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We consider an object calculus in which open terms interact with the environment through interfaces. The calculus is intended to

capture the essence of contextual interactions of Middleweight Java code. Using game semantics, we provide fully abstract models for

the induced notions of contextual approximation and equivalence. These are the first denotational models of this kind.
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1 INTRODUCTION

The last two and half decades have seen game semantics emerge as a robust denotational paradigm in the theory of

programming languages [7, 37]. It has been used to construct the first fully abstract models for a wide spectrum of

languages [4, 6, 12, 15, 16, 24, 28], previously out of reach of denotational semantics. A model is fully abstract if the

interpretations of two programs are the same precisely when the programs behave in the same way (i.e. are contextually

equivalent). A faithful correspondence like this opens the path to a broad range of applications, such as compiler

optimisation and program transformation, in which the preservation of semantics is of paramount importance.

The pioneering full abstraction results for the purely functional language PCF [5, 17, 39], obtained in the 1990s, have

recently been acknowledged by the Alonzo Church Award. The aim of the present paper is to demonstrate how far the

field has developed in the meantime and how the range of the game approach can now be extended to capture real-life

programming features, such as Java-style objects. To that end, we define an imperative object calculus, called Interface

Middleweight Java (IMJ), intended to capture contextual interactions of code written in Middleweight Java (MJ) [10],

as specified by interfaces with inheritance. We present both equational (contextual equivalence) and inequational

(contextual approximation) full abstraction results for the language.

Game semantics models computation as an exchange of moves between two players, representing respectively the

program and its computational environment. Accordingly, a program is interpreted as a strategy in a game corresponding

to its type. Intuitively, the plays that game semantics generates constitute the observable patterns that a program

produces when interacting with its environment, and this is what underlies the full abstraction results. Game semantics

is compositional: the strategy corresponding to a compound program phrase is obtained by canonical combinations of
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2 Andrzej S. Murawski and Nikos Tzevelekos

those corresponding to its sub-phrases. An important advance in game semantics was the development of nominal

games [3, 25, 38, 45], which underpinned full abstraction results for languages with dynamic generative behaviours,

such as the 𝜈-calculus [3], higher-order concurrency [26] and ML references [33]. A distinctive feature of nominal

game models is the presence of names (e.g. memory locations, references names) in game moves, often along with

some abstraction of the store. In the setting of an object-oriented language like IMJ, reference names are used to model

object identifiers. The game semantics of a term then consists of sequences of call/return moves referring to methods of

objects created by one of the players and revealed to the other.

Example 1.1. Consider interfaces I and HashFunI , where HashFunI contains a method hash : I → int, which can

be thought of as an integer-valued hashing function for objects of type I. Let 𝑜 be an object of type HashFunI . Its

semantics will contain plays of the form

𝑜.call hash(𝑎1) 𝑜.ret hash(𝑖1) 𝑜.call hash(𝑎2) 𝑜.ret hash(𝑖2) · · ·

where 𝑎1, 𝑎2, . . . are object names of type I and 𝑖1, 𝑖2, . . . are the corresponding hash values. The moves labelled as calls

belong to the Opponent player (representing the environment), while those that are returns belong to the Proponent

player (corresponding to the modelled object).

Now, suppose 𝑜 has an additional method reset : HashFunI → void that receives an object of type HashFunI as

input and, from then on, delegates hashing to that object’s hash method. In this case, the plays become more involved,

as each player can issue calls to hash methods of objects created by the other player. For instance, we could have the

following plays, in which we have tagged the moves according to the player issuing them.

𝑜.call hash(𝑎1)𝑂 𝑜.ret hash(𝑖1)𝑃 𝑜.call hash(𝑎2)𝑂 𝑜.ret hash(𝑖2)𝑃 · · · 𝑜.call reset(𝑜 ′)𝑂 𝑜.ret reset()𝑃
𝑜.call hash(𝑎′

1
)
𝑂

𝑜 ′.call hash(𝑎′
1
)
𝑃

𝑜 ′.ret hash(𝑖 ′
1
)
𝑂

𝑜.ret hash(𝑖 ′
1
)
𝑃

· · ·

In particular, note that, since resetwas used (first line), the subsequentmove𝑜.call hash(𝑎′
1
)
𝑂
is followed by𝑜 ′.call hash(𝑎′

1
)
𝑃
,

which corresponds to requesting the hash code of 𝑎′
1
according to 𝑜 ′. Only after the hash code is provided (as 𝑖 ′

1
in

𝑜 ′.ret hash(𝑖 ′
1
)
𝑂
), can the call 𝑜.call hash(𝑎′

1
)
𝑂
be answered.

The interactions are by no means restricted to the previous format. Opponent has no obligation to return with the

hash of 𝑎′
1
immediately and could instead make another call:

𝑜.call hash(𝑎1)𝑂 𝑜.ret hash(𝑖1)𝑃 𝑜.call hash(𝑎2)𝑂 𝑜.ret hash(𝑖2)𝑃 · · · 𝑜.call reset(𝑜 ′)𝑂 𝑜.ret reset()𝑃
𝑜.call hash(𝑎′

1
)
𝑂

𝑜 ′.call hash(𝑎′
1
)
𝑃

𝑜.call hash(𝑎′
2
)
𝑂

𝑜 ′.call hash(𝑎′
2
)
𝑃

𝑜.call reset(𝑜 ′′)𝑂 𝑜.ret reset()𝑃 · · ·

More generally, the setting makes it possible to express all the call/return behaviours anticipated in our scenario and, as

we demonstrate in this paper, any interaction produced by IMJ objects.

The full abstraction results for IMJ were first presented in [35]. In this paper we provide an extended account of the

work, including proofs, examples and additional explanations.

Related Work. While the operational semantics of Java has been researched extensively [8], there have been relatively

few results regarding its denotational semantics. More generally, most existing models of object-oriented languages,

such as [9, 22], have been based on global state and consequently could not be fully abstract.

On the other hand, contextual equivalence in Java-like languages has been studied successfully using operational

approaches such as trace semantics [2, 20, 21] and environmental bisimulations [23]. The trace-based approaches are
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Game Semantics for Interface Middleweight Java 3

closest to ours and the three papers listed also provide characterizations of contextual equivalence. The main difference

is that traces are derived operationally through a carefully designed labelled transition system and, thus, do not admit

an immediate compositional description in the style of denotational semantics. However, similarities between traces

and plays in game semantics indicate a deeper correspondence between the two areas, which also manifested itself in

other cases, e.g. [29] vs [27]. This correlation has been formally explored in [18].

Next we compare our model to existing game models for other languages.

• Broadly speaking, our model follows the methodology of nominal game semantics: names will be weaved into play,

moveswill be accompanied by a component representing the (visible) store and all themain concepts underpinning

the model will be name-invariant. Previous work in that strand has led to models for the 𝜈-calculus [3], first-order

references [34], storage of names [25], higher-order references [33], higher-order concurrency [26] and nominal

exceptions [36]. In this paper we show how to apply the methodology to an object-oriented framework, which

has not been attempted before. In particular, the modelling approach covers dynamic object creation, interface

and object subtyping, run-time type cast and self-reference.

• At the technical level, our main contribution lies in identifying new notions of play and strategy, along with

the corresponding concepts of strategy composition and a pre-order on strategies, which taken together can be

shown to characterise contextual interactions of objects through a full abstraction result.

In comparison to other game models, the game model of IMJ has a relatively lightweight feel. Arenas have flat

structure and, for the most part, playing consists of calling the other player’s methods or returning results for

calls made by the other player, subject to a well-bracketing condition. This is governed by two new conditions,

called well-calling and well-classing. The former requires that each player can only call the other player’s methods.

Intuitively, this is because calls to one’s own methods cannot be observed and so should not be visible in a fully

abstract model. Well-classing ensures that playing is compatible with the subtyping relation.

• In contrast to the nominal game models mentioned above, we do not use justification pointers between moves,

which have been a common feature in models of higher-order computation [17]. Conceptually, this simplification

can be attributed to the fact that, unlike for higher-order references [33], methods in Java objects cannot be

updated and, consequently, each function can be referred using an object name.

• On the other hand, the absence of justification pointers makes definitions of some simple notions, such as polarity,

less direct, since the dependencies between moves are not given explicitly any more and need to be inferred from

the history of play. In particular, following the principle that each player calls only methods of objects created by

the other player or returns results of their own methods, we can (recursively) determine the polarity of a method

call based on the polarity of the move introducing its object in the play. This will render strategy composition

non-standard. Because it is impossible to determine statically to which arena a move belongs, the switching

conditions (cf. [7]) governing interactions will be crucial for determining the strategy responsible for each move.

• Finally, it is worth noting that identity strategies (typically consisting of lengthy “tit-for-tat” interactions) will

be particularly simple in our setting: they will contain plays of length at most two. This is a consequence of

well-calling: if O plays an object and P copies it, O will not be able to make any further moves, because he is not

allowed to call methods of his object.

Further Directions. The model presented here was used as a theoretical foundation for classifying decidable fragments

of IMJ with respect to contextual equivalence [31], and for implementing the equivalence verification tool Coneqct [30]:

https://bitbucket.org/sjr/coneqct
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4 Andrzej S. Murawski and Nikos Tzevelekos

This was made possible by Theorem 6.5 (full abstraction), which provides an explicit characterisation of contextual

equivalence, along with the use of automata over infinite alphabets [11] to account for the nominal features of the model.

In particular, the decidable fragments turned out to be faithfully representable using a combination of fresh-register

and pushdown register automata [32, 46].

2 THE LANGUAGE IMJ

We introduce an imperative object calculus, called Interface Middleweight Java (IMJ), in which objects are typed using

interfaces. The calculus is a stripped down version of Middleweight Java (MJ) [10], expressive enough to expose the

interactions of MJ-style objects with the environment.

Definition 2.1. Let Ints, Flds and Meths be disjoint sets of interface, field and method identifiers, ranged over

respectively by I, f, m and variants. The types 𝜃 of IMJ include void, int and all interface identifiers. An interface
definition Θ is a finite set of typed fields and methods. An interface table Δ is a finite assignment of interface

definitions to interface identifiers. These are given below, where
®𝜃 stands for a sequence 𝜃1, ..., 𝜃𝑛 of types (for any 𝑛).

Ints ∋ I Types ∋ 𝜃 ::= void | int | I

Flds ∋ f IDfns ∋ Θ ::= ∅ | (f : 𝜃 ),Θ | (m :
®𝜃 → 𝜃 ),Θ

Meths ∋ m ITbls ∋ Δ ::= ∅ | (I : Θ),Δ | (I⟨I⟩ : Θ),Δ

We write I⟨I ′⟩ : Θ for interface extension: interface I extends I ′
with fields and methods from Θ.1 We stipulate that

the extension relation must not lead to circular dependencies. Moreover, each identifier f/m may appear in each Θ at

most once, and each I can be defined at most once in Δ (i.e. there is at most one element of Δ of the form I : Θ or

I⟨I ′⟩ : Θ). Thus, each Θ can be seen as a finite partial function Θ : (Flds ∪Meths) ⇀ Types∗. We write Θ.f for Θ(f)
and Θ.m for Θ(m). Similarly, Δ can be used to define a partial function Δ : Ints ⇀ IDfns as the least (wrt domain size)

partial function such that

• if (I : Θ) ∈ Δ then Δ(I) = Θ;

• if (I⟨I ′⟩ : Θ) ∈ Δ, I ′ ∈ dom(Δ) and dom(Δ(I ′)) ∩ dom(Θ) = ∅ then Δ(I) = Δ(I ′) ∪ Θ.

An interface table Δ iswell-formed if Δ(I) is defined for any interface typeI occurring in Δ. Formally, well-formedness

can be defined using the rules in Figure 1, which rely on judgments of the form D |U ⊢ Δ, where D and U track

defined and undefined interfaces respectively. An interface table Δ is then well-formed, if there exists D such that

D | ∅ ⊢ Δ. Henceforth we assume that interface tables are well-formed.

Interface extensions yield a subtyping relation. Given a table Δ, we define Δ ⊢ 𝜃1 ≤ 𝜃2 by the following rules.

(I⟨I ′⟩ : Θ),Δ ⊢ I ≤ I ′ Δ ⊢ 𝜃 ≤ 𝜃

Δ ⊢ 𝜃1 ≤ 𝜃2 Δ ⊢ 𝜃2 ≤ 𝜃3

Δ ⊢ 𝜃1 ≤ 𝜃3

We might omit Δ from subtyping judgements for economy. For illustration, we give several example interface tables

next.

1
The notation here could be misleading for the Java enthusiasts: angle brackets do not stand for polymorphism as in Java generics.
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Game Semantics for Interface Middleweight Java 5

∅ | ∅ ⊢ ∅
D |U ⊢ Δ I ∉ D
D ′ |U ′ ⊢ (I : Θ),Δ

D |U ⊢ (I ′
: Θ′),Δ I ∉ D dom(Θ) ∩ dom(Θ′) = ∅
D ′ |U ′ ⊢ (I⟨I ′⟩ : Θ), (I ′

: Θ′),Δ

Ints(Θ) stands for the set of interface names occurring in Θ. We let D ′ = D ∪ {I} andU ′ = (U ∪ Ints(Θ)) \ D ′
.

Fig. 1. Well-formedness rules for interface tables

Example 2.2. The simplest interface is the empty one, called Empty, which contains no fields or methods. Any other

interface can be set to extend Empty. For example, the following interface tables are valid:

Δ1 = {Empty : ∅, Point : (x : int, y : int)},

Δ2 = {Empty : ∅, Point⟨Empty⟩ : (x : int, y : int)}.

Note also that interfaces can be defined recursively. For instance, the interface table

Δ = { I : (m1 : I → void, m2 : void → I) }

is well-formed.

We shall observe a notational convention when writing down interface tables: while both interface tables and

interface definitions are sets, curly brackets will be used for the former and plain brackets for the latter.

Remark 2.3. Our notion of an interface conveys information about an object’s type signature, which coincides with

the information that the environment needs to interact with an IMJ object. The interfaces specify simply what fields

and methods are available. This is more permissive than what is allowed in Java interfaces, in which fields are restricted

to constants. Some of this expressivity can be regained in Java with abstract classes, though. Other object-oriented

languages also allow for more expressive interfaces (e.g. traits in Scala).

Next we turn to terms of our language.

Definition 2.4. Let Names be a countably infinite set of object names, which we range over by 𝑎 and variants. IMJ

terms are listed below, where we let 𝑥 range over a set of variables Vars, and 𝑖 over Z. Moreover, ⊕ is selected from

some set of binary numeric operations. M stands for method-set implementations. Again, we stipulate that each m

appear in eachM at most once.

𝑀 ::= 𝑥 | null | 𝑎 | skip | 𝑖 | 𝑀 ⊕ 𝑀 | let𝑥 = 𝑀 in𝑀 | 𝑀 = 𝑀 | if 𝑀 then 𝑀 else 𝑀

| (I)𝑀 | new(𝑥 : I;M) | 𝑀.f | 𝑀.f := 𝑀 | 𝑀.m(−→𝑀)

MImps ∋ M ::= ∅ | (m : 𝜆®𝑥 .𝑀),M

The terms are typed in contexts comprising an interface table Δ, a variable context Γ = {𝑥1 : 𝜃1, · · · , 𝑥𝑛 : 𝜃𝑛}, a name

context 𝑢 = {𝑎1 : I1, · · · , 𝑎𝑚 : I𝑚} such that any interface in Γ and 𝑢 occurs in dom(Δ). The typing rules are given in

Figure 2.

As usual, we write 𝑀 ;𝑁 for let𝑥 = 𝑀 in𝑁 , where 𝑥 is not free in 𝑁 . We will also be writing new( _ : I;M) for
new(𝑥 : I;M) where 𝑥 does not occur freely in M. In typing judgements, when the name context 𝑢 is empty we may

omit them altogether and write e.g. Δ|Γ ⊢ 𝑀 : 𝜃 .

Manuscript submitted to ACM
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Δ|Γ;𝑢 ⊢ skip : void Δ|Γ;𝑢 ⊢ null : I I∈dom(Δ)
Δ|Γ;𝑢 ⊢ 𝑖 : int

Δ|Γ;𝑢 ⊢ 𝑥 : 𝜃
(𝑥 :𝜃 ) ∈Γ

Δ|Γ;𝑢 ⊢ 𝑎 : I (𝑎:I) ∈𝑢
Δ|Γ;𝑢 ⊢ 𝑀 : int Δ|Γ;𝑢 ⊢ 𝑀 ′

: int
Δ|Γ;𝑢 ⊢ 𝑀 ⊕ 𝑀 ′

: int

Δ|Γ;𝑢, 𝑥 : 𝜃 ′ ⊢ 𝑀 : 𝜃 Δ|Γ;𝑢 ⊢ 𝑀 ′
: 𝜃 ′

Δ|Γ;𝑢 ⊢ let𝑥 = 𝑀 ′ in𝑀 : 𝜃

Δ|Γ;𝑢 ⊢ 𝑀 : I Δ|Γ;𝑢 ⊢ 𝑀 ′
: I

Δ|Γ;𝑢 ⊢ 𝑀 = 𝑀 ′
: int

Δ|Γ;𝑢 ⊢ 𝑀 : I ′

Δ|Γ;𝑢 ⊢ (I)𝑀 : I Δ⊢I≤I′
or Δ⊢I′≤I

Δ|Γ;𝑢 ⊢ 𝑀 : int Δ|Γ;𝑢 ⊢ 𝑀 ′, 𝑀 ′′
: 𝜃

Δ|Γ;𝑢 ⊢ if 𝑀 then 𝑀 ′ else 𝑀 ′′
: 𝜃

Δ|Γ, 𝑥 : I;𝑢 ⊢ M : Θ

Δ|Γ;𝑢 ⊢ new(𝑥 : I;M) : I Δ(I)↾Meths=Θ

Δ|Γ;𝑢 ⊢ 𝑀 : I Δ|Γ;𝑢 ⊢ 𝑀 ′
: 𝜃

Δ|Γ;𝑢 ⊢ 𝑀.f := 𝑀 ′
: void

Δ(I) .f=𝜃
Δ|Γ;𝑢 ⊢ 𝑀 : I
Δ|Γ;𝑢 ⊢ 𝑀.f : 𝜃

Δ(I) .f=𝜃

Δ|Γ;𝑢 ⊢ 𝑀 : I ∧𝑛
𝑖=1 (Δ|Γ;𝑢 ⊢ 𝑀𝑖 : 𝜃𝑖 )

Δ|Γ;𝑢 ⊢ 𝑀.m(𝑀1, · · · , 𝑀𝑛) : 𝜃
Δ(I) .m= ®𝜃→𝜃

∧𝑛
𝑖=1 (Δ|Γ ⊎ {®𝑥𝑖 : ®𝜃𝑖 };𝑢 ⊢ 𝑀𝑖 : 𝜃𝑖 )

Δ|Γ;𝑢 ⊢ M : Θ
Θ={m𝑖 :

®𝜃𝑖→𝜃𝑖 | 1≤𝑖≤𝑛}
M={m𝑖 :𝜆 ®𝑥𝑖 .𝑀𝑖 | 1≤𝑖≤𝑛}

Fig. 2. Typing rules for IMJ terms and method-set implementations

Remark 2.5. Note that, in the typing rule for new(𝑥 : I;M), the type of the variable 𝑥 matches that of the whole

term new(𝑥 : I;M). This is because 𝑥 represents the identity of the object, like the keyword this in Java. Accordingly,

occurrences of 𝑥 in M represent self-reference, i.e. they make it possible to refer to the fields and methods of the same

object in other methods.

For the operational semantics, we define the sets of term values, field assignments and states by:

TVals ∋ 𝑉 ::= skip | 𝑖 | null | 𝑎

FAsgs ∋ 𝐹 ::= ∅ | (f : 𝑣), 𝐹

States ∋ 𝑆 : Names ⇀ Ints × (FAsgs ×MImps)

If 𝑆 (𝑎) = (I, (𝐹,M)) then we write 𝑆 (𝑎) : I, while 𝑆 (𝑎).f and 𝑆 (𝑎) .m stand for 𝐹 .f andM .m respectively, for each f

and m.

Given an interface table Δ such that I ∈ dom(Δ), we let the default field assignment of type I be

𝐹I = {f : 𝑉𝜃 | Δ(I).f = 𝜃 },

where 𝑉void = skip, 𝑉int = 0 and, for each interface I ′
, 𝑉I′ = null. The operational semantics of IMJ is given by means

of a small-step transition relation between terms-in-state, presented in Figure 3.

The transition relation uses evaluation contexts 𝐸 that are defined as follows.

𝐸 ::= • | let𝑥 = 𝐸 in𝑀 | 𝐸 ⊕ 𝑀 | 𝑖 ⊕ 𝐸 | 𝐸 = 𝑀 | 𝑉 = 𝐸 | if 𝐸 then 𝑀 else 𝑀 ′ | (I)𝐸

| 𝐸.f | 𝐸.f := 𝑀 | 𝑎.f := 𝐸 | 𝐸.m( ®𝑀) | 𝑎.m(𝑣1, · · · , 𝑣𝑖 , 𝐸, 𝑀𝑖+2, · · · , 𝑀𝑛)

Given Δ|∅ ⊢ 𝑀 : void, we write𝑀 ⇓ if there exists 𝑆 such that (∅, 𝑀) −→∗ (𝑆, skip).
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(𝑆, 𝑖 ⊕ 𝑖 ′) −→ (𝑆, 𝑗), if 𝑗 = 𝑖 ⊕ 𝑖 ′ (𝑆, let𝑥 = 𝑉 in𝑀) −→ (𝑆,𝑀 [𝑉 /𝑥])
(𝑆, if 0 then 𝑀 else 𝑀 ′) −→ (𝑆,𝑀 ′) (𝑆, if 𝑖 then 𝑀 else 𝑀 ′) −→ (𝑆,𝑀), if 𝑖 ≠ 0

(𝑆,𝑉 = 𝑉 ) −→ (𝑆, 1) (𝑆,𝑉 = 𝑉 ′) −→ (𝑆, 0), if 𝑉 ≠ 𝑉 ′

(𝑆, (I)null) −→ (𝑆, null) (𝑆, (I)𝑎) −→ (𝑆, 𝑎), if 𝑆 (𝑎) : I ′ ∧ I ′ ≤ I
(𝑆, new(𝑥 : I;M)) −→ (𝑆 ⊎ {(𝑎,I, (𝐹I ,M[𝑎/𝑥]))}, 𝑎) (𝑆, 𝑎.f) −→ (𝑆, 𝑆 (𝑎) .f)

(𝑆, 𝑎.m( ®𝑉 )) −→ (𝑆,𝑀 [ ®𝑉 /®𝑥]), if 𝑆 (𝑎) .m = 𝜆®𝑥 .𝑀 (𝑆, 𝑎.f := 𝑉 ) −→ (𝑆 [𝑎 ↦→ (I, (𝐹 [f ↦→ 𝑉 ],M))], skip),
if 𝑆 (𝑎) = (I, (𝐹,M))

(𝑆, 𝐸 [𝑀]) −→ (𝑆 ′, 𝐸 [𝑀 ′]), if (𝑆,𝑀) −→ (𝑆 ′, 𝑀 ′)

Fig. 3. Operational semantics of IMJ.

Remark 2.6. For technical convenience, IMJ features the let construct, even though it is definable: given Δ|Γ, 𝑥 : 𝜃 ′;𝑢 ⊢
𝑀 : 𝜃 and Δ|Γ;𝑢 ⊢ 𝑀 ′

: 𝜃 ′, consider new(𝑦 :I;m : 𝜆𝑥.𝑀 ) .m(𝑀 ′), where I is a fresh interface with a single method

m : 𝜃 → 𝜃 ′.

Remark 2.7. Although IMJ does not have explicit local variables, they could easily be introduced by taking

let (𝑥 = new( _ : Var𝜃 ; )) in · · · ,

where Var𝜃 is an interface with a single field of type 𝜃 , e.g. Var𝜃 : (val : 𝜃 ). This is reminiscent of how locally-scoped

references are introduced in ML-style languages. For examples of interesting equivalences involving local state, we

direct the reader to [43].

Such locally declared objects can also be used to simulate fields and methods that are private to objects and invisible to

the environment via interfaces. For example, in order to create an object of type I with private fields 𝑓1 : 𝜃1, · · · , 𝑓𝑘 : 𝜃𝑘 ,

we can use an open IMJ term new(𝑥 : I;M) with free variables 𝑓1 : Var𝜃1 , · · · , 𝑓𝑘 : Var𝜃𝑘 . The variables may then occur

freely in methods and field access/update can be simulated by dereferencing/updating the public field 𝑓𝑖 .val : 𝜃𝑖 from

Var𝜃𝑖 . Privacy (state encapsulation) can then be achieved by binding each 𝑓𝑖 : Var𝜃𝑖 to a fresh local object as follows:

let 𝑓1 = new( _ : Var𝜃1 ; ) in
.
.
.

let 𝑓𝑘 = new( _ : Var𝜃𝑘 ; ) in new(𝑥 : I;M).

This ability to simulate local state in IMJ influenced our decision not to include explicit private fields in IMJ, for the

sake of minimal design. The encoding of private fields outlined above will often be used in our examples.

Example 2.8. The next term creates a hash-function object over the interface I. Its hashing method delegates the job

to another object (priv.val) of the same type. The latter is stored internally, its initial value will be trivial, but it can be
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8 Andrzej S. Murawski and Nikos Tzevelekos

modified later via reset. The objects have type HashFunI : (hash : I → int, reset : HashFunI → void).

let priv = new( _ : VarHashFunI ; ) in

(priv.val := new( _ : HashFunI ;M0)); new( _ : HashFunI ;M1)

M0 = (hash : 𝜆 _. 0, reset : 𝜆 _. skip),

M1 = (hash : 𝜆𝑧. priv.val.hash(𝑧), reset : 𝜆ℎ. priv.val := ℎ) .

Finally, we define a notion of equivalence of terms, which will be the main target of our denotational model: the

model will equate two terms just if they are equivalent in this sense.

Definition 2.9. Given Δ|Γ ⊢ 𝑀𝑖 : 𝜃 (𝑖 = 1, 2), we shall say that Δ|Γ ⊢ 𝑀1 : 𝜃 contextually approximates Δ|Γ ⊢ 𝑀2 : 𝜃

if, for all Δ′ ⊇ Δ and all contexts 𝐶 such that Δ′ |∅ ⊢ 𝐶 [𝑀𝑖 ] : void, if 𝐶 [𝑀1] ⇓ then 𝐶 [𝑀2] ⇓. We then write Δ|Γ ⊢
𝑀1

<∼ 𝑀2 : 𝜃 . Two terms are contextually equivalent (written Δ|Γ ⊢ 𝑀1 � 𝑀2 : 𝜃 ) if they approximate each other.

To illustrate equivalences and refinements that may arise in IMJ (or failures thereof), we consider several examples

next. The first one is based on comparisons between reference names, the second one uses local variables to hide

implementation details and the third one discusses type casts and subtyping.

Example 2.10 (extended from [43]). The terms below manipulate reference names, and use methods from names to

names. Let

Δ = {Empty : ∅, EtoE : (m : Empty → Empty)}

and consider the terms Δ|∅ ⊢ 𝑀𝑖 : EtoE (𝑖 = 1, 2, 3) defined by

𝑀1 ≡ let𝑥 = new( _ : Empty; ) in new( _ : EtoE;M1)

𝑀2 ≡ let𝑥 = new( _ : Empty; ) in let𝑦 = new( _ : Empty; ) in new( _ : EtoE;M2)

𝑀3 ≡ let𝑥 = new( _ : Empty; ) in let𝑦 = new( _ : Empty; ) in new( _ : EtoE;M3)

with

M1 = (m : 𝜆𝑧. 𝑥)

M2 = (m : 𝜆𝑧. if (𝑧 = 𝑥) then𝑥 else𝑦),

M3 = (m : 𝜆𝑧. if (𝑧 = 𝑥) then𝑦 else𝑥).
The term𝑀1 will simply keep on returning the same name all the time.𝑀2 seemingly has two options (𝑥 or 𝑦) but, in

order to respond with 𝑥 the context would have to guess it. As 𝑥 is local and not divulged to the environment otherwise,

this will never be the case, so 𝑀1 and 𝑀2 are contextually equivalent. However, 𝑀3 is different: it reveals 𝑥 when

called for the first time, which can be exploited to trigger the second response 𝑦 in a subsequent call. Thus, we have

Δ|∅ ⊢ 𝑀1 � 𝑀2 � 𝑀3 : EtoE. Note that 𝑥 (resp. 𝑥,𝑦) have been declared locally in𝑀1 (resp. in𝑀2, 𝑀3). Next we explain

how the equivalence and inequivalence will be captured by our game model. Indeed, the game semantics of the first

two terms will turn out to consist of the same plays, of the shape

∗∅ 𝑎𝛴0 call𝑎.m(𝑎1)𝛴
′
1 ret𝑎.m(𝑎0)𝛴1 call𝑎.m(𝑎2)𝛴2 ret𝑎.m(𝑎0)𝛴2 · · · call𝑎.m(𝑎𝑘 )𝛴𝑘 ret𝑎.m(𝑎0)𝛴𝑘
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where 𝑎1 ≠ 𝑎0 and:

Σ0 = {𝑎 ↦→ (EtoE, ∅)}

Σ′
1
= Σ0 ∪ {𝑎1 ↦→ (Empty, ∅)}

Σ1 = Σ′
1
∪ {𝑎0 ↦→ (Empty, ∅)}

Σ𝑖+1 = Σ𝑖 ∪ {𝑎𝑖+1 ↦→ (Empty, ∅)} (𝑖 > 0).

The first move can be viewed as the environment starting an interaction by providing values for the free variables.

Since the term does not have any, it is simply ∗. Each move will be accompanied by a store that collects all the names

have been used in play. As no names have been used so far, ∗ appears together with the empty store ∅. The second move

represents the program revealing the name of the object that has been created by𝑀𝑖 . Only its name is revealed and the

associated store becomes Σ0. Note that the store contains the type EtoE of the name. If the corresponding interface

featured any public fields then their initial values would have been mentioned, but EtoE does not have any, hence 𝑎 is

mapped to (EtoE, ∅). Note that method bodies are never mentioned, these will always be hidden in our interpretation.

The subsequent sequences of call- and return-moves correspond to the environment calling the m method of the

object 𝑎 (on an object name) and the program returning the same name 𝑎0 in response. As soon as a name is played, it

becomes part of every subsequent store, which reflects the fact that the object has become accessible to both players

and thus observable. The names 𝑎1, · · · , 𝑎𝑘 are the arguments used by the environment. They need not be different.

However, 𝑎1 ≠ 𝑎0, as 𝑎0 represents a local name that the environment cannot predict.

Note that inside stores, the names 𝑎1, · · · , 𝑎𝑘 are associated with (Empty, ∅), because Empty is both the argument

and result type of m, as specified by the interface EtoE. A notable feature of our way of modelling (and game semantics,

in general) is the fact that local storage (and related state changes) are invisible in plays unless the relevant location

(reference name) has been revealed by the term to the environment (leaked). This can be seen in the second move 𝑎𝛴0
,

which does not contain any mention of 𝑥 (or 𝑥,𝑦 for𝑀2). For𝑀1, the name bound to 𝑥 is revealed only in the fourth

move, once it is actually returned as a result of the first call to m. Similarly, for𝑀2, the fourth move reveals the name

bound to 𝑦, but the play will never use the name associated with 𝑥 .

Our model makes it possible to distinguish𝑀1, 𝑀2 from𝑀3, because𝑀3 will also generate the following play:

∗∅ 𝑎𝛴0 call𝑎.m(𝑎1)𝛴
′
1 ret𝑎.m(𝑎0)𝛴1 call𝑎.m(𝑎0)𝛴1 ret𝑎.m(𝑎′

0
)𝛴1∪{𝑎′

0
↦→(Empty,∅) }

where 𝑎0 ≠ 𝑎′
0
. It does not follow the previous pattern, because the second result is different from the first one. This

time both the names corresponding to 𝑥 and 𝑦 (in𝑀3) get revealed. The name 𝑎0 corresponds to the object bound to 𝑥

and, after the environment feeds 𝑎0 to m in the fifth move, the sixth move contains the name 𝑎′
0
, which corresponds to

the name bounde to 𝑦 in𝑀3.

Example 2.11 (extended from [23]). The terms below simulate local storage of a single name (Var𝐸 ) with access (get)

and update (set) methods. Integer storage (Var𝐼 ) will be used to vary the behaviour of the implementations.𝑀1 will

use a single private variable to store the name. Two such variables are used in 𝑀2 and accessed alternately but, the

variables always hold the same value, so it does not matter which of the variables is used to return the value. On the

other hand, in𝑀3 the two variables are used to hold the last two values stored, and the switch 𝑏 is used to record which

of them contains the most recent one.
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Let

Δ = { Empty : ∅,
Cell : (get : void→ Empty, set : Empty → void),
Var𝐸 : (val : Empty),
Var𝐼 : (val : int) }

and consider the terms Δ|∅ ⊢ 𝑀𝑖 : Cell (𝑖 = 1, 2, 3) defined by

𝑀1 ≡ let 𝑧 = new( _ : Var𝐸 ; ) in new( _ : Cell;M1)

𝑀2 ≡ let𝑏 = new( _ : Var𝐼 ; ) in let 𝑧1 = new( _ : Var𝐸 ; ) in let 𝑧2 = new( _ : Var𝐸 ; ) in new( _ : Cell;M2)

𝑀3 ≡ let𝑏 = new( _ : Var𝐼 ; ) in let 𝑧1 = new( _ : Var𝐸 ; ) in let 𝑧2 = new( _ : Var𝐸 ; ) in new( _ : Cell;M3)

with

M1 = (get : 𝜆().(𝑧.val),
set : 𝜆𝑦. (𝑧.val := 𝑦))

M2 = (get : 𝜆().if (𝑏.val) then (𝑏.val := 0; 𝑧1 .val) else (𝑏.val := 1; 𝑧2 .val),
set : 𝜆𝑦. (𝑧1 .val := 𝑦; 𝑧2 .val := 𝑦))

M3 = (get : 𝜆().if (𝑏.val) then 𝑧1 .val else 𝑧2 .val,
set : 𝜆𝑦.if (𝑏.val) then (𝑏.val := 0; 𝑧2 .val := 𝑦) else (𝑏.val := 1; 𝑧1 .val := 𝑦)) .

We have Δ|∅ ⊢ 𝑀1 � 𝑀2 � 𝑀3 : Cell. Note that, as in the previous example, we are relying on local variables 𝑏, 𝑧1, 𝑧2.

They are local with respect to the object and play the role of private fields.

The game semantics of the three terms will turn out to consist of plays of the shape

∗∅ 𝑎𝛴0 Get∗
0
Set1 Get∗1 · · · Set𝑘 Get∗𝑘 ,

where

Get𝑖 =


call𝑎.get(∗)𝛴0 ret𝑎.get(nul)𝛴0 𝑖 = 0

call𝑎.get(∗)𝛴𝑖 ret𝑎.get(𝑣𝑖 )𝛴𝑖 𝑖 > 0

Set𝑖 = call𝑎.set(𝑣𝑖 )𝛴𝑖 ret𝑎.set(∗)𝛴𝑖

𝛴𝑖 = {𝑎 ↦→ (Cell, ∅)} ∪ {𝑣 𝑗 ↦→ (Empty, ∅) | 0 < 𝑗 ≤ 𝑖, 𝑣 𝑗 ≠ nul}.
Here 𝑎 ranges over Names and each 𝑣𝑖 ranges over (Names \ {𝑎}) ∪ {nul}. Intuitively, the plays describe all possible
interactions of a Cell object. The first two moves ∗∅ 𝑎𝛴0

correspond to object creation. Only the object creation

corresponding to the outcome of evaluating𝑀𝑖 is represented - the local objects are not represented because they will

never get revealed by the term.

After the first two moves, the Get𝑖 segments represent the environment reading the current content via get (initially

having null value), while the Set𝑖 segments correspond to updating the content with the value provided by the

environment via set. The stores Σ𝑖 attached to moves consist of all names that have been introduced during the

interaction so far. They include 𝑎 and the names provided by the environment as arguments to set, but never the object

names corresponding to the local object names 𝑏, 𝑧1, 𝑧2.

It is worth noting that, because IMJ has explicit casting, a context can always guess the actual interface of an object

and extract any information we may want to hide through casting.
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Example 2.12. Let Δ = {Empty : ∅, Point⟨Empty⟩ : (x : int, y : int)} and consider the terms Δ|∅ ⊢ 𝑀𝑖 : Empty (𝑖 = 1, 2)

defined by:

𝑀1 ≡ new(𝑥 : Empty; ),

𝑀2 ≡ let𝑝 = new(𝑥 : Point; ) in 𝑝.x := 0; 𝑝.y := 1; (Empty)𝑝.

In our model they will be interpreted by the following strategies respectively: 𝜎1 = {𝜖, ∗∅ 𝑎 {𝑎 ↦→(Empty,∅) }} and 𝜎2 =

{𝜖, ∗∅ 𝑎 {𝑎 ↦→(Point,{x ↦→0,y↦→1}) }}. This time, the strategies are very concise: there are no call- or return-moves, because

the interfaces involved do not contain any methods. The essence of the object is entirely captured by the information

about their name and type and, for𝑀2, the initial values assigned to fields.

The reader may wonder how subsequent field updates are handled, as they are not represented explicitly in 𝜎2.

Because such updates are triggered by the interaction of the object with other objects, they will be integrated in the

process of strategy composition, which will keep a record of how the fields evolve. Such updates need not become

part of the semantics of the object, because their flavour is highly uniform (just propagate the most recent value)

and not specific to the object. However, if the object had methods, the strategy would contain call- and return-moves

with stores indicating how the field values are affected by the calls and returns respectively. Using, for example, the

casting context𝐶 ≡ (Point)•; skip, we can see that Δ|∅ ⊢ 𝑀2
≮∼ 𝑀1 : Empty. On the other hand, Theorem 6.3 will imply

Δ|∅ ⊢ 𝑀1
<∼ 𝑀2 : Empty.

Remark 2.13. When designing IMJ, we aimed to arrive at a minimalistic calculus that is expressive enough to capture

interactions of MJ-like objects with the environment. Our guiding principle was that these interactions are carried out

via interfaces, which specify the publicly accessible fields and methods. Accordingly, we suppressed the introduction of

explicit class hierarchy, as it would remain invisible to the environment and any class-based internal computations can

be represented using standard object encodings [1]. In the same spirit, we did not add explicit private fields/methods to

IMJ, because:

(1) their effect (i.e. local state, encapsulation, hiding) can already be achieved through other IMJ constructs (Re-

mark 2.7),

(2) private fields/methods are not explicitly involved in contextual interactions anyway.

Despite differing from Java in several details mentioned in earlier remarks, IMJ amounts to a compact calculus that

strips down Middleweight Java to the bare essentials needed for interface-based interaction. In particular, it accounts

for such features of Java-like objects as

• field access and assignment;

• object creation, identity and self-reference;

• base types, reference types and null pointers;

• interfaces with subtyping and casting.

At the moment the calculus allows for single inheritance for interfaces only, but extending it to multiple inheritance

is not problematic. The following semantic developments only rely on the assumption that ≤ must not give rise to

circularities.
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3 THE GAME MODEL

In this section we show how to interpret IMJ terms in a nominal game model. We will present the translation in steps,

starting from the translation of IMJ types into arenas, and building up an arsenal of notions that will lead to a translation

of typed IMJ terms into strategies. In our discussion below, we assume a fixed interface table Δ along with the induced

subtyping relation ≤.
We start off by translating values of IMJ into semantic values. For each type 𝜃 , we let Val𝜃 be the set of semantic

values of type 𝜃 , given by:

Valvoid = {∗}, Valint = Z, ValI = Names ∪ {nul},

for each interface type I. Thus, the void type has a single value, represented by the asterisk symbol. On the other hand,

values of interface type, in addition to names, feature a distinguished value nul, representing the null value. We write

Val for Valvoid ∪ Valint ∪ ValI . For each type sequence
®𝜃 = 𝜃1, · · · , 𝜃𝑛 , we set Val ®𝜃 = Val𝜃1 × · · · × Val𝜃𝑛 .

3.1 Nominal sets

The game model will be constructed using mathematical objects (moves, plays, strategies) that feature names drawn

from a designated set Names. The set Names will in particular consist of object names. Although names underpin

various elements of our model, we do not want to delve into the precise nature of the sets containing them. Hence, all

of our definitions preserve name-invariance, i.e. our objects are (strong) nominal sets [13, 45]. Note that we do not need

the full power of the theory but mainly the basic notion of name-permutation. We will construe a nominal set to be a

set whose elements contain elements from Names. More specifically, given nominal sets 𝑋,𝑌 :

• For an element 𝑥 belonging to 𝑋 we write 𝜈 (𝑥) for its name-support, which is the set of names occurring in 𝑥 .

By assumption, every 𝜈 (𝑥) is going to be finite.

• Moreover, for any 𝑥 ∈ 𝑋 and permutation 𝜋 of Names, we write 𝜋 · 𝑥 for the result of applying 𝜋 elementwise to

all names in 𝑥 . We stipulate that 𝑥 ∈ 𝑋 implies 𝜋 · 𝑥 ∈ 𝑋 .

• For any 𝑥,𝑦 ∈ 𝑋 , we write 𝑥 ∼ 𝑦 if there is a permutation 𝜋 such that 𝑥 = 𝜋 · 𝑦.
• A relation 𝑅 ⊆ 𝑋 × 𝑌 is called nominal if it is closed under permutations: if 𝑥𝑅𝑦 then (𝜋 · 𝑥)𝑅(𝜋 · 𝑦), for any
permutation 𝜋 . Accordingly, 𝑓 : 𝑋 → 𝑌 is a nominal function just if 𝜋 · (𝑓 (𝑥)) = 𝑓 (𝜋 · 𝑥) for all 𝑥 and 𝜋 .

The objects of our category of games will be nominal sets carrying specific type information.

3.2 Arenas, moves-with-store and plays

Our semantic translation will be into a category of games, which will feature arenas as objects and strategies as

morphisms. In particular, each typed term Δ|Γ;𝑢 ⊢ 𝑀 : 𝜃 will be translated into a strategy J𝑀K : JΓ;𝑢K → J𝜃K. Thus,
arenas will serve as type representations in our model. They will provide the defining moves from which all other moves

will be derived. Given arenas 𝐴 and 𝐵, a play in 𝐴 → 𝐵 will be a sequence of moves from 𝐴 and 𝐵 adhering to certain

well-formedness conditions. In addition, each move will carry its own representation of the current (visible) state. A

strategy will then be a set of such plays describing semantically the visible behaviour of𝑀 .

We start off by defining arenas.

Definition 3.1. An arena is a pair 𝐴 = (𝑀𝐴, 𝜉𝐴) where:

• 𝑀𝐴 is a nominal set of defining moves,
• 𝜉𝐴 : 𝑀𝐴 → (Names ⇀ Ints) is a nominal typing function,
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such that, for all𝑚 ∈ 𝑀𝐴 , dom(𝜉𝐴 (𝑚)) = 𝜈 (𝑚).

Thus, the typing function 𝜉𝐴 assigns interface types to all object names appearing in the defining moves of 𝐴. It can

be seen as the semantic counterpart of syntactic typing.

Since arenas function as representations of IMJ types, we define the following basic arenas representing respectively

the types void, int and I:

1 = ({∗}, {(∗, ∅)}),

Z = (Z, {(𝑖, ∅)}),

I = (Names ∪ {nul}, {(nul, ∅)} ∪ {(𝑎, (𝑎 ↦→ I))}),

for all interfaces I.2 We notice that𝑀1 = Valvoid,𝑀Z = Valint etc, i.e. the moves in the arena corresponding to each of

the basic types coincide with the semantic values of that type. Moreover, the typing function is trivial for moves that

contain no names (e.g. the move ∗), but is meaningful for moves containing names (e.g. it assigns the type I to each

name 𝑎 in a move 𝑎 of the arena I).
Another important arena is the fresh combination arena #(I1, · · · ,I𝑛)= (𝑀

#( ®I) , 𝜉#( ®I) ), with:

𝑀
#( ®I) = {(𝑎1, · · · , 𝑎𝑛) ∈ Names𝑛 | 𝑎𝑖 ’s distinct}

𝜉
#( ®I) ((𝑎1, · · · , 𝑎𝑛), 𝑎𝑖 ) = I𝑖

for all 𝑛 ∈ N (where we write 𝜉 (𝑥) (𝑦) as 𝜉 (𝑥,𝑦) to save on brackets). In particular, #() = 1. The arena can be used to

represent tuples of different objects, such as those featuring in the state component of our operational semantics. In

what follows, we shall rely on the special arenas specified above as well as their combinations obtained through the

product construction, defined next.

Definition 3.2 (Product arena). Given arenas 𝐴 and 𝐵, we can form the arena 𝐴 × 𝐵 by:

𝑀𝐴×𝐵 = {(𝑚,𝑛) ∈ 𝑀𝐴 ×𝑀𝐵 | 𝑎 ∈ 𝜈 (𝑚) ∩ 𝜈 (𝑛) =⇒ 𝜉𝐴 (𝑚,𝑎) ≤ 𝜉𝐵 (𝑛, 𝑎) ∨ 𝜉𝐵 (𝑛, 𝑎) ≤ 𝜉𝐴 (𝑚,𝑎)}

𝜉𝐴×𝐵 ((𝑚,𝑛), 𝑎) =

𝜉𝐴 (𝑚,𝑎) 𝑎 ∉ 𝜈 (𝑛) ∨ 𝜉𝐴 (𝑚,𝑎) ≤ 𝜉𝐵 (𝑛, 𝑎)

𝜉𝐵 (𝑛, 𝑎) otherwise

Remark 3.3. As one may expect,𝑀𝐴×𝐵 consists of pairs of moves, taken from 𝐴 and 𝐵 respectively. The moves need

not share names but, if they do, the types of the names (as prescribed by 𝜉𝐴 and 𝜉𝐵 ) must be compatible, i.e. comparable

via ≤. Then 𝜉𝐴×𝐵 is taken to be the lower type.

With basic arenas and products we can now translate arbitrary sequences of types into arenas. In particular,

anticipating the full definition of the semantic translation (Definition 5.1), we can translate contexts Γ = {𝑥1 : 𝜃1, · · ·, 𝑥𝑛 :

𝜃𝑛}, 𝑢 ={𝑎1 : I1,· · · , 𝑎𝑚 : I𝑚} into arenas by

JΓ;𝑢K = J𝜃1K × · · · × J𝜃𝑛K × #(I1, · · · ,I𝑚) (1)

where JvoidK = 1, JintK = Z and JIK = I.
States are going to be represented in the model via stores. Recall that a state is a finite map from names to interfaces

paired with heap configurations and method implementations. Since method implementations are not visible to the

2
There is an obvious abuse of notation here: I is used to refer to both the interface type I and the arena representing it. This is done for notational

brevity.

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Andrzej S. Murawski and Nikos Tzevelekos

environment of an object (i.e. the environment can interact with an object’s methods but not look at their code), stores

will only register the interface information and the field assignment of each object.

Definition 3.4. We let a store Σ be a type-preserving finite partial function from names to interfaces and field

assignments,

𝛴 : Names ⇀ Ints × (Flds ⇀ Val)

satisfying several healthiness conditions listed below. To specify the first component of Σ(𝑎), we shall write 𝛴 (𝑎) : I if

Σ(𝑎) = (I, 𝜙) for some 𝜙 . Similarly, 𝛴 (𝑎) .f will stand for 𝜙 (f).
We stipulate that |𝛴 | be finite and the following well-formedness condition be satisfied

∀𝑎,I, f, 𝜃 . 𝛴 (𝑎) : I ∧ Δ(I) .f = 𝜃 =⇒ ∃𝑣,I ′. 𝛴 (𝑎).f = 𝑣 ∧ 𝛴 ⊢ 𝑣 : I ′ ∧ I ′ ≤ 𝜃

where the typing rules for values in store contexts are given below.

𝑣 ∈ Valvoid
𝛴 ⊢ 𝑣 : void

𝑣 ∈ Valint
𝛴 ⊢ 𝑣 : int

𝛴 (𝑣) : I ∨ 𝑣 = nul

𝛴 ⊢ 𝑣 : I
We let Sto be the set of all stores and write dom(𝛴 (𝑎)) for the set of all f such that 𝛴 (𝑎).f is defined.
We let Sto0 contain all stores 𝛴 such that:

∀𝑎 ∈ dom(𝛴) .∀f ∈ dom(𝛴 (𝑎)) . 𝛴 (𝑎) .f ∈ {∗, 0, nul}

and we call such a 𝛴 a default store.

Finally, given stores 𝛴 and 𝛴 ′
, and 𝑋 ⊆ Names, we define:

• the restricted store 𝛴 ↾ 𝑋 = {(𝑎, 𝛴 (𝑎)) | 𝑎 ∈ dom(𝛴) ∩ 𝑋 }
• the updated store 𝛴 [𝛴 ′] = 𝛴 ′ ∪ (𝛴 ↾ (dom(𝛴) \ dom(𝛴 ′)))
• the defaulted store Dft(𝛴) as the unique 𝛴0 ∈ Sto0 such that ∀𝑎,I . 𝛴 (𝑎) : I ⇐⇒ 𝛴0 (𝑎) : I.

Example 3.5. Our previous definitions have laid a correspondence between syntactic and semantic values, and

between states and stores. For example, below we list a couple of states along with the corresponding stores (whereM𝑖

and the interface types used are defined as in Example 2.11).

{𝑎 ↦→ (Var𝐼 , ({val ↦→ 0}, ∅)), 𝑏 ↦→ (Var𝐸 , ({val ↦→ nul}, ∅))} ↦−→ {𝑎 ↦→ (Var𝐼 , {val ↦→ 0}), 𝑏 ↦→ (Var𝐸 , {val ↦→ nul})}

{𝑎 ↦→ (Cell, (∅,M𝑖 )), 𝑏 ↦→ (Empty, (∅, ∅))} ↦−→ {𝑎 ↦→ (Cell, ∅), 𝑏 ↦→ (Empty, ∅)}

Remark 3.6. As mentioned at the start of this section, a typed term Δ|Γ;𝑢 ⊢ 𝑀 : 𝜃 will be mapped into a strategy

J𝑀K : JΓ;𝑢K → J𝜃K. A strategy 𝜎 : 𝐴 → 𝐵 is going to be a set of sequences of moves-with-store from the arenas 𝐴

and 𝐵 adhering to several well-formedness conditions. In what follows, we will specify these conditions and motivate

them with examples. We will often label the associated notions (such as move and play) with 𝐴𝐵, which will stand as

abbreviation for the pair (𝐴, 𝐵).

Given arenas 𝐴 and 𝐵, plays in 𝐴𝐵 will consist of sequences of moves annotated with stores, where the moves will

be either coming from𝑀𝐴 ∪𝑀𝐵 or representing method calls and returns. Formally, we define:

𝑀𝐴𝐵 = 𝑀𝐴 ∪𝑀𝐵 ∪ Calls ∪ Retns
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where we set

Calls = {call 𝑎.m(®𝑣) | 𝑎 ∈ Names ∧m ∈ Meths ∧ ®𝑣 ∈ Val∗},

Retns = {ret 𝑎.m(𝑣) | 𝑎 ∈ Names ∧m ∈ Meths ∧ 𝑣 ∈ Val }.

Our first step towards defining plays in 𝐴𝐵 is to specify well-formedness conditions for the underlying sequences of

moves. Recall that 𝐴 and 𝐵 stand for arbitrary arenas. In practice, in the majority of cases, we shall rely on the special

arenas 1,Z,I introduced earlier and their products.

Definition 3.7. A legal sequence in 𝐴𝐵 is a sequence of moves from 𝑀𝐴𝐵 that adheres to the following grammar

(Well-Bracketing), where𝑚𝐴 and𝑚𝐵 range over𝑀𝐴 and𝑀𝐵 respectively.

𝐿𝐴𝐵 ::= 𝜖 | 𝑚𝐴X | 𝑚𝐴Y𝑚𝐵X

X ::= Y | Y (call 𝑎.m(®𝑣)) X

Y ::= 𝜖 | (call 𝑎.m(®𝑣)) Y (ret 𝑎.m(𝑣)) Y

We write 𝐿𝐴𝐵 for the set of legal sequences in 𝐴𝐵. In the last clause above, we say that call𝑎.m(®𝑣) justifies ret𝑎.m(𝑣).
To each 𝑠 ∈ 𝐿𝐴𝐵 we relate a polarity function 𝑝 from move occurrences in 𝑠 to the set Pol1 = {𝑂, 𝑃} by setting:

• for all𝑚𝐴 ∈ 𝑀𝐴 occurring in 𝑠 we have 𝑝 (𝑚𝐴) = 𝑂 ; (Well-starting)

• if𝑚𝑛 are consecutive moves in 𝑠 then 𝑝 (𝑛) ≠ 𝑝 (𝑚). (Alternation)

Polarities are complemented via 𝑂 = {𝑃} and 𝑃 = {𝑂}.

Remark 3.8. Note that a non-empty legal sequence always begins with a move from𝑀𝐴 but no other moves from

𝑀𝐴 are allowed afterwards. A legal sequence may also contain at most one element of𝑀𝐵 . All other moves are from

Calls ∪ Retns. Below we relate the shape of legal sequence to our modelling needs.

Recall that our typing judgments have the form Δ|Γ;𝑢 ⊢ 𝑀 : 𝜃 . When modelling terms, the initial move𝑚𝐴 will

represent a tuple of values corresponding to a value assignment for the variables in Γ and an enlisting of all names in 𝑢.

𝑚𝐵 in turn represents the moment when a value of type 𝜃 is generated by the interaction between the term and its

environment. If𝑀 is already a value then𝑚𝐵 will immediately follow𝑚𝐴 . In general this need not be the case and𝑚𝐴

may be preceded by a well-balanced segment Y of calls and returns corresponding to the history of interaction before

successful evaluation.

Once𝑚𝐵 is played, the following moves X are sequences of calls and returns that may contain “open” calls but

returns follow the call/return stack discipline. X is used to represent the history of computation after evaluation.

Remark 3.9. Polarities represent the two players in our game reading of programs: 𝑂 is the Opponent and 𝑃 is

the Proponent in the game. The latter corresponds to the modelled program, while the former models the possible

computational environments surrounding the program. By definition, there exists a unique polarity function 𝑝 for each

legal sequence 𝑠 , namely the one which assigns 𝑂 precisely to those moves appearing in odd positions in 𝑠 (i.e. the

first move, the third one, etc.). Moreover, it follows that for all𝑚𝐵 ∈ 𝑀𝐵 occurring in 𝑠 we have 𝑝 (𝑚𝐵) = 𝑃 . Finally, we

warn the reader that, although the complement of a polarity is currently determined uniquely, later on it will become a

non-singleton set of polarities.

Example 3.10. Consider the following interface with a single callable method:

Callable = (foo : void → void)
Manuscript submitted to ACM
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and let us examine legal sequences in Callable1. In anticipation of Definition 3.14, we will be looking at legal sequences

that can be extended to plays.

• The arena Callable comprises moves from the set {nul} ∪Names. Thus, a legal sequence in Callable1 must start

with a move𝑚0 that is either nul or some name 𝑎. Moreover,𝑚0 would have polarity 𝑂 .

• Next, following Definition 3.7, we can either have call move, or the unique move in 1. In both cases, the new

move would have polarity 𝑃 . In the latter case, we obtain the legal sequence:𝑚0∗.
In the former case, Definition 3.7 allows us to call any method on any object and with any argument values. Later

on, in Definition 3.14, we will constrain such method calls so that they make sense: the method called should

be part of the object it is called upon, and the arguments it is called with be of compatible types (well-classing

conditions). In our case here, a sensible call would be to the method foo with argument ∗. If𝑚0 was a non-null

object 𝑎, this would yield the legal sequence: 𝑎 call𝑎.foo(∗).
• The legal sequence𝑚0∗ corresponds to𝑚𝐴𝑚𝐵 in the notation of Definition 3.7. Hence, we could only extend it

by picking another call, the polarity of which would be𝑂 . As we shall see, though, Definition 3.14 would exclude

this possibility: either because𝑚0 = nul or, for𝑚0 = 𝑎, because 𝑂 cannot call a method on 𝑎, since 𝑎 was created

by 𝑂 (a player can only call methods on objects created by the other player, well-calling condition).

Instead, let us focus on how to extend 𝑎 call𝑎.foo(∗). Definition 3.7 allows us to add either a return of foo on 𝑎,

or a new call. We saw above that another call would be contrary to the conditions of Definition 3.14, so a sensible

way to extend our legal sequence would be: 𝑎 call𝑎.foo(∗) ret𝑎.foo(∗).

Re-iterating the last two steps above, the general pattern for legal sequences that can be extended to plays is:

𝑎 (call𝑎.foo(∗) ret𝑎.foo(∗))∗∗

and prefixes thereof, for any name 𝑎.

Example 3.11. In Example 2.11 we examined terms Δ|∅ ⊢ 𝑀𝑖 : Cell (𝑖 = 1, 2, 3) with:

Cell : (get : void→ Empty, set : Empty → void)

The terms are translated into strategies J𝑀𝑖K : J∅K → JCellK, so the arenas of interest are:

J∅K = 1 = ({∗}, {(∗, ∅)}) and JCellK = Cell = (Names ∪ {nul}, {(nul, ∅)} ∪ {(𝑎, (𝑎 ↦→ Cell))}) .

From these, we build the relevant set of moves:

𝑀
1Cell = {∗, nul} ∪ Names ∪ {call 𝑎.m(®𝑣) | 𝑎 ∈ Names ∧ ®𝑣 ∈ Val∗} ∪ {ret 𝑎.m(𝑣) | 𝑎 ∈ Names ∧ 𝑣 ∈ Val }.

Relating these moves to the previous definition,𝑚𝐴 is simply ∗, while𝑚𝐵 can be nul or any name 𝑎 ∈ Names. Thus,

non-empty legal sequences from 1Cell can be in one of the following forms:

• ∗𝑠 : where 𝑠 is a sequence of calls and returns that is well-bracketed, i.e. in the language of X.

• ∗𝑠𝑚𝑠 ′ : where 𝑠 is a well-balanced sequence (i.e. in Y),𝑚 is either nul or a name, and 𝑠 ′ is a well-bracketed

sequence (i.e. in X).

The meaning of these moves is the following. The move ∗ simply represents the context of the term𝑀𝑖 , which is empty.

The sequence 𝑠 represents any computations performed by𝑀𝑖 before evaluating. In practice, since the context is empty,

these computations will be internal to𝑀𝑖 and therefore 𝑠 must also be empty. If𝑀𝑖 evaluates to null then𝑚 will be nul,
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and therefore there is no more interaction to expect, i.e. 𝑠 ′ is empty. On the other hand, if𝑀𝑖 evaluates to some object 𝑎

then we will have𝑚 = 𝑎 and 𝑠 ′ will contain a sequence of calls and returns of the get and set methods on 𝑎.

Legal sequences cannot fully represent the interaction between a term and its environment, as they lack information

on field updates. This is where the role of stores becomes important: the plays of our games will be legal sequences

whose moves have been annotated with stores.

Remark 3.12. The early game models of the 1990s, e.g. [4–6, 12, 15–17, 24], did not rely on moves annotated with

a store. In contrast, one of the characteristic features of nominal game semantics, is the reliance on such moves

to keep track of the names that become visible to the environment and to express the evolution of visible store,

e.g. [3, 25, 33, 38, 45].

Definition 3.13. Amove-with-store in 𝐴𝐵 is a pair𝑚𝛴
with 𝛴 ∈ Sto and𝑚 ∈ 𝑀𝐴𝐵 .

In order to be able to specify the valid uses of object names inside a play, we need to introduce the notions of name

availability and name ownership. These will allow us to impose, for example, that a call of a method on an object 𝑎

cannot be made by the player who owns this object (i.e. introduced it first in the play). Note that from here onwards

we will reserve 𝑠 for sequences of moves-with-store. Given such a sequence 𝑠 , we use the notation 𝑠 to refer to its

underlying sequence of moves (i.e. the one obtained by erasing all stores from 𝑠).

For each sequence 𝑠 of moves-with-store we define the set of available names of 𝑠 by:

Av(𝜖) = ∅, Av(𝑠𝑚𝛴 ) = 𝛴∗ (Av(𝑠) ∪ 𝜈 (𝑚))

where, for each 𝑋 ⊆ Names, we let 𝛴∗ (𝑋 ) = ⋃
𝑖 𝛴

𝑖 (𝑋 ), with

𝛴0 (𝑋 ) = 𝑋, 𝛴𝑖+1 (𝑋 ) = 𝜈 (𝛴 (𝛴𝑖 (𝑋 ))) .

That is, a name is available in 𝑠 just if it appears inside a move in 𝑠 , or it can be reached from an available name through

some store in 𝑠 .

We use ⊑ to denote the prefix relation between sequences. Let 𝑠 be a sequence of moves-with-store, and let 𝑝 be the

polarity function of its underlying 𝑠 . If 𝑠 ′𝑚𝛴 ⊑ 𝑠 and 𝑎 ∈ 𝜈 (𝑚𝛴 ) \ 𝜈 (𝑠 ′) then we say 𝑎 is introduced by𝑚𝛴
in 𝑠 ,3 and

we define the owner of the name 𝑎 in 𝑠 , written 𝑜 (𝑎), to be 𝑝 (𝑚). We moreover define ownership sets:

𝑂 (𝑠) = {𝑎 ∈ 𝜈 (𝑠) | 𝑜 (𝑎) = 𝑂} and 𝑃 (𝑠) = {𝑎 ∈ 𝜈 (𝑠) | 𝑜 (𝑎) = 𝑃}

for 𝑂 and 𝑃 respectively.

Plays will consist of sequences of moves-with-store adhering to a set of well-formedness conditions. Before presenting

their formal definition, let us first discuss these conditions informally. Suppose we have a valid play 𝑠 ′ and a new

candidate move-with-store𝑚𝛴
is given. In order for 𝑠 ′𝑚𝛴

to be valid, we want to check the following.

(1) The store 𝛴 must give a complete account of the field values of all names that have been revealed since, in each

move, the player playing the move may have changed the field’s value. Therefore, the domain of 𝛴 should include

the set Av(𝑠 ′𝑚𝛴 ). Moreover, it should not contain any additional names: any such names would be unreachable

to the other player, and revealing their field values in the play would be revealing information that is hidden to

the other player.

3
By abuse of notation, we frequently write instead “𝑎 is introduced by𝑚 in 𝑠". Recall also that 𝜈 (𝑠) collects all names appearing in 𝑠 ; in particular,

𝜈 (𝑚𝛴
1

1
· · ·𝑚𝛴𝑖

𝑖
) = 𝜈 (𝑚1) ∪ 𝜈 (𝛴1) ∪ · · · ∪ 𝜈 (𝑚𝑖 ) ∪ 𝜈 (𝛴𝑖 ) .
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(2) Any name appearing in the domain of 𝛴 should be typed consistently with 𝑠 ′ and the underlying arenas. For

example, if a name 𝑎 appears in 𝑠 ′ and has type I (i.e. it appears in some store𝑇 in 𝑠 ′ and𝑇 (𝑎) : I), then 𝛴 (𝑎) : I.
Or, if𝑚 is a move from an arena𝑀𝐴 and 𝜉𝐴 (𝑚,𝑎) = I, then 𝛴 must assign to 𝑎 a subtype of I.

(3) If𝑚 is a call to a method of an object 𝑎, then the owner of 𝑎 must be the opposite of the owner of𝑚. Put otherwise,

a player cannot call their own methods. This is because calls to each player’s own methods cannot in general be

observed and so should not be accounted for in plays. Additionally, the name 𝑎 must have been revealed in 𝑠 ′, i.e.

be part of its available names.

Definition 3.14. A play in 𝐴𝐵 is a sequence of moves-with-store 𝑠 such that 𝑠 is a legal sequence with polarity

function 𝑝 and, for all 𝑠 ′𝑚𝛴 ⊑ 𝑠:

• It holds that dom(𝛴) = Av(𝑠 ′𝑚𝛴 ). (Frugality)
• If 𝑎 ∈ dom(𝛴) with 𝛴 (𝑎) : I then:

– if𝑚 ∈ 𝑀𝑋 , for 𝑋 ∈ {𝐴, 𝐵}, and 𝑎 ∈ 𝜈 (𝑚) then I ≤ 𝜉𝑋 (𝑚,𝑎);
– for all 𝑛𝑇 in 𝑠 ′, if 𝑎 ∈ dom(𝑇 ) then 𝑇 (𝑎) : I;
– if𝑚 is a call or return of some method m on 𝑎, then Δ(I).m = ®𝜃 → 𝜃 such that:

∗ if𝑚 = call𝑎.m(®𝑣) then 𝛴 ⊢ ®𝑣 :
®𝜃 ′ for some

®𝜃 ′ ≤ ®𝜃 ,
∗ if𝑚 = ret𝑎.m(𝑣) then 𝛴 ⊢ 𝑣 : 𝜃 ′ for some 𝜃 ′ ≤ 𝜃 .

(Well-classing)

• If𝑚 = call𝑎.m(®𝑣) then 𝑜 (𝑎) ∈ 𝑝 (𝑚). (Well-calling)

We write 𝑃𝐴𝐵 for the set of plays in 𝐴𝐵.

Remark 3.15. It is worth noting the following:

• Well-calling implements the specification that each player need only call the other player’s methods. Moreover,

it stipulates that a name already be available in order for its methods to be called: in the well-calling condition,

in order for the owner of 𝑎 to be different from the player playing𝑚, 𝑎 must have been introduced in 𝑠 ′.

• Because of well-bracketing, alternation and well-calling, if 𝑚 = ret𝑎.m(𝑣) then 𝑜 (𝑎) = 𝑝 (𝑚). That is, while
method calls on each name 𝑎 are issued by the player that does not own 𝑎, they are answered by the owner of 𝑎.

• The frugality condition stipulates that names cannot appear in a play in unreachable parts of a store (cf. [25]).

• Well-classing ensures that the typing information in stores is consistent and adheres to the constraints imposed

by Δ and the underlying arenas.

Example 3.16. Let us look again at the plays produced in Example 2.11. The terms examined were typed as Δ|∅ ⊢
𝑀𝑖 : Cell and, as we already saw in Example 3.11, the plays comprising J𝑀𝑖K are plays in 1Cell. As we mentioned in

Example 2.11, these are of the form:

𝑠 = ∗∅ 𝑎𝛴0 (call𝑎.get(∗)𝛴0 ret𝑎.get(nul)𝛴0 )∗ call𝑎.set(𝑣1)𝛴1 ret𝑎.set(∗)𝛴1 (call𝑎.get(∗)𝛴1 ret𝑎.get(𝑣1)𝛴1 )∗ · · ·

where 𝑎 ∈ Names, 𝛴0 = {𝑎 ↦→ (Cell, ∅)} and 𝛴𝑖 = 𝛴0 ∪ {𝑣 𝑗 ↦→ (Empty, ∅) | 0 < 𝑗 ≤ 𝑖, 𝑣 𝑗 ≠ nul} for 𝑖 > 0. Let us

analyse such a play 𝑠 . The underlying sequence of moves is:

𝑠 = ∗𝑎 (call𝑎.get(∗) ret𝑎.get(nul))∗ call𝑎.set(𝑣1) ret𝑎.set(∗) (call𝑎.get(∗) ret𝑎.get(𝑣1))∗ · · ·
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It is straightforward to see that this is well bracketed: each call is immediately followed by its return. Note also the

polarities here: each call has polarity 𝑂 , while each return has 𝑃 . Moreover, the move 𝑎 has polarity 𝑃 . These polarities

convey the fact that the object 𝑎 is created by 𝑃 (i.e. the term𝑀𝑖 ), so𝑂 can call its methods and 𝑃 will return from them.

Since we established that 𝑠 is legal, let us look at the other play conditions for 𝑠:

• Frugality. The available names at each point in the play, after the first move, are the name 𝑎 and any of the 𝑣𝑖 ’s

that have been played and are different to nul. The domain of each 𝛴𝑖 contains precisely those names.

• Well-classing. This is clearly adhered to as all method calls and returns type-check, 𝑎 is well-typed in each 𝛴𝑖

and each 𝛴𝑖 is also well-typed.

• Well-calling. As we noted above, 𝑎 is owned by 𝑃 and its methods are correctly called by 𝑂 .

Hence, 𝑠 is a valid play.

3.3 Interaction

We next look at how plays compose. In this section, we fix arenas 𝐴, 𝐵 and 𝐶 , and examine how plays from 𝐴𝐵 and

𝐵𝐶 can interact to produce a play in 𝐴𝐶 . More precisely, we will define play interactions, called interaction sequences

in 𝐴𝐵𝐶 , which will be moves-with-store representing the synchronisation of plays from 𝐴𝐵 and 𝐵𝐶 into a common

sequence of moves. By projecting these interaction sequences onto 𝐴𝐶 , we will obtain the desired play compositions.

In general in game semantics, play interactions are performed by “parallel composition plus hiding”, whereby moves

in the common component 𝐵 are matched between the plays in 𝐴𝐵 and 𝐵𝐶 , and then hidden in order to produce plays

in 𝐴𝐶 . In our case, though, plays do not only contain moves from 𝐴, 𝐵 and 𝐶 : the most interesting moves are calls and

returns, which do not form part of the arenas. But while these moves cannot be attributed to an arena, they can be

attributed to a component in the interaction (either 𝐴𝐵, or 𝐵𝐶 , or both) and a player – e.g. a move call𝑎.m(5) will be
played by the opposite player to the one that introduced the name 𝑎. We will formalise this tracking of moves using an

extended set of polarities, to account for the fact that in an interaction over 𝐴𝐵𝐶 there are two components, 𝐴𝐵 and 𝐵𝐶 ,

and the same move may correspond to different players in different components. The same polarities will ensure that

our interactions are alternating, well-calling and well-returning. They will also be used in order to define projections of

interaction sequences in 𝐴𝐵𝐶 onto plays in 𝐴𝐵, 𝐵𝐶 and 𝐴𝐶 .

Interaction sequences will rely on moves with stores where the moves come from the set:

𝑀𝐴𝐵𝐶 = 𝑀𝐴 ∪𝑀𝐵 ∪𝑀𝐶 ∪ Calls ∪ Retns .

The moves will be assigned polarities from a set of six polarities:

Pol2 = { 𝑂𝐿, 𝑃𝐿,𝑂𝐿𝑃𝑅, 𝑃𝐿𝑂𝑅,𝑂𝑅, 𝑃𝑅 }.

The index 𝐿 stands for “left” and refers to the 𝐴𝐵 constituent of the interaction, while 𝑅 means “right” and refers to 𝐵𝐶 .

Polarities indicate which component of the interaction (𝐴𝐵 or 𝐵𝐶) a move comes from and what polarity it has in it. For

instance, a move labelled 𝑂𝐿 is a move played by 𝑂 in 𝐴𝐵 alone (i.e. and not played in 𝐵𝐶), while a move labelled 𝑃𝑅 is

played by 𝑃 in 𝐵𝐶 alone (and not played in𝐴𝐵). A move labelled𝑂𝐿𝑃𝑅 , on the other hand, is played in both components

and has polarity 𝑂 in 𝐴𝐵 and 𝑃 in 𝐵𝐶 . We can group the polarities designated to each of the two components as:

𝑝 (𝐴𝐵) = {𝑂𝐿, 𝑃𝐿,𝑂𝐿𝑃𝑅, 𝑃𝐿𝑂𝑅},

𝑝 (𝐵𝐶) = {𝑂𝑅, 𝑃𝑅,𝑂𝐿𝑃𝑅, 𝑃𝐿𝑂𝑅}.
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The above polarities also allow us to determine whether a move forms part of the component 𝐴𝐶 , i.e. the component

obtained after composing in 𝐴𝐵 and 𝐵𝐶 . A move will be part of 𝐴𝐶 just if it is not a move played in both 𝐴𝐵 and 𝐵𝐶 ,

i.e. it is not a move that needs to be “hidden” after synchronisation between these two components. We can therefore

designate these polarities to 𝐴𝐶:

𝑝 (𝐴𝐶) = {𝑂𝐿, 𝑃𝐿,𝑂𝑅, 𝑃𝑅}.

Note the slight abuse of notation with 𝑝 , as it is also used for denoting a move polarity function.

An interaction over 𝐴𝐵𝐶 is essentially an interaction between three “coarse” players: the player 𝑃 in 𝐴𝐵, the player

𝑃 in 𝐵𝐶 and the player𝑂 in 𝐴𝐶 . Each of these players has two related polarities: e.g. 𝑃 in 𝐴𝐵 relates to 𝑃𝐿 and 𝑃𝐿𝑂𝑅 , as

𝑃 . It is useful to group the polarities of each of the three players in what we call pseudo-polarities, which are sets of

polarities defined by:

𝑃1 = {𝑃𝐿, 𝑃𝐿𝑂𝑅}, 𝑃2 = {𝑃𝑅,𝑂𝐿𝑃𝑅}, 𝑂3 = {𝑂𝐿,𝑂𝑅},

where the indices 1, 2 and 3 stand for the components 𝐴𝐵, 𝐵𝐶 and 𝐴𝐶 respectively.

Pseudo-polarities will be useful for determining the complement of a move’s polarity, which in turn will be used

for determining the next player after a given move, or e.g. the player who is allowed to call a method on an object

introduced by a given player. For instance, a move with polarity 𝑂𝐿 (i.e. a move played by 𝑂 in 𝐴𝐵 alone), may only

be followed by a move played by 𝑃 in 𝐴𝐵, i.e. a move with polarity 𝑃𝐿 or 𝑃𝐿𝑂𝑅 , i.e. a move with pseudo-polarity 𝑃1.

Applying this reasoning to each polarity, we can define:

𝑂𝐿 = 𝑂𝐿𝑃𝑅 = 𝑃1, 𝑂𝑅 = 𝑃𝐿𝑂𝑅 = 𝑃2, 𝑃𝐿 = 𝑃𝑅 = 𝑂3,

as the polarity complementation function. In particular, the complement of a polarity is a pseudo-polarity.

Projecting interaction sequences in 𝐴𝐵𝐶 onto 𝐴𝐵, 𝐵𝐶 and 𝐴𝐶 will involve using a polarity function to specify

what moves to retain in the projection, and a filtering function 𝛾 to remove superfluous names from the stores of the

projection. Consider a sequence 𝑠 of moves-with-store from 𝐴𝐵𝐶 (i.e. a sequence with elements𝑚𝛴
with𝑚 ∈ 𝑀𝐴𝐵𝐶 )

along with a map 𝑝 assigning to moves of 𝑠 polarities from Pol2. For each 𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐴𝐶}, we define:

𝑠 ↾ 𝑋 =


(𝑠 ′ ↾ 𝑋 )𝑚𝛴

if 𝑠 = 𝑠 ′𝑚𝛴
and 𝑝 (𝑚) ∈ 𝑝 (𝑋 )

𝑠 ′ ↾ 𝑋 if 𝑠 = 𝑠 ′𝑚𝛴
and 𝑝 (𝑚) ∉ 𝑝 (𝑋 )

𝜖 if 𝑠 = 𝜖

𝑠 ↾𝛾 𝑋 = 𝛾 (𝑠 ↾ 𝑋 ) where 𝛾 (𝜖) = 𝜖, 𝛾 (𝑠𝑚𝛴 ) = 𝛾 (𝑠)𝑚𝛴↾Av(𝑠𝑚𝛴 ) .

i.e. 𝑠 ↾ 𝑋 is the subsequence of 𝑠 containing those moves-with-store𝑚𝛴
of 𝑠 for which 𝑝 (𝑚) ∈ 𝑝 (𝑋 ); and 𝑠 ↾𝛾 𝑋 is the

sequence we obtain from the latter by retaining the same moves but restricting the domains of their stores to available

names. The role of 𝛾 is to frugalise the filtered interaction so that it becomes a play.

We can now formally define interaction sequences. These will be sequences of moves-with-store from 𝐴𝐵𝐶 adhering

to conditions that generalise play conditions. Below, for each name 𝑎 in an interaction sequence 𝑠 with polarity function

𝑝 , and each polarity 𝛱 ∈ Pol2, we let 𝑜 (𝑎) = 𝛱 just if 𝑎 is introduced in 𝑠 by a move-with-store𝑚𝛴
with 𝑝 (𝑚) = 𝛱 .

Definition 3.17. An interaction sequence in𝐴𝐵𝐶 is a sequence 𝑠 of moves-with-store in𝐴𝐵𝐶 , satisfying the following.

• For each 𝑠 ′𝑚𝛴 ⊑ 𝑠 , dom(𝛴) = Av(𝑠 ′𝑚𝛴 ). (Frugality)
• If 𝑠 ′𝑚𝛴 ⊑ 𝑠 and 𝑎 ∈ dom(𝛴) with 𝛴 (𝑎) : I then:

– if𝑚 ∈ 𝑀𝑋 , for 𝑋 ∈ {𝐴, 𝐵,𝐶}, and 𝑎 ∈ 𝜈 (𝑚) then I ≤ 𝜉𝑋 (𝑚,𝑎);
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Fig. 4. Polarity diagram for interaction sequences in 𝐴𝐵𝐶 . Transitions are labelled by move polarities, while the initial state is𝑂3.

– for all 𝑛𝑇 in 𝑠 ′, if 𝑎 ∈ dom(𝑇 ) then 𝑇 (𝑎) : I;
– if𝑚 is a call or return of some method m on 𝑎, then Δ(I).m = ®𝜃 → 𝜃 and:

∗ if𝑚 = call𝑎.m(®𝑣) then 𝛴 ⊢ ®𝑣 :
®𝜃 ′ for some

®𝜃 ′ ≤ ®𝜃 ,
∗ if𝑚 = ret𝑎.m(𝑣) then 𝛴 ⊢ 𝑣 : 𝜃 ′ for some 𝜃 ′ ≤ 𝜃 .

(Well-classing)

• There is a polarity function 𝑝 from move occurrences in 𝑠 to Pol2 such that:

– For all𝑚𝑋 ∈ 𝑀𝑋 (𝑋 = 𝐴, 𝐵,𝐶) occurring in 𝑠 we have 𝑝 (𝑚𝐴) = 𝑂𝐿 , 𝑝 (𝑚𝐵) = 𝑃𝐿𝑂𝑅 and 𝑝 (𝑚𝐶 ) = 𝑃𝑅 .

(Well-starting)

– If𝑚𝑛 are consecutive moves in 𝑠 then 𝑝 (𝑛) ∈ 𝑝 (𝑚). (Alternation)
– If 𝑠 ′𝑚𝛴 ⊑ 𝑠 then𝑚 = call𝑎.m(𝑣) implies 𝑜 (𝑎) ∈ 𝑝 (𝑚). (Well-calling)

– If 𝑠 ′𝑚𝛴 ⊑ 𝑠 and𝑚 = ret𝑎.m(𝑣) then there is a move 𝑛𝑇 in 𝑠 ′ such that, for all 𝑋 such that 𝑝 (𝑚) ∈ 𝑝 (𝑋 ), 𝑛 is

the justifier of𝑚 in 𝑠 ↾ 𝑋 . (Well-returning)

– For each 𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐴𝐶}, 𝑠 ↾ 𝑋 ∈ 𝐿𝑋 . (Projecting)

– The following Laird conditions hold:

∗ 𝑃 (𝑠 ↾𝛾 𝐴𝐵), 𝑃 (𝑠 ↾𝛾 𝐵𝐶) and 𝑂 (𝑠 ↾𝛾 𝐴𝐶) are pairwise disjoint;
∗ For each 𝑠 ′ ⊑ 𝑠 ending in𝑚𝛴𝑛𝑇 and each 𝑎 ∈ dom(𝑇 ), we must have 𝛴 (𝑎) = 𝑇 (𝑎) whenever:

· 𝑝 (𝑚) ∈ 𝑃1 and 𝑎 ∉ 𝜈 (𝑠 ′ ↾𝛾 𝐴𝐵),
· or 𝑝 (𝑚) ∈ 𝑃2 and 𝑎 ∉ 𝜈 (𝑠 ′ ↾𝛾 𝐵𝐶),
· or 𝑝 (𝑚) ∈ 𝑂3 and 𝑎 ∉ 𝜈 (𝑠 ′ ↾𝛾 𝐴𝐶).

We write Int (𝐴𝐵𝐶) for the set of interaction sequences in 𝐴𝐵𝐶 .

Remark 3.18. Up to well-returning, the conditions listed above are extensions of play conditions to interaction

sequences. Well-returning in particular is the dual of well-calling, and in this case needs to be stated explicitly as it

does not follow from the other conditions (as was the case for plays). Well-returning implies that each return move

ret𝑎.m(𝑣)𝛴 in an interaction sequence has a unique justifier of the shape call𝑎.m(®𝑣)𝑇 .
The remaining conditions in the above definition come from standard game semantics (projecting) and nominal

game semantics (Laird), see [25] for both. Projecting imposes that the interaction follows the legal move patterns of 𝐴𝐵

and 𝐵𝐶 . The Laird conditions govern the privacy of names between the two components, 𝐴𝐵 and 𝐵𝐶 . The first Laird

condition stipulates that there are three players who uniquely own all names in an interaction: 𝑃 in 𝐴𝐵, 𝑃 in 𝐵𝐶 , and 𝑂

in 𝐴𝐶 . The second condition ensures that if a name has not been revealed in one of the components then its field values

cannot be modified in that component.
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Recall that, when we looked at legal sequences in Definition 3.7, the polarity function of each legal sequence was

uniquely defined by well-starting (𝑂 starts) and alternation (consecutive moves have opposite polarities). In interaction

sequences, these two conditions only partially specify the potential polarity functions. In Figure 4 we have drawn a

diagram capturing these specifications. It can be viewed as an automaton accepting the pair (𝑠, 𝑝), for each 𝑠 ∈ Int (𝐴𝐵𝐶)
with polarity function 𝑝 , starting from state 𝑂3 (all states are accepting). The edges in the diagram represent moves by

their polarities, while the labels of vertices specify the pseudo-polarity of the next (outgoing) move. For example, from

𝑂3 we can only have a move𝑚 with 𝑝 (𝑚) ∈ 𝑂3 = {𝑂𝐿,𝑂𝑅}.
In Lemma 3.20 we shall see that each interaction sequence has a unique polarity function, i.e. if 𝑠 is an interaction

sequence by using either 𝑝1 or 𝑝2 as polarity functions then 𝑝1 = 𝑝2. Consequently, we will usually refer to the polarity

of a move in an interaction sequence, without mentioning a polarity function.

Before proceeding to the Lemma, we explore interaction sequences and their conditions with an example.

Example 3.19. Consider the following interfaces:

CellVarInt = (set : Var𝐼 → void, get : void → Var𝐼 ), Var𝐼 = (val : int).

We look at interaction sequences in CellVarInt1 CellVarInt2 1, where we tag the two occurrences of the CellVarInt

arena for clarity. The interface CellVarInt specifies objects with a getter and a setter method that consume and return

respectively an object of type Var𝐼 (i.e. an integer variable).

In the next diagram we depict a possible interaction sequence in CellVarInt1 CellVarInt2 1. We write move sequences

vertically, instead of horizontally, in order to specify the component they belong to (e.g. a move written under 1 comes

from the component CellVarInt21 and is not present in CellVarInt1CellVarInt2). We choose a scenario where each setter

call provides a fresh name of type Var𝐼 , and the same happens with every getter return. Moreover, all available objects
of type Var𝐼 have their values changed in each move, with said values oscillating between 42 and 24. For brevity, we

write 𝛴 [𝑎] for 𝛴 [𝑎.val ↦→ 66 − 𝑎.val].

CellVarInt1 CellVarInt2 1 polarity stores

𝑐
𝛴0

1
𝑂𝐿 𝛴0 = {𝑐1 ↦→ (CellVarInt, ∅) }

call𝑐1 .get(∗)𝛴0 𝑃𝐿

ret𝑐1 .get(𝑎1)𝛴1 𝑂𝐿 𝛴1 = 𝛴0 ∪ {𝑎1 ↦→ (Var𝐼 , {val ↦→ 42}) }
call𝑐1 .set(𝑎2)𝛴2 𝑃𝐿 𝛴2 = 𝛴1 [𝑎1 ] ∪ {𝑎2 ↦→ (Var𝐼 , {val ↦→ 42}) }
ret𝑐1 .set(∗)𝛴3 𝑂𝐿 𝛴3 = 𝛴2 [𝑎1, 𝑎2 ]

𝑐
𝛴4

2
𝑃𝐿𝑂𝑅 𝛴4 = 𝛴3 [𝑎1, 𝑎2 ] ∪ {𝑐2 ↦→ (CellVarInt, ∅) }

call𝑐2 .get(∗)𝛴4 𝑂𝐿𝑃𝑅

ret𝑐2 .get(𝑎3)𝛴5 𝑃𝐿𝑂𝑅 𝛴5 = 𝛴4 [𝑎1, 𝑎2 ] ∪ {𝑎3 ↦→ (Var𝐼 , {val ↦→ 42}) }
call𝑐2 .set(𝑎4)𝛴6 𝑂𝐿𝑃𝑅 𝛴6 = 𝛴5 [𝑎3 ] ∪ {𝑎4 ↦→ (Var𝐼 , {val ↦→ 42}) }

call𝑐1 .set(𝑎5)𝛴7 𝑃𝐿 𝛴7 = 𝛴6 [𝑎1, 𝑎2, 𝑎3, 𝑎4 ] ∪ {𝑎5 ↦→ (Var𝐼 , {val ↦→ 42}) }
ret𝑐1 .set(∗)𝛴8 𝑂𝐿 𝛴8 = 𝛴7 [𝑎1, 𝑎2, 𝑎5 ]

ret𝑐2 .set(∗)𝛴9 𝑃𝐿𝑂𝑅 𝛴9 = 𝛴8 [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ]
∗𝛴10 𝑃𝑅 𝛴10 = 𝛴9 [𝑎3, 𝑎4 ]

The projections of the interaction onCellVarInt1CellVarInt2,CellVarInt21 andCellVarInt11 are obtained by suppressing

the moves in the third, first and second column respectively, and then applying 𝛾 . We can thus see that the projection

condition is satisfied.
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Let us call the interaction sequence above 𝑠 and look at how the Laird conditions apply to it. The projections of 𝑠 on

each of the three components are as below.

𝑠1 = 𝑠 ↾𝛾 CellVarInt1CellVarInt2 𝑠2 = 𝑠 ↾𝛾 CellVarInt21 𝑠3 = 𝑠 ↾𝛾 CellVarInt11

CellVarInt1 CellVarInt2 CellVarInt2 1 CellVarInt1 1 frugalised stores

𝑐
𝛴0

1
𝑐
𝛴0

1

call𝑐1 .get(∗)𝛴0 call𝑐1 .get(∗)𝛴0

ret𝑐1 .get(𝑎1)𝛴1 ret𝑐1 .get(𝑎1)𝛴1

call𝑐1 .set(𝑎2)𝛴2 call𝑐1 .set(𝑎2)𝛴2

ret𝑐1 .set(∗)𝛴3 ret𝑐1 .set(∗)𝛴3

𝑐
𝛴4

2
𝑐
𝛴′
4

2

call𝑐2 .get(∗)𝛴4 call𝑐2 .get(∗)𝛴
′
4 𝛴′

4
= 𝛴4 ↾ {𝑐2 }

ret𝑐2 .get(𝑎3)𝛴5 ret𝑐2 .get(𝑎3)𝛴
′
5 𝛴′

5
= 𝛴5 ↾ {𝑐2, 𝑎3 }

call𝑐2 .set(𝑎4)𝛴6 call𝑐2 .set(𝑎4)𝛴
′
6 𝛴′

6
= 𝛴6 ↾ {𝑐2, 𝑎3, 𝑎4 }

call𝑐1 .set(𝑎5)𝛴7 call𝑐1 .set(𝑎5)𝛴
′′
7 𝛴′′

7
= 𝛴7 ↾ {𝑐1, 𝑎1, 𝑎2, 𝑎5 }

ret𝑐1 .set(∗)𝛴8 ret𝑐1 .set(∗)𝛴
′′
8 𝛴′′

8
= 𝛴8 ↾ {𝑐1, 𝑎1, 𝑎2, 𝑎5 }

ret𝑐2 .set(∗)𝛴9 ret𝑐2 .set(∗)𝛴
′
9 𝛴′

9
= 𝛴9 ↾ {𝑐2, 𝑎3, 𝑎4 }

∗𝛴
′
10 ∗𝛴

′′
10 𝛴′

10
= 𝛴10 ↾ {𝑐2, 𝑎3, 𝑎4 }

𝛴′′
10

= 𝛴10 ↾ {𝑐1, 𝑎1, 𝑎2, 𝑎5 }

All names (𝑐1, 𝑐2, 𝑎1-𝑎5) remain available in CellVarInt1CellVarInt2 after projecting, as they are part of moves played in

CellVarInt1CellVarInt2. On the other hand, only names 𝑐2, 𝑎3, 𝑎4 are created in CellVarInt21 and are therefore available

in it. Similarly for CellVarInt11 and the names 𝑐1, 𝑎1, 𝑎2, 𝑎5. Checking in each projection the polarity of the move that

first introduces each name, we have:

𝑃 (𝑠1) = {𝑐2, 𝑎2, 𝑎3, 𝑎5}, 𝑃 (𝑠2) = {𝑎4}, 𝑂 (𝑠3) = {𝑐1, 𝑎1}.

Thus, the first Laird condition is satisfied. For the second one, we see that, for example, the move call 𝑐2 .get(∗) has
polarity 𝑂𝐿𝑃𝑅 ∈ 𝑃2 and 𝑎1, 𝑎2 are not available in the projection on CellVarInt2 1. Therefore, no field value can change

in that move and, thus, the store remains 𝛴4. Looking at the name-privacy situation at that move, the restriction makes

sense: call 𝑐2 .get(∗) is played by 𝑃 in CellVarInt2 1 and, in that component, none of 𝑎1, 𝑎2 has been revealed. On the

other hand, the following move ret 𝑐2 .get(𝑎3) is played by 𝑃 in CellVarInt1CellVarInt2 and in there both of 𝑎1, 𝑎2 are

available and can have their values changed.

Lemma 3.20. Each 𝑠 ∈ Int (𝐴𝐵𝐶) has a unique polarity function 𝑝 .

Proof. Suppose 𝑠 ∈ Int (𝐴𝐵𝐶). We claim that thewell-starting, alternation, well-calling, projecting andwell-returning

conditions uniquely specify 𝑝 . Consider the polarity diagram of Figure 4. We shall read it as an automaton A which

accepts 𝑠 and at the same time constructs a polarity function 𝑝 for 𝑠 by means of the corresponding (accepting) path;

and show that 𝑠 has a unique path in A.

First, by projecting we obtain that the first element of 𝑠 is some𝑚𝐴 and, by well-starting, its polarity is 𝑂𝐿 . Thus, we

can pick 𝑂3 as the initial state of A.

We now use induction on |𝑠 | to show that 𝑠 has a unique path in A. The base case is trivial, so suppose 𝑠 = 𝑠 ′𝑚.

By induction hypothesis, A has a unique path for 𝑠 ′, which reaches some state 𝑋 . We do a case analysis on 𝑚. If

𝑚 ∈ 𝑀𝐴 ∪𝑀𝐵 ∪𝑀𝐶 then there is a unique edge accepting𝑚 and, by alternation, this edge indeed departs from 𝑋 . If, on

the other hand,𝑚 = call𝑎.m(®𝑣) then the fact that 𝑜 (𝑎) ∈ 𝑝 (𝑚) gives two possible edges for accepting𝑚. But observe
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that no combination of such edges can depart from 𝑋 . Finally, let𝑚 = ret𝑎.m(𝑣) be justified by some 𝑛 in 𝑠 ′. Then, by

well-bracketing, 𝑛 is the justifier of𝑚 in all projections, and hence the edge accepting𝑚 must be the componentwise

opposite of the one accepting 𝑛 (e.g. if𝑚 is accepted by 𝑂𝐿 then 𝑛 be accepted by 𝑃𝐿 , etc.). □

We now proceed to show that interaction sequences project to plays. This is done in Proposition 3.23, using the

following two lemmata. The first lemma states that projections preserve polarities. The projection of interaction

sequences in 𝐴𝐵𝐶 on 𝐴𝐵, 𝐵𝐶 and 𝐴𝐶 leads to the following definition of projections of polarities,

𝜋𝐴𝐵 (𝑋𝐿) = 𝑋 𝜋𝐴𝐵 (𝑋𝐿𝑌𝑅) = 𝑋 𝜋𝐴𝐵 (𝑌𝑅) = undef.

𝜋𝐵𝐶 (𝑋𝐿) = undef. 𝜋𝐵𝐶 (𝑋𝐿𝑌𝑅) = 𝑌 𝜋𝐵𝐶 (𝑌𝑅) = 𝑌

𝜋𝐴𝐶 (𝑋𝐿) = 𝑋 𝜋𝐴𝐶 (𝑋𝐿𝑌𝑅) = undef. 𝜋𝐴𝐶 (𝑌𝑅) = 𝑌

where 𝑋,𝑌 ∈ {𝑂, 𝑃}. We establish the following.

Lemma 3.21. Let 𝑠 ∈ Int (𝐴𝐵𝐶). Then, for each 𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐴𝐶} and each𝑚𝛴 in 𝑠 , if 𝑝 (𝑚) ∈ 𝑝 (𝑋 ) then 𝜋𝑋 (𝑝 (𝑚)) =
𝑝𝑋 (𝑚), where 𝑝𝑋 is the polarity function of 𝑠 ↾ 𝑋 .

Proof. We show this for𝑋 = 𝐴𝐵, the other cases are proven similarly, by induction on |𝑠 | ≥ 0. The base case is trivial.

For the inductive case, if𝑚 is the first move in 𝑠 with polarity in 𝑝 (𝐴𝐵) then, by projecting,𝑚 ∈ 𝑀𝐴 and therefore

𝑝 (𝑚) = 𝑂𝐿 and 𝑝𝐴𝐵 (𝑚) = 𝑂 , as required. Otherwise, let 𝑛 be the last move in 𝑠 with polarity in 𝑝 (𝐴𝐵) before𝑚. By IH,

𝑝𝐴𝐵 (𝑛) = 𝜋𝐴𝐵 (𝑝 (𝑛)). Now, by projecting, 𝑝𝐴𝐵 (𝑚) = 𝑝𝐴𝐵 (𝑛) and observe that, for all 𝑋 ∈ 𝑝 (𝑛), 𝜋𝐴𝐵 (𝑋 ) = 𝜋𝐴𝐵 (𝑝 (𝑛)),
so in particular 𝜋𝐴𝐵 (𝑝 (𝑚)) = 𝜋𝐴𝐵 (𝑝 (𝑛)) = 𝑝𝐴𝐵 (𝑛) = 𝑝𝐴𝐵 (𝑚). □

The following lemma formulates a taxonomy on names appearing in interaction sequences.

Lemma 3.22. Let 𝑠 ∈ Int (𝐴𝐵𝐶). Then,

(1) 𝜈 (𝑠) = 𝑂 (𝑠 ↾𝛾 𝐴𝐶) ⊎ 𝑃 (𝑠 ↾𝛾 𝐴𝐵) ⊎ 𝑃 (𝑠 ↾𝛾 𝐵𝐶);
(2) if 𝑠 = 𝑡𝑚𝛴 and:

• 𝑝 (𝑚) ∈ 𝑂3 and 𝑠 ↾𝛾 𝐴𝐶 = 𝑡 ′𝑚𝛴′
,

• or 𝑝 (𝑚) ∈ 𝑃1 and 𝑠 ↾𝛾 𝐴𝐵 = 𝑡 ′𝑚𝛴′
,

• or 𝑝 (𝑚) ∈ 𝑃2 and 𝑠 ↾𝛾 𝐵𝐶 = 𝑡 ′𝑚𝛴′
,

then 𝜈 (𝑡) ∩ 𝜈 (𝑚𝛴′) ⊆ 𝜈 (𝑡 ′) and, in particular, if𝑚 introduces name 𝑎 in 𝑡 ′𝑚𝛴′
then𝑚 introduces 𝑎 in 𝑠 .

Proof. For 1, by definition of interactions we have that these sets are disjoint. It therefore suffices to show the left-

to-right inclusion. Suppose that 𝑎 ∈ 𝜈 (𝑠) is introduced in some𝑚𝛴
in 𝑠 , with 𝑝 (𝑚) ∈ 𝑃𝑂 , and let 𝑠 ↾𝛾 𝐴𝐵 = · · ·𝑚𝛴′ · · · .

If 𝑎 ∈ 𝜈 (𝑚𝛴′) then 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐴𝐵), as required. Otherwise, by Laird’s last set of conditions, 𝑎 is copied from the store of

the move preceding𝑚𝛴
in 𝑠 , a contradiction to its being introduced at𝑚𝛴

. Similarly if 𝑝 (𝑚) ∈ 𝑃2. Finally, if 𝑝 (𝑚) ∈ 𝑂3

then we work similarly, considering 𝑂 (𝑠 ↾𝛾 𝐴𝐶).
For 2, we show the first case, and the other cases are similar. It suffices to show that (𝜈 (𝑚𝛴′) \ 𝜈 (𝑡 ′)) ∩ 𝜈 (𝑡) = ∅. So
suppose 𝑎 ∈ 𝜈 (𝑚𝛴′) \ 𝜈 (𝑡 ′), therefore 𝑎 ∈ 𝑂 (𝑠 ↾𝛾 𝐴𝐶). But then we cannot have 𝑎 ∈ 𝜈 (𝑡) as the latter, by item 1, would

imply 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐴𝐵) ∪ 𝑃 (𝑠 ↾𝛾 𝐵𝐶). □

Proposition 3.23. For all 𝑠 ∈ Int (𝐴𝐵𝐶), the projections 𝑠 ↾𝛾 𝐴𝐵, 𝑠 ↾𝛾 𝐵𝐶 and 𝑠 ↾𝛾 𝐴𝐶 are plays in 𝐴𝐵, 𝐵𝐶 and 𝐴𝐶

respectively.
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Proof. By frugality of 𝑠 and application of 𝛾 , all projections satisfy frugality. Moreover, well-classing is preserved

by projections. For well-calling, let𝑚 = call𝑎.m(®𝑣) be a move in 𝑠 and let 𝑛𝑇 be the move introducing 𝑎 in 𝑠 . Suppose

𝑝 (𝑚) ∈ 𝑝 (𝐴𝐵) and let us assume 𝑝𝐴𝐵 (𝑚) = 𝑂 . We need to show that 𝑜𝐴𝐵 (𝑚) = 𝑃 . By 𝑝𝐴𝐵 (𝑚) = 𝑂 we obtain that

𝑝 (𝑚) ∈ {𝑂𝐿,𝑂𝐿𝑃𝑅} and, by well-calling of 𝑠 , we have that 𝑜 (𝑎) ∈ 𝑃1. Thus, 𝑝 (𝑛) ∈ 𝑃1 and, by Lemma 3.22, 𝑛 introduces

𝑎 in 𝑠 ↾𝛾 𝐴𝐵 and therefore 𝑜𝐴𝐵 (𝑛) = 𝑃 , as required. If, on the other hand, 𝑝𝐴𝐵 (𝑚) = 𝑃 then we obtain 𝑝 (𝑛) ∈ 𝑂3 ∪ 𝑃2

and therefore, by Lemma 3.22, 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐵𝐶) ∪𝑂 (𝑠 ↾𝛾 𝐴𝐶). Thus, by the same lemma, 𝑎 ∉ 𝑃 (𝑠 ↾𝛾 𝐴𝐵) and hence

𝑜𝐴𝐵 (𝑎) = 𝑂 . The cases for the other projections are shown similarly. □

Remark 3.24. A consequence of Proposition 3.23 is that, to compose plays 𝑠1 ∈ 𝑃𝐴𝐵 and 𝑠2 ∈ 𝑃𝐵𝐶 into plays in 𝑃𝐴𝐶 , it

suffices to pick an interaction sequence 𝑠 ∈ Int (𝐴𝐵𝐶) such that 𝑠 ↾𝛾 𝐴𝐵 = 𝑠1 and 𝑠 ↾𝛾 𝐵𝐶 = 𝑠2, and project 𝑠 on 𝐴𝐶 by

taking 𝑠 ↾𝛾 𝐴𝐶 . Note that the selection of an 𝑠 which projects as 𝑠1 and 𝑠2 need not be unique. We look at an example of

this next.

Example 3.25. We consider the interfaces:

CellCallable = (set : Callable → void, get : void → Callable), Callable = (foo : void → void) .

along with the following interaction sequences 𝑠1 and 𝑠2 in CellCallable 1Callable, written vertically for clarity:

CellCallable 1 Callable pol. CellCallable 1 Callable pol.

𝑐𝛴0 𝑂𝐿 𝑐𝛴0 𝑂𝐿

call𝑐.set(𝑎)𝛴1 𝑃𝐿 call𝑐.set(𝑎)𝛴1 𝑃𝐿

ret𝑐.set(∗)𝛴1 𝑂𝐿 ret𝑐.set(∗)𝛴1 𝑂𝐿

∗𝛴1 𝑃𝐿𝑂𝑅 ∗𝛴1 𝑃𝐿𝑂𝑅

𝑏𝛴2 𝑃𝑅 𝑏𝛴2 𝑃𝑅

call𝑏.foo(∗)𝛴2 𝑂𝑅 call𝑎.foo(∗)𝛴2 𝑂𝐿

ret𝑏.foo(∗)𝛴2 𝑃𝑅 ret𝑎.foo(∗)𝛴2 𝑃𝐿

call𝑎.foo(∗)𝛴2 𝑂𝐿 call𝑏.foo(∗)𝛴2 𝑂𝑅

ret𝑎.foo(∗)𝛴2 𝑃𝐿 ret𝑏.foo(∗)𝛴2 𝑃𝑅

with 𝛴0 = {𝑐 ↦→ (CellCallable, ∅)}, 𝛴1 = 𝛴0 [𝑎 ↦→ (Callable, ∅)] and 𝛴2 = 𝛴1 [𝑏 ↦→ (Callable, ∅)]. We notice that the

projections on CellCallable1 and 1Callable are the same for the two sequences:

𝑠1 = 𝑠𝑖 ↾𝛾 CellCallable1 = 𝑐𝛴0 call 𝑐.set(𝑎)𝛴1 ret 𝑐.set(∗)𝛴1 call𝑎.foo(∗)𝛴2↾{𝑐,𝑎} ret𝑎.foo(∗)𝛴2↾{𝑐,𝑎}

𝑠2 = 𝑠𝑖 ↾𝛾 1Callable = ∗∅ 𝑏𝛴2↾{𝑏 } call𝑏.foo(∗)𝛴2↾{𝑏 } ret𝑏.foo(∗)𝛴2↾{𝑏 }

On the other hand, 𝑠1 and 𝑠2 are distinct, and their projections on CellCallable Callable:

𝑠1
3
= 𝑐𝛴0 call 𝑐.set(𝑎)𝛴1 ret 𝑐.set(∗)𝛴1 𝑏𝛴2 call𝑏.foo(∗)𝛴2 ret𝑏.foo(∗)𝛴2 call𝑎.foo(∗)𝛴2 ret𝑎.foo(∗)𝛴2

𝑠2
3
= 𝑐𝛴0 call 𝑐.set(𝑎)𝛴1 ret 𝑐.set(∗)𝛴1 𝑏𝛴2 call𝑎.foo(∗)𝛴2 ret𝑎.foo(∗)𝛴2 call𝑏.foo(∗)𝛴2 ret𝑏.foo(∗)𝛴2

are also distinct. Put otherwise, composing 𝑠1 and 𝑠2 we can obtain both of 𝑠1
3
and 𝑠2

3
.

In practice, composing plays by picking interaction sequences which project to them is impractical. In the remainder

of this section we will introduce an equivalent operational way to compose plays.

Definition 3.26. Let 𝑠1 ∈ 𝑃𝐴𝐵 and 𝑠2 ∈ 𝑃𝐵𝐶 . Using the rules of Figure 5, we define a transition system whose states

are tuples of the form (𝑋, 𝑠 ′
1
, 𝑠 ′
2
, 𝑠3, 𝑝) where:
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(𝑂3,𝑚
𝛴
𝐴𝑠1, 𝑠2, 𝜖, ∅) → (𝑃1, 𝑠1, 𝑠2,𝑚𝛴

𝐴 , {𝑚𝐴 ↦→ 𝑂𝐿})

(𝑂3,𝑚
𝛴𝑠1, 𝑠2, 𝑠3, 𝑝) → (𝑃1, 𝑠1, 𝑠2, 𝑠3𝑚𝛴′

3
[𝛴 ] , 𝑝 [𝑚 ↦→ 𝑂𝐿]) (𝑂3, 𝑠1,𝑚

𝛴𝑠2, 𝑠3, 𝑝) → (𝑃2, 𝑠1, 𝑠2, 𝑠3𝑚𝛴′
3
[𝛴 ] , 𝑝 [𝑚 ↦→ 𝑂𝑅])

(𝑃1,𝑚𝛴𝑠1, 𝑠2, 𝑠3, 𝑝) → (𝑂3, 𝑠1, 𝑠2, 𝑠3𝑚
𝛴3 [𝛴 ] , 𝑝 [𝑚 ↦→ 𝑃𝐿]) (𝑃1,𝑚𝛴1𝑠1,𝑚

𝛴2𝑠2, 𝑠3, 𝑝) → (𝑃2, 𝑠1, 𝑠2, 𝑠3𝑚𝛴3 [𝛴1 ]∪𝛴2 , 𝑝 [𝑚 ↦→ 𝑃𝐿𝑂𝑅])

(𝑃2, 𝑠1,𝑚𝛴𝑠2, 𝑠3, 𝑝) → (𝑂3, 𝑠1, 𝑠2, 𝑠3𝑚
𝛴3 [𝛴 ] , 𝑝 [𝑚 ↦→ 𝑃𝑅]) (𝑃2,𝑚𝛴1𝑠1,𝑚

𝛴2𝑠2, 𝑠3, 𝑝) → (𝑃1, 𝑠1, 𝑠2, 𝑠3𝑚𝛴3 [𝛴2 ]∪𝛴1 , 𝑝 [𝑚 ↦→ 𝑂𝐿𝑃𝑅])

Fig. 5. Transition system for play composition (cf. Definition 3.26). All rules are subject to the side-condition that the resulting 𝑠3 be
an interaction sequence with polarity function the resulting 𝑝 . 𝛴3 stands for the last store in 𝑠3, and 𝛴′

3
ranges over all stores.

• 𝑋 ∈ {𝑃1, 𝑃2,𝑂3},
• 𝑠 ′

1
, 𝑠 ′
2
are suffixes of 𝑠1 and 𝑠2 respectively,

• 𝑠3 ∈ Int (𝐴𝐵𝐶) with polarity function 𝑝 .

We then set: 𝑠1∥𝑠2 = { 𝑠3 | (𝑂3, 𝑠1, 𝑠2, 𝜖, ∅) →∗ (𝑋, 𝜖, 𝜖, 𝑠3, 𝑝) }.

Lemma 3.27. For 𝑠1, 𝑠2 as above and 𝑠3 ∈ Int (𝐴𝐵𝐶), the following are equivalent.

(1) 𝑠1 = 𝑠3 ↾𝛾 𝐴𝐵 and 𝑠2 = 𝑠3 ↾𝛾 𝐵𝐶 ,

(2) 𝑠3 ∈ 𝑠1∥𝑠2.

Therefore: 𝑠1∥𝑠2 = {𝑠3 ∈ Int (𝐴𝐵𝐶) | 𝑠3 ↾𝛾 𝐴𝐵 = 𝑠1 ∧ 𝑠3 ↾𝛾 𝐵𝐶 = 𝑠2}.

Proof. 2 ⇒ 1. By inspection of the transition rules, we have 𝑠1 = 𝑠3 ↾ 𝐴𝐵 and 𝑠2 = 𝑠3 ↾ 𝐵𝐶 . We also notice that the

stores of 𝑠1 and 𝑠2 are included in 𝑠3 (they are merely extended with extra names that are not available when projecting),

so applying the availability function we indeed retrieve 𝑠1 and 𝑠2.

1 ⇒ 2. We show that for every prefix 𝑠 ′
3
of 𝑠3 there is a transition sequence (𝑂3, 𝑠1, 𝑠2, 𝜖, ∅) →∗ (𝑋, 𝑠 ′

1
, 𝑠 ′
2
, 𝑠 ′
3
, 𝑝) such

that 𝑠1 = 𝑠0
1
𝑠 ′
1
, 𝑠2 = 𝑠0

2
𝑠 ′
2
, 𝑠0
1
= 𝑠 ′

3
↾𝛾 𝐴𝐵 and 𝑠0

2
= 𝑠 ′

3
↾𝛾 𝐵𝐶 . We do induction on 𝑠 ′

3
. The cases where 𝑠 ′

3
has length at most

1 are straightforward. Suppose 𝑠 ′
3
= 𝑠 ′′

3
𝑚𝛴

. By IH, there is a transition sequence (𝑂3, 𝑠1, 𝑠2, 𝜖, ∅) →∗ (𝑋, 𝑠 ′
1
, 𝑠 ′
2
, 𝑠 ′′
3
, 𝑝 ′).

We do a case analysis on the polarity of𝑚 (taken from 𝑠3).

Suppose the polarity is 𝑃𝐿𝑂𝑅 (𝑂𝐿𝑃𝑅, 𝑃𝐿, 𝑃𝑅 are treated similarly). Since the transition sequence follows the alternation

diagram of Figure 4, 𝑋 will be equal to 𝑃1. Since 𝑠0
1

= 𝑠 ′
3
↾𝛾 𝐴𝐵 and 𝑠1 = 𝑠3 ↾𝛾 𝐴𝐵, and 𝑠0

2
= 𝑠 ′

3
↾𝛾 𝐵𝐶 and

𝑠2 = 𝑠3 ↾𝛾 𝐵𝐶 , it must be the case that 𝑠 ′
1
= 𝑚𝛴1𝑠 ′′

1
for some 𝛴1 and 𝑠 ′′

1
, and 𝑠 ′

2
= 𝑚𝛴2𝑠 ′′

2
for some 𝛴2 and 𝑠 ′′

2
. We

apply the reduction (𝑃1,𝑚𝛴1𝑠 ′′
1
,𝑚𝛴2𝑠 ′′

2
, 𝑠 ′
3
, 𝑝) → (𝑃2, 𝑠 ′′

1
, 𝑠 ′′
2
, 𝑠 ′
3
𝑚𝛴3 [𝛴1 ]∪𝛴2 , 𝑝 [𝑚 ↦→ 𝑃𝐿𝑂𝑅]). It now suffices to show that

𝛴3 [𝛴1] ∪ 𝛴2 = 𝛴 . Note that 𝛴1 and 𝛴2 are both restrictions of 𝛴 (by hypothesis), and 𝛴3 is the store preceding 𝛴 in

𝑠3. Thus, dom(𝛴𝑖 ) ⊆ dom(𝛴) for 𝑖 = 1, 2, 3. we have dom(𝛴3 [𝛴1 ∪ 𝛴2]) ⊆ dom(𝛴). If 𝑎 ∈ dom(𝛴) \ dom(𝛴3) then, by
Lemma 3.22, 𝑎 ∈ dom(𝛴1), so dom(𝛴3 [𝛴1]) = dom(𝛴). Moreover, if 𝑎 ∈ dom(𝛴3) \ dom(𝛴1) then 𝛴3 (𝑎) = 𝛴1 (𝑎) (by
Laird conditions), and thus 𝛴3 [𝛴1] = 𝛴 . Since 𝛴2 is a restriction of 𝛴 , 𝛴3 [𝛴1] ∪ 𝛴2 is a valid store and equal to 𝛴 .

Suppose the polarity is 𝑂𝐿 (𝑂𝑅 is treated similarly). Similarly to above, 𝑋 will be equal to 𝑂3 and in this case we will

have 𝑠1 = 𝑠0
1
𝑠 ′
1
, 𝑠0

1
= 𝑠 ′

3
↾𝛾 𝐴𝐵 and 𝑠 ′

1
= 𝑚𝛴1𝑠 ′′

1
for some 𝛴1 and 𝑠 ′′

1
. We apply the reduction (𝑂3,𝑚

𝛴1𝑠 ′′
1
, 𝑠 ′
2
, 𝑠 ′
3
, 𝑝) →

(𝑃1, 𝑠 ′′
1
, 𝑠 ′
2
, 𝑠 ′
3
𝑚𝛴 [𝛴1 ] , 𝑝 [𝑚 ↦→ 𝑂𝐿]). Since 𝛴 [𝛴1] = 𝛴 , we are done.

Thus, we have that (𝑂3, 𝑠1, 𝑠2, 𝜖, ∅) →∗ (𝑋, 𝑠 ′
1
, 𝑠 ′
2
, 𝑠3, 𝑝) such that 𝑠1 = 𝑠0

1
𝑠 ′
1
, 𝑠2 = 𝑠0

2
𝑠 ′
2
, 𝑠0

1
= 𝑠3 ↾𝛾 𝐴𝐵 and 𝑠0

2
= 𝑠3 ↾𝛾 𝐵𝐶 .

By the hypothesis, 𝑠 ′
1
= 𝑠 ′

2
= 𝜖 , which yields 𝑠3 = 𝑠1∥𝑠2. □

Manuscript submitted to ACM



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Game Semantics for Interface Middleweight Java 27

3.4 Strategies and the category of games

Programs will be represented as strategies between arenas. We shall introduce them next after some auxiliary definitions.

Intuitively, strategies capture the observable computational patterns produced by a program.

Let us first define the following notion of subtyping between stores. For 𝛴, 𝛴 ′ ∈ Sto, 𝛴 ≤ 𝛴 ′
holds if, for all names 𝑎,

𝛴 ′(𝑎) : I ′ =⇒ 𝛴 (𝑎) ≤ I ′ ∧ ∀f ∈ dom(𝛴 ′(𝑎)) .𝛴 (𝑎).f = 𝛴 ′(𝑎).f

Put otherwise, 𝛴 ≤ 𝛴 ′
means that 𝛴 extends 𝛴 ′

in this way: if 𝛴 ′
assigns to some name 𝑎 an interface and field values,

then 𝛴 assigns to 𝑎 the same field values, and the same interface type or a subtype thereof. In particular, 𝛴 may contain

more information about 𝑎 because of assigning to 𝑎 a larger interface. Accordingly, for plays 𝑠, 𝑠 ′ ∈ 𝑃𝐴𝐵 , we say that 𝑠

is an O-extension of 𝑠 ′ if 𝑠 and 𝑠 ′ agree on their underlying sequences, while their stores may differ due to subtyping

related to 𝑂-names. Where such subtyping leads to 𝑠 having stores with more fields than those in 𝑠 ′, 𝑃 is assumed to

copy the values of those fields. Formally, 𝑠 ≤𝑂 𝑠 ′ is defined by the rules:

𝜖 ≤𝑂 𝜖

𝑠 ≤𝑂 𝑠 ′ 𝛴 ≤ 𝛴 ′ 𝛴 ↾ 𝑃 (𝑠𝑚𝛴 ) ⊆ 𝛴 ′

𝑠𝑚𝛴 ≤𝑂 𝑠 ′𝑚𝛴′ 𝑝 (𝑚)=𝑂
𝑠𝑛𝑇 ≤𝑂 𝑠 ′ 𝛴 ≤ 𝛴 ′ 𝛴 extends 𝛴 ′

by 𝑇

𝑠𝑛𝑇𝑚𝛴 ≤𝑂 𝑠 ′𝑚𝛴′ 𝑝 (𝑚)=𝑃

where 𝛴 extends 𝛴 ′
by 𝑇 if:

• for all 𝑎 ∈ dom(𝛴) \ dom(𝛴 ′), 𝛴 (𝑎) = 𝑇 (𝑎);
• for all 𝑎 and f ∈ dom(𝛴 (𝑎)) \ dom(𝛴 ′(𝑎)), 𝛴 (𝑎).f = 𝑇 (𝑎) .f.

The utility of 𝑂-extension is to express semantically the fact that the environment of a program may use up-casting to

inject in its objects additional fields (and methods) not accessible to the program.

Strategies shall be sets of plays, representing how Proponent should behave in the given game. The sets will satisfy a

number of conditions stipulating that:

• each play in a strategy is even-length, thus representing a configuration in the game where 𝑃 has just played

(because of alternation and the fact that 𝑂 always plays first);

• if a play can be reached by a strategy, then all of its even-length prefixes can be reached as well;

• the strategy is deterministic, i.e. for each𝑂 move extending a play from a strategy there is at most one move that

𝑃 can play after it;

• the names that appear in a strategy should be interchangeable – the strategy manipulates names in the same way

up to permutation;

• the behaviour of 𝑃 should be invariant under extensions via subclassing of objects belonging to 𝑂 .

We formalise strategies and these conditions next.

Definition 3.28. A strategy 𝜎 in 𝐴𝐵 is a non-empty set of even-length plays from 𝑃𝐴𝐵 satisfying the conditions:

• If 𝑠𝑚𝛴𝑛𝑇 ∈ 𝜎 then 𝑠 ∈ 𝜎 . (Even-prefix closure)

• If 𝑠𝑚𝛴 , 𝑠𝑛𝑇 ∈ 𝜎 then 𝑠𝑚𝛴 ∼ 𝑠𝑛𝑇 . (Determinacy)

• If 𝑠 ∈ 𝜎 and 𝑠 ∼ 𝑡 then 𝑡 ∈ 𝜎 . (Equivariance)4

• If 𝑠 ∈ 𝜎 and 𝑡 ≤𝑂 𝑠 then 𝑡 ∈ 𝜎 . (O-extension)

We write 𝜎 : 𝐴 → 𝐵 when 𝜎 is a strategy in 𝐴𝐵.

4
Recall that, for any nominal set 𝑋 and 𝑥, 𝑦 ∈ 𝑋 , we write 𝑥 ∼ 𝑦 just if there is a permutation 𝜋 such that 𝑥 = 𝜋 · 𝑦.
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We can check that the plays listed in Examples 2.10, 2.11 and 2.12 form strategies. In definitions of strategies we may

often leave the presence of the empty sequence implicit, as the latter is a member of every strategy. For example, for

each arena 𝐴, we define the strategy:

id𝐴 : 𝐴 → 𝐴 = {𝑚𝛴
𝐴𝑚

𝛴
𝐴 ∈ 𝑃𝐴𝐴}

Below is a more interesting example, involving 𝑂-extension.

Example 3.29. Consider Δ = {Empty : ∅, Point⟨Empty⟩ : (x : int, y : int)} from Example 2.12. By O-extension, any

strategy 𝜎 : Empty → Empty containing 𝑠𝑎 = 𝑎 {𝑎 ↦→(Empty,∅) } 𝑎 {𝑎 ↦→(Empty,∅) }
must also contain

𝑠
𝑖, 𝑗
𝑎 = 𝑎 {𝑎 ↦→(Point,{x ↦→𝑖,y↦→𝑗 }) 𝑎 {𝑎 ↦→(Point,{x↦→𝑖,y↦→𝑗 })

for any 𝑖, 𝑗 ∈ Z. Consequently, the set 𝜎− = {𝑠𝑎 | 𝑎 ∈ Names} cannot be a strategy. However, 𝜎− can be extended to a

strategy 𝜎 as follows:

𝜎 = 𝜎− ∪ {𝑠𝑖, 𝑗𝑎 | 𝑎 ∈ Names, 𝑖, 𝑗 ∈ Z}

Note also that {𝑠𝑖, 𝑗𝑎 | 𝑎 ∈ Names, 𝑖, 𝑗 ∈ Z} is also a strategy in Empty Empty. While the former corresponds to

Δ|𝑥 : Empty ⊢ 𝑥 : Empty, the latter will turn out to model Δ|𝑥 : Empty ⊢ (Empty) (Point)𝑥 : Empty.

We saw in the previous section how plays can be composed via interaction sequences. Strategies can also be composed,

simply by composing their plays.

Definition 3.30. Given 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐵 → 𝐶 , we define their composition 𝜎 ;𝜏 by:

𝜎 ;𝜏 = {𝑠 ↾𝛾 𝐴𝐶 | 𝑠 ∈ 𝜎 ∥𝜏}

where 𝜎 ∥𝜏 = {𝑠 ∈ Int (𝐴𝐵𝐶) | 𝑠 ↾𝛾 𝐴𝐵 ∈ 𝜎 ∧ 𝑠 ↾𝛾 𝐵𝐶 ∈ 𝜏}.

A simple class of examples of strategy composition involves composing with the identity strategy. We first look at an

example of this, before proving that identity strategies are identities (i.e. neutral) under composition.

Example 3.31. We recall the interface Callable = (foo : void → void) of Example 3.10, and consider the strategies:

idCallable : Callable → Callable = {𝑎𝛴𝑎𝛴 | 𝑎 ∈ Names ∧ 𝛴 = {𝑎 ↦→ (∅,Callable)}}

𝜎 : Callable → 1 = {𝑎𝛴call𝑎.foo(∗)𝛴 , 𝑎𝛴call𝑎.foo(∗)𝛴 ret𝑎.foo(∗)𝛴∗𝛴 | 𝑎 ∈ Names ∧ 𝛴 = {𝑎 ↦→ (∅,Callable)}}

with the aim to compose them to idCallable;𝜎 . To obtain this, we look at all interaction sequences in Callable1Callable21
which project respectively in idCallable and 𝜎 . Since these strategies have a unique maximal play up to permutation, the

common interaction sequences are all subsequences of the following 𝑠3 ∈ Int (Callable1Callable21).

Callable1 Callable2 1 pol.

𝑎𝛴 𝑂𝐿

𝑎𝛴 𝑃𝐿𝑂𝑅

call𝑎.foo(∗)𝛴 𝑃𝑅

ret𝑎.foo(∗)𝛴 𝑂𝑅

∗𝛴 𝑃𝑅

We can now compute 𝑠3 ↾𝛾 Callable11 = 𝑎𝛴call𝑎.foo(∗)𝛴 ret𝑎.foo(∗)𝛴∗𝛴 . Considering all even-length subsequences

of the latter, we conclude that idCallable;𝜎 = 𝜎 .

Proposition 3.32. For all 𝜎 : 𝐴 → 𝐵, we have id𝐴;𝜎 = 𝜎 ; id𝐵 = 𝜎 .
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Proof. We show that id𝐴;𝜎 = 𝜎 , and the other equality is proven similarly. Let us tag the two copies of arena 𝐴 by

setting id𝐴 : 𝐴1 → 𝐴2 and 𝜎 : 𝐴2 → 𝐵. By definition,

id𝐴;𝜎 = {𝑠 ↾𝛾 𝐴1𝐵 | 𝑠 ∈ Int (𝐴1𝐴2𝐵) ∧ 𝑠 ↾𝛾 𝐴1𝐴2 ∈ id𝐴 ∧ 𝑠 ↾𝛾 𝐴2𝐵 ∈ 𝜎}.

So, let 𝑠 ∈ Int (𝐴1𝐴2𝐵) be such that 𝑠 ↾𝛾 𝐴1𝐴2 = 𝑚𝛴
𝐴1

𝑚𝛴
𝐴2

(for some𝑚𝛴
𝐴
) and 𝑠2 = 𝑠 ↾𝛾 𝐴2𝐵 ∈ 𝜎 . By Definition 3.26,

it must be the case that 𝑠 =𝑚𝛴
𝐴1

𝑚𝛴
𝐴2

𝑠 ′ and, since 𝑠 ↾𝛾 𝐴1𝐴2 contains only two moves, all moves in 𝑠 ′ have polarities

from 𝑝 (𝑚) ∈ {𝑃𝑅,𝑂𝑅}. Therefore, 𝑠 ↾𝛾 𝐴1𝐵 = 𝑚𝛴
𝐴
(𝑠 ′ ↾𝛾 𝐴1𝐵) = 𝑚𝛴

𝐴
(𝑠 ′ ↾𝛾 𝐴2𝐵) = 𝑠 ↾𝛾 𝐴2𝐵 and, hence, id𝐴;𝜎 ⊆ 𝜎 .

Conversely, if𝑚𝛴
𝐴
𝑠 ′ ∈ 𝜎 then this yields a sequence 𝑠 =𝑚𝛴

𝐴1

𝑚𝛴
𝐴2

𝑠 ′ ∈ Int (𝐴1𝐴2𝐵). Reasoning as above, 𝑠 has the same

projection on 𝐴1𝐵 and 𝐴2𝐵, and we conclude that 𝜎 ⊆ id𝐴;𝜎 . □

Example 3.33. Recall the two interacting plays from Example 3.19.

𝑠1 = 𝑐
𝛴0

1
call 𝑐1 .get(∗)𝛴0 ret 𝑐1 .get(𝑎1)𝛴1 call 𝑐1 .set(𝑎2)𝛴2 ret 𝑐1 .set(∗)𝛴3 𝑐

𝛴4

2
call 𝑐2 .get(∗)𝛴4 ret 𝑐2 .get(𝑎3)𝛴5

call 𝑐2 .set(𝑎4)𝛴6 call 𝑐1 .set(𝑎5)𝛴7 ret 𝑐1 .set(∗)𝛴8 ret 𝑐2 .set(∗)𝛴9

𝑠2 = 𝑐
𝛴4↾{𝑐2 }
2

call 𝑐2 .get(∗)𝛴4↾{𝑐2 } ret 𝑐2 .get(𝑎3)𝛴5↾{𝑐2,𝑎3 } call 𝑐2 .set(𝑎4)𝛴6↾{𝑐2,𝑎3,𝑎4 }

Let 𝜎 : CellVarInt1 → CellVarInt2 and 𝜏 : CellVarInt2 → 1 be the smallest strategies containing 𝑠1 and 𝑠2 respectively,

which can be obtained in this case by adding new plays to satisfy Even-prefix closure and Equivariance. Then 𝜎 ;𝜏 :

CellVarInt1 → 1 is the smallest strategy containing the play:

𝑠3 = 𝑐
𝛴0

1
call 𝑐1 .get(∗)𝛴0 ret 𝑐1 .get(𝑎1)𝛴1 call 𝑐1 .set(𝑎2)𝛴2 ret 𝑐1 .set(∗)𝛴3 call 𝑐1 .set(𝑎5)𝛴7↾{𝑐1,𝑎1,𝑎2,𝑎5 }

ret 𝑐1 .set(∗)𝛴8↾{𝑐1,𝑎1,𝑎2,𝑎5 } ∗𝛴10↾{𝑐1,𝑎1,𝑎2,𝑎5 }

obtained by projecting the interaction sequence 𝑠 on CellVarInt1 1.

The next two lemmata will allow us to show that strategy composition is well defined (Proposition 3.36). Moreover,

strategy composition is associative (Proposition 3.37) and thus arenas and strategies form a category (Definition 3.38).

Lemma 3.34. If 𝑠𝑚𝛴 , 𝑠𝑛𝑇 ∈ 𝜎 ∥𝜏 with 𝑝 (𝑚) ∉ 𝑂3 then 𝑠𝑚𝛴 ∼ 𝑠𝑛𝑇 . Hence, if 𝑠1𝑚𝛴 , 𝑠2𝑛
𝑇 ∈ 𝜎 ∥𝜏 with 𝑝 (𝑚) ∉ 𝑂3 and

𝑠1 ∼ 𝑠2 then 𝑠1𝑚𝛴 ∼ 𝑠2𝑛
𝑇 .

Proof. For the first part, suppose WLOG that 𝑝 (𝑚) ∈ 𝑃𝑂 . Then, by the diagram in Figure 4, we also have 𝑝 (𝑛) ∈ 𝑃𝑂 .

As 𝑠𝑚𝛴, 𝑠𝑛𝑇 ↾𝛾 𝐴𝐵 ∈ 𝜎 , by determinacy of 𝜎 we get 𝑠 ′𝑚𝛴′ ∼ 𝑠 ′𝑛𝑇
′
with 𝑠 ′𝑚𝛴′

= 𝑠𝑚𝛴 ↾𝛾 𝐴𝐵 and 𝑠 ′𝑛𝑇
′
= 𝑠𝑛𝑇 ↾𝛾 𝐴𝐵.

We therefore have (𝑠 ′,𝑚𝛴′) ∼ (𝑠 ′, 𝑛𝑇 ) and, trivially, (𝑠, 𝑠 ′) ∼ (𝑠, 𝑠 ′). Moreover, by Lemma 3.22, 𝜈 (𝑚𝛴′) ∩ 𝜈 (𝑠) ⊆ 𝜈 (𝑠 ′)
and 𝜈 (𝑛𝑇 ′) ∩ 𝜈 (𝑠) ⊆ 𝜈 (𝑠 ′) hence, by Strong Support Lemma [45], 𝑠𝑚𝛴′ ∼ 𝑠𝑛𝑇

′
. By Laird’s last set of conditions, the

remaining values of 𝛴,𝑇 are determined by the last store in 𝑠 , hence 𝑠𝑚𝛴 ∼ 𝑠𝑛𝑇 .

For the second part, suppose 𝑠1 = 𝜋 · 𝑠2. Then, since 𝜋 · (𝑠2𝑛𝑇 ) ∈ 𝜎 ∥𝜏 , by the first part we have 𝑠1𝑚
𝛴 ∼ 𝜋 · (𝑠2𝑛𝑇 ), so

𝑠1𝑚
𝛴 ∼ 𝑠2𝑛

𝑇
. □

Lemma 3.35. If 𝑠1, 𝑠2 ∈ 𝜎 ∥𝜏 end in moves with polarities in 𝑝 (𝐴𝐶) and 𝑠1 ↾𝛾 𝐴𝐶 = 𝑠2 ↾𝛾 𝐴𝐶 then 𝑠1 ∼ 𝑠2.

Proof. By induction on |𝑠1 ↾𝛾 𝐴𝐶 | > 0. The base case is encompassed in 𝑠𝑖 = 𝑠 ′
𝑖
𝑚𝛴𝑖

with 𝑝 (𝑚) ∈ 𝑂3, 𝑖 = 1, 2, where

note that by IH𝑚 will have the same polarity in 𝑠1, 𝑠2. Then, by IH we get 𝑠 ′
1
= 𝜋 · 𝑠 ′

2
, for some 𝜋 . Let 𝑠 ′′

𝑖
𝑚𝛴′

= 𝑠𝑖 ↾𝛾 𝐴𝐶 ,

for 𝑖 = 1, 2, so in particular 𝑠 ′′
1
= 𝜋 · 𝑠 ′′

2
and therefore (𝑠 ′

1
, 𝑠 ′′
1
) ∼ (𝑠 ′

2
, 𝑠 ′′
2
). Moreover, by hypothesis, we trivially have

(𝑚𝛴′
, 𝑠 ′′
1
) ∼ (𝑚𝛴′

, 𝑠 ′′
2
) and hence, by Lemma 3.22 and Strong Support Lemma [45], we obtain 𝑠 ′

1
𝑚𝛴′ ∼ 𝑠 ′

2
𝑚𝛴′

which

implies 𝑠1 ∼ 𝑠2 by Laird’s conditions. Suppose now 𝑠𝑖 = 𝑠 ′
𝑖
𝑠 ′′
𝑖
𝑚𝛴𝑖

, 𝑖 = 1, 2, with 𝑝 (𝑚) ∈ 𝑃 (𝐴𝐶) \𝑂3 and the last move in
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𝑠 ′
𝑖
being the last move in 𝑠 ′

𝑖
𝑠 ′′
𝑖
having polarity in 𝑝 (𝐴𝐶). By IH, 𝑠 ′

1
∼ 𝑠 ′

2
. Then, by consecutive applications of Lemma 3.34,

we obtain 𝑠1 ∼ 𝑠2. □

Proposition 3.36. If 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐵 → 𝐶 then 𝜎 ;𝜏 : 𝐴 → 𝐶 .

Proof. We show that 𝜎 ;𝜏 is a strategy. Even-prefix closure and equivariance are clear. Moreover, since each 𝑠 ∈ 𝜎 ∥𝜏
has even-length projections in 𝐴𝐵 and 𝐵𝐶 , we can show that its projection in 𝐴𝐶 is even-length too. For O-extension, if

𝑠 ∈ 𝜎 ;𝜏 and 𝑡 ≤𝑂 𝑠 with 𝑠 = 𝑢 ↾𝛾 𝐴𝐶 and 𝑢 ∈ 𝜎 ∥𝜏 , we can construct 𝑣 ∈ Int (𝐴𝐵𝐶) such that 𝑡 = 𝑣 ↾𝛾 𝐴𝐶 and 𝑣 ≤𝑂 𝑢,

where ≤𝑂 is defined for interaction sequences in an analogous way as for plays (with condition 𝑝 (𝑚) = 𝑂 replaced

by 𝑝 (𝑚) ∈ 𝑂3, and 𝑝 (𝑚) = 𝑃 by 𝑝 (𝑚) ∈ 𝑃𝑂 ∪ 𝑃2). Moreover, 𝑣 ↾𝛾 𝐴𝐵 ≤𝑂 𝑢 ↾𝛾 𝐴𝐵 and 𝑣 ↾𝛾 𝐵𝐶 ≤𝑂 𝑢 ↾𝛾 𝐵𝐶 , so

𝑡 ∈ 𝜎 ;𝜏 . Finally, for determinacy, let 𝑠𝑚𝛴 , 𝑠𝑛𝑇 ∈ 𝜎 ;𝜏 be due to 𝑠1𝑠
′
1
𝑚𝛴′

, 𝑠2𝑠
′
2
𝑛𝑇

′ ∈ 𝜎 ∥𝜏 respectively, where 𝑠1, 𝑠2 both

end in the last move of 𝑠 . By Lemma 3.35, we have 𝑠1 ∼ 𝑠2 and thus, by consecutive applications of Lemma 3.34, we get

𝑠1𝑠
′
1
𝑚𝛴′ ∼ 𝑠2𝑠

′
2
𝑛𝑇

′
, so 𝑠𝑚𝛴 ∼ 𝑠𝑛𝑇 . □

Proposition 3.37. For all 𝜌 : 𝐴 → 𝐵, 𝜎 : 𝐵 → 𝐶 and 𝜏 : 𝐶 → 𝐷 , (𝜌 ;𝜎);𝜏 = 𝜌 ; (𝜎 ;𝜏).

Proof. We delegate the technical argument to Appendix A. □

Definition 3.38. Given an interface table Δ, we define the category GΔ having arenas as objects and strategies as

morphisms. Identity morphisms are given by id𝐴 , for each arena 𝐴.

The dependence of the category GΔ on the interface table Δ is due to the fact that the stores appearing in plays

(inside strategies in GΔ) must obey to well-formedness conditions imposed by Δ (cf. Definition 3.4). In the sequel, when

Δ can be inferred from the context, we shall write GΔ simply as G. As a final note, for class tables Δ ⊆ Δ′
, we can

define a functor

Δ/Δ′
: GΔ → GΔ′

which acts as the identity map on arenas, and sends each 𝜎 : 𝐴 → 𝐵 of GΔ to:

(Δ/Δ′) (𝜎) = {𝑠 ∈ 𝑃Δ
′

𝐴𝐵 | ∃𝑡 ∈ 𝜎. 𝑠 ≤𝑂 𝑡}

where 𝑃Δ
′

𝐴𝐵
refers to plays in GΔ′ . In the other direction, we can define a strategy transformation:

(Δ′/Δ) (𝜎) = 𝜎 ∩ 𝑃Δ𝐴𝐵

which satisfies (Δ′/Δ) ((Δ/Δ′) (𝜎)) = 𝜎 .

4 MODEL STRUCTURE

The aim of this section is to bring out the categorical structure that will allow us to build a model of IMJ. To that end,

we shall employ several classes of strategies to demonstrate that our setting is compatible with categorical requirements

for modelling call-by-value evaluation.

The first class of strategies will be called evaluated. These strategies, say in𝐴 → 𝐵, after the initial move𝑚Σ
𝐴
, respond

immediately with𝑚Σ
𝐵
without modifying the content of the store nor depending on it. Intuitively, this corresponds to

terms that have already been evaluated, i.e. skip, null, 𝑖 , 𝑎. These strategies will turn out to support finite products and

a notion of left pairing (needed to simulate the order of evaluation). At the abstract level, this will lead us to a setting

with the same properties as Freyd categories [40], known to be the categorical counterparts of call-by-value program

calculi. We will also define a weak notion of coproduct, useful for modelling the conditionals in the language.
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Other prominent classes of strategies will be the single-threaded ones. They are similar to evaluated strategies in

that𝑚𝐵 is played immediately after𝑚𝐴 , and that the initial store content cannot be modified. However, in contrast to

evaluated strategies, they allow for the introduction of new names in the store component (object creation). Further,

some interaction is allowed with the new object, but only through a single call, i.e. only a single thread of play is

allowed.Well-threaded strategies generalise single-threaded strategies by allowing multiple calls. However, the resultant

threads need to be uniform so that each well-threaded strategy can be viewed as being generated by a single-threaded

strategy. This gives rise to an adjunction that leads to a notion of exponentiation that can be used to model 𝜆-abstraction

and, consequently, method definitions (i.e. m : 𝜆®𝑥 .𝑀). Single-threaded strategies will correspond to single method

invocations, whereas thread-independent ones to method-set implementations (i.e. sets of method definitions).

Finally, to model self-referencing in objects, i.e. 𝑥 in new(𝑥 : I;M), we use a dedicated ‘copycat’ construction

between interfaces.

4.1 Evaluated strategies

A strategy 𝜎 : 𝐴 → 𝐵 is called evaluated if there is a function 𝑓𝜎 : 𝑀𝐴 → 𝑀𝐵 such that:

𝜎 = {𝑚𝛴
𝐴𝑚

𝛴
𝐵 ∈ 𝑃𝐴𝐵 |𝑚𝐵 = 𝑓𝜎 (𝑚𝐴)} .

Note that equivariance of 𝜎 implies that, for all𝑚𝐴 ∈ 𝑀𝐴 and permutations 𝜋 , it holds that 𝜋 · 𝑓𝜎 (𝑚𝐴) = 𝑓𝜎 (𝜋 ·𝑚𝐴).
Thus, in particular, 𝜈 (𝑓𝜎 (𝑚𝐴)) ⊆ 𝜈 (𝑚𝐴).

For example, identity strategies are evaluated. More importantly, since evaluated strategies are free from state

dependence, restricting strategies to evaluated ones yields a category with products.

Recall that, for arenas 𝐴 and 𝐵, we can construct a product arena 𝐴 × 𝐵. We can also define projection strategies:

𝜋1 : 𝐴 × 𝐵 → 𝐴 = {(𝑚𝐴,𝑚𝐵)𝛴𝑚𝛴
𝐴 ∈ 𝑃 (𝐴×𝐵)𝐴}

and, analogously, 𝜋2 : 𝐴 × 𝐵 → 𝐵. Clearly, these strategies are evaluated. Moreover, for each object 𝐴,

!𝐴 = {𝑚𝛴
𝐴 ∗𝛴 |𝑚𝛴

𝐴 ∈ 𝑃𝐴1}

is the unique evaluated strategy of type 𝐴 → 1.

Given strategies 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐴 → 𝐶 , with 𝜏 evaluated, we define:

⟨𝜎, 𝜏⟩ : 𝐴 → 𝐵 ×𝐶 = {𝑚𝛴
𝐴 𝑠 [(𝑚𝐵, 𝑓𝜏 (𝑚𝐴))/𝑚𝐵] |𝑚𝛴

𝐴𝑠 ∈ 𝜎 }

where we write 𝑠 [𝑚′/𝑚𝐵] for the sequence obtained from 𝑠 by replacing any occurrences of𝑚𝐵 in it with𝑚′
(note that

there can be at most one occurrence of𝑚𝐵 in 𝑠).

From the previous definitions we obtain the following properties.

Lemma 4.1. Evaluated strategies form a wide subcategory V of G with finite products given by the above constructions.

Moreover, for all 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐴 → 𝐶 with 𝜏 evaluated, ⟨𝜎, 𝜏⟩;𝜋1 = 𝜎 and ⟨𝜎, 𝜏⟩ = ⟨𝜎, id𝐴⟩; ⟨𝜋1, 𝜋2;𝜏⟩.

Using the above result, we can extend pairings to general 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐴 → 𝐶 by:

⟨𝜎, 𝜏⟩ = 𝐴
⟨𝜎,id𝐴 ⟩
−−−−−−−→ 𝐵 ×𝐴

⟨𝜋2;𝜏,𝜋1 ⟩−−−−−−−−→ 𝐶 × 𝐵
�−→ 𝐵 ×𝐶
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where � is the isomorphism ⟨𝜋2, 𝜋1⟩. The above represents a notion of left-pairing of 𝜎 and 𝜏 , where the effects of 𝜎

precede those of 𝜏 . We can also define a left-tensor between strategies:

𝜎 × 𝜏 = 𝐴 × 𝐵
⟨𝜋1;𝜎,𝜋2 ⟩−−−−−−−−→ 𝐴′ × 𝐵

⟨𝜋1,𝜋2;𝜏 ⟩−−−−−−−−→ 𝐴′ × 𝐵′

for any 𝜎 : 𝐴 → 𝐴′
and 𝜏 : 𝐵 → 𝐵′

.

Lemma 4.2. Let 𝜏 ′ : 𝐴′ → 𝐴, 𝜎 : 𝐴 → 𝐵1, 𝜏 : 𝐴 → 𝐵2, 𝜎1 : 𝐵1 × 𝐵2 → 𝐶1 and 𝜎2 : 𝐵2 → 𝐶2, with 𝜏 and 𝜏 ′ evaluated.

Then 𝜏 ′; ⟨𝜎, 𝜏⟩; ⟨𝜎1, 𝜋2;𝜎2⟩ = ⟨𝜏 ′; ⟨𝜎, 𝜏⟩;𝜎1, 𝜏 ′;𝜏 ;𝜎2⟩.

Proof. The result follows from the simpler statements:

𝜏 ; ⟨𝜎, id⟩ = ⟨𝜏 ;𝜎, 𝜏⟩, ⟨𝜎, id⟩; ⟨𝜎 ′, 𝜋2⟩ = ⟨⟨𝜎 ; id⟩;𝜎 ′, id⟩,

for all appropriately typed 𝜎, 𝜎 ′, 𝜏 , with 𝜏 evaluated, and Lemma 4.1. □

An immediate consequence of the above is:

𝐴
⟨𝜎 ;𝜏 ⟩
−−−−→ 𝐵1 × 𝐵2

𝜎1×𝜎2−−−−−→ 𝐶1 ×𝐶2 = 𝐴
⟨𝜎 ;𝜎1,𝜏 ;𝜎2 ⟩−−−−−−−−−→ 𝐶1 ×𝐶2

More generally, we can use Lemma 4.2 to show that V and G, along with the inclusion functor 𝐼 : V → G, yield a

Freyd category [40, 41].

We also introduce the following weak notion of coproduct. Given strategies 𝜎, 𝜏 : 𝐴 → 𝐵, we define:

[𝜎, 𝜏] : Z ×𝐴 → 𝐵 = {(𝑖,𝑚𝐴)𝛴𝑠 | 𝑖 ≠ 0 ∧𝑚𝛴
𝐴𝑠 ∈ 𝜎} ∪ {(0,𝑚𝐴)𝛴𝑠 |𝑚𝛴

𝐴𝑠 ∈ 𝜏}

Setting 𝑖 : 1 → Z = {∗ 𝑖}, for each 𝑖 ∈ Z, we can show the following.

Lemma 4.3. For all strategies 𝜎 ′
: 𝐴′ → 𝐴 and 𝜎, 𝜏 : 𝐴 → 𝐵,

• ⟨!; 0̂, id⟩; [𝜎, 𝜏] = 𝜏 and ⟨!; 𝑖, id⟩; [𝜎, 𝜏] = 𝜎 if 𝑖 ≠ 0;

• if 𝜎 ′ is evaluated then (idZ × 𝜎 ′); [𝜎, 𝜏] = [𝜎 ′
;𝜎, 𝜎 ′

;𝜏].

4.2 Single-threaded and thread-independent strategies

Method definitions in IMJ amount to a form of exponentiation:∧𝑛
𝑖=1 (Δ|Γ ⊎ {®𝑥𝑖 : ®𝜃𝑖 };𝑢 ⊢ 𝑀𝑖 : 𝜃𝑖 )

Δ|Γ;𝑢 ⊢ M : Θ
Θ={m𝑖 :

®𝜃𝑖→𝜃𝑖 | 1≤𝑖≤𝑛}∧M={m𝑖 :𝜆 ®𝑥𝑖 .𝑀𝑖 | 1≤𝑖≤𝑛}

the modelling of which requires some extra semantic machinery. Traditionally, in call-by-value game models, exponen-

tiation leads to ‘effectless’ strategies, corresponding to higher-order value terms. In our case, higher-order values are

methods, manifesting themselves via the objects they may inhabit. Hence, exponentiation necessarily passes through

generation of fresh object names containing these values. These considerations give rise to two classes of strategies

introduced below.

We say that an even-length play 𝑠 ∈ 𝑃𝐴𝐵 is total if it is either empty or 𝑠 =𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 ′ and:

• 𝑇 ∈ Sto0 and 𝜈 (𝑚𝐵) ∩ 𝜈 (𝛴) ⊆ 𝜈 (𝑚𝐴),
• if 𝑠 ′′𝑚𝛴′

𝑛𝑇
′ ⊑ 𝑠 ′ is even-length and 𝑎 ∈ dom(𝛴) \ 𝜈 (𝛾 (𝑚𝛴0

𝐴
𝑚

𝛴0⊎𝑇
𝐵

𝑠 ′′𝑚𝛴′)), for 𝛴0 = Dft(𝛴) ↾ 𝜈 (𝑚𝐴), then
𝑇 ′(𝑎) = 𝛴 ′(𝑎) and 𝑎 ∉ 𝜈 (𝛾 (𝑚𝛴0

𝐴
𝑚

𝛴0⊎𝑇
𝐵

𝑠 ′′𝑚𝛴′
𝑛𝑇

′)).
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We write 𝑃 t
𝐴𝐵

for the set of total plays in 𝐴𝐵. Thus, in total plays, the initial move𝑚𝛴
𝐴
is immediately followed by a

move𝑚𝑇 ′
𝐵
, and the initial store 𝛴 is invisible to 𝑃 in the sense that 𝑃 cannot use its names or their values (can neither

read from nor write to 𝛴). Moreover,𝑚𝑇 ′
𝐵

may introduce some fresh objects, albeit with default values.

A consequence of totality is that the first store played can be replaced by a default one.

Lemma 4.4. If𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 ′ is a total play then so is 𝛾 (𝑚𝛴0

𝐴
𝑚

𝛴0⊎𝑇
𝐴

𝑠 ′), where 𝛴0 = Dft(𝛴) ↾ 𝜈 (𝑚𝐴).

Hence, total plays impose that the only initial effect available to 𝑃 is the creation of fresh objects, which appear in

the second move of the play. Next, we look at strategies that impose that, to those objects, at most one call can be made

in the remainder of the play.

Definition 4.5. A strategy 𝜙 : 𝐴 → 𝐵 is called single-threaded if it consists of total plays and satisfies the conditions:
5

• for all𝑚𝛴
𝐴
∈ 𝑃𝐴𝐵 there is𝑚𝛴

𝐴
𝑚𝑇
𝐵
∈ 𝜙 ;

• for all𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 ∈ 𝑃 t
𝐴𝐵

and 𝛴0 = Dft(𝛴) ↾ 𝜈 (𝑚𝐴),𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 ∈ 𝜙 iff 𝛾 (𝑚𝛴0

𝐴
𝑚

𝛴0⊎𝑇
𝐵

𝑠) ∈ 𝜙 ;

• if𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 call𝑎.m(®𝑣)𝛴
′
𝑠 ′ ∈ 𝜙 and 𝑎 ∈ 𝜈 (𝑇 ) then 𝑠 = 𝜖 .

The first two conditions above are strengthening totality by imposing that the initial move be always replied to (i.e.

there is no initial divergence) and that changing the initial store to a default one leave the strategy behaviour unaffected

(i.e. the initial store is not read). Finally, plays of single-threaded strategies consist of just one thread, where a thread is

a total play in which there can be at most one call to names introduced by its second move.

Conversely, given a total play starting with𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

, we can extract its threads by tracing back for each move in 𝑠

the method call of the object 𝑎 ∈ 𝜈 (𝑇 ) it is related to. Formally, for each total play 𝑠 = 𝑚𝛴
𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 ′ with |𝑠 ′ | > 0, the

threader move of 𝑠 , written thrr(𝑠), is given by induction:

• thrr(𝑠 ′𝑚𝛴′) = thrr(𝑠 ′), if 𝑝 (𝑚) = 𝑃 ;

• thrr(𝑠 ′call𝑎.m(®𝑣)𝛴
′
) = call𝑎.m(®𝑣)𝛴

′
, if 𝑎 ∈ 𝜈 (𝑇 );

• thrr(𝑠 ′𝑛𝑇 ′
𝑠 ′′call𝑎.m(®𝑣)𝛴

′
) = thrr(𝑠 ′𝑛𝑇 ′), if 𝑎 ∈ 𝑃 (𝑠) \ 𝜈 (𝑇 ) and 𝑛 introduces 𝑎;

• thrr(𝑠 ′𝑛𝑇 ′
𝑠 ′′𝑚𝛴′)= thrr(𝑠 ′𝑛𝑇 ′), if 𝑝 (𝑚) = 𝑂 and 𝑛 justifies𝑚.

If 𝑠 = 𝑠 ′𝑛𝑇
′
𝑠 ′′ with |𝑠 ′ | ≥ 2, we set thrr(𝑛𝑇 ′) = thrr(𝑠 ′𝑛𝑇 ′). Then, the current thread of 𝑠 is the subsequence of 𝑠

containing only moves with the same threader move as 𝑠 , that is, if thrr(𝑠) =𝑚𝛴′
and 𝑠 =𝑚𝛴

𝐴
𝑚𝛴⊎𝑇
𝐵

𝑠 ′ then

⌈𝑠⌉ =𝑚𝛴
𝐴𝑚

𝛴⊎𝑇
𝐵 (𝑠 ′ ↾𝑚𝛴′

)

where the restriction retains only those moves 𝑛𝑇
′
of 𝑠 ′ such that thrr(𝑛𝑇 ′) =𝑚𝛴′

. We extend this to the case of |𝑠 | ≤ 2

by setting ⌈𝑠⌉ = 𝑠 . Finally, we call a total play 𝑠 ∈ 𝑃𝐴𝐵 thread-independent if for all 𝑠 ′𝑚𝛴′ ⊑even 𝑠 with |𝑠 ′ | > 2:

• if 𝛾 (⌈𝑠 ′𝑚𝛴′⌉) = 𝑠 ′′𝑚𝛴′′
then 𝜈 (𝛴 ′′) ∩ 𝜈 (𝑠 ′) ⊆ 𝜈 (𝑠 ′′);

• if 𝑠 ′ ends in some 𝑛𝑇
′
and 𝑎 ∈ dom(𝛴 ′) \ 𝜈 (𝛾 (⌈𝑠 ′𝑚𝛴′⌉)) then 𝛴 ′(𝑎) = 𝑇 ′(𝑎).

We write 𝑃 ti
𝐴𝐵

for the set of thread-independent plays in 𝐴𝐵.

We can now define strategies which occur as interleavings of single-threaded ones.

Definition 4.6. Given single-threaded 𝜙 : 𝐴 → 𝐵, we define: 𝜙† = {𝑠 ∈ 𝑃 ti
𝐴𝐵

| ∀𝑠 ′ ⊑even𝑠 . 𝛾 (⌈𝑠 ′⌉) ∈ 𝜙}. We call a

strategy 𝜎 thread-independent if 𝜎 = 𝜏† for some single-threaded strategy 𝜏 .

5
Note that the use of the term “thread” here is internal to game semantics parlance and in particular should not be confused with Java threads.
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Thus, thread-independent strategies do not depend on initial stores and behave in each of their threads in an

independent manner. Note in particular that evaluated strategies are thread-independent (and single-threaded).

Lemma 4.7. 𝜙† is a strategy, for each single-threaded 𝜙 .

Proof. Equivariance, Even-prefix closure and 𝑂-extension follow from the corresponding conditions on 𝜙 . For

determinacy, if 𝑠𝑚𝛴 , 𝑠𝑛𝑇 ∈ 𝜙† with |𝑠 | > 0 then, using determinacy of 𝜙 and the fact that 𝑃-moves do not change the

current thread, nor do they modify or use names from other threads, we can show that 𝑠𝑚𝛴 ∼ 𝑠𝑛𝑇 . □

Thread-independent strategies have good naturality properties with respect to the product construction on arenas

and pairing/projection on strategies. This is shown in the next lemma. Note though that this does not suffice for

obtaining categorical products. Allowing thread-independent strategies to create fresh names in their second move

breaks universality of pairings. Considering, for example, the strategy:

𝜎 : 1 → I × I = {∗ (𝑎, 𝑎)𝛴 ∈ 𝑃
1(I×I) | 𝛴 ∈ Sto0}

we can see that 𝜎 ≠ ⟨𝜎 ;𝜋1, 𝜎 ;𝜋2⟩, as the right-hand-side contains plays of the form ∗ (𝑎, 𝑏)𝑇 with 𝑎 ≠ 𝑏.

Lemma 4.8. Let 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐴 → 𝐶 be strategies with 𝜏 thread-independent. Then, ⟨𝜎, 𝜏⟩;𝜋1 = 𝜎 and:

⟨𝜎, 𝜏⟩ = 𝐴
⟨𝜏,𝜎 ⟩
−−−−→ 𝐶 × 𝐵

�−→ 𝐵 ×𝐶 .

Proof. The former claim is straightforward. For the latter, we observe that the initial effects of 𝜎 and 𝜏 commute: on

initial move𝑚𝛴
𝐴
, 𝜏 does not read the store updates that 𝜎 includes in its response𝑚𝛴′

𝐵
, while 𝜎 cannot access the names

created by 𝜏 in its second move𝑚𝛴′⊎𝑇
𝐶

. □

We can now define an appropriate notion of exponential for our games.Let us assume a translation assigning an

arena J ®𝜃K to each type sequence
®𝜃 . Moreover, let I be an interface such that

Δ(I) ↾ Meths = {m1 :
®𝜃1 → 𝜃1, · · · ,m𝑛 :

®𝜃𝑛 → 𝜃𝑛}

where
®𝜃𝑖 = 𝜃𝑖1, · · · , 𝜃𝑖𝑚𝑖

, for each 𝑖 . For any arena 𝐴, given single-threaded strategies 𝜙1, · · · , 𝜙𝑛 : 𝐴 → I such that, for

each 𝑖 , if𝑚𝛴
𝐴
𝑎𝛴⊎𝑇 𝑠 ∈ 𝜙𝑖 then

𝑎 ∉ 𝜈 (𝛴) ∧𝑇 (𝑎) : I ∧ (call𝑎.m(®𝑣) ∈ 𝑠 =⇒ m = m𝑖 ),

we can group them into one single-threaded strategy:

⟨⟨𝜙1, . . . , 𝜙𝑛⟩⟩ : 𝐴 → I =
⋃𝑛

𝑖=1
𝜙𝑖 .

Let now 𝜎1, · · · , 𝜎𝑛 be strategies with 𝜎𝑖 : 𝐴 × J ®𝜃𝑖K → J𝜃𝑖K. For each 𝑖 , we define the strategy ΛI (𝜎𝑖 ) : 𝐴 → I:

ΛI (𝜎𝑖 ) = {𝑚𝛴
𝐴 (𝑎

𝛴call𝑎.𝑚𝑖 (®𝑣)𝛴
′
𝑠)⊎𝑇 ∈ 𝑃 t

𝐴I | 𝛾 ((𝑚𝐴, ®𝑣)𝛴
′
𝑠) ∈ 𝜎𝑖 }

∪ {𝑚𝛴
𝐴 (𝑎

𝛴call𝑎.𝑚𝑖 (®𝑣)𝛴
′
𝑠 ret𝑎.m𝑖 (𝑣)𝑇

′
𝑠 ′)⊎𝑇 ∈ 𝑃 t

𝐴I | 𝛾 ((𝑚𝐴, ®𝑣)𝛴
′
𝑠 𝑣𝑇

′
𝑠 ′) ∈ 𝜎𝑖 }

∪ {𝑚𝛴
𝐴𝑎

𝛴⊎𝑇 ∈ 𝑃 t
𝐴I }

where 𝑎 ∉ 𝜈 (𝛴, ®𝑣, 𝑣, 𝑠, 𝑠 ′, 𝛴 ′,𝑇 ′), dom(𝑇 ) = {𝑎} and we write 𝑠⊎𝑇 for the sequence obtained by replacing each move𝑚𝛴

in 𝑠 with𝑚𝛴⊎𝑇
. By definition, ΛI (𝜎𝑖 ) is single-threaded.
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Definition 4.9 (Exponentiation). Let 𝜎1, · · · , 𝜎𝑛, 𝐴,I be as above. We define a thread-independent strategy implement-

ing the simultaneous currying thereof by:

ΛI (𝜎1, . . . , 𝜎𝑛) = ⟨⟨ΛI (𝜎1), . . . ,ΛI (𝜎𝑛)⟩⟩† : 𝐴 → I .

Moreover, we define evaluation strategies evIm𝑖
: I × J ®𝜃𝑖K → J𝜃𝑖K by taking:

evIm𝑖
= { 𝑠 | 𝑠 ⊑even (𝑎, ®𝑣)𝛴call𝑎.m𝑖 (®𝑣)𝛴 ret𝑎.m𝑖 (𝑣)𝑇 𝑣𝑇 ∈ 𝑃 (I×J ®𝜃𝑖K)J𝜃𝑖K

}.

In the sequel, we will be frequently dropping the superscript I from ΛI
and evIm𝑖

for brevity. In some cases, we

might drop the subscript m𝑖 as well.

Remark 4.10. In defining ΛI (𝜎𝑖 ) above, we essentially simulated the higher-order semantic value (the arrow) needed

for exponentiation by means of a fresh name 𝑎. This design has no deeper semantic meaning. It is worth noting that

the name 𝑎 is not allowed to participate in the interactions of ΛI (𝜎𝑖 ) in any other way than providing the arrow. In

Section 4.4, when defining the semantics of the new-object constructor, we will use a construction that hides away

this name 𝑎 from the environment. In the meantime we can see that, given translations J𝑀𝑖K for each method in a

method-set implementationM, we can construct: JMK : JΓ;𝑢K → I = ΛI (J𝑀1K, · · · , J𝑀𝑛K).

We can show the following properties for Λ and ev, which will suffice to prove our game model sound. In terms of

Freyd-closedness [41], these properties are too weak for obtaining an adjunction. The main obstacle is that in our setting

Λ leads to creating a fresh name, which is incompatible with the required universality (e.g. Λ(evm1
, · · · , evm𝑛

) ≠ id).

Lemma 4.11. Let 𝜎1, · · · , 𝜎𝑛 be as above, and let 𝜏 : 𝐴′ → 𝐴 be evaluated. Then:

• (Λ(𝜎1, . . . , 𝜎𝑛) × id); evm𝑖
= 𝜎𝑖 ,

• 𝜏 ;Λ(𝜎1, . . . , 𝜎𝑛) = Λ((𝜏 × id);𝜎1, . . . , (𝜏 × id);𝜎𝑛).

4.3 Modelling store

Store modelling is embedded in our games by means of the stores carried along with each move. What remains is to

define strategies for assignment and reading (dereferencing) from the store. These are given as follows. Assuming an

interface table Δ such that Δ(I) .f = 𝜃 , we define

asnf : I × J𝜃K → 1 = {(𝑎, 𝑣)𝛴∗𝛴 [𝑎.f ↦→𝑣 ] ∈ 𝑃 (I×J𝜃K)1}

drff : I → J𝜃K = {𝑎𝛴𝑣𝛴 ∈ 𝑃IJ𝜃K | 𝛴 (𝑎) .f = 𝑣}

for respectively assigning to and reading from field f in I-objects.
We can check that the strategies satisfy the intended read/write discipline: assigning a value to a field and accessing

it results in the same value; moreover, two assignments in a row have the same effect as just the last one.

Lemma 4.12. The following equations hold.

⟨asnf , 𝜋1⟩;𝜋2; drff = ⟨asnf , 𝜋2⟩;𝜋2 : I × J𝜃K → J𝜃K

(⟨asnf , 𝜋1⟩ × id);𝜋2; asnf = (id × 𝜋2); asnf : I × J𝜃K × J𝜃K → 1
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4.4 Modelling self-reference

Apart from dealing with exponentials, in order to complete our translation we need also to address the appearance of

𝑥 : I in the rule

Δ|Γ, 𝑥 : I;𝑢 ⊢ M : Θ

Δ|Γ;𝑢 ⊢ new(𝑥 : I;M) : I Δ(I)↾Meths=Θ

on left-hand side (𝑥 : I) and on the right-hand side (insideM) – this is similar to the use of the keyword this in Java.

Recall that

JMK : JΓ;𝑢K × I → I (2)

is obtained using exponentiation. Thus, the second move of JMK will appear in the right-hand occurrence of I above

and will be a fresh name 𝑏, which will serve as a handle to the methods ofM: in order to invoke m : 𝜆®𝑥 .𝑀 on input

®𝑣 , the Opponent would have to call 𝑏.m(®𝑣). The remaining challenge is to merge the two occurrences of I in (2). We

achieve this as follows. Let us assume a well-formed extension Δ′
of Δ:

Δ′ = (I ′
: (f′ : I)),Δ

i.e. I ′
contains a single field f′ of type I. We next define the strategy 𝜅I : 1 → I ′ × I of GΔ′ that simply copycats

between the calls and returns of methods from I and those from the stored field f′ of I ′
:

𝜅I = epref ({∗ (𝑎′, 𝑎)𝛴0call𝑎.m(®𝑣)𝛴call𝑏.m(®𝑣)𝛴 ret𝑏.m(𝑣)𝑇 ret𝑎.m(𝑣)𝑇 ∈ 𝑃
1(I′×I) | 𝛴0 ∈ Sto0 ∧ 𝑏 = 𝛴 (𝑎′) .f′})† (3)

where epref (𝜙) = {𝑠 ′ | ∃𝑠 ∈ 𝜙. 𝑠 ′ ⊑even 𝑠}. Thus, upon receiving a request call𝑎.m(®𝑣)𝛴 , 𝜅I forwards it to the respective

method of 𝑎′.f′ and, once it receives a return value, copies it back as the return value of the original call.

Given the 𝜅I strategy, we shall let Jnew(𝑥 : I;M)K : JΓ;𝑢K → I be the strategy:

Δ′/Δ
(
JΓ;𝑢K

⟨id,!;𝜅I ⟩;�−−−−−−−−−→ I ′×JΓ;𝑢K×I
id×⟨JΔ/Δ′ (M)K,𝜋2 ⟩−−−−−−−−−−−−−−−−−→ I ′×I×I

(asnf′×id) ;𝜋2−−−−−−−−−−−→ I
)
.

As the application of the functors Δ/Δ′
and Δ′/Δ above acts as identity on the respective strategies, we write the above

simply as:

JΓ;𝑢K
⟨id,!;𝜅I ⟩;�−−−−−−−−−→ I ′×JΓ;𝑢K×I

id×⟨JMK,𝜋2 ⟩−−−−−−−−−−−→ I ′×I×I
(asnf′×id) ;𝜋2−−−−−−−−−−−→ I .

Thus, object creation involves creating a pair of names (𝑎′, 𝑎) with 𝑎 : I and 𝑎′ : I ′
, where 𝑎 is the name of the object

we want to return. The name 𝑎′ serves as a store where the handle of the method implementations, i.e. the name created

by the second move of JMK, will be passed.

5 SOUND MODEL FOR IMJ

Here we take stock of the structure defined in the previous section and show how to translate IMJ terms into strategies.

Then we prove that the model is sound.

5.1 Interpretation of IMJ

For each sequence of interfaces

−→
I , let #( ®I) :

−→
I → #(

−→
I) = {®𝑎𝛴 ®𝑎𝛴 | 𝑎𝑖s distinct}. The strategies have right inverses

#( ®I)−𝑟 : #(
−→
I) →

−→
I , containing the same plays. We can now define the semantic translation of terms.

Definition 5.1. The semantic translation is given as follows.
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JΓ;𝑢 ⊢ 𝑥𝑖 : 𝜃𝑖K = JΓ;𝑢K
𝜋𝑖−−→ J𝜃𝑖K

JΓ;𝑢 ⊢ 𝑎𝑖 : I𝑖K = JΓ;𝑢K
𝜋𝑛+1−−−−→ #(

−→
I)

#( ®I)−𝑟
−−−−−−→

−→
I 𝜋𝑖−−→ I𝑖

JΓ;𝑢 ⊢ skip : voidK = JΓ;𝑢K
!−→ 1

JΓ;𝑢 ⊢ null : IK = JΓ;𝑢K
!;

ˆnul−−−−→ I, where ˆnul : 1 → I = {∗ nul}

JΓ;𝑢 ⊢ 𝑖 : intK = JΓ;𝑢K
!;𝑖−−→ Z

JΓ;𝑢 ⊢ let𝑥 = 𝑀 ′ in𝑀 :𝜃K = JΓ;𝑢K
⟨id,J𝑀′K⟩
−−−−−−−−→ JΓ;𝑢K × J𝜃 ′K

J𝑀K
−−−→ J𝜃K

JΓ;𝑢 ⊢ (I)𝑀 : IK = JΓ;𝑢K
J𝑀K
−−−→ I ′ stpI′I−−−−−−→ I, where stpI′I : I ′ → I = {nul nul} ∪ {𝑎𝛴𝑎𝛴 ∈ 𝑃I′I | 𝛴 (𝑎) ≤ I}

JΓ;𝑢 ⊢ 𝑀 ⊕ 𝑀 ′
: intK = JΓ;𝑢K

⟨J𝑀K,J𝑀′K⟩
−−−−−−−−−−→ Z × Z ⊕−→ Z, where ⊕ : Z × Z→ Z = {(𝑖, 𝑗) (𝑖 ⊕ 𝑗)}

JΓ;𝑢 ⊢ 𝑀 = 𝑀 ′
: intK = JΓ;𝑢K

⟨J𝑀K,J𝑀′K⟩
−−−−−−−−−−→ I × I eq−−→ Z,

where eq = {(𝑎, 𝑎)𝛴 1
𝛴 ∈ 𝑃 (I×I)Z} ∪ {(𝑎, 𝑏)𝛴 0

𝛴 ∈ 𝑃 (I×I)Z | 𝑎 ≠ 𝑏}

JΓ;𝑢 ⊢ if 𝑀 then 𝑀 ′ else 𝑀 ′′
: 𝜃K = JΓ;𝑢K

⟨J𝑀K,id⟩
−−−−−−−−→ Z × JΓ;𝑢K

[J𝑀′K,J𝑀′′K]
−−−−−−−−−−−→ J𝜃K

JΓ;𝑢 ⊢ new(𝑥 :I;M) : IK = JΓ;𝑢K
⟨id,!;𝜅I ⟩;�−−−−−−−−−→ I ′ × JΓ;𝑢K × I

id×⟨JMK,𝜋2 ⟩−−−−−−−−−−−→ I ′ × I × I
asnf′×id−−−−−−−→ 1 × I 𝜋2−−→ I,

whereM = {m1 : 𝜆®𝑥1 .𝑀1, · · · ,m𝑛 : 𝜆®𝑥𝑛 .𝑀𝑛} and JMK = JΓ;𝑢K × I
Λ(J𝑀1K,...,J𝑀𝑛K)
−−−−−−−−−−−−−−→ I

JΓ;𝑢 ⊢ 𝑀.f := 𝑀 ′
: voidK = JΓ;𝑢K

⟨J𝑀K,J𝑀′K⟩
−−−−−−−−−−→ I × J𝜃K

asnf−−−−→ 1

JΓ;𝑢 ⊢ 𝑀.f : 𝜃K = JΓ;𝑢K
J𝑀K
−−−→ I

drff−−−−→ J𝜃K

JΓ;𝑢 ⊢ 𝑀.m(−→𝑀) : 𝜃K = JΓ;𝑢K
⟨J𝑀K,J

−→
𝑀K⟩

−−−−−−−−−→ I × J ®𝜃K
evm−−−→ J𝜃K, where J

−→
𝑀K = ⟨⟨⟨J𝑀1K, J𝑀2K⟩, · · · ⟩, J𝑀𝑛K⟩

Fig. 6. The semantic translation of IMJ.

• Contexts Γ = {𝑥1 : 𝜃1, · · ·, 𝑥𝑛 : 𝜃𝑛}, 𝑢 ={𝑎1 : I1,· · · , 𝑎𝑚 : I𝑚} are translated into arenas by

JΓ;𝑢K = J𝜃1K × · · · × J𝜃𝑛K × #(I1, · · · ,I𝑚)

where JvoidK = 1, JintK = Z and JIK = I.
• Terms are translated as in Figure 6.

Example 5.2. We discuss the shape of strategies arising from terms discussed in Example 2.8, assuming I = Empty.

For brevity, let us set I ′ = HashFunI and I ′′ = VarHashFunI . In what follows, we use 𝑎 (and variants) to range over I
objects, 𝑜 for I ′

objects, and 𝑟 for I ′′
objects. We write 𝛴 ∪ {𝑜} for 𝛴 [𝑜 ↦→ (I ′, ∅)], where 𝛴 (𝑜) may or may not be

defined, and similarly 𝛴 ∪ {𝑎} for 𝛴 [𝑎 ↦→ (I, ∅)]. We use the variants 𝛴 ⊎ {𝑜} and 𝛴 ⊎ {𝑎} when 𝑜 and 𝑎 respectively

are not in the domain of 𝛴 . We extend this notation to sequences of moves, by applying it move-by-move.
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(1) We first look at translating M0 andM1, following Section 4.2.

M0 = (hash : 𝜆 _. 0, reset : 𝜆 _. skip)

M1 = (hash : 𝜆𝑧. priv.val.hash(𝑧), reset : 𝜆ℎ. priv.val := ℎ)

The translation recipe requires that we first model the bodies of these methods. ForM0, this is trivial:

J _ : I ⊢ 0K = {𝑎𝛴 0
𝛴 } and J _ : I ⊢ skipK = {𝑎𝛴 ∗𝛴 },

for any appropriate 𝑎𝛴 . By exponentiation we get:

JM0K : 1 → I ′ = ({∗𝑜𝛴0 call𝑜.hash(𝑎)𝛴0⊎{𝑎} ret𝑜.hash(0)𝛴0⊎{𝑎}}∪{∗𝑜𝛴0 call𝑜.reset(𝑜 ′)𝛴0⊎{𝑜′ } ret𝑜.reset(∗)𝛴0⊎{𝑜′ }})†

where 𝛴0 = {𝑜 ↦→ (I ′, ∅)}. ForM1, the method bodies are translated as follows:

Jpriv : I ′′, 𝑧 : I ⊢ priv.val.hash(𝑧) K = {(𝑟, 𝑎)𝛴 call𝑜 ′.hash(𝑎)𝛴 ret𝑜 ′.hash(𝑖)𝛴
′
𝑖𝛴

′
| 𝑖 ∈ Z ∧ 𝑜 ′ = 𝛴 (𝑝) .val}

Jpriv : I ′′, ℎ : I ′ ⊢ priv.val := ℎ K = {(𝑟, 𝑜 ′)𝛴 ∗𝛴 [𝑟 .val ↦→𝑜′ ] }

and by exponentiation we get (noting the typing priv : I ′′ ⊢ M1):

JM1K : I ′′ → I ′ =
(
{𝑟𝛴 (𝑜𝛴 call𝑜.hash(𝑎)𝛴

′
call𝑜 ′.hash(𝑎)𝛴

′
ret𝑜 ′.hash(𝑖)𝛴

′′
ret𝑜.hash(𝑖)𝛴

′′
)⊎{𝑜 } | 𝑜 ′ = 𝛴 ′(𝑟 ).val}

∪ {𝑟𝛴 (𝑜𝛴 call𝑜.reset(𝑜 ′)𝛴
′
ret𝑜.reset(∗)𝛴

′ [𝑟 .val↦→𝑜′ ] )⊎{𝑜 } }
)†

.

(2) We next look at 𝜎0 = J ⊢ new( _ : I ′
;M0) : I ′K and 𝜎1 = Jpriv : I ′′ ⊢ new( _ : I ′

;M1) : I ′K. Since no self-

reference is used in the term corresponding to 𝜎0, we have 𝜎0 = JM0K. One is also tempted to say 𝜎1 = JM1K,
but there is a slight difference: the name 𝑜 that we used for exponentiation is the actual returned object, and

Opponent can use this object, e.g. by storing it in priv, something that is not allowed in JM0K. Instead, we shall
have:

𝜎1 : I ′′ → I ′ =
(
{𝑟𝛴 𝑜𝛴⊎{𝑜 } call𝑜.hash(𝑎)𝛴

′
call𝑜 ′.hash(𝑎)𝛴

′
ret𝑜 ′.hash(𝑖)𝛴

′′
ret𝑜.hash(𝑖)𝛴

′′
| 𝑜 ′ = 𝛴 ′(𝑟 ) .val ≠ 𝑜}

∪ {𝑟𝛴 𝑜𝛴⊎{𝑜 } call𝑜.reset(𝑜 ′)𝛴
′
ret𝑜.reset(∗)𝛴

′ [𝑟 .val ↦→𝑜′ ] }
)†

.

Let us spell out 𝜎1 in more detail.

• For a start, we have 𝑟𝛴𝑜𝛴⊎{𝑜 } ∈ 𝜎1, where 𝛴 maps 𝑟 to a pair (I ′′, {val ↦→ 𝑣}) and 𝑣 can be a name or nul.

• Next we describe the remainder of the strategy inductively by examining all possible future 𝑂-moves and

giving responses due to 𝜎1. Suppose 𝜖 ≠ 𝑠 ∈ 𝜎1 and let 𝛴 be the store of the last move from 𝑠 . Observe that O

can change 𝛴 (𝑟 ) .val at every step, to a fresh value or a value that has already been seen in play. We shall write

𝛴 [𝑜 ′] to stand for 𝛴 [𝑟 .val ↦→ 𝑜 ′]. Then, as long as the O move is valid, we have:

𝑠 call𝑜.reset(𝑜 ′′)𝛴 [𝑜′ ]∪{𝑜′,𝑜′′ } ret𝑜.reset(∗)𝛴 [𝑜′′ ]∪{𝑜′,𝑜′′ } ∈ 𝜎1,

𝑠 call𝑜.hash(𝑎)𝛴 [𝑜′ ]∪{𝑜′,𝑎} call𝑜 ′.hash(𝑎)𝛴 [𝑜′ ]∪{𝑜′,𝑎} ∈ 𝜎1 (if 𝑜 ′ ≠ 𝑜),

𝑠 ret𝑜 ′.hash(𝑖)𝛴 [𝑜′′ ]∪{𝑜′′ } ret𝑜.hash(𝑖)𝛴 [𝑜′′ ]∪{𝑜′′ } ∈ 𝜎1 .

In the second case above, note that the strategy has no response to call𝑜.hash(𝑎)𝛴 [𝑜 ]∪{𝑎}
.
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(3) The strategy 𝜎 ′ = Jpriv : I ′′ ⊢ priv.val := new( _ : I ′
;M0); new( _ : I ′

;M1) : I ′K is given by:

𝜎 ′ = I ′′ ⟨id,!;𝜎0 ⟩−−−−−−−→ I ′′ × I ′ ⟨𝜋1,asn⟩;�−−−−−−−−−→ I ′′ 𝜎1−−→ I

Concretely, 𝜎 ′
is defined by the same clauses as 𝜎1 except that:

• for a start, we have 𝑟𝛴𝑜𝛴 [𝑟 .val ↦→𝑜0 ]⊎{𝑜0,𝑜 } ∈ 𝜎 ′
;

• in the second clause above, we need to strengthen 𝑜 ′ ≠ 𝑜 to 𝑜 ′ ≠ 𝑜, 𝑜0 and add

𝑠 call𝑜.hash(𝑎)𝛴 [𝑜0 ]∪{𝑎} ret𝑜.hash(0)𝛴 [𝑜0 ]∪{𝑎} ∈ 𝜎 ′.

In other words, we initialise 𝑟 .val to an object 𝑜0 that is defined by JM0K.
(4) Finally, to interpret the whole term and compute

𝜎 = Jlet priv = new( _ : I ′′
; ) in (priv.val := new( _ : I ′

;M0)); new( _ : I;M1)K

we need to pre-compose 𝜎 ′
with the strategy 𝜎 ′′ = Jnew( _ : I ′′

; )K = {∗ 𝑟 {𝑟 ↦→(I′′,{val ↦→nul}) }}. The interactions
hide the object 𝑟 that stands for priv and have the effect of preventing O from changing 𝑟 .val in every move,

though O can still do this indirectly by calling reset (though note that it is P whomakes the change). Consequently,

call𝑜.hash(𝑎) will now trigger call𝑜 ′.hash(𝑎), where 𝑜 ′ originates from the most recent call-move (by O) to

reset (i.e. call𝑜.reset(𝑜 ′)). If no such move has been played yet, ret𝑜.hash(0) is played in line with the case for

𝑜0 for 𝜎
′
.

5.2 Soundness

In order to prove that the semantics is sound, we will also need to interpret terms inside state contexts. Formally, let us

assume Γ, 𝑢, 𝑀, 𝜃, 𝑆 be such that:

• Γ;𝑢 ⊢ 𝑀 : 𝜃 and dom(𝑢) = dom(𝑆) = {𝑎1, · · · , 𝑎𝑛},
• for each 𝑎𝑖 ∈ dom(𝑆), and setting 𝑆 (𝑎𝑖 ) = (I𝑖 , (𝐹𝑖 ,M𝑖 )), we have 𝑢 (𝑎𝑖 ) = I𝑖 and Γ;𝑢 ⊢ (𝐹,M) : Δ(I𝑖 ).

Then, the term-in-state (𝑆,𝑀) is translated into the strategy (recall JΓ;𝑢K from (1)):

JΓ ⊢ (𝑆,𝑀)K = JΓK
JΓ⊢𝑆K
−−−−−→ JΓK ×

−→
I

id×#( ®I)
−−−−−−−→ JΓ;𝑢K

J𝑀K
−−−→ J𝜃K

where we write

−→
I = I1 × · · · × I𝑛 . The semantic translation of state JΓ ⊢ 𝑆K is given in two stages: the first stage, J𝑆K1,

creates the objects in dom(𝑆) and implements their methods; the second stage of the translation, J𝑆K2, initialises the
fields of the newly created objects:

JΓ ⊢ 𝑆K = JΓK
J𝑆K1−−−−→ JΓK ×

−→
I

J𝑆K2−−−−→ JΓK ×
−→
I .

We look at J𝑆K1 and J𝑆K2 next.
To implement the methods in 𝑆 we can start by setting

−→
M = (M1, · · · ,M𝑛) and

J
−→
MK = JΓK ×

−→
I

id×#( ®I)
−−−−−−−→ JΓK × #(

−→
I)

⟨JM1K, · · · ,JM𝑛K⟩
−−−−−−−−−−−−−−−→

−→
I .

We next need to merge the left- and right-hand-side occurrence of each I𝑖 above. This corresponds to identifying each

created object’s self-reference with the object itself, and is accomplished by employing the strategies 𝜅 from (3). We
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take, for each 𝑖 , 𝜅I𝑖 : 1 → I ′
𝑖
× I𝑖 , and set:

𝜅𝑆 = 1

⟨𝜅I
1
, · · · ,𝜅I𝑛 ⟩

−−−−−−−−−−−→ I ′
1
× I1 × · · · × I ′

𝑛 × I𝑛
�−→

−→
I ×

−→
I ′.

Thus, 𝜅𝑆 creates pairs of names (𝑎′
𝑖
, 𝑎𝑖 ) and, for each such pair, copycats between the calls and returns to the methods

of 𝑎𝑖 and those of the unique field of 𝑎′
𝑖
. To obtain J𝑆K1 we prepend J

−→
MK with 𝜅𝑆 , and append the assignment strategy

−−−→asnf′ = asnf′
1

× · · · × asnf′𝑛 (recall that each f′
𝑖
is the unique field in I ′

𝑖
, storing a value of type I𝑖 ):

J𝑆K1 = JΓK
⟨id,!;𝜅𝑆 ⟩−−−−−−−→ (JΓK×

−→
I)×

−→
I ′ ⟨id,J

−→
MK⟩×id

−−−−−−−−−−−→ (JΓK×
−→
I)×

−→
I×

−→
I ′ id×�−−−−→ (JΓK×

−→
I)×

−−−−−−−→
(I ′ × I)

(id×−−−−→asnf′ ) ;𝜋1−−−−−−−−−−−→ JΓK×
−→
I .

We move on to J𝑆K2. This should be a multiple assignment of values to all fields of all objects in 𝑆 , i.e. those objects

created by J𝑆K1. Assuming that 𝐹𝑖 = (f1
𝑖
: 𝑣1

𝑖
, · · · , f𝑘𝑖

𝑖
: 𝑣

𝑘𝑖
𝑖
), with each Γ;𝑢 ⊢ 𝑣 𝑗

𝑖
: 𝜃

𝑗
𝑖
(and J𝑣 𝑗

𝑖
K : JΓK× #(

−→
I) → J𝜃 𝑗

𝑖
K), and

setting

−→
𝐹 = (𝐹1, · · · , 𝐹𝑛), we first build:

J𝐹𝑖K = id × #(
−→
I); ⟨J𝑣1𝑖 K, · · · , J𝑣

𝑘𝑖
𝑖

K⟩ : JΓK ×
−→
I →

−−→
J𝜃𝑖K and J

−→
𝐹 K = ⟨J𝐹1K, · · · , J𝐹𝑛K⟩ : JΓK ×

−→
I →

−−→−−→
J𝜃K

where

−−→
J𝜃𝑖K = J𝜃1

𝑖
K × · · · × J𝜃𝑘𝑖

𝑖
K and

−−→−−→
J𝜃K =

−−−→
J𝜃1K × · · · ×

−−−→
J𝜃𝑛K. We can now assign all fields by:

J𝑆K2 = JΓK ×
−→
I

⟨id, ⟨𝜋2,J
−→
𝐹 K⟩⟩

−−−−−−−−−−−−→ (JΓK ×
−→
I) ×

−→
I ×

−−→−−→
J𝜃K

id×copy
−−−−−−−→ (JΓK ×

−→
I) ×

−−−−−−−−→−−−−−−−−→
(I × J𝜃K)

(id×−−−→asnf ) ;𝜋1−−−−−−−−−−−→ JΓK ×
−→
I

where we take
−−−→asnf = asnf𝑖 × · · · × asnf𝑛 and asnf𝑖 = asnf1

𝑖
× · · · × asn

f𝑘𝑖
𝑖

. The strategy copy above makes several

copies of each I𝑖 , one for each field f 𝑗
𝑖
of I𝑖 , and places each such copy near the corresponding J𝜃 𝑗

𝑖
K:

copy = I1×· · ·×I𝑛×
−−→−−→
J𝜃K

𝛿𝑘1×···×𝛿𝑘𝑛×id−−−−−−−−−−−−−−→ I𝑘1
1

×· · ·×I𝑘𝑛
𝑛 ×

−−→−−→
J𝜃K

�−→ (I1×J𝜃1
1
K)×· · ·×(I1×J𝜃𝑘1

1
K)×· · ·×(I𝑛×J𝜃1𝑛K)×· · ·×(I𝑛×J𝜃𝑘𝑛𝑛 K)

and, in general, 𝛿 𝑗 is the diagonal strategy 𝐴 → 𝐴 𝑗
.

Thus, J𝑆K1 is charged with setting up the methods in 𝑆 , whereas J𝑆K2 sets its field values. Setting up the methods M
involves three stages: name creation (via 𝜅𝑆 ), the thread-independent strategy JMK, and the assignments

−−−→asnf′ . The

two latter stages commute with setting the fields of 𝑆 , because of Lemma 4.12 (assignments of different fields commute)

and Lemma 4.8 (thread-independent strategies commute with any strategy), as the next lemma states.

Lemma 5.3. For Γ, 𝑆 as above, let us write J𝑆K1 as J𝑆K1 = JΓK
⟨id,!;𝜅𝑆 ⟩−−−−−−−→ JΓK ×

−→
I ×

−→
I ′ J𝑆K′

1−−−−→ JΓK ×
−→
I . Then:

JΓ ⊢ 𝑆K = JΓK
⟨id,!;𝜅𝑆 ⟩−−−−−−−→ JΓK ×

−→
I ×

−→
I ′ J𝑆K2×id−−−−−−−→ JΓK ×

−→
I ×

−→
I ′ J𝑆K′

1−−−−→ JΓK ×
−→
I .

In the rest of this section we show soundness of the semantics. Let us call New, FieldUp, FieldAc and MethodCl

respectively the transition rules in Figure 3 which involve state. Given a rule r, we write (𝑆,𝑀) r−→ (𝑆 ′, 𝑀 ′) if the
transition (𝑆,𝑀) −→ (𝑆 ′, 𝑀 ′) involves applying r and context rules.

Proposition 5.4 (Correctness). Let (𝑆,𝑀) be a term-in-state-context and suppose (𝑆,𝑀) r−→ (𝑆 ′, 𝑀 ′).

(1) If the transition r is not stateful then J𝑀K = J𝑀 ′K.
(2) If r is one of FieldAc or FieldUp then J𝑆K2; (id × #( ®I)); J𝑀K = J𝑆 ′K2; (id × #( ®I)); J𝑀 ′K.
(3) If r is one ofMethodCl or New then J(𝑆,𝑀)K = J(𝑆 ′, 𝑀 ′)K.

Thus, in every case, J(𝑆,𝑀)K = J(𝑆 ′, 𝑀 ′)K.
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Proof. Claim 1 is proved by using the naturality results of Sections 4.1 and 4.2. For the let construct, we show by

induction on𝑀 that J𝑀 [𝑣/𝑥]K = ⟨id, J𝑣K⟩; J𝑀K. For 2 we use Lemma 4.12. For claim 3, the case forMethodCl is shown

by diagram chasing, as follows (we write 𝐴 for JΓK ×
−→
I ).

JΓK
⟨id,!;𝜅𝑆 ⟩;J𝑆K2×id // 𝐴 ×

−→
I ′ J𝑆K′

1 //

⟨id,J
−→
MK⟩×id

��

⟨J ®𝑉 K,id⟩×id ��

⟨id,J
−→
MK⟩×id

xx

𝐴
⟨𝜋𝑖 ,J ®𝑉 K⟩ // I𝑖 × J ®𝜃K

evm //

(a)

J𝜃K

𝐴 ×
−→
I×

−→
I ′

id×�

��

(b3)

𝐴 ×
−→
I×

−→
I ′ id×� //

⟨𝜋𝑖 ,J ®𝑉 K⟩×id

++
(b2)

𝐴 ×
−−−−→
I ′×I

id×−−−−→asnf′ // 𝐴 × 1

⟨𝜋𝑖 ,J ®𝑉 K⟩×id //

(b1)

I𝑖 × J ®𝜃K × 1

evm×id;𝜋1

99

J ®𝜃K ×𝐴 ×
−→
I ′id×⟨𝜋𝑖 ,J

−→
MK⟩×id//

id×J
−→
MK×id

''
id×⟨J

−→
MK,JM𝑖K⟩×id

��

J ®𝜃K×I𝑖 ×
−→
I×

−→
I ′ � // I𝑖 × J ®𝜃K×

−−−−→
I ′×I

id×−−−−→asnf′
77

(c)

I𝑖 × J ®𝜃K ×
−−−−→
I ′×I

id×−−−−→asnf′

OO

J ®𝜃K×
−→
I×I𝑖 ×

−→
I ′

�

''

J ®𝜃K×
−→
I×

−→
I ′id×⟨𝜋𝑖 ,id⟩×id// J ®𝜃K×I𝑖 ×

−→
I×

−→
I ′

�
77

(d)

J𝜃K × 1

𝜋1

NN

𝐴 ×
−−−−→
I ′×I

id×−−−−→asnf′ ''

⟨JM𝑖K,J ®𝑉 K⟩×id // I𝑖 × J ®𝜃K×
−−−−→
I ′×I

id×−−−−→asnf′ // I𝑖 × J ®𝜃K × 1

evm×id
77

𝐴 × 1

⟨JM𝑖K,J ®𝑉 K⟩×id

33

(b4)

The path at the top of the diagram (going from JΓK to J𝜃K) is a decomposition of JΓ ⊢ (𝑆, 𝑎𝑖 .m( ®𝑉 ))K using Lemma 5.3;

while the one passing from the bottom of the diagram is JΓ ⊢ 𝑀𝑖 ( ®𝑉 /®𝑥)K. Diagram (a) trivially commutes, by definition

of J𝑆K1. Diagrams (b1)-(b4) commute because of naturality of thread-independent strategies (Lemma 4.8). Diagram (d)

says that, assigning method implementations

−→
M to object stores ®𝑎′ and callingM𝑖 on some method m is the same as

assigning

−→
M to ®𝑎′ and evaluating instead a new copy of M𝑖 on m. The reason the diagram commutes is that the copy

ofM𝑖 differs from the original just in the handle name (the one returned in the codomain of JM𝑖K), but the latter is
hidden via composition with evm. Diagram (d) commutes after pre-pending with ⟨id, !;𝜅𝑆 ⟩; J𝑆K2 × id; ⟨J ®𝑉 K, id⟩ × id. It

stipulates that if we create ®𝑎 with methods

−→
M, then calling 𝑎𝑖 on m is the same as callingM𝑖 on m. The latter holds

because of the way that 𝜅I𝑖 manipulates calls inside the interaction, by delegating calls to methods of 𝑎𝑖 toM𝑖 .

Finally, for New we simply need to re-arrange the 𝜅 maps so that the one corresponding to the newly created object

is pulled at the front and included in J𝑆 ′K. □

Proposition 5.5 (Computational Soundness). For all ⊢ 𝑀 : void, if𝑀 ⇓ then J𝑀K = {∗ ∗} (i.e. J𝑀K = JskipK).

Proof. This directly follows from Correctness. □

Proposition 5.6 (Computational Adeqacy). For all ⊢ 𝑀 : void, if J𝑀K = {∗ ∗} then𝑀 ⇓.

Proof. Suppose, for the sake of contradiction, that J𝑀K = {∗ ∗} and 𝑀 ̸⇓. We notice that, by definition of the

translation for blocking constructs (casts may block) and due to Correctness, if𝑀 ̸⇓ were due to some reduction step

being blocked then the semantics would also block. Thus,𝑀 ̸⇓ must be due to divergence. Now, the reduction relation

restricted to all rules but MethodCl is strongly normalising, as each transition decreases the size of the term. Hence, if
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𝑀 diverges then it must involve infinitely many MethodCl reductions and our argument below shows that the latter

would imply J𝑀K = {𝜖}.
For any term Γ ⊢ 𝑁 : 𝜃 and 𝑎 ∈ Names \ dom(Γ), construct Γ𝑎 ⊢ 𝑁𝑎 , where Γ𝑎 = Γ ⊎ {𝑎 : Var𝐼 }, by recursively

replacing each subterm of 𝑁 of the shape 𝑁 ′.m( ®𝑁 ) with 𝑎.f := (𝑎.f + 1);𝑁 ′.m( ®𝑁 ). Var𝐼 is an interface with a sole

field f : int. Observe that each 𝑠 ∈ JΓ ⊢ 𝑁 K induces some 𝑠 ′ ∈ JΓ𝑎 ⊢ 𝑁𝑎K such that 𝑎 appears in 𝑠 ′ only in stores

(and in a single place in the initial move) and O never changes the value of 𝑎.f, while P never decreases the value of

𝑎.f. We write JΓ𝑎 ⊢ 𝑁𝑎K𝑎 for the subset of JΓ𝑎 ⊢ 𝑁𝑎K containing precisely these plays. Then, take 𝑀0 to be the term

let𝑥 = new(𝑥 : Var𝐼 ; ) in (𝑀𝑎 [𝑥/𝑎];𝑥 .f), where 𝑥 a fresh variable. Because ∗∗ ∈ J𝑀K, we get ∗ 𝑗 ∈ J𝑀0K for some 𝑗 ∈ Z.
Consider now the infinite reduction sequence of (∅, 𝑀). It must have infinitely many MethodCl steps, so suppose

(∅, 𝑀) −→∗ (𝑆,𝑀 ′) contains 𝑗 + 1 such steps. Then, we obtain (∅, 𝑀0) −→∗ (𝑆𝑎, (𝑀 ′)𝑎 ;𝑎.f), with 𝑆𝑎 (𝑎).f = 𝑗 + 1. By

Correctness, we have that ∗ 𝑗 ∈ J𝑆𝑎, (𝑀 ′)𝑎 ;𝑎.fK = J𝑆𝑎K; (id×#); J(𝑀 ′)𝑎 ;𝑎.fK𝑎 . Since in J(𝑀 ′)𝑎K𝑎 the value of 𝑎 cannot

decrease, and its initial value is 𝑗 + 1 (as stipulated by 𝑆𝑎), we reach a contradiction. □

6 FULL ABSTRACTION

In this section, we finally show that our game model for IMJ is fully abstract. To that end, we shall develop a suitable

definability result (Lemma 6.1). Combined with Propositions 5.5 and 5.6, this will lead to our first full abstraction

result for contextual approximation (Theorem 6.3). To conclude, we show that complete plays characterise contextual

equivalence, i.e. they provide an equationally fully abstract model for IMJ (Theorem 6.5).

Recall that, given plays 𝑠, 𝑠 ′, we call 𝑠 an O-extension of 𝑠 ′ (written 𝑠 ≤𝑂 𝑠 ′) if 𝑠, 𝑠 ′ are identical except the type

information regarding O-names present in stores: the types of O-names in 𝑠 may be subtypes of those in 𝑠 ′. We shall

write 𝑠 ≤𝑃 𝑠 ′ for the dual notion involving P-names, i.e., 𝑠 ≤𝑃 𝑠 ′ if 𝑠, 𝑠 ′ are the same, but the types of P-names in 𝑠 ′

may be subtypes of those in 𝑠 . Then, given 𝑋 ∈ {𝑂, 𝑃} and fixed 𝐴, 𝐵, let us define cl𝑋 (𝑠) = {𝑠 ′ ∈ 𝑃𝐴𝐵 | 𝑠 ′ ≤𝑋 𝑠} and
cl𝑋 (𝜎) = ⋃

𝑠∈𝜎 cl𝑋 (𝑠). We write 𝑃Δ |Γ⊢𝜃 for 𝑃JΓKJ𝜃K. A play will be called complete if it is of the form𝑚𝐴𝑌𝑚𝐵𝑌 .

Next we establish a definability result stating that any complete play (together with other plays implied by O-closure)

originates from a term.

Lemma 6.1 (Definability). Let 𝑠 ∈ 𝑃Δ |Γ⊢𝜃 be a complete play. There exists Δ′ ⊇ Δ and Δ′ |Γ ⊢ 𝑀 : 𝜃 such that

JΔ′ |Γ ⊢ 𝑀 : 𝜃K = cl𝑂 (𝑠).

Proof. The argument proceeds by induction on |𝑠 |. For 𝑠 = 𝜖 , any divergent term suffices.

Suppose 𝑠 ≠ 𝜖 . Then the second move can be a question or an answer. We first show how to reduce the former case

to the latter, so that only the latter needs to be handled.

Suppose

𝑠 = 𝑞Σ𝑞 call𝑜.m(®𝑢)𝛴1 𝑠1 ret𝑜.m(𝑣)𝛴2 𝑠2 𝑤
𝛴3 𝑠3,

where 𝑜 : I ′
and Δ(I ′) (m) :

−→
I𝐿 → I𝑅 . Consider Δ′ = Δ ⊕ {I ′′ ↦→ (

−−−−→
f′ : I𝐿, m′

: I𝑅 → 𝜃 )} and the following play from

𝑃Δ′ |Γ⊢I′′ :

𝑠 ′ = 𝑞𝛴𝑞 𝑝𝛴
′
1 𝑠 ′

1
call 𝑝.m′(𝑣)𝛴

′
2 𝑠 ′

2
ret𝑝.m′(𝑣)𝛴

′
3 𝑠 ′

3
,

where 𝑝 ∉ 𝜈 (𝑠), 𝛴 ′
𝑖
= 𝛴𝑖 ⊕ 𝛴 , 𝛴 = {𝑝 ↦→ (I ′′,

−−−−−−→
𝑓 ′ ↦→ 𝑢)} and 𝑠 ′

𝑗
is the same as 𝑠 𝑗 except that each store is extended by 𝛴 .

If Δ′ |Γ ⊢ 𝑀 ′
: I ′

satisfies the Lemma for 𝑠 ′ then, for 𝑠 , one can take let𝑥𝑝 = 𝑀 ′ in𝑥𝑝 .m′(𝑦.m(
−−−−→
𝑥𝑝 .𝑓

′)), where 𝑦 refers

to 𝑜 , i.e., 𝑦 is of the shape 𝑥 .
−→
𝑓 , where 𝑥 ∈ dom Γ and

−→
𝑓 is a sequence of fields that points at 𝑜 in Σ𝑞 .
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Thanks to the reduction given above we can now assume that 𝑠 ∈ 𝑃Δ |Γ⊢𝜃 is non-empty and

𝑠 = 𝑞𝛴𝑞 𝑚
𝛴0

0
𝑚

𝛴1

1
· · ·𝑚𝛴2𝑘

2𝑘
,

where 𝑚0 is an answer. We are going to enrich 𝑠 in two ways so that it is easier to decompose. Ultimately, the

decomposition of 𝑠 will be based on the observation that the𝑚
𝛴1

1
· · ·𝑚𝛴2𝑘

2𝑘
segment can be viewed as an interleaving

of threads, each of which is started by a move of the form call 𝑝 for some P-name 𝑝 . A thread consists of the starting

move and is generated according to the following two rules:𝑚2𝑖 belongs to the thread of𝑚2𝑖−1 and every answer-move

belongs to the same thread as the corresponding question-move.

• The first transformation of 𝑠 brings forward the point of P-name creation to the second move. In this way, threads

will never create objects and, consequently, it will be possible to compose them without facing the problem of

object fusion.

Suppose 𝑃 (𝑠) = −→
𝑝𝑖 and 𝑝𝑖 : I𝑝𝑖 . Let Δ′ = Δ ⊕ {I𝑃 ↦→

−−−−−→
𝑓𝑖 : I𝑝𝑖 }. Consider 𝑠 ′ = (𝑛, 𝑞)𝛴

′
𝑞 𝑚

𝛴′
0

0
𝑚

𝛴′
1

1
· · ·𝑚𝛴′

2𝑘

2𝑘
, where

Σ′𝑞 = 𝛴𝑞 ⊕ {𝑛 ↦→ (I𝑃 ,
−−→
null)} and Σ′

𝑖
= 𝛴𝑖 ⊕ {𝑛 ↦→ (I𝑃 ,−→𝑝𝑖 )} ⊕ {𝑝𝑖 ↦→ (I𝑝𝑖 ,

−−→
null) | 𝛴𝑖 (𝑝𝑖 ) undefined, 𝑝𝑖 ∈ 𝑃 (𝑠)}.

Let Γ′ = {𝑥𝑛 : I𝑃 } ⊕ Γ. Observe that 𝑠 ′ ∈ 𝑃Δ′ |Γ′⊢𝜃 .

• The second transformation consists in storing the unfolding play in a global variable. It should be clear that

the recursive structure of types along with the ability to store names is sufficient to store plays in objects. Let

Iplay be a signature that makes this possible. This will be used to enforce the intended interleaving of threads

after their composition (in the style of Innocent Factorization [6]). Let Δ′′ = Δ′ ⊕ {History ↦→ play : 𝐼play} and
Γ′′ = {𝑥ℎ : History} ⊕ Γ. Consider

𝑠 ′′ = (ℎ, 𝑛, 𝑞)𝛴
′′
𝑞 𝑚

𝛴′′
0

0
𝑚

𝛴′′
1

1
· · ·𝑚𝛴′′

2𝑘

2𝑘

with

𝛴 ′′
𝑞 = 𝛴 ′

𝑞 ⊕ {ℎ ↦→ (History, play ↦→ null)},
𝛴 ′′
2𝑖

= 𝛴 ′
2𝑖
⊕ {ℎ ↦→ (History, play ↦→ 𝑠 ′≤𝑚2𝑖

)},
𝛴 ′′
2𝑖+1 = 𝛴 ′

2𝑖+1 ⊕ {ℎ ↦→ (History, play ↦→ 𝑠 ′≤𝑚2𝑖
)}.

Observe that 𝑠 ′′ ∈ 𝑃Δ′′ |Γ′⊢𝜃 .

Now we shall decompose𝑚
𝛴′′
1

1
· · ·𝑚𝛴′′

2𝑘

2𝑘
into threads. Recall that each of them is a subsequence of 𝑠 ′′ of the form

call𝑝.m(−→𝑢 )𝛴𝑐
𝑡 ret𝑝.m(𝑣)𝛴𝑟

where the segment 𝑡 contains moves of the form call𝑜 or ret𝑜 for some 𝑜 ∈ 𝑂 (𝑠). We would now like to invoke the IH

for each thread but, since a thread is not a play, we do so for the closely related play (ℎ, 𝑛, 𝑞,−→𝑢 )𝛴𝑐 𝑡 ′ 𝑣𝛴𝑟
. Let us call the

resultant term𝑀
𝑝,m,

−→
𝑢 ,𝛴𝑐

. Next we combine terms related to the same 𝑝 : I𝑝 into an object definition by

𝑀𝑝 ≡ new(𝑥 : 𝐼𝑝 ;m : 𝜆−→𝑢 .case(−→𝑢 , 𝛴𝑐 ) [𝑀𝑝,m,
−→
𝑢 ,𝛴𝑐 ] ]).

The case statement, which can be implemented in IMJ using nested ifs, is needed to recognize instances of
−→𝑢 and 𝛴𝑐

that really occur in threads related to 𝑝 . In such cases the corresponding term𝑀
𝑝,m,

−→
𝑢 ,𝛴𝑐

will be run. Otherwise, the

statement leads to divergence.
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The term𝑀 for 𝑠 can now be obtained by taking

let𝑥𝑛 = new(𝑥 : I𝑃 ; ) in
let𝑥ℎ = new(𝑥 : History; ) in
let

−−−−−−−−→
𝑥𝑝𝑖 = 𝑀𝑝𝑖 in

assert(𝑞𝛴𝑞 );−−−−−−−−−→𝑥𝑛 .𝑓𝑖 = 𝑥𝑝𝑖 ;make(Σ′′
0
); play(𝑚0)

where

−−−−−−−−→
𝑥𝑝𝑖 = 𝑀𝑝𝑖 represents a series of bindings (one for each P-name 𝑝𝑖 ∈ 𝑃 (𝑠)), assert((ℎ, 𝑛, 𝑞)𝛴

′′
𝑞 ) is a conditional that

converges if and only if the initial values of free Γ identifiers as well as values accessible through them are consistent

with 𝑞 and 𝛴𝑞 respectively, make(Σ′′
0
) is a sequence of assignments that set values to those specified in Σ′′

0
(up-casts

need to be performed to ensure typability) and play(𝑚0) is skip, 𝑖 , null or, if𝑚0 is a name, it is a term of the form (𝜃 )𝑦. ®𝑓 ,
where 𝑦 is 𝑥𝑛 or (𝑥 : 𝐼𝑥 ) ∈ Γ such that 𝑦. ®𝑓 gives an access path to𝑚0 in Σ′′

0
. □

We conclude with full abstraction results both in inequational and equational forms. For technical convenience, we

shall use a modified (but equivalent) definition of contextual approximation.

Lemma 6.2. Let Γ = {𝑥1 : I1, · · · , 𝑥𝑘 : I𝑘 }, Δ|Γ ⊢ 𝑀𝑖 : 𝜃 (𝑖 = 1, 2), and Δ′ = Δ∪ {WrapΓ,I ↦→ (𝑓 : (I1, · · · ,I𝑘 ) → 𝜃 )}.
Then Δ|Γ ⊢ 𝑀1

<∼ 𝑀2 if and only if, for all Δ′′ ⊇ Δ′ and Δ′′, 𝑧 : WrapΓ,I ⊢ test : void, if 𝐶test [𝑀1] ⇓ then 𝐶test [𝑀2] ⇓,
where 𝐶test [−] ≡ let 𝑧 = new(𝑥 : WrapΓ,I ; 𝑓 : 𝜆−→𝑥𝑖 .[−]) in test.

Proof. The Lemma holds because, on the one hand, it relies on contexts of a specific shape and, on the other hand,

any closing context 𝐶 [−] for𝑀𝑖 can be presented in the above form with test ≡ 𝐶 [𝑧.𝑓 (𝑥1, · · · , 𝑥𝑘 )]. □

Given a term Δ|Γ ⊢ 𝑀 : 𝜃 , let us write JΔ|Γ ⊢ 𝑀 : 𝜃Kcomp for the set of complete plays from JΔ|Γ ⊢ 𝑀 : 𝜃K. In what

follows, we shall often omit Δ|Γ, ⊢ for brevity.

Theorem 6.3 (Ineqational full abstraction). Given Δ|Γ ⊢ 𝑀𝑖 : 𝜃 (𝑖 = 1, 2), we have Δ|Γ ⊢ 𝑀1
<∼ 𝑀2 : 𝜃 if and

only if

cl𝑃 (JΔ|Γ ⊢ 𝑀1 : 𝜃Kcomp) ⊆ cl𝑃 (JΔ|Γ ⊢ 𝑀2 : 𝜃Kcomp).

Proof. The proof uses the following play transformation. Given 𝑡 = 𝑞𝛴𝑞𝑠1𝑎
𝛴𝑎𝑠2 ∈ 𝑃Δ |Γ⊢𝜃 , we define 𝑡 ∈ 𝑃Δ′,WrapΓ,I⊢void

as

𝑛𝛴𝑛 call𝑛.𝑓 (𝑞)𝛴𝑞 ⊕𝛴𝑛 𝑠
⊕𝛴𝑛

1
ret𝑛.𝑓 (𝑎)𝛴𝑎⊕𝛴𝑛 𝑠

⊕𝛴𝑛

2
∗Σ⊕Σ𝑛 ,

where Δ′,WrapΓ,I are the same as in the above Lemma, 𝛴𝑛 = {𝑛 ↦→ (WrapΓ,I , ∅)}, 𝑠⊕𝛴𝑛
stands for 𝑠 in which each

store was augmented by 𝛴𝑛 and Σ is the store of the last move in 𝑡 . Intuitively, 𝑡 is the play that 𝐶test [−] needs to
provide for a terminating interaction with 𝑡 .

(⇒). Let 𝑠 ∈ cl𝑃 (J𝑀1Kcomp). Then there exists 𝑠 ′ ∈ J𝑀1Kcomp with 𝑠 ∈ cl𝑃 (𝑠 ′). Apply Definability to 𝑠 ′ to obtain

Δ′′, 𝑧 : WrapΓ,I ⊢ test : void such that JtestK = cl𝑂 (𝑠 ′). Because 𝑠 ′ ∈ J𝑀1Kcomp and Adequacy holds, we must have

𝐶test [𝑀1] ⇓. From𝑀1
<∼ 𝑀2 we obtain 𝐶test [𝑀2] ⇓. Hence, because of Soundness, there exists 𝑠 ′′ ∈ J𝑀2Kcomp such that

𝑠 ′′ ∈ JtestK. Since JtestK = cl𝑂 (𝑠 ′), it follows that 𝑠 ′′ ∈ cl𝑂 (𝑠 ′) and, consequently, 𝑠 ′ ∈ cl𝑃 (𝑠 ′′). Thus, 𝑠 ∈ cl𝑃 (𝑠 ′) and
𝑠 ′ ∈ cl𝑃 (𝑠 ′′). Hence, 𝑠 ∈ cl𝑃 (𝑠 ′′) and, because 𝑠 ′′ ∈ J𝑀2Kcomp , we can conclude 𝑠 ∈ cl𝑃 (J𝑀2Kcomp).
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(⇐). Let 𝐶test [−] be such that 𝐶test [𝑀1] ⇓. By Soundness, there exists 𝑠 ∈ J𝑀1Kcomp such that 𝑠 ∈ JtestK. Because
J𝑀1Kcomp ⊆ cl𝑃 (J𝑀1Kcomp) and cl𝑃 (J𝑀1Kcomp) ⊆ cl𝑃 (J𝑀2Kcomp), we also have 𝑠 ∈ cl𝑃 (J𝑀2Kcomp). Thus, there exists
𝑠 ′ ∈ J𝑀2Kcomp such that 𝑠 ∈ cl𝑃 (𝑠 ′). Consequently, 𝑠 ′ ∈ cl𝑂 (𝑠). Since 𝑠 ∈ JtestK, we also have 𝑠 ′ ∈ JtestK. Because
𝑠 ′ ∈ J𝑀2Kcomp and 𝑠 ′ ∈ JtestK, by Adequacy, we can conclude that 𝐶test [𝑀2] ⇓. □

Example 6.4. Let us revisit Example 2.12. We have cl𝑃 (𝜎1) = 𝜎1 and cl𝑃 (𝜎2) = 𝜎2 ∪ {∗∅, 𝑛 {𝑛 ↦→(Empty,∅) }}, i.e.
cl𝑃 (𝜎1) ⊊ cl𝑃 (𝜎2). Thus, it follows from Theorem 6.3 that Δ|∅ ⊢ 𝑀1

<∼ 𝑀2 and Δ|∅ ⊢ 𝑀1 � 𝑀2.

Theorem 6.5 (Eqational full abstraction). Given Δ|Γ ⊢ 𝑀𝑖 : 𝜃 (𝑖 = 1, 2), Δ|Γ ⊢ 𝑀1 � 𝑀2 : 𝜃 if and only if

JΔ|Γ ⊢ 𝑀1 : 𝜃Kcomp = JΔ|Γ ⊢ 𝑀2 : 𝜃Kcomp .

Proof. The preceding result implies that 𝑀1 � 𝑀2 if and only if cl𝑃 (J𝑀1Kcomp) = cl𝑃 (J𝑀2Kcomp). We show that

this implies J𝑀1Kcomp = J𝑀2Kcomp . Let 𝑠 ∈ J𝑀1Kcomp . By cl𝑃 (J𝑀1Kcomp) = cl𝑃 (J𝑀2Kcomp), it must be the case that

𝑠 ∈ cl𝑃 (J𝑀2Kcomp), i.e., there exists 𝑠 ′ ∈ J𝑀2Kcomp such that 𝑠 ∈ cl𝑃 (𝑠 ′). Again, by cl𝑃 (J𝑀1Kcomp) = cl𝑃 (J𝑀2Kcomp), it
follows that 𝑠 ′ ∈ cl𝑃 (J𝑀1Kcomp), i.e., there exists 𝑠 ′′ ∈ J𝑀1Kcomp such that 𝑠 ′ ∈ cl𝑃 (𝑠 ′′). So, we have 𝑠 ∈ cl𝑃 (𝑠 ′) and
𝑠 ′ ∈ cl𝑃 (𝑠 ′′), which implies 𝑠 ∈ cl𝑃 (𝑠 ′′). However, 𝑠, 𝑠 ′′ ∈ J𝑀1Kcomp , so 𝑠 ∈ cl𝑃 (𝑠 ′′) entails 𝑠 = 𝑠 ′′. Hence, 𝑠 ∈ cl𝑃 (𝑠 ′)
and 𝑠 ′ ∈ cl𝑃 (𝑠), and 𝑠 = 𝑠 ′ follows. Because 𝑠 ′ ∈ J𝑀2Kcomp , we showed 𝑠 ∈ J𝑀2Kcomp . The other inclusion is derived

analogously. □

7 CONCLUSIONS

We have presented a game model of Java-style objects. We see it as a stepping stone towards advancing game semantics

to more and more realistic programming languages, in order to catch up with the fast evolution of programming

paradigms. The advantage of game semantics over other denotational approaches is its concrete, low-level nature,

which has allowed for full abstraction results like the one presented in this paper. Moreover, compared to operational

approaches, game semantics is designed to accommodate open programs as first-class citizens and in a compositional

manner. As such, it can be seen as combining the best of two worlds: denotational and operational. Apart from the

foundational value found in the latter statement, there is practical value, namely that game semantics could play the role

of a more generally applicable semantics for open code: be it programs-in-context, libraries with external dependencies,

code distributed over a network, etc. Evidence of this can be located in open trace models used for low-level languages

which are based, each to a different extent, on the game semantics approach [14, 19, 42, 44].

As mentioned in the Introduction, we are also pursuing a more applied strand of work, which relies on semantic

insights to inform the design of verification tools. We believe that in the long run game semantics can provide a fruitful

methodology for dealing with a variety of verification tasks in a compositional manner [30, 31].

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Sciences Research Council (EP/J019577/1) and the Royal

Academy of Engineering (Research Fellowship: Tzevelekos).

REFERENCES
[1] M. Abadi and L. Cardelli. 1996. A theory of objects. Springer Verlag.
[2] E. Ábraham, M. M. Bonsangue, F. S. de Boer, A. Gruener, and M. Steffen. 2004. Observability, Connectivity, and Replay in a Sequential Calculus of

Classes. In FMCO (Lecture Notes in Computer Science), Vol. 3657. Springer, 296–316.

Manuscript submitted to ACM



2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Andrzej S. Murawski and Nikos Tzevelekos

[3] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. 2004. Nominal Games and Full Abstraction for the Nu-Calculus. In

Proceedings of LICS. IEEE Computer Society Press, 150–159.

[4] S. Abramsky, K. Honda, and G. McCusker. 1998. Fully Abstract Game Semantics for General References. In Proceedings of IEEE Symposium on Logic
in Computer Science. Computer Society Press, 334–344.

[5] S. Abramsky, R. Jagadeesan, and P. Malacaria. 2000. Full Abstraction for PCF. Information and Computation 163 (2000), 409–470.

[6] S. Abramsky and G. McCusker. 1997. Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions. In

Algol-like languages, P. W. O’Hearn and R. D. Tennent (Eds.). Birkhaüser, 297–329.

[7] S. Abramsky and G. McCusker. 1998. Game semantics. In Logic and Computation, H. Schwichtenberg and U. Berger (Eds.). Springer-Verlag.

Proceedings of the NATO Advanced Study Institute, Marktoberdorf.

[8] J. Alves-Foss (Ed.). 1999. Formal Syntax and Semantics of Java. Lecture Notes in Computer Science, Vol. 1523. Springer.

[9] J. Alves-Foss and F. S. Lam. 1999. Dynamic Denotational Semantics of Java. In Formal Syntax and Semantics of Java (Lecture Notes in Computer
Science), Vol. 1523. Springer, 201–240.

[10] G.M. Bierman, M.J. Parkinson, and A.M. Pitts. 2002. MJ: An imperative core calculus for Java and Java with effects. Technical Report 563. Computer

Laboratory, University of Cambridge.

[11] H. Björklund and T. Schwentick. 2010. On notions of regularity for data languages. Theor. Comput. Sci. 411, 4-5 (2010), 702–715.
[12] V. Danos and R. Harmer. 2002. Probabilistic game semantics. ACM Transactions on Computational Logic 3(3) (2002), 359–382.
[13] M. J. Gabbay and A. M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13 (2002), 341–363.

[14] D. R. Ghica and N. Tzevelekos. 2012. A System-Level Game Semantics. Electr. Notes Theor. Comput. Sci. 286 (2012), 191–211.
[15] R. Harmer and G. McCusker. 1999. A fully abstract game semantics for finite nondeterminism. In Proceedings of Fourteenth Annual IEEE Symposium

on Logic in Computer Science. IEEE Computer Society Press, 422–430.

[16] K. Honda and N. Yoshida. 1999. Game-Theoretic Analysis of Call-by-Value Computation. Theor. Comput. Sci. 221, 1-2 (1999), 393–456.
[17] J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I. Models, observables and the full abstraction problem, II. Dialogue games and

innocent strategies, III. A fully abstract and universal game model. Information and Computation 163(2) (2000), 285–408.

[18] G. Jaber. 2015. Operational Nominal Game Semantics. In Proceedings of FOSSACS. 264–278.
[19] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. 2011. Local Memory via Layout Randomization. In Proceedings of CSF. 161–174.
[20] A. Jeffrey and J. Rathke. 2003. Java Jr: Fully Abstract Trace Semantics for a Core Java Language. In Proceedings of ESOP. Lecture Notes in Computer

Science, Vol. 3444. Springer, 423–438.

[21] A. Jeffrey and J. Rathke. 2005. A fully abstract may testing semantics for concurrent objects. Theor. Comput. Sci. 338, 1-3 (2005), 17–63.
[22] S. N. Kamin and U. S. Reddy. 1994. Two semantic models of object-oriented languages. In Theoretical Aspects of Object Oriented Programming. MIT

Press.

[23] V. Koutavas and M. Wand. 2007. Reasoning About Class Behavior. In Proceedings of FOOL/WOOD.
[24] J. Laird. 1997. Full Abstraction for Functional Languages with Control. In Proceedings of 12th IEEE Symposium on Logic in Computer Science. 58–67.
[25] J. Laird. 2004. A Game Semantics of Local Names and Good Variables. In Proceedings of FOSSACS. Lecture Notes in Computer Science, Vol. 2987.

Springer-Verlag, 289–303.

[26] J. Laird. 2006. Game Semantics for Higher-Order Concurrency. In FSTTCS (Lecture Notes in Computer Science), Vol. 4337. 417–428.
[27] J. Laird. 2010. Game Semantics for Call-by-Value Polymorphism. In Proceedings of ICALP (Lecture Notes in Computer Science), Vol. 6199. Springer,

187–198.

[28] J. Laird. 2013. Game semantics for a polymorphic programming language. J. ACM 60, 4 (2013), 29:1–29:27.

[29] S. B. Lassen and P. B. Levy. 2008. Typed Normal Form Bisimulation for Parametric Polymorphism. In Proceedings of LICS. IEEE Computer Society,

341–352.

[30] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. 2015a. A Contextual Equivalence Checker for IMJ*. In Proceedings of ATVA (Lecture Notes in
Computer Science), Vol. 9364. Springer, 234–240.

[31] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. 2015b. Game Semantic Analysis of Equivalence in IMJ. In Proceedings of ATVA (Lecture Notes in
Computer Science), Vol. 9364. Springer, 411–428.

[32] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. 2017. Reachability in pushdown register automata. J. Comput. Syst. Sci. 87 (2017), 58–83.
[33] A. S. Murawski and N. Tzevelekos. 2011. Game Semantics for Good General References. In Proceedings of LICS. IEEE Computer Society Press, 75–84.

[34] A. S. Murawski and N. Tzevelekos. 2013. Full abstraction for Reduced ML. Ann. Pure Appl. Log. 164, 11 (2013), 1118–1143.
[35] A. S. Murawski and N. Tzevelekos. 2014a. Game Semantics for Interface Middleweight Java. In Proceedings of POPL. 517–528.
[36] A. S. Murawski and N. Tzevelekos. 2014b. Game Semantics for Nominal Exceptions. In Proceedings of FOSSACS (Lecture Notes in Computer Science),

Vol. 8412. 164–179.

[37] A. S. Murawski and N. Tzevelekos. 2016a. An invitation to game semantics. SIGLOG News 3, 2 (2016), 56–67.
[38] A. S. Murawski and N. Tzevelekos. 2016b. Nominal Game Semantics. Foundations and Trends in Programming Languages 2, 4 (2016), 191–269.
[39] H. Nickau. 1996. Hereditarily Sequential Functionals: A Game-Theoretic Approach to Sequentiality. Ph.D. Dissertation. Universität-Gesamthochschule-

Siegen.

[40] J. Power and E. Robinson. 1997. Premonoidal Categories and Notions of Computation. Math. Struct. Comput. Sci. 7, 5 (1997), 453–468.
[41] J. Power and H. Thielecke. 1999. Closed Freyd- and kappa-categories. In Proceedings of ICALP (Lecture Notes in Computer Science), Jirí Wiedermann,

Manuscript submitted to ACM



2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

Game Semantics for Interface Middleweight Java 47

Peter van Emde Boas, and Mogens Nielsen (Eds.), Vol. 1644. Springer, 625–634. DOI:http://dx.doi.org/10.1007/3-540-48523-6_59

[42] T. Ramananandro, Z. Shao, S.-C. Weng, J. Koenig, and Y. Fu. 2015. A Compositional Semantics for Verified Separate Compilation and Linking. In

Proceedings of CPP. 3–14.
[43] I. D. B. Stark. 1995. Names and Higher-Order Functions. Ph.D. Dissertation. University of Cambridge Computing Laboratory. Technical Report No.

363.

[44] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. 2015. Compositional CompCert. In Proceedings of POPL. 275–287.
[45] N. Tzevelekos. 2009. Full abstraction for nominal general references. Logical Methods in Computer Science 5, 3 (2009).
[46] N. Tzevelekos. 2011. Fresh-register automata. In Proceedings of POPL. ACM Press, 295–306.

A ASSOCIATIVITY

Here we show that strategy composition is associative. That is, if 𝜌 : 𝐴 → 𝐵, 𝜎 : 𝐵 → 𝐶 and 𝜏 : 𝐶 → 𝐷 then

(𝜌 ;𝜎);𝜏 = 𝜌 ; (𝜎 ;𝜏). We first need to accommodate for composing three strategies. The set of polarities for such extended

interactions is given by (𝑀 stands for “middle"):

Pol3 = {𝑋𝐿, 𝑋𝐿𝑋𝑀 , 𝑋𝑀𝑋𝑅, 𝑋𝐿𝑋𝑅, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

Thus, for 𝜌, 𝜎, 𝜏 as above,

• polarities of the form 𝑋𝐿 will represent moves played only by 𝜌 ;

• 𝑋𝐿𝑌𝑀 represent moves played between 𝜌 and 𝜎 ;

• 𝑋𝑀𝑌𝑅 represent moves played between 𝜎 and 𝜏 ;

• while 𝑋𝐿𝑌𝑅 are moves played between 𝜌 and 𝜏 .

For example, the latter kind of moves are used in scenarios where 𝜌 calls a method of a name introduced by 𝜏 , or

viceversa. Thus, the polarities of each binary projection of 𝐴𝐵𝐶𝐷 are:

𝑝 (𝐴𝐵) = {𝑋𝐿, 𝑋𝐿𝑋𝑀 , 𝑋𝐿𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐵𝐶) = {𝑋𝐿𝑋𝑀 , 𝑋𝑀𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐴𝐶) = {𝑋𝐿, 𝑋𝐿𝑋𝑅, 𝑋𝑀𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐶𝐷) = {𝑋𝐿𝑋𝑅, 𝑋𝑀𝑋𝑅, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐵𝐷) = {𝑋𝐿𝑋𝑀 , 𝑋𝐿𝑋𝑅, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐴𝐷) = {𝑋𝐿, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

Given a sequence of moves from𝑀𝐴𝐵𝐶𝐷 (which is defined analogously to𝑀𝐴𝐵𝐶 ) and an𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐴𝐶,𝐶𝐷, 𝐵𝐷,𝐴𝐷},
we let 𝑠 ↾ 𝑋 be the subsequence of 𝑠 containing those moves𝑚𝛴

of 𝑠 such that 𝑝 (𝑚) ∈ 𝑝 (𝑋 ).
Pseudo-polarities and complementation are defined by:

𝑃𝑅 = 𝑃𝐿 = 𝑂𝑂𝑂 = {𝑂𝐿,𝑂𝑅}

𝑂𝐿 = 𝑂𝐿𝑃𝑀 = 𝑂𝐿𝑃𝑅 = 𝑃𝑂𝑂 = {𝑃𝐿, 𝑃𝐿𝑂𝑀 , 𝑃𝐿𝑂𝑅}

𝑃𝐿𝑂𝑀 = 𝑂𝑀𝑃𝑅 = 𝑂𝑃𝑂 = {𝑂𝐿𝑃𝑀 , 𝑃𝑀𝑂𝑅}

𝑃𝑀𝑂𝑅 = 𝑃𝐿𝑂𝑅 = 𝑂𝑅 = 𝑂𝑂𝑃 = {𝑂𝑀𝑃𝑅,𝑂𝐿𝑃𝑅, 𝑃𝑅}
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and the interaction diagram is depicted below.

𝑂𝑂𝑂

𝑂𝐿

��

𝑂𝑅

��
𝑃𝑂𝑂

𝑃𝐿

CC

𝑃𝐿𝑂𝑅

--

𝑃𝐿𝑂𝑀

&&

𝑂𝑂𝑃

𝑂𝐿𝑃𝑅

mm

𝑃𝑅

[[

𝑂𝑀𝑃𝑅
xx

𝑂𝑃𝑂

𝑃𝑀𝑂𝑅

77
𝑂𝐿𝑃𝑀

gg

An interaction sequence in𝐴𝐵𝐶𝐷 is a sequence 𝑠 of moves-with-store in𝐴𝐵𝐶𝐷 satisfying the following conditions.

• For each 𝑠 ′𝑚𝛴 ⊑ 𝑠 we have dom(𝛴) = Av(𝑠 ′𝑚𝛴 ). (Frugality)
• If 𝑎 ∈ dom(𝛴) with 𝛴 (𝑎) : I then: (Well-classing)

– if𝑚 ∈ 𝑀𝑋 , for 𝑋 ∈ {𝐴, 𝐵,𝐶, 𝐷}, then I ≤ 𝜉𝑋 (𝑚,𝑎);
– for all 𝑛𝑇 in 𝑠 ′, if 𝑎 ∈ dom(𝑇 ) then 𝑇 (𝑎) : I;
– if Δ(I) .m = ®𝜃 → 𝜃 then:

∗ 𝑚 = call𝑎.m(®𝑣) with 𝛴 ⊢ ®𝑣 :
®𝜃 ′ implies

®𝜃 ′ ≤ ®𝜃 ,
∗ 𝑚 = ret𝑎.m(𝑣) with 𝛴 ⊢ 𝑣 : 𝜃 ′ implies 𝜃 ′ ≤ 𝜃 .

• There is a polarity function 𝑝 from move occurrences in 𝑠 to Pol3 such that:

– For all𝑚𝑋 ∈ 𝑀𝑋 (𝑋 = 𝐴, 𝐵,𝐶, 𝐷) occurring in 𝑠 we have 𝑝 (𝑚𝐴) = 𝑂𝐿 , 𝑝 (𝑚𝐵) = 𝑃𝐿𝑂𝑀 , 𝑝 (𝑚𝐶 ) = 𝑃𝑀𝑂𝑅 and

𝑝 (𝑚𝐷 ) = 𝑃𝑅 ;

– If𝑚𝑛 are consecutive moves in 𝑠 then 𝑝 (𝑛) ∈ 𝑝 (𝑚). (Alternation)
• If 𝑠 ′𝑚𝛴 ⊑ 𝑠 then𝑚 = call𝑎.m(𝑣) implies 𝑜 (𝑎) ∈ 𝑝 (𝑚). (Well-calling)

• For each 𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐴𝐶,𝐶𝐷, 𝐵𝐷,𝐴𝐷} we have 𝑠 ↾ 𝑋 ∈ 𝐿𝑋 . (Projecting)

• If 𝑠 ′𝑚𝛴 ⊑ 𝑠 and𝑚 = ret𝑎.m(𝑣) then there is a move 𝑛𝑇 in 𝑠 ′ such that, for all 𝑋 such that 𝑝 (𝑚) ∈ 𝑝 (𝑋 ), 𝑛 is the

justifier of𝑚 in 𝑠 ↾ 𝑋 . (Well-returning)

• For all 𝑋,𝑌 ∈ {𝐴𝐵, 𝐵𝐶,𝐶𝐷}: (Laird’s conditions)
– 𝑃 (𝑠 ↾𝛾 𝑋 ) ∩𝑂 (𝑠 ↾𝛾 𝐴𝐷) = ∅, and if 𝑋 ≠ 𝑌 then 𝑃 (𝑠 ↾𝛾 𝑋 ) ∩ 𝑃 (𝑠 ↾𝛾 𝑌 ) = ∅;
– for all 𝑠 ′ ⊑ 𝑠 ending in𝑚𝛴𝑛𝑇 and (𝑎) ∈ dom(𝑇 ), if

∗ 𝑝 (𝑚) ∈ 𝑋 \𝑂𝑂𝑂 and 𝑎 ∉ 𝜈 (𝑠 ′ ↾𝛾 𝑋 ),
∗ or 𝑝 (𝑚) ∈ 𝑂𝑂𝑂 and 𝑎 ∉ 𝜈 (𝑠 ′ ↾𝛾 𝐴𝐷),
then 𝛴 (𝑎) = 𝑇 (𝑎).

We write Int (𝐴𝐵𝐶𝐷) for the set of interaction sequences in 𝐴𝐵𝐶𝐷 .

Lemma A.1. Each 𝑠 ∈ Int (𝐴𝐵𝐶𝐷) has a unique polarity function 𝑝 .

Proof. Suppose 𝑠 ∈ Int (𝐴𝐵𝐶𝐷). We show by induction on |𝑠 | that 𝑠 has a unique run in the interaction diagram. The

base case is trivial, so suppose 𝑠 = 𝑠 ′𝑚. By induction hypothesis, 𝑠 ′ has a unique run, which reaches some state 𝑋 . We

do a case analysis on𝑚. If𝑚 ∈ 𝑀𝐴 ∪𝑀𝐵 ∪𝑀𝐶 ∪𝑀𝐷 then there is a unique edge accepting𝑚 and, by alternation, this

edge must depart from 𝑋 . If, on the other hand,𝑚 = call𝑎.m(®𝑣) then 𝑜 (𝑎) ∈ 𝑝 (𝑚) gives the following possible cases.

• 𝑜 (𝑎) ∈ 𝑂𝑂𝑂 and 𝑝 (𝑚) ∈ {𝑃𝐿, 𝑃𝑅};
Manuscript submitted to ACM
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• 𝑜 (𝑎) ∈ 𝑃𝑂𝑂 and 𝑝 (𝑚) ∈ {𝑂𝐿,𝑂𝐿𝑃𝑅,𝑂𝐿𝑃𝑀 };
• 𝑜 (𝑎) ∈ 𝑂𝑃𝑂 and 𝑝 (𝑚) ∈ {𝑃𝐿𝑂𝑀 ,𝑂𝑀𝑃𝑅};
• 𝑜 (𝑎) ∈ 𝑂𝑂𝑃 and 𝑝 (𝑚) ∈ {𝑃𝑀𝑂𝑅, 𝑃𝐿𝑂𝑅,𝑂𝑅}.

Now observe that, in each case, at most one choice for 𝑝 (𝑚) can be available from 𝑋 and, by alternation, exactly one is.

Finally, let𝑚 = ret𝑎.m(𝑣) be justified by some 𝑛 in 𝑠 ′. Then, by well-bracketing, 𝑛 is the justifier of𝑚 in all projections,

and hence the edge accepting𝑚 must be the opposite of the one accepting 𝑛. □

We define polarity projections for each component as follows,

𝜋𝐴𝐵 (𝑋𝐿) = 𝑋 𝜋𝐴𝐵 (𝑋𝐿𝑌𝑀 ) = 𝑋 𝜋𝐴𝐵 (𝑋𝐿𝑌𝑅) = 𝑋

𝜋𝐵𝐶 (𝑋𝐿𝑌𝑀 ) = 𝑌 𝜋𝐵𝐶 (𝑋𝑀𝑌𝑅) = 𝑋

𝜋𝐴𝐶 (𝑋𝐿) = 𝑋 𝜋𝐴𝐶 (𝑋𝑀𝑌𝑅) = 𝑋 𝜋𝐴𝐶 (𝑋𝐿𝑌𝑅) = 𝑋

𝜋𝐶𝐷 (𝑋𝑀𝑌𝑅) = 𝑌 𝜋𝐶𝐷 (𝑋𝐿𝑌𝑅) = 𝑌 𝜋𝐶𝐷 (𝑌𝑅) = 𝑌

𝜋𝐵𝐷 (𝑋𝐿𝑌𝑀 ) = 𝑌 𝜋𝐵𝐷 (𝑋𝐿𝑌𝑅) = 𝑌 𝜋𝐵𝐷 (𝑌𝑅) = 𝑌

𝜋𝐴𝐷 (𝑋𝐿) = 𝑋 𝜋𝐴𝐷 (𝑌𝑅) = 𝑌

where 𝑋,𝑌 ∈ {𝑂, 𝑃}. We can now show the following.

Lemma A.2. Let 𝑠 ∈ Int (𝐴𝐵𝐶𝐷). Then, for all 𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐴𝐶, 𝐶𝐷, 𝐵𝐷,𝐴𝐷} and 𝑚𝛴 in 𝑠 , if 𝑝 (𝑚) ∈ 𝑝 (𝑋 ) then
𝜋𝑋 (𝑝 (𝑚)) = 𝑝𝑋 (𝑚), where 𝑝𝑋 is the polarity function in 𝑠 ↾ 𝑋 .

Proof. Proved similarly to Lemma 3.21.

□

Lemma A.3. Let 𝑠 ∈ Int (𝐴𝐵𝐶𝐷).

(1) If𝑚 is a move in 𝑠 introducing some name 𝑎 in it, then:

• if 𝑝𝑋 (𝑚) = 𝑃 , for some 𝑋 ∈ {𝐴𝐵, 𝐵𝐶,𝐶𝐷}, then𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝑋 ;

• if 𝑝𝐴𝐷 (𝑚) = 𝑂 then𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐷 .

(2) 𝜈 (𝑠) = 𝑃 (𝑠 ↾𝛾 𝐴𝐵) ⊎ 𝑃 (𝑠 ↾𝛾 𝐵𝐶) ⊎ 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ⊎𝑂 (𝑠 ↾𝛾 𝐴𝐷).

Proof. For 1, suppose𝑚 introduces 𝑎 in 𝑠 , say 𝑠 ′𝑚𝛴 ⊑ 𝑠 , and 𝜋𝐴𝐷 (𝑚) = 𝑂 . Let 𝑠 ′𝑚𝛴 ↾𝛾 𝐴𝐷 = 𝑠 ′′𝑚𝛴′
. If 𝑎 ∈ 𝜈 (𝑚𝛴′)

then we are done. Otherwise, since 𝑝 (𝑚) ∈ 𝑂𝑂𝑂 , by Laird’s conditions we have that the values of 𝛴 \ 𝛴 ′
are copied

from the last move in 𝑠 ′, which contradicts 𝑎 being introduced at𝑚𝛴
. The other cases are similar. Item 2 then follows,

using also disjointness conditions from the definition of Int (𝐴𝐵𝐶𝐷). □

We next proceed to show that each interaction sequence in 𝐴𝐵𝐶𝐷 projects into interaction sequences in 𝐴𝐵𝐶 and

𝐴𝐶𝐷 . First, we let

𝑝 (𝐴𝐵𝐶) = 𝑝 (𝐴𝐵) ∪ 𝑝 (𝐵𝐶) ∪ 𝑝 (𝐴𝐶)

= {𝑋𝐿, 𝑋𝐿𝑋𝑀 , 𝑋𝑀𝑋𝑅, 𝑋𝐿𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐴𝐶𝐷) = 𝑝 (𝐴𝐶) ∪ 𝑝 (𝐶𝐷) ∪ 𝑝 (𝐴𝐷)

= {𝑋𝐿, 𝑋𝑀𝑋𝑅, 𝑋𝐿𝑋𝑅, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}
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and, for each 𝑠 ∈ Int (𝐴𝐵𝐶𝐷) and 𝑋 ∈ {𝐴𝐵𝐶,𝐴𝐶𝐷}, we define 𝑠 ↾ 𝑋 to be the subsequence of 𝑋 comprising those of its

moves with polarities in 𝑋 .

Lemma A.4. Let 𝑠 ∈ Int (𝐴𝐵𝐶𝐷),𝑚𝛴 an element of 𝑠 and 𝑎 ∈ Names.

(1) (a) If𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐵𝐶 and 𝑝𝐴𝐵 (𝑚) = 𝑃 (resp. 𝑝𝐵𝐶 (𝑚) = 𝑃 ) then𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐵 (𝑠 ↾𝛾 𝐵𝐶).

(b) If𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐶𝐷 and 𝑝𝐶𝐷 (𝑚) = 𝑃 (resp. 𝑝𝐴𝐷 (𝑚) = 𝑂) then𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐶𝐷 (𝑠 ↾𝛾 𝐴𝐷).

(2) 𝜈 (𝑠 ↾𝛾 𝐴𝐵𝐶) ∩ 𝜈 (𝑠 ↾𝛾 𝐴𝐶𝐷) ⊆ 𝜈 (𝑠 ↾𝛾 𝐴𝐶).
(3) (a) If𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐵𝐶 and 𝑝𝐴𝐶 (𝑚) = 𝑂 then𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐶 .

(b) If𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐶𝐷 and 𝑝𝐴𝐶 (𝑚) = 𝑃 then𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐶 .

(4) (a) 𝜈 (𝑠 ↾𝛾 𝐴𝐵𝐶) = 𝑃 (𝑠 ↾𝛾 𝐴𝐵) ⊎ 𝑃 (𝑠 ↾𝛾 𝐵𝐶) ⊎𝑂 (𝑠 ↾𝛾 𝐴𝐶).
(b) 𝜈 (𝑠 ↾𝛾 𝐴𝐶𝐷) = 𝑃 (𝑠 ↾𝛾 𝐴𝐶) ⊎ 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ⊎𝑂 (𝑠 ↾𝛾 𝐴𝐷).

Proof. For 1, we show (b), and (a) is shown similarly. Suppose WLOG that 𝑠 = 𝑠 ′𝑚𝛴
and let 𝑠 ↾𝛾 𝐶𝐷 = 𝑠 ′′𝑚𝛴′

.

If 𝑎 ∈ 𝜈 (𝑚𝛴′) then we are done. Otherwise, let 𝑛𝑇 be the last move in 𝑠 ′. By the interaction diagram, 𝑝 (𝑛) ∈ 𝑝 (𝐶𝐷).
Setting 𝑋 = {𝑏 ∈ Names | 𝑎 ∈ 𝛴∗ ({𝑏})}, and since 𝑎 ∉ 𝜈 (𝑠 ↾𝛾 𝐶𝐷) = Av(𝑠 ↾ 𝐶𝐷), we have that 𝛴 (𝑏) = 𝑇 (𝑏) for all
𝑏 ∈ 𝑋 . Now, since𝑚 introduces 𝑎 in 𝑠 ↾𝛾 𝐴𝐶𝐷 , we have 𝑎 ∈ 𝜈 (𝑠 ↾𝛾 𝐴𝐶𝐷) = Av(𝑠 ↾ 𝐴𝐶𝐷). Using the definition of Av,

we get:

Av(𝑠 ↾𝛾 𝐴𝐶𝐷) = 𝛴∗ (Av(𝑠 ′ ↾ 𝐴𝐶𝐷) ∪ 𝜈 (𝑚))

= 𝛴∗ (Av(𝑠 ′ ↾ 𝐴𝐶𝐷)) ∪ 𝛴∗ (𝜈 (𝑚))

By hypothesis, 𝑎 ∉ 𝛴∗ (𝜈 (𝑚)), thus 𝑎 ∈ 𝛴∗ (Av(𝑠 ′ ↾ 𝐴𝐶𝐷)). So let 𝑏 ′ ∈ Av(𝑠 ′ ↾ 𝐴𝐶𝐷) with 𝑎 ∈ 𝛴∗ ({𝑏 ′}), and suppose

𝑠 ′ ↾𝛾 𝐴𝐶𝐷 = · · ·𝑛𝑇 ′
. As 𝑏 ′ ∈ Av(𝑠 ′ ↾ 𝐴𝐶𝐷), we have 𝑏 ′ ∈ dom(𝑇 ′). But 𝑏 ′ ∈ 𝑋 and ∀𝑏 ∈ 𝑋 .𝑇 (𝑏) = 𝛴 (𝑏), therefore

𝑇 ′∗ ({𝑏 ′}) = 𝛴∗ ({𝑏 ′}) ∋ 𝑎, contradiction to𝑚 introducing 𝑎 in 𝑠 ↾𝛾 𝐴𝐶𝐷 . Similarly for 𝜋𝐴𝐷 (𝑝 (𝑚)) = 𝑂 .

For 2, we do induction on |𝑠 |, with base case clear. So let 𝑠 = 𝑡𝑚𝛴
and pick some 𝑎 ∈ 𝜈 (𝑠). We show that if 𝑎 ∈

𝜈 (𝑠 ↾𝛾 𝐴𝐵𝐶) ∩ 𝜈 (𝑠 ↾𝛾 𝐴𝐶𝐷) then 𝑎 ∈ 𝜈 (𝑠 ↾𝛾 𝐴𝐶). Let us assume that 𝑎 is introduced in 𝑠 in some move 𝑚′
with

𝑝 (𝑚′) ∈ 𝑃𝑂𝑂 ∪ 𝑂𝑃𝑂 . Then, 𝑝𝐴𝐵 (𝑚′) = 𝑃 or 𝑝𝐵𝐶 (𝑚′) = 𝑃 so, by first part of Lemma A.3, 𝑚′
introduces 𝑎 in

𝑠 ↾𝛾 𝐴𝐵𝐶 . If 𝑎 ∈ 𝜈 (𝑡 ↾𝛾 𝐴𝐶𝐷) then, by IH, 𝑎 ∈ 𝜈 (𝑡 ↾𝛾 𝐴𝐶) so 𝑎 ∈ 𝜈 (𝑠 ↾𝛾 𝐴𝐶). Suppose now 𝑠 ↾𝛾 𝐴𝐶𝐷 = 𝑡 ′𝑚𝛴′
and

𝑎 ∈ 𝜈 (𝑚𝛴′) \ 𝜈 (𝑡 ′). By item 1 and Lemma A.3 we have that 𝜋𝐶𝐷 (𝑚) ≠ 𝑃 and 𝜋𝐴𝐷 (𝑚) ≠ 𝑂 so, since 𝑝 (𝑚) ∈ 𝑝 (𝐴𝐶𝐷),
we have that 𝑝 (𝑚) ∈ {𝑃𝐿, 𝑃𝑀𝑂𝑅, 𝑃𝐿𝑂𝑅}, and in particular 𝑝 (𝑚) ∈ 𝑝 (𝐴𝐶) so let 𝑠 ↾𝛾 𝐴𝐶 = 𝑡 ′′𝑚𝛴′′

. We claim that

𝑎 ∈ 𝜈 (𝑚𝛴′′). For, suppose otherwise. Then, 𝑎 ∈ 𝜈 (𝛴 ′) implies

𝑎 ∈ Av(𝑠 ↾𝛾 𝐴𝐶𝐷) = 𝛴∗ (Av(𝑡 ↾𝛾 𝐴𝐶𝐷) ∪ 𝜈 (𝑚))

= 𝛴∗ (Av(𝑡 ↾𝛾 𝐴𝐶𝐷)) ∪ 𝛴∗ (𝜈 (𝑚))

and, since by hypothesis 𝑎 ∈ 𝛴∗ (𝜈 (𝑚)), we have 𝑎 ∈ 𝛴∗ (Av(𝑡 ↾𝛾 𝐴𝐶𝐷)). Let 𝑏 ∈ Av(𝑡 ↾𝛾 𝐴𝐶𝐷) be such that

𝑎 ∈ 𝛴∗ ({𝑏}), and let 𝑛𝑇 be the last move in 𝑡 such that 𝑝 (𝑛) ∈ 𝑝 (𝐴𝐶𝐷), i.e. 𝑡 = 𝑡1𝑛
𝑇 𝑡2 with all moves in 𝑡2 having

polarities from {𝑂𝐿𝑃𝑀 , 𝑃𝐿𝑂𝑀 }. Then, 𝑡 ↾𝛾 𝐴𝐶𝐷 = 𝑡 ′
1
𝑛𝑇

′
and 𝑏 ∈ dom(𝑇 ′). We claim that then 𝛴 (𝑏) = 𝑇 (𝑏) and

therefore 𝑎 ∈ 𝑇 ′∗ ({𝑏}), a contradiction to 𝑎 ∉ 𝜈 (𝑡 ↾𝛾 𝐴𝐶𝐷). Note first that 𝑏 ∈ 𝜈 (𝑡 ↾𝛾 𝐴𝐶𝐷) \ 𝜈 (𝑡 ↾𝛾 𝐴𝐶) so, by IH,

𝑏 ∉ 𝜈 (𝑡 ↾𝛾 𝐴𝐵𝐶). Then, by Laird’s conditions for 𝐴𝐵 and 𝐵𝐶 , 𝑇 (𝑏) is copied throughout 𝑡2 and, thus, 𝑇 (𝑏) = 𝛴 (𝑏).
Finally, if 𝑝 (𝑚′) ∈ 𝑂𝑂𝑂 ∪𝑂𝑂𝑃 then work dually as above.

For 3, we show (b), and (a) is shown similarly. Suppose WLOG that 𝑠 = 𝑠 ′𝑚𝛴
and 𝑠 ↾𝛾 𝐴𝐶𝐷 = 𝑠 ′′𝑚𝛴′

, so 𝑎 ∈
𝜈 (𝑚𝛴′) \ 𝜈 (𝑠 ′′). If 𝑎 ∉ 𝜈 (𝑠 ↾𝛾 𝐴𝐶) then, by item 2 and Lemma A.3, 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ∪ 𝑂 (𝑠 ↾𝛾 𝐴𝐷), which implies
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𝑎 ∈ 𝜈 (𝑠 ′′), a contradiction.
For 4, we first show the equalities, starting from (b). Suppose 𝑎 is introduced in 𝑠 ↾𝛾 𝐴𝐶𝐷 by a move𝑚. If 𝑝𝐶𝐷 (𝑚) = 𝑃

or 𝑝𝐴𝐷 (𝑚) = 𝑂 then, by item 1, 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ∪ 𝑂 (𝑠 ↾𝛾 𝐴𝐷). Otherwise, it must be the case that 𝑝𝐴𝐶 (𝑚) = 𝑃 ,

so 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐴𝐶) by item 3. Thus, 𝜈 (𝑠 ↾𝛾 𝐴𝐶𝐷) = 𝑃 (𝑠 ↾𝛾 𝐴𝐶) ∪ 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ∪ 𝑂 (𝑠 ↾𝛾 𝐴𝐷) and, similarly,

𝜈 (𝑠 ↾𝛾 𝐴𝐵𝐶) = 𝑃 (𝑠 ↾𝛾 𝐴𝐵) ∪ 𝑃 (𝑠 ↾𝛾 𝐵𝐶) ∪𝑂 (𝑠 ↾𝛾 𝐴𝐶).
Finally, 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ∩𝑂 (𝑠 ↾𝛾 𝐴𝐷) = ∅ is by definition, while (𝑃 (𝑠 ↾𝛾 𝐴𝐶) ∪ 𝑃 (𝑠 ↾𝛾 𝐶𝐷)) ∩𝑂 (𝑠 ↾𝛾 𝐴𝐷) = ∅ follows

from 𝑃 (𝑠 ↾𝛾 𝐴𝐶) ⊆ 𝜈 (𝑠 ↾𝛾 𝐴𝐵𝐶) \𝑂 (𝑠 ↾𝛾 𝐴𝐶) ⊆ 𝑃 (𝑠 ↾𝛾 𝐴𝐵) ∪ 𝑃 (𝑠 ↾𝛾 𝐵𝐶) and Lemma A.3. Similarly for (a). □

We can now show the following.

Lemma A.5. If 𝑠 ∈ Int (𝐴𝐵𝐶𝐷) then 𝑠 ↾𝛾 𝐴𝐵𝐶 ∈ Int (𝐴𝐵𝐶) and 𝑠 ↾𝛾 𝐴𝐶𝐷 ∈ Int (𝐴𝐶𝐷).

Proof. We show that 𝑠 ′ = 𝑠 ↾𝛾 𝐴𝐶𝐷 ∈ Int (𝐴𝐶𝐷), and the case for 𝑠 ↾𝛾 𝐴𝐵𝐶 is shown similarly. First, using the

polarity 𝑝 of 𝑠 , we define a polarity function 𝑝 ′ for 𝑠 ′. For each 𝑋,𝑌 ∈ {𝑂, 𝑃}, we set:

𝜋𝐴𝐶𝐷 (𝑋𝐿) = 𝑋𝐿 𝜋𝐴𝐶𝐷 (𝑋𝑀𝑌𝑅) = 𝑋𝐿𝑌𝑅

𝜋𝐴𝐶𝐷 (𝑋𝐿𝑌𝑅) = 𝑋𝐿𝑌𝑅 𝜋𝐴𝐶𝐷 (𝑌𝑅) = 𝑌𝑅

and define 𝑝 ′(𝑚) = 𝜋𝐴𝐶𝐷 (𝑝 (𝑚)). We next verify that 𝑠 ′ is alternating. Let𝑚 be a move in 𝑠 ′.

• If𝑚 ∈ 𝑀𝐴 then 𝑝 (𝑚) = 𝑂𝐿 so 𝑝 ′(𝑚) = 𝑂𝐿 .

• If𝑚 ∈ 𝑀𝐶 then 𝑝 (𝑚) = 𝑃𝑀𝑂𝑅 so 𝑝 ′(𝑚) = 𝑃𝐿𝑂𝑅 .

• If𝑚 ∈ 𝑀𝐷 then 𝑝 (𝑚) = 𝑃𝑅 so 𝑝 ′(𝑚) = 𝑃𝑅 .

Now, let𝑚𝑛 be consecutive in 𝑠 ′. Then, 𝑠 = · · ·𝑚𝑡𝑛 · · · for some 𝑡 containing moves with polarities in {𝑂𝐿𝑃𝑀 , 𝑃𝐿𝑂𝑀 }.
By the interaction diagram, one of the following must be the case.

• 𝑝 (𝑛) ∈ 𝑝 (𝑚). In this case, observe that, for all 𝑋,𝑌 ∈ 𝑝 (𝐴𝐶𝐷), if 𝑋 ∈ 𝑌 then 𝜋𝐴𝐶𝐷 (𝑋 ) ∈ 𝜋𝐴𝐶𝐷 (𝑌 ).
• 𝑝 (𝑛) = 𝑃𝑀𝑂𝑅 and 𝑝 (𝑚) ∈ {𝑂𝐿,𝑂𝐿𝑃𝑅}. Then, 𝑝 ′(𝑛) = 𝑃𝐿𝑂𝑅 and 𝑝 ′(𝑚) = 𝑃𝑂 .

• 𝑝 (𝑚) = 𝑂𝑀𝑃𝑅 and 𝑝 (𝑛) ∈ {𝑃𝐿, 𝑃𝐿𝑂𝑅}. Then, 𝑝 ′(𝑛) = 𝑂𝐿𝑃𝑅 and 𝑝 ′(𝑚) = 𝑂𝑃 .

In every case, 𝑝 ′(𝑛) ∈ 𝑝 ′(𝑚).
Well-classing, projecting and well-returning conditions are directly inherited from 𝑠 , while frugality is ensured by

application of 𝛾 .

For well-calling, let 𝑡𝑚𝛴 ⊑ 𝑠 ′ with𝑚 = call𝑎.m(®𝑣), and let 𝑛𝑇 be introducing 𝑎 in 𝑠 . By well-calling for 𝑠 , we have

that 𝑝 (𝑛) ∈ 𝑝 (𝑚). If 𝑝𝐶𝐷 (𝑛) = 𝑃 or 𝑝𝐴𝐷 (𝑛) = 𝑂 then 𝑛 introduces 𝑎 in 𝑠 ′ and, as above, 𝑝 ′(𝑛) ∈ 𝑝 ′(𝑚). Suppose now
𝑝𝐴𝐵 (𝑛) = 𝑃 . Then, 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐴𝐵) so 𝑎 ∉ 𝑃 (𝑠 ↾𝛾 𝐶𝐷) ∪𝑂 (𝑠 ↾𝛾 𝐴𝐷), and therefore 𝑎 ∈ 𝑃 (𝑠 ↾𝛾 𝐴𝐶) by Lemma A.4 (4b).

The latter implies that 𝑜𝐴𝐶𝐷 (𝑎) ∈ {𝑃𝐿, 𝑃𝐿𝑂𝑅}. Since 𝑝𝐴𝐵 (𝑛) = 𝑃 and 𝑝 (𝑛) ∈ 𝑝 (𝑚), we have that 𝑝 (𝑚) ∈ {𝑂𝐿,𝑂𝐿𝑃𝑅}
and therefore 𝑝 ′(𝑚) = {𝑃𝐿, 𝑃𝐿𝑂𝑅}. We work similarly for the case of 𝑝𝐵𝐶 (𝑛) = 𝑃 .

Laird’s disjointness conditions follow from the definition of Int (𝐴𝐵𝐶𝐷) and Lemma A.4 (4b). Finally, let 𝑡 ⊑ 𝑠 ′ end

in 𝑚𝛴𝑛𝑇 and (𝑎) ∈ dom(𝑇 ). If 𝑝𝐶𝐷 (𝑛) = 𝑃 and 𝑎 ∉ 𝜈 (𝑠 ↾𝛾 𝐶𝐷) (or 𝑝𝐴𝐷 (𝑛) = 𝑂 and 𝑎 ∉ 𝜈 (𝑠 ↾𝛾 𝐴𝐷)) then, by
definition of Int (𝐴𝐵𝐶𝐷), we have that 𝛴 (𝑎) = 𝑇 (𝑎). If 𝑝𝐴𝐶 (𝑛) = 𝑃 and 𝑎 ∉ 𝜈 (𝑠 ↾𝛾 𝐴𝐶) then, by Lemma A.4 (2),

𝑎 ∉ 𝜈 (𝑠 ↾𝛾 𝐴𝐵) ∪ 𝜈 (𝑠 ↾𝛾 𝐵𝐶) and 𝑝𝐴𝐵 (𝑛) = 𝑃 or 𝑝𝐵𝐶 (𝑛) = 𝑃 so 𝛴 (𝑎) = 𝑇 (𝑎). □
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Conversely, we want to show that interaction sequences in 𝐴𝐵𝐷 and 𝐵𝐶𝐷 with common projection in 𝐵𝐷 can be

themselves obtained as projections of interaction sequences in 𝐴𝐵𝐶𝐷 . We let

𝑝 (𝐴𝐵𝐷) = 𝑝 (𝐴𝐵) ∪ 𝑝 (𝐵𝐷) ∪ 𝑝 (𝐴𝐷)

= {𝑋𝐿, 𝑋𝐿𝑋𝑀 , 𝑋𝐿𝑋𝑅, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

𝑝 (𝐵𝐶𝐷) = 𝑝 (𝐵𝐶) ∪ 𝑝 (𝐶𝐷) ∪ 𝑝 (𝐵𝐷)

= {𝑋𝐿𝑋𝑀 , 𝑋𝑀𝑋𝑅, 𝑋𝐿𝑋𝑅, 𝑋𝑅 | 𝑋 ∈ {𝑂, 𝑃}}

and, for each 𝑠 ∈ Int (𝐴𝐵𝐶𝐷) and 𝑋 ∈ {𝐴𝐵𝐷, 𝐵𝐶𝐷}, we define 𝑠 ↾ 𝑋 to be the subsequence of 𝑋 comprising those of its

moves with polarities in 𝑋 .

Lemma A.6. Let 𝑠 ∈ Int (𝐴𝐵𝐷) and 𝑡 ∈ Int (𝐵𝐶𝐷) with 𝑠 ↾𝛾 𝐵𝐷 = 𝑡 ↾𝛾 𝐵𝐷 and 𝜈 (𝑠) ∩ 𝜈 (𝑡) ⊆ 𝜈 (𝑠 ↾𝛾 𝐵𝐷). Then, there
is 𝑢 ∈ Int (𝐴𝐵𝐶𝐷) such that 𝑢 ↾𝛾 𝐴𝐵𝐷 = 𝑠 and 𝑢 ↾𝛾 𝐵𝐶𝐷 = 𝑡 .

Proof. We do induction on |𝑠 | + |𝑡 |. Suppose 𝑠 = 𝑠 ′𝑚𝛴
. If 𝑝𝐴𝐵𝐷 (𝑚) = 𝑃𝐿 then, by IH, there is 𝑢 ∈ Int (𝐴𝐵𝐶𝐷) such

that 𝑠 ′ = 𝑢 ↾𝛾 𝐴𝐵𝐷 and 𝑡 = 𝑢 ↾𝛾 𝐵𝐶𝐷 . We claim that 𝑢 and 𝑠 ′ end in the same move. Indeed, let 𝑠 ′ = 𝑠 ′′𝑛𝑇
′
and

𝑢 ′𝑛𝑇 ⊑ 𝑢. By alternation of 𝑠 , we have 𝑝𝐴𝐵𝐷 (𝑛) ∈ {𝑂𝐿,𝑂𝐿𝑃𝑅}, hence 𝑝𝐴𝐵𝐶𝐷 (𝑛) ∈ {𝑂𝐿,𝑂𝐿𝑃𝑀 ,𝑂𝐿𝑃𝑅}. If 𝑛 is not the

last move in𝑢 then the move following it in𝑢, say 𝑛′, will have polarity in {𝑃𝐿, 𝑃𝐿𝑂𝑀 , 𝑃𝐿𝑂𝑅}. But then 𝑝 (𝑛′) ∈ 𝑝 (𝐴𝐵𝐷),
contradicting 𝑢 ↾𝛾 𝐴𝐵𝐷 = 𝑠 ′. We can now see that 𝑢𝑚𝛴′ ∈ Int (𝐴𝐵𝐶𝐷), with 𝑢𝑚𝛴′

↾𝛾 𝐴𝐵𝐷 = 𝑠 and 𝑢𝑚𝛴′
↾𝛾 𝐵𝐶𝐷 = 𝑡 ,

where

𝛴 ′ = 𝛴 ∪ {(𝑎,𝑇 (𝑎)) | 𝑎 ∈ 𝜈 (𝑢𝑚𝛴 ) \ 𝜈 (𝑠)}

is 𝑇 updated with the values of 𝛴 . Note that if𝑚 introduces some name 𝑎 in 𝑢𝑚𝛴′
↾𝛾 𝐴𝐵 then𝑚 introduces 𝑎 in 𝑠 and

therefore, by hypothesis, 𝑎 ∉ 𝜈 (𝑡). This ensures that Laird’s disjointness conditions are satisfied, while the definition of

𝛴 ′
ensures the value-copying conditions.

If 𝑝𝐴𝐵𝐷 (𝑚) = 𝑂𝐿 then, by IH, there is 𝑢 ∈ Int (𝐴𝐵𝐶𝐷) such that 𝑠 ′ = 𝑢 ↾𝛾 𝐴𝐵𝐷 and 𝑡 = 𝑢 ↾𝛾 𝐵𝐶𝐷 and, working as

above, we can show that 𝑠 ′ and 𝑢 end in the same move and construct the required 𝑢𝑚𝛴′ ∈ Int (𝐴𝐵𝐶𝐷).
The cases of 𝑡 = 𝑡𝑚𝛴

with 𝑝𝐵𝐶𝐷 (𝑚) ∈ {𝑂𝐿𝑃𝑅, 𝑃𝐿𝑂𝑅} are dealt with similarly to the ones above.

Finally, let 𝑠 = 𝑠 ′𝑚𝛴
and 𝑡 = 𝑡 ′𝑚𝑇

with 𝑝𝐴𝐵𝐷 (𝑚) ∈ {𝑂𝐿𝑃𝑅, 𝑃𝐿𝑂𝑅,𝑂𝑅, 𝑃𝑅} and 𝑝𝐵𝐶𝐷 (𝑚) ∈ {𝑂𝐿, 𝑃𝐿,𝑂𝑅, 𝑃𝑅}. Note that
𝑠 ′ ↾𝛾 𝐵𝐷 = 𝑡 ′ ↾𝛾 𝐵𝐷 by hypothesis. We claim that 𝜈 (𝑠 ′) ∩ 𝜈 (𝑡 ′) ⊆ 𝜈 (𝑠 ′ ↾𝛾 𝐵𝐷). Indeed, if 𝑎 ∈ 𝜈 (𝑠 ′) ∩ 𝜈 (𝑡 ′) then, by
hypothesis, 𝑎 ∈ 𝜈 (𝑠 ↾𝛾 𝐵𝐷). Thus, if 𝑎 ∉ 𝜈 (𝑠 ′ ↾𝛾 𝐵𝐷) then𝑚 would be introducing 𝑎 in 𝑠 ↾𝛾 𝐵𝐷 so, by Lemma 3.22, it

would be also introducing 𝑎 in either 𝑠 or 𝑡 . Hence, we can apply the IH on 𝑠 ′, 𝑡 ′ and obtain 𝑢 ∈ Int (𝐴𝐵𝐶𝐷) such that

𝑢 ↾𝛾 𝐴𝐵𝐷 = 𝑠 ′ and 𝑢 ↾𝛾 𝐵𝐶𝐷 = 𝑡 ′. We can now form 𝑢𝑚𝛴∪𝑇 ∈ Int (𝐴𝐵𝐶𝐷), which projects as 𝑠 and 𝑡 . □

We can now prove associativity of strategy composition.

Proposition 3.37. For all 𝜌 : 𝐴 → 𝐵, 𝜎 : 𝐵 → 𝐶 and 𝜏 : 𝐶 → 𝐷 , (𝜌 ;𝜎);𝜏 = 𝜌 ; (𝜎 ;𝜏).

Proof. The lemmata we produced above are for proving the right-to-left inclusion, which is what we show here.

The other inclusion is proved symmetrically. So let 𝑠 ∈ 𝜌 ; (𝜎 ;𝜏). We have that 𝑠 = 𝑣 ↾𝛾 𝐴𝐷 for some 𝑣 ∈ 𝜌 ∥(𝜎 ;𝜏), while
𝑣 ↾𝛾 𝐵𝐷 = 𝑤 ↾𝛾 𝐵𝐷 for some𝑤 ∈ 𝜎 ∥𝜏 . By equivariance of 𝜎, 𝜏 , we can assume that 𝜈 (𝑣) ∩ 𝜈 (𝑤) ⊆ 𝜈 (𝑤 ↾𝛾 𝐵𝐷). Thus,
by Lemma A.6, there is a 𝑢 ∈ Int (𝐴𝐵𝐶𝐷) with 𝑢 ↾𝛾 𝐴𝐵𝐷 = 𝑣 and 𝑢 ↾𝛾 𝐵𝐶𝐷 = 𝑤 . From Lemma A.5 we get 𝑢 ↾𝛾 𝐴𝐵𝐶 ∈
Int (𝐴𝐵𝐶), so in particular 𝑢 ↾𝛾 𝐴𝐵𝐶 ∈ 𝜌 ∥𝜎 and 𝑢 ↾𝛾 𝐴𝐶 ∈ 𝜌 ;𝜎 . By the same lemma, 𝑢 ↾𝛾 𝐴𝐶𝐷 ∈ Int (𝐴𝐵𝐶𝐷), so in

particular 𝑢 ↾𝛾 𝐴𝐶𝐷 ∈ (𝜌 ;𝜎)∥𝜏 . Thus, 𝑠 = 𝑢 ↾𝛾 𝐴𝐷 ∈ (𝜌 ;𝜎);𝜏 . □
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