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Abstract. We study the semantic meaning of block structure using game se-
mantics and introduce the notion of block-innocent strategies, which turns out
to characterise call-by-value computation with block-allocated storage through
soundness, finitary definability and universality results.This puts us in a good
position to conduct a comparative study of purely functional computation, com-
putation with block storage and dynamic memory allocation respectively. For
example, we show that dynamic variable allocation can be replaced with block-
allocated variables exactly when the term involved (open orclosed) is of base type
and that block-allocated storage can be replaced with purely functional compu-
tation when types of order two are involved. To illustrate the restrictive nature
of block structure further, we prove a decidability result for a finitary fragment
of call-by-value Idealized Algol for which it is known that allowing for dynamic
memory allocation leads to undecidability.

1 Introduction

Most programming languages manage memory by employing a stack for local vari-
ables and heap storage for dynamically allocated data that may live beyond their initial
context. A prototypical example of the former mechanism is Reynolds’s Idealized Al-
gol [16], in which local variables can only be introduced inside blocks of ground type.
Memory is then allocated on entry to the block and deallocated on exit. In contrast,
languages such as ML permit variables to escape from their current context under the
guise of pointers or references. In this case, after memory is allocated at the point of
reference creation, the variable is allowed to persist indefinitely (in practice, garbage
collection or explicit deallocation is used to put an end to its life).

In this paper we would like to compare the expressivity of thetwo paradigms. As a
simple example of heap-based memory allocation we considerthe languageRML, intro-
duced by Abramsky and McCusker in [2], which is a fragment of ML featuring integer-
valued references. They also constructed a fully abstract game model ofRML based on
strategies (also referred to asknowingstrategies) that allow the player to base his deci-
sions on the full history of play. On the other hand, at aroundthe same time Honda and
Yoshida [6] showed that the purely functional core ofRML, better known as call-by-
valuePCF [14], corresponds toinnocentstrategies [7], i.e. those that can only rely on a
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restricted view of the play when deciding on the next move. Since block-structured stor-
age of Idealized Algol seems less expressive than dynamic memory allocation of ML
and more expressive thanPCF, it is natural to ask about its exact position in the range
of strategies between innocence and omniscience. Our first result is an answer to this
question. We introduce the family ofblock-innocentstrategies, situated strictly between
innocent and knowing strategies. As a vehicle for our study we use a call-by-value vari-
ant IAcbv of Idealized Algol and prove that eachIAcbv-term can be interpreted by a
block-innocent strategy (soundness), each finitary block-innocent strategy corresponds
to anIAcbv-term (finitary definability) and each recursively presentable block-innocent
strategy corresponds to anIAcbv-term (universality). Block-innocence captures the par-
ticular kind of uniformity exhibited by strategies originating from block-structured pro-
grams, akin to innocence yet strictly weaker. In fact, we define block-innocence through
innocence in a setting enriched with explicit store annotations added to standard moves.
For instance, in the play shown below1, if P follows a block-innocent strategy, he is free
to use different moves as the fourth and sixth moves, but the tenth one and the twelfth
one have to be the same.

q q q 0 q 1 a a q 0 q 0

Additionally, our framework detects “storage violations”resulting from an attempt to
access a variable from outside of its block. For instance, noIAcbv-term will ever produce
the following play (the last move is the offending one).

q q q 0 q 1 a a q q

The notion of block-innocence provides us with a systematicmethodology to address
expressivity questions related to block structure such as “Does a given strategy originate
from a stack-based memory discipline?” or “Can a given program using dynamic mem-
ory allocation be replaced with an equivalent program featuring stack-based storage?”.
To illustrate the approach we conduct a complete study of therelationship between the
three classes of strategies according to type-thereotic order. We find that knowingness
implies block-innocence when terms of base types (open or closed) are involved, that
block-innocence implies innocence exactly for types of at most second order, and that
knowingness implies innocence if the term is of base type andits free identifiers are of
order1.

As a further confirmation of the restrictive nature of the stack discipline ofIAcbv,
we prove that program equivalence is decidable for a finitaryvariant of IAcbv which
properly contains all second-order types as well as some third-order types (interestingly,
our type discipline covers the available higher-order types in PASCAL). In contrast, the
corresponding restriction ofRML is known to be undecidable [10].

Related work. The stack discipline has always been regarded as part of the essence
of Algol [16]. Accordingly, finding models embodying stack-oriented storage manage-
ment has become an important goal of research into Algol-like languages. In this spirit,
in the early 1980s, Reynolds [16] and Oles [11] devised a semantic model of Algol-like

1 For the sake of clarity, we only include pointers pointing more than one move behind.



languages using a category of functors from a category of store shapes to the category
of predomains. Perhaps surprisingly, in the 1990s Pitts andStark [13, 17] managed to
adapt the techniques to languages with dynamic allocation.This would appear to create
a common platform suitable for a comparative study such as ours. However, despite the
valuable structural insights, the relative imprecision ofthe functor category semantics
(failure of definability and full abstraction) makes it unlikely that the results obtained by
us can be proved via this route. The semantics of local effects has also been investigated
from the category-theoretic point of view in [15].

As for the game semantics literature, Ong’s work [12] based on strategies-with-state
is the work closest to ours. His paper defines a compositionalframework that is proved
sound for the third-order fragment of call-by-name Idealized Algol. Adapting the results
to call-by-value and all types is far from immediate. For a start, to handle higher-order
types, we note that the state of O-moves is no longer determined by its justifier and
the preceding move. Instead, the right state has to be computed “globally” using the
whole history of play. However, the obvious adaptation of somodified framework to
call-by-value does not capture the block-structure ofIAcbv. Quite the opposite: it seems
to be more compatible withRML thanIAcbv! Consequently, further changes are needed
to characterizeIAcbv. Firstly, to restore definability, the explicit stores haveto become
lists instead of sets. Secondly, conditions controlling state changes must be tightened.
In particular, P must be forbidden from introducing fresh variables at any step and,
in a similar vein, must be forced to drop some variables from his moves in certain
circumstances.

The paper cited above is part of a series that has eventually led to a complete classi-
fication of the decidable cases of call-by-name (finitary) Idealized Algol. Much less is
known about the call-by-value case, we are only aware of two papers: one by Ghica [5]
and the other by the first-named author [10]. Both rely on regular languages to capture
the game semantics of fragments ofIAcbv andRML respectively. Their other common
feature is that the types considered are selected in such a way that no pointers need to
be represented in the induced plays. Our results represent further progress with regard
to IAcbv. The type system of our language, namedIA

2+
� , is designed in such a way that

only pointers from O-moves need not be represented, but we must include an explicit
representation of pointers from certain P-moves. In particular, in contrast to [5], we can
account for all second-order types, as we allow all first-order types to occur in contexts.
“Curried” types of the formA → B → C are especially tricky to handle here, because
they can only be dealt with correctly if pointers from P-moves are encoded explicitly
(recall that in the call-by-value settingA → B → C andA × B → C are not iso-
morphic). Any further extension of the type system ofIA

2+
� leads either to context-free

languages or to plays in which pointers from O-moves of unbounded length would have
to be handled, which seemingly requires an infinite alphabet.

2 Syntax

To set a common ground for our investigations, we introduce ahigher-order program-
ming languageL that features syntactic constructs for both block and dynamic mem-
ory allocation. Its types are generated by the grammar below, whereβ ranges over the



Γ, x : var ⊢ M : β
Γ ⊢ new x in M : β Γ ⊢ ref : var Γ ⊢ () : unit

i ∈ Z
Γ ⊢ i : int

(x : θ) ∈ Γ
Γ ⊢ x : θ

Γ ⊢ M1 : int Γ ⊢ M2 : int

Γ ⊢ M1 ⊕ M2 : int

Γ ⊢ M : int Γ ⊢ N0 : θ Γ ⊢ N1 : θ
Γ ⊢ if M thenN1 else N0 : θ

Γ ⊢ M : var

Γ ⊢ !M : int

Γ ⊢ M : var Γ ⊢ N : int

Γ ⊢ M := N : unit

Γ ⊢ M : unit → int Γ ⊢ N : int → unit

Γ ⊢ mkvar(M, N) : var

Γ ⊢ M : θ → θ
′

Γ ⊢ N : θ
Γ ⊢ MN : θ

′

Γ, x : θ ⊢ M : θ
′

Γ ⊢ λx
θ
.M : θ → θ

′

Γ ⊢ M : (θ → θ
′) → (θ → θ

′)
Γ ⊢ Y(M) : θ → θ

′

ground typesunit andint.

θ ::= β | var | θ → θ

The syntax ofL is given in the Figure above. Note in particular the first two rules con-
cerning variables. The order of a type is defined as follows:ord(β) = 0, ord(var) = 1,
ord(θ1 → θ2) = max(ord(θ1) + 1, ord(θ2)). For anyi ≥ 0, terms that are typable us-
ing exclusively judgments of the formx1 : θ1, · · · , xn : θn ⊢ M : θ, whereord(θj) < i
(1 ≤ j ≤ n) andord(θ) ≤ i, are said to form theith-order fragment. To spell out the
operational semantics ofL, we need to assume a countable setLoc of locations, which
are added to the syntax as auxiliary constants of typevar. We shall writeα to range
over them. The semantics then takes the form of judgmentss, M ⇓ s′, V , wheres, s′

are finite partial functions fromLoc to integers,M is a term andV is a value. Terms of
the following shapes are values:(), integer constants, elements ofLoc, λ-abstractions
or terms of the formmkvar(λxunit.M, λyint.N). Here we only reproduce the two eval-
uation rules related to variable creation.

s ∪ (α 7→ 0), M [α/x] ⇓ s′, V

s, new x in M ⇓ s′ \ α, V
α/∈dom s

s, ref ⇓ s ∪ (α 7→ 0), α
α/∈dom s

s′ \ α is the restriction ofs′ to dom s′ \ {α}. The former rule encapsulates the state
within the newly created block, while the latter creates a reference to a new memory
cell that can be passed around without restrictions on its scope.

Given a closed term⊢ M : unit, we writeM ⇓ if there existss such that∅, M ⇓
s, (). We shall call two programs equivalent if they behave identically in every context.
This is captured by the following definition, parameterizedby the kind of contexts that
are considered, to allow for testing of terms with contexts originating from a designated
subset of the language.

Definition 1. SupposeL′ is a subset ofL. We say that the terms-in-contextΓ ⊢ M1, M2 : θ
are L′-equivalent (writtenΓ ⊢ M1

∼=L′ M2) if, for any L′-contextC[−] such that
⊢ C[M1], C[M2] : unit, C[M1] ⇓ if and only ifC[M2] ⇓.

We shall study three sublanguages ofL calledPCF
+, IAcbv andRML. The latter two

have appeared in the literature as paradigmatic examples ofprogramming languages
with stack discipline and dynamic memory allocation respectively.



MA⇒B = IA⇒B ⊎ IA ⊎ IA ⊎ MB

IA⇒B = {∗}

λA⇒B = [(∗, PA), (iA, OQ), λ̄A ↾ IA, λB]

⊢A⇒B = {(∗, iA), (iA, iB)} ∪ ⊢A ∪ ⊢B

MA⊗B = IA⊗B ⊎ IA ⊎ IB, IA⊗B = IA × IB

λA⊗B = [((iA, iB), PA), λA ↾ IA, λB ↾ IB]

⊢A⊗B = {((iA, iB), m) | iA ⊢A m ∨ iB ⊢B m}

∪ (⊢A↾ IA

2

) ∪ (⊢B↾ IB

2

)

– PCF
+ is a purely functional language obtained fromL by removingnew x in M

andref. It extends the languagePCF [14] with primitives for variable access, but
not for memory allocation.

– IAcbv is L without theref constant. It can be viewed as a call-by-value variant of
Idealized Algol [16]. Only block-allocated storage is available inIAcbv.

– RML isL save the constructnew x in M . It is exactly the language introduced in [2]
as a prototypical language for ML-like integer references.

We shall often writelet x = M in N instead of(λx.N)M . Note that, sincenew x in M
is equivalent toletx = ref in M , RML andL merely differ on a syntactic level in that
L contains “syntactic sugar” for blocks. In the opposite direction, our results will show
thatref cannot in general be replaced with an equivalent term that usesnew x in M . In-
deed, our paper provides a general methodology for identifying and studying scenarios
in which this expressivity gap occurs.

3 Game semantics

Here we introduce the game models used throughout the paper,which are based on the
Honda-Yoshida approach to modelling call-by-value computation [6].

Definition 2. AnarenaA = (MA, IA,⊢A, λA) is given by
– a setMA of moves, and a subsetIA ⊆ MA of initial moves,
– a justification relation⊢A⊆ MA × (MA \ IA), and
– a labelling functionλA : MA → {O, P} × {Q, A}

such thatλA(IA) = {PA} and, wheneverm ⊢A m′, we have(π1λA)(m) 6= (π2λA)(m′)
and(π2λA)(m′) = A =⇒ (π2λA)(m) = Q.

The role ofλA is to label moves asOpponentor Proponentmoves and asQuestions
or Answers. We typically write them asm, n, . . . , or o, p, q, a, qP , qO, . . . when we
want to be specific about their kind. The simplest arena is0 = (∅, ∅, ∅, ∅). Other “flat”
arenas are1 andZ, defined byM1 = I1 = {∗}, MZ = IZ = Z. The two standard
constructions on arenas are presented in the figure above, whereĪA stands forMA \ IA,
theOP -complement ofλA is written as̄λA, andiA, iB range over initial moves in the
respective arenas. Types ofL can now be interpreted with arenas in the following way:
JunitK = 1, JintK = Z, JvarK = (1 ⇒ Z) ⊗ (Z ⇒ 1) andJθ1 → θ2K = Jθ1K ⇒ Jθ2K.
Although arenas model types, the actual games will be playedin prearenas, which
are defined in the same way as arenas with the exception that initial moves must be
O-questions. Given arenasA andB, we can construct the prearenaA → B by setting:

MA→B = MA ⊎ MB λA→B = [(iA, OQ) ∪ (λ̄A ↾ IA) , λB]

IA→B = IA ⊢A→B = {(iA, iB)}∪ ⊢A ∪ ⊢B .



ForΓ = {x1 : θ1, · · · , xn : θn}, typing judgmentsΓ ⊢ θ will eventually be interpreted
by strategies for the prearenaJθ1K ⊗ · · · ⊗ JθnK → JθK (if n = 0 we take the left-hand
side to be1), which we shall denote byJΓ ⊢ θK or Jθ1, · · · , θn ⊢ θK.

A justified sequencein a prearenaA is a finite sequences of moves ofA satisfying
the following condition: the first move must be initial, but all other movesm must be
equipped with a pointer2 to an earlier occurrence of a movem′ such thatm′ ⊢A m.
A play in A is a justified sequences satisfying the standard conditions ofAlternation,
Well-BracketingandVisibility [7]. Visibility is based on the notions ofO-viewxsy and
P-viewpsq of a justified sequences, given by:xǫy = ǫ , xs oy = xsy o , xs o · · · py =
xsy o p ; pǫq = ǫ , ps pq = psq p , ps p · · · oq = psq p o . We writePA to denote the set
of plays inA.

Definition 3. A (knowing) strategyσ on a prearenaA, writtenσ : A, is a prefix-closed
set of plays fromA satisfying the first two conditions below. A strategy isinnocent if,
in addition, the third condition holds.

O-CLOSURE If even-lengths ∈ σ andsm ∈ PA thensm ∈ σ.
DETERMINACY If even-lengthsm1, sm2 ∈ σ thenm1 = m2.
INNOCENCE If s1m, s2 ∈ σ with odd-lengths1, s2 andps1q = ps2q thens2m ∈ σ.

Now we shall extend the framework to allow moves to be decorated with stores that
containname-integer pairs. The names should be viewed as semantic analogues of lo-
cations. When employing such moves-with-store, we are not interested in what exactly
the names are, but we would like to know how they relate to names that have already
been in play. Hence, the objects of study are rather the induced equivalence classes
with respect to name-invariance, and all ensuing constructions and reasoning need to
be compatible with it. This overhead can be dealt with robustly using the language of
nominal set theory [4].

Let us fix a countably infinite setA, the set ofnames, the elements of which we
shall denote byα, β and variants. Consider the group PERM(A) of finite permutations
of A, denoted byπ and variants. Astrong nominal set[18] is a set equipped with a
group action of PERM(A) such that each of its elements hasfinite strong support. That
is to say, for anyx ∈ X , there exists a finite setν(x) ⊆ A, calledthe support ofx, such
that, for all permutationsπ, (∀α ∈ ν(x). π(α) = α) ⇐⇒ π · x = x. Intuitively, ν(x)
is the set of names “involved” inx. For example, the setA# of finite lists of distinct
names with permutations acting elementwise is a strong nominal set. Name-variance in
a strong nominal setX is represented by the relation:x ∼ x′ if there existsπ such that
x = π · x′.

We define a strong nominal set ofstores, the elements of which are finite sequences
of name-integer pairs. Formally,

Σ, T ::= ǫ | (α, i) :: Σ

where i ∈ Z and α ∈ A \ ν(Σ). We view stores as finite functions from names
to integers, though their domains are lists rather than sets. Thus, we define thedo-
main of a store to be thelist of names obtained by applying the first projection to

2 We then say thatm′ justifiesm. If m is an answer, we might also say thatm answersm′. If a
question remains unanswered ins, it is open.



all of its elements. In particular,ν(dom (Σ)) = ν(Σ). If α ∈ ν(Σ) then we write
Σ(α) for the uniquei such that(α, i) is an element ofΣ. For storesΣ, T we write:
Σ ≤ T for dom (Σ) ⊑ dom (T ) ; Σ ≤p T for dom (Σ) ⊑p dom (T ) ; Σ ≤s T for
dom (Σ) ⊑s dom (T ), where⊑,⊑p,⊑s denote the subsequence, prefix and suffix re-
lations respectively. Note thatΣ ≤(p/s) T ≤(p/s) Σ impliesdom (Σ) = dom (T ) but
notΣ = T . Finally, let us writeΣ \ T for Σ restricted toν(Σ) \ ν(T ).

An S-move(or move-with-store) in a prearenaA is a pair consisting of a move and
a store. We typically write S-moves asmΣ , nT , oΣ , pT , qΣ , aT . The first-projection
function is viewed asstore erasureand denoted byerase( ). Note that moves contain
no names and therefore, for anymΣ , ν(mΣ) = ν(Σ) = ν(dom (Σ)) . A justified
S-sequencein A is a sequence of S-moves equipped with justifiers, so that itserasure is
a justified sequence. The notions ofO-viewandP-vieware extended to S-sequences in
the obvious manner. We say that a nameα is closedin s if there are no open questions
in s containingα.

Definition 4. A justified S-sequences in a prearenaA is called anS-play, also written
s ∈ SPA, if it satisfies the following conditions, for allα ∈ A.

INIT If s = mΣ · · · thenΣ = ǫ.
JUST-P If s = · · · oΣ · · · pT · · · then Σ ≤p T . If λA(p) = PA then dom (Σ) =

dom (T ).
JUST-O If s = · · · pΣ · · · oT · · · thendom (Σ) = dom (T ).
PREV-PQ If s = · · · oΣqT

P · · · thenΣ \ T ≤s Σ andΣ \ (Σ \ T ) ≤p T and
(a). if α ∈ ν(T \ Σ) thenα /∈ ν(s<qT

P
),

(b). if α ∈ ν(Σ \ T ) thenα is closed ins<qT
P

.

VAL -O If s = · · · pΣs′oT · · · andα ∈ (ν(T ) ∩ ν(Σ)) \ ν(s′) thenT (α) = Σ(α).

For example, PREV-PQ stipulates that P-questions may drop some names from thestore
and append some others, but these changes may only take placein blocksat the tail of
the store. Moreover, appended names must be fresh in the whole play, and a name can
be dropped only if it has been closed.

Let us remark that, as stores have strong support, the set of S-playsSPA is a strong
nominal set. Further properties of S-plays include:

– If s = · · ·mΣaT
P · · · thenΣ \ T ≤s Σ andΣ \ (Σ \ T ) ≤p T and

(a) if α ∈ ν(T ) thenα ∈ ν(Σ),
(b) if α ∈ ν(Σ \ T ) thenα is closed ins<aT

P
.

– If s = s1o
ΣpT s2 with α ∈ ν(Σ) \ ν(T ) thenα /∈ ν(s2).

Definition 5. An S-strategyσ on an arenaA, written σ : A, is a prefix-closed set of
S-plays fromA satisfying the first three of the following conditions. An S-strategy is
innocent if it also satisfies the last condition.

NOMINAL CLOSURE If s′ ∼ s ∈ σ thens′ ∈ σ.
O-CLOSURE If even-lengths ∈ σ andsmΣ ∈ SPA thensmΣ ∈ σ.
DETERMINACY If even-lengthsmΣ1

1 , smΣ2

2 ∈ σ thensmΣ1

1 ∼ smΣ2

2 .
INNOCENCE If s1m

Σ1 , s2 ∈ σ with s1, s2 odd-length andps1q = ps2q then there
existss2m

Σ2 ∈ σ with ps1m
Σ1q ∼ ps2m

Σ2q.



Example 6.For any base typeβ, let us define the S-strategycellβ : Jvar → βK → JβK
as the least innocent S-strategy containing the plays below. We useread andwrite(i)
(i ∈ Z) to refer to the question-moves ofJvarK, andi (i ∈ Z) andok for the non-initial
answers.

q0 q1
(α,0) a1

(α,i) a0 q0 q1
(α,0)

read
(α,i) i(α,i) q0 q1

(α,0)
write(j)

(α,i)
ok

(α,j)

Example 7.Had we used sets instead of lists for representing stores, the following “S-
strategy”, which represents incorrect overlap of scopes (α andβ are in scope of one
another, but at the same time have different scopes), would be innocent.

q0 q1
(α,0),(β,0) 01

(α,0),(β,0) q1
(α,0) q0 q1

(α,0),(β,0) 11
(α,0),(β,0) q1

(β,0)

Arenas and S-strategies form a category, which we callS, and so do innocent S-
strategies.S turns out to exhibit the same kind of categorical structure as that discussed
in [6], which can be employed to model call-by-value higher-order computation with
recursion. Thus, the functional part ofIAcbv can be interpreted inS according to the
standard recipe. Assignment, dereferencing andmkvar can in turn be modelled using
the innocent strategies without stores from [2]. Finally, the denotation ofnew x in M is
obtained by composing the denotation ofλxvar.M with the innocent S-strategycellβ .
Let us writeJ· · ·KS for the resultant semantic map.

Proposition 8 (Soundness).For anyIAcbv-termΓ ⊢ M : θ, JΓ ⊢ M : θKS is an inno-
cent S-strategy.

Innocent S-strategies can bedecomposedin a similar way to the innocent strategies
of [6]. There is one important exception, though, which occurs when the second-move
introduces a non-empty store (our rules of play imply that the move must be a ques-
tion). Let α be the first variable from the non-empty store. In order to decompose the
strategy, consider a P-views in whichα occurs in the second moveqα. It turns out that
s = qqαsαs′, where (the store of) a movemΣ from s containsα if, and only if, it is qα

or in sα. In addition, no justification pointers connects′ to qαsα. This separation can be
applied to decompose the view-function of an innocent S-strategy. Thesα parts, put to-
gether as a single S-strategy, can subsequently be dealt with in the style of factorization
arguments, which removeα from moves at the cost of an additionalvar-component.
Finally, to relatesα’s to the suitables′ one can use numerical codes forqαsα. These
ideas lie at the heart of the following result. By a finitary innocentS-strategy we mean
an innocent strategy whose view-function quotiented by name-variance is finite.

Proposition 9 (Finitary Definability and Universality).
– Any finitary innocent S-strategy isIAcbv-definable.
– Any recursively presentable innocent S-strategy isIAcbv-definable.

It is worth noting that the universality result for innocentS-strategies implies an analo-
gous result for innocent strategies andPCF. Thanks to call-by-value, the result is actu-
ally sharper than the universality results of [1, 7], which had to be proved “up to obser-
vational equivalence”. This was due to the fact that partialrecursive functions could not
always be represented in the canonical way (i.e. by terms forwhich the corresponding



strategy contained plays of the formq q n f(n)). This is no longer the case under the
call-by-value regime, where each partially recursive function f can be coded by a term
whose denotation will be the strategy based on plays of the shapen f(n).

With the soundness and definability results in place, we could now proceed in the
familiar way to define a fully abstract model ofIAcbv via the intrinsic quotient. However,
this would be somewhat counterproductive. It turns out thatRML is a conservative ex-
tension ofIAcbv (Corollary 14), so the (simpler) fully abstract model ofRML from [2],
based on knowing strategies, is already fully abstract forIAcbv. In fact, our model can
be related to knowing strategies more precisely. Observe that by erasing storage annota-
tions in an innocent S-strategyσ we obtain a knowing strategy, which we callerase(σ)
(determinism follows from the fact that stores in O-moves are uniquely determined
and from block-innocence). Let us writeJ· · ·K for the knowing strategy semantics (cast
in [6]).

Lemma 10. For anyIAcbv-termΓ ⊢ M : θ, JΓ ⊢ M : θK = erase(JΓ ⊢ M : θKS).

This means the intrinsic quotient we would construct in the setting with stores can
be represented more explicitly via the inducedcompleteplays (without stores)3. Even
though innocent S-strategies have not led us to a direct account of full abstraction for
IAcbv, we have obtained important insights into the structure of knowing strategies rep-
resentingIAcbv-terms: they are erasures of innocent S-strategies. Knowing strategies
with this property will be referred to asblock-innocent. The knowledge that strategies
determined byIAcbv are block-innocent will be crucial in establishing a seriesof results
in the following sections.

Example 11.Let us revisit the two plays from the Introduction. The first one indeed
comes from an innocent S-strategy (we reveal the stores below). For the second one to
become innocent (in the setting with stores), a store with variableα, say, would need
to be introduced in the second move. Thenα must also occur in the seventh move by
JUST-O, but it must not occur in the eighth move by JUST-P (thePA clause). Hence, it
will not be present in the ninth move by JUST-O. Consequently, the last move (justified
by the seventh move) is bound to break either PREV-PQ(a) (if it containsα) or JUST-P
(if it does not).

q q(α,0) q(α,0) 0(α,1) q(α,1) 1(α,1) a(α,0) a q 0 q 0

4 From omniscience to innocence

In Section 2 we introduced the three languages:PCF
+, IAcbv andRML. By the sound-

ness and universality results of the previous section (as well as the soundness results
from [6, 2]) the languages correspond respectively to innocent, block-innocentand know-
ing strategies. LetA be an arena. We writeIA,BA andKA for the corresponding classes

3 A play is complete if it does not contain unanswered questions. That such plays capture pro-
gram equivalence inRML follows from the argument in [3], readily adaptable toRML. By
Corollary 14, the same characterization will apply toIAcbv.



of (store-free) strategies inA. Obviously,IA ⊆ BA ⊆ KA. Next we shall study type-
theoretic conditions under which one kind of strategy collapses to another. Thanks to
the universality results, this corresponds to the existence of an equivalent program in a
weaker language.

Lemma 12. LetA = Jθ1, · · · , θn ⊢ θ → θ′K. ThenBA ( KA.

Proof. Observe that there exist movesq0, a0, q1, a1 such thatq0 ⊢A a0 ⊢A q1 ⊢A a1

and considerσ = {ǫ, q0, q0a0, q0a0q1, q0a0q1a1}, i.e.σ has no response atq0a0q1a1q1.
Thenσ ∈ KA \ BA. It is worth remarking that a strategy of the above kind denotes the
RML-term ⊢ let v = ref in λxunit.if !v thenΩ else v := !v + 1 : unit → unit. ⊓⊔

Lemma 12 confirms that, in general, block structure restricts expressivity. However, the
next result shows this not to be the case for open terms of basetype.

Lemma 13. LetA = Jθ1, · · · , θn ⊢ βK. ThenBA = KA.

Proof. Observe that any knowing strategy forA becomes block-innocent if in the sec-
ond move P introduces a store with one variable that keeps track of the history of play
(this is reminiscent of the factorization arguments in gamesemantics). The variable
should be removed from the store by P only when he plays an answer to the initial
question, in which case the play becomes complete and cannotbe extended further.⊓⊔

By universality, we can conclude that eachRML-term of base type is equivalent to
an IAcbv-term. Since contexts used for testing equivalence are exactly of this kind, we
obtain the following corollaries. The first one amounts to saying thatRML is a conser-
vative extension ofIAcbv. The second one states that block-structured contexts suffice
to distinguish terms that might use scope extrusion.

Corollary 14. For anyIAcbv-termsΓ ⊢ M1, M2 andRML-termsΓ ⊢ N1, N2

– Γ ⊢ M1
∼=RML M2 if, and only if,Γ ⊢ M1

∼=IAcbv
M2.

– Γ ⊢ N1
∼=RML N2 if, and only if,Γ ⊢ N1

∼=IAcbv
N2.

Now we investigate the boundary between block structure andlack of state.

Lemma 15. Let A be an arena such that each question enables an answer4. The fol-
lowing conditions are equivalent.

1. BA ⊆ IA.
2. No O-question is enabled by a P-question:m ⊢A qO impliesλA(m) = PA.
3. Store content of O-questions is trivial:sqΣ

O ∈ SPA impliesdom (Σ) = ǫ.

We can now determine at which types block-innocence impliesinnocence.

Lemma 16. Jθ1, · · · , θn ⊢ θK satisfies condition 2 of Lemma 15 ifford(θi) ≤ 1 (i =
1, · · · , n) andord(θ) ≤ 2.

Consequently, second-orderIAcbv-terms always have purely functional equivalents. Fi-
nally, we can pinpoint the types at which strategies are bound to be innocent: it suffices
to combine the previous findings.

4 All denotable arenas enjoy this property.



Lemma 17. LetA = Jθ1, · · · , θn ⊢ θK. ThenKA = IA iff ord(θi) ≤ 1 (i = 1, · · · , n)
andord(θ) = 0.

In the next section we demonstrate that the gap in expressivity betweenKA andBA also
bears practical consequences. The undecidable equivalence problem for second-order
finitaryRML becomes decidable in second-order finitaryIAcbv (as well as at some third-
order types).

5 Decidability of a finitary fragment of IAcbv

To prove program equivalence decidable we restrict the basedatatype of integers to
the finite segment{0, · · · , N} (N > 0) and replace recursive definitions (Y(M)) with
looping (whileM doN ). Let us call the resultant languageIA�. Our decidability result
will hold for a subsetIA2+

� of IA�, in which type order is restricted.IA2+
� will reside

inside the third-order fragment ofIA� and contain its second-order fragment. Note that
the second-order fragment of similarly restrictedRML is known be undecidable (even
without loops) [10].

The decidability of program equivalence inIA
2+
� will be shown by translating terms

to regular languages representing the correspondingknowingstrategies. We stress that
we arenot going to work with the induced S-plays. Nevertheless, the translation will
crucially rely on insights gleaned from the semantics with explicit stores. More pre-
cisely, we will be interested in capturing the inducedcomplete(store-free) plays. It is
worth mentioning that, unlike in the (single-threaded) call-by-name setting, complete
plays need not be maximal.

To represent plays as words, one needs to consider carefullyhow to represent point-
ers, should that be necessary. For example, this can be done by decorating moves with
integers that encode the distance from the target in some way. Only pointers from ques-
tions require attention, since those from answers are uniquely reconstructible through
the well-bracketing condition. Next we analyse two typing scenarios that look hopeless
from the point of view of encoding pointers, since the distance from the pointer can
grow arbitrarily. In the first case, thanks to block-innocence, we will be able to over-
come the difficulties. The other case must remain a challengefor future work (or an
undecidability result). On the basis of our discussion we shall subsequently introduce
the type system ofIA2+

� .
Consider the arenaJθ ⊢ θ1 → . . . → θk → βK. Due to the presence of thek arrows

on the right-hand side we obtain chains of enablersq0 ⊢ a0 ⊢ · · · ⊢ qk ⊢ ak, where
q0 is initial and eachqi (i = 1, · · · , k) is initial in JθiK. We shall call the movesspinal.
ConsiderJ ⊢ λxunit.λyunit.() : unit → unit → unitK (i.e.k = 2), which contains plays
of the formq0a0(q1a1)

j for anyj ≥ 0. Pointers are still uniquely determined in these
plays, but everything changes once O playsq2 next. Then the target might be any of
the j occurrences ofq1. The strategy in question actually offers responses in all such
cases, so it would seem that all of these plays need to be represented (thus necessi-
tating the use of an infinite alphabet). Fortunately, thanksto block-innocence, we can
restrict ourselves to the casej = 1 and make the problem disappear. To see why, ob-
serve that none of the movesqi, ai will ever carry a non-empty store in an S-play, by



Definition 4. Thus, because the strategy is block-innocent,its behaviour is already rep-
resented faithfully by the single playq0a0q1a1q2a2. In fact, this is one of the cases
when block-innocence implies innocence, but in general this will not be true for deno-
tations ofIA2+

� -terms. Hence, we generalize the observation as follows. Since the move
q1 never carries a non-trivial store, it follows that no additional information about the
strategy is hidden in plays containing two occurrences ofq1. This is because a block-
innocent strategy has to behave uniformly after eachq1 and in general will depend only
on what happened betweenq0 anda0, and not on what happened after a previous copy
of q1 was played (there can be no communication between the “threads” started withq1

becauseq1 cannot carry a non-trivial store). Now that it is known that Oneed only play
one occurrence ofq1, we can apply a similar reasoning toq2, and so on. This yields
the following lemma. Note that, due to Visibility, insisting on the presence of a unique
copy ofq1, · · · , qk in a play amounts to asking that eachqi be preceded byai−1.

Lemma 18. Call a playspinal if each spinal questionqi (0 < i ≤ k) occurring in it is
the immediate successor ofai−1. Let P sp

A be the set of spinal plays ofA. Letσ, τ : A
be block-innocent strategies. Thenσ ∩ P sp

A = τ ∩ P sp
A impliesσ = τ .

Hence, for the purpose of checking program equivalence, it suffices to compare the
induced sets ofspinalcomplete plays.

Now that we have dealt with one challenge, let us introduce another one, which
cannot be overcome so easily. Consider the arenaJ(θ1 → θ2 → θ3) → θ4 ⊢ θK and
the enabling sequenceq0 ⊢ q1 ⊢ q2 ⊢ a2 ⊢ q3 it contains. Now consider the plays
q0q1(q2a2)

jq3, wherej ≥ 0. Again, to represent the pointer fromq3 to one of the
j occurrences ofa2, one would need an unbounded number of indices. This time it
is not sufficient to restrictj to 1, because the behaviour need not be uniform after
eachq2 (this is because in the setting with stores a non-empty storecan be intro-
duced as soon as in the second moveq1). To see that the concern is real, consider
the termf : (unit → unit → unit) → unit ⊢ new x in f(λyunit. · · ·λzunit. · · · ) : unit,
where(· · · ) contain some code inspecting and changing the value ofx.

This leads us to introduceIA2+
� via a type system that will not generate the config-

uration just discussed. Another restriction is to omit third-order types in the context, as
they lead beyond the realm of regular languages (cf.f : ((unit → unit) → unit) → unit ⊢
f(λgunit→unit.g()). Sincevar leads to identical problems asunit → unit, we restrict its
use accordingly.

Definition 19. IA
2+
� consists ofIA�-terms whose typing derivations rely solely on typ-

ing judgments of the shapex1 : ctype1, · · · , xn : ctypen ⊢ M : ttype, wherectype and
ttype are defined by the grammar below.

ctype ::= β | var | β → ctype | var → ctype | (β → β) → ctype

ttype ::= β | var | ctype → ttype

A lot of pointers from questions become uniquely determinedin strategies represent-
ing IA

2+
� terms, namely, all pointers from any O-questions and all pointers fromP -

questions to O-questions.



Lemma 20. Let A = Jctype1, · · · , ctypen ⊢ ttypeK ands1, s2 be spinal plays ofA
that are equal after all pointers from O-questions and all pointers from P-questions to
O-questions have been erased. Thens1 = s2.

Thus, the only pointers that need to be accounted for are those from P-questions to O-
answers. Here is the simplest scenario illustrating that they can be ambiguous. Consider
the terms

f : unit → unit → unit ⊢ let g1 = f() in (let g2 = f() in gi()) : unit

wherei = 1, 2. They lead to the following plays, respectively fori = 1 andi = 2,
which are equal up to pointers from P-questions to O-answers.

q0 q1 a1 q1 a1 q2 q0 q1 a1 q1 a1 q2

We are going to represent such pointers with numerical indices encoding the target of
the pointer inside the current P-view. More precisely, let us enumerate (starting from0)
all question-enabling O-answers in the P-view. Then pointers from P-questions to O-
answers can be encoded by decorating the P-question with theindex of the O-answer.
The plays above will be encoded asq0q1a1q1a1q

0
2 andq0q1a1q1a1q

1
2 respectively (other

pointers are uniquely recoverable by Lemma 20 and will not berepresented explicitly).
So that we need not study the behaviour of the representationscheme for pointers under
general composition (after which the indices might need to be recalculated), we restrict
our translation to terms in a canonical shape, to be defined next. Any IA�-term can be
converted effectively to such a form and the conversion preserves denotation.

The canonical forms are defined by the following grammar. We use types as super-
scripts, whenever we want to highlight the type of an identifier (u, v, x, y, z range over
identifier names). Note that the only identifiers in canonical form are those of base type,
represented byxβ below.

C ::= () | i | xβ | xβ ⊕ yβ | if xβ then C else C | xvar := yint | !xvar | λxθ .C |
mkvar(λxunit.C, λyint.C) | new xvar in C | whileC do C | let xβ = C inC |
letx = zyβ inC | let x = z mkvar(λuunit.C, λvint.C) in C | letx = z(λxθ.C) in C

Lemma 21. LetΓ ⊢ M : θ be anIA�-term. There is anIA�-termΓ ⊢ N : θ in canon-
ical form, effectively constructible fromM , such thatJΓ ⊢ MK = JΓ ⊢ NK.

Proof. N can be obtained via a series ofη-expansions,β-reductions and commuting
conversions involvinglet andif. ⊓⊔

A useful feature of the canonical form is that the problems with pointers can be related
to the syntactic shape: they concern references tolet-bound identifiersxθ such thatθ
is not a base type (i.e.θ = var or θ is a function type). The representation scheme
for pointers corresponds then to enumerating suchlet bindings along branches of the
syntactic tree of the canonical form (using0 for topmost bindings). Below we state our
representability theorem forIA2+

� -terms. The definition ofAM is actually too generous,
as we shall only need indices to decorate P-questions enabled by O-answers (in concrete
examples the indices will be superscripts).



Proposition 22. SupposeΓ ⊢ M : θ is an IA
2+
� -term. LetAM = MA + (MA × N),

whereA = JΓ ⊢ θK. Let CΓ⊢M be the set of non-empty spinal complete plays from
JΓ ⊢ M : θK. ThenCΓ⊢M can be represented as a regular language over afinite subset
ofAM .

Proof. For brevity, we shall writeCM instead ofCΓ⊢M whenever it is clear whatΓ
should be.CM can be decomposed as

∑
i∈IA

(i Ci
M ). ObviouslyCM is regular if, and

only if, so is any ofCi
M (i ∈ IA). Hence, it suffices to show thatCi

M is regular for
any relevanti. The proof proceeds by induction on the structure of canonical forms.
The most difficult cases are those involvinglet. Note that whenever a canonical form
of an IA

2+
� -term is of the shapelet x = z(λxθ.C) inC, z’s type must be of the form

(β1 → β2) → (θ1 → θ2) (andθ is a base type). We handle this case below. Consider
the terms:

Γ, z : (β1 → β2) → (θ1 → θ2), y : β1 ⊢ M : β2,
Γ, z : (β1 → β2) → (θ1 → θ2), x : θ1 → θ2 ⊢ N : θ′.

Assuming thatM andN satisfy the Proposition, we show that so doesN ′ ≡ letx =
z(λyβ1 .M) inN . We shall refer to moves contributed byx : θ with mx. If we want to
range solely over O- or P-moves from the component, we useox andpx respectively.
Moreover, we usemz,x, oz,x, pz,x to refer to copies ofmx, ox, px in the z : θ′ →
θ component. The most common operation performed using this notation will be the
relabelling ofmx to mz,x. If θ is a function type, then there is a unique P-questionqx

enabled by the initial move⋆x. Whenever we have a separate substitution rule forqx,
the rule formx or px will not apply toqx. In most cases we will want to substituteq0

z,x

(qz,x decorated with index0 represent a topmost binding) forqx. In addition,i + 1/i is
used to increment all numerical indices by1. Then we have

C
(iΓ ,⋆z)
N ′ = qz C

′ ⋆z,x C
(iΓ ,⋆z,⋆x)
N [i + 1/i, q0

z,xC
′/qx, pz,xC

′/px, oz,x/ox]

whereC′ = (
∑

i∈IJβ1K
iz C

(iΓ ,⋆z,iy)
M [jz/j])∗ andj ranges overIJβ2K. ⊓⊔

Theorem 23. Program equivalence ofIA2+
� -terms is decidable.

We remark that adding dynamic memory allocation in the form of ref to IA
2+
� , or its

second-order sublanguage, results in undecidability [10]. Hence, at second order, block
structure is “strictly weaker” than scope extrusion.

6 Summary

In this paper we have introduced the notion of block-innocence that has been linked
with call-by-value Idealized Algol in a sequence of results. Thanks to the faithfulness
of block-innocence, we could investigate the interplay between type theory, functional
computation and stateful computation with block structureand dynamic allocation re-
spectively. We have also shown a new decidability result fora carefully designed frag-
ment of IAcbv. Its extension to product types poses no particular difficulty. In fact, it
suffices to follow the way we have tackled thevar type, which is itself a product type.



The result thus extends those from [5] and is a step forward towards a full classifi-
cation of decidable fragments ofIAcbv: the languageIA2+

� we considered features all
second-order types and some third-order types, while finitary IAcbv is known to be un-
decidable at order5 [9]. Interestingly,IA2+

� features restrictions that are compatible
with the use of higher-order types in PASCAL [8], in which procedure parameters can-
not be procedures with procedure parameters. An interesting topic for future work is a
category-theoretic characterization of block-innocence.
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