
Bad variables under control

Andrzej S. Murawski?

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We give a fully abstract game model for Idealized Algol with
non-local control flow. In contrast to most previous papers on game se-
mantics, we do not need to include the bad-variable constructor mkvar
to obtain full abstraction. Using the model we show that, unlike in
the “control-free” case, the presence of mkvar does affect observational
equivalence. We conclude by discussing the effect of mkvar on nonde-
terministic and probabilistic variants of Idealized Algol.

1 Introduction

In the computer science classic “The essence of Algol” [1], Reynolds has laid out
a series of principles that, in his opinion, should underlie the contemporary evo-
lution of programming languages. He also defined a prototype language, called
Idealized Algol, whose design was to be their embodiment. Based on a simple im-
perative language extended with the procedural mechanism of the call-by-name
lambda calculus, Idealized Algol has come to be regarded as a canonical proposal
for synthesizing functional and imperative programming. Its elegant definition
has lent itself to a systematic analysis leading to significant progress in the field
of programming language semantics [2].

One of Reynolds’s insights concerned the semantics and type-theoretic treat-
ment of assignable variables. He viewed them as dual in nature: producing values
on the one hand (like expressions) and capable of accepting them on the other.
This idea is reminiscent of the distinction between l- and r-values, but Reynolds
took it much further: he advocated that the variable type be actually identified
with the product of an “acceptor type” and the expression type. This decompo-
sition enabled him to define the meaning of variables without any commitment
to the structure of state, suggesting new abstract approaches to modelling state.
Reynolds himself pursued one, based on functor categories, but alternatives have
also emerged.

A particularly fruitful way of modelling computation turned out to be based
on the idea that programs should be viewed as processes interacting with one
another. Reddy calls this the object-based approach to semantics [3]. From this
point of view, Reynolds’s analysis of variables simply suggests viewing a variable
as an object equipped with a reading- and a writing-method which it uses to

? Funded by an Advanced Research Fellowship from the UK EPSRC (EP/C539753/1).

communicate with the environment. Similar philosophy can be found in encod-
ings of imperative programs into process algebras. In denotational semantics this
approach was adopted in Abramsky and McCusker’s game model of Idealized
Algol [4] and Reddy’s work on coherence spaces [3].

Game semantics has led to many full abstraction results ever since. These
amount to defining a model such that equality in the model corresponds to
program equivalence, or, in the more general inequational variant, such that ob-
servational approximation coincides with a distinguished preorder on the model.
A general way of proving such results leads through a definability argument,
which demonstrates that all compact elements of the model are definable, i.e.
are denotations of some programs. However, when the variable type is a product
type, definability fails unless an explicit pairing construct is added to the lan-
guage. In the case of [4] this is the so-called “bad-variable constructor” mkvar,
which makes a writing method M and a reading method N into a variable:

Γ ` M : exp → com Γ ` N : exp

Γ ` mkvar(M, N) : var
.

The reduction rules for mkvar(M,N) simply evaluate N for reading and eval-
uate Mv when the value v is to be written. Because, in absence of mkvar,
definability fails, it seems likely that a game model that is (equationally or in-
equationally) fully abstract for a language with mkvar, will not be fully abstract
in its absence. Thus it is natural to ask how one can repair existing game models
to analyze observational approximation and equivalence in mkvar-free settings
and whether this is really needed in all cases. This direction is also motivated by
the fact that mkvar is not really a conventional programming construct, though
languages incorporating bad variables as a feature do exist in the literature1.

This paper uses a version of Idealized Algol that allows for side-effects in ex-
pressions and variables, to which we shall henceforth refer as IA. A fully abstract
model for IA with mkvar was given in [4], where the preorder for inequational
full abstraction was simply inclusion of complete plays (those in which all ques-
tions have been answered). Subsequently, McCusker [7] has introduced a different
preorder on complete plays which captures observational approximation in IA.
His was actually the only paper so far that has analyzed the game semantics of
an IA-like language without mkvar. The aim of the present paper is to achieve
a full abstraction result for IA enriched with non-local control flow (also without
mkvar), i.e. in a setting where the transfer of control can violate the usual dis-
cipline of block entry and exit. Syntactically, the requisite extension of IA can
be achieved by adding a catch-construct, in the spirit of Reynolds’s escape [1]
and Cartwright and Felleisen’s control operators [8]. It is well known that viola-
tions of the stack discipline can be modelled in game semantics by relaxing the

1 In the late 1960s POP-2 [5] was an attempt to define a broad-spectrum language for
both numerical and symbolic computation combining the strengths of FORTRAN
and LISP. The language was based on doublets, which are conceptually the same as
mkvar-objects. Also, Reynolds’s GEDANKEN [6] had support for implicit references
in the spirit of mkvar.

bracketing condition [9]. However, full abstraction for IA+catch is not merely a
matter of applying McCusker’s preorder in the unbracketed setting and we show
what further refinements are necessary to accomplish it. Our model can then be
used to demonstrate that, in contrast to McCusker’s result on conservativity of
IA + mkvar (with respect to observational equivalence), IA + catch + mkvar
does not extend IA + catch conservatively. Next we go on to investigate the
impact of mkvar on other important extensions of IA, namely, with nonde-
terminism and probability. It turns out that mkvar does affect observational
equivalence in IA + or, but it does not for IA + coin.

In addition to the already-cited paper by McCusker, techniques based on
nominal sets have recently been proposed as a general approach to handling the
absence of mkvar [10, 11]. Because they bring an additional layer of combina-
torial complexity to game semantics (names inside moves, name invariance), it
seems a valuable goal to understand how the same results can still be achieved
by “anonymous” game semantics. This paper explores this direction in the call-
by-name setting of Algol-like languages, leaving call-by-value as a challenge for
future work.

2 IA, IAcatch

We consider Reynolds’s Idealized Algol [1] in which expressions and variables
can produce side-effects. Its syntax is given in Figure 1. The types T are formed
from the base types

B ::= com | exp | var
using the → constructor: T ::= B |T → T . The base types represent com-
mands, natural-number-valued expressions and variables respectively. The (call-
by-name) operational semantics of the language can be found in [12]. We as-
sume that initially all variables have value 0 and write ΩT for the divergent
term YT (λxT .x) : T . In IA the flow of control can be influenced locally through
sequential composition and conditionals. Non-local flow control can be added,
for example, via the construct:

Γ, x : com ` M : com

Γ ` catchx inM : com
.

Operationally, catchx inM amounts to encapsulating M in a block so that any
occurrence of x in M will trigger a forward jump out of the block. Some typical
control constructs found in programming languages, e.g. break and continue of
C, can easily be expressed in IA augmented with catch. Using side-effects one
can also detect whether an early exit has taken place. For instance, it is possible
to simulate Cartwright and Felleisen’s control operator catchexp [8]:

Γ, x : exp ` M : exp

Γ ` catchexp x inM : exp
,

which returns 0 for early exit and n + 1 if M evaluates to n, by

new X, Y in catch z inX := M [(Y := 1; z; 0)/x]; if !Y then 0 else succ(!X).

Γ ` skip : com

i ∈ N
Γ ` i : exp Γ, x : T ` x : T

Γ ` M : exp

Γ ` succ(M) : exp

Γ ` M : exp

Γ ` pred(M) : exp

Γ ` M : exp Γ ` M0, M1 : B

Γ ` if M thenM1 elseM0 : B

Γ ` M : com Γ ` N : B

Γ ` M ; N : B

Γ, x : T ` M : T ′

Γ ` λxT .M : T → T ′
Γ ` M : T → T ′ Γ ` N : T

Γ ` MN : T ′

Γ ` M : var

Γ ` !M : exp

Γ ` M : var Γ ` N : exp

Γ ` M := N : com

Γ, x : var ` M : B

Γ ` new x inM : B Γ ` YT : (T → T) → T

Fig. 1. IA syntax.

catch can be regarded as an atom of non-local control: a minimalistic, yet ex-
pressive, mechanism capable of modelling the effect of more complicated con-
trol constructs such as labelled jumps (goto) and call-with-current-continuation
(callcc) [9].

In the paper we shall consider extensions L = IA+¤ of IA, written IA¤, where
¤ ⊆ {catch,mkvar,or}. The operational semantics of each of these languages
induces a notion of termination M ⇓L for closed terms ` M : com. Then we
can define observational approximation and equivalence as follows.

Definition 1. Suppose Γ ` M1, M2 : T are terms of L. Γ ` M1 : T approx-
imates Γ ` M2 : T (written Γ ` M1

@∼ LM2) iff, for all L-contexts C[−] such
that ` C[M1], C[M2] : com holds, C[M] ⇓L implies C[N] ⇓L. Two L-terms are
equivalent (written Γ ` M1

∼=L M2) if they @∼ L-approximate each other.

3 Games

The focus of this section is a full abstraction result for IAcatch+mkvar, which
can readily be synthesized from [12] and [4]. The first to study control operators
in game semantics was Laird [9], who discovered that their presence can be
modelled by relaxing the bracketing condition.

Definition 2. An arena is a triple A = 〈MA, λA,`A 〉, where

– MA is a set of moves;
– λA : MA → {O, P} × {Q,A} is a function indicating to which player (O or

P) a move belongs and of what kind it is (question or answer);
– `A⊆ (MA + {?})×MA is the so-called enabling relation, which must satisfy

the following conditions.

• If ? enables a move then it is an O-question without any other enabler. A
move like this is called initial and we shall write IA for the set containing
all initial moves of A.

• If one move enables another then the former must be a question and the
two moves must belong to different players.

Product and arrow arenas can be constructed as follows:

MA×B = MA + MB MA⇒B = MA + MB

λA×B = [λA, λB] λA⇒B = [λA, λB]
`A×B = `A + `B `A⇒B = `B +(IB × IA) + (`A ∩ (MA ×MA))

λA reverses the ownership of moves in A while preserving their kind. Here are
the arenas used interpret the base types of IA (the moves at the bottom are
answer-moves).

Acom Aexp Avar

?

run

done

?

q

0
¢¢¢
1 · · ·

BBBB

?
MMM

MM
WWWWWWWWWWWWW

YYYYYYYYYYYYYYYYYYYYYYY

read

vvvv
write(0)

PPPPPP
write(1) · · ·

rrrrr

0

{{{{
1 · · ·

FFFF
ok

Given an IA-type T , we shall write JT K for the corresponding arena obtained
compositionally from Acom, Aexp and Avar using the ⇒ construction.

A justified sequence s in an arena A is a sequence of moves in which every
move m 6∈ IA must have a pointer to an earlier move n in s such that n `A m. n
is then said to be the justifier of m. It follows that every justified sequence must
begin with an O-question. The view psq of a justified sequence s is defined by

pεq = ε
psmq = m if m is initial in A

ps1 m s2 nq = psq m n

A justified sequence s satisfies the visibility condition iff in any prefix s′m of
s such that m is not initial, the justifier of m lies in ps′q. A justified sequence
satisfies the bracketing condition if any answer-move is justified by the latest
unanswered question that precedes it.

Definition 3. A justified sequence is a play iff O- and P -moves alternate and
the visibility condition is satisfied. We write PA for the set of plays in A.

Note that plays do not satisfy the bracketing condition. This notion of play
suffices to define a game model of IAcatch+mkvar, in which terms are interpreted
as strategies.

Definition 4. A strategy in an arena A, written σ : A, is a non-empty set of
even-length plays in A which is closed under taking even prefixes and satisfies
the determinacy condition: smn1, smn2 ∈ σ entails n1 = n2 (targets of pointers
from n1 and n2 are also required to be the same).

For any arena A, the strategy on A ⇒ A that copies moves between the two
instances of A is called the identity strategy. Arenas and strategies form a cat-
egory in which a morphism between A and B is a strategy on A ⇒ B. In order
to compose two strategies σ : A ⇒ B, τ : B ⇒ C, one first defines interac-
tion sequences on A,B, C, which are sequences of moves from arenas A, B and
C together with justification pointers from all moves except those initial in C.
The set of all such sequences will be denoted by int(A,B, C). Given an interac-
tion sequence u, we write u ¹ A,B for its subsequence consisting of all A- and
B-moves as well as pointers between them (pointers from/to moves of C in u
are erased, though). u ¹ B, C is defined analogously. u ¹ A,C is defined similarly
except that, whenever a pointer from an A-move mA points at a B-move mB

which in turn has a pointer to a C-move mC , we add a pointer from mA to mC .
Then one takes σ; τ : A ⇒ C to be

{u ¹ A, C |u ∈ int(A,B, C), u ¹ A,B ∈ σ, u ¹ B, C ∈ τ}.
Arenas and strategies form a category in which identity strategies are indeed the
identity maps.

A play is called single-threaded if it contains just one occurrence of an initial
move. In general, a play may consist of several interleaved single-threaded plays.
Strategies determined completely by their single-threaded plays will be called
single-threaded : they consist of all plays that are interleavings of the single-
threaded plays belonging to the strategy.

Arenas and single-threaded strategies turn out to form a cartesian closed
category, which provides a canonical interpretation of λ-abstraction and appli-
cation. The inclusion relation on strategies enriches the category with the struc-
ture of a complete partial order needed to interpret recursion. Other features of
IAcatch+mkvar can be interpreted by composition with special designated strate-
gies, which we list in Figure 2 along with their single-threaded complete plays.
For illustration, we give the two maximal single-threaded plays of the strategy
catch : J(com2 → com1) → com0K used to interpret catch:

run0 run1 done1 done0 run0 run1 run2 done0 .

We have used subscripts to indicate the copies of com from which the moves
originate. Then JΓ ` catchx inMK = JΓ ` λxcom.MK; catch.

Theorem 1. Arenas and single-threaded strategies ordered by inclusion are an
inequationally fully abstract model of IAcatch+mkvar: for any IAcatch+mkvar-
terms Γ ` M1,M2 : T :

Γ ` M1
@∼ IAcatch+mkvar

M2 ⇐⇒ JΓ ` M1K ⊆ JΓ ` M2K.
To our knowledge, this theorem has not appeared in the literature so far, though
it seems to be known within the community. It can be proved in a similar
way to the characterization of program approximation via complete plays for
IAmkvar [4]. The argument relies on the fact that any finite strategy is definable
by a term of IAcatch+mkvar, which can be shown using the techniques of [12].

skip : JcomK run done

i : JexpK q i

succ : JexpK1 ⇒ JexpK0 q0 q1

P
i∈N i1 (i + 1)0

pred : JexpK1 ⇒ JexpK0 q0 q1

P
i∈N+ i1 (i− 1)0

ifB : JexpK3 ⇒ JBK2 ⇒ JBK1 ⇒ JBK0
P

m`JBKn(m0 q3 03 m1 n1 n0 + m0 q3 (
P

i∈N+ i3) m2 n2 n0)

seqB : JcomK2 ⇒ JBK1 ⇒ JBK0
P

m`JBKn m0 run2 done2 m1 n1 n0

deref : JvarK1 ⇒ JexpK0 q0 read1

P
i∈N i1 i0

assign : JvarK2 ⇒ JexpK1 ⇒ JcomK0 run0 q1

P
i∈N i1 write(i)2 ok2 done0

cellB : (JvarK2 ⇒ JBK1) ⇒ JBK0
P

m`JBKn m0m1(read2 02)∗(
P

i∈N write(i)2 ok2(read2 i2)
∗)∗n1n0

mkvar : Jexp → comK2 ⇒ JexpK1 ⇒ JvarK0
read0 q1 (

P
i∈N i1 i0) +

P
i∈N write(i)0 run2 (q2 i2)

∗ done2 ok0

Fig. 2. Special strategies.

Soundness and Adequacy (J` M : comK = J` skipK if and only if M ⇓) can also
be proved in the standard way. The goal of this paper is to show an analogous
theorem for IAcatch, with the inclusion ordering replaced by a different preorder.

4 The essence of mkvar

Game semantics interprets local variable allocation in Γ ` new x inM : com
through composition of JΓ ` λxvar.MK with the strategy cellcom : J(var2 →
com1) → com0K. cellcom itself denotes the term

` λf var→com.new x in fx : (var → com) → com.

Single-threaded plays of cellcom are prefixes of plays of the following shape:

run0 run1 (read2 02)∗(
∑

i∈N
write(i)2 ok2 (read2 i2)∗)∗done1done0

i.e. read ’s trigger responses consistent with preceding write’s. Using mkvar we
can easily violate the discipline, because unrelated methods can be employed for
reading and writing. However, the same effect can also be achieved without it.
Indeed, under call-by-name evaluation, whenever a read follows a write, we can-
not really be sure that they refer to the same variable. Here is a term illustrating
this behaviour

` λf var→com.new X, Y in f(if !X thenY elseX),

which will produce the play run0 run1 write(1)2 ok2 read2 02 done1done0. Thus
the essence of mkvar does not boil down to breaking the logical link between
read ’s and write’s. We argue that it lies in uniformity instead: in absence of
mkvar each variable operation, whether a read or a write, produces the same
side-effects while it is being completed. To formalize this intuition it is useful
to observe that, without mkvar, subterms of type var (in β-normal form) al-
ways have “tails” of the shape fM1 · · ·Mk : var, which may be combined using
conditionals, pre-composed with commands and bound with new (if k = 0). In
game semantics, when O plays a move qO in order to explore such a subterm,
the resultant plays will initially correspond to the associated side-effects (if any).
These side-effects will be independent of qO, which could well be read , write(0)
or write(13). Eventually, when the “tail” is reached and f is not bound by new,
P will play a copy qP of qO. Below we introduce new relations on plays and
strategies to express an aspect of the uniformity that will turn out useful in
subsequent technical arguments.

Definition 5. Given an arena A corresponding to an IA-type and q, q′ ∈ {read}∪
{write(i) | i ∈ N}, the relation ¦q,q′

O ⊆ PA × PA is defined as follows: t ¦q,q′

O t′ iff
t = s1qs2, t′ = s1q

′s2 and q, q′ are O-moves from the same copy of Avar that have
not been answered in t, t′ respectively. ¦q,q′

P is defined in an analogous way, by
replacing “O-moves” with “P -moves”. We write ¦O for the (symmetric) relation⋃

q,q′ ¦q,q′

O . ¦P is defined similarly.

Definition 6. A strategy σ : A is ¦-closed iff, for any s ∈ σ, t ∈ PA, if there
exist q, q′ such that s ¦q,q′

O t, then t ∈ σ or there exists s′ ∈ σ such that t ¦q,q′

P s′.

Next we turn to questions that have been answered. If the qP from the above
scenario is eventually answered, say, with aO, P will immediately answer qO with
a copy aP of aO. Afterwards, the play will actually follow independently of the
value of q and a. This is in contrast to the case of k = 0 and f being bound
by new. Here after a series of possible side-effects (independent of qO) P will
answer qO with aP . Because this case corresponds to examining a genuine storage
cell, what happens next could depend on the current value of the variable: if
s1write(0)s1oks2 ∈ σ, it does not have to be the case that s1write(2)s2oks2 ∈ σ.
Similarly, if s1reads20s3 ∈ σ, we do not know whether s1write(2)s2oks2 ∈ σ.
However, if s1reads20s3 ∈ σ, we can be sure that s1write(0)s2oks3 ∈ σ, because
overwriting a variable with its current value does not change the state. Below
we define another closure property of strategies, which unifies the observations
just made about answer-moves. This is essentially a more precise variant of the
∝-closure used in [7], adapted to general plays.

Definition 7. Given an arena A corresponding to an IA-type we define /O ⊆
PA × PA as follows: t /O t′ iff t = s1 read s2 i s3 and t′ = s1 write(i) s2 ok s3

for some i ∈ N, where read and write(i) are O-moves from the same copy of
Avar. /P is defined in an analogous way.

Definition 8. A strategy σ : A is /-closed iff, for any s ∈ σ, t ∈ PA, if s /O t
then t ∈ σ or there exists s′ ∈ σ satisfying t /P s′.

Lemma 1. Strategies denoting IAcatch-terms are ¦- and /-closed.

Proof. First one shows that ¦- and /-closure are preserved by composition. Then
it suffices to show that the basic special strategies used to construct the model
satisfy the Lemma.

Note that the strategy corresponding to mkvar satisfies neither ¦- nor /-closure.

5 What difference does mkvar make?

Because the addition of new syntactic features makes the discriminating power
of contexts stronger, it is natural to expect that some approximations in IAcatch

will no longer hold in IAcatch+mkvar. For IA and IAmkvar, it was shown in [7]
that essentially all examples of IA approximations that fail in IAmkvar are based
on approximating reads with matching writes, as in

x : var ` if !x thenΩ else skip @∼ IA x:=0.

The same idea can also be used to demonstrate the difference between IAcatch

and IAcatch+mkvar, but we will also have another class of examples, relying on
variable operations immediately followed by divergence:

x : var ` if !x thenΩ elseΩ ∼=IAcatch
x:=0;Ω ∼=IAcatch

x:=1;Ω.

Because the terms generate different plays, these equivalences do not hold in
IAcatch+mkvar so, in contrast to IAmkvar, IAcatch+mkvar turns out not to extend
IAcatch conservatively even for observational equivalence. In the remainder of
the paper we show how to capture approximation in IAcatch with a preorder
based on ¦P and /P, which will make it clear that equivalences above do hold.

Definition 9. Suppose σ, τ : A are single-threaded. We define σ v τ to hold iff
for any s ∈ σ there exists t ∈ τ such that s (¦P ∪ /P)∗ t.

Because σ and τ are single-threaded, the quantification over s ∈ σ could well
range over single-threaded plays only. In the next section we aim to prove:

Theorem 2 (Full abstraction). For any IAcatch-terms Γ ` M1,M2 : T we
have Γ ` M1

@∼ IAcatch
M2 if and only if JΓ ` M1K v JΓ ` M2K.

6 Proof of full abstraction

The left-to-right direction hinges on the fact that JΓ ` M1K v JΓ ` M2K
implies J` C[M1]K v J` C[M2]K. Indeed, more generally, one can show that
composition of ¦- and /-closed strategies is monotone with respect to v, which
implies the above.

Lemma 2. For any /- and ¦-closed strategies σ1, σ2 : A ⇒ B and τ1, τ2 : B ⇒
C: if σ1 v σ2 and τ1 v τ2 then σ1; τ1 v σ2; τ2.

Proof. By repeated alternate applications of closure rules for σi and τi.

Lemma 3. For any IAcatch-terms Γ ` M1,M2 : T if JΓ ` M1K v JΓ ` M2K
then Γ ` M1

@∼ IAcatch
M2.

Proof. Suppose ` C[M1] : com ⇓. Then, by Soundness (of the game model of
IAcatch+mkvar), J` C[M1] : comK = J` skipK. Because JΓ ` M1K v JΓ ` M2K,
we have J` skipK = J` C[M1]K v J` C[M2]K. Hence, J` C[M2]K = J` skipK
and, by Adequacy, C[M2] ⇓.

To establish the converse we need a new definability argument. Because the
strategies involved are ¦- and /-closed, it is no longer impossible to prove de-
finability for single positions. We shall restrict ourselves to plays of the shape
run · · · done, as these suffice for the reconstruction of contexts used in the defi-
nition of @∼ IAcatch

.

Proposition 1. Let s = run · · · done be a single-threaded play in JT K. Then
there exists an IAcatch-term ` Ms : T such that the set of single-threaded com-
plete plays of J` MsK equals {t | s (¦O ∪ /O)∗ t}.
We will say that an answer-move occurring in a play is well-bracketed, if the
question that justifies it is the most recent unanswered question in the view
calculated right before the answer has been played. A strategy is called well-
bracketed if in each of its plays any P -answer is well-bracketed. Thanks to the
factorization techniques developed in [9, 12], which factor out non-well-bracketed
P -answers using catch, it suffices to prove the above Proposition for plays s
in which P -answers are well-bracketed. To that end we first identify a family
of innocent strategies which are definable in IA without new. Innocence, first
defined in [13], guarantees that P ’s responses depend only on the current view
of the play rather than the whole play.

6.1 Innocent strategies without mkvar

Let A¤ = 〈 {¤q, ¤a}, {(¤q, (Q,O)), (¤a, (A, P))}, {(?, ¤q), (¤q, ¤a)} 〉. Given
an IA type T , let JT Ksym be the arena obtained compositionally from T using the
× and ⇒ constructions in the same way as JT K except that occurrences of var
are interpreted differently: positive ones by A¤ and negative ones by Avar×A¤.
Moves of A¤ will be called generic, while those from Avar will be referred to as
concrete. Thus, only P will have concrete moves at his disposal in JT Ksym.

Given plays s1 ∈ PJT Ksym and s2 ∈ PJT K, we shall say that s2 matches s1

iff s2 can be obtained from s1 by replacing each occurrence of ¤q (respectively
¤a) with a concrete question (respectively answer) coming from the same copy
of var as the generic move it replaces. Thus, plays in JT Ksym can be viewed as
specifications of sets of plays in JT K. Suppose σ : JT Ksym. Because σ is determin-
istic and JT Ksym does not allow concrete O-moves, a play from JT K can match
at most one play from σ. This matching can be used to define strategies σ̂ : JT K
that “match” σ but, in general, such extensions will not be unique. In what
follows, we introduce a special class of strategies on JT Ksym that can be extended
to strategies on JT K in a canonical way.

Definition 10. A well-bracketed strategy σ : JT Ksym is a tail strategy iff it sat-
isfies the following conditions.

(i) If s¤a ∈ σ then the last move of s is a ¤a-move.
(ii) If s¤q ∈ σ then for any s ¤q s1 ¤a ∈ PJT Ksym such that s¤qs1 ∈ σ, we have

s ¤q s1 ¤a ¤a ∈ σ.

Remark 1. Because tail strategies are well-bracketed, the target of the last jus-
tification in clause (ii) is uniquely determined by s¤q. We shall call it the mate
of ¤q. Of course, the mate of ¤q must also be a ¤q-move. Similarly, we define
the mate of a P -answer ¤a in s¤a ∈ σ to be the last move of s, which by clause
(i) must be an O-answer of the shape ¤a.

Definition 11. Let σ : JT Ksym be a tail strategy. We define the copy-cat exten-
sion σ̂ : JT K of σ in the following way.

– ε ∈ σ̂.
– If s ∈ σ̂, sm1 ∈ PJσK, tn1n2 ∈ σ are such that tn1 matches sm1 then:

• if n2 is not generic then sm1n1 ∈ σ̂;
• if n2 is generic, then s′ = sm1m2 ∈ σ̂, where s′ is the unique play

matching tn1n2 and such that n2 is instantiated with the same concrete
move as its mate.

Note that when σ is innocent, so is σ̂. An innocent strategy is compactly innocent
if it depends only on a finite number of views.

Lemma 4. Suppose σ : JT Ksym is a compactly innocent tail strategy. Then there
exists a new-free term ` M : T of IA such that J` M : T K = σ̂.

Proof. Follows the standard definability argument for PCF [13].

6.2 Knowingness without mkvar

Now we continue with definability for certain knowing, i.e. not necessarily inno-
cent, strategies.

Lemma 5. Suppose T = vark → · · · → var1 → T ′ and let s be a single-threaded
play in JT Ksym such that any generic P -question ¤q in s comes from vari (i =
1, · · · , k) and no two such questions come from the same vari. Let σ be the least
single-threaded strategy on JT Ksym containing s. If σ is a tail strategy, then there
exists a compactly-innocent tail strategy τ : Jvar → T Ksym such that τ ; cellsymT =
σ2. Consequently, τ̂ ; cellT = σ̂.

2 cellT : J(var → T) → T K works in the same way as cellcom: moves are being copied
from one copy of JT K to another and, when O makes a move in the var component,
P ’s responses reflect the behaviour of a storage cell. cellsymT works analogously except
that it is a strategy in the game (Avar ⇒ JT Ksym) ⇒ JT Ksym.

Proof. We modify the factorization argument from [4]. Its key idea is that τ fol-
lows σ except that it uses the additional var component for recording the single-
threaded history of play. Thus, when an O-move from JT Ksym is made following
some play t ∈ τ , τ will always play read to find out what the current single-
threaded play looks like. The subsequent O-move is then regarded as the code of
the play. τ is then able to mimic σ in an innocent way, because the code of the
whole single-threaded play will be present in the relevant view. However, before
τ imitates σ, it always writes the code of the resultant single-threaded play to the
var component. Plays of τ thus have the shape · · · mO

T read swrite(sab) ok mP
T ,

i.e. the procedure introduces additional moves between any O-move and the
P -move that follows.

Note that, in our case, we cannot afford to adopt the above-described pro-
cedure after O-moves of the form ¤a, because we want τ to be a tail strategy.
However, because σ is a tail strategy, we know that, after an O-move ¤a, P will
also respond with ¤a. Moreover, because generic P -questions can only come from
some vari, all O-answers ¤a must also come from there. Consequently, thanks
to the special shape of the arena, the predecessor of any O-answer ¤a in s must
be the P -question ¤q that enables it. This opens up the way to modifying the
previous factorization: before P plays ¤q in τ , τ can already write the code of
s¤q¤a¤a to the var component, because ¤a¤a will follow anyway. When ¤a is
indeed played by O afterwards, τ will not read or write from var component, but
will immediately reply with the same ¤a as σ would. Note that this behaviour
is innocent, because no two generic O-answers come from the same vari.

Proposition 2. Suppose s = run · · · done is a single-threaded play of JT K in
which P -moves are well-bracketed. Then there exists an IA-term ` Ms : T such
that the set of single-threaded complete plays of J` MsK is {t | s (/O ∪ ¦O)∗ t}.

Proof. Note that the shape of the play means that T = Tl → · · · → T1 → com.
Let k be the number of concrete P -answers in s. We will first replace s with s′ ∈
PJT ′Ksym such that T ′ = vark → · · · → var1 → T and s′ satisfies the assumptions
of Lemma 5. s′ is obtained from s in the following way.

– Any concrete O-question is replaced by ¤q from the same copy var as the
question.

– Any concrete P -answer is replaced with ¤j
q, ¤j

a ¤a, ¤j
q,¤j

a come from varj ,
¤a comes from the same copy of var as the answer and the answer in question
is the jth concrete P -answer in s.

By Lemma 5 σ̂ = τ̂ ; cellT ′ , where τ is a compactly-innocent tail strategy on
Jvar → T ′Ksym. By Lemma 4 there exists a IA-term ` M : var → T ′ such that J`
MK = τ̂ . Thus, putting M ′ ≡ λxk · · ·x1yl · · · y1.new X inMXxk · · ·x1yl · · · y1,
we get J` M ′ : T ′K = σ̂. To obtain ` M ′′ : T satisfying the current Proposition
it now suffices to take

λyl · · · y1.new x1, · · · , xk in INIT ; M ′xk · · ·x1yl · · · y1;FINIT ,

where INIT ≡ INIT 1; · · · ; INIT k,FINIT ≡ FINIT 1; · · · ;FINIT k,

INIT j ≡
{

xj :=i + 1 jth concrete P -answer in s is ok justified by write(i)
xj :=i jth concrete P -answer in s is i (justified by read)

and FINIT j ≡ if (!xj = i) then skip elseΩ, where the jth concrete P -answer
is i (justified by read) or or ok justified by write(i).

By previous remarks Proposition 2 implies Proposition 1.

Lemma 6. For any IAcatch-terms Γ ` M1,M2 : T , if Γ ` M1
@∼ IAcatch

M2

then JΓ ` M1K v JΓ ` M2K.

Proof. W.l.o.g. assume that Γ is empty (other cases can be reduced to this
case by λ-abstraction). Suppose s ∈ J` M1 : T K. Let s′ = run s done. By
Proposition 1 there exists a term ` Ms′ : T → com whose set of single-threaded
and complete plays is {t | s′ (¦O∪/O)∗ t}. Let C[−] = Ms′([−]). Then J` C[M1]K =
J` skipK, so C[M1] ⇓. Because Γ ` M1

@∼ IAcatch
M2, we also have C[M2] ⇓.

Hence, J` C[M2]K = J` skipK. But this implies, by definition of composition of
strategies, that there must exists t ∈ J` M2K such that s(¦P ∪ /P)∗t.

Putting together Lemmas 3 and 6 we obtain Theorem 2.

7 On conservativity

Harmer and McCusker have investigated the game semantics of nondeterminism
and showed how IAmkvar+or can be modelled by nondeterministic strategies [14].
Analogously to IAcatch+mkvar and IAmkvar, observational approximation (based
on may-convergence) in IAcatch+mkvar+or and IAmkvar+or can be shown to cor-
respond to containment of induced plays and complete plays respectively. So,
in these two cases, extensions by or are conservative both with respective to
observational approximation and equivalence. The same turns out to apply to
IAcatch and IA. Indeed, our argument for IAcatch is immediately applicable to
IAcatch+or: nondeterministic strategies ordered by v form a fully abstract model
of IAcatch+or. Similarly, McCusker’s preorder for IA [7] also gives full abstraction
for IAor. Consequently, IAor and IAcatch+or are conservative extensions of IA and
IAcatch respectively.

In contrast, extensions of IA, IAor, IAor+mkvar by catch are not conservative,
even for observational equivalence. In game semantics this manifests itself in the
reliance of full abstraction results for catch-free languages on complete plays
only.

The inclusion of mkvar also turns out to affect observational approximation
in any of IA, IAcatch, IAor, IAcatch+or. For IA the effect of mkvar was cap-
tured by McCusker [7], IAcatch was examined in this paper and, as we already
mentioned, the two results apply to IAor and IAcatch+or. As for observational
equivalence, mkvar is “conservative” for IA, as shown in [7], but not IAcatch,

as demonstrated in this paper. It is interesting to note that, for program equiv-
alence, IAor+mkvar does not extend IAor conservatively either. Let M1,M2 be
the terms from Section 5 such that M1

@∼ IAM2 and ¬(M1
@∼ IAmkvar

M2). Then
M1 orM2

∼=IAor M2, but the terms are not equivalent in IAor+mkvar.
Finally, let us consider probabilistic game semantics. Probabilistic strategies

were introduced by Danos and Harmer [15] as functions σ : P ev
A → [0, 1] where

P ev
A stands for the set of even-length plays on A. For probabilistic programs,

instead of presence or lack of termination, one talks about the probability of
termination, denoted by ⇓p. Observational approximation can then be defined
as follows.

Definition 12. Suppose Γ ` M1,M2 : T are terms of L = IAcoin, IAcoin+mkvar.
Γ ` M1 : T approximates Γ ` M2 : T iff, for all L-contexts C[−] such that
` C[M1], C[M2] : com holds there exist p, q such that p ≤ q, C[M] ⇓p and
C[N] ⇓q.

For IAmkvar the above notion can be characterized via complete plays [16]: Γ `
M1

@∼ IAcoin+mkvar
M2 iff for all single-threaded complete plays s we have JΓ `

M1K(s) ≤ JΓ ` M2K(s). The left-to-right implication depends on the fact that
for any single-threaded complete play s one can construct an IAmkvar-term Γ `
M such that s is the only single-threaded complete play in JΓ ` MK. Using
McCusker’s definability result for IA [7], which says that there exists an IA-term
generating exactly the single-threaded complete plays from {t | s /∗O t}3, one can
show the following result.

Lemma 7. For any IAcoin-terms Γ ` M1,M2 : T , if Γ ` M1
@∼ IAcoin

M2 then
for any single-threaded complete play s we have

∑

{t | s/∗Pt}
JΓ ` M1K(t) ≤

∑

{t | s/∗Pt}
JΓ ` M2K(t).

The converse of the Lemma is not true. The conceptual reason for the failure
is that a single complete play can be extended to a ¦- and /-closed strategy
in a number of ways, while the definability result in [7] (and in this paper)
only explores the simplest one. This approach is fruitful for languages in which
termination requires only a single terminating run, but turns out insufficient
in the probabilistic setting, when termination is quantitative and all evaluation
paths have to be taken into account when comparing programs. We leave the
generalization of the definability results for future research. In any case, although
the above lemma could not be extended to a full abstraction result, it has an
important application in the proof of our last result.

Proposition 3. IAcoin+mkvar is a conservative extension of IAcoin for observa-
tional equivalence.

Proof. Suppose Γ ` M1
∼=IAcoin

M2. By Lemma 7, for any single-threaded
complete s, we have

∑
{t | s/∗Pt}JΓ ` M1K(t) =

∑
{t | s/∗Pt}JΓ ` M2K(t). Note

3 Proposition 1 specializes to it when both O- and P -answers are well-bracketed.

that the set {t | s /∗P t} is finite and partially-ordered by /∗P. By induction with
respect to the reverse order, one can then prove that for all complete s we have
JΓ ` M1K(s) = JΓ ` M2K(s), from which Γ ` M1

∼=IAcoin+mkvar
M2 follows.

Thus, for program equivalence, mkvar is conservative for IA and IAcoin, but not
for IAcatch or IAor.

References

1. Reynolds, J.C.: The essence of Algol. In de Bakker, J.W., van Vliet, J., eds.:
Algorithmic Languages. North Holland (1978) 345–372

2. O’Hearn, P.W., Tennent, R.D., eds.: Algol-like Languages. Progress in Theoret-
ical Computer Science. Birkhäuser, Boston (1997) Two volumes.

3. Reddy, U.S.: Global state considered unnecessary: An introduction to object-based
semantics. Lisp and Symbolic Computation 9 (1996) 7–76

4. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In O’Hearn, P.W., Tennent,
R.D., eds.: Algol-like languages, Birkhaüser (1997) 297–329

5. Burstall, R.M., Popplestone, R.J.: Pop-2 reference manual. Machine Intelligence
2 (1968) 205–246

6. Reynolds, J.C.: GEDANKEN–A simple typeless language based on principle of
completeness and reference concept. CACM 13 (1970) 308–319

7. McCusker, G.: On the semantics of Idealized Algol without the bad-variable con-
structor. In: Proceedings of MFPS’03, ENTCS 83.

8. Cartwright, R., Felleisen, M.: Observable sequentiality and full abstraction (pre-
liminary version). In: Proceedings of POPL’92.

9. Laird, J.: Full abstraction for functional languages with control. In: Proceedings
of LICS’97.

10. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.H.L., Stark, I.D.B.: Nominal
games and full abstraction for the nu-calculus. In: Proceedings of LICS’04.

11. Laird, J.: A game semantics of local names and good variables. In: Proceedings of
FOSSACS’04, LNCS 2987.

12. Abramsky, S., McCusker, G.: Game semantics. In Schwichtenberg, H., Berger,
U., eds.: Logic and Computation. Springer-Verlag (1998) Proceedings of the 1997
Marktoberdorf Summer School.

13. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF. Information and
Computation 163(2) (2000) 285–408

14. Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeter-
minism. In: Proceedings of LICS’99.

15. Danos, V., Harmer, R.: Probabilistic game semantics. In: Proceedings of LICS’00.
16. Murawski, A.S., Ouaknine, J.: On probabilistic program equivalence and refine-

ment. In: Proceedings of CONCUR’05, LNCS 3653.

