well-known to be tractable [38] (see
Example 42).

Finally, consider the constraint languageΛ∨3 = (Λ∨2)×∨Λ. This set of relations con-
tains all Boolean relations specified by a disjunction of (at most) 3 literals. The problem
CSP(Λ∨3) corresponds to the3-SATISFIABILITY problem, which is well-known to be
NP-complete [38, 77]. ¤
Definition 76. For any constraint language,∆, define the set∆∗ as follows:

∆∗ =
∞⋃

i=1

∆∨i, where

∆∨1 = ∆
∆∨(i+1) = (∆∨i)×∨∆ for i = 1, 2, . . .

In the remainder of this section we identify a number of simple conditions on constraint
languagesΓ and∆ which are necessary and sufficient to ensure that various disjunctive
combinations ofΓ and∆ are tractable.

Definition 77. For any constraint languagesΓ and∆ over a common domainD, define
CSP∆≤k(Γ∪∆) to be the subproblem ofCSP(Γ∪∆) consisting of all instances containing
at mostk constraints whose relations are members of∆.
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Using this definition, we now define what it means for one set of constraints to be
‘k-independent’ with respect to another.

Definition 78. For any constraint languagesΓ and∆ over a setD, we say that∆ is k-
independent with respect toΓ if the following condition holds: any instance〈V, D, C〉 in
CSP(Γ∪∆) has a solution provided that any instance〈V, D, C′〉 in CSP∆≤k(Γ∪∆) with
C′ ⊆ C has a solution.

The intuitive meaning of this definition is that the satisfiability of any set of constraints
with relations chosen chosen from the set∆ can be determined by considering those con-
straintsk at a time, even in the presence of arbitrary additional constraints fromΓ.

Theorem 79 ([25, 6]). Let Γ and ∆ be constraint languages over a setD, such that
CSP∆≤1(Γ ∪∆) is tractable.

The constraint languageΓ×∨∆∗ is tractable if∆ is 1-independent with respect toΓ.
Otherwise it is NP-complete.

A polynomial-time algorithm for solving instances ofCSP(Γ×∨∆∗), for any constraint
languagesΓ and∆ satisfying the conditions of Theorem 79 is given in [25].

Example 80. Let D be the set of real numbers (or the rationals). LetΓ be the constraint
language overD consisting of all constraints specified by a single (weak) linear inequality
(e.g.,3x1 + 2x2 − x3 ≤ 6). Let ∆ be the constraint language overD consisting of all
constraints specified by a single linear disequality (e.g.,x1 + 4x2 + x3 6= 0).

To show thatCSP∆≤1(Γ ∪ ∆) is tractable, we note that the consistency of a set of
inequalities,C, can be decided in polynomial time, using Khachian’s linear programming
algorithm [56]. Furthermore, for any single disequality constraint,C, we can detect in
polynomial time whetherC ∪ {C} is consistent by simply running Khachian’s algorithm
to determine whetherC implies the negation ofC.

To show that∆ is 1-independent with respect toΓ, we consider the geometrical inter-
pretation of the constraints as half spaces and excluded hyperplanes inDn (see [61]).

Hence, we can apply Theorem 79 and conclude thatΓ×∨∆∗ is tractable. This set consists
of the linear Horn realtions described in Example 13.

Note that the problemCSP(Γ∪∆∗) is much simpler thanCSP(Γ×∨∆∗) - it corresponds
to deciding whether a convex polyhedron, possiblyminusthe union of a finite number of
hyperplanes, is the empty set. This simpler problem was shown to be tractable in [68],
using a more restrictive notion of independence which has been widely used in the devel-
opment of consistency checking algorithms and canonical forms [67, 68]. However, the
much larger set of linear Horn constraints isnot independent in the sense defined in [68]
(see [61]). ¤
Theorem 81 ([6]). LetΓ and∆ be constraint languages over a setD, such thatCSP(Γ∪
∆) is tractable.

The constraint languageΓ ∪∆∨2 is tractable if∆ is 2-independent with respect toΓ.
Otherwise it is NP-complete.

Note that∆ is 2-independent with respect to∅ if and only if for every〈V, D, C〉 ∈
CSP(∆) which has no solution, there exists a pair of (not necessarily distinct) constraints
Ci, Cj ∈ C such that〈V, D, {Ci, Cj}〉 has no solution.

A polynomial-time algorithm for solving instances ofCSP(Γ∪∆∨2), for any constraint
languagesΓ and∆ satisfying the conditions of Theorem 81 is given in [6].
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Example 82. Consider the class of connected row-convex constraints over a setD de-
scribed in Example 9. In this example we will show that the tractability of connected
row-convex constraints is a simple consequence of Theorem 81. Furthermore, by using
Theorem 81 we are able to generalise this result to obtain tractable constraints over infinite
sets of values.

Note that the 0-1 matrices defining binary connected row-convex constraints have a
very restricted structure. If we eliminate all rows and columns consisting entirely of zeros,
and then consider any remaining zero in the matrix, all of the ones in the same row as the
chosen zero must lie one side of it (because of the connectedness condition on the row).
Similarly, all of the ones in the same column must lie on one side of the chosen zero. Hence
there is a complete path of zeros from the chosen zero to the edge of the matrix along both
the row and column in one direction. But this means there must be a complete rectangular
sub-matrix of zeros extending from the chosen zero to one corner of the matrix (because
of the connectedness condition).

This implies that the whole matrix can be obtained as the intersection (conjunction) of
0-1 matrices that contain all ones except for a submatrix of zeros in one corner (simply
take one such matrix, obtained as above, for each zero in the matrix to be constructed).

There are four different forms of such matrices, depending on which corner submatrix
is zero, and they correspond to constraints expressed by disjunctive expressions of the four
following forms:

(xi ≥ di) ∨ (xj ≥ dj)
(xi ≥ di) ∨ (xj ≤ dj)
(xi ≤ di) ∨ (xj ≥ dj)
(xi ≤ di) ∨ (xj ≤ dj)

In these expressionsxi, xj are variables anddi, dj are constants.
Finally, we note that a row or column consisting entirely of zeros corresponds to a

constraint of the form(xi ≤ d1) ∨ (xi ≥ d2) for an appropriate choice ofd1 andd2.
Hence, any connected row-convex constraint is equivalent to a conjunction of expres-

sions of these forms.
Now define∆ to be the set of all unary constraints overD specified by a single in-

equality of the formxi ≤ di or xi ≥ di, for somedi ∈ D.
It is easily shown that∆ is 2-independent with respect to∅ andCSP(∆) is tractable,

since each instance consists of a conjunction of upper and lower bounds for individual
variables. Hence, by Theorem 81,∆×∨∆ is tractable. By the alternative characterisation
described above, this establishes that connected row-convex constraints are tractable.

Unlike the arguments used previously to establish that connected row-convex con-
straints are tractable [35, 50], the argument above can still be applied when the set of
valuesD is infinite. ¤

Many further examples of constraint languages over both finite and infinite domains
which can be shown to be tractable by constructing them from simpler languages are given
in [25].

Disjunctive combinations of constraint languages overdifferentdomains are discussed
in [24, 13]. These papers make use of the algebraic methods discussed in Section 6.4
above.
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6.9 Future Directions

We have shown in this chapter that considerable progress has been made in analysing
the complexity of constraint problems with specified constraint languages. The algebraic
approach described in Section 6.4 has led to a complete classification for many special
cases of constraint languages, and has prompted the conjecture thatall constraint languages
can be classified as either tractable or NP-complete on the basis of their algebraic properties
(Conjecture 52).

Even greater progress has been made in analysing the complexity of constraint prob-
lems with specified structure, where the constraint language is unrestricted. A number
of powerful structural decomposition algorithms have been developed for constraint satis-
faction problems, often based on ideas from relational database theory [40]. A complete
classification of the complexity of constraint satisfaction problems where the structure of
the constraints is fixed but the constraint relations are unrestricted is given in [42].

However, there is currently very little analytical work which combines these two ap-
proaches. The most promising result of this kind shows that a certain level of local con-
sistency (see Chapter 3), which depends on the constrainttightnessand the maximum
constraint arity, is sufficient to ensure global consistency [88]. In general, enforcing the
required level of local consistency will increase the constraint arity, and so increase the
required level of consistency still further, which means that this result can only be used
to establish the tractability of classes of problems involving particular languages applied
on particular restricted structures [88]. Other “hybrid” results of this kind, involving both
structural and language properties, are discussed in [78] and in Chapter 12 of [32].

In many practical problems it will be the case that some constraints fall into one
tractable class and some fall into another. Can this fact be exploited to obtain an efficient
solution strategy? Does this depend on the structural way in which the different forms of
constraint overlap? There is currently no suitable theoretical framework to address this
question. One promising approach would be to incorporate ideas of space complexity, as
well as time complexity. The ability to construct solutions using only a limited amount
of working space and stored information seems to be a unifying principle between many
disparate techniques in constraint programming such as bucket elimination [32], hypertree
decomposition [40], and several forms of tractable constraint language [52].

Another direction of future work is to extend the analysis presented here to other
forms of constraint problem, such asquantifiedconstraint problems,softconstraint prob-
lems,overconstrainedproblems, or problems where we wish tocount the number of so-
lutions [62]. There has been considerable progress in analysing variations of this kind for
Boolean constraint problems [27]. For larger finite domains there have been some initial
studies of the complexity of quantified constraint problems [5] and counting constraint
problems [9] based on extensions to the algebraic theory described in this chapter: for ex-
ample, it has been shown that for both of these problems the complexity of a constraint
language is determined by its polymorphisms [5, 9].

A rather more substantial extension of the algebraic theory presented here is required to
analyse the complexity of soft constraints, because in this form of problem the constraints
are represented as functions from tuples of domain values to some measure of desirability
(see Chapter 9, “Soft Constraints”). Many forms of combinatorial optimisation problems
can be represented in this very general framework [27, 57]. An initial approach to analysing
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the complexity of such problems using algebraic techniques is developed in [21, 22] and a
tractable soft constraint language is presented in [23].
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[4] M. Bodirsky and J. Něseťril. Constraint satisfaction with countable homogeneous
templates. InProceedings of Computer Science Logic and the 8th Kurt Gödel Collo-
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[44] P. Hell and J. Něseťril. On the complexity ofH-coloring. Journal of Combinatorial
Theory, Ser.B, 48:92–110, 1990.

[45] D. Hobby and R.N. McKenzie.The Structure of Finite Algebras, volume 76 ofCon-
temporary Mathematics. American Mathematical Society, Providence, R.I., 1988.

[46] W. Hodges.A Shorter Model Theory. Cambridge University Press, 1997.
[47] N. Immerman.Descriptive Complexity. Texts in Computer Science. Springer-Verlag,

1998.
[48] P.G. Jeavons. Constructing constraints. InProceedings 4th International Conference

on Constraint Programming—CP’98 (Pisa, October 1998), volume 1520 ofLecture
Notes in Computer Science, pages 2–16. Springer-Verlag, 1998.

[49] P.G. Jeavons. On the algebraic structure of combinatorial problems.Theoretical
Computer Science, 200:185–204, 1998.

[50] P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1–2):251–265, 1998.

[51] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A unifying framework for tractable con-
straints. InProceedings 1st International Conference on Constraint Programming,
CP’95, volume 976 ofLecture Notes in Computer Science, pages 276–291. Springer-
Verlag, 1995.

[52] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints.Journal
of the ACM, 44:527–548, 1997.



34 6.

[53] P.G. Jeavons, D.A. Cohen, and M. Gyssens. How to determine the expressive power
of constraints.Constraints, 4:113–131, 1999.

[54] P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered domains.Artificial
Intelligence, 79(2):327–339, 1995.
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