
ATVA

EASY TO USE

C
O

NSIS
TENT

DOCUMENTED

C
O

M
PLETE

R
EPLIC

A
B

LE

Artifact

*

*

*

APPROVED

DEQ: Equivalence Checker for Deterministic
Register Automata

A. S. Murawski1, S. J. Ramsay2, and N. Tzevelekos3

1 University of Oxford, UK
2 University of Bristol, UK

3 Queen Mary University of London, UK

Abstract. Register automata are one of the most studied automata mod-
els over infinite alphabets with applications in learning, systems modelling
and program verification. We present an equivalence checker for determin-
istic register automata, called DEQ, based on a recent polynomial-time
algorithm that employs group-theoretic techniques to achieve succinct
representations of the search space. We compare the performance of our
tool to other available implementations, notably in the learning library
RALib and nominal frameworks LOIS and NLambda.

Introduction Register automata [9,17] are one of the simplest models of com-
putation over infinite alphabets. They operate on an infinite domain of data by
storing data values in a finite number of registers, where the values are available
for future comparisons or updates. The automata can recognise when a data
value does not appear in any of the registers or has not been seen so far at all [21].

Recent years have seen a surge of interest in models over infinite alphabets
due to their ability to account for computational scenarios with unbounded data.
For instance, XML query languages [19] need to compare attribute values that
originate from infinite domains. In program verification there is need for ab-
stractions of computations over infinite datatypes [9,7] and unbounded resources,
such as Java objects [14] or ML references [16]. More broadly, they have been
advocated as a convenient formalism for systems modelling, which fuelled interest
in extending learning algorithms to the setting [18,3,1,5,13].

This paper presents DEQ, a tool for verifying language equivalence of deter-
ministic register automata (the nondeterministic case is undecidable [17]). As
many of the above-mentioned applications rely on equivalence checking, several
implementations are available online for comparison. We compare the perfor-
mance of our tool to the equivalence routine from RALib [4] (a library for active
learning of register automata), and two others, programmed in the LOIS [11] and
NLambda [10] frameworks. The equivalence-testing routine coded in NLambda
has recently been used as part of an automata learning framework [13].

Our experiments show that DEQ compares favourably to its competitors.
At the theoretical level, this is thanks to being based on the first polynomial-
time algorithm [15] for the problem. The algorithm improves upon the “naive”
algorithm that would expand a register automaton to a finite-state automaton over



2 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos

p1 p2 p3
push, 1• push, 2•

pop, 1 pop, 2

p1 p2 p3
push, 1~ push, 2~

pop, 1 pop, 2

Fig. 1. Two size-2 “fresh” stacks.

1 R = Rinit ; ∆ = {u0};
2 while (∆ is not empty) do
3 u = ∆.get();
4 if u 6∈ Gen(R)
5 if u fails 1-step test return NO;
6 ∆.add(succ-set(u));
7 R = R updated with u;
8 return YES

Fig. 2. Algorithm in outline.

a sufficiently large finite alphabet, often incurring an exponential blow-up. Ours is
also the only tool that can handle global freshness, i.e. the recognition/generation
of values that have not been seen thus far during the course of computation. This
is an important feature in the context of programming languages that makes it
possible to model object creation faithfully.

Register automata Let D be an infinite set (alphabet). Its elements will be
called data values. Register automata are a simple model for modelling languages
and behaviours over such an alphabet. They operate over finitely many states and,
in addition, are equipped with a finite number of registers, where they can store
elements of D. Each automaton transition can refer to the registers by requiring
e.g. that the data value from a specific register be part of the transition’s label
or, alternatively, that the label feature a fresh data value: either not currently in
the registers, or globally fresh (never seen before), which could then be stored in
one of the registers. Formally, transition labels are pairs (t, d), where t is a tag

drawn from a finite alphabet and d ∈ D. We write q
t,i−→ q′ to specify transitions

labelled with (t, d) where t is a tag and d is the data value currently stored in

register i. Similarly, q
t,i•−−→ q′ describes transitions labelled with (t, d), where

d ∈ D is currently not stored in any registers. Once the transition fires, d will be

stored in register i. In contrast, q
t,i~−−→ q′ captures transitions with labels (t, d),

where d ranges over all elements of D that have not yet been encountered by the
automaton (d is “globally fresh”).

Consider the automaton at the top of Figure 1, which simulates a bounded
“fresh” stack of size 2. By the latter we mean that the simulated stack can store
up to two 2 distinct data values. The automaton starts from state p1, with all its
registers empty (erased). It can make a transition labelled with (push, d1), for any
data value d1, store it in register 1, and go to state p2. From there, it can either
pop the data value already stored in register 1 and go back to p1 (also erasing
the register), or push another data value by making a transition (push, d2), for
any data value d2 6= d1, and go to state p2. From there, it can pop the data value
already stored in register 2 (and erase that register) and go to p1, and so on.

The other automaton in Figure 1 (bottom) also simulates a 2-bounded fresh
stack, but it does so using globally fresh transitions. That is, each (push, d)



DEQ: Equivalence Checker for Deterministic Register Automata 3

transition made by the automaton is going to have a data value d that is different
from all data values used before. We can thus see that bisimilarity of the two
automata will fail after one pop: the upper automaton will erase a data value
from its registers and, consequently, will be able to push the same data value
again later. The automaton below, though, will always be pushing globally fresh
data values. In other words, the following trace (push, d1) (pop, d1) (push, d1) is
permitted by the upper automaton, but not by the lower one.

Implementation We have developed a command-line tool for deciding language
equivalence of this class of automata, implemented in Haskell4. The two input
automata (DRA) are specified using an XML file format (parsed using the
xml-conduit library [20]). Strictly speaking, the algorithm presented in [15]
decides whether two states within the same automaton are bisimilar. Hence,
our implementation first transforms the input (an instance of the language
equivalence problem for two DRA) into an instance of the bisimilarity problem,
by constructing the disjoint union of the two automata.

Our algorithm exploits the observation that (in the deterministic setting)
language equivalence and bisimilarity are related, and it attempts to build a
bisimulation relation incrementally. To avoid exponential blow-ups, we rely on
symbolic representations based on (partial) permutations, which capture matches
between register content in various configurations. The outline of the algorithm
is presented in Figure 2.

The algorithm is similar in flavour to the classic Hopcroft-Karp algorithm
for DFA [8], which maintains sets of pairs of states. In contrast, we work with
four-tuples (q1, σ, q2, h), where q1, q2 are states, σ is a partial permutation and
h is a parameter related to the number of registers. DEQ represents partial
permutations using an implementation of immutable integer maps that is based
on big endian patricia trees [12]. Most operations complete in amortized time
O(min(n,W )), where W is the number of bits of an integer. This is important
because manipulating partial permutations through insertion and deletion is at
the core of the innermost loop (line 7).

Starting from a four-tuple u0, which represents the input equivalence problem,
our implementation uses a queue ∆ (initialised to {u0}). This is used to store the
four-tuples that still need to be scrutinised to establish the original equivalence.
Since the total number of possible four-tuples is exponential in the number
of registers (because one component is a partial permutation over the register
indexes), the algorithm prescribes a sophisticated compact representation called
a generating system. The generating system R represents the set of four-tuples
that have already been analysed (its initial value Rinit contains four-tuples with
identical states and identity permutations).

Each iteration of the loop considers a four-tuple u taken from the queue (line
3): first we check if it is already generated by the generating system accumulated
so far (line 4). Querying the generating system for membership requires deciding if
a permutation belongs to a permutation group generated by R. For this purpose,

4 The tool and its source are available at http://github.com/stersay/deq.

http://github.com/stersay/deq


4 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos

1

10

100

1000

10000

1 10 100 1000 10000
Deq (ms)

N
La

m
bd

a 
(m

s)

1

10

100

1000

1 10 100 1000
Deq (ms)

LO
IS

 (
m

s)

1

10

100

1000

10000

1 10 100 1000 10000
Deq (ms)

R
A

Li
b−

E
qc

he
ck

 (
m

s)

Fig. 3. Tool comparison.

DEQ uses an implementation of the celebrated Schreier-Sims polynomial time
group membership algorithm provided by the HaskellForMaths library [2].

If the four-tuple is already generated we move on to the next iteration.
Otherwise we check if the configurations represented by u can withstand a one-
step attack in the corresponding bisimulation game (line 5). If u fails single-step
testing, the algorithm can immediately terminate and return NO. If u passes the
tests, the algorithm generates a set succ-set(u) consisting of “successor four-tuples”
that are added to ∆ for future verification (line 6). In this case, the generating
system is extended to represent u as well (line 7). For efficiency reasons, DEQ
fuses these two parts of the algorithm together. A collection of successors is
computed by looping over all outgoing transitions relevant to u, and failing if
any cannot be constructed. In what follows we refer to this as the inner loop of
the algorithm. The successor four-tuples are then added to the queue and the
generating system R is extended so that it generates u.

Case Studies In theory the worst-case performance of the algorithm is dom-
inated by the complexity of permutation group membership testing, which is
O(n5) for a straightforward implementation of the Schreier-Sims algorithm. In the
following series of case studies we examine the performance of our implementation
outside of the worst case, in particular where the group structure is quite simple.

All the experiments were carried out on an Ubuntu 16.04 virtual machine,
running on a Windows 10 host equipped with an Intel Core i7-8650U CPU at
1.9GHz and 8GB of RAM. Z3 4.4.1 and OpenJDK 1.8.0 191 are used for the
purposes of running the tools LOIS and RALib-EqCheck (see below).

Stack data structure (stacks) In this case study, we describe two families of
automata simulating finite stacks, indexed by the stack size. Similar families
have been considered within the nominal automata learning framework of [13].
In both families of machines, the registers under their natural order are used in
order to store the elements of a stack, but one family “pushes” data into the
registers from right to left and the other from left to right (so the machines are
nevertheless equivalent).

By considering the plot of running time against stack size in Figure 4 (left), we
conclude that any overhead due to the group membership algorithm is insignificant
when the groups are easy to describe (as growth remains roughly quadratic in n).



DEQ: Equivalence Checker for Deterministic Register Automata 5

● ● ● ● ● ●
● ●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

0

500

1000

0 100 200 300 400 500
Size

T
im

e 
(m

s)

● ● ● ● ● ● ● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

0 100 200 300 400 500
Size

T
im

e 
(m

s)

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

0

4000

8000

12000

0 20 40 60 80
Size

T
im

e 
(m

s)

Fig. 4. Tool scaling (stacks, glolo, cpt).

Global simulating local freshness (glolo) In this case study we maintain a relatively
simple group structure in the generating system, but introduce globally fresh
transitions. Due to the use of global freshness, no other tools will process this
example. In this study we consider pairs of machines which first read and store
exactly r globally fresh names. Next, one machine reads a locally fresh name,
whilst the other reads a globally fresh name, but because all of the history of
the computation is stored in registers, local and global freshness coincide, and
the configurations are bisimilar. Associated run times are plotted in Figure 4
(middle). It can be seen that the management of the history that is required by
supporting global freshness adds a linear factor: the curve displayed is a cubic
polynomial, fit using R’s lm algorithm.

Partial permutations represented compactly (cpt) Here we consider a family of
instances in which the collection of partial permutations occurring in constructed
bisimulations is large.

In the pairs of automata of this study, all r registers are initially populated
over the course of the first r states, but the order in which they are populated
may differ. Afterwards, the machines may store a fresh letter in any register or
read from any register, and return to the same state. Due to these possibilities,
the correspondence between these states in the two machines can become com-
plex. However, since all transitions are available to both automata, they will
nevertheless be bisimilar, and hence accept the same language. Running times
are plotted in Figure 4 (right); the curve displayed is a fourth-degree polynomial.

Tool comparison We can encode the stacks family of examples using the frame-
works of LOIS [11] and NLambda [10], and directly as a set of inputs to RALib-
EqCheck5 [4]. However, these other tools can only handle instances of relatively
small size. This is not surprising, since they support classes of automata that
are much more general. In contrast, the polynomial time algorithm implemented
by DEQ is highly specialised to a specific subclass. Hence, we have restricted
our comparison to stacks of size at most 15. The scatter plots in Figure 3 show
the running times of the three implementations compared on all possible pairs

5 We used an unreleased implementation of the equivalence checking algorithm that
was kindly communicated to us by F. Howar.



6 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos

of stack sizes6. We can encode the cpt family of examples also as inputs to
RALib-EqCheck; the results of comparing the two tools on this family (up to
size 5) is shown in light blue in the right-most plot of Figure 3. The results show
quite clearly that DEQ can determine (in)equivalence several orders of magnitude
faster than the other tools.

Acknowledgment Research funded by EPSRC (EP/J019577/1, EP/P004172/1).

References

1. F. Aarts, P. Fiterau-Brostean, H. Kuppens, and F. W. Vaandrager. Learning register
automata with fresh value generation. Proc. of ICTAC, LNCS 9399, 165–183, 2015.

2. D. Amos. http://hackage.haskell.org/package/HaskellForMaths.
3. B. Bollig, P. Habermehl, M. Leucker, and B. Monmege. A robust class of data

languages and an application to learning. LMCS 10(4), 2014.
4. S. Cassel, F. Howar, and B. Jonsson. RALib: A LearnLib extension for inferring

EFSMs. Proc. of DIFTS, 2015.
5. S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite

state machines. Formal Asp. Comput., 28(2):233–263, 2016.
6. M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for

permutation groups. Proc. of FOCS, 36–41, 1980.
7. R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification

based on register automata. In Proc. of TACAS, LNCS 7795, 260–276, 2013.
8. J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite

automata. Technical Report 114, Cornell University, 1971.
9. M. Kaminski and N. Francez. Finite-memory automata. TCS 134(2):329–363, 1994.

10. B. Klin and M. Szynwelski. SMT solving for functional programming over infinite
structures. Proc. of MSFP, EPTCS 207, 57–75, 2016.

11. E. Kopczyński and S. Toruńczyk. LOIS. Proc. of POPL, 586–598, 2017.
12. http://hackage.haskell.org/package/containers.
13. J. Moerman, M. Sammartino, A. Silva, B. Klin, and M. Szynwelski. Learning

nominal automata. Proc. of POPL, 613–625, 2017.
14. A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. A contextual equivalence checker

for IMJ*. Proc. of ATVA, LNCS, 234–240, 2015.
15. A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Polynomial-time equivalence

testing for deterministic fresh-register automata. Proc. of MFCS, 72:1–72:14, 2018.
16. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. Proc. of

ESOP, LNCS 6602, 419–438, 2011.
17. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over

infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.
18. H. Sakamoto. Studies on the Learnability of Formal Languages via Queries. PhD

thesis, Kyushu University, 1998.
19. T. Schwentick. Automata for XML. J. Comput. Syst. Sci., 73(3):289–315, 2007.
20. M. Snoyman and A. Breitkreuz. http://hackage.haskell.org/package/xml-conduit.
21. N. Tzevelekos. Fresh-register automata. Proc. of POPL, 295–306, 2011.

6 The encoding used for the comparison with RALib-EqCheck was slightly modified to
reflect certain structural constraints imposed by that tool. This alternative encoding
is larger and hence runtimes are not comparable with the other two experiments.
Note that the timing data for RALib-EqCheck contains JVM start-up time.

http://hackage.haskell.org/package/HaskellForMaths
http://hackage.haskell.org/package/containers
http://hackage.haskell.org/package/xml-conduit

	DEQ: Equivalence Checker for Deterministic Register Automata

