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Abstract 

This paper attempts to describe, in nontechnical language, some of the concepts and methods of one 
school of thought regarding computational complexity. It applies the viewpoint of information theory 
to computers. This will first lead us to a definition of the degree of randomness of individual binary 
strings, and then to an information-theoretic version of Gödel's theorem on the limitations of the 
axiomatic method. Finally, we will examine in the light of these ideas the scientific method and von 
Neumann's views on the basic conceptual problems of biology. 

This field's fundamental concept is the complexity of a binary string, that is, a string of bits, of zeros 
and ones. The complexity of a binary string is the minimum quantity of information needed to define 
the string. For example, the string of length n consisting entirely of ones is of complexity 
approximately log2 n, because only log2 n bits of information are required to specify n in binary 

notation.  

However, this is rather vague. Exactly what is meant by the definition of a string? To make this idea 
precise a computer is used. One says that a string defines another when the first string gives 
instructions for constructing the second string. In other words, one string defines another when it is a 
program for a computer to calculate the second string. The fact that a string of n ones is of 
complexity approximately log2 n can now be translated more correctly into the following. There is a 

program log2 n + c bits long that calculates the string of n ones. The program performs a loop for 

printing ones n times. A fixed number c of bits are needed to program the loop, and log2 n bits more 

for specifying n in binary notation.  

Exactly how are the computer and the concept of information combined to define the complexity of a 
binary string? A computer is considered to take one binary string and perhaps eventually produce 
another. The first string is the program that has been given to the machine. The second string is the 
output of this program; it is what this program calculates. Now consider a given string that is to be 
calculated. How much information must be given to the machine to do this? That is to say, what is 
the length in bits of the shortest program for calculating the string? This is its complexity.  

It can be objected that this is not a precise definition of the complexity of a string, inasmuch as it 
depends on the computer that one is using. Moreover, a definition should not be based on a machine, 
but rather on a model that does not have the physical limitations of real computers.  

Here we will not define the computer used in the definition of complexity. However, this can indeed 
be done with all the precision of which mathematics is capable. Since 1936 it has been known how 
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to define an idealized computer with unlimited memory. This was done in a very intuitive way by 
Turing and also by Post, and there are elegant definitions based on other principles [2]. The theory of 
recursive functions (or computability theory) has grown up around the questions of what is 
computable and what is not.  

Thus it is not difficult to define a computer mathematically. What remains to be analyzed is which 
definition should be adopted, inasmuch as some computers are easier to program than others. A 
decade ago Solomonoff solved this problem [7]. He constructed a definition of a computer whose 
programs are not much longer than those of any other computer. More exactly, Solomonoff's 
machine simulates running a program on another computer, when it is given a description of that 
computer together with its program.  

Thus it is clear that the complexity of a string is a mathematical concept, even though here we have 
not given a precise definition. Furthermore, it is a very natural concept, easy to understand for those 
who have worked with computers. Recapitulating, the complexity of a binary string is the 
information needed to define it, that is to say, the number of bits of information that must be given to 
a computer in order to calculate it, or in other words, the size in bits of the shortest program for 
calculating it. It is understood that a certain mathematical definition of an idealized computer is 
being used, but it is not given here, because as a first approximation it is sufficient to think of the 
length in bits of a program for a typical computer in use today.  

Now we would like to consider the most important properties of the complexity of a string. First of 
all, the complexity of a string of length n is less than n+c, because any string of length n can be 
calculated by putting it directly into a program as a table. This requires n bits, to which must be 
added c bits of instructions for printing the table. In other words, if nothing betters occurs to us, the 
string itself can be used as its definition, and this requires only a few more bits than its length.  

Thus the complexity of each string of length n is less than n+c. Moreover, the complexity of the 
great majority of strings of length n is approximately n, and very few strings of length n are of 
complexity much less than n. The reason is simply that there are much fewer programs of length 

appreciably less than n than strings of length n. More exactly, there are 2n strings of length n, and 

less than 2n−k programs of length less than n−k. Thus the number of strings of length n and 
complexity less than n−k decreases exponentially as k increases.  

These considerations have revealed the basic fact that the great majority of strings of length n are of 
complexity very close to n. Therefore, if one generates a binary string of length n by tossing a fair 
coin n times and noting whether each toss gives head or tail, it is highly probable that the complexity 
of this string will be very close to n. In 1965 Kolmogorov proposed calling random those strings of 
length n whose complexity is approximately n [8]. We made the same proposal independently [9]. It 
can be shown that a string that is random in this sense has the statistical properties that one would 
expect. For example, zeros and ones appear in such strings with relative frequencies that tend to one-
half as the length of the strings increases.  

Consequently, the great majority of strings of length n are random, that is, need programs of 
approximately length n, that is to say, are of complexity approximately n. What happens if one 
wishes to show that a particular string is random? What if one wishes to prove that the complexity of 
a certain string is almost equal to its length? What if one wishes to exhibit a specific example of a 
string of length n and complexity close to n, and assure oneself by means of a proof that there is no 
shorter program for calculating this string?  

It should be pointed out that this question can occur quite naturally to a programmer with a 
competitive spirit and a mathematical way of thinking. At the beginning of the sixties we attended a 
course at Columbia University in New York. Each time the professor gave an exercise to be 
programmed, the students tried to see who could write the shortest program. Even though several 
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times it seemed very difficult to improve upon the best program that had been discovered, we did not 
fool ourselves. We realized that in order to be sure, for example, that the shortest program for the 
IBM 650 that prints the prime numbers has, say, 28 instructions, it would be necessary to prove it, 
not merely to continue for a long time unsuccessfully trying to discover a program with less than 28 
instructions. We could never even sketch a first approach to a proof.  

It turns out that it was not our fault that we did not find a proof, because we faced a fundamental 
limitation. One confronts a very basic difficulty when one tries to prove that a string is random, 
when one attempts to establish a lower bound on its complexity. We will try to suggest why this 
problem arises by means of a famous paradox, that of Berry [1, p. 153].  

Consider the smallest positive integer that cannot be defined by an English phrase with less than 1 
000 000 000 characters. Supposedly the shortest definition of this number has 1 000 000 000 or more 
characters. However, we defined this number by a phrase much less than 1 000 000 000 characters in 
length when we described it as ``the smallest positive integer that cannot be defined by an English 
phrase with less than 1 000 000 000 characters!''  

What relationship is there between this and proving that a string is complex, that its shortest program 
needs more than n bits? Consider the first string that can be proven to be of complexity greater than 
1 000 000 000. Here once more we face a paradox similar to that of Berry, because this description 
leads to a program with much less than 1 000 000 000 bits that calculates a string supposedly of 
complexity greater than 1 000 000 000. Why is there a short program for calculating ``the first string 
that can be proven to be of complexity greater than 1 000 000 000?''  

The answer depends on the concept of a formal axiom system, whose importance was emphasized by 
Hilbert [1]. Hilbert proposed that mathematics be made as exact and precise as possible. In order to 
avoid arguments between mathematicians about the validity of proofs, he set down explicitly the 
methods of reasoning used in mathematics. In fact, he invented an artificial language with rules of 
grammar and spelling that have no exceptions. He proposed that this language be used to eliminate 
the ambiguities and uncertainties inherent in any natural language. The specifications are so precise 
and exact that checking if a proof written in this artificial language is correct is completely 
mechanical. We would say today that it is so clear whether a proof is valid or not that this can be 
checked by a computer.  

Hilbert hoped that this way mathematics would attain the greatest possible objectivity and exactness. 
Hilbert said that there can no longer be any doubt about proofs. The deductive method should be 
completely clear.  

Suppose that proofs are written in the language that Hilbert constructed, and in accordance with his 
rules concerning the accepted methods of reasoning. We claim that a computer can be programmed 
to print all the theorems that can be proven. It is an endless program that every now and then writes 
on the printer a theorem. Furthermore, no theorem is omitted. Each will eventually be printed, if one 
is very patient and waits long enough.  

How is this possible? The program works in the following manner. The language invented by Hilbert 
has an alphabet with finitely many signs or characters. First the program generates the strings of 
characters in this alphabet that are one character in length. It checks if one of these strings satisfies 
the completely mechanical rules for a correct proof and prints all the theorems whose proofs it has 
found. Then the program generates all the possible proofs that are two characters in length, and 
examines each of them to determine if it is valid. The program then examines all possible proofs of 
length three, of length four, and so on. If a theorem can be proven, the program will eventually find a 
proof for it in this way, and then print it.  

Consider again ``the first string that can be proven to be of complexity greater than 1 000 000 000.'' 
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To find this string one generates all theorems until one finds the first theorem that states that a 
particular string is of complexity greater than 1 000 000 000. Moreover, the program for finding this 
string is short, because it need only have the number 1 000 000 000 written in binary notation, log2 1 

000 000 000 bits, and a routine of fixed length c that examines all possible proofs until it finds one 
that a specific string is of complexity greater than 1 000 000 000.  

In fact, we see that there is a program log
2
 n + c bits long that calculates the first string that can be 

proven to be of complexity greater than n. Here we have Berry's paradox again, because this program 
of length log2 n + c calculates something that supposedly cannot be calculated by a program of 

length less than or equal to n. Also, log2 n + c is much less than n for all sufficiently great values of 

n, because the logarithm increases very slowly.  

What can the meaning of this paradox be? In the case of Berry's original paradox, one cannot arrive 
at a meaningful conclusion, inasmuch as one is dealing with vague concepts such as an English 
phrase's defining a positive integer. However our version of the paradox deals with exact concepts 
that have been defined mathematically. Therefore, it cannot really be a contradiction. It would be 
absurd for a string not to have a program of length less than or equal to n for calculating it, and at the 
same time to have such a program. Thus we arrive at the interesting conclusion that such a string 
cannot exist. For all sufficiently great values of n, one cannot talk about ``the first string that can be 
proven to be of complexity greater than n,'' because this string cannot exist. In other words, for all 
sufficiently great values of n, it cannot be proven that a particular string is of complexity greater than 
n. If one uses the methods of reasoning accepted by Hilbert, there is an upper bound to the 
complexity that it is possible to prove that a particular string has.  

This is the surprising result that we wished to obtain. Most strings of length n are of complexity 
approximately n, and a string generated by tossing a coin will almost certainly have this property. 
Nevertheless, one cannot exhibit individual examples of arbitrarily complex strings using methods of 
reasoning accepted by Hilbert. The lower bounds on the complexity of specific strings that can be 
established are limited, and we will never be mathematically certain that a particular string is very 
complex, even though most strings are random.  

(Footnote: This is a particularly perverse example of Kac's comment [13, p. 16] that ``as is often the case, it is much 
easier to prove that an overwhelming majority of objects possess a certain property than to exhibit even one such object.'' 
The most familiar example of this is Shannon's proof of the coding theorem for a noisy channel; while it is shown that 
most coding schemes achieve close to the channel capacity, in practice it is difficult to implement a good coding 
scheme.)  

In 1931 Gödel questioned Hilbert's ideas in a similar way [1], [2]. Hilbert had proposed specifying 
once and for all exactly what is accepted as a proof, but Gödel explained that no matter what Hilbert 
specified so precisely, there would always be true statements about the integers that the methods of 
reasoning accepted by Hilbert would be incapable of proving. This mathematical result has been 
considered to be of great philosophical importance. Von Neumann commented that the intellectual 
shock provoked by the crisis in the foundations of mathematics was equaled only by two other 
scientific events in this century: the theory of relativity and quantum theory [4].  

We have combined ideas from information theory and computability theory in order to define the 
complexity of a binary string, and have then used this concept to give a definition of a random string 
and to show that a formal axiom system enables one to prove that a random string is indeed random 
in only finitely many cases.  

Now we would like to examine some other possible applications of this viewpoint. In particular, we 
would like to suggest that the concept of the complexity of a string and the fundamental 
methodological problems of science are intimately related. We will also suggest that this concept 
may be of theoretical value in biology.  

Pagina 4 di 10Information-Theoretic Computational Complexity

20/04/2004http://www.umcs.maine.edu/~chaitin/ieee74.html



Solomonoff [7] and the author [9] proposed that the concept of complexity might make it possible to 
precisely formulate the situation that a scientist faces when he has made observations and wishes to 
understand them and make predictions. In order to do this the scientist searches for a theory that is in 
agreement with all his observations. We consider his observations to be represented by a binary 
string, and a theory to be a program that calculates this string. Scientists consider the simplest theory 
to be the best one, and that if a theory is too ``ad hoc,'' it is useless. How can we formulate these 
intuitions about the scientific method in a precise fashion? The simplicity of a theory is inversely 
proportional to the length of the program that constitutes it. That is to say, the best program for 
understanding or predicting observations is the shortest one that reproduces what the scientist has 
observed up to that moment. Also, if the program has the same number of bits as the observations, 
then it is useless, because it is too ``ad hoc.'' If a string of observations only has theories that are 
programs with the same length as the string of observations, then the observations are random, and 
can neither be comprehended nor predicted. They are what they are, and that is all; the scientist 
cannot have a theory in the proper sense of the concept; he can only show someone else what he 
observed and say ``it was this.''  

In summary, the value of a scientific theory is that it enables one to compress many observations into 
a few theoretical hypotheses. There is a theory only when the string of observations is not random, 
that is to say, when its complexity is appreciably less than its length in bits. In this case the scientist 
can communicate his observations to a colleague much more economically than by just transmitting 
the string of observations. He does this by sending his colleague the program that is his theory, and 
this program must have much fewer bits than the original string of observations.  

It is also possible to make a similar analysis of the deductive method, that is to say, of formal axiom 
systems. This is accomplished by analyzing more carefully the new version of Berry's paradox that 
was presented. Here we only sketch the three basic results that are obtained in this manner. (See the 

Appendix).  

1. In a formal system with n bits of axioms it is impossible to prove that a particular binary string 
is of complexity greater than n+c. 

2. Contrariwise, there are formal systems with n+c bits of axioms in which it is possible to 
determine each string of complexity less than n and the complexity of each of these strings, 
and it is also possible to exhibit each string of complexity greater than or equal to n, but 
without being able to know by how much the complexity of each of these strings exceeds n. 

3. Unfortunately, any formal system in which it is possible to determine each string of 
complexity less than n has either one grave problem or another. Either it has few bits of 
axioms and needs incredibly long proofs, or it has short proofs but an incredibly great number 
of bits of axioms. We say ``incredibly'' because these quantities increase more quickly than 
any computable function of n.  

It is necessary to clarify the relationship between this and the preceding analysis of the scientific 

method. There are less than 2n strings of complexity less than n, but some of them are incredibly 
long. If one wishes to communicate all of them to someone else, there are two alternatives. The first 
is to directly show all of them to him. In this case one will have to send him an incredibly long 
message because some of these strings are incredibly long. The other alternative is to send him a 
very short message consisting of n bits of axioms from which he can deduce which strings are of 
complexity less than n. Although the message is very short in this case, he will have to spend an 
incredibly long time to deduce from these axioms the strings of complexity less than n. This is 
analogous to the dilemma of a scientist who must choose between directly publishing his 
observations, or publishing a theory that explains them, but requires very extended calculations in 
order to do this.  

Pagina 5 di 10Information-Theoretic Computational Complexity

20/04/2004http://www.umcs.maine.edu/~chaitin/ieee74.html



Finally, we would like to suggest that the concept of complexity may possibly be of theoretical value 
in biology.  

At the end of his life von Neumann tried to lay the foundation for a mathematics of biological 
phenomena. His first effort in this direction was his work Theory of Games and Economic Behavior, 
in which he analyzes what is a rational way to behave in situations in which there are conflicting 
interests [3]. The Computer and the Brain, his notes for a lecture series, was published shortly after 
his death [5]. This book discusses the differences and similarities between the computer and the 
brain, as a first step to a theory of how the brain functions. A decade later his work Theory of Self-
Reproducing Automata appeared, in which von Neumann constructs an artificial universe and within 
it a computer that is capable of reproducing itself [6]. But von Neumann points out that the problem 
of formulating a mathematical theory of the evolution of life in this abstract setting remains to be 
solved; and to express mathematically the evolution of the complexity of organisms, one must first 
define complexity precisely. (In an important paper [14], Eigen studies these questions from the point of view of 

thermodynamics and biochemistry.) We submit that ``organism'' must also be defined, and have tried 
elsewhere to suggest how this might perhaps be done [10].  

We believe that the concept of complexity that has been presented here may be the tool that von 
Neumann felt is needed. It is by no means accidental that biological phenomena are considered to be 
extremely complex. Consider how a human being analyzes what he sees, or uses natural languages to 
communicate. We cannot carry out these tasks by computer because they are as yet too complex for 
us---the programs would be too long. (Chandrasekaran and Reeker [15] discuss the relevance of complexity to 

artificial intelligence.)  

Appendix 

In this Appendix we try to give a more detailed idea of how the results concerning formal axiom 
systems that were stated are established. (See [11], [12] for different approaches.) 

Two basic mathematical concepts that are employed are the concepts of a recursive function and a 
partial recursive function. A function is recursive if there is an algorithm for calculating its value 
when one is given the value of its arguments, in other words, if there is a Turing machine for doing 
this. If it is possible that this algorithm never terminates and the function is thus undefined for some 
values of its arguments, then the function is called partial recursive. (Full treatments of these concepts can 

be found in standard texts, e.g., Rogers [16].)  

In what follows we are concerned with computations involving binary strings. The binary strings are 
considered to be ordered in the following manner: Λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, ... The 
natural number n is represented by the nth binary string (n = 0, 1, 2, ...). The length of a binary string 
s is denoted lg(s). Thus if s is considered to be a natural number, then lg(s) = ⌊log

2
 (s+1)⌊. Here 

⌊x⌊ is the greatest integer ≤ x.  

Definition 1. A computer is a partial recursive function C(p). Its argument p is a binary string. The 
value of C(p) is the binary string output by the computer C when it is given the program p. If C(p) is 
undefined, this means that running the program p on C produces an unending computation.  

Definition 2. The complexity I
C

(s) of a binary string s is defined to be the length of the shortest 

program p that makes the computer C output s, i.e.,  

I
C

(s) = min
C(p)=s

 lg(p). 
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If no program makes C output s, then I
C

(s) is defined to be infinite. 

Definition 3. A computer U is universal if for any computer C and any binary string s, I
U

(s) ≤ I
C

(s) 

+ c, where the constant c depends only on C.  

It is easy to see that there are universal computers. For example, consider the computer U such that 

U(0i1p) = C
i
(p), where C

i
 is the ith computer, i.e., a program for U consists of two parts: the left-

hand part indicates which computer is to be simulated, and the right-hand part gives the program to 
be simulated. We now suppose that some particular universal computer U has been chosen as the 
standard one for measuring complexities, and shall henceforth write I(s) instead of I

U
(s).  

Definition 4. The rules of inference of a class of formal axiom systems is a recursive function F(a, 

h) (a a binary string, h a natural number) with the property that F(a, h) ⊆ F(a, h+1). The value of F

(a, h) is the finite (possibly empty) set of theorems that can be proven from the axioms a by means 
of proofs ≤ h characters in length. F(a) = ∪∪∪∪h

 F(a, h) is the set of theorems that are consequences of 

the axioms a. The ordered pair ⌊F, a⌊, which implies both the choice of rules of inference and 
axioms, is a particular formal axiom system.  

This is a fairly abstract definition, but it retains all those features of formal axiom systems that we 
need. Note that although one may not be interested in some axioms (e.g., if they are false or 
incomprehensible), it is stipulated that F(a, h) is always defined.  

Theorem 1. a) There is a constant c such that I(s) ≤ lg(s) + c for all binary strings s. b) There are 

less than 2n binary strings of complexity less than n.  

Proof of a). There is a computer C such that C(p) = p for all programs p. Thus for all binary strings s, 
I(s) ≤ I

C
(s) + c = lg(s) + c.  

Proof of b). As there are less than 2n programs of length less than n, there must be less than this 
number of binary strings of complexity less than n. Q.E.D.  

Thesis. A random binary string s is one having the property that I(s) ≈ lg(s).  

Theorem 2. Consider the rules of inference F. Suppose that a proposition of the form ``I(s) ≥ n'' is 

in F(a) only if it is true, i.e., only if I(s) ≥ n. Then a proposition of the form ``I(s) ≥ n'' is in F(a) 

only if n ≤ lg(a) + c, where c is a constant that depends only on F.  

Proof. Consider that binary string s
k
 having the shortest proof from the axioms a that it is of 

complexity > lg(a) + 2k. We claim that I(s
k
) ≤ lg(a) + k + c', where c' depends only on F. Taking k 

= c', we conclude that the binary string s
c'

 with the shortest proof from the axioms a that it is of 

complexity > lg(a) + 2c' is, in fact, of complexity ≤ lg(a) + 2c', which is impossible. It follows that 

s
k
 doesn't exist for k = c', that is, no binary string can be proven from the axioms a to be of 

complexity > lg(a) + 2c'. Thus the theorem is proved with c = 2c'.  

It remains to verify the claim that I(s
k
) ≤ lg(a) + k + c'. Consider the computer C that does the 

following when it is given the program 0k1a. It calculates F(a, h) for h = 0, 1, 2, ... until it finds the 
first theorem in F(a, h) of the form ``I(s) ≥ n'' with n > lg(a) + 2k. Finally C outputs the binary 

string s in the theorem it has found. Thus C(0k1a) is equal to s
k
, if s

k
 exists. It follows that  
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I(s
k
) = I(C(0k1a))  

          ≤ I
C

(C(0k1a)) + c''  

          ≤ lg(0k1a) + c'' = lg(a) + k + (c'' + 1) = lg(a) + k + c'.  

Q.E.D. 

Definition 5. An
 is defined to be the kth binary string of length n, where k is the number of programs 

p of length < n for which U(p) is defined, i.e., A
n
 has n and this number k coded into it.  

Theorem 3. There are rules of inference F1 such that for all n, F1(A
n
) is the union of the set of all 

true propositions of the form ``I(s) = k'' with k < n and the set of all true propositions of the form ``I
(s) ≥ n.''  

Proof. From A
n
 one knows n and for how many programs p of length < n, U(p) is defined. One then 

simulates in parallel running each program p of length < n on U until one has determined the value 
of U(p) for each p of length < n for which U(p) is defined. Knowing the value of U(p) for each p of 
length < n for which U(p) is defined, one easily determines each string of complexity < n and its 
complexity. What's more, all other strings must be of complexity ≥ n. This completes our sketch of 

how all true propositions of the form ``I(s) = k'' with k < n and of the form ``I(s) ≥ n'' can be derived 

from the axiom A
n
. Q.E.D.  

Recall that we consider the nth binary string to be the natural number n.  

Definition 6. The partial function B(n) is defined to be the biggest natural number of complexity ≤ 

n, i.e.,  

B(n) = max
I(k) ≤ n k = maxlg(p) ≤ n U(p). 

 

Theorem 4. Let f be a partial recursive function that carries natural numbers into natural numbers. 
Then B(n) ≥ f(n) for all sufficiently great values of n.  

Proof. Consider the computer C such that C(p) = f(p) for all p.  

I(f(n)) ≤ I
C

(f(n)) + c ≤ lg(n) + c = ⌊log2 (n+1)⌊ + c < n 

 

for all sufficiently great values of n. Thus B(n) ≥ f(n) for all sufficiently great values of n. Q.E.D. 

Theorem 5. Consider the rules of inference F. Let  

F
n
 = ∪∪∪∪a

 F(a, B(n)), 

 

where the union is taken over all binary strings a of length ≤ B(n), i.e., F
n
 is the (finite) set of all 

theorems that can be deduced by means of proofs with not more than B(n) characters from axioms 
with not more than B(n) bits. Let s

n
 be the first binary string s not in any proposition of the form ``I

(s) = k'' in F
n
. Then I(s

n
) ≤ n + c, where the constant c depends only on F. 

Proof. We claim that there is a computer C such that if U(p) = B(n), then C(p) = s
n
. As, by the 

definition of B, there is a p
0
 of length ≤ n such that U(p

0
) = B(n), it follows that  
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I(s
n
) ≤ I

C
(s

n
) + c = I

C
(C(p0)) + c ≤ lg(p0) + c ≤ n + c,  

which was to be proved. 

It remains to verify the claim that there is a C such that if U(p) = B(n), then C(p) = s
n
. C works as 

follows. Given the program p, C first simulates running the program p on U. Once C has determined 
U(p), it calculates F(a, U(p)) for all binary strings a such that lg(a) ≤ U(p), and forms the union of 

these 2U(p)+1−1 different sets of propositions, which is F
n
 if U(p) = B(n). Finally C outputs the first 

binary string s not in any proposition of the form ``I(s) = k'' in this set of propositions; s is s
n
 if U(p) 

= B(n). Q.E.D.  

Theorem 6. Consider the rules of inference F. If F(a, h) includes all true propositions of the form ``I
(s) = k'' with k ≤ n + c, then either lg(a) > B(n) or h > B(n). Here c is a constant that depends only on 

F.  

Proof. This is an immediate consequence of Theorem 5. Q.E.D.  

The following theorem gives an upper bound on the size of the proofs in the formal systems ⌊F1, 
A

n
⌊ that were studied in Theorem 3, and also shows that the lower bound on the size of these proofs 

that is given by Theorem 6 cannot be essentially improved.  

Theorem 7. There is a constant c such that for all n, F1(A
n
, B(n+c)) includes all true propositions of 

the form ``I(s) = k'' with k < n.  

Proof. We claim that there is a computer C such that for all n, C(A
n
) = the least natural number h 

such that F1(A
n
, h) includes all true propositions of the form ``I(s) = k'' with k < n. Thus the 

complexity of this value of h is ≤ lg(A
n
) + c = n + c, and B(n+c) is ≥ this value of h, which was to 

be proved.  

It remains to verify the claim. C works as follows when it is given the program A
n
. First, it 

determines each binary string of complexity < n and its complexity, in the manner described in the 

proof of Theorem 3. Then it calculates F1(A
n
, h) for h = 0, 1, 2, ... until all true propositions of the 

form ``I(s) = k'' with k < n are included in F1(A
n
, h). The final value of h is then output by C. Q.E.D.  
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