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Perfect steganography
A stegosystem is perfect if the distribution of the stego objects matches 

exactly the distribution of the covers.

In this case,

• the embedding is undetectable;

• the capacity is linear in the amount of data transmitted.

• We must consider the possibility of dependence between the objects in 

the stego and cover channels.

• How can we ever know if a real-world stegosystem is perfect?



Perfect steganography
Perfect stegosystems are theoretically possible:

1. If the embedder knows exactly the distribution of the covers, they can 

match it.

• Various methods exist, but may require a lot of work at the embedder.

• Is it realistic to know the exact distribution of the covers?

Y. Wang and P. Moulin. Perfectly Secure Steganography: Capacity, Error Exponents, amd Code 
Constructions. IEEE Trans. Info. Theory 54(6), 2008.



Perfect steganography
Perfect stegosystems are theoretically possible:

1. If the embedder knows exactly the distribution of the covers, they can 

match it.

• Various methods exist, but may require a lot of work at the embedder.

• Is it realistic to know the exact distribution of the covers?

2. If the embedder has unlimited access to covers, they can sample until 

they find a sequence which match their message.

• This is the “rejection sampler”, which requires a lot of work.

• The payload would have to be very small.

N. Hopper, J. Langford, L. von Ahn. Provable Secure Steganography. In Proc. CRYPTO, 2002.



Capacity of imperfect steganography
Not “how much can you hide undetectably”,  

rather “how much is reliably detectable”?

Fix:

• cover source,

• embedding method,

• limit on “risk” (minimum detector error).

What is the largest payload which can safely be embedded?

Could use it to compare: embedding methods, 

covers, 

detectors, …

But difficult to answer – must reason about EVERY detector.



Information theoretic bounds
If X has density function f, and Y has density function g, then the Kullback-

Leibler divergence from X to Y is 

Information Processing Theorem:

Therefore, if trying to classify an observation as X or Y, the error rates α and 

β must satisfy

C. Cachin. An Information-Theoretic Model for Steganography. Information and Computation 192(1), 
2004.



Information theoretic bounds

Moulin et al. – proposes statistical models for cover and stego media to 

compute                                                       in terms of payload size.

Conclusion:  If the embedding rate is fixed then the probability of false 

negative (missed detection) tends to zero exponentially fast.

Security can be measured by the “error exponent”.

Y. Wang and P. Moulin, Steganalysis of Block-Structured Stegotext, Proc. SPIE Electronic Imaging, 2004.

P. Moulin and R. Koetter, Data-Hiding Codes, Proc. IEEE, 2005.



Information theoretic bounds

Moulin et al. – proposes statistical models for cover and stego media to 

compute                                                       in terms of payload size.

Conclusion:  If the embedding rate is fixed then the probability of false 

negative (missed detection) tends to zero exponentially fast.

Security can be measured by the “error exponent”.

Problem: Statistical models for covers are (very) inaccurate.

> distinction between artificial covers – mathematical objects

and empirical covers – realisations of reality.

R. Böhme, Improved Statistical Steganalysis using Models of Heterogeneous Cover Signals, PhD Thesis. 

TU Dresden, 2008.



Information theoretic bounds

Moulin et al. – proposes statistical models for cover and stego media to 

compute                                                       in terms of payload size.

Conclusion:  If the embedding rate is fixed then the probability of false 

negative (missed detection) tends to zero exponentially fast.

Security can be measured by the “error exponent”.

Problem: Statistical models for covers are (very) inaccurate.

Problem: If fixed-rate embedding leads to certain detection, why do it?



The Square Root Law
“The amount of information you can hide securely is asymptotically 

proportional to the square root of the space you have to hide it in.”

• Suggested sublinear capacity after empirical study in 2004.

• Conjectured square root relationship in 2005.

• First proved a square root law in 2006.

• New and improved square root laws in 2008, 2009, 2010, …



SRL Theorem
Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload, size mmmm, affects pixels independently 

with probability 

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�

1. If as then, for sufficiently large n, an arbitrarily 

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.



Proof
1. If                     then an arbitrarily accurate detector exists.

W.l.o.g.            The detector is 

payload detected if                          is greater than a 

critical threshold 

If no payload,                       and

which can be made arbitrarily small.

If payload, 

which tends to zero as 

{ Hoeffding’s inequality }



2. If then detectors must have an arbitrarily high inaccuracy.

Without payload, “1” has probability      with payload, 

By the information processing theorem, any detector has false positive rate α

and false negative rate β satisfying

Therefore

Proof



The Square Root Law
“The amount of information you can hide securely is asymptotically 

proportional to the square root of the space you have to hide it in.”

• Information hiding is unlike cryptography or communication theory.

• Everything based on embedding “rate” should be reconsidered…



Extensions
1. More realistic cover models.
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SRL Theorem
Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload, size mmmm, affects pixels independently 

with probability 

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�

1. If as then, for sufficiently large n, an arbitrarily 

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.

Unrealistic (artificial) cover model.

• Immediate extension to covers of independent random pixels of finitely 

many colours.

• With difficult analysis, can be extended further…



SRL Theorem
Assuming � Covers consist of nnnn realisations from a Markov chain

� Payload, size mmmm, affects pixels independently 

with probability 

� (The Markov chain is nontrivial.)

� (The stego object has a different distribution from the covers.)

1. If as then, for sufficiently large n, an arbitrarily  

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.

T. Filler, A. Ker, and J. Fridrich. The Square Root Law of Steganographic Capacity for Markov Covers. 
In Proc. Media Forensics and Security XI, SPIE, 2009.



SRL Theorem
Assuming � Covers consist of nnnn realisations from a Markov chain

� Payload, size mmmm, affects pixels independently 

with probability 

� (The Markov chain is nontrivial.)

� (The stego object has a different distribution from the covers.)

1. If as then, for sufficiently large n, an arbitrarily   

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.

Con

Conjecture: holds for all Markov random fields with “exponential 

forgetting” property.



Extensions
1. More realistic cover models.

2. Consider the “secret key” size.



SRL Theorem
Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload, size mmmm, affects pixels independently 

with probability 

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�

1. If as then, for sufficiently large n, an arbitrarily 

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.

Slightly unrealistic embedding model:

• “Uniform” embedding is not “independent” embedding.

• If the payload is of a certain size, embedding in location i means that 

embedding in location j is marginally less likely.

So even in the i.i.d. cover model, the stego images should not consist of 

i.i.d. pixels.



SRL Theorem
Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload affects mmmm locations chosen uniformly from all 

possible embedding paths.

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�
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SRL Theorem
Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload affects mmmm locations chosen uniformly from all 

possible embedding paths.

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�

1. If as then, for sufficiently large n, an arbitrarily 

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.

Still unrealistic!

There are                   possible embedding paths (choose m ordered 

locations from n, without replacement). 

If                sender and recipient need to share            bits 

of information to locate the payload, i.e.

they need a secret key larger than the payload transmitted!



SRL Theorem
Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload affects mmmm locations chosen from a set of      possible        

embedding paths (i.e. a secret key of k bits).

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�

Then 

if and              as then, for sufficiently large n, an  

arbitrarily accurate detector exists.

“k must be at least linear in m if a square root law is to hold”

A. Ker, The Square Root Law Requires a Linear Key. In Proc. 11th Multimedia and Security Workshop, 
ACM, 2009



Extensions
1. More realistic cover models.

2. Consider the “secret key” size.

3. Empirical studies.



Empirical studies
Square root law observed in performance of contemporary detectors. 

A. Ker, T. Pevný, J. Kodovský, and J. Fridrich. The Square Root Law of Steganographic Capacity.

In Proc. 10th Multimedia and Security Workshop, ACM, 2008



Extensions
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2. Consider the “secret key” size.

3. Empirical studies.

4. Estimation of multiplicative constant root rate.
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Assuming � Covers consist of nnnn independent random bits (pixels)

� Payload, size mmmm, affects pixels independently 

with probability 

� Unaltered pixels are 1 with probability pppp,

pixels used for payload are 1 with probability q q q q .

�

1. If as then, for sufficiently large n, an arbitrarily 

accurate detector exists.

2. If as             then, for sufficiently large n, every detector must 

have an arbitrarily high inaccuracy.

3. If as               ..?

The root rate r limits the asymptotic performance of any detector. It is 

related to Fishers Information I, by 

Lower bounds on false positive & negative rates determine upper bounds 

on r, which is the true “capacity”.

SRL Theorem



Extensions
1. More realistic cover models.

2. Consider the “secret key” size.

3. Empirical studies.

4. Estimation of multiplicative constant root rate.

We can even estimate Fisher Information, hence root rate, empirically. 

But the computational challenges are considerable.

A. Ker. Estimating Steganographic Fisher Information in Real Images. In Proc. 11th Information Hiding 
Workshop, Springer LNCS, 2009.



Extensions
1. More realistic cover models.

2. Consider the “secret key” size.

3. Empirical studies.

4. Estimation of multiplicative constant root rate.

5. Detectors with an imperfect cover (or stego) model.

6. Embedders with learning behaviour.
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A. Ker, Batch Steganography & Pooled Steganalysis, In Proc. 8th Information Hiding Workshop, 2006.
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A. Ker, Batch Steganography & Pooled Steganalysis, In Proc. 8th Information Hiding Workshop, 2006.

Choice of pi s.t.

is Alice’s embedding strategy

Combining multiple 

items of evidence into a 

single decision is Eve’s

pooling strategy



Batch steganography
What we know:

• Under mild conditions, capacity follows a square root law: 

• Batch steganography & pooled steganalysis lead to a natural game-

theoretic problem, with no “pure” solution. 

• Only a few special cases are solved.

What we don’t yet know:

• General results about the game.

• The best embedding strategy.

• Any good pooling strategies (a very practical problem).



Conclusions
• Imperfect steganography is not like communication in noisy channels: 

capacity is not linear.

– We should be wary of embedding “rates”.

– This may have practical implications.

• There is interesting work yet to do, extending the square root law.

– The challenges are mainly in statistics and analysis.

• Fisher Information should be a focus.

– Takes us towards a genuine capacity estimate.

• Batch steganography & pooled steganalysis deserve more attention.

End


