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Abstract. Differential privacy is a widely studied notion of privacy for
various models of computation. Technically, it is based on measuring
differences between probability distributions. We study ε, δ-differential
privacy in the setting of labelled Markov chains. While the exact dif-
ferences relevant to ε, δ-differential privacy are not computable in this
framework, we propose a computable bisimilarity distance that yields a
sound technique for measuring δ, the parameter that quantifies devia-
tion from pure differential privacy. We show this bisimilarity distance
is always rational, the associated threshold problem is in NP, and the
distance can be computed exactly with polynomially many calls to an
NP oracle.
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1 Introduction

Bisimilarity distances were introduced by [16, 17], as a metric analogue of clas-
sic probabilistic bisimulation [23], to overcome the problem that bisimilarity is
too sensitive to minor changes in probabilities. Such robustness is highly desir-
able, because probabilistic automata arising in practice may often be based on
approximate probability values, extracted or learnt from real world data.

In this paper, we study the computation of bisimilarity distances related to
differential privacy. Differential privacy [18] is a security property that ensures
that a small perturbation of the input leads to only a small perturbation in the
output, so that observing the output makes it difficult to determine whether a
particular piece of information was present in the input. A variant, ε-differential
privacy, considers the ratio difference (rather than the absolute difference) be-
tween probabilities.

We will be concerned with the more general concept of ε, δ-differential privacy,
also referred to as approximate differential privacy. The δ parameter allows one
to assess to what degree ε-differential privacy (“pure differential privacy”) was
achieved. We will design a version of bisimilarity distance which will constitute
a sound upper bound on δ, thus providing a reliable measure of security.
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From a verification perspective, a natural question is how to analyse systems
with respect to ε, δ-differential privacy. We carry out our investigations in the
setting where the systems are labelled Markov chains (LMC), abstractions of au-
tonomous systems with probabilistic behaviour and under partial observability.
States of an LMC M can be thought of as generating probability distributions
on sets of traces, and these sets are taken to correspond to observable events.
Let M be a system, and suppose s and s′ are two states (configurations) of M.
Then we will say that s and s′ satisfy ε, δ-differential privacy if the distributions
on traces from these states are sufficiently close. We consider the following prob-
lem: given an LMC M, states s and s′, and a value of ε, determine δ such that
s and s′ satisfy ε, δ-differential privacy. Unfortunately, the smallest of such δ is
not computable [22], which motivates our search for upper bounds.

In the spirit of generalised bisimilarity pseudometrics [12], our distance, de-
noted bdα, is based on the Kantorovich-style lifting of distance between states to
distance between distributions. However, because the underpinning distances in
our case turn out not to be metrics, the setting does not quite fit into the stan-
dard picture, which presents a technical challenge. We discuss how the proposed
distance may be computed, using techniques from linear programming, linear
real arithmetic, and computational logic. Our first result is that the distance
always takes on rational values of polynomial size with respect to the size of
the LMC and the bit size of the probability values associated with transitions
(Theorem 1).

This is then used to show that the associated threshold problem (“is bdα
upper-bounded by a given threshold value for two given states?”) is in NP
(Theorem 2). Note that the distance can be approximated to arbitrary precision
by solving polynomially many instances of the threshold problem. Finally, we
show that the distance can be computed exactly in polynomial time, given an
NP oracle (Theorem 3). This places it in (the search version of) NP, leaving
the possibility of polynomial-time computation open.

Related Work Chatzikokolakis et al. [12] have advocated the development
of Kantorovich pseudometrics, instantiated with any metric distance function
(rather than absolute value) in the context of differential privacy. They did not
discuss the complexity of calculating such pseudometrics, but asked whether it
was possible to extend their techniques to ε, δ-differential privacy. Our paper
shows the extent to which this can be achieved; the technical obstacle that
we face is that our distances are not metrics. To the best of our knowledge,
no complexity results on differential privacy for Markov chains have previously
appeared in the literature, and we are the first to address this gap.

The computation of the standard bisimilarity distances has been the topic of
a long running line of research [7], starting with approximation [8]. The distance
was eventually determined to be computable in polynomial time using the el-
lipsoid method to solve an implicit linear program of exponential size [14]. This
technique turns out slow in practice and further techniques have been developed
which are faster but do not have such strong complexity guarantees [2, 26]. Be-
cause of the two-sided nature of our distances, the main system of constraints



Bisimilarity Distances for Approximate Differential Privacy 3

that we introduce in our work involves a maximum of two quantities. This nonlin-
earity at the core of the problem prevents us from relying on the ellipsoid method
and explains the gap between our NP upper bound and the polynomial-time
algorithms of [14].

Tschantz et al. [28] first studied differential privacy using a notion similar
to bisimulation, which was extended to a more general class of bisimulation
relations by Xu et al. [31]. Both consider only ε-differential privacy, i.e. ratio
differences, but do not examine how these could be computed.

An alternative line of research by Barthe et al. [5] concerns formal mechanised
proofs of differential privacy. Recently, that direction has been related to coupling
proofs [4] – this still requires substantial effort to choose the coupling, although
recent techniques have improved this [1]. We complement this line of research
by taking an algorithmic verification-centred approach.

The remainder of the paper is arranged as follows. Section 2 introduces the
basic setting of labelled Markov chains. In section 3, we discuss ε, δ-differential
privacy and in section 4 we define our distance. Section 5 develops technical
results on our extended case of Kantorovich lifting. These are subsequently used
in section 6 to underpin techniques for computing the relevant distances.

2 Labelled Markov Chains

Given a finite set S, let Dist(S) be the set of probability distributions on S.

Definition 1. A labelled Markov chain (LMC) M is a tuple 〈S,Σ, µ, `〉, where
S is a finite set of states, Σ is a finite alphabet, µ : S → Dist(S) is the transition
function and ` : S → Σ is the labelling function.

Like in [2, 7, 14, 26], our definition features labelled states. Variations, such as
transition labels, can be easily accommodated within the setting. We also assume
that all transition probabilities are rational, represented as a pair of binary inte-
gers. The bit sizes of these integers form part of the bit size of the representation
|M|. We will often write µs for µ(s).

In what follows, we study probabilities associated with infinite sequences of
labels generated by LMC’s. We specify the relevant probability spaces next using
standard measure theory [3,6]. Let us start with the definition of cylinder sets.

Definition 2. A subset C ⊆ Σω is a cylinder set if there exists u ∈ Σ∗ such
that C consists of all infinite sequences from Σω whose prefix is u. We then write
Cu to refer to C.

Cylinder sets play a prominent role in measure theory in that their finite
unions can be used as a generating family (an algebra) for the set F of measurable
subsets of Σω (the cylindric σ-algebra). What will be important for us is that
any measure ν on F is uniquely determined by its values on cylinder sets. Next
we show how to assign a measure νs on F to an arbitrary state of an LMC. We
start with several auxiliary definitions.
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Definition 3. Given M = 〈S,Σ, µ, `〉, let µ+ : S+ → [0, 1] and `+ : S+ → Σ+

be the natural extensions of µ and ` to S+, i.e. µ+(s0 · · · sk) =
∏k−1
i=0 µ(si)(si+1)

and `+(s0 · · · sk) = `(s0) · · · `(sk), where k ≥ 0 and si ∈ S (0 ≤ i ≤ k). Note
that, for any s ∈ S, we have µ+(s) = 1. Given s ∈ S, let Pathss(M) be the
subset of S+ consisting of all sequences that start with s.

Definition 4. Let M = 〈S,Σ, µ, `〉 and s ∈ S. We define νs : F → [0, 1] to be
the unique measure on F such that for any cylinder Cu we have

νs(Cu) =
∑
{µ+(p) | p ∈ Pathss(M), `+(p) = u }.

Our aim will be to compare states of labelled Markov chains from the point
of view of differential privacy. Note that two states s, s′ can be viewed as in-
distinguishable if νs = νs′ . If they are not indistinguishable then the difference
between them can be quantified using the total variation distance, defined by
tv (ν, ν′) = supE∈F |ν(E)−ν′(E)|. GivenM = 〈S,Σ, µ, `〉 and s, s′ ∈ S, we shall
write tv (s, s′) to refer to tv (νs, νs′).

Remark 1. tv (s, s′) turns out surprisingly difficult to compute: it is undecidable
whether the distance is strictly greater than a given threshold, and the non-strict
variant of the problem (“greater or equal”) is not known to be decidable [22].

To measure probabilities relevant to differential privacy, we will need to study a
more general variant tvα of the above distance, which we introduce next.

3 Differential Privacy

Differential privacy is a mathematical guarantee of privacy due to Dwork et
al [18]. It is a property similar to non-interference: the aim is to ensure that
inputs which are related in some sense lead to very similar outputs. The notion
requires that for two related states there only ever be a small change in output
probabilities, and therefore discerning the two is difficult, which maintains the
privacy of the states. Below we cast the definition in the setting of labelled
Markov chains.

Definition 5. LetM = 〈S,Σ, µ, `〉 be a labelled Markov chain and let R ⊆ S×S
be a symmetric relation. Given ε ≥ 0 and δ ∈ [0, 1], we say that M is ε, δ-
differentially private (wrt R) if, for any s, s′ ∈ S such that (s, s′) ∈ R, we have

νs(E) ≤ eε · νs′(E) + δ

for any measurable set E ∈ F .

Remark 2. Note that each state s ∈ S can be viewed as defining a random
variable Xs with outcomes from Σω such that P (Xs ∈ E) = νs(E). Then the
above can be rewritten as P (Xs ∈ E) ≤ eε P (Xs′ ∈ E) + δ, which matches
the definition from [18], where one would consider Xs, Xs′ neighbouring in some
natural sense.
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The above formulation is often called approximate differential privacy. For δ = 0,
one talks about (pure) ε-differential privacy. Note that then the above definition
boils down to measuring the ratio between the probabilities of possible outcomes.
δ is thus an indicator of the extent to which ε-differential privacy holds for
the given states. Intuitively, one could interpret ε, δ-differential privacy as “ε-
differential privacy with probability at least 1 − δ” [29]. Our work is geared
towards obtaining sound upper bounds on the value of δ for a given ε.

Remark 3. What it means for two states to be related (as specified by R) is
to a large extent domain-specific. In general, R makes it possible to spell out
which states should not appear too different and, consequently, should enjoy a
quantitative amount of privacy. In the typical database scenario, one would relate
database states that differ by just one person. In our case, we refer to states of a
machine, for which we would like it to be indiscernible as to which was the start
state (we assume the states are hidden and the traces are observable).

To rephrase the inequality underpinning differential privacy in a more succinct
form, it will be convenient to work with the skewed distance ∆α, first introduced
by Barthe et al [5] in the context of Hoare logics and ε, δ-differential privacy.

Definition 6 (Skewed Distance). For α ≥ 1, let ∆α : R≥0 × R≥0 → R≥0 be
defined by ∆α(x, y) = max{x− αy, y − αx, 0}.

Remark 4. It is easy to see that ∆α is anti-monotone with respect to α. In
particular, because α ≥ 1, we have ∆α(x, y) ≤ ∆1(x, y) = |x − y|. Observe
that ∆2(9, 3) = 9 − 2 × 3 = 3, ∆2(9, 6) = 0 and ∆2(6, 3) = 0. Note that
∆2(x, y) = 0 need not imply x = y, i.e. ∆2 is not a metric. Note also that
the triangle inequality may fail: ∆2(9, 3) > ∆2(9, 6) + ∆2(6, 3), i.e. ∆2 is not a
pseudometric3. This will complicate our technical development, because we will
not be able to use the framework of [12] directly.

The significance of the skewed distance will be seen shortly in Fact 1. We first
introduce the skewed analogue of the total variation distance called tvα, for
which tv is a special case (α = 1).

Definition 7. Let α ≥ 1. Given two measures ν, ν′ on (Σω,F), let

tvα(ν, ν′) = sup
E∈F

∆α(ν(E), ν′(E)).

Following the convention for tv , tvα(s, s′) will stand for tvα(νs, νs′). Fact 1 is an
immediate corollary of Definitions 5, 6, and 7.

Fact 1. M is ε, δ-differentially private wrt R if and only if, for all s, s′ ∈ S
such that (s, s′) ∈ R, we have tvα(s, s′) ≤ δ, where α = eε.

Some values of tvα are readily known. For instance, the distance between any
bisimilar states turns out to be zero.
3 A pseudometric must satisfy m(x, x) = 0, m(x, y) = m(y, x) and m(x, z) ≤ m(x, y)+
m(y, z). For metrics, one additionally requires that m(x, y) = 0 should imply x = y.
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Fig. 1. States 1 and 2 are not bisimilar, but tv1.5(s0, s1) = 0.

Definition 8. A probabilistic bisimulation on an LMC M = 〈S,Σ, µ, `〉 is an
equivalence relation R ⊆ S × S such that if (s, s′) ∈ R then `(s) = `(s′) and for
all X ∈ S/R,

∑
u∈X µ(s)(u) =

∑
u∈X µ(s′)(u), i.e. related states have the same

label and probability of transitioning into any given equivalence class.

It is known that probabilistic bisimulations are closed under union and hence
there exists a largest one, written ∼ and called probabilistic bisimilarity. Two
states are called bisimilar, written s ∼ s′, if (s, s′) ∈∼. Equivalently, this means
that the pair (s, s′) belongs to a probabilistic bisimulation. It follows from [14,
Proposition 9, Lemma 10], that for bisimilar s, s′, we have tv1(s, s′) = 0. As
tvα(s, s′) ≤ tv1(s, s′) we obtain the following.

Lemma 1. If s ∼ s′ then tvα(s, s′) = 0.

In contrast to [12], the converse will not hold.

Example 1. In the LMC shown in Figure 1, states s0 and s1 are not bisimilar.
To see this, observe first that s2 must be the only state in its equivalence class
with respect ∼, because other states have different labels. Now note that the
probabilities of reaching s2 from s0 and s1 respectively are different (0.4 vs 0.6).

However, for α = 1.5, we have tvα(s0, s1) = 0, because ∆α(0.6, 0.4) =
max(0.6− 1.5 · 0.4, 0.4− 1.5 · 0.6, 0) = 0.

In an “acyclic” system, tvα can be calculated by exhaustive search: the natural
algorithm is doubly exponential, as one needs to consider all possible events over
all possible traces. However, in general, tvα is not computable (Remark 1). Thus,
in the remainder of the paper, we shall introduce and study another distance
bdα. It will turn out possible to compute it and it will provide a sound method for
bounding δ for ln(α), δ-differential privacy. Our main result will be Theorem 3:
the new distance can be calculated in polynomial time, assuming an NP oracle.
Pragmatically, this means that this new distance can be computed efficiently,
assuming access to an appropriate satisfiability or theory solver.



Bisimilarity Distances for Approximate Differential Privacy 7

4 Skewed Bisimilarity Distance

Our distance will be defined in the spirit of bisimilarity distances [12, 14, 16,
17] through a fixed point definition based on a variation of the Kantorovich
lifting. To motivate its shape, let us discuss how one would go about calculating
tvα recursively. If `(s) 6= `(s′) then νs(C`(s)) = 1, νs′(C`(s)) = 0, therefore
tvα(s, s′) = 1. So, let us assume `(s) = `(s′). Given E ⊆ Σω and a ∈ Σ, let
Ea = {w ∈ Σω | aw ∈ E}. Then we have:

tvα(νs, νs′) = sup
E∈F

∆α(νs(E), νs′(E))

= sup
E`(s)∈F

∆α

(∑
u∈S

µs(u) νu(E`(s)),
∑
u∈S

µs′(u) νu(E`(s))
)
.

If we define f : S → [0, 1] by f(u) = νu(E`(s)), this can be rewritten as

sup
E`(s)∈F

∆α

(∑
u∈S

µs(u) f(u),
∑
u∈S

µs′(u) f(u)
)
.

We have little knowledge of f , otherwise we could compute tvα, but from the
definition of tvα, we do know that ∆α(f(v), f(v′)) ≤ tvα(v, v′) for any v, v′ ∈ S.
Consequently, the following inequality holds.

tvα(s, s′) ≤ sup
f :S→[0,1]

∀v,v′∈S∆α(f(v),f(v′))≤tvα(v,v′)

∆α

(∑
u∈S

µs(u)f(u),
∑
u∈S

µs′(u)f(u)
)

The expression on the right is an instance of the Kantorovich lifting [15,21],
which uses (“lifts”) the distance tvα between states s, s′ to define a distance
between the distributions µs, µs′ associated with the states. We recall the def-
inition of the Kantorovich distance between distributions in the discrete case,
noting that then, for µ ∈ Dist(S), we have

∫
fdµ =

∑
u∈S f(u)µ(u).

Definition 9 (Kantorovich). Given µ, µ′ ∈ Dist(S) and a pseudometric m :
S × S → [0, 1], the Kantorovich distance between µ and µ′ is defined to be

K(m)(µ, µ′) = sup
f :S→[0,1]

∀v,v′∈S|f(v)−f(v′)|≤m(v,v′)

∣∣ ∫ fdµ−
∫
fdµ′

∣∣.
Remark 5. The Kantorovich distance is also known under other names (e.g.
Hutchinson, Wasserstein distance), having been rediscovered several times in
history [15]. Chatzikokolakis et al. [12] studied the Kantorovich distance and
related bisimulation distances when the absolute value distance above is replaced
with another metric. For our purposes, instead of |...|, we need to consider ∆α,
even though ∆α is not a metric and m may not be a pseudometric.

Definition 10 (Skewed Kantorovich). Given µ, µ′ ∈ Dist(S) and a symmet-
ric distance d : S × S → [0, 1], the skewed Kantorovich distance between µ and
µ′ is defined to be

Kα(d)(µ, µ′) = sup
f :S→[0,1]

∀v,v′∈S ∆α(f(v),f(v
′))≤d(v,v′)

∆α

( ∫
fdµ,

∫
fdµ′

)
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Note that setting α = 1 gives the standard Kantorovich distance (Definition 9).
Below we define a function operator, which will be used to define our distance.

Definition 11. Let Γα : [0, 1]S×S → [0, 1]S×S be defined as follows.

Γα(d)(s, s′) =

{
Kα(d)(µs, µs′) `(s) = `(t)

1 `(s) 6= `(t)

Note that [0, 1]S×S equipped with the pointwise order, written v, is a complete
lattice and that Γα is monotone with respect that order (larger d permit more
functions, thus larger supremum). Consequently, Γα has a least fixed point [27].
We take our distance to be exactly that point.

Definition 12 (Skewed Bisimilarity Distance). Let bdα : S × S → [0, 1] be
the least fixed point of Γα.

Remark 6. Recall that the least fixed point is equal to the least pre-fixed point
(min{d |Γα(d) v d}).

Recall our initial remarks about the Kantorovich distance Kα(tvα)(µs, µs′) over-
approximating tvα(s, s′). They can be summarised by tvα v Kα(tvα), i.e. tvα is
a post-fixed point of Kα. Since we want to bound tvα as closely as possible, we
can show that the least fixed point bdα also bounds tvα from above.

Lemma 2. tvα v bdα.

Remark 7. The lemma is an analogue of Theorem 2 [12]. Its proof in [30] relied
on the fact that the counterpart of ∆α was a metric, which is not true in our
case (unless α = 1).

Just like ∆α is anti-monotone with respect to α, so is bdα. This means that
bdα v bd1. The definition of bd1 coincides with the definition of the classic
bisimilarity pseudometric d1 (see e.g. [14]), which satisfies d1(s, s′) = 0 if and
only if s and s′ are bisimilar. Consequently, we obtain the following corollary.

Corollary 1. For any α ≥ 1, if s ∼ s′ then bdα(s, s′) = 0.

As in the case of tvα, we do not have the converse in our setting. Example 1
shows that s0 6∼ s1 but we observe that bd1.5(s0, s1) = 0. Observe:

bd1.5(s0, s1) ≤

max
f

(∑
s∈S

f(s)(µs0(s)− 1.5 · µs1(s)),
∑
s∈S

f(s)(µs1(s)− 1.5 · µs0(s))
)

= max
f

(f(s2)(0.6− 1.5 · 0.4) + f(s3)(0.4− 1.5 · 0.6),

f(s2)(0.4− 1.5 · 0.6) + f(s3)(0.6− 1.5 · 0.4)).

Notice the coefficients of f(s) are all non-positive. Consequently, regardless of
the restrictions on f , the maximising allocation will be f(s) = 0 and, thus,
bd1.5(s0, s1) = 0.
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1 diningCrypto(payingCryptographer):
2 firstFlip = flip (p, 1−p)
3 previousFlip = firstFlip
4 for cryptographer = 0 → n−1:
5 if cryptographer == n−1:
6 thisFlip = firstFlip
7 else :
8 thisFlip = flip (p, 1−p)
9 if (cryptographer == payingCryptographer):

10 announce(previousFlip == thisFlip)
11 else :
12 announce(previousFlip != thisFlip )
13 previousFlip = thisFlip

Fig. 2. Simulation of Dining Cryptographers Protocol

Example: Dining Cryptographers

In the dining cryptographer model [13], a ring of diners want to determine
whether one of the diners paid or an outside body. If a diner paid, we do not
want to reveal which of them it was. The protocol proceeds with each adjacent
pair privately flipping a coin, each diner then reports the XOR of the two coin
flips they observe, however if the diner paid he would report the negation of this.
We can determine if one of them paid by taking the XOR of the announcements.
With perfectly fair coins, the protocol guarantees privacy of the paying diner,
but it is still differentially private if the coins are biased. If an outside body
paid, there is no privacy to maintain so we only simulate the scenarios in which
one of the diners did pay. The scenario where Cryptographer 0 paid must have
similar output distribution to Cryptographer 1 paying, so that it can be deter-
mined that one of them did pay, but not which. The internal configuration of
the machine is always assumed to be hidden, but the announcements are made
public whilst maintaining the privacy of the participating Cryptographer (and
the internal states).

The LMC in Figure 3 shows the 2-person dining cryptographers protocol
(Figure 2) starting from Cryptographers 0 and 1 using weighted coins with
p = 49

100 . The states of the machine encode the 5 variables that need to be
tracked. To achieve ε, δ-differential privacy with α = eε = 1.0002 the minimal
(true) value of δ is 0.00030004. Our methods generate a correct upper bound
bdα(s0, s1) = 0.0004, showing ln(1.0002), 0.0004-differential privacy. The proto-
col could be played with n players, requiring O(n2) states, for all possible as-
signments of paying cryptographer and current cryptographer. In a two-person
scenario, the diners would know which of them had paid but an external observer
of the output would only learn that one of them paid, not which.
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0
flip

(1, 1, 0, 0)
flip

51/100

(0, 0, 0, 0)
flip

49/100

1
flip

(1, 1, 0, 1)
flip

51/100

(0, 0, 0, 1)
flip

49/100

(1, 1, 1, 0, 1)
F

(1, 1, 1, 1)
T

1

end

1

(0, 0, 1, 1)
T

1

(0, 0, 0, 0, 1)
F

1

(1, 0, 1, 0, 0)
F

(0, 1, 1, 0)
T

1

(1, 0, 1, 1)
F

1

(0, 1, 1, 1)
F

1

(0, 1, 0, 0, 0)
F

(1, 0, 1, 0)
T

1

(1, 1, 1, 0, 0)
T

(1, 1, 1, 0)
F

1

51/100

(1, 0, 1, 0, 1)
T

49/100

1

49/100

(0, 1, 0, 0, 1)
T

51/100

1

1

(0, 0, 0, 0, 0)
T

(0, 0, 1, 0)
F

1

1

49/100 51/100

1

51/100 49/100

1

Fig. 3. Markov Chain for 2 dining cryptographers: state 0 (resp. 1) denotes Cryptog-
rapher 0 (resp. 1) paid. The first line of a node is the state name, the second line is
the label of the state.

5 Skewed Kantorovich distances

Here we discuss how to calculate our variant of the Kantorovich distance. This
will inform the next section, in which we look into computing bdα.

Recall the definition of Kα(d)(µ, µ′) from Definition 10. In the general case
of ∆α(a, b), both a − αb and b − αa could be negative, so the maximum with
0 is taken. However, within the Kantorovich function, the constant function
f(i) = 0 is a valid assignment, which achieves 0 in either case (0 − α × 0 = 0).
Consequently, we can simplify the definition of ∆α to omit the 0 case inside Kα.

If α = 1 then ∆α is the absolute value function and it is known that the
distance corresponds to a single instance of a linear programming problem [9].
However, this is no longer true in our case due to the shape of ∆α(x, y) =
max(x−αy, y−αx). Still, one can present the calculation as taking the maximum
of a pair of linear programs. We shall refer to this formulation as the “primal
form” of Kα(d). We give the first program below, the other is its symmetric
variant with µ, µ′ reversed. Below we write fi for f(i) and let i, j range over S,
and assume that d is symmetric.

max
f∈[0,1]S

(∑
i

fiµ(i)− α
∑
i

fiµ
′(i)
)

subject to ∀i, j fi − αfj ≤ di,j
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The standard Kantorovich distance (α = 1) is often presented in the following
dual form when m is a pseudometric, based on the minimum coupling between
the two distributions µ and µ′, weighted by the distance function.

K(m)(µ, µ′) = min
ω∈[0,1]S×S

∑
i,j

ωi,jmi,j subject to
∀i

∑
j ωi,j = µ(i)

∀j
∑
i ωi,j = µ′(j)

Remark 8. The dual form can be viewed as an optimal transportation problem in
which an arbitrarily divisible cargo must be transferred from one set of locations
(represented by a copy SL of S) to another (represented by a different copy SR

of S). Each state sR ∈ SR must receive µ(s), while each state sL ∈ SL must send
µ′(s). If ωi,j is taken to represent the amount that gets sent from jL to iR then
the above conditions restrict ω in accordance with the sending and receiving
budgets. If di,j represents the cost of sending from jL to iR then the objective
function

∑
i,j ωi,j ·di,j corresponds to the overall cost of transport. Consequently,

the problem is referred to as a mass transportation problem [21].

To achieve a similar “dual form” in our case, we take the dual form of each of
our linear programs. Then we can calculate the distance by taking the maximum
of the two minima. The shape of the dual is given below on the right.

Lemma 3.

max
f∈[0,1]S

(∑
i

fiµ(i)− α
∑
i

fiµ
′(i)
)

= min
ω∈[0,1]S×S ,τ,γ∈[0,1]S

∑
i,j

ωi,j · di,j

subject to subject to
∀i, j fi − αfj ≤ di,j ∀i :

∑
j ωi,j + τi − γi = µ(i)

∀j :
∑
i ωi,j +

τj−γj
α ≤ µ′(j)

The dual form presented above is a simplified (but equivalent) form of the im-
mediate dual obtained via the standard LP recipe. Note that the polytope we
are optimising over is independent of d, which appears only in the objective
function. The dual of the other linear program is obtained by swapping µ, µ′.

Remark 9. In the skewed case, we optimise over the following polytope

Ωµ,µ′ =

{
ω ∈ [0, 1]S×S | ∃γ, τ ∈ [0, 1]S

∀i :
∑
j ωi,j + τi − γi = µ(i)

∀j :
∑
i ωi,j +

τj−γj
α ≤ µ′(j)

}
One can also view it as a kind of transportation problem. As before, cargo can
be transferred through the standard routes with ω at a cost d, but there are
additional, cost-free routes between corresponding pairs sL and sR (represented
by τs) and back (represented by γs). These extra routes are quite peculiar. En
route from sL to sR the cargo ‘grows’: when τs

α is sent from sL, a larger amount
of τs is received at sR. Overall, the total amount of cargo sent may be less than
that received, so the sending constraints are now inequalities. From sR to sL the
cargo ‘shrinks’: when γs is sent from sR, only γs

α is received by sL.
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It is immediate that τ routes can be useful. The γ routes may be useful
for optimisation under two conditions. Firstly the shrinkage of the cargo must
be made up elsewhere, i.e., through ‘growing’ τ routes. Additionally the cost
α × d(sL1 , s

R) + d(sL, sR2 ) is lower than d(sL1 , s
R
2 ), which may well be the case

due to the lack of triangle inequality. Note that it is not possible to satisfy the
receiving constraints if, in total, more is sent through γ routes than received
through τ routes, so

∑
s(τs − γs) ≥ 0. Therefore, the vector ω (the coupling)

may be smaller than its equivalent in the standard Kantorovich case.

We arrive at the following formulation, which we call the “dual form”:

Kα(d)(µ, µ′) = max

 min
ω∈Ωµ,µ′

∑
i,j

ωi,j · di,j , min
ω∈Ωµ′,µ

∑
i,j

ωi,j · di,j

 .

Note that Kα(d)(µ, µ′) can be computed in polynomial time as a pair of linear
programs in either primal or dual form, and taking the maximum (in either case).
In our calculations related to bdα, the distributions µ, µ′ will always be taken to
be µs, µs′ respectively, for some s, s′ ∈ S. The ability to switch between primal
and dual form will play a useful role in our complexity-theoretic arguments.

6 Computing bdα

We start off by observing that all distances bdα(s, s′) are rational and can be
expressed in polynomial size with respect toM. To that end, we exploit a result
by Sontag [25], which states that, without affecting satisfiability, quantification
in the first-order fragment of linear real arithmetic (LRA) can be restricted
to rationals of polynomial size with respect to formula length (as long as all
coefficients present in the formula are rational). Consequently, if we can express
“there exists a least fixed point d of Γα” in this fragment (with a polynomial
increase in size), we can draw the intended conclusion.

We give the relevant formula in Figure 4. The formula asserts the existence
of a distance d, which is a pre-fixed point of Γα (∀f.φ(d, f)) such that any other
pre-fixed point d′ of Γα is greater. Note that ∀f.φ(f, d) exploits the fact that
maxf A(f) ≤ d(s, s′) is equivalent to ∀f(A(f) ≤ d(s, s′)). Sontag’s result then
implies the following.

Theorem 1. Values of bdα are rational. There exists a polynomial p such that
for any LMC M and s, s′ ∈ S, the size of bdα (in binary) can be bounded from
above by a polynomial in |M|.

Remark 10. Sontag [25] uses the fact mentioned above to relate the alternation
hierarchy within LRA to the polynomial hierarchy PH: formulae of the form
∃x1∀x2 . . . QxkF (x1 . . . xk) (with quantifier-free F ) correspond to ΣP

k (and for-
mulae starting with ∀ to ΠP

k ). Recall that ΣP
1 = NP.

Next we focus on the following decision problem for bdα.
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∃d ∈ [0, 1]S×S (∀f ∈ [0, 1]Sφ(d, f) ∧ ∀d′ ∈ [0, 1]S×S∀f ∈ [0, 1]S(φ(d′, f) =⇒
∧
i

di ≤ d′i))

φ(d, f) =
∧
s,s′


ds,s′ = 1 `(s) 6= `(s′)

(
∧
i,j fi − αfj ≤ di,j ∧ fj − αfi ≤ di,j) `(s) = `(s′)

=⇒ (
∑
i fiµs(i)− α

∑
i fiµs′(i) ≤ ds,s′

∧
∑
i fiµs′(i)− α

∑
i fiµs(i) ≤ ds,s′)

Fig. 4. Logical formulation of least pre-fixed point.

BD-threshold: given s, s′ ∈ S and θ ∈ Q, is it the case that bdα(s, s′) ≤ θ?

Recall that the analogous problem for tvα is undecidable (Remark 1). In our
case, the problem turns out to be decidable and the argument does not de-
pend on whether < or ≤ is used. To establish decidability we can observe that
bdα(s, s′) ≤ θ can be expressed in LRA simply by adding d(s, s′) ≤ θ to the
formula from Figure 4. By Sontag’s results, this not only yields decidability but
also membership in ΣP

2 . Recall that NP ⊆ ΣP
2 ⊆ PH ⊆ PSPACE.

We can simplify the formula, though, using bdα = min {d |Γα(d) v d}. Then
bdα(s, s′) ≤ θ can be specified as the existence of a pre-fixed point d such that
d(s, s′) ≤ θ. This can be done as follows, using φ(d, f) from Figure 4.

∃d ∈ [0, 1]S×S ( ∀f ∈ [0, 1]Sφ(d, f) ∧ d(s, s′) ≤ θ )

Note that the universal quantification over f remains, i.e. we can still only con-
clude that the problem is in ΣP

2 . To overcome this, we shall use the dual form
instead (Lemma 3). This will enable us to eliminate the universal quantification
and replace it with existential quantifiers using the fact that minω A(ω) ≤ B is
equivalent to ∃ω(A(ω) ≤ B). The resultant formula is shown in Figure 5.

Note the formula is not linear due to ωi,j · di,j . However, because we know
(Theorem 1) that bdα corresponds to an assignment of poly-sized rationals, we
can consider the formula with d fixed at bdα. Then it does become an LRA
formula (of polynomially bounded length with respect to |M|) and we can again
conclude that the assignments of ω, γ, τ must also involve rationals whose size
is polynomially bounded. Consequently, the formula implies membership of our
problem in ΣP

1 = NP: it suffices to guess the satisfying assignment, guaranteed
to be rational and of polynomial size.

Theorem 2. BD-threshold is in NP.

The decidability of BD-threshold makes it possible to approximate bdα(s, s′)
to arbitrary (rational) precision ε by binary search. This will involve O(|ε|) calls
to the oracle for BD-threshold (where |ε| is the number of bits required to
represent ε in binary).

What’s more, assuming the oracle, one can actually find the exact value of
bdα(s, s′) in polynomial time (wrt M). This exploits the fact that the value of



14 D. Chistikov et al.

BD-threshold(s, s′, θ) =∃(di,j)i,j∈S
∧
i,j∈S

(0 ≤ di.j ≤ 1) ∧ prefixed(d) ∧ ds,s′ ≤ θ

prefixed(d) =
∧

q,q′∈S


dq,q′ = 1 `(q) 6= `(t)

prefixed1(d, dq,q′ , q, q
′) `(q) = `(t)

∧ prefixed1(d, dq,q′ , q
′, q)

prefixed1(d, x, q, q′) =∃(ωi,j)i,j∈S ∃(γi)i∈S ∃(τi)i∈S
∑
i,j∈S

ωi,j · di,j ≤ x

∧
∧
i,j∈S

(0 ≤ ωi,j ≤ 1) ∧
∧
i∈S

(0 ≤ γi ≤ 1 ∧ 0 ≤ τi ≤ 1)

∧
∧
i∈S

(
∑
j∈S

ωi,j − γi + τi = µq(i)) ∧
∧
j∈S

(
∑
i∈S

ωi,j +
τj − γj
α

≤ µq′(j))

Fig. 5. NP Formula for BD-threshold

bdα is rational and its size is polynomially bounded, so one can find it by ap-
proximation to a carefully chosen level of precision and then finding the relevant
rational with the continued fraction algorithm [19,20].

Theorem 3. bdα can be calculated in polynomial time with an NP oracle.

As a consequence, the problem of computing bdα reduces to propositional
satisfiability, i.e., can be encoded in SAT. This justifies, for instance, the following
approach: treat every variable as a ratio of two integers from an exponential
range, and give the system of resulting constraints to an Integer Arithmetic or
SAT solver. While this might look like resorting to a general-purpose “hammer”,
Theorem 3 is necessary for this method to work: it is not, in fact, possible to
solve general polynomial constraint systems relying just on SAT.4

We expect, however, this direct approach to be inferior to the following ob-
servation. Theorem 1 reveals that the variables in our constraint system need
not assume irrational values or have large bit representations. Thus, one can
give the system to a more powerful theory solver, or an optimisation tool, but
to expect that the existence of simple and small models (solutions) will help the
SMT heuristics (resp. optimization engines) to find them quickly.

7 Conclusion and Further Work

We have demonstrated that bisimilarity distances can be used to determine
differential privacy parameters, despite their non-metric properties. We have

4 More precisely, the existence of such a procedure would be a breakthrough in the
computational complexity theory, showing that NP = ∃R. This would imply that
a multitude of problems in computational geometry could be solved using SAT
solvers [11, 24]. Unlike for bdα, variable assignments in these problems may need
to be irrational, even if all numbers in the input data are integer or rational.
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established that the complexity of finding these values is polynomial, relative to
an NP oracle. Yet, it may still be possible to obtain a polynomial algorithm—
although much like in the case of the classical bisimilarity distances and linear
programming, it may not necessarily outperform theoretically slower procedures.

We conjecture that bdα, which we defined as the least fixed point of the
operator Γα, may in fact be characterized as the unique fixed point of a similar
operator. By the results of Etessami and Yannakakis [19], it would then follow
that bdα can be computed in PPAD, a smaller complexity class, improving upon
our NP upper bound and matching the complexity of a closely related setting
(see below). The reason is the continuity of Γα, which follows from the properties
of the polytope over which f ranges (in the definition of Kα(d)). Whether bdα
can in fact be computed in polynomial time or is PPAD-hard seems to be a
challenging open question.

Our existing work is limited to labelled Markov chains, or fully probabilistic
automata. However, the standard bisimulation distances can also be defined on
deterministic systems, where their computational complexity is PPAD [10]. In
our scenario, the privacy can only be analysed between two start states, but it
is also reasonable to allow an input in the form of a trace or sequence of actions;
the output would also be a trace. Here the choice of labels (at a specific state)
would correspond to decisions taken by the user, and the availability of only one
label would mean that this is the output. This setting would support a broader
range of scenarios that could be modelled and verified as differentially private.
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