Block structure vs scope extrusion: between innocence
and omniscience

Andrzej S. Murawski and Nikos Tzevelekds

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We study the semantic meaning of block structure using gaene s
mantics and introduce the notion of block-innocent stiaegwhich turns out
to characterise call-by-value computation with blocleadited storage through
soundness, finitary definability and universality resulisis puts us in a good
position to conduct a comparative study of purely functiaramputation, com-
putation with block storage and dynamic memory allocatiespectively. For
example, we show that dynamic variable allocation can bkacep with block-
allocated variables exactly when the term involved (operiaged) is of base type
and that block-allocated storage can be replaced with pfuektional compu-
tation when types of order two are involved. To illustrate tiestrictive nature
of block structure further, we prove a decidability resuwlt & finitary fragment
of call-by-value Idealized Algol for which it is known thali@wing for dynamic
memory allocation leads to undecidability.

1 Introduction

Most programming languages manage memory by employingck & local vari-
ables and heap storage for dynamically allocated data tagtise beyond their initial
context. A prototypical example of the former mechanismeagmidlds’s Idealized Al-
gol [16], in which local variables can only be introducedd®sblocks of ground type.
Memory is then allocated on entry to the block and deallatate exit. In contrast,
languages such as ML permit variables to escape from thaiemucontext under the
guise of pointers or references. In this case, after mensoajlocated at the point of
reference creation, the variable is allowed to persistfindely (in practice, garbage
collection or explicit deallocation is used to put an endsdife).

In this paper we would like to compare the expressivity oftthe paradigms. As a
simple example of heap-based memory allocation we conidéanguag&ML, intro-
duced by Abramsky and McCusker in [2], which is a fragment affilaturing integer-
valued references. They also constructed a fully absteanegnodel oRML based on
strategies (also referred to sowingstrategies) that allow the player to base his deci-
sions on the full history of play. On the other hand, at arotinedsame time Honda and
Yoshida [6] showed that the purely functional coreR¥IL, better known as call-by-
valuePCF [14], corresponds tmmnocentstrategies [7], i.e. those that can only rely on a

* Supported by an EPSRC Advanced Research Fellowship (EB7G3AL).
** Supported by EPSRC (EP/F067607/1).

restricted view of the play when deciding on the next movec&block-structured stor-
age of ldealized Algol seems less expressive than dynamicaneallocation of ML
and more expressive th&CF, it is natural to ask about its exact position in the range
of strategies between innocence and omniscience. Ourdsattris an answer to this
question. We introduce the family bfock-innocenstrategies, situated strictly between
innocent and knowing strategies. As a vehicle for our studyge a call-by-value vari-
antlA.,, of Idealized Algol and prove that eadA.,,-term can be interpreted by a
block-innocent strategy (soundness), each finitary blookcent strategy corresponds
to anlA.,, -term (finitary definability) and each recursively preséigalock-innocent
strategy corresponds to &, -term (universality). Block-innocence captures the par-
ticular kind of uniformity exhibited by strategies origiireg from block-structured pro-
grams, akin to innocence yet strictly weaker. In fact, werdelilock-innocence through
innocence in a setting enriched with explicit store annotstadded to standard moves.
For instance, in the play shown belbif P follows a block-innocent strategy, he is free
to use different moves as the fourth and sixth moves, butgh#ihtone and the twelfth

one have to be the same.
ﬁ\\

g0 1uuq0q0

Additionally, our framework detects “storage violationgsulting from an attempt to
access a variable from outside of its block. For instancé\ng-term will ever produce
the following play (the last move is the offending one).

= 1

99¢q0qglaaqgqg

The notion of block-innocence provides us with a systematithodology to address
expressivity questions related to block structure suclbag$ a given strategy originate
from a stack-based memory discipline?” or “Can a given paogusing dynamic mem-
ory allocation be replaced with an equivalent program feéagustack-based storage?”.
To illustrate the approach we conduct a complete study ofdtationship between the
three classes of strategies according to type-thereatierove find that knowingness
implies block-innocence when terms of base types (openosed) are involved, that
block-innocence implies innocence exactly for types of astisecond order, and that
knowingness implies innocence if the term is of base typeitrfdee identifiers are of
orderl.

As a further confirmation of the restrictive nature of thecktdiscipline oflA,,,
we prove that program equivalence is decidable for a finitanryant ofIA.,, which
properly contains all second-order types as well as sorek-thider types (interestingly,
our type discipline covers the available higher-order ipePASCAL). In contrast, the
corresponding restriction &ML is known to be undecidable [10].

Related work. The stack discipline has always been regarded as part ofsdenee
of Algol [16]. Accordingly, finding models embodying stackiented storage manage-
ment has become an important goal of research into Algellikguages. In this spirit,
in the early 1980s, Reynolds [16] and Oles [11] devised a séimanodel of Algol-like

! For the sake of clarity, we only include pointers pointingrenthan one move behind.

languages using a category of functors from a category o¢ sfoapes to the category
of predomains. Perhaps surprisingly, in the 1990s PittsStack [13, 17] managed to

adapt the techniques to languages with dynamic allocafiois.would appear to create

a common platform suitable for a comparative study such es élowever, despite the

valuable structural insights, the relative imprecisioritef functor category semantics
(failure of definability and full abstraction) makes it udly that the results obtained by
us can be proved via this route. The semantics of local affeas also been investigated
from the category-theoretic point of view in [15].

As for the game semantics literature, Ong’s work [12] basestrategies-with-state
is the work closest to ours. His paper defines a compositioaaework that is proved
sound for the third-order fragment of call-by-name IdeadiAlgol. Adapting the results
to call-by-value and all types is far from immediate. Forartsto handle higher-order
types, we note that the state of O-moves is no longer detedtiy its justifier and
the preceding move. Instead, the right state has to be camggtobally” using the
whole history of play. However, the obvious adaptation ofrsadified framework to
call-by-value does not capture the block-structurk®gf, . Quite the opposite: it seems
to be more compatible witRML thanlA.,! Consequently, further changes are needed
to characterizéA.,, . Firstly, to restore definability, the explicit stores hawebecome
lists instead of sets. Secondly, conditions controllirdesthanges must be tightened.
In particular, P must be forbidden from introducing freshiables at any step and,
in a similar vein, must be forced to drop some variables framrhoves in certain
circumstances.

The paper cited above is part of a series that has eventedltpla complete classi-
fication of the decidable cases of call-by-name (finitargalized Algol. Much less is
known about the call-by-value case, we are only aware of @peps: one by Ghica [5]
and the other by the first-named author [10]. Both rely on l@ganguages to capture
the game semantics of fragmentslAf,, andRML respectively. Their other common
feature is that the types considered are selected in sucly ghatno pointers need to
be represented in the induced plays. Our results represehef progress with regard
to Ay - The type system of our language, nanhé@*, is designed in such a way that
only pointers from O-moves need not be represented, but vt imeiude an explicit
representation of pointers from certain P-moves. In paldicin contrast to [5], we can
account for all second-order types, as we allow all firsteotgpes to occur in contexts.
“Curried” types of the formd — B — C are especially tricky to handle here, because
they can only be dealt with correctly if pointers from P-mewage encoded explicitly
(recall that in the call-by-value setting — B — C andA x B — C are not iso-
morphic). Any further extension of the type system/k)i;r leads either to context-free
languages or to plays in which pointers from O-moves of umided length would have
to be handled, which seemingly requires an infinite alphabet

2 Syntax

To set a common ground for our investigations, we introdub&yber-order program-
ming languageC that features syntactic constructs for both block and dyoanem-
ory allocation. Its types are generated by the grammar heltwsres ranges over the

Lx:vark-M: 3 ic7Z (z:0) el
I'FnewzinM: (3 I'F ref :var I' () :unit I'Fq:int I'tx:0
I'E M, :int ' M, :int 'EM:int 'ENg:0 I'bENp:0
I'F M1 Ms :int I'F if M then Ny else Ng : 0
I'FM:var I'bM:var 'EN:int I'HEM:unit—int I'H N :int — unit

I'F1M :int I' M:=N : unit I' + mkvar(M, N) : var
I'tM:0—-6 I'bN:6 Nx:0-M:0 'E-M:(0—-60)—(0—0)
'-MN:¢ X’ M:0—0 T'FY(M):0—6

ground typesinit andint.
0= (B | var | 6 —0

The syntax ofZ is given in the Figure above. Note in particular the first twkes con-
cerning variables. The order of a type is defined as follaxg(3) = 0, ord(var) = 1,
ord(f; — 62) = max(ord(6;) + 1,0rd(f2)). For anyi > 0, terms that are typable us-
ing exclusively judgments of the form : 61, --- ,z,, : 8, = M : 6, whereord(§;) < ¢

(1 < j < n)andord(d) < i, are said to form théth-order fragment. To spell out the
operational semantics df, we need to assume a countablelset of locations which
are added to the syntax as auxiliary constants of tgpeWe shall writea to range
over them. The semantics then takes the form of judgmemits || s’, V', wheres, s’
are finite partial functions frorhoc to integers M is a term and/ is a value. Terms of
the following shapes are valugg; integer constants, elementslafc, A\-abstractions
or terms of the formmkvar(Az“". M, \y™™. V). Here we only reproduce the two eval-
uation rules related to variable creation.

sU(a—0), M[a/z] |} s,V
s,newzin M | 8"\ o,V

ag¢dom s ag¢dom s

s,ref J sU(a—0),«
s' \ a is the restriction ofs’ to dom s’ \ {a}. The former rule encapsulates the state
within the newly created block, while the latter createsfarence to a new memory
cell that can be passed around without restrictions on dpesc

Given a closed term~ M : unit, we write M |} if there existss such that), M |
s, (). We shall call two programs equivalent if they behave ideilty in every context.
This is captured by the following definition, parameteribydhe kind of contexts that
are considered, to allow for testing of terms with contexiginating from a designated
subset of the language.

Definition 1. Supposé&’ is a subset of. We say that the terms-in-contéxt- My, My : 6
are L'-equivalent (written” = M; =, M>) if, for any £’-contextC[—] such that
F C[M,], C[My] : unit, C[M;] |} if and only ifC[Mz]).

We shall study three sublanguagesfotalledPCF*, 1A, andRML. The latter two
have appeared in the literature as paradigmatic examplpsogfamming languages
with stack discipline and dynamic memory allocation resipety.

Ma—p :[A:>BL-HIAH—JTAL-HMB Mags = lags H'JTAL'HTBy Tagp =14 X Ip

Inep = {+} Aags = [((ia,i8), PA),Aa | Ta, A5 | T5]
Mop = [(%, PA), (i4,0Q),Aa | Ta, 5] Fass ={((ia,iB),m)|ia FamVip g m}
Fass = {(*,ia), (ia,i)} U Fa U kg U(Fal Ta*)U (Bl T5°)

— PCF* is a purely functional language obtained frairby removingnew z in M
andref. It extends the languadeCF [14] with primitives for variable access, but
not for memory allocation.

— lAgy is £ without theref constant. It can be viewed as a call-by-value variant of
Idealized Algol [16]. Only block-allocated storage is dable inlA,, .

— RML is £ save the construekw z in M. It is exactly the language introduced in [2]
as a prototypical language for ML-like integer references.

We shall often writdet 2 = M in N instead of(Az.N) M. Note that, sinceew x in M

is equivalent tdet x = ref in M, RML and £ merely differ on a syntactic level in that
L contains “syntactic sugar” for blocks. In the opposite clii@n, our results will show
thatref cannot in general be replaced with an equivalent term thegtrgsv = in M. In-
deed, our paper provides a general methodology for idéngjfgnd studying scenarios
in which this expressivity gap occurs.

3 Game semantics

Here we introduce the game models used throughout the paipieh are based on the
Honda-Yoshida approach to modelling call-by-value corapan [6].

Definition 2. Anarena A = (Ma,14,b4,A4) IS given by

— asetM 4 of moves, and a subsgf C M4 of initial moves,

— ajustification relatior-4C M4 x (M4 \ 14), and

— alabelling function\4 : M4 — {O, P} x {Q, A}
suchthat\o(74) = {PA} and, whenevemn 4 m’, we havem A4)(m) # (m2Aa)(m’)
and(maAa)(m') = A = (m2Aa)(m) = Q.

The role of\ 4 is to label moves a®pponentor Proponentmoves and aQuestions
or Answers We typically write them asn,n,..., or o,p,q,a,qp,qo,... when we
want to be specific about their kind. The simplest arertesis (0, 0, 0, #). Other “flat”
arenas aré andZ, defined byM, = I, = {x}, My = I = Z. The two standard
constructions on arenas are presented in the figure aboegewhstands fotM 4 \ 14,
the O P-complement of\ 4 is written as\ 4, andi,4, i g range over initial moves in the
respective arenas. Typesfftan now be interpreted with arenas in the following way:
[unit] = 1, [int] = Z, [var] = (1 = Z) ® (Z = 1) and[f; — 62] = [01] = [62]-
Although arenas model types, the actual games will be playgatearenas which
are defined in the same way as arenas with the exception fliat moves must be
O-questions. Given arenalsand B, we can construct the preareda— B by setting:

Ma—p =Msw Mp Aa—p = [(i4,0Q)U(Aa [Ta), \B]
Iap=1a Famp ={(ia,ip)}UFaUbFp .

Forl' = {xy : 61, - , 2, : 0, }, typing judgmentd” - 6 will eventually be interpreted
by strategies for the prearefa | @ - - - ® [0,] — [0] (if n = 0 we take the left-hand
side to bel), which we shall denote bji" + 6] or [0y, --- , 6, F 6].

A justified sequencén a prearend is a finite sequenceof moves ofA satisfying
the following condition: the first move must be initial, but @her movesn must be
equipped with a pointérto an earlier occurrence of a mowe such thatn’ -4 m.
A playin A is a justified sequencesatisfying the standard conditions Afternation
Well-BracketingandVisibility [7]. Visibility is based on the notions d@-view.s_ and
P-view" s of a justified sequence given by:Les =€, Lsos=Ls10, Ls0 - pi=
Lsaop,Tel=¢€,"sp ="s5"p, sp~- 07 ="spo. We write P4 to denote the set
of plays inA.

Definition 3. A (knowing) strategyo on a prearena, writteno : A, is a prefix-closed
set of plays fromA satisfying the first two conditions below. A strategynisocent if,
in addition, the third condition holds.

O-CLOSURE If even-lengths € o andsm € P4 thensm € o.
DETERMINACY If even-lengthymy, smo € o thenm; = mo.
INNOCENCE If s1m, s5 € o with odd-lengths;, so and™s; " = s, thensom € o.

Now we shall extend the framework to allow moves to be deedratith stores that
containnameinteger pairs. The names should be viewed as semanticcared of lo-
cations. When employing such moves-with-store, we aremetésted in what exactly
the names are, but we would like to know how they relate to rsatimet have already
been in play. Hence, the objects of study are rather the gdlequivalence classes
with respect to name-invariance, and all ensuing constmugtand reasoning need to
be compatible with it. This overhead can be dealt with rdigusting the language of
nominal set theory [4].

Let us fix a countably infinite set, the set ofnamesthe elements of which we
shall denote byy, 5 and variants. Consider the group PERM of finite permutations
of A, denoted byr and variants. Astrong nominal sef{18] is a set equipped with a
group action of PERNKA) such that each of its elements Hemte strong supportThat
is to say, for any: € X, there exists a finite sef{(«) C A, calledthe support ofx, such
that, for all permutations, (Va € v(z).m(a) = o) < 7 -z = z. Intuitively, v(z)
is the set of names “involved” in. For example, the set# of finite lists of distinct
names with permutations acting elementwise is a strongmaraét. Name-variance in
a strong nominal seX is represented by the relatian:~ 2’ if there existsr such that
r=m-7.

We define a strong nominal setstbres the elements of which are finite sequences
of name-integer pairs. Formally,

YT:= € | (ai):X

wherei € Z anda € A\ v(X). We view stores as finite functions from names
to integers, though their domains are lists rather than Jéiss, we define thelo-
main of a store to be thdéist of names obtained by applying the first projection to

2 We then say that' justifiesm. If m is an answer, we might also say thatanswers»'. If a
question remains unansweredsirit is open

all of its elements. In particulag(dom (X)) = v(X). If a € v(X) then we write
XY () for the uniquei such that(«, ¢) is an element of. For stores¥, T' we write:
Y < Tfordom(X) C dom(T); X <, T for dom (%) C, dom(T); X <, T for
dom (%) C, dom (T'), whereC, C,, C; denote the subsequence, prefix and suffix re-
lations respectively. Note thaf <(,,/,) T <(,/s) & impliesdom (¥) = dom (T') but
notX = T. Finally, let us writeX’ \ T for X restricted ta/(X) \ v(T).

An S-move(or move-with-storgin a prearend is a pair consisting of a move and
a store. We typically write S-moves as>,n”, 0>, p", ¢, a”. The first-projection
function is viewed astore erasurend denoted bygrase(_). Note that moves contain
no names and therefore, for any”, v(m?*) = v(X) = v(dom (X)). A justified
S-sequencén A is a sequence of S-moves equipped with justifiers, so thetatsure is
a justified sequence. The notions@fviewandP-vieware extended to S-sequences in
the obvious manner. We say that a namis closedin s if there are no open questions
in s containinga.

Definition 4. A justified S-sequencdn a prearenaA is called anS-play, also written
s € SP 4, if it satisfies the following conditions, for all € A.

INIT If s=m?% .- thenX =e.

JUST-P If s = -0~ pT ... then ¥ <p T.If Aa(p) = PA thendom (X) =
dom (7).

JusT-O If s=---p**- 0T ... thendom (X) = dom (T).

PREV-PQ If s =---0¥¢L .- then¥' \ T <, Yand X \ (¥ \T) <, T and

(@). ifa € v(T\ X) thena & v(s 1),
(b). if o« € v(X'\ T') thena is closed ins_z.
VAL-O If s = ---p¥s'oT --- anda € (v(T)Nv(X))\ v(s') thenT(a) = X(a).

For example, REV-PQ stipulates that P-questions may drop some names frosicthee
and append some others, but these changes may only takerptaoeksat the tail of
the store. Moreover, appended names must be fresh in thewll, and a name can
be dropped only if it has been closed.
Let us remark that, as stores have strong support, the seplafySSP 4 is a strong
nominal set. Further properties of S-plays include:
—Ifs=--m¥aL--- then¥'\T <, YandX'\ (¥'\T) <, T and
(@) ifa € v(T) thena € v(X),
(b) if a € v(X'\ T) thena is closed ins_, .
— If s = 510" pT' s with a € v(X) \ v(T) thena ¢ v(ss).

Definition 5. An S-strategyo on an arenaA, writteno : A, is a prefix-closed set of
S-plays fromA satisfying the first three of the following conditions. Ast&tegy is
innocentif it also satisfies the last condition.

NOMINAL CLOSURE If s’ ~ s € o thens’ € o.

O-CLOSURE If even-lengths € o andsm* € SP 4 thensm™ € o.
DETERMINACY If even-lengthm;™, sm5> € o thensmy™ ~ smy>.

INNOCENCE If sym>', sy, € o with s1, s, odd-length and’ s;? = sy~ then there

existssom®2 € o with "sym>1 7 ~ Tgom>2 7,

Example 6.For any base typg, let us define the S-strategylls : [var — 5] — [5]
as the least innocent S-strategy containing the plays b&\@wseread andwrite(7)
(¢ € Z) to refer to the question-moves pfar], and: (i € Z) andok for the non-initial

answers.
/_\ Ly ®~ 3 LY . "/(X_Z\ « 1
T @Y e) read @) i @0 write(7)@ okled)

Example 7.Had we used sets instead of lists for representing storesptiowing “S-
strategy”, which represents incorrect overlap of scopear(d 3 are in scope of one
another, but at the same time have different scopes), wauidrtocent.

@,0),(8,0) (y, (:0),(5, ql(cuO) ,0),(8,0) 1, (,0),(5, ql(B,O)

qo 41 qo g1

Arenas and S-strategies form a category, which we &aland so do innocent S-
strategiessS turns out to exhibit the same kind of categorical structsréhat discussed
in [6], which can be employed to model call-by-value higbeder computation with
recursion. Thus, the functional part ., can be interpreted i according to the
standard recipe. Assignment, dereferencing @hkdar can in turn be modelled using
the innocent strategies without stores from [2]. Finatyg tenotation ofiew z in M is
obtained by composing the denotation)af**". M with the innocent S-strategsell 3.
Let us write[- - -] for the resultant semantic map.

Proposition 8 (Soundness)For anylAc,,-termI”"F M : 0, [I" = M : 0]g is an inno-
cent S-strategy.

Innocent S-strategies can kdecomposeéh a similar way to the innocent strategies
of [6]. There is one important exception, though, which asauhen the second-move
introduces a non-empty store (our rules of play imply that ttove must be a ques-
tion). Let« be the first variable from the non-empty store. In order tcodguose the
strategy, consider a P-viesin which «. occurs in the second moyg. It turns out that

s = qqasa s, Where (the store of) a move™ from s containsw if, and only if, it is g,
orin s,. In addition, no justification pointers connectto ¢, s... This separation can be
applied to decompose the view-function of an innocent &atyy. Thes,, parts, put to-
gether as a single S-strategy, can subsequently be ddalivtite style of factorization
arguments, which remowe from moves at the cost of an additionalr-component.
Finally, to relates,’s to the suitables’ one can use numerical codes fgrs,. These
ideas lie at the heart of the following result. By a finitarpatentS-strategy we mean
an innocent strategy whose view-function quotiented byearaariance is finite.

Proposition 9 (Finitary Definability and Universality).
— Any finitary innocent S-strategy &, -definable.
— Any recursively presentable innocent S-stratedis, -definable.

It is worth noting that the universality result for innoc&hstrategies implies an analo-
gous result for innocent strategies @ @F. Thanks to call-by-value, the result is actu-
ally sharper than the universality results of [1, 7], whiadho be proved “up to obser-
vational equivalence”. This was due to the fact that pargielirsive functions could not
always be represented in the canonical way (i.e. by termwliidch the corresponding

strategy contained plays of the forqw n f(n)). This is no longer the case under the
call-by-value regime, where each partially recursive fiorcf can be coded by a term
whose denotation will be the strategy based on plays of tapeshf(n).

With the soundness and definability results in place, wedtaoiv proceed in the
familiar way to define a fully abstract modell#f, via the intrinsic quotient. However,
this would be somewhat counterproductive. It turns out Bt is a conservative ex-
tension oflA.,, (Corollary 14), so the (simpler) fully abstract modelR¥IL from [2],
based on knowing strategies, is already fully abstract4gy,. In fact, our model can
be related to knowing strategies more precisely. Obseatétherasing storage annota-
tions in an innocent S-strategywe obtain a knowing strategy, which we calhse(o)
(determinism follows from the fact that stores in O-moves aniquely determined
and from block-innocence). Let us wrife- -] for the knowing strategy semantics (cast
in [6]).

Lemma 10. For anylAc,-termI" = M : 0, [T+ M : 0] = erase([I" + M : 0]s).

This means the intrinsic quotient we would construct in th#irsg with stores can
be represented more explicitly via the inducainpleteplays (without store$) Even
though innocent S-strategies have not led us to a direcuatas full abstraction for
Ay, We have obtained important insights into the structurenoiking strategies rep-
resentinglA,,-terms: they are erasures of innocent S-strategies. Knpaitirategies
with this property will be referred to dsock-innocent The knowledge that strategies
determined byA.,, are block-innocentwill be crucial in establishing a sedgésesults
in the following sections.

Example 11.Let us revisit the two plays from the Introduction. The firsteoindeed
comes from an innocent S-strategy (we reveal the storesvpeior the second one to
become innocent (in the setting with stores), a store witiaiée «,, say, would need
to be introduced in the second move. Themust also occur in the seventh move by
JUsT-0, but it must not occur in the eighth move hbysi-P (theP A clause). Hence, it
will not be present in the ninth move bydT1-O. Consequently, the last move (justified
by the seventh move) is bound to break eithee>PQ(a) (if it containsy) or JUST-P

(if it does not).
0)7g(@0) gla1)Ng(e1) 1 (ang

4 From omniscience to innocence

(e,

In Section 2 we introduced the three languad®&E ™, IA.,, andRML. By the sound-

ness and universality results of the previous section (dsasehe soundness results
from [6, 2]) the languages correspond respectively to iengdlock-innocentand know-
ing strategies. Le#l be an arena. We writé,, B4 andk 4 for the corresponding classes

3 A play is complete if it does not contain unanswered questidihat such plays capture pro-
gram equivalence iRML follows from the argument in [3], readily adaptableRML. By
Corollary 14, the same characterization will applytAQy, .

of (store-free) strategies iA. Obviously,Z4, C B4 C K4. Next we shall study type-

theoretic conditions under which one kind of strategy quks to another. Thanks to
the universality results, this corresponds to the exigeri@n equivalent program in a
weaker language.

Lemma12. LetA = [0, - ,0, F 6 — 0']. ThenB4 C Ka.

Proof. Observe that there exist moves ag, g1, a1 suchthatgy -4 ag Fa q1 Fa a1
and consides = {¢, qo, goao, 90a0q1, goaogia1 }, i.€.0 has no response @aoq1a1q;.
Theno € K4 \ Ba. Itis worth remarking that a strategy of the above kind deadthe
RML-term F letv = ref in Az""t.if lv then Relse v :=lv + 1 : unit — unit. a

Lemma 12 confirms that, in general, block structure restegpressivity. However, the
next result shows this not to be the case for open terms ofthpse

Lemma 13. LetA = [0, ,0, F G]. ThenBs = K 4.

Proof. Observe that any knowing strategy fdrbecomes block-innocent if in the sec-
ond move P introduces a store with one variable that keepk trfithe history of play
(this is reminiscent of the factorization arguments in gaamantics). The variable
should be removed from the store by P only when he plays anan®wthe initial
question, in which case the play becomes complete and cherttended further.O

By universality, we can conclude that eaBML-term of base type is equivalent to
anlA.,-term. Since contexts used for testing equivalence aretlgx@fcthis kind, we
obtain the following corollaries. The first one amounts tgisg thatRML is a conser-
vative extension ofA.,,. The second one states that block-structured contextsasuffi
to distinguish terms that might use scope extrusion.

Corollary 14. For anylAg,-termsI” = My, My andRML-termsI” - Ny, No

— I' = My ZrmL My if, and only if, 1" = My =
— I't Ny 2gmL Mo if,and only if,I" = Ny X5

cbv M2'
No.

cbv

Now we investigate the boundary between block structurdaidof state.

Lemma 15. Let A be an arena such that each question enables an angviire fol-
lowing conditions are equivalent.

1. B4 CZ4.
2. No O-question is enabled by a P-questiont-4 qo impliesh4(m) = PA.
3. Store content of O-questions is trivials € SP 4 impliesdom (X) = e.

We can now determine at which types block-innocence imjiescence.

Lemma 16. [0y, -- ,0, F 0] satisfies condition 2 of Lemma 154ffd(0;) < 1 (i =
1,---,n)andord(9) < 2.

Consequently, second-orddy,,, -terms always have purely functional equivalents. Fi-
nally, we can pinpoint the types at which strategies are daame innocent: it suffices
to combine the previous findings.

4 All denotable arenas enjoy this property.

Lemmal7.LetA = [0y, - ,0, - 60]. ThenK4 =Z4 ifford(6;) <1(=1,---,n)
andord(6) = 0.

In the next section we demonstrate that the gap in exprésbiziweeniC 4, andB 4 also
bears practical consequences. The undecidable equieatenblem for second-order
finitary RML becomes decidable in second-order finitdty,, (as well as at some third-
order types).

5 Decidability of a finitary fragment of 1A,

To prove program equivalence decidable we restrict the Hasgtype of integers to
the finite segmenf0, --- , N} (IV > 0) and replace recursive definitiong((\/)) with
looping (while M do N). Let us call the resultant languatfe-,. Our decidability result
will hold for a subsetA?" of 1A, in which type order is restrictedA?;" will reside
inside the third-order fragment b4, and contain its second-order fragment. Note that
the second-order fragment of similarly restriciBlIL is known be undecidable (even
without loops) [10].

The decidability of program equivalenceli@u?jr will be shown by translating terms
to regular languages representing the corresporidiogvingstrategies. We stress that
we arenot going to work with the induced S-plays. Nevertheless, thadiation will
crucially rely on insights gleaned from the semantics witplieit stores. More pre-
cisely, we will be interested in capturing the inducaanplete(store-free) plays. It is
worth mentioning that, unlike in the (single-threaded)-bgtname setting, complete
plays need not be maximal.

To represent plays as words, one needs to consider carkéwilyo represent point-
ers, should that be necessary. For example, this can be gatecbrating moves with
integers that encode the distance from the target in someQGvay pointers from ques-
tions require attention, since those from answers are ehiqeconstructible through
the well-bracketing condition. Next we analyse two typingrgarios that look hopeless
from the point of view of encoding pointers, since the diseafrom the pointer can
grow arbitrarily. In the first case, thanks to block-innoceywe will be able to over-
come the difficulties. The other case must remain a challémggiture work (or an
undecidability result). On the basis of our discussion walgubsequently introduce
the type system dir?}".

Consider the arenf - 6, — ... — 6, — J]. Due to the presence of thearrows
on the right-hand side we obtain chains of enabigrs ag - --- - gx F ax, where
qo is initial and eachy; (i = 1,--- , k) is initial in [0;]. We shall call the movespinal.
Consider] F AzUnit \yunit () : unit — unit — unit] (i.e. k = 2), which contains plays
of the formgopag(q1a1)’ for anyj > 0. Pointers are still uniquely determined in these
plays, but everything changes once O playsiext. Then the target might be any of
the j occurrences of;;. The strategy in question actually offers responses inuah s
cases, so it would seem that all of these plays need to besmges (thus necessi-
tating the use of an infinite alphabet). Fortunately, thaokslock-innocence, we can
restrict ourselves to the cage= 1 and make the problem disappear. To see why, ob-
serve that none of the moves a; will ever carry a non-empty store in an S-play, by

Definition 4. Thus, because the strategy is block-innodexibhehaviour is already rep-
resented faithfully by the single playaogiaig2a2. In fact, this is one of the cases
when block-innocence implies innocence, but in generallill not be true for deno-
tations oﬂA?j-terms. Hence, we generalize the observation as follomseShe move
q1 hever carries a non-trivial store, it follows that no adutithl information about the
strategy is hidden in plays containing two occurrenceg off his is because a block-
innocent strategy has to behave uniformly after egcdind in general will depend only
on what happened betweenandag, and not on what happened after a previous copy
of ¢; was played (there can be no communication between the Hhtestarted withy;
because; cannot carry a non-trivial store). Now that it is known tham€ed only play
one occurrence af;, we can apply a similar reasoning ¢, and so on. This yields
the following lemma. Note that, due to Visibility, insistjron the presence of a unique
copy ofq1, - -+ , g in a play amounts to asking that eagtbe preceded by; ;.

Lemma 18. Call a playspinal if each spinal question; (0 < i < k) occurring iniitis
the immediate successor@f ;. Let P;” be the set of spinal plays of. Leto, 7 : A
be block-innocent strategies. Them P} = 7 N P’ implieso = .

Hence, for the purpose of checking program equivalencaifiices to compare the
induced sets apinalcomplete plays.

Now that we have dealt with one challenge, let us introduagteer one, which
cannot be overcome so easily. Consider the af¢tia— 05 — 65) — 6, + 0] and
the enabling sequeneg - g1 F ¢2 + as F g3 it contains. Now consider the plays
70q1(q2a2)’ q3, wherej > 0. Again, to represent the pointer frogs to one of the
j occurrences ofiz, one would need an unbounded number of indices. This time it
is not sufficient to restric§ to 1, because the behaviour need not be uniform after
eachgs (this is because in the setting with stores a non-empty starebe intro-
duced as soon as in the second mgye To see that the concern is real, consider
the termf : (unit — unit — unit) — unit = newxin f(Ay""t. .. - Azt ...) : unit,
where(- - -) contain some code inspecting and changing the value of

This leads us to introdudes‘\g;r via a type system that will not generate the config-
uration just discussed. Another restriction is to omitdhirder types in the context, as
they lead beyond the realm of regular languagesf(cf.(unit — unit) — unit) — unit -
f(AgUnit=unit 6()). Sincevar leads to identical problems asit — unit, we restrict its
use accordingly.

Definition 19. IAg;r consists ofA.,-terms whose typing derivations rely solely on typ-
ing judgments of the shapg : ctype,,--- ,z, : ctype,, & M : ttype, wherectype and
ttype are defined by the grammar below.

ctype := [| var | [— ctype | var— ctype | (8 — B) — ctype
ttype == B | var | ctype — ttype

A lot of pointers from questions become uniquely determiimestrategies represent-
ing IA%Jr terms, namely, all pointers from any O-questions and alhigos fromP-
questions to O-questions.

Lemma 20. Let A = [ctype,,- - , ctype,, - ttype] and s, so be spinal plays ofd
that are equal after all pointers from O-questions and alirgers from P-questions to
O-questions have been erased. Ther- ss.

Thus, the only pointers that need to be accounted for are thos P-questions to O-
answers. Here is the simplest scenario illustrating thet tan be ambiguous. Consider
the terms

f :unit — unit — unit letgs = f()in(letga = f()ing;()) : unit

wherei = 1,2. They lead to the following plays, respectively for= 1 andi = 2,
which are equal up to pointers from P-questions to O-answers

o S =\ o N\ s
go 41 ai 41 ai gz qgo 41 a1 g1 a1 g2

We are going to represent such pointers with numerical @gd@ncoding the target of
the pointer inside the current P-view. More precisely, eenumerate (starting frof¥)
all question-enabling O-answers in the P-view. Then pointem P-questions to O-
answers can be encoded by decorating the P-question withdbe of the O-answer.
The plays above will be encoded@g: a1 41 a143 andgoqia1¢1a1¢3 respectively (other
pointers are uniquely recoverable by Lemma 20 and will naepeesented explicitly).
So that we need not study the behaviour of the representatfeme for pointers under
general composition (after which the indices might needstodealculated), we restrict
our translation to terms in a canonical shape, to be defined Ay IA.,-term can be
converted effectively to such a form and the conversiongrkess denotation.

The canonical forms are defined by the following grammar. ¥é&types as super-
scripts, whenever we want to highlight the type of an idestifi, v, x, y, 2 range over
identifier names). Note that the only identifiers in canolfiman are those of base type,
represented by” below.

Cu=()|i]|a? | 290yl | ifz’thenCelseC | 22 =gy | 122" | A2.C |
mkvar(Az""t.C, Ay™.C) | newz** inC | whileCdoC | letz”® = CinC |
letz = zy”inC | letz = 2 mkvar(Au"t.C, \o"™.C)inC | letz = z(Az?.C)inC

Lemma 21. LetI" + M : 6 be anlA.,-term. There is atA,-termI" + N : §in canon-
ical form, effectively constructible frod/, such thaflI" - M] = [I" + N]J.

Proof. N can be obtained via a series pfxpansionsg-reductions and commuting
conversions involvindet andif. a

A useful feature of the canonical form is that the problenthwbinters can be related
to the syntactic shape: they concern referencdsttbound identifiers:? such that)

is not a base type (i.e# = var or 6 is a function type). The representation scheme
for pointers corresponds then to enumerating declvindings along branches of the
syntactic tree of the canonical form (usidédor topmost bindings). Below we state our
representability theorem fd)A?j-terms. The definition afd, is actually too generous,
as we shall only need indices to decorate P-questions ehlapl@-answers (in concrete
examples the indices will be superscripts).

Proposition 22. Supposd” = M : 0 is anlAZ-term. LetAy = My + (M4 x N),
whereA = [I" 0]. LetCry s be the set of non-empty spinal complete plays from
[I'+ M : 6]. ThenCr-as can be represented as a regular language ovénie subset

of .AM

Proof. For brevity, we shall writeC,, instead ofCr- s whenever it is clear whaf’
should beC,,; can be decomposed &S, , (i Cj,). ObviouslyCy, is regular if, and
only if, so is any ofCi, (i € I4). Hence, it suffices to show thét,, is regular for
any relevant. The proof proceeds by induction on the structure of carabriarms.
The most difficult cases are those involvileg. Note that whenever a canonical form
of an IA%*-term is of the shapetz = z(\z?.C)inC, z’s type must be of the form
(81 — B=2) — (61 — 62) (andd is a base type). We handle this case below. Consider

the terms:
Iyz:(B1— Ba) = (01— 02),y: 1= M: P,
Iiz: (81— B2) = (01 = 03),x:0; >0 N: 0.

Assuming thatV/ and N satisfy the Proposition, we show that so d@€s= letx =
z(AyP1.M)in N. We shall refer to moves contributed by: § with m,.. If we want to
range solely over O- or P-moves from the component, weoussndp,. respectively.
Moreover, we usen, ;, 0. ., ., t0 refer to copies ofng, o, p; in thez : 0 —
f component. The most common operation performed using tietion will be the
relabelling ofm, to m. .. If 8 is a function type, then there is a unique P-quesiipn
enabled by the initial move,. Whenever we have a separate substitution rule.for
the rule form, or p, will not apply tog,.. In most cases we will want to substituf®,
(¢, decorated with indef represent a topmost binding) fgg. In addition,; + 1/ is
used to increment all numerical indices hyThen we have

CJ(\?’*Z) =q, c' *rw C%P;*z;*m)[i + 1/2-, qg7xcl/qz, pzﬂzcl/va OZ,x/Ox]

whereC’ = (3 iy C](\ZF’*Z’iy)[jz/j])* andj ranges ovel|g,]. O

i€lpy]
Theorem 23. Program equivalence dAg;r-terms is decidable.

We remark that adding dynamic memory allocation in the fofnre6 to IA%*, or its
second-order sublanguage, results in undecidability. H6hce, at second order, block
structure is “strictly weaker” than scope extrusion.

6 Summary

In this paper we have introduced the notion of block-inn@eethat has been linked
with call-by-value Idealized Algol in a sequence of resultsanks to the faithfulness
of block-innocence, we could investigate the interplayaen type theory, functional
computation and stateful computation with block struciamd dynamic allocation re-
spectively. We have also shown a new decidability resulafoarefully designed frag-
ment oflA.,. Its extension to product types poses no particular diffjcuih fact, it

suffices to follow the way we have tackled the type, which is itself a product type.

The result thus extends those from [5] and is a step forwasdris a full classifi-
cation of decidable fragments tA.,: the Ianguagele?jr we considered features all
second-order types and some third-order types, while finitg.,, is known to be un-
decidable at orde§ [9]. Interestingly,lA?jr features restrictions that are compatible
with the use of higher-order types in PASCAL [8], in which pedlure parameters can-
not be procedures with procedure parameters. An integesiic for future work is a
category-theoretic characterization of block-innocence

References

1. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abistrdor PCF. Information and
Computation 163:409-470, 2000.

2. S. Abramsky and G. McCusker. Call-by-value game®ryceedings of CSlvolume 1414
of Lecture Notes in Computer Scienpages 1-17. Springer-Verlag, 1997.

3. S. Abramsky and G. McCusker. Linearity, sharing and stafelly abstract game semantics
for Idealized Algol with active expressions. In P. W. O’'Heand R. D. Tennent, editors,
Algol-like languagespages 297-329. Birkhauser, 1997.

4. M. J. Gabbay and A. M. Pitts. A new approach to abstractasyniith variable binding.
Formal Aspects of Computing3:341-363, 2002.

5. D. R. Ghica. Regular-language semantics for a call-yevarogramming language. In
Proceedings of MFPS/olume 45 ofElectronic Notes in Computer Scienégsevier, 2001.

6. K. Honda and N. Yoshida. Game-theoretic analysis oflmgialue computationTheoreti-
cal Computer Scienc®21(1-2):393-456, 1999.

7. J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCRViodels, observables and
the full abstraction problem, Il. Dialogue games and inmbstrategies, Ill. A fully abstract
and universal game moddhformation and Computatiqri63(2):285-408, 2000.

8. J. C. Mitchell.Concepts in programming languageSambridge University Press, 2002.

9. A. S. Murawski. About the undecidability of program egience in finitary languages with
state.ACM Transactions on Computational Log&(4):701-726, 2005.

10. A. S. Murawski. Functions with local state: regularindaindecidability.Theoretical Com-
puter Science338(1/3):315-349, 2005.

11. F. Oles. Type algebras, functor categories and bloclctstre. In M. Nivat and J. C.
Reynolds, editorsAlgebraic Methods in Semantigsages 543-573. Cambridge University
Press, 1985.

12. C.-H. L. Ong. Observational equivalence of 3rd-ordexalited Algol is decidable. In
Proceedings of IEEE Symposium on Logic in Computer Scigrages 245-256. Computer
Society Press, 2002.

13. A. M. Pitts and |. Stark. On the observable propertiesgtiér order functions that dynam-
ically create local names, or: What's new?Rroc. 18th Int. Symp. on Math. Foundations of
Computer Sciencgages 122—-141. Springer-Verlag, 1993. LNCS Vol. 711.

14. G. D. Plotkin. LCF considered as a programming langu@georetical Computer Science
5:223-255, 1977.

15. J. Power. Semantics for local computational effed&ectr. Notes Theor. Comput. Sci.
158:355-371, 2006.

16. J. C. Reynolds. The essence of Algol. In J. W. de BakkerJ@d van Vliet, editors,
Algorithmic Languagespages 345-372. North Holland, 1981.

17. I. D. B. Stark.Names and Higher-Order Function®hD thesis, University of Cambridge
Computing Laboratory, 1995. Technical Report No. 363.

18. N. Tzevelekos. Full abstraction for nominal generaémefices.Logical Methods in Com-
puter Science5(3), 2009.

