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Abstract

These tutorial notes present nominal game semantics, a denotational

technique for modelling higher-order programs.
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Introduction

Game semantics is a branch of denotational semantics that uses the

metaphor of game playing to model computation. The game models of

PCF [5, 21, 35] constructed in the 1990s have led to an unprecedented

series of full abstraction results for a range of functional/imperative

programming languages. A result of this kind characterises contextual

equivalence between terms semantically, i.e. equality of denotations co-

incides with the fact that terms can be used interchangeably in any

context. As such, full abstraction results can be said to capture the

computational essence of programs.

The fully abstract game models from the 1990s covered a plethora

of computational effects, contributing to a general picture referred to

as Abramsky’s cube [8]: by selectively weakening the combinatorial con-

ditions on plays of the games, one was able to increase the expressivity

of the games and capture desired computational effects.

Although those works successfully constructed models of state [7,

6, 4, 9], the techniques used to interpret reference types did not make

them fully compatible with what constitutes the norm in languages

such as ML or Java. In particular, references were modelled through

a form of indirection originating in the work of Reynolds [39], namely
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by assuming that ref θ = (θ → unit) × (unit → θ). The approach led to

identification of references with pairs of arbitrary reading (unit → θ)

and writing (θ → unit) functions. While this view is elegant and cer-

tainly comprises the range of behaviours corresponding to references,

it does not enforce a relationship between reading and writing, as wit-

nessed by the presence of the product type. This causes a significant

strengthening of the semantic universe used for modelling references

and, consequently, many desirable equivalences are not satisfied in the

model. For example, the interpretation of (x := 0; x := 1) is different

from that of x := 1 and, similarly, for x := !x and (). We list the inter-

pretations below using the terminology of [6].

x := 0; x := 1 run write(0) ok write(1) ok done

x := 1 run write(1) ok done

x := !x run read i write(i) ok done

() run done

Thus, for the first term, the semantic translation treats both updates as

observable events and therefore both are recorded in the game play.1

This immediately distinguishes semantically the first term from the

second one, for which only a single update is recorded. On the other

hand, the translation of the third term is more verbose, registering calls

to both the read and write methods of x, even though the computa-

tional content of the term is in fact that of the skip command () in the

modelled language.

To prove full abstraction in this setting, it is then necessary to enrich

the syntax with terms that will populate the whole semantic space of

references. Such terms are often referred to as bad variables, because

they are objects of reference type equipped with potentially unrelated

reading and writing methods. These terms, if used by the context, can

distinguish the pairs of terms discussed above. For instance, a context

that instantiates x to a bad variable with divergent reading and writing

capabilities will be able to distinguish x := !x from (). Nonetheless, that

solution is not entirely satisfactory as the bad-variable construct breaks

standard expectations for references. Moreover, one would hope to be

1In effect, write(0) and write(1) represent calls to the write method of reference
x, while ok’s correspond to returns of that method.
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able to carve the model in such a way that it matches the modelled

language, instead of extending the language to match the model.

The bad-variable problem can be seen as the result of modelling

a generative effect (the creation and use of references) by equating it

with the product of its observable handling methods.2 Nominal game

semantics is a recent branch of game semantics that makes it possible

to model generative effects in a more direct manner, by incorporating

names (drawn from an infinite set) as atomic objects in its construc-

tions. In particular, it can model reference types without bad variables

by using names to interpret references. The names are embedded in

moves and also feature in stores that are carried by moves in the game.

Intuitively, the stores correspond to the observable part of program

memory. For example, the two pairs of terms discussed above can be

modelled by the following two nominal plays respectively.

a{(a,i)} ⋆{(a,1)} a{(a,i)} ⋆{(a,i)}

Here a stands for an arbitrary name, i.e. the collection of plays is sta-

ble with respect to name permutations. Formally, the objects studied

in nominal game semantics (moves, plays, strategies) live in nominal

sets [12].

Since 2004, the nominal approach has led to a series of new full

abstraction results. The languages covered are the ν-calculus [3] (purely

functional language with names), λν [25] (a higher-order language with

storage of untyped names), Reduced ML [31] (a higher-order language

with integer-valued storage), RefML [32] (higher-order references) and

Middleweight Java [34]. Nominal game semantics has also been used to

model Concurrent ML [26] and exceptions [34].

Structure of the tutorial

Our tutorial is meant to complement existing introductory literature to

game semantics [1, 8, 19, 16], which highlighted the then new structural

components necessary to model higher-order computation, e.g. arenas,

2Similar issues arise when modelling exceptions in this way, i.e. as products of
raise/handle functions [24].
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justification pointers, innocence. In contrast, we shall particularly focus

on explaining the nominal content of our games. We hope the material

has been written in a way that will make it accessible to readers familiar

with standard denotational semantics and types, e.g. [10, 17, 40].

We begin our exposition with Chapter 2 covering the basics of nomi-

nal sets. In Chapter 3 we introduce the programming language of study,

called GroundML. GroundML is a higher-order language with references

capable of storing integers, reference to integers, references to refer-

ences to integers and so on. In Chapter 5 we shall present the game

model of GroundML in full detail. Before that, in Chapter 4, we focus

on a fragment of GroundML that, for the sake of simplicity, features

only integer-valued references and restricted higher-order types. Be-

cause ToyML is simpler, we can give a more direct and elementary

presentation of its game semantics, which we hope will help the reader

to make a transition to the full-blown model of the following section.



2

Elements of Nominal Set Theory

In this chapter we give a brief overview of notions from nominal sets

which we shall be using in the sequel. What we present here is a tiny

fragment of the theory — the reader is referred to [12, 13, 36] for thor-

ough expositions.

Nominal sets provide a robust way to deal with computational en-

tities (such as computations, traces, models, etc.) that involve names.

For instance, in these notes, names will be used to model references,

i.e. allocated mutable variables in programming languages with local

state. The essence of using names is that:

• there is an infinite, but countable, amount of names;

• therefore, given a finite computation, we can always generate a

fresh name, i.e. one that does not appear inside it;

• this fresh-name generation is non-deterministic: any of the co-

finitely many fresh names can be generated at any point;

• a computation involving names should be closed under name per-

mutation: if a different choice of fresh names is made, that should

not affect the non-nominal component of the computation.

196
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Above, when we mention computations we refer to objects coming ei-

ther from the operational semantics of the modelled language or its

denotational semantics.

Nominal sets

Let us fix a countably infinite set A, the set of names, the elements of

which we denote by a, b, c and variants. Names are partitioned by

A =
⊎

i∈ω
Ai

where each Ai is itself countably infinite. The indexing over natural

numbers here is a comprehensive choice that captures specific scenarios

where one caters for a countable collection of disjoint sets of names.

For our needs, the indexing will be in fact over ground types of our

language.

We write Π(A) for the group of finite permutations of A which are

component-preserving:

Π(A) = { π : A → A | supp(π) is finite ∧ ∀i ∈ ω, a ∈ Ai. π(a) ∈ Ai }

where supp(π) = { a ∈ A | π(a) 6= a }. Recall that a group action of

Π(A) on some set X is a function

_ · _ : Π(A) × X → X

such that, for all x ∈ X and π, π′ ∈ Π(A), π · (π′ · x) = (π ◦ π′) · x and

id · x = x, where id is the identity permutation.

Definition 2.1. A nominal set X is a set |X| (usually written X)

equipped with a group action of Π(A) and such that all elements of

X have finite support. That is, for each x ∈ X there exists a finite set

U ⊆ A such that, for all π ∈ Π(A), (∀a ∈ U. π(a) = a) =⇒ π · x = x .

Finite support is closed under intersection, hence each element x of

a nominal set has a least support, which we call the support of x:

ν(x) =
⋂

{ U ⊆fin A | (∀a ∈ U. π(a) = a) =⇒ π · x = x } .

Intuitively, ν(x) is the set of names “involved” in x. Accordingly, we

say that a is fresh for x if a /∈ ν(x).
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Trivially, every set X can be seen as a nominal set by setting π·x = x

for all x ∈ X. On the other hand, A is a nominal set by taking π · a =

π(a), for each π and a. In the same fashion, each set Ai is a nominal

set. The set Pfin(A) of finite sets of names is also a nominal set, with

action π · U = {π(a) | a ∈ U} for each permutation π and finite U ⊆ A.

Moreover, ν(U) = U. More interestingly, if X and Y are nominal sets

then so are:

• their cartesian product X × Y , with permutations acting compo-

nentwise: π · (x, y) = (π · x, π · y);

• their disjoint union X ⊎ Y , with permutations acting as in X/Y :

π ·X⊎Y x = π ·X x if x ∈ X, and π ·X⊎Y x = π ·Y x otherwise;

• the set X∗ of finite sequences of elements of X, with permutations

acting elementwise: π · (x1 . . . xn) = (π · x1) · · · (π · xn).

For example, the set A
∗ of finite sequences of atoms is a nominal set

with π · (a1 . . . an) = (π · a1) . . . (π · an) = π(a1) . . . π(an) for each π ∈

Π(A) and a1, · · · , an ∈ A. Moreover, ν(a1 . . . an) contains precisely the

names a1, · · · , an (modulo repetitions).

We call X ′ ⊆ X a nominal subset of X if X ′ is closed under per-

mutations, these acting as on X. Accordingly, we say that R ⊆ X × Y

is a nominal relation if R a nominal subset of X × Y . Concretely,

this means that:

(x, y) ∈ R ⇐⇒ (π · x, π · y) ∈ R

for all permutations π. A nominal function is a function which is

also a nominal relation, that is,

f(π · x) = π · f(x)

for all x ∈ X and π ∈ Π(A). As a consequence, ν(f(x)) ⊆ ν(x).

Given a nominal set X, we can define an equivalence relation ∼X

on its elements:

x ∼X y ⇐⇒ ∃π ∈ Π(A). x = π · y
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specifying that two members of X are equal up to permutation. We

shall denote ∼X by ∼ for simplicity. For each x ∈ X we form its orbit

under the permutation action by:

[x] = [x]/∼ = {y ∈ X | y ∼ x}

that is, [x] = {π · x | π ∈ Π(A)} . Taking the orbit [x] of x can be

seen as blurring the specific choice of names within x while retaining its

underlying structure. Note that [x] ⊆ X. For example, for any sequence

a1 . . . an ∈ A
∗, its orbit

[a1 . . . an] = {π · (a1 . . . an) | π ∈ Π(A)}

contains all sequences of atoms a′
1 . . . a′

n such that, for all i, j ∈ {1, ..., n}

and k ∈ ω, we have a′
i = a′

j if, and only if, ai = aj; and a′
i ∈ Ak if,

and only if, ai ∈ Ak. On the other hand, for each i, in the nominal

set Ai ×Ai we can form just two orbits, namely [(a, b)] and [(a, a)], for

some a 6= b ∈ Ai. The former contains all pairs of distinct names in Ai,

while the latter all pairs made of the same name.

In game semantics a particular strengthening of the notion of sup-

port has turned out to be necessary to guarantee correct behaviour

under strategy composition.1 In particular, we say that an element x

of nominal set X has strong support if, for all permutations π,

π · x = x =⇒ ∀a ∈ ν(x). π(a) = a

that is, the converse condition of that of (simple) support also holds. We

call X a strong nominal set if all its elements have strong support.

The intuition behind strong support is that all names in the support

of an element are distinguishable by some given order.2 For example,

the nominal set A
∗ is strong, whereas Pfin(A) is not. Note that a nom-

inal subset of a strong nominal set is itself strong and, moreover, if X

and Y are strong nominal sets then so are X × Y , X ⊎ Y and X∗.

1See [42] for motivation and a detailed explanation of its significance. The same
notion was defined by Schöpp [41] for nominal sets with an essentially simple action.

2Put otherwise, there are no symmetries in ν(x). A more operational reading is
that, given the output of a computation involving names, we can distinguish between
any two distinct names that were produced in the same computational step.
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GroundML

Since these notes are intended as an introductory tutorial, our main

focus will be a higher-order language with local state of a simple kind,

namely state of ground type.1 It is a functional language with the

additional imperative effect of local store. The store is full ground,

in the following sense: we can store integer values, we can also store

references which themselves store integer values, and so on. We call

this language GroundML.

3.1 Syntax

We start off with introducing the types of our language. Note that

reference types are available for each ground type ζ. A reference type

ref ζ specifies locations storing values of type ζ.

Definition 3.1. The types of GroundML are generated according to the

1We briefly discuss extensions to more expressive, and more realistic, languages
in Section 6 and give references to the relevant bibliography.

200
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following grammar,

θ ::= ζ | θ × θ | θ → θ

ζ ::= unit | int | ref ζ

and types of the ζ kind are called ground.

Let us fix a set A =
⊎

ζ Aζ of location names, which precisely

correspond to names as in nominal sets (cf. Chapter 2, where A =
⊎

i∈ω Ai). That is, we assume an enumeration ζ1, ζ2, · · · of ground types

so that, for each i, the sets Aζi
and Ai coincide. Note that each location

name is associated with a unique ground type, namely the type indexing

its originating name set.

Definition 3.2. The syntax of supported terms is given as follows,

M ::= () | a | i | x | M ⊕ M | while(M) | if M then M else M | λxθ.M

| MM | 〈M, M〉 | π1M | π2M | ref(M) | M = M | !M | M := M

where ⊕ ranges over a set of arithmetic operators, x and i range over

variables and integers respectively, and a over elements of A. A term

is a supported term featuring no locations (i.e. with empty support).

Supported terms are typed in environments U, Γ, where U is a finite

set of location names and Γ is a variable typing context. The typing

rules are given in Figure 3.1.

Remark 3.3. Why are there distinct categories for terms and supported

terms? This distinction is meant to convey the difference between a

syntactic phrase that a user can write, which cannot contain location

names2, and the syntactic phrases produced when a program is exe-

cuted, where locations appear as soon as a ref(...) operator is evaluated.

Thus, the language is best described as the call-by-value λ-calculus

with products over base types ζ, augmented with the do-nothing com-

mand, integer constants, arithmetic operations, looping and reference

manipulation (allocation, dereferencing, assignment).

In what follows, we often use the following shorthand notation:

2in the sense that the set A is not accessible to the programmer (think of Java
or ML programs).
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U, Γ ⊢ () : unit
i ∈ Z

U, Γ ⊢ i : int

(x : θ) ∈ Γ

U, Γ ⊢ x : θ

a ∈ U ∩ Aζ

U, Γ ⊢ a : refζ

U, Γ ⊢ M : int U, Γ ⊢ N0 : θ U, Γ ⊢ N1 : θ

U, Γ ⊢ if M then N1 else N0 : θ

U, Γ ⊢ M : int

U, Γ ⊢ while(M) : unit

U, Γ ⊎ { x : θ } ⊢ M : θ′

U, Γ ⊢ λxθ.M : θ → θ′

U, Γ ⊢ M : θ → θ′ U, Γ ⊢ N : θ

U, Γ ⊢ MN : θ′

U, Γ ⊢ M : θ U, Γ ⊢ N : θ′

U, Γ ⊢ 〈M, N〉 : θ × θ′
U, Γ ⊢ M : θ1 × θ2

U, Γ ⊢ πiM : θi
i∈{1,2}

U, Γ ⊢ M : int U, Γ ⊢ N : int

U, Γ ⊢ M ⊕ N : int

U, Γ ⊢ M : refζ U, Γ ⊢ N : refζ

U, Γ ⊢ M = N : int

U, Γ ⊢ M : ζ

U, Γ ⊢ ref(M) : refζ

U, Γ ⊢ M : refζ

U, Γ ⊢ !M : ζ

U, Γ ⊢ M : refζ U, Γ ⊢ N : ζ

U, Γ ⊢ M := N : unit

Figure 3.1: Typing rules of GroundML.

• let x = M in N for the term (λxθ.N)M ;

• M ; N for let x = M in N , where x does not occur in N ;

• λ_θ.M for λxθ.M , where x does not occur in M .

Observe that, for any type θ, we can define some closed term ⊢ Mθ : θ.

Hence, we can also define:

divθ ≡ while(1); Mθ ,

which will be used as a canonical divergent term of type θ.

3.2 Operational semantics

We give an operational semantics for GroundML by means of a small-

step transition relation. It relates pairs consisting of (typed) supported

terms together with a representation of the state of the memory. For-

mally, we define the set of stores as:

Stores = { S : A ⇀ ({ ⋆ } ∪ Z ∪ A) | S finite and legal }
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where a partial function S : A ⇀ ({ ⋆ } ∪ Z ∪ A) is called legal just if

cod(S) ∩ A ⊆ dom(S) and for all names a ∈ dom(S):

(a ∈ Aunit =⇒ S(a) = ⋆) ∧ (a ∈ Aint =⇒ S(a) ∈ Z)

∧ (a ∈ Arefζ =⇒ S(a) ∈ Aζ)

Intuitively, a store is legal if it is well typed and, moreover, all the

location names that are stored in it are also part of its domain. Put

otherwise, there are no locations with undefined values in a store. Note

here that we use ⋆ as the unique value of type unit as () can be cum-

bersome when mixed with other brackets. In the sequel we follow the

convention that ⋆ and () are aliases of one another, with the former

used in stores (and in game moves), and the latter in syntactic terms.

Given a store S, a name a and some x ∈ { ⋆ }∪Z∪A, we define the

update S[a 7→ x] by:

(S[a 7→ x])(a′) =















S(a′) if a′ ∈ dom(S) \ {a}

x if a′ = a

undefined otherwise

with the proviso that the latter is still a store. We extend this notation

to:

S[T ] = S[a1 7→ T (a1)] · · · [an 7→ T (an)]

for any stores S and T with dom(T ) = { a1, · · · , an }. Finally, a con-

figuration is a pair (M, S) of a supported term and a store such that

dom(S) contains all the names which appear in M .

The transition relation is produced by the rules in Figure 3.2. The

context rule uses evaluation contexts, which are given by the syntax:

E ::= [ ] | E ⊕ M | V ⊕ E | if E then M else M | EM | V E | 〈E, M〉

| 〈V, E〉 | πiE | ref(E) | E = M | x = E | !E | E := M | V := E

where [ ] denotes the hole of the context and M ranges over supported

terms. On the other hand, V ranges over values, which are given by:

V ::= () | i | x | a | 〈V, V 〉 | λxθ.M

Note in particular that values are supported terms. For any term ⊢ M :

unit, we write M ⇓ if (∅, M) −→→ (S, ()), for some store S.
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(i ⊕ j, S) −→ (k, S) (k = i ⊕ j)

((λx.M)V, S) −→ (M [V/x], S)

(π1〈V1, V2〉, S) −→ (V1, S)

(π2〈V1, V2〉, S) −→ (V2, S)

(if 0 then M else M ′, S) −→ (M ′, S)

(if i then M else M ′, S) −→ (M, S) (i > 0)

(while(M), S) −→ (if M then while(M) else (), S)

(a = b, S) −→ (0, S) (a 6= b)

(a = a, S) −→ (1, S)

(!a, S) −→ (S(a), S)

(a := V, S) −→ ((), S[a 7→ V ])

(ref(V ), S) −→ (a′, S[a′ 7→ V ]) (a′ /∈ dom(S))

(M, S) −→ (M ′, S′)

(E[M ], S) −→ (E[M ′], S′)

Figure 3.2: Operational semantics of GroundML.

Next we take a closer look at some examples of GroundML terms

and their behaviour.

Example 3.4 (Name generators). Consider the following (closed) terms

that generate integer references.

gen ≡ λzint. let x = ref(0) in (x := z; x) : int → ref int

gen′ ≡ let x = ref(0) in λzint.(x := z; x) : int → ref int

The two terms differ in one crucial aspect: while gen returns a fresh

reference name each time it is called, gen′ always returns the same name

(which is indeed fresh the first time it is called).

Example 3.5 (Name channels). The fact that names can be stored in

GroundML enables us to simulate the behaviour of channels, in the style

of the π-calculus. Consider the following term trmit.

f : ref ref int → unit, g : unit → ref ref int ⊢

let c1 = ref(ref(0)) in (fc1; let c2 = g() in λ_unit. c2 := !c1) : unit → unit
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The term creates an input channel c1 and passes it to its context (via

fc1); then receives an output channel c2 from the context; and finally

returns a process that listens at c1 and transmits back to c2.

The operational semantics allows us to evaluate terms to values.

For closed terms of ground type, this will be sufficient to reveal all

there is to their behaviour. However, the case of higher-order terms

is much more complicated. In order to understand their computational

potential, not only does one need to evaluate the term, but also consider

the behaviour of the resultant value in future interactions. It is worth

remarking that these subsequent uses cannot be restricted to single

applications, because the behaviour of GroundML terms may evolve over

time and different results can be returned for the same arguments if a

function is applied to them repeatedly. This highlights the challenges

inherent in analysing higher-order programs with state. In order to

compare terms formally, one tests their behaviour in arbitrary contexts

whose shape is given below.

C ::= [ ] | if C then M else M | if M then C else M | if M then M else C

| while(C) | λxθ.C | MC | CM | 〈C, M〉 | 〈M, C〉 | πiC | C ⊕ M

| M ⊕ C | C = M | M = C | ref(C) | !C | C := M | M := C

Contexts are also used to define what it means for the terms to be

equivalent.

Definition 3.6. We say that the term-in-context Γ ⊢ M1 : θ approxi-

mates Γ ⊢ M2 : θ (written Γ ⊢ M1 ⊑ M2) if C[M1] ⇓ implies C[M2] ⇓

for any context C such that ⊢ C[M1], C[M2] : unit.

Two terms-in-context are equivalent if one approximates the other

(written Γ ⊢ M1
∼= M2).

For instance, the name generators of Example 3.4 are not equiva-

lent, as they can be distinguished by any context that calls the gener-

ator twice and compares the results. For instance, setting

C ≡ (λf int→ref int. if (f0 = f0) then () else div) [ ]

we obtain C[gen] 6⇓ and C[gen′] ⇓. On the other hand, proving that

two terms are equivalent is trickier since picking a specific context (or
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a bounded class of them) is not enough: rather, one needs to prove

equi-termination in every enclosing context.

Game semantics sets out to provide a semantic characterisation of

equivalence. We shall see that, for all terms Γ ⊢ M, N : θ:

Γ ⊢ M ∼= N ⇐⇒ comp(JΓ ⊢ MK) = comp(JΓ ⊢ NK)

that is, to show Γ ⊢ M ∼= N , it will suffice to calculate the game-

semantic denotations of terms and compare them for equality on “com-

plete” plays.

Example 3.7 (Equivalences). Terms in GroundML can create reference

names that are fresh and private (cannot be guessed by the environ-

ment). Next we consider three equivalences that explore these capabil-

ities. Our first equivalence is between the terms:

M1 ≡ let x = ref(0) in λyref int. x = y : ref int → int,

M2 ≡ λyref int. 0 : ref int → int.

In the former case, y has no chance of being equal to x as the latter is

never exposed outside of M1.

In the next example, the name x is wrapped into a function that

is passed to the environment. However, the environment will still be

unable to discover it, because it is protected by the fact that the value

of c is 0 when the environment has access to the function:

M3 ≡ let x = ref(0) in let c = ref(0) in

f(λ_. if !c = 0 then div else x); c := 1; λyref int. x = y

M4 ≡ f(λ_. div); λyref int. 0

with types f : (unit → ref int) → unit ⊢ M3, M4 : ref int → int. Note

that this equivalence would not hold if our language supported higher-

order references. The environment could then store the function and

delay its use until the value of c becomes 1. In the game semantic

setting, the equivalence will rely on a combinatorial condition called

visibility.

In our final example, the term M5 retains a secret name of type

ref int in a private reference of type ref ref int. If the secret is guessed
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(y = z) then the term diverges. Otherwise, it reveals the secret but, at

the same time, replaces it with another (fresh) name:

M5 ≡ let x = ref(ref(0)) in

λyref int. let z = !x in (if y = z then div else (x := ref(0); z))

M6 ≡ λyref int. ref(0)

where ⊢ M5, M6 : ref int → ref int. Hence, the secret names produced by

M5 can be revealed but, as soon as that happens, they will be replaced

with fresh ones.



4

ToyML: A First-Order Language with Integer

References

To give the reader a flavour of the nominal approach, we first consider

ToyML, a minimalistic language with first-order procedures, looping

and integer-valued references.

4.1 Types and terms

The types of ToyML are generated according to the following grammar.

θ ::= β | β → β β ::= unit | int | ref int

ToyML terms have shapes defined below.

M ::= () | i | x | M ⊕ M | if M then M else M | λxβ.M | MM |

while(M) | ref(M) | M = M | !M | M := M

The corresponding typing rules are provided in Figure 4.1. For sim-

plicity, we only consider (unsupported) terms and, hence, there is no

need to keep track of the U sets. The syntax allows for the creation of

anonymous (λxβ.M) and undefined (x) first-order functions and their

application (MM).

208



4.2. Concrete games 209

Γ ⊢ () : unit
i ∈ Z

Γ ⊢ i : int

(x : θ) ∈ Γ

Γ ⊢ x : θ
Γ ⊢ M : int

Γ ⊢ while(M) : unit

Γ ⊢ M : int Γ ⊢ N : int
Γ ⊢ M ⊕ N : int

Γ ⊢ M : int Γ ⊢ N, N ′ : θ

Γ ⊢ if M then N else N ′ : θ

Γ ⊎ { x : β } ⊢ M : β′

Γ ⊢ λxβ.M : β → β′

Γ ⊢ M : β → β′ Γ ⊢ N : β

Γ ⊢ MN : β′

Γ ⊢ M : int
Γ ⊢ ref(M) : ref int

Γ ⊢ M : ref int Γ ⊢ N : ref int
Γ ⊢ M = N : int

Γ ⊢ M : ref int
Γ ⊢ !M : int

Γ ⊢ M : ref int Γ ⊢ N : int
Γ ⊢ M := N : unit

Figure 4.1: Typing rules of ToyML.

4.2 Concrete games

This section presents a game model of ToyML formulated in a direct

way that avoids references to (too much) game-semantic jargon. We

trust it will facilitate the passage to the following chapter of the tuto-

rial, in which a full-blown game model is presented for a higher-order

language. We shall focus on presenting a special kind of play, called

complete, as these are the plays that eventually deliver full abstraction

for GroundML.

Let us recall that game semantics views computation as a dialogue

between the environment (Opponent, O) and the program (Proponent,

P ). The game model we are about to sketch is based on sequences of

moves that involve names drawn from the infinite set A and which are

stable under name-invariance. Put otherwise, they form nominal sets.

We begin with several auxiliary definitions before specifying how

complete plays look like in our setting. For every type θ, we first define

the set Vθ of associated semantic values as follows:

Vunit = { ⋆ }, Vint = Z, Vref int = Aint, Vβ→β′ = { † },

and write V for the set of all semantic values. We shall use ℓ and variants
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to range over semantic values.

In order to interpret ToyML typing judgments of the shape

Γ ⊢ M : θ we shall rely a special set of moves, defined next.

Definition 4.1. Let Γ = {x1 : θ1, · · · , xm : θm} consist of ToyML types

and let θ also be a ToyML type. The set MΓ⊢θ of moves associated

with Γ and θ is defined to be

MΓ⊢θ = IΓ ∪ Mθ ∪
⋃

1≤i≤m
Mxi

where:

• IΓ is the set of initial moves given by

IΓ = { (ℓ1, · · · , ℓm) | ℓi ∈ Vθi
, 1 ≤ i ≤ m };

• Mθ is the set of output moves defined by

– Mθ = { (r↓, ℓ) | ℓ ∈ Vθ } if θ is a base type,

– Mθ = { (r↓, †) } ∪ { (c, ℓ) | ℓ ∈ Vθ′ } ∪ { (r, ℓ) | ℓ ∈ Vθ′′ } if

θ = θ′ → θ′′;

• Mxi
is the set of variable moves, taken to be empty if θi is a base

type and, if θi = θ′
i → θ′′

i , equal to

{ (cxi
, ℓ) | ℓ ∈ Vθ′

i
} ∪ { (rxi

, ℓ) | ℓ ∈ Vθ′′
i

}.

Moves are ranged over by m and variants. We shall use i to range over

IΓ, and we shall often write ixi
for ℓi.

Thus, each move in MΓ⊢θ consists of a pair (t, ℓ) of a tag and a

(semantic) value. For each function-type identifier x in Γ, we have in-

troduced tags cx and rx. They can be viewed as calls and returns related

to that identifier. The accompanying value in e.g. a move (cx, ℓ) corre-

sponds to the value that identifier is called with. Similarly, r↓ can be

taken to correspond to the fact that our modelled term was success-

fully evaluated, and, if θ is a function type, c and r refer respectively

to calling the corresponding value and obtaining a result.

Moves are assigned ownership as follows:
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• i and those with tags rx, c belong to O (environment);

• the rest (with tags r↓, cx, r) belong to P (program).

Using ownership of moves, we can extend the definition to names saying

that a name a is owned by the owner of the first move m in which it

occurs (i.e. such that a ∈ ν(m)). We refer to moves owned by O as

O-moves, and similarly for P -moves, O-names and P -names.

Remark 4.2 (Duality). Note the duality between calls and returns: c

is an O-move, yet r is a P-move; on the other hand, cx is a P-move,

while rx is an O-move. This extends to i/r↓, which belong to O/P

respectively (this exactly matches the intuition that r↓ is a return to

calling the modelled term with input i).

Next we define the notion of a complete play, which will model the

observable interactions of our terms. More precisely, the complete char-

acter of the plays stands for the fact that we shall be focussing on com-

plete computations, i.e. those where all function calls have returned.1

As suggested by the definition above, each non-empty complete play

will begin with an initial move, to be followed by moves made from

tags and labels.

Definition 4.3. A complete sequence over Γ ⊢ θ is a (possibly empty)

sequence of moves i (t1, ℓ1) · · · (tk, ℓk) such that the sequence t1 · · · tk

of tags matches the grammar:

X r↓ (c X r)∗ where X =

(

∑

(x : θ′→θ′′)∈Γ
(cx rx)

)∗

.

We assume that Xr↓(cXr)∗ degenerates to Xr↓ when c, r are not avail-

able in MΓ⊢θ, i.e. θ is a base type.

The shape of complete such sequences can be thought of as a record

of interaction. First, calls can be made to the free identifiers of function

type (expression X), then a value may be reached (r↓) and, if the type

of the value is a function type, a series of calls and returns is possible

with further external calls in between ((cXr)∗). Note that all calls have

matching returns, which is why the term complete is used.

1In the next chapter, we will also consider general plays, which need not be
complete.
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Remark 4.4 (Alternation). Observe that Definition 4.3 imposes an al-

ternation of ownership inside every complete sequence: the initial move

is owned by O, and is followed by a move owned by P , and so on.

The semantic interpretation of ToyML will be based on a more com-

plicated notion of play, in which each move is associated with a finite

(and legal) integer-valued store. Domains of such stores cannot be ar-

bitrary: they must contain all names that have been used during play.

To make this precise, we make the following definitions.

Definition 4.5. A complete play over Γ ⊢ θ is a sequence mS1
1 · · · mSk

k

of moves-with-store satisfying the conditions below.

• m1 · · · mk is a complete sequence over Γ ⊢ θ.

• For any 1 ≤ i ≤ k, dom(Si) = ν(m1 · · · mi).

The second clause of the above definition is specific to ToyML. For

GroundML we will additionally want to take into account the names

that are stored. Note that the initial move-with-store must be of the

form iS , where i ∈ IΓ and dom(S) = ν(i). The set of initial moves-with-

store will be written Ist
Γ .

Next we discuss how to assign, to any ToyML term Γ ⊢ M : θ, a

set of complete plays over Γ ⊢ θ in order to achieve full abstraction.

We shall write L Γ ⊢ M : θ M for that set. This constitutes a very direct

account of the game-semantic interpretation of GroundML (presented in

the following chapter), specialised to ToyML. Overall the complete-play

interpretation is guaranteed to yield the following result2.

Theorem 4.6. Let Γ ⊢ M1, M2 : θ be ToyML terms. Then Γ ⊢ M1
∼= M2

if and only if L Γ ⊢ M1 M = L Γ ⊢ M2 M.

4.3 Interpretation of ToyML terms

We start off with a number of simple cases listed below before proceed-

ing to more complicated ones.

() | i | x | x ⊕ y | ref(x) | x = y | !x | x := y | if x then N else N ′

2Note that ∼= is defined using contexts from GroundML.
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Skip command (())

L Γ ⊢ () : unit M is defined to contain all complete plays over Γ ⊢ unit

that have the shape iS(r↓, ⋆)S . Here P simply responds with the move

(r↓, ⋆) without modifying the store.

Integer constant (i)

The defining complete plays for L Γ ⊢ i : int M have the shape iS(r↓, i)S .

This follows the same pattern as above, except that the value is i.

Variable (x)

We distinguish two cases depending on the type of x.

The complete plays in L Γ ⊢ x : β M all have the form iS(r↓, ix)S . P

simply responds by copying the value of x provided by O in the initial

move and pairing it with the tag r↓.

For L Γ ⊢ x : β → β′ M, the complete plays must have the form

iS(r↓, †)SX1 · · · Xk

where k ≥ 0 and

Xi = (c, ℓi)
Si(cx, ℓi)

Si(rx, ℓ′
i)

S′
i(r, ℓ′

i)
S′

i

for all 1 ≤ i ≤ k. Intuitively, this corresponds to P first replying with

the † value. Subsequently, a series of calls can be initiated by O. Each

such call (tag c) is forwarded by P to x by changing the tag to cx while

copying the value. Similarly, return moves by O (tag rx), which must

happen right after the matching call moves, are copied by modifying

the tag to r. Note that P never changes the stores played by O. In

contrast, O is allowed to modify the stores insofaras the definition of

complete play allows, i.e. the integer values in S′
i may be different from

the corresponding values in Si.

Arithmetic operations (x ⊕ y)

L Γ ⊢ x ⊕ y : int M is given by complete plays of the form iS(r↓, ix ⊕ iy).

Reference creation (ref(x))

L Γ ⊢ ref(x) : ref int M is defined by complete plays of the form

iS(r↓, a)S[a7→ix]
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with a ∈ Aint \ dom(S). Here P provides a fresh name as part of his

response (note the a 6∈ dom(S) requirement), and initialises the value

of a in the store to ix. Observe that, although many a’s are possible,

when we consider objects “up to name-permutation”, there is only one

complete play.3

Reference equality check (x = y)

We take L Γ ⊢ x = y : int M to be

{iS(r↓, 0)S | iS ∈ Ist
Γ , ix 6= iy} ∪ {iS(r↓, 1)S | iS ∈ Ist

Γ , ix = iy}.

In this case P responds with 0 or 1, depending on whether the values

corresponding to x and y are the same in the initial move. Note here

that ix, iy are names from Aint.

Dereferencing (!x)

In this instance P simply returns the value provided in the store of the

initial move:

L Γ ⊢ !x : int M = {iS(r↓, S(ix))S | iS ∈ Ist
Γ }.

Note again that ix ∈ Aint.

Reference update (x := y)

L Γ ⊢ x := y : unit M = {iS(r↓, ⋆)S[ix 7→iy] | iS ∈ Ist
Γ }

Here P modifies the store of the initial move using the value for y from

the initial move. The types of x, y specify that ix is a name and iy is an

integer. Observe that this is the only case encountered so far where the

move that P makes has an effect on the initial store S. This reflects

the fact that previous terms did not generate updates.

Conditionals (if x then N else N ′)

In this case we simply borrow plays from L Γ ⊢ N M or L Γ ⊢ N ′ M depend-

ing on the value of x inside the initial move, i.e. L Γ ⊢ if x then N else N ′ M

3I.e. for any a′ ∈ Aint \ dom(S), we have that iS(r↓, a′)S[a′ 7→ix] ∼ iS(r↓, a)S[a 7→ix].
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is equal to:

{iSs | ix > 0, iSs ∈ L Γ ⊢ N M} ∪ {iSs | ix = 0, iSs ∈ L Γ ⊢ N ′ M }.

Observe that, in contrast to previous cases, here we allow for plays of

length greater than 2. This is because N and N ′ may be terms of the

more complicated shapes addressed below. More intuitively, though,

we can say that the terms we had examined before did not engage in

higher-order behaviours, which can lead to further exchange of moves

between P and O.

Remark 4.7. In the above cases, most operations were restricted to

being performed on variables. This allowed us to explain the essence

of each operation in a minimalistic setting. However, if it is necessary

to translate a term that involves more complex terms, we can follow

the relevant recipe above and combine it with the way that application

will be interpreted, which will be explained below. This relies on the

fact that, for example, the complete-play interpretations of M := N and

let x = M in (let y = N in x := y) are guaranteed to be the same.

Next we turn our attention to more complicated ways of extracting

corresponding plays, involved in the remaining cases of our interpreta-

tion:

λxβ.M | while(M) | xy | (λxβ .M)N

Remark 4.8. The cases we shall examine concern application. Note

that in ToyML the argument has to be of type β and the

function term of type β → β′. Moreover, the scope for creating

terms of function type is quite limited: they can be identifiers,

λ-abstractions or branches of a conditional expression. Since the

game interpretation of (if M then M ′ else M ′′)N is the same as that of

if M then (M ′N) else (M ′′N), we only cover the first two cases in this

chapter. As before, the general approach to modelling application in

game semantics will be defined in the next chapter.

Lambda abstraction (λxβ.M)

L Γ ⊢ λxβ .M : β → β′ M is defined to consist of all complete plays of the

form

iS(r↓, †)SX1 · · · Xk .
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Each of the segments Xi corresponds to a single call to M and its

format will be required to be compatible with L Γ, x : β ⊢ M : β′ M in

the sense we explain below.

Consequently, X1 · · · Xk resembles an interleaving of plays from

L Γ, x : β ⊢ M : β′ M except that, due to multiple calls, more and more

names can be generated than those participating in a single call. Such

names have to be carried along by the play, even though they do not

take part in the call. Accordingly, P will not be allowed to modify

them. These inactive parts of the store will be referred to as Ui,j ’s in

the specification of the shape of each Xi. Overall, we shall require that

each Xi be of the shape

(c, ℓc)
S0⊎Ui,0 m

Si,1⊎Ui,0

i,1 · · · m
Si,2k⊎Ui,k

i,2k (r, ℓr)
Si,2k+1⊎Ui,k

such that (i, ℓc)S0 m
Si,1

i,1 · · · m
Si,2k

2k (r↓, ℓr)
Si,2k+1 , henceforth referred to

as thread si, is a complete play from L Γ, x : β ⊢ M M.

The presence of the Ui,j’s, the disjointness of their domains from

those of the respective stores in si and the fact that P cannot make

changes to Ui,j guarantee that names introduced by P in different

threads si have to be disjoint. Moreover, they will be different from

any O-names introduced in earlier threads.

In summary, the defining complete plays for λxβ.M are obtained

by interleaving complete plays from L Γ, x : β ⊢ M M in such a fashion

that the names created in each thread by P are disjoint and fresh with

respect to the preceding dialogue.

While loop (while(M))

Suppose Γ ⊢ M : int. We first calculate L Γ ⊢ M : int M and observe that

it must be equal to L Γ, x : unit ⊢ M : int M except that there is an extra ⋆

in the initial move. Note that the ⋆ has no bearing on names. while(M)

will then be interpreted by restricting L Γ ⊢ λxunit. M : int M. Recall that

sequences from L Γ ⊢ λxunit. M : int M match the pattern

X (r↓, †)(c, ⋆) X1 (r, ℓ1)(c, ⋆) · · · (r, ℓk−1)(c, ⋆) Xk (r, ℓk).

The above represents interleavings of calls of λxunit. M : int or, equiv-

alently, of evaluations of M . To interpret Γ ⊢ while(M) : unit we select
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only those sequences above where the induced sequence ℓ1 · · · ℓk satis-

fies ℓk = 0 and ℓj > 0 (1 ≤ j ≤ k). Subsequently, we erase all moves

with tags c, r, r↓ and add the move (r↓, ⋆) at the end. This yields the

sequence:

XX1 · · · Xk(r↓, ⋆).

In the above we have omitted stores, which simply need to be copied

over from one sequence to the other.

Application (xy)

L Γ ⊢ xy : β′ M contains all complete plays of the shape

iS(cx, iy)S(rx, ℓ)S′

(r↓, ℓ)S′

.

Note that the second move is a move with a call-tag and a value cor-

responding to the value of y in the initial move. The third move is an

O-move corresponding to a return from the call. The returned result

is subsequently used in the last move. P does not change the store in

any of the plays, but O can play a different store S′. We must have

dom(S) ⊆ dom(S′) and the inclusion can be proper if ℓ ∈ A \ dom(S).

Application ((λxβ.M)N)

Observe that this case corresponds to let x = N in M , where N is of base

type. The corresponding complete plays will be obtained by concate-

nating those from N with those from M . However, not all combinations

can be used for that purpose. For a start, the respective initial moves

must be compatible, i.e. identical for shared identifiers and, addition-

ally, the value occurring in the last move of the complete play from N

must be present in the initial move of the complete play from M . The

latter will mimic parameter passing.

Accordingly, let us consider

s = iS0 u (r↓, ℓ)S ∈ L Γ ⊢ N : β M ,

t = (i, ℓ)T0 mT1
1 · · · m

T2k+1

2k+1 ∈ L Γ, x : β ⊢ M : β′ M .

Note that the initial move of t contains ℓ, which also occurs in

the last move of s. Still, not all s, t will be used to calculate

L Γ ⊢ let x = N in M M. In order to qualify, they will have to fulfil the

three conditions given below:
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1. T0 ⊆ S

2. ν(s) ∩ P (t) = ∅, where we let P (t) be the set of P -names of t:

P (t) = { a ∈ ν(t) | ∃t′mT ⊑ t. a ∈ dom(T ) \ ν(t′), |t′| odd } .

3. If ℓ ∈ A and ℓ does not occur in iS0u then, if there is an occurrence

of ℓ in some mi (1 ≤ i ≤ 2k+1), the first such occurrence (if any)

must be in a P -move m2k′+1 for some k′. Up to that moment, O

may not change the stored value of ℓ, i.e. T2l(ℓ) = T2l−1(ℓ) for

1 ≤ l < k′. If ℓ does not occur in any mi, we also insist on the

above property with k′ = k + 1, i.e. O does not change ℓ at all.

Intuitively, the first condition ensures continuity between the evaluation

of N and M : the first store in M must be consistent with the store left

over after the evaluation of N . Note that dom(S) may properly contain

dom(T0). This will be the case if s contains more names than those in

(i, ℓ).

The second and third conditions ensure privacy of freshly created

names. The former insists that names generated by M be disjoint from

any names interacting for N . The third condition is specific to the

case where the last move of N generates a fresh name, which can only

happen if β = ref int, so that the last value ℓ be a (fresh) name. If that

is the case, in the ensuing computation the name cannot be guessed

by the environment. Thus, if it is to be revealed, this has to be done

through a P -move (m1, m3, · · · or m2k+1). Before that happens, the

environment is forbidden from modifying the corresponding part of the

store, to recognise the fact that it does not have access to that name.

When s, t satisfy all of the above conditions, they can be combined

to form complete plays for let x = N in M . We distinguish two cases.

• If ℓ /∈ A, or ℓ ∈ A ∩ ν(iS0u), we include in L Γ ⊢ let x = N in M M

all complete plays over Γ ⊢ β′ that match the following shape.

iS0u m
T1⊎(S\T0)
1 mT2⊎U1

2 mT3⊎U1
3 · · · mT2k⊎Ul

2k m
T2k+1⊎Ul

2k+1

If ℓ ∈ A, in the above complete plays ℓ will feature in every store

from the moment it appears in iS0u. The stores Ui consist of

names that are recognisable to N , but not to M . They can be
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arbitrary as long as they give rise to a complete play. Observe

that P will not be modifying the Ui’s in his responses to reflect

the fact that M has not access to these names and, hence, they

cannot be modified. The same recipe as above applies to the case

ℓ 6∈ A.

• If ℓ ∈ A and the only occurrence of ℓ in s is the final move then

we shall proceed differently. Recall that then, by condition 3, the

first move of t in which ℓ may occur after the initial move must

be odd-numbered. Let it be m2k′+1. In order to reflect the fact

that ℓ was freshly generated by N , we shall suppress it in stores

coming from M until the name is eventually played by P . Let

T ℓ
i = Ti ↾ (dom(Ti) \ ℓ). Then we include in L Γ ⊢ let x = N in M M

all complete plays over Γ ⊢ β′ of the shape:

iS0 u m
T ℓ

1 ⊎(S\T0)
1 m

T ℓ
2 ⊎U1

2 · · · m
T ℓ

2k′⊎Uk′

2k′ m
T2k′+1⊎Uk′

2k′+1 · · · mT2k⊎Uk

2k m
T2k+1⊎Uk

2k+1

Note that ℓ is being hidden in the stores before m2k′+1 is played.

From this point onwards it becomes part of the play and is carried

on as in the previous case. Analogously, if ℓ does not occur in t

(apart from the initial occurrence) then ℓ must be deleted from

all stores.

This completes the semantic translation. We next look at some

examples that demonstrate the above constructions.

Example 4.9. We calculate the complete plays corresponding to

x : ref int ⊢ (λyref int. x = y)(ref(0)) : int .

The complete plays corresponding to the term x : ref int ⊢ ref(0) have

the shape s = iS0(r↓, ℓ)S , where i 6= ℓ, S0 = {(i, j)}, S = S0 ⊎ {(ℓ, 0)}

for arbitrary j ∈ Z. In turn, the term x : ref int, y : ref int ⊢ x = y : int

generates two kinds of complete plays:

• t = (ix, iy)T0(r↓, 0)T0 with ix 6= iy and T0 = {(ix, jx), (iy , jy)},

where jx, jy ∈ Z, or

• t = (ix, iy)T0(r↓, 1)T0 with ix = iy, T0 = {(ix, jx)} for any jx ∈ Z.
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In order for s and t to be compatible and be able to yield a complete

play for the original term, we must have i = ix and ℓ = iy. Note that,

because in s we must have i 6= ℓ, this implies ix 6= iy, i.e. only the first

kind of t needs to be considered. Moreover, it must be the case that

T0 ⊆ S (condition 1), i.e. jx = j and jy = 0. As there are no P -names in

t, condition 2 is satisfied vacuously. So is 3, as the only O-moves in t are

initial. Because ℓ features only in the last move of s and in the initial

move of t, it will not be present in complete plays corresponding to the

whole term and also needs to be removed from stores. Consequently,

the plays corresponding to x : ref int ⊢ (λyref int. x = y)(ref(0)) : int will

have the shape i
{(ix,jx)}
x (r↓, 0){(ix,jx)}, where jx ∈ Z.

Example 4.10. To illustrate condition 3 of the latter composition case

at work, let us consider a slightly more complicated term, namely

f : unit → ref int ⊢ (λyref int. f() = y)(ref(0)) : int .

The complete plays for the term f : unit → ref int ⊢ ref(0) have the

shape s = ⋆∅(r↓, ℓ)S , where S = {(ℓ, 0)} and two shapes are possible

for f : unit → ref int, y : ref int ⊢ f() = y : int, namely:

• t = (⋆, iy)T0(cf , ⋆)T0(rf , ℓ′)T1(r↓, 0)T1 with T0 = {(iy , jy)}, iy 6= ℓ′,

T1 = {(iy , j′
y), (ℓ′, j′)}, where jy, j′

y , j′ ∈ Z, or

• t = (⋆, iy)T0(cf , ⋆)T0(rf , iy)T1(r↓, 1)T1 with T0 = {(iy , jy)} and

T1 = {(iy , j′
y)}.

We must have ℓ = iy for compatibililty of s and t. Furthermore, condi-

tion 1 stipulates T0 ⊆ S, i.e. jy = 0. Because P (t) = ∅, condition 2 is

satisfied. However, note that the second kind of t would break condition

3 because, after ℓ = iy occurs in the initial move, its first occurrence is in

the third move, i.e. an O-move (referred to as m2 in condition 3). Con-

sequently, only the first kind of t can be considered when calculating

the complete plays for f : unit → ref int ⊢ (λyref int.f() = y)(ref(0)) : int.

Moreover, because ℓ occurs only in the last move of s and does not oc-

cur in non-initial moves of t, O should be prevented from modifying

values stored at ℓ. Thus, the relevant shapes of t are of the form

(⋆, ℓ){(ℓ,0)}(cf , ⋆){(ℓ,0)}(rf , ℓ′){(ℓ,0),(ℓ′,j′)}(r↓, 0){(ℓ,0),(ℓ′,j′)}



4.3. Interpretation of ToyML terms 221

with ℓ 6= ℓ′. Note that, because no non-initial move in t contains an

occurrence of ℓ, the resultant stores will not have values for ℓ. Thus,

L f : unit → ref int ⊢ (λyref int.f() = y)(ref(0)) : int M consists of all com-

plete plays of the form

⋆∅ (cf , ⋆)∅ (rf , ℓ′){(ℓ′,j′)} (r↓, 0){(ℓ′ ,j′)}

with j′ ∈ Z.

In the following chapter we present a full game model for GroundML.

It will tackle full ground storage (not just integers), so the structure of

the stores will be necessarily more complicated. Secondly, we shall han-

dle arbitrary higher-order types, which will make interactions between

strategies more complicated. The last case above (let x = M in N) gives

a flavour of what is to come, because the let construction corresponds

to composition. From this point of view, the above account is simply

the specialisation of strategy composition to the case of types β.



5

Game Model

In this section we focus on the fully abstract game semantics for

GroundML. The framework amounts to a systematisation of the con-

cepts introduced earlier for ToyML. In particular, we develop the whole

necessary infrastructure for playing games, consisting of prearenas and

strategies, which becomes the semantic universe, a category, in which

GroundML can be modelled. The interpretation maps supported terms

into strategies on suitable prearenas.

5.1 Moves, arenas, plays, strategies

Recall that our constructions will be in nominal sets over the set of

location names: A =
⊎

ζ Aζ . More precisely, we shall be working in

strong nominal sets as strong support will turn out to be essential for

proving that game strategies remain deterministic when composed (cf.

Proposition 5.27).

5.1.1 Nominal arenas

Our semantics involves games comprising a formal exchange of moves

between two players: a Proponent, corresponding to the modelled term;

222
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and an Opponent, corresponding to the computational environment of

the term. The moves are selected from (pre)arenas, whose construction

follows the structure of types. Arenas specify the set of available moves

and the correlation between different moves within a game. Next we

present these notions in detail. They are essentially the call-by-value

arenas of Honda and Yoshida [18], cast inside the theory of nominal

sets.

Definition 5.1. An arena A = (MA, IA, ⊢A, λA) is given by:

• a strong nominal set MA of moves,

• a nominal subset IA ⊆ MA of initial moves,

• a nominal relation ⊢A ⊆ MA × (MA \ IA),

• a nominal function λA : MA → {O, P} × {Q, A},

satisfying, for each m, m′ ∈ MA, the conditions:

• m ∈ IA =⇒ λA(m) = (P, A) ,

• m ⊢A m′ ∧ λQA
A (m) = A =⇒ λQA

A (m′) = Q ,

• m ⊢A m′ =⇒ λOP
A (m) 6= λOP

A (m′) .

We call ⊢A the justification relation of A, and λA its labelling function.

The role of λA is to label moves as Opponent or Proponent moves,

or O-moves and P-moves respectively, and as Questions or Answers.

We write λOP
A and λQA

A for λA followed by a first and second projection

functions respectively. We shall denote moves as m, n, etc. and write q

for moves that are questions. Moreover, i and variants will be used to

range over initial moves, and we will sometimes use o and p to denote

O- and P-moves respectively. Finally, we will be depicting arenas as

directed bipartite graphs, with nodes given by moves, edges by the

justification relation, and in which the partition is defined by the OP-

polarities. These graphs are rooted at initial moves.

Arenas are used to model the types of our language via a semantic

translation that maps each type θ to an arena JθK and which is defined
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next. Consequently, an arena A = JθK is the domain of all values of

type θ. The simplest arena is (∅, ∅, ∅, ∅) and could be used to represent

the empty type, had we included it in our language. Other flat arenas

are 1, Z and Aζ , for each ground type ζ, defined by:

M1 = I1 = {⋆} , MZ = IZ = Z , MAζ
= IAζ

= Aζ ,

whereby “flat” means that the arenas only contain initial moves and,

therefore, the justification relation is empty. These arenas allow us to

model all ground types:

JunitK = 1 JintK = Z Jref ζK = Aζ .

Given arenas A and B, we can build more interesting arenas using

the following constructions (depicted in Figure 5.1). The coproduct

arena A + B is constructed by simply taking the (disjoint) union of A

and B:

MA+B = MA + MB λA+B = [λA, λB ]

IA+B = IA ∪ IB ⊢A+B = ⊢A ∪ ⊢B

where the notation [λA, λB ] means [λA, λB ](m) = λA(m) if m ∈ MA,

and λB(m) otherwise. Here MA + MB stands for the disjoint union

of MA and MB. For simplicity, in definitions we assume that MA and

MB are disjoint, so that no indexing of their elements is required. In

cases like A + A, such an indexing will be left implicit and we shall

work under the assumption that moves from the left-hand-side A can

be uniquely identified and in particular distinguished from those of the

right-hand-side A, and vice versa.

The product arena of A and B has initial moves which are pairings

of initial moves from A and B respectively. The non-initial moves are

precisely those of A and B, and in particular moves in A that were

justified by some initial move iA are now justified by (iA, iB), for all

iB ∈ IB (and dually for B). That is, writing ĪA for MA \ IA, we have:

MA⊗B = (IA × IB) + ĪA + ĪB IA⊗B = IA × IB
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and, for all m ∈ MA⊗B ,

λA⊗B(m) =















PA if m = (iA, iB) ∈ IA × IB

λA(m) if m ∈ ĪA

λB(m) if m ∈ ĪB

and, for all (m, n) ∈ M2
A⊗B ,

m ⊢A⊗B n ⇐⇒ (m = (iA, iB) ∧ (iA ⊢A n ∨ iB ⊢B n)) ∨

(m ⊢A n) ∨ (m ⊢B n)

On the other hand, the arena A ⇒ B contains functions, all of

which start with an initial move of the form †, which we can think

as a function handle or name. That initial move justifies initial moves

iA from A, seen as questions/calls to the represented function. In the

same spirit, initial moves iB from B are answers/returns to the iA’s.

Formally,

MA⇒B = {†} + MA + MB IA⇒B = {†}

and, for all m ∈ MA⇒B ,

λA⇒B(m) =



























PA if m = †

OQ if m = iA ∈ IA

λ̄A(m) if m ∈ ĪA

λB(m) if m ∈ MB

and, for all (m, n) ∈ M2
A⇒B,

m ⊢A⇒B n ⇐⇒ ((m, n) ∈ ({†} × IA) ∪ (IA × IB)) ∨

(m ⊢A n) ∨ (m ⊢B n)

where we write λ̄A for the OP -complement of λA.

Example 5.2. Recall the ground types ζ ::= unit | int | ref ζ. We have

seen that their denotations are given by flat arenas 1, Z and Aζ , each

of which has as moves the semantic counterparts of syntactic values

(locations and integers), including the move ⋆ which corresponds to

() : unit. We now look into the translation of first-order types of the
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A B

(iA, iB)

A− B−

†

iA

A−
B

A + B A ⊗ B A ⇒ B

Figure 5.1: Arena constructions. The arena for A + B is simply the combination
of the arenas for A and B, seen as bipartite graphs. In the case of A ⊗ B, the arena
has as initial moves pairs of initial moves from A and B, from which the remainder
sub-arenas of A (denoted A−) and B (resp. B−) are justified — we write A− for A
with its initial moves removed. The function arena A ⇒ B has a unique initial move
(†) which justifies the initial moves of the input arena A, the latter justifying A−

but also the initial moves of the output arena B.

form ζ1 → ζ2. They translate to Jζ1K ⇒ Jζ2K, which are generally given

by a diagram of the form:

†

v1

v2

where v1, v2 ∈ {⋆} ∪ Z ∪ A are moves from Jζ1K and Jζ2K respectively.

The † is initial, and justifies (all) questions v1, each of which justifies

(all) answers v2.

Games used to interpret terms are played between arenas, and in

particular between the arenas denoting the context/input and the re-

sult/output type respectively. The structures that encode such com-

binations of input and output arenas are called prearenas. They are

defined in the same way as arenas with the exception that initial moves

are O-questions.

Given arenas A and B, we define the prearena A → B by:

MA→B = MA + MB IA→B = IA
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and, for all m ∈ MA→B and (m, n) ∈ M2
A→B :

λA→B(m) =















OQ if m = iA ∈ IA

λ̄A(m) if m ∈ ĪA

λB(m) if m ∈ MB

m ⊢A⇒B n ⇐⇒ ((m, n) ∈ IA × IB) ∨ (m ⊢A n) ∨ (m ⊢B n)

Pictorially, A → B looks just like A ⇒ B albeit having its initial †

move removed.

Definition 5.3. The types of GroundML are interpreted into arenas by

JunitK = 1 , JintK = Z , Jref ζK = Aζ , and

Jθ1 × θ2K = Jθ1K ⊗ Jθ2K , Jθ1 → θ2K = Jθ1K ⇒ Jθ2K .

Moreover, each finite U ⊆ A, say U = { a1, · · · , an } with each name ai

belonging to the set Aζi
, is mapped to:

JUK = { (a′
1, · · · , a′

n) ∈ Aζ1 × · · · × Aζn
| (a′

1, · · · , a′
n) ∼ (a1, · · · , an) }

Finally, a typing environment U, Γ ⊢ θ, with Γ = { x1 : θ1, · · · , xk : θk },

is interpreted as the prearena1

JUK ⊗ Jθ1K ⊗ · · · ⊗ JθkK → JθK

which we shall denote by JU, Γ ⊢ θK, or just JΓ ⊢ θK if U = ∅.

Remark 5.4. Let us look more closely at the structure of the prearena

JU, Γ ⊢ θK. Its initial moves are of the form (a′
1, a′

2, · · · , a′
n, i1, i2, · · · , ik),

where the i1, i2, · · · , ik part consists of initial moves from the denotation

of Γ. Put otherwise, each ii corresponds to an “opening” of the arena

JθiK with some semantic value provided by the Opponent (hence the

polarity of the initial move is OQ). The rest of JU, Γ ⊢ θK comprises

the output arena, JθK, where Proponent himself provides a semantic

value, and the remainders JθiK
− of the input arenas. On the other hand,

the a′
1, a′

2, · · · , a′
n part of the initial moves is a permutation variant

of (a1, a2, · · · , an), assuming U = {a1, a2, · · · , an}. That is, there is

1if k + |U| = 0 we take the left-hand side to be 1.



228 Game Model

some permutation π such that, for all i, a′
i = π · ai. The reader might

be puzzled by this choice — why not having the initial moves be just

(a1, a2, · · · , an, · · · )? The answer to the latter is that we model terms

modulo the choice of those names by Opponent, in the same sense that

we model them modulo the choice of values for the open variables xi.
2

Example 5.5. We return to the arenas of Example 5.2 and expand our

focus to prearenas which correspond to typing environments where the

context is a mix of ground and ground-to-ground types:

x1 : ζ1, · · · , xk : ζk, xk+1 : ζk+1 → ζ ′
k+1, · · · , xn : ζn → ζ ′

n ⊢ ζ → ζ ′

These have denotations

(

Jζ1K ⊗ · · · ⊗ JζkK ⊗ Jζk+1K⇒Jζ ′
k+1K ⊗ · · · ⊗ Jζ1K⇒Jζ ′

1K
)

→ JζK⇒Jζ ′K

which are generally of the following shape,

(ℓ1, · · · , ℓn)

vk+1 · · · vn †

v′
k+1 · · · v′

n v

v′

with ℓi = † if i > k, and ℓi ∈ {⋆} ∪ Z ∪ A otherwise (depending on ζi).

The moves (ℓ1, · · · , ℓn) and v are O-questions, the vi’s are P-questions,

the v′
i’s are O-answers, and †, v′ are P-answers.

5.1.2 Plays

The plays of our games consist of moves equipped with stores which

correspond to the stores present in the operational semantics, albeit

with their domain restricted to the set of public (i.e. not private) names.

Plays also have additional pointers to declare the causality of moves:

2A more committed answer is that, while it is possible to commit ourselves to
the specific choice of initial names, (a1, a2, · · · , an), it makes the presentation un-
necessarily complicated, cf. [3].
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each question move must point to the function that it refers to; and

each answer move must point to the question that it answers.3

Recall that a store is a finite partial function S : A ⇀ (A∪Z∪ {⋆})

that is legal in the following sense:

• if S(a) = x and a has type ref ζ, then x has type ζ;

• if S(a) = b and b ∈ A, then b ∈ dom(S).

Given a prearena A, a move-with-store on A is a pair (m, S), written

mS , where m ∈ MA and S ∈ Stores. For economy, we may be writing

“move” when we really mean “move-with-store”.

Definition 5.6. A justified sequence on a prearena A is a sequence

s of moves-with-store on A such that:

• the first move is of the form iS with i ∈ IA;

• every other (i.e. not first) move nS′
in s is equipped with a pointer

to an earlier move mS such that m ⊢A n.

In the latter case, m is called the justifier of n; if n is an answer, we

also say that n answers m.

Plays are justified sequences obeying some further combinatorial

conditions which arise from the restrictions present in GroundML. A

first such condition is alternation: the two players should play in turns.

This reflects the fact that GroundML is a sequential language.

Another condition is bracketing: this stipulates that function calls

and returns must be well-nested and is due to the fact that we do not

have control mechanisms, such as call-cc or exceptions. For bracketing,

we shall be needing the following notions. Given a justified sequence

3The use of pointers can be avoided by using names for marking initial moves
of function type, instead of the † move, as done e.g. in [20, 27, 11, 22]. Note that
such a solution requires some special hygiene as e.g. the same function name cannot
be played twice in “introduction” position (i.e. even if we want to play the same
function twice, we have to hide this non-visible fact under the use of different names).
Herein we stick to pointers as they are standard in the literature and, moreover,
their elimination would introduce an orthogonal level of nominal infrastructure and
conditions that would go beyond the purposes of this tutorial.
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s, we say that s in complete if all questions in s justify an answer

in s. If s is not complete, then there is a last (i.e. rightmost) question

in it that justifies no answer — we call this the pending question of

s. Bracketing would then amount to follow the rule of answering the

pending question.

The absence of higher-order state in the language is captured by

visibility: this disallows function invocations to jump outside their call-

ing context and e.g. interact with functions that are no longer in scope.

The calling context of a move is described by the following notion. We

let the view psq of a justified sequence s to be given by:

pεq = ε and ps mSt nS′

q = psqmSnS′

.

Finally, the frugality condition controls the flow of names and in par-

ticular restricts the store to its public/available part. For each X ⊆ A

and store S we define S∗(X) =
⋃

i∈ω Si(X), where

S0(X) = X and Si+1(X) = S(Si(X)) ∩ A,

to be the set of names that can be reached from X through S. Then,

the set of available names of a justified sequence is defined inductively

by:

Av(ε) = ∅ and Av(smS) = S∗(Av(s) ∪ ν(m)).

Note below that we write s′ ⊑ s if s′ is a prefix of s.

Definition 5.7. A justified sequence s is a play if it satisfies the fol-

lowing conditions.

• No two adjacent moves belong to the same player (Alternation).

• For all tmS ⊑ s with m an answer, the justifier of m is the pending

question of t (Bracketing).

• For all tmS ⊑ s with non-empty t, the justifier of m is in ptq

(Visibility).

• For all tmS ⊑ s, dom(S) = Av(tmS) (Frugality).

The set of plays on A is denoted by PA.
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Example 5.8. Recall the name generators ⊢ gen, gen′ : int → ref int
from Example 3.4. Their typing context is translated

into the prearena J⊢ int → ref intK = 1 → (Z ⇒ Aint),

which has the shape depicted on the right (all i ∈ Z

and a ∈ Aint). The plays produced by the always-

same-name generator gen′ shall have the following

form (where there are no explicit pointers, assume

the move points to its predecessor).

⋆

†

i

a

⋆ † i1 a(a,i1) i2
(a,i′

1) a(a,i2) i3
(a,i′

2) a(a,i3) · · ·

OQ PQ OA PQ OA PA OQ PA

On the other hand, the term gen will produce a different name ai after

each call:

⋆ † i1 a
(a1,i1)
1 i2

(a1,i′
1) a

(a2,i2),(a1,i′
1)

2 i3
(a2,i′

2),(a1,i′′
1 ) a

(a3,i3),(a2,i′
2),(a1,i′′

1 )
3 · · ·

OQ PQ OA PQ OA PA OQ PA

In the latter play, observe the saturating effect of frugality: the condi-

tion stipulates that all old names be carried along in the store, even

when they are no more relevant to the term, and therefore the domain

of the store always grows.

Example 5.9. Going back to Example 3.5, we look into the channel

transmitter f : ref ref int → unit, g : unit → ref ref int ⊢ trmit : unit →unit.
The typing context corresponds to the prearena

(Aref int ⇒ 1) ⊗ (1 ⇒ Aref int) → (1 ⇒ 1), which

we depict as on the right (all a, b ∈ Aref int).

The plays produced by the transmitter will

be as follows, where for economy we only de-

pict for each store S its ref int references (i.e.

S ↾ Aref int), and suppress the values for Aint names

(†, †)

a ⋆g †

⋆f b ⋆

⋆′

(†, †) a
(a1,b1)
1 ⋆

(a1,b′
1)

f ⋆
(a1,b′

1)
g a

(a2,b2),
(a1,b′′

1 )
2 †

(a2,b2),
(a1,b′′

1 ) ⋆
(a2,a′),
(a1,a) ⋆′

(a2,a),
(a1,a) · · ·

OQ PQ OA PQ OA PA OQ PA
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that have been encountered. Thus, such a play starts with an initial

move (†, †) presenting the functions f and g. P then plays a question

a1 (plus a store, that is not important at this point) thus supplying

the name for the input channel c1. O answers with ⋆f (and a possibly

updated store), at which point P asks for the output channel name by

playing ⋆g (plus store). O answers with the channel name a2 and P

returns his function via †. From there on, any question ⋆(a2,a′),(a1,a) is

answered by a move ⋆′(a2,a),(a1,a), which acknowledges that a transmis-

sion from a1 to a2 was made. Finally, note that this is not the only play

shape for trmit: there are also plays where a1 and a2 coincide since O

is allowed to return a2 = a1 in the fifth move above.

When defining play composition in the next section it will be im-

portant to be strict on retaining name privacy during composition, and

for the latter we shall rely on the notion of name ownership. Given a

play s and some a ∈ ν(s), we say that a is a P-name in s, written

a ∈ P(s), if a is first introduced in s in a P-move. Put otherwise, if

there is some even-length s′mS ⊑ s such that a ∈ ν(mS) \ ν(s′). The

set O(s) of O-names of s is defined in a similar manner. Clearly,

ν(s) = P(s) ⊎ O(s)

for any play s.

We conclude this section on plays by looking at two properties re-

lated to visibility. First, the visibility imposed on plays, say, on A → B,

restricts them in a crucial aspect: only P is allowed to switch between

the A and B component.

Lemma 5.10 (Switching). Let s ∈ PA→B and s′mSnS′
⊑ s be such that

(m, n) ∈ (MA × MB) ∪ (MB × MA). Then, λOP
A→B = P .

Proof. By induction on the length of s, using also the fact that when-

ever the hypothesis holds for s then, for all odd-length s′ ⊑ s ending

in a move in A, all moves of ps′q belong to A; and if s′ ends in B then

all moves ps′q belong to B apart from the initial move.

Finally, we can see that visibility and bracketing both restrict, in

different ways, what moves can be played at the end of a play. One may
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therefore imagine a scenario where a play has a pending question that

is not in its view. At that point, an answer to that move would not be

playable. The next lemma declares such scenarios impossible.

Lemma 5.11. Let s ∈ PA be a play that is not complete. Then, its

pending question is in psq.

Proof. We argue by induction on s. Let q be the pending question of s

and m1 the last move of s (we eliminate stores for economy). If m1 is

a question then m1 = q and we are done. Otherwise, by bracketing, s

must have the form s = s′q1s1m1 with q1 justifying m1 and all questions

of s1 answered inside s1. Thus, q is the pending question of s′ as well

and psq = ps′qq1m1, so we can apply the IH on s′.

5.1.3 Strategies and composition

Game semantics interprets types as arenas. Strategies are then used to

denote terms.

Definition 5.12. A strategy σ on a prearena A is a non-empty set of

even-length plays of A satisfying:

• If soSpS′
∈ σ then s ∈ σ (Even-prefix closure).

• If s ∈ σ then, for all permutations π, π · s ∈ σ (Equivariance).

• If spS1
1 , spS2

2 ∈ σ then spS1
1 = π · spS2

2 for some permutation π

(Determinacy).

We write σ : A to declare that σ is a strategy on A.

Note in particular that ǫ ∈ σ for all strategies σ. Since strategies

are even-prefix closed, they are generally specified by plays of maximal

length. We thus introduce the following notation to save space in def-

initions. For any set X of even-length plays, we shall write Xcl for its

even-prefix closure: Xcl = { s | ∃s′ ∈ X. s ⊑even s′ }.

Example 5.13. Let us revisit the terms examined in Examples 5.8, 5.9

and give formal definitions for the strategies corresponding to each

term. While we have yet to define the semantic translation of terms,
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we shall nonetheless write JMK for the strategy denoting the term M ;

the explanation of this is the subject of the next sections. We start with

the name generators:

Jgen′K = { ⋆ † i1 a(a,i1) · · · in a(a,in) | n ≥ 0 ∧ i1, · · · , in ∈ Z }cl

JgenK = { ⋆ † iS1
1 a

S1⊎{(a1,i1)}
1 · · · iSn

n aSn⊎{(an,in)}
n | n ≥ 0 ∧ i1,· · ·, in ∈ Z }cl

where, for each j, dom(Sj) = {a1, · · · , aj−1} and aj /∈ dom(Sj).4 On

the other hand, for trmit we obtain the strategy:

JtrmitK = { (†, †) aS
1 ⋆S′

f ⋆S′

g aS0
2 †S0 ⋆S1 ⋆′S′

1 · · · ⋆Sn ⋆′S′
n | n ≥ 0 }cl

where stores satisfy the conditions:

dom(S) = { a1, S(a1) }

dom(S′) = dom(S) ∪ { S′(a1) }

dom(S0) = dom(S′) ∪ { S0(a1), a2, S0(a2) }

dom(Si) = dom(Si−1) ∪ { Si(a1), Si(a2) } (i > 0)

and, for each j, S′
j = Sj [a2 7→ Sj(a1)].

Remark 5.14. In the previous example we defined strategies by de-

scribing their candidate plays and also providing conditions ensuring

that those where indeed plays of the examined prearenas. In the sequel

we will be more economic and, for instance, when writing

JtrmitK = { (†, †) aS
1 ⋆S′

f ⋆S′

g aS0
2 †S0 ⋆S1 ⋆′S′

1 · · · ⋆Sn ⋆′S′
n | n ≥ 0 }cl

we shall implicitly assume that the defined expression is a play in

(Aref int ⇒ 1) ⊗ (1 ⇒ Aref int) → (1 ⇒ 1), a requirement which in

this case implies the conditions on store domains we specified above.

We next show how plays and strategies are composed. Let us set γ

to be an endofunction on justified sequences which restricts any justi-

fied sequence to a frugal one by removing from the stores the names

violating frugality. Formally,

γ(ǫ) = ǫ , γ(tmS) = γ(t) mS′

4The fact that aj /∈ dom(Sj) is already implicit in the notation (Sj ⊎ {(aj , ij)}).
Note in particular that S1 = ∅.
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where S′ = S ↾ Av(tmS).

Play composition is defined extensionally, as follows. First, we define

a notion of “3-arena play”: these are plays played between three arenas,

say A, B and C, and represent compositions of plays between A → B

and B → C. The way we compose plays is by matching moves in the

common arena B.

We now turn to defining a suitable notion of interaction between

plays. Given arenas A, B, C, we define the prearena A → B → C by

setting:

MA→B→C = MA→B + MC λA→B→C = [λA→B [iB 7→ PQ], λC ]

IA→B→C = IA ⊢A→B→C = ⊢A→B ∪ {(iB , iC)} ∪ ⊢C

Let u be a justified sequence on A → B → C. We define u ↾ AB

to be u in which all C-moves are suppressed, along with associated

pointers. u ↾ BC is defined in an analogous manner. u ↾ AC is defined

similarly with the caveat that, if there was a pointer from an initial

C-move to an initial B-move which in turn had a pointer to an initial

A-move, we add a pointer from the C-move to the A-move. Moreover,

we write u ↾γ AB for the result of applying γ to the projection u ↾ AB,

i.e. u ↾γ AB = γ(u ↾ AB), and similarly for the other projections.

Note that such a projection may alter move polarities: e.g. each iB is a

P-move in A → B → C, yet an O-move in B → C.

Below we shall often say that a move is an O- or a P-move in X,

for X ∈ {AB, BC, AC}, meaning ownership in the associated prearena

(A → B, B → C or A → C). The sets of P- and O-names in u ↾ X are

defined using the same convention.

Definition 5.15. A justified sequence u on A → B → C is an interac-

tion sequence on ABC if γ(u ↾γ AB) ∈ PA→B , γ(u ↾γ BC) ∈ PB→C

and the following conditions are satisfied (Laird conditions [28]):

• u is frugal, that is, γ(u) = u;

• P(u ↾γ AB) ∩ P(u ↾γ BC) = ∅;

• O(u ↾γ AC) ∩ (P(u ↾γ AB) ∪ P(u ↾γ BC)) = ∅;

• for each u′ ⊑ u ending in mSm′S′
and a ∈ dom(S′) if
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– m′ is a P-move in AB and a /∈ Av(u′ ↾ AB),

– or m′ is a P-move in BC and a /∈ Av(u′ ↾ BC),

– or m′ is an O-move in AC and a /∈ Av(u′ ↾ AC),

then S(a) = S′(a).

We write Int(ABC) for the set of interaction sequences on ABC.

Thus, an interaction sequence on ABC must project well on AB and

BC and, moreover, satisfy a set of conditions pertaining to frugality and

name privacy (last three conditions). The latter conditions ensure that

no party in the interaction can guess the other parties’ private names

or touch their private store. Note that, in an interaction as above, there

are three parties interacting:5 the Proponent of AB, the Proponent of

BC, and the Opponent of AC. The following lemma shows that every

name in u can be traced back to one of these parties.

Lemma 5.16. For any u ∈ Int(ABC),

ν(u) = O(u ↾γ AC) ⊎ P(u ↾γ AB) ⊎ P(u ↾γ BC).

Proof. By definition of interaction sequences, the three RHS compo-

nents have no common elements. Thus, it suffices to show that ev-

ery element of ν(u) belongs in one of these components. So take any

a ∈ ν(u) and let u′mS ⊑ u be such that mS introduces a in u. Let

us assume that m is a P-move in AB — the other two cases (P-move

in BC or O-move in AC) are dealt with in the same manner. We

claim that a ∈ Av(u′mS ↾ AB). For suppose this is not the case. Then

a /∈ ν(m) and, moreover, there is no b ∈ Av(u′ ↾ AB) ∪ ν(m) such

that a be reachable from b via S. But, by frugality of u, there must be

some b ∈ Av(u′) ∪ ν(m) such that a be reachable from b via S. Since

b /∈ Av(u′ ↾ AB), the Laird conditions on stores imply that a is reach-

able from b already in the store of the last move of u′, which contradicts

the fact that a /∈ ν(u′). Hence, a ∈ Av(u′mS ↾ AB) and, consequently,

a ∈ P(u ↾γ AB).

5There seem to be three roles missing from the above description: the Opponent
of AB and BC, and the Proponent of AC. But these are already present here: e.g.
the O of AB is played by the P of BC in B, and by the O of AC in A. Similarly for
the other roles.
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In order for interactions to lead to a well-defined notion of compo-

sition, we need to show that projecting an ABC-interaction sequence

on AC yields a play in A → C (modulo frugality). We obtain this

result after a series of technical lemmas. Although these results are

obtained from standard game semantic analysis of call-by-value com-

putation (e.g. [18]), for completeness, we include proofs for the first two

in a technical appendix in Section 5.3.

Lemma 5.17 (Interaction switching). Let u ∈ Int(ABC), u′mSnS′
⊑ u

be such that (m, n) /∈ M2
A ∪ M2

B ∪ M2
C . Then there is X ∈ {AB, BC}

such that (m, n) ∈ M2
X , m is an O-move in X and n is a P-move in X.

Lemma 5.18 (Interaction bracketing). Let u ∈ Int(ABC) and u′mS ⊑ u

with m an answer. Then, mS answers the last open question of u′.

Lemma 5.19 (Interaction visibility). Given u ∈ Int(ABC), define the

view of u inductively by: pǫq = ǫ; pumSu′nS′
q = puqmSnS′

, if n a

move in AC justified by m; and pumSq = puqmS otherwise. Then, for

all u′mS ⊑ u, the justifier of mS appears in pu′q.

We can now prove that composition is well defined.

Proposition 5.20. If u ∈ Int(ABC) then (u ↾γ AC) ∈ PA→C .

Proof. The fact that u ↾ AC satisfies alternation, bracketing and visi-

bility follows respectively from the previous three lemmata. Frugality

of γ(u ↾ AC) is by definition of γ.

The above proposition gives us a way to compose plays: given s ∈

PA→B and t ∈ PB→C , these can be composed to a play in PA→C if there

is some u ∈ Int(ABC) such that (u ↾γ AB) = s and (u ↾γ BC) = t. In

such a case, the composite of s and t is u ↾γ AC. We now extend this

notion of composition to strategies.

Definition 5.21. For each pair of strategies σ : A → B and τ : B → C,

their composition σ; τ ⊆ PA→C is given by:

σ; τ = { u ↾γ AC | u ∈ Int(ABC) ∧ (u ↾γ AB) ∈ σ ∧ (u ↾γ BC) ∈ τ } .
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1
σ

−→ Aint
τ

−→ Z ⇒ Aint

⋆

b(b,i0)

†(b,i0)

i
(b,i′

0)
1

b(b,i1)

...

i
(b,i′

n−1)
n

1
σ

−→ Aint

⋆

b(b,i0)
b(b,in)

n

Aint
τ

−→ Z ⇒ Aint

b(b,i0)

†(b,i0)

i
(b,i′

0)
1

b(b,i1)

...

i
(b,i′

n−1)
n

b(b,in)
n

1
σ;τ
−−→ Z ⇒ Aint

⋆

†

i1

b(b,i1)

...

i
(b,i′

n−1)
n

b(b,in)
n

Figure 5.2: Composition example: interaction sequence in ABC (left), projection
on BC (middle), on AC (right), and on AB (bottom left). Here the composing
strategies are σ = Jref(0)K : A → B and τ = Jx : ref int ⊢ λzint. x := z; xK : B → C.
The composition conditions enforce that i0 = i′

0 = 0.

Example 5.22. Recall the first name generator from Example 3.4:

gen′ ≡ let x = ref(0) in λzint. x := z; x : int → ref int.

Jgen′K will be given via the composition:

Jgen′K = 1
Jref(0)K
−−−−→ Aint

Jx:ref int ⊢ λzint. x:=z;xK
−−−−−−−−−−−−−−→ Z ⇒ Aint

with the semantics of each component being:

Jref (0)K = { ⋆ a(a,0) | a ∈ Aint }cl

Jλz.x := z; xK =

{ b(b,i0) †(b,i0) i
(b,i′

0)
1 b(b,i1) · · · i

(b,i′
n−1)

n b(b,in) | b ∈ Aint ∧ n ≥ 0 }cl

Composing these strategies amounts to considering interaction se-

quences u over 1Aint(Z ⇒ Aint) that project in Jref(0)K and Jλz.x :=

z; xK on 1Aint and Aint(Z ⇒ Aint) respectively, i.e. u are of the form

⋆ b(b,i0) †(b,i0) i
(b,i′

0)
1 b(b,i1) · · · i

(b,i′
n−1)

n b(b,in)
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with i0 = 0 (see also Figure 5.2). Note that the above projects as ⋆ b(b,0)

on 1Aint, which is in Jref(0)K as the latter is closed under permutation.

Moreover, by Laird conditions on composition, i′
0 = i0. This is because

the move i
(b,i′

0)
1 is an O-move in 1(Z ⇒ Aint) and, if we project on

1(Z ⇒ Aint) and apply γ we see that b disappears, i.e. is not available.

Since b is a P-name in 1Aint, O cannot change its value in the move

i
(b,i′

0)
1 . Therefore, i′

0 must be the same as i0. Projecting these interaction

sequences on 1(Z ⇒ Aint), we obtain:

Jgen′K = { ⋆ † i1 b(b,i1) · · · i
(b,i′

n−1)
n b(b,in) | b ∈ Aint ∧ n ≥ 0 }cl

which is the strategy given in Example 5.8.

Example 5.23. While the Laird conditions did influence composition

in the previous example, this was done in a way that did not affect

the resulting strategy. We next look at a term where the role of these

conditions is crucial. Let us consider the term:

M1 ≡ let s = ref(0) in λyref int. s = y : ref int → int

from Example 3.7. Again, this results from a composition:

JM1K = 1
Jref(0)K
−−−−→ Aint

Js:ref int ⊢ λyref int. s=yK
−−−−−−−−−−−−−−→ Aint ⇒ Z

Jref(0)K = { ⋆ a(a,0) }cl

Jλy.s = yK = { bS0 †S0 aS1
1 iS1

1 · · · aSn
n iSn

n | b, a1, · · ·, an ∈ Aint ∧ n ≥ 0 }cl

where, for each j, ij = 1 if aj = b, and 0 otherwise, and Sj ranges over

all the stores S such that dom(Sj) = {b, a1, · · · , aj}.6 For composition,

we consider interaction sequences u over 1Aint(Aint ⇒ Z):

⋆ bS0 †S0 aS1
1 iS1

1 · · · aSn
n iSn

n

with S0 = {(b, 0)}. We now observe the following fact. The projection

of ⋆ bS0†S0 on 1(Aint ⇒ Z), after applying γ, is ⋆ † , and b is a P-name

in 1Aint while the next move, aS1
1 , is an O-move in 1(Aint ⇒ Z). This

6For example, S0 = {(b, i)} for any i ∈ Z. Note there may be repetitions in the
sequence b, a1, · · · , aj .
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means two things: first, O cannot play a1 = b and, moreover, O cannot

change the value of b. That is, a1 6= b (thus i1 = 0) and S1(b) = 0. This

reasoning extends to all a
Sj

j ’s, and therefore u must be of the form:

⋆ bS0 †S0 aS1
1 0S1 · · · aSn

n 0Sn

with Sj(b) = 0. Projecting onto 1(Aint ⇒ Z), we obtain that JM1K =

{ ⋆ † a
S′

1
1 0S′

1 · · · a
S′

n
n 0S′

n | a1, · · ·, an ∈ Aint ∧ n ≥ 0 }cl where, for each j,

dom(S′
j) = {a1, · · · , aj}. This is precisely JM2K, from Example 3.7.

5.1.4 Strategy closure

While our previous analysis ensures that the elements of σ; τ are plays,

we would actually like σ; τ to be a strategy in A → C. Of the strat-

egy conditions, the one that presents the greatest difficulty is that of

determinacy. First, we examine the following “stronger” determinacy

condition for candidate strategies σ ⊆ PA:

• For all s1mS1
1 , s2mS2

2 ∈ σ, if s1 ∼ s2 then s1mS1
1 ∼ s2mS2

2 (Strong

determinacy).

Lemma 5.24. Any equivariant set of even-length plays σ ⊆ PA satisfies

determinacy iff it satisfies strong determinacy.

Proof. Strong determinacy clearly implies determinacy. For the con-

verse, assume σ is deterministic, s1mS1
1 , s2mS2

2 ∈ σ and s1 ∼ s2, say

with s1 = π · s2. By equivariance, π · (s2mS2
2 ) = s1m

′S′
2

2 ∈ σ, where

m
′S′

2
2 = π · mS2

2 . Hence, by determinacy, s1mS1
1 ∼ s1m

′S′
2

2 and so, using

s2mS2
2 ∼ s1m

′S′
2

2 , we get s1mS1
1 ∼ s2mS2

2 .

We shall use the following lemmas, the proofs of which are deferred

to Section 5.3. Suppose σ : A → B and τ : B → C are strategies.

Lemma 5.25. Let u1mS1
1 , u2mS2

2 ∈ Int(ABC) and u1 ∼ u2. If m1 is a

P-move in AB (a P-move in BC, an O-move in AC) and (u1mS1
1 ↾γ

AB) ∼ (u2mS2
2 ↾γ AB) (resp. ↾γ BC, ↾γ AC) then u1mS1

1 ∼ u2mS2
2 .

Lemma 5.26. Let u1, u2 ∈ Int(ABC) with (ui ↾γ AB) ∈ σ and (ui ↾γ

BC) ∈ τ , for i = 1, 2, and suppose there is u′
1 ⊑ u1 such that (u′

1 ↾γ

AC) ⊑ (u2 ↾γ AC). Then, there is u′
2 ⊑ u2 such that u′

1 ∼ u′
2.
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Proposition 5.27. σ; τ is a strategy in A → C.

Proof. Even-prefix closure of σ; τ follows from the respective property

for σ and τ and the switching conditions of Lemma 5.17. Equivariance

follows from the fact that all operations applied for composition are

equivariant. Now let smS1
1 , smS2

2 ∈ σ; τ with smSi

i = uim
S′

i

i ↾γ AC. By

previous lemma, u1 ∼⊑ u2 ∼⊑ u1 and hence u1 ∼ u2. Suppose WLOG

that m1 is in A. Then, by switching, u1, u2 end in AB and m2 is also

in A. By nominal determinacy of σ, (u1m
S′

1
1 ↾γ AB) ∼ (u2m

S′
2

2 ↾γ AB)

and thus, by penultimate lemma, u1m
S′

1
1 ∼ u2m

S′
2

2 .

5.1.5 The category of games

We have seen the ingredients of games, namely arenas, plays and strate-

gies, and how the latter two notions can support a natural notion of

composition. Our modelling approach amounts to translating terms of

the language to a universe of games: more precisely, a category with

arenas as objects and strategies as morphisms.

The identity morphisms of our category of games are given by:

idA = { s ∈ PA→A | s ↾ Al = s ↾ Ar }

where Al above denotes the left A in A → A (and dually for Ar). This

strategy behaviour, whereby P copies moves from one sub-areana A to

another, is called a copycat.

We can immediately verify the following.

Proposition 5.28. For any σ : A → B, we have that σ = idA; σ =

σ; idB .

To show that strategy composition is associative and, hence, games

as above indeed form a category, is significantly more intricate. Starting

from a triple of strategies A
σ
−→ B

τ
−→ C

ρ
−→ D, one defines interactions

over the 4 arenas ABCD and shows that plays in (σ; τ); ρ and σ; (τ ; ρ)

can be seen as projections on AD of the same interactions on ABCD.

As a full proof would need to go into rather tedious lengths, we shall

omit it and refer the reader to [28] for a similar account.
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Proposition 5.29. Given strategies σ : A → B, τ : B → C and ρ :

C → D, we have (σ; τ); ρ = σ; (τ ; ρ).

With compositionality in hand, we have our well-defined category.

Definition 5.30. Let G be the category whose objects are arenas, and

morphisms from A to B are the strategies on A → B.

To gain some first insight on the structure that is available in G, we

shall probe the A + B construction in order to obtain coproduct. For

any pair of strategies σ : A → C and τ : B → C, we define:

[σ, τ ] : A + B → C = σ ∪ τ

where the union on the right-hand side takes care of any re-indexing of

A and B moves within A + B.

Adding the injection morphisms (with appropriate re-indexing)

inl : A → A + B = idA and inr : B → A + B = idB

we can straighforwardly verify the coproduct equations:

• σ = A
inl−→ A + B

[σ,τ ]
−−→ C and τ = B

inr−→ A + B
[σ,τ ]
−−→ C,

• for any ρ : A + B → C, ρ = [inl; ρ, inr; ρ].

Hence, A + B is the coproduct of A and B in G.

Finally, note that + distributes over ⊗ via the isomorphism:

distA,B,C : (A + B) ⊗ C
∼=−→ (A ⊗ C) + (B ⊗ C)

which plays like idA⊗C or idB⊗C respectively depending on whether the

initial move is of the form (iA, iC) or (iB , iC).

5.1.6 Modelling value terms

Having defined the category G of games, we start looking at the trans-

lation of (supported) terms into G. We shall first examine values. Let

us recall that they are given by the grammar

V ::= () | i | x | a | 〈V, V 〉 | λxθ. M.
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These will be identified with strategies over a subcategory of G, written

Gtti, obeying some further conditions which we shall discuss next.

Consider a value term U, Γ ⊢ V : θ and its denotation JV K :

JU, ΓK → JθK. Since V is already a value, for any initial move iS played

by O, it must be the case that P replies with an initial move in JθK:

there is no question to be played here, we only need to return the value

V . This leads us to the first condition for value terms.

Definition 5.31. Given a strategy σ : A, we call σ total if for all iS ∈

PA there is iSmS′
∈ σ, with m an answer (to i).

Let us restrict for a moment our scenario to the typing context

a, x : int ⊢ θ → θ′ with a ∈ Aint. Any value term of this type must be

of the form λxθ.M and corresponds to some strategy:

σ : JθK ⊗ Aint −→ JθK ⇒ Jθ′K

Suppose O plays an initial move (a, iθ)S where, say, S = {(a, 5)}. As

we argued above, σ replies to the initial move with †, which is the

initial move of JθK ⇒ Jθ′K and signifies that P plays a function of that

type. Passing from (a, iθ)S to †, P is not going to make any changes to

the store: as λx.M is already a value, no store update is involved in

returning it. Hence, P should in fact play †S .

While our last observation bans store updates when moving from

(a, iθ)S to †, there is more behaviour that needs to be excluded here:

there is also no reading from the store. The latter is more subtle to

formulate as it essentially describes a uniformity condition: P should

have the same behaviour for any other initial value of a other than

5. Put otherwise, P bases his reaction to (a, i)S just on (a, i) — the

initial store S may as well be considered as invisible at that point. An

even subtler restriction we need to impose on σ is the following. The

modelled value is not only free of observable stateful behaviour in its

second move (i.e. interaction with S) but, moreover, does not exert any

private stateful effect. That is to say, the different calls of λx.M are

independent, in that each call has a behaviour that does not depend

on other calls, and its own private names as well.

To model the notion of “call” in such a situation, we introduce the

notion of thread. Suppose s ∈ PA is a play of the form s = iSmS′
s′
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with s′ non-empty and m an answer. We call each move n in s′ which

is justified by m a threader move. Each move in s′ is assigned a unique

threader move from s′ as follows. For each s = iSmS′
s′ with m an

answer, define thrr(s) inductively by

thrr(iSmS′

s1 nT ) = n

thrr(iSmS′

s1 pS′′

s2 oT ) = thrr(iSmS′

s1 pS′′

) = thrr(iSmS′

s1)

and, for any move m′ in s′, let its threader move be thrr(iSmS′
s′

m′),

where s′
m′ is the prefix of s′ ending in m′. We now define the thread-

view of s, written ⌈s⌉, as:

⌈iSmS′

s′⌉ = γ(i m s′′)

where s′′ is the subsequence of s′ containing all of its moves whose

threader move is thrr(iSmS′
s′). Thus, the thread-view of s contains all

the moves of the current thread of s, where threads are specified by

threader moves. Note in particular that only O is allowed to switch

between threads.

We can now define the strategies that capture value behaviour.

Definition 5.32. A strategy σ : A is called thread-independent if:

• for each i ∈ IA there is a unique answer mi ∈ MA such that

whenever iSmS′
∈ σ then S′ = S and m = mi;

• for all s1mS1
1 nT1

1 , s2 ∈ σ and s2mS2
2 ∈ PA such that ⌈s1mS1

1 ⌉ =

⌈s2mS2
2 ⌉, there is s2mS2

2 nT2
2 ∈ σ such that ⌈s1mS1

1 nT1
1 ⌉ ∼

⌈s2mS2
2 nT2

2 ⌉;

• for all smSnT ∈ σ and a ∈ dom(S) \ ν(⌈smS⌉) we have a /∈

ν(⌈smSnT ⌉) and T (a) = S(a).

It is called total thread-independent (tti) if it is both total and

thread-independent.

We can show that total strategies and thread-independent strate-

gies compose.7 We shall write Gtti for the wide subcategory of G of tti

7Closure under totality is straightforward. The case of thread-independence is
more demanding and one uses the fact that such strategies can actually be repre-
sented by interleavings of single threads.
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strategies. We can already see that the following strategies in JU, Γ ⊢ θK

are tti.

JU, Γ ⊢ ()K = { iS⋆S }cl JU, Γ ⊢ xi : θiK = { iS iSθi
}cl

JU, Γ ⊢ iK = { iSiS }cl JU, Γ ⊢ ai : Aζi
K = { iSa′S

i }cl

Here i ranges over initial moves of JUK ⊗ Jθ1K ⊗ · · · ⊗ JθnK and is of

the form (a′
1, · · · , a′

m, iθ1 , · · · , iθk
), assuming Γ = { x1 : θ1, · · · , xk : θk }

and U = { a1, · · · , an }.8 In the rest of this section we shall focus on

products and exponentials in order to model the remaining classes of

values.

For any pair of arenas A and B, define the projection strategy

π1 : A ⊗ B → A = { (iA, iB)S iSA s | iSA iSA s ∈ idA }cl

and its dual π2 : A ⊗ B → B. We also define strategies for rearranging

product components:

syA,B : A ⊗ B → B ⊗ A

= { (iA, iB)S (iB , iA)S s | (iA, iB)S (iA, iB)S s ∈ idA⊗B }cl

asA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C

= { (iA, m)S((iA, iB), iC)Ss | (iA, m)S(iA, m)Ss ∈ idA⊗(B⊗C) }cl

with m = (iB , iC). These are in fact isomorphisms (e.g. syA,B; syB,A =

idA⊗B) and therefore we will usually leave them implicit as “∼=” in

diagrams. Given a strategy σ : A → B, we can build the strategy:

〈σ, idA〉 : A → B ⊗ A = { ǫ } ∪ { iSA s ∈ σ | ∀mT in s. m ∈ MA }

∪ { iSA s (iB , iA)S′

s′ | iSA s iS
′

B (s′@B) ∈ σ, γ(iSA iSA(s′@A)) ∈ idA }

where s′@B is the subsequence of s′ of moves whose threader move

comes from the B component of B⊗A, and similarly for s′@A. This de-

fines a trivial strategy pairing which we can extend to arbitrary strate-

gies σ : A → B and τ : A → C as follows,

〈σ, τ〉 = A
〈σ,id〉
−−−→ B ⊗ A

〈π2;τ,id〉
−−−−−→ C ⊗ (B ⊗ A)

∼=;π1;∼=
−−−−→ B ⊗ C

8Recall from Remark 5.4 that, while U = { a1, · · · , an } contains specific choices
of names for each of its components, its semantic interpretation JUK includes all
nominal orbits of the sequence (a1, · · · , an), i.e. all (a′

1, · · · , a′
n) ∼ (a1, · · · , an).
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and, for any σ′ : A′ → B′, we let σ ⊗ σ′ = A ⊗ A′ 〈π1;σ,π2;σ′〉
−−−−−−−→ B ⊗ B′.

The defined structure suffices for capturing the call-by-value

lambda-calculus fragment of GroundML (cf. [29]). The category G is

symmetric premonoidal [37] under ⊗, and tti morphisms are central:

for all σ : A → B, σ′ : A′ → B′, if σ is tti then σ ⊗ σ′ = σ ⊗ id; id ⊗ σ′ =

id ⊗ σ′; σ ⊗ id. In fact, we can show (G, Gtti) to be a closed Freyd cate-

gory [38].

Proposition 5.33. Projections and pairings, defined as above, yield

products in Gtti. Moreover, for all A, B, C, there is an isomorphism

Λ : G(A ⊗ B, C) ∼= Gtti(A, B ⇒ C) natural in B, C.

For instance, for all A, B, we have an evaluation morphism

evA,B : (A ⇒ B) ⊗ A → B = Λ−1(idA⇒B) .

We can now complete the translation of values by setting:

J〈V, V ′〉K = JU, ΓK
〈JV K,JV ′K〉
−−−−−−→ JθK ⊗ Jθ′K

Jλxθ.MK = JU, ΓK
Λ(JMK)
−−−−→ JθK ⇒ Jθ′K

given JMK : JU, Γ, x : θK → Jθ′K. Of course, this assumes the translation

of general terms has been established, which we examine next.

5.1.7 The model for GroundML

The developments of the previous section allow us to model the call-by-

value λ-calculus fragment of GroundML. What remains to be modelled

is the stateful part of it. More concretely, we need strategies for refer-

ence creation, dereferencing and update. We define these below,

newζ : JζK → Aζ = { vS aS[a7→v] | a ∈ Aζ \ ν(v, S) }cl

getζ : Aζ → JζK = { aS vS | v = S(a) }cl

setζ : Aζ ⊗ JζK → 1 = { (a, v)S ⋆S[a7→v] }cl

for any ground type ζ.

The full translation of GroundML into G is given inductively as

below. Suppose that |U| = n and Γ = { x1 : θ1, · · · , xk : θk }. We write

A for the arena JUK ⊗ Jθ1K ⊗ · · · ⊗ JθkK.
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• JU, Γ ⊢ () : unitK = A
t

−→ 1 , where t = { iSA ⋆S | iSA ∈ PA→1 }cl .

• JU, Γ ⊢ i : intK = A
t

−→ 1
i

−→ Z , where i = { ⋆ i }cl .

• JU, Γ ⊢ xj : θjK = A
πn+j
−−−→ JθjK .

• JU, Γ ⊢ M1 ⊕ M2 : intK = A
〈JM1K,JM2K〉
−−−−−−−−→ Z ⊗ Z

σ⊕
−−→ Z , where

σ⊕ = { (i1, i2) (i1 ⊕ i2) | i1, i2 ∈ Z }cl .

• JU, Γ ⊢ if M then N1 else N0 : θK = A
〈JMK,id〉
−−−−−→ Z⊗A

if⊗id
−−−→ (1+1)⊗

A
∼=−→ A + A

[JN1K,JN0K]
−−−−−−−→ JθK , where if = { 0 ⋆r }cl ∪ { i ⋆l | i 6= 0 } .

• JU, Γ ⊢ M1 = M2 : intK = A
〈JM1K,JM2K〉
−−−−−−−−→ Aζ ⊗ Aζ

σ=−−→ Z , where

σ= = { (a, a) 1 | a ∈ Aζ }cl ∪ { (a, b) 0 | a, b ∈ Aζ , a 6= b } .

• JU, Γ ⊢ ref(M) : refζK = A
JMK
−−→ JζK

new
−−→ Aζ .

• JU, Γ ⊢ !M : ζK = A
JMK
−−→ Aζ

get
−−→ JζK .

• JU, Γ ⊢ M := N : unitK = A
〈JMK,JNK〉
−−−−−−→ Aζ ⊗ JζK

set
−→ 1 .

• JU, Γ ⊢ MN : θ′K = A
〈JMK,JNK〉
−−−−−−→ (JθK ⇒ Jθ′K) ⊗ JθK

ev
−→ Jθ′K .

• JU, Γ ⊢ λxθ.M : θ → θ′K = Λ(JMK : A ⊗ JθK → Jθ′K) .

• JU, Γ ⊢ while(M) : unitK = A
Λ(∼=;JMK)
−−−−−−→ 1 ⇒ Z

wh
−→ 1 , where

wh = { † ⋆ i1 ⋆ i2 · · · ⋆ in ⋆ 0 ⋆′ | n ≥ 0, i1, · · · , in > 0 }cl .

It is worth commenting briefly on the function of wh : 1 ⇒ Z → 1. The

strategy replies to the initial † move by a question ⋆, thus querying the

1 component of 1 ⇒ Z. If O answers 0 then P replies with the answer ⋆′,

which is played in the right-hand-side 1 and answers the initial question

†. On the other hand, if O answers some i1 > 0 then P asks another ⋆,

and so on, until O plays the answer 0.

Example 5.34. We have already given the denotations of example

terms in Examples 5.8, 5.9, 5.22, 5.23. We show how to derive the
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one for gen. Omitting the defined let-in notation, gen can be written

as:

gen ≡ λzint. (λxref int. x := z; x)(ref(0))

We construct its denotation inductively as follows.

• Let σ0 = Jref(0)K = 1
0

−−→ Z
new
−−→ Aint.

• σ1 = Jx := z; xK = Z ⊗ Aint
〈∼=;set,π2〉
−−−−−−→ 1 ⊗ Aint

∼=−→ Aint.

• σ2 = Jλx. x := z; xK = Z
Λ(σ1)
−−−→ Aint ⇒ Aint.

• σ3 = J(λx. x := z; x)(ref(0))K = Z
〈σ2,t;σ0〉
−−−−−→ (Aint⇒Aint) ⊗ Aint

ev
−→

Aint
(∗)
= Z

〈id,t;σ0〉
−−−−−→ Z ⊗ Aint

σ1−→ Aint, using σ2 = Λ(σ1) in (∗).

• JgenK = 1
Λ(∼=;σ3)
−−−−−→ Z ⇒ Aint.

The other terms are translated in a similar manner. We leave them as

an exercise.

5.2 Full abstraction

In this section we culminate with our main result: two GroundML terms

are equivalent if, and only if, their strategy denotations contain the

same complete plays:

M ∼= N ⇐⇒ comp(JMK) = comp(JNK)

where a play s ∈ PA is called complete if all questions in s have an

answer in s (i.e. there is no pending question), and comp(σ) = { s ∈

σ | s complete }.

5.2.1 Correctness, adequacy and soundness

For the soundness direction (⇐), the argument navigates through two

sub-results:

• Correctness: the model is coherent with the operational seman-

tics — every term has the same denotation as its reducts.
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• Adequacy: the model reflects divergence — if M diverges then its

denotation is the empty strategy {ǫ}.

We therefore start with correctness. Since the result involves configu-

rations from the operational semantics, which are pairs of stores and

supported terms, we need to be able to give denotations of such pairs.

For any store S and supported term M such that ν(M) ⊆ dom(S),

we define the terms:

S ⊲ M ≡ a1 := S(a1); · · · ; an := S(an); M

new S in M ≡ let x1 = ref(S(a1)) in

· · · let xn = ref(S(an)[~x/~a]n−1
1 ) in M [~x/~a]n1

where a1, · · · , an some ordering of dom(S) that is type-increasing (i.e.

all a ∈ Aint come first, followed by a ∈ Aref int, etc.), and M [~x/~a]k1 is

the term obtained by replacing each ai with the fresh variable xi, for

1 ≤ i ≤ k.

Stores are important only in some reduction rules (Figure 3.2),

which we single out as they will need special treatment. We do the

same for the context rule. Let us list the rules below.

(!a, S) −→ (S(a), S) (drf)

(a := V, S) −→ ((), S[a 7→ V ]) (asn)

(ref(V ), S) −→ (a′, S[a′ 7→ V ]) a′ /∈ dom(S) (new)

(M, S) −→ (M ′, S′)

(E[M ], S) −→ (E[M ′], S′) (ctx)

For each reduction step (M, S) → (M ′, S′), let us write (M, S)
κ
−→

(M ′, S′) if the axiom rule used for that step is κ (all reduction rules

are axioms apart from (ctx)). The following lemma is then pivotal for

proving correctness.

Lemma 5.35. Suppose (M, S)
κ
−→ (M ′, S′).

1. If κ /∈ {drf, asn, new} then JMK = JM ′K.

2. If κ ∈ {drf, asn} then JS ⊲ MK = JS′ ⊲ M ′K.

3. If κ = new then JMK = Jnew {(a′, V )} in M ′K.
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Proof. The proof is by induction on the derivation of (S, M)
κ
−→

(S′, M ′). For the base case, we need to check that the axiom rules

satisfy the above conditions. For point 1, JMK = JM ′K follows from the

properties established for G, e.g. for β-reduction rules we use Proposi-

tion 5.33, and the only interesting case is the one for while(M), which

is shown using the equality:

wh = 1 ⇒ Z
〈∼=;ev;if,id〉
−−−−−−→ (1 + 1) ⊗ (1⇒Z)

∼=−→ (1⇒Z) ⊗ (1⇒Z)
[wh,t]
−−−→ 1

The equalities for points 2 and 3 are straightforward from the defini-

tions of get, set and new.

For the induction step, we need to show that the above equalities

are preserved through evaluation contexts E. For 1, the fact that JMK =

JM ′K implies JE[M ]K = JE[M ′]K is clear from compositionality. For 2,

we use the equality JS ⊲ E[M ]K = JS ⊲ E[S ⊲ M ]K and compositionality.

For 3, since a′ is fresh for E, we can show Jnew {(a′, V )} in E[M ]K =

JE[new {(a′, V )} in M ]K.

Proposition 5.36 (Correctness). For any supported term U, Γ ⊢ M : θ

and store S with support U, if (M, S) −→ (M ′, S′) then Jnew S in MK =

Jnew S′ in M ′K.

Proof. The claim directly follows from the previous lemma. We only

need to check that, in case 2, if JS⊲MK = JS′⊲M ′K then Jnew S in MK =

Jnew S′ in M ′K and, for case 3, that the order of assignments in the

new S in M construct does not matter semantically.

We next look into adequacy. We shall argue as follows. Given a

diverging term ⊢ M : unit, we know that its diverging computation

must involve an infinite number of unfoldings of while loops, as the

calculus is otherwise strongly normalising. Hence, if we instrument such

a term so that in each loop unfolding it increases an internal counter

then the value of that counter cannot be bounded. Making that counter

visible in the semantics would then enforce that the semantics of M

cannot contain the play {⋆⋆}.

Proposition 5.37 (Computational adequacy). For any term ⊢ M : unit

if M 6⇓ then JMK = {ǫ}.
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Proof. Suppose, for the sake of contradiction, that M 6⇓ and J⊢ MK =

{ǫ, ⋆⋆}. For any term U, Γ ⊢ N : θ and a ∈ Aint \ U construct

U, a, Γ ⊢ Na by recursively replacing each subterm of N of the

shape while(N ′) with while(a := (!a + 1); N ′). Observe that each s ∈

JU, Γ ⊢ NK induces some s′ ∈ JU, a, Γ ⊢ NaK such that a appears in

s′ only in stores (and in a single place in the initial move) and O

never changes the value of a. Then, for each i ∈ Z take Ni to be the

term let x = ref(i) in Na[x/a]; !x, for some fresh variable x. Because

⋆⋆ ∈ J⊢ MK, we shall have ⋆j ∈ J⊢ M0K for some j ∈ Z.

On the other hand, each play corresponding to Ni is obtained from

a play s′ for Na such that the initial value of a is i, a appears in s′

only in stores (and in a single place of the initial move) and O never

changes the value of a. Moreover, P never decreases the value of a in

s′. Thus, if si′S is a complete play of JNiK, then i′ ≥ i. We shall find a

term contradicting this by considering the infinite reduction sequence of

(∅, M). It must have infinitely many while-loop unfoldings, so suppose

(∅, M) −→→ (S, M ′) in j+1 such unfoldings. Then, we obtain (∅, M0) −→→

(Sa, (M ′)a; !a) with Sa = {(a, j +1)}⊎S. By Proposition 5.36 and ⋆j ∈

J⊢ M0K, we have ⋆j ∈ J⊢ new Sa in (M ′)a; !aK = J⊢ (new S in M ′)j+1K, a

contradiction.

We can therefore prove the main result of this section.

Theorem 5.38 (Soundness). For any pair of terms Γ ⊢ M, N : θ if

comp(JMK) = comp(JNK) then M ∼= N .

Proof. We show the contrapositive. Suppose C is some context such

that C[M ] ⇓ but C[N ] 6⇓. Then, by Propositions 5.36 and 5.37

respectively, JC[M ]K = {ǫ, ⋆⋆} and JC[N ]K = {ǫ}. Now observe

that JC[M ]K = J(λf.C[f〈x1, · · · , xn〉])(λx
~θ .(λ~x.M)(π1x) · · · (πnx))K =

Λ(JMK); JC[f〈~x〉]K, assuming Γ = {x1 : θ1, · · · , xn : θn}, so in partic-

ular there is some interaction sequence u in 1(J~θK⇒JθK)1 such that

s = (u ↾γ 1(J~θK⇒JθK)) ∈ Λ(JMK), (u ↾γ (J~θK⇒JθK)1) ∈ JC[f〈~x〉]K,

and (u ↾γ 11) = ⋆⋆. By bracketing, u is complete and, hence, so is s.

This means s ∈ comp(Λ(JMK))\comp(Λ(JNK)), therefore comp(JMK) 6=

comp(JNK).
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5.2.2 Definability and full abstraction

To show the converse of Theorem 5.38 we need to show that, whenever a

term M produces a complete play s that term N cannot replicate, there

is always an appropriate context C which can take the opportunity and

interact with s to produce a complete play in 1 → 1. The latter will be

shown via a stronger result which essentially is a compact completeness

property: every finite strategy (up to name permutations) is in fact the

denotation of some GroundML term.

The proof of completeness consists of two stages. First we show a

decomposition lemma which demonstrates how a finitary strategy can

be canonically decomposed into smaller ones. We will then use such

decompositions to prove definability of finitary strategies by induction

on the length of their longest plays.

Given a strategy σ : A we let its set of maximal orbits be:

MO(σ) = { [s] | s ∈ σ ∧ ∀s′ ∈ σ. s ⊑ s′ =⇒ s = s′ }

Conversely, for an even-length play s ∈ PA, we let epref(s) be the set

of plays:

epref(s) =
⋃

{ [t] | t ∈ PA ∧ t ⊑even s }

which is clearly a strategy in A. We call σ finitary if MO(σ) is finite

and, in such a case, we let its size be:

|σ| = max{ |s| | s ∈ σ }

where |s| is the length of the sequence s.

Lemma 5.39 (Decomposition). Let σ : A → B be a finitary strategy

such that A = A1 ⊗ · · · ⊗ Ak and Ai = JθiK for each i (for some θi).

1. If MO(σ) = { [s1], · · · , [sn] } then σ =
⋃n

i=1 epref(si).

2. If σ = epref(iSmS′
s) with m a question in Ai = C1 → C2 then:

σ = A
〈πi,σ′〉
−−−−→ (C1⇒C2)⊗C1⊗(C2⇒B)

ev⊗id
−−−→ C2⊗(C2⇒B)

∼=;ev
−−−→ B

where πi : A → C1 ⇒ C2 is the i-th projection and σ′ : A →

C1 ⊗ (C2 ⇒ B) = epref(iS(m, †)S′
s′) whereby:
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• m is in answer position (initial in C1);

• assuming that s = s1nT s2 n′T ′
s3 with n and n′ being the

answers of m and i respectively, s′ = s1nT s2 n′T ′
s3 with the

proviso that n is now a question justified by † in (m, †), and

n′ answers n.9

3. If σ = epref(iSmS′
s) with m an answer and a1, · · · , an is an enu-

meration of P(iSmS′
s) then

σ = A
〈id,τ〉
−−−→ A ⊗ Aζ1 ⊗ · · · ⊗ Aζn

σ′

−→ B

where τ = epref(iS (a1, · · · , an)S⊎S′
) with S′ some mini-

mal (fresh) store with {a1, · · · , an} ⊆ dom(S′), and σ′ =

epref((i, a1, · · · , an)S⊎S′
S′[s]) where S′[s] is s with each move nT

replaced by nS′[T ].

4. If σ = epref(iSmS′
s) with m an answer, P(iSmS′

s) = ∅ and

a1, · · · , an is an enumeration of O(iSmS′
s) \ ν(iS) with ai ∈ Aζi

for each i, then

σ = A
〈id,τ〉
−−−→ A ⊗ Arefζ1 ⊗ · · · ⊗ Arefζn

σ′

−→ B

where τ = epref(iS (a′
1, · · · , a′

n)S⊎S′
), a′

i some fresh name in Arefζi
,

S′ is some minimal (fresh) store with {a′
1, · · · , a′

n} ⊆ dom(S′),

and σ′ = epref((i, a′
1, · · · , a′

n)S⊎S′
S′[s[~a′ 7→ ~a]]) where s[~a′ 7→ ~a] is

s with each move nT replaced by nT ⊎{(a′
i
,ai) | ai∈dom(T )}.

5. If σ = epref(iSmS′
s) with m an answer, P(iSmS′

s) = ∅, a1, · · · , an

an enumeration of dom(S) and ∀s′nT ⊑odd iSmS′
s. γ(iSnT ) =

iSnT , then

σ = A
〈id,τ〉
−−−→ A ⊗ Jζ1K ⊗ · · · ⊗ JζnK ⊗ Aint

σ′

−→ B

where τ = epref(iS(S(a1), · · ·, S(an), a)S′⊎{(a,0)}) with a ∈ Aint

some fresh name, and

σ′ = epref((i, S(a1), · · ·, S(an), a)S′⊎{(a,0)}mS′⊎{(a,0)}s′)

9If m or i are not answered in s then s′ is the respective prefix of the above s′.
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is thread-independent, where s′ is obtained from s by replacing

each move nT of its i-th thread by nT ⊎{(a,i)}, except if nT is the

i-th threader move in which case it is replaced by nT ⊎{(a,i−1)}.

6. If σ = epref(iS(m1, m2)Ss) is thread-independent then σ =

〈σ; π1, σ; π2〉.

7. If σ = epref(iS †S s) is thread-independent then σ = Λ(Λ−1(σ)) ↾

[iS ], where σ = σ ∪ { i′S
′
mS′

∈ PA→B | m = † }.

Proof. We concentrate on the more interesting cases, 2-5, as the others

follow from general properties of G. For 2, following the copycat links

imposed by the ev strategies, we can see that indeed σ = 〈πi, σ′〉; ev ⊗

id; ∼= ev. We need also check that σ′ is well-defined and for the latter

it suffices to ensure that t′ = iS(m, †)S′
s1nT s2 n′T ′

s3 is a valid play.

Given that t = iSmS′
s1nT s2 n′T ′

s3 is a play, it is easy to see that t′

satisfies justification, alternation and bracketing. For visibility, we note

that the pointer structure before the move n′T ′
is common in t and t′.

Moreover, by Lemma 5.11 we have that nT is in piSmS′
s1nT s2q, thus

n′T ′
can point to it. Finally, since n′T ′

points to nT in t′, there are more

moves in the view for s3-moves in t′, than there are in t.

In cases 3 and 4 the equalities are straightforward. In 3, we delegate

all P-name creation to τ , so σ′ does not need to create any names. In 4,

τ creates (private) locations where all O-names of s are stored, as soon

as they are created, and remain there for the whole play. Note that σ′

of 3 satisfies P(t) = ∅ for all t ∈ σ′, whereas for the one from 4 we have

∀t′nT ′
⊑odd i′T t ∈ σ′. γ(i′T nT ′

) = i′T nT ′
. Finally, for 5, we observe that

the composition indeed yields σ. For thread-independence, the initial

move is answered without any store changes, and each thread is indexed

via the name a, which renders the second condition of Definition 5.32

trivial. Finally, the given conditions for σ ensure that, for all t ∈ σ′,

ν(t) = ν(⌈t⌉); hence, there is no interference of private names between

different threads, simply because there are no thread-private names.

Proposition 5.40 (Definability). Let σ : JU, Γ ⊢ θK be a finitary strat-

egy. There exists U, Γ ⊢ Mσ : θ such that comp(JU, Γ ⊢ Mσ : θK) =
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comp(σ).

Proof. We construct Mσ by induction on ‖σ‖ = (|σ|, 8−φ(σ)), ordered

lexicographically, where φ(σ) the greatest index i such that σ satisfies

the conditions of case i of the previous lemma, unless σ = epref(iSvS)

with ν(v) ⊆ ν(i) and v ∈ {⋆} ∪ A ∪ Z in which case we set φ(σ) = 8.

Let us write JU, Γ ⊢ θK as A → B. We do a case analysis on φ(σ).

In case 1, we can decompose σ 6= { ǫ } as
⋃n

i=1 σi, n > 1, where

each σi = epref(iSi

i si). We use the induction hypothesis on the σi’s to

obtain terms Mσi
. For each iSi

i we can construct a characteristic term

U, Γ ⊢ Mi : int such that JU, Γ ⊢ Mi : intK = epref(iSi

i 1) ∪ { iS0 | iS 6∼

iSi

i } — Mi simply checks that the elements of Γ and U satisfy the spec-

ifications dictated by ii and Si. We can therefore take:

Mσ ≡ if M1 then Mσ1 else if M2 then Mσ2 else · · · if Mn then Mσn else divθ

where recall that divθ is a divergent term of type θ. If σ = { ǫ } then

Mσ ≡ divθ.

For case 2, suppose σ = epref(iSmS′
s), m is a question in Jθ′K with

(f : θ′) ∈ Γ and θ′ = θ1 → θ2. Then, writing Ci for JθiK,

σ = A
〈πi,σ′〉
−−−−→ (C1 ⇒ C2)⊗C1⊗(C2 ⇒ B)

ev⊗id
−−−→ C2⊗(C2 ⇒ B)

∼=;ev
−−−→ B

and, by definition, ‖σ′‖ < ‖σ‖. Thus, taking the Mσ′ given by the IH,

we set: Mσ ≡ let x = Mσ′ in let y = f(π1x) in (π2x)y.

For case 3, taking M ′ to be some term creat-

ing the fresh names a1, · · · , an with default values and

U, Γ, y1 : refζ1, · · · , yn : refζn ⊢ Mσ′ : θ the one given by the IH

for σ′ (noting ‖σ′‖ < ‖σ‖ as there are no P-names in σ′), we set:

Mσ ≡ let x = M ′ in Mσ′ [π1x/y1, · · · , πnx/yn]. Case 4 is similar.

For case 5, we take:

M ≡ let x = 〈!a1, · · · , !an〉 in let y = ref(0) in Mσ′ [π1x/y1, · · · , πnx/yn]

assuming U, Γ, y1 : ζ1, · · · , yn : ζn, y : ref int ⊢ Mσ′ : θ given by the IH.

For case 6, we apply the lemma repetitively and obtain σ =

〈σ; π1, · · · , σ; πn〉, given θ = θ1 × · · · × θn. We can apply the IH to each

σ; πi to obtain some U, Γ ⊢ Mi : θi, and take M ≡ 〈M1, · · · , Mn〉. For
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case 7, since |Λ−1(σ)| < |σ|, and given θ = θ1 → θ2, we apply the IH

on Λ−1(σ) to obtain U, Γ, x : θ1 ⊢ M ′ : θ2. Now, as in case 1, we define

U, Γ ⊢ M1 : int which checks if the initial move is of the form iS , and set:

M ≡ if M1 then λx.M ′ else div. Finally, in case σ = epref(isvS) with v

a singleton value with names from i, we set M ≡ if M1 then v̂ else div,

where v̂ the syntactic counterpart of v (given i) and M1 as above.

Theorem 5.41 (Full abstraction). For any pair of terms Γ ⊢ M, N :θ,

M ∼= N ⇐⇒ comp(JMK) = comp(JNK).

Proof. We only need to show completeness (⇒), and for that we show

the contrapositive. Suppose s is some play in comp(JMK) \ comp(JNK).

Assuming Γ = {x1:θ1, · · · , xn:θn}, we have ⋆ † s ∈ comp(JM ′K) \

comp(JN ′K), with M ′ ≡ λx
~θ.(λ~x.M)(π1x)· · · (πnx) and similarly for

N ′. Moreover, †s⋆ is a complete play in (J~θK ⇒ JθK) → 1. By de-

finability, there is some term f : ~θ → θ ⊢ M†s⋆ : 1 such that

JM†s⋆K = epref(†s⋆). Hence, ⋆⋆ ∈ JM ′K; JM†s⋆K = JC[M ]K, given C[−] ≡

let f = λx.(λ~x. −)(π1x)· · · (πnx) in M†s⋆, and JC[N ]K = { ǫ }. Then, ad-

equacy implies C[M ] ⇓ while by correctness we have C[N ] 6⇓.

This concludes the technical component of the chapter. We can

now use full abstraction to prove the equivalences from Example 3.7.

We recall the pairs of equivalent terms below.

M1 ≡ let x = ref(0) in λyref int. x = y

M2 ≡ λyref int. 0

M3 ≡ let x = ref(0) in let c = ref(0) in

f(λ_. if !c = 0 then div else x); c := 1; λyref int. x = y

M4 ≡ f(λ_. div); λyref int. 0

M5 ≡ let x = ref(ref(0)) in

λyref int. let z = !x in if y = z then div else (x := ref(0); z)

M6 ≡ λyref int. ref(0)
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Example 5.42. We already saw, when studying strategy composition,

that JM1K = JM2K, which trivially implies comp(JM1K) = comp(JM2K)

and hence M1
∼= M2 by the previous result.

For M3, M4 the typing context is interpreted as the prearena

((1 ⇒ Aint) ⇒ 1) → (Aint ⇒ Z), which is de-

picted on the right (all a, b ∈ Aint, i ∈ Z). We

shall start from the denotation of M3 and argue

that it equals that of M4. Consider first the open

term (with context f : (unit → ref int) → unit, x :

ref int, c : ref int):

†

†′ †′′

⋆ ⋆′ b

a i

M ′
3 ≡ f(λ_. if !c = 0 then div else x); c := 1; λyref int. x = y

Its denotation consists of even-length prefixes of plays of the form:10

(†, as, ac)
S0 †′S0 ⋆S1 aS1

s · · · ⋆Sn aSn
s ⋆′T0 †′′T ′

0 aT1
1 iT1

1 · · · aTm
m iTm

m · · ·

OQ PQ OQ PA OQ PA OA PA OQ PA OQ PA

where T ′
0 = T0[ac 7→ 1] and, for all j, ij = 1 if aj = as (and 0 otherwise),

and Sj(c) > 0. We moreover have that

JM3K = A
〈id,t;〈Jref(0)K,Jref(0)K〉〉
−−−−−−−−−−−−−−→ A ⊗ Aint ⊗ Aint

JM ′
3K

−−−→ Aint ⇒ Z

where A = (1 ⇒ Aint) ⇒ 1, and the interaction sequences produced

are of the form:

† (†, as, ac)
S0 †′S0 ⋆S1 aS1

s · · · ⋆Sn aSn
s ⋆′T0 †′′T ′

0 aT1
1 iT1

1 · · · aTm
m iTm

m · · ·

The initial values of S0 are thus determined by Jref(0)K and, therefore,

S0(as) = S0(ac) = 0. Moreover, ⋆S1 is an O-move in A(Aint ⇒ Z)

and ac a P-name for the LHS strategy, so by Laird conditions we have

that S1(ac) = S0(ac) = 0. Nonetheless, in the denotation of JM ′
3K we

10Here we can observe the crucial role of visibility. As soon as †′′T ′

0 is played, the
move †′S0 is hidden from the view of O for the remaining play. That is, for each
even-length play t = (†, as, ac)S0 · · · †′′T ′

0 · · · , ptq = (†, as, ac)S0 †′′T ′

0 · · · . Hence, O
cannot ask a question ⋆S under †′S0 anymore, which would allow him to gain access
to the secret name as (as, at this point, ac = 1).
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stipulated that S1(ac) > 0, as otherwise P cannot play aS1
s (the term

diverges in this case). This contradiction means that n = 0, i.e. O never

plays ⋆S1 but, rather, immediately answers †′S0 with ⋆′T0 . The latter

also implies that as remains unavailable to O for the whole interaction

and in particular aj 6= a, for all j. Thus, the interaction actually looks

like:

† (†, as, ac)
S0 †′S0 ⋆′T0 †′′T ′

0 aT1
1 0T1 · · · aTm

m 0Tm · · ·

and projects on A(Aint ⇒ Z) as:

† †′ ⋆′ †′′ a
T ′

1
1 0T ′

1 · · · a
T ′

m
m 0T ′

m · · ·

which are precisely the plays forming JM4K.

Now, following a very similar argument, we invite the reader to

check that M5
∼= M6.

5.3 Chapter Appendix: deferred proofs

5.3.1 Lemmas for Proposition 5.20

Proof of Lemma 5.17. By mutual induction on the length of u′. Sup-

pose m is a O-move in AB (the BC case treated similarly). We first

exclude the case that n be a move in C. If that were the case, by the

projection condition on BC and Lemma 5.10, m must be a move in A.

Then, by the IH, the last BC-move in u′, say n′T , must be a P-move

in BC. Using again the projection condition on BC and Lemma 5.10,

n′ must in particular be in C, contradicting the IH as n′T is necessarily

followed by a move in A. Thus, n is in AB and so, by projection on

AB, it must be a P-move in AB.

Proof of Lemma 5.18. We argue by contradiction, and we also suppress

stores from this argument from brevity. So, let u′ be the least prefix of

u breaking bracketing and in particular suppose m answers a question

q in u′, and that the last open question of u′ is instead a move q′. Thus,

u′ has the form: u′ = u1qu2q′u3. Because the projections of u on AB

and BC are both bracketed by definition, we cannot have all of q, m, q′

be in the same component. Suppose q and m are in AB, in which case

q′ must be in C (the case of q, m being in BC is similar). If m is a
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move in B then, since q, m, q′ cannot all be in BC, q would need to

be in A, but this would imply that both q, m are initial moves in their

arenas and therefore q′ cannot precede m in u (in case q, m are in BC

and q′ in A, m cannot be in B as then q would necessarily be in B

as well). Thus, m is in A. Since u′ is bracketed, it must then have the

form: u′ = u1qu2q′q1 · · · m1q2 · · · m2 · · · qk · · · mk, for some k, with each

mi answering qi. Let i be the greatest index such that m1, · · · , mi be

all in BC. As mi is followed by an A-move, by the previous lemma,

mi is a P-move in BC (and an O-move in AB), and is in particular

a B-move. By alternation in BC, q′ must also be a P-move in BC.

But then, again from the previous lemma, we have that mi is in C, a

contradiction.

5.3.2 Lemmas for Proposition 5.27

We use the following auxiliary result.

Lemma 5.43 (Strong support [42]). Let X be a strong nominal set and

let x1, x2, y1, y2, z1, z2 ∈ X. Suppose also that ν(yi) ∩ ν(zi) ⊆ ν(xi),

for i = 1, 2, and that (x1, y1) ∼ (x2, y2) and (x1, z1) ∼ (x2, z2). Then,

(x1, y1, z1) ∼ (x2, y2, z2).

Proof of Lemma 5.25. Suppose m1 is a P-move in AB — the other

cases are proven similarly. The move preceding it is an O-move in

AB and, by u1 ∼ u2, so is the last move in u2. Let uim
Si

i ↾γ AB =

u′
im

S′
i

i for i = 1, 2. Now, u1 ∼ u2 implies that (u′
1, u1) ∼ (u′

2, u2),

and we also have (u′
1, m

S′
1

1 ) ∼ (u′
2, m

S′
2

2 ) by hypothesis. Moreover,

ν(ui) ∩ ν(m
S′

i

i ) ⊆ ν(u′
i), for i = 1, 2. Because if a ∈ ν(m

S′
i

i ) \ ν(u′
i)

then a is introduced by m
S′

i

i in u′
im

S′
i

i , and therefore introduced by mSi

i

in uim
Si

i , by Lemma 5.16, so a /∈ ν(ui). Thus, by strong support lemma,

(u′
1, u1, m

S′
1

1 ) ∼ (u′
2, u2, m

S′
2

2 ). Finally, for all a ∈ dom(Si) \ dom(S′
i) we

have a /∈ ν(u′
im

S′
i

i ) and therefore Si(a) = S′′
i (a), where S′′

i the store of

the last move of ui. We thus get u1mS1
1 ∼ u2mS2

2 .

Proof of Lemma 5.26. By induction on |u′
1|. Suppose u′

1 = u′′
1mS . By

IH there is u′′
2 ⊑ u2 with u′′

1 ∼ u′′
2 . Suppose m is a P-move in AB. Then
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u′′
2 is strictly smaller than u2 (as u′′

2 ends in an O-move in AB), so let

u′′
2nT ⊑ u2. By strong determinacy of σ, (u′′

1mS ↾γ AB) ∼ (u′′
2nT ↾γ AB)

and thus, by the previous lemma, u′′
1mS ∼ u′′

2nT . Similarly if m is a

P-move in BC. Finally, if m is an O-move in AC then, again, there is

u′′
2nT ⊑ u2. By hypothesis we have (u′′

1mS ↾ AC) = (u′′
2nT ↾ AC) and

so, by previous lemma, u′′
1mS ∼ u′′

2nT .
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Conclusions

We have presented a game model of a higher-order language with

ground references. We looked into the notion of names and how it

lends itself to give a semantics for modelling the creation, private use

and flow of references in a real-life programming paradigm. The reach

of nominal game semantics is much broader, though. As mentioned at

the beginning of these notes, it can be used for modelling generative

dynamic effects, such as general references, objects or exceptions. More-

over, the trace-like flavour of nominal games allows for automata-driven

compositional representations of term denotations, leading to what is

called algorithmic game semantics. The connection to trace semantics

has recently been further explored and the correspondence has been

formalised. We briefly discuss these directions next.

6.1 Other paradigms: higher-order references

Higher-order references can be captured in the same fashion as ground

references via a full abstraction result [32]. This comes at a cost of

complicating the shape of plays, because the functional storage needs

to be taken into account. Consequently, reference names have to be

261
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included in stores carried by moves. The corresponding values cannot

be revealed, though, as this would jeopardise full abstraction. After all,

in equivalent terms the values could be different, yet still equivalent!

Accordingly, we simply use † to mark function values inside stores. On

the other hand, we need to provide for exploration for these values by

both players. To that end, in addition to the usual justification point-

ers, we introduce pointers that can point to the store and at specific

functional values. This corresponds to using such values during inter-

action. In drawings we distinguish the second kind of pointers with

double lines.

Example 6.1. We illustrate the semantics of higher-order references

using two inequivalent terms:

x : ref(int → int) ⊢ !x : int → int

and

x : ref(int → int) ⊢ λhint.(!x)h : int → int

respectively. Note that the former refers to the initial content of x,

while the latter accesses the current content each time the function is

applied. This is reflected by the two plays below, namely, the different

targets of pointers from the respectively fourth moves.

a(a,†) †(a,†) 1(a,†) 1(a,†) 3(a,†) 3(a,†)

a(a,†) †(a,†) 1(a,†) 1(a,†) 3(a,†) 3(a,†)

Similarly to the results for GroundML, such generalized plays can be

used to prove a full abstraction result. The two terms discussed above

are indeed inequivalent,

let x = ref(λ_.div) in let f = [ ] in (x := (λxint.0); f(0)).

as they can be distinguished by the context above.
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6.2 From references to Java objects

Insights from nominal games for higher-order references can be applied

to model Java objects taken from the idealised fragment called Interface

Middleweight Java (IMJ) [34]. We highlight two crucial differences.

• Firstly, Java programs feature functions in the form of methods

only. Accordingly, functions can only be accessed by reference to the un-

derlying object: there is no mechanism for anonymous method passing.

This makes the use of † moves redundant. However, †’s are still needed

inside stores, because all higher-order behaviour is now delegated to

moves pointing to stores.

• The first observation leaves us with plays where all pointers are to

†’s residing inside stores. However, since a method cannot be updated

after it has been included in an object, we can safely remove pointers

altogether. This is because the associated name uniquely identifies the

method. In order to demonstrate this, given an object a with a single

method mth : int → int, let us assume that each store S containing

a satisfies (a.mth, †) ∈ S. Suppose we have a play where move m1

introduces a, some moves m2, m3 follow, and finally a move calling the

last a.mth is played:

· · · m1
(a.mth,†) m2

(a.mth,†) m3
(a.mth,†) 1(a.mth,†)

The last move represents a call mth(1). The player who played m3 can

only resolve what to return by propagating the call mth(1) to m2, and

the same applies to m2 for m1. Hence, the play can only evolve in the

following way:

· · · m1
(a.mth,†) m2

(a.mth,†) m3
(a.mth,†) 1(a.mth,†) 1(a.mth,†) 1(a.mth,†)

Once m1 returns with an answer to the call, the above copycat be-

haviour has to be repeated in a dual way to propagate the answer

back to m3. This presentation can be optimised by removing the in-

termediate calls/returns, as they do not add anything essential to the

observable behaviour. Instead, all method calls of player O (resp. P ):

should be to methods of objects introduced by player P (O); should
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point at the move introducing the object enclosing the called method.

Thus, our example simplifies to:

· · · m1
(a.mth,†) m2

(a.mth,†) m3
(a.mth,†) 1(a.mth,†)

Based on these observations, one can construct a more direct model

of IMJ, in which the pointer structure is omitted. On the other hand,

the absence of this structure makes simple properties, like name owner-

ship or play-to-arena projection, significantly subtler and this subtlety

affects the definitions of play and strategy composition [34].

6.3 Algorithmic game semantics

Game semantics provides a handle for attacking equivalence problems.

One might wonder to what extent it can be used to automate the pro-

cess. This direction was initiated and first pursued in classical game

models, for fragments of Idealized Algol, where it was observed that

by restricting type disciplines to low orders it was possible to con-

cretely represent term strategies by means of finite-state or pushdown

automata [14, 2]. We have investigated this problem for GroundML [33]

as well as Reduced ML (the restriction of GroundML with integer but

not full ground references) [32] and Interface Middleweight Java [30].

Our technique is based on automata over infinite alphabets. This class

is a natural fit for representing nominal plays due to the presence of

names, drawn from an infinite alphabet.

Of course, in order to obtain decidability results, the language has

to be restricted. For a start, the type of integers has to be limited to a

finite subset. But even then the presence of higher-order types makes

contextual equivalence undecidable. The smallest GroundML term types

of this kind are

unit → unit → unit and ((unit → unit) → unit) → unit

with unit → unit and (unit → unit) → unit remaining decidable. There

are also restrictions on the allowable types of free identifiers, but once

they are met, contextual equivalence can be checked in a fully auto-

mated fashion.
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In addition, the structure of game plays in typing contexts where

these restrictions are not met is rich enough to render the problem of

comparing sets of complete plays undecidable. The complete classifica-

tion of decidable cases for GroundML can be found in [33].

6.4 Operational game semantics

The operational flavour of nominal games, combined with its con-

crete representation of names, leads one to consider connections to

trace models for higher-order programs with names as examined e.g.

in [23, 27, 15]. It turns out that games can be given a fully opera-

tional presentation and can be seen essentially as open trace models

with composition as a primitive operation. This has been done in the

specific case of games for higher-order references [22], but we can now

envisage a general applicability of the approach.

In this presentation, names here take on the additional role of en-

coding justification pointers: † moves are replaced by moves from a

designated set of function names and, accordingly, every move is ac-

companied by a name representing the position of its justifier. While

this may seem obscure at first, and involves the additional burden of

obscuring function identities and an ensuing function-name accumula-

tion, it offers a more operational understanding of games as a sequence

of calls and returns of functions whose names are supplied during the

game.
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