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Abstract. Automata over infinite alphabets have recently come to be
studied extensively as potentially useful tools for solving problems in
verification and database theory. One popular model of automata studied
is the Class Memory Automata (CMA), for which the emptiness problem
is equivalent to Petri Net Reachability. We identify a restriction – which
we call weakness – of CMA, and show that they are equivalent to three
existing forms of automata over data languages. Further, we show that in
the deterministic case they are closed under all Boolean operations, and
hence have an ExpSpace-complete equivalence problem. We also extend
CMA to operate over multiple levels of nested data values, and show that
while these have undecidable emptiness in general, adding the weakness
constraint recovers decidability of emptiness, via reduction to coverability
in well-structured transition systems. We also examine connections with
existing automata over nested data.
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1 Introduction

A data word is a word over a finite alphabet in which every position in the
word also has an associated data value, from an infinite domain. Data languages
provide a useful formalism both for problems in database theory and verification
[13, 16, 3]. For example, data words can be used to model a system of a potentially
unbounded number of concurrent processes: the data values are used as identifiers
for the processes, and the data word then gives an interleaving of the actions
of the processes. Having expressive, decidable logics and automata over data
languages then allows properties of the modelled system to be checked.

Class memory automata (CMA) [3] are a natural form of automata over data
languages. CMA can be thought of as finite state machines extended with the
ability, on reading a data value, to remember what state the automaton was in
when it last saw that data value. A run of a CMA is accepting if the following
two conditions hold: (i) the run ends in a globally accepting state; and (ii) each
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data value read in the run was last seen in a locally accepting state. If using
data values to distinguish semi-autonomous parts of a system, while the first
condition can check the system as a whole has behaved correctly, the second of
these conditions can be used to check that each part of the system independently
behaved correctly. The emptiness problem for CMA is equivalent to Petri net
reachability, and while closed under intersection, union, and concatenation, they
are not closed under complementation, and do not have a decidable equivalence
problem.

We earlier described how data words can be used to model concurrent systems:
each process can be identified by a data value, and CMA can then verify properties
of the system. What happens when these processes can spawn subprocesses, which
themselves can spawn subprocesses, and so on? In these situations the parent-
child relationship between processes becomes important, and a single layer of
data values cannot capture this; instead we want a notion of nested data values,
which themselves contain the parent-child relationship. In fact, such nested data
values have applications beyond just in concurrent systems: they are prime
candidates for modelling many computational situations in which names are
used hierarchically. This includes higher-order computation where intermediate
functional values are being created and named, and later used by referring to
these names. More generally, this feature is characteristic of numerous encodings
into the π-calculus [14].

This paper is concerned with finding useful automata models which are
expressive enough to decide properties we may wish to verify, as well as having
good closure and decidability properties, which make them easy to abstract our
queries to. We study a restriction of class memory automata, which we find leads
to improved complexity and closure results, at the expense of expressivity. We
then extend class memory automata to a nested data setting, and find a decidable
class of automata in this setting.

Contributions. In Section 3 we identify a natural restriction of Class Memory
Automata, which we call weak Class Memory Automata, in which the local-
acceptance condition of CMA is dropped. We show that these weak CMA are
equivalent to: (i) Class Counting Automata, which were introduced in [12];
(ii) non-reset History Register Automata, introduced in [18]; and (iii) locally
prefix-closed Data Automata, introduced in [5].

These automata have an ExpSpace-complete emptiness problem. The primary
advantage of having this equivalent model as a kind of Class Memory Automaton
is that there is a natural notion of determinism, and we show that Deterministic
Weak CMA are closed under all Boolean operations (and hence have decidable
containment and equivalence problems).

In Section 4 we introduce a new notion of nesting for data languages, based
on tree-structured datasets. This notion does not commit all letters to be at
the same level of nesting and appears promising from the point of view of
modelling scenarios with hierarchical name structure, such as concurrent or
higher-order computation. We extend Class Memory Automata to operate over
these nested datasets, and show that this extension is Turing-powerful in general,
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but reintroducing the Weakness constraint recovers decidability. We show how
these Nested Data CMA recognise the same string languages as Higher-Order
Multicounter Automata, introduced in [2], and also how the weakness constraint
corresponds to a natural weakness constraint on these Higher-Order Multicounter
Automata. Finally, we show these automata to be equivalent to the Nested Data
Automata introduced in [5].

Related Work. Class memory automata are equivalent to data automata
(introduced in [4]), though unlike data automata, they admit a notion of deter-
minism. Data automata (and hence class memory automata) were shown in [4] to
be equiexpressive with the two-variable fragment of existential monadic second
order logic over data words. Temporal logics have also been studied over data
words [6], and the introduction of locally prefix-closed data automata and of
nested data automata in [5] is motivated by extensions to BD-LTL, a form of
LTL over multiple data values introduced in [10].

Fresh register automata [17] are a precursor to the History Register automata
[18] which we examine a restriction of in this paper. Class counting automata,
which we show to be equivalent to weak CMA, have been extended to be as
expressive as CMA by adding resets and counter acceptance conditions [12, 11].

We note that our restriction of class memory automata, which we call weak
class memory automata, sound similar to the weak data automata introduced in
[9]. However, these are two quite different restrictions, with emptiness problems
of different complexities, and the two automata models should not be confused.

In the second part of this paper we examine automata over nested data values.
First-order logic over nested data values has been studied in [3], where it was
shown that the < predicate quickly led to undecidability, but that only having the
+1 predicate preserved decidability. They also examined the link between nested
data and shuffle expressions. In [5] Decker et al. introduced ND-LTL, extending
BD-LTL to nested data values. To show decidability of certain fragments of
ND-LTL they extended data automata to run over nested data values, giving the
nested data automata we examine in this paper.

Further Work. We would like to understand better whether there is a natural
fragment of the π-calculus that corresponds to the new classes of automata. On
the logical side, an interesting outstanding question is to characterize languages
accepted by our classes of automata with suitable logics.

2 Preliminaries

Let Σ be a finite alphabet, and D an infinite set of data values. A data alphabet,
D, is of the form Σ ×D. The set of finite data words over D is denoted D∗.

Class Memory Automata and Data Automata. Given a set S, we write
S⊥ to mean S∪{⊥}, where ⊥ is a distinguished symbol (representing a fresh data
value). A Class Memory Automaton [3] is a tuple 〈Q,Σ, qI , δ, FL, FG 〉 where
Q is a finite set of states, Σ is a finite alphabet, qI ∈ Q is the initial state,
FG ⊆ FL ⊆ Q are sets of globally- and locally-accepting sets (respectively), and
δ is the transition map δ : Q×Σ ×Q⊥ → P(Q). The automaton is deterministic
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if each set in the image of the transition function is a singleton. A class memory
function is a map f : D → Q⊥ such that f(d) 6= ⊥ for only finitely many d ∈ D.
We view f as a record of the history of computation: it holds the state of the
automaton after the data value d was last read, where f(d) = ⊥ means that d is
fresh. A configuration of the automaton is a pair (q, f) where q ∈ Q and f is a
class memory function. The initial configuration is (q0, f0) where f0(d) = ⊥ for
every d ∈ D. Suppose (a, d) ∈ Σ ×D is the input. The automaton can transition
from configuration (q, f) to configuration (q′, f ′) just if q′ ∈ δ(q, a, f(d)) and
f ′ = f [d 7→ q′]. A data word w is accepted by the automaton just if the automaton
can make a sequence of transitions from the initial configuration to a configuration
(q, f) where q ∈ FG and f(d) ∈ FL ∪ {⊥} for every data value d.

A Data Automaton [4] is a pair (A,B) where A is a letter-to-letter string
transducer with output alphabet Γ , called the Base Automaton, and B is a NFA
with input alphabet Γ , called the Class Automaton. A data word w = w1 . . . wn ∈
D∗ is accepted by the automaton if there is a run of A on the string-projection
of w (to Σ) with output b1 . . . bn such that for each maximal set of positions
{x1, . . . , xk} ⊆ {1, . . . , n} such that wx1 , . . . , wxk

share the same data value, the
word bx1

. . . bxk
is accepted by B.

CMA and DA are expressively equivalent, with PTime translation [3]. The
emptiness problem for these automata is decidable, and equivalent to Petri Net
Reachability [4]. The class of languages recognised by CMA is closed under
intersection, union, and concatenation. It is not closed under complementation
or Kleene star. Of the above, the class of languages recognised by deterministic
CMA is closed only under intersection.

Locally Prefix-Closed Data Automata. A Data Automaton D = (A,B)
is locally prefix-closed (pDA) [5] if all states in B are final. The emptiness problem
for pDA is ExpSpace-complete [5].

Class Counting Automata. A bag over D is a function h : D → N such
that h(d) = 0 for all but finitely many d ∈ D. Let C = {=, 6=, <,>} × N, which
we call the set of constraints. If c = (op, e) ∈ C and n ∈ N we write n � c iff
nope. A Class Counting Automaton (CCA) [12] is a tuple 〈Q,Σ,∆, q0, F 〉 where
Q is a finite set of states, Σ is a finite alphabet, q0 is the initial state, F ⊆ Q is
the set of accepting states, and ∆, the transition relation, is a finite subset of
Q×Σ × C × {↑+, ↓} × N×Q. A configuration of a CCA, C = 〈Q,Σ,∆, q0, F 〉,
is a pair (q, h) where q ∈ Q and h is a bag. The initial configuration is (q0, h0)
where h0 is the zero function. Given a data word w = (a1, d1)(a2, d2) . . . (an, dn)
a run of w on C is a sequence of configurations (q0, h0)(q1, h1) . . . (qn, hn) such
that for all 0 ≤ i < n there is a transition (q, a, c, π,m, q′) where q = qi, q

′ = qi+1,
a = ai+1, hi(di+1) � c, and hi+1 = hi[di+1 7→ hi(di+1) + m] if π =↑+ or
hi+1 = hi[di+1 7→ m] if π =↓ The run is accepting if qn ∈ F . The emptiness
problem for Class Counting Automata was shown to be ExpSpace-complete in
[12].

Non-Reset History Register Automata.For a positive integer k write
[k] for the set {1, 2 . . . , k}. Fixing a positive integer m, define the set of labels
Lab = P([m])2. A non-reset History Register Automaton (nrHRA) of type m
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with initially empty assignment is a tuple A = 〈Q,Σ, δ, q0, F 〉 where q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and δ ⊆ Q×Σ × Lab×Q. A
configuration of A is a pair (q,H) where q ∈ Q and H : [m] → Pfn(D) where
Pfn(D) is the set of finite subsets of D. We call H an assignment, and for d ∈ D we
write H−1(d) for the set {i ∈ [m] : d ∈ H(i)}. The initial configuration is (q0, H0),
where H0 assigns every integer in [m] to the empty set. When the automaton is
in configuration (q,H), on reading input (a, d) it can transition to configuration
(q′, H ′) providing there exists X ⊆ [m] such that (q, a, (H−1(d), X), d) ∈ δ and
H ′ is obtained by removing d from H(i) for each i then adding d to each H(i)
such that i ∈ X. A run is defined in the usual way, and a run is accepting if it
ends in a configuration (q,H) where q ∈ F .

Higher-Order Multicounter Automata. A multiset over a set A is a
function m : A → N. A level-1 multiset over A is a finite multiset over A. A
level-(k + 1) multiset over A is a finite multiset of level-k multisets over A. We
can visualise this with nested set notation: e.g. {{a, a}, {}, {}} represents the
level-2 multiset containing one level-1 multiset containing two copies of a, and
two empty level-1 multisets. A multiset is hereditarily empty if, written in nested
set notation, it contains no symbols from A.

Higher-Order Multicounter Automata (HOMCA) were introduced in [2], and
their emptiness problem was shown to be Turing-complete at level-2 and above.
A level-k multicounter automaton is a tuple 〈Q,Σ,A,∆, q0, F 〉 where Q is a
finite set of states, Σ is the input alphabet, A is the multiset alphabet, q0 is
the initial state, and F is the set of final states. A configuration is a tuple
(q,m1,m2, . . . ,mk) where q ∈ Q and each mi is either undefined (⊥) or a level-i
multiset over A. The initial configuration is (q0,⊥, . . . ,⊥). ∆ is the transition
relation, and is a subset of Q × Σ × ops × Q where ops is the set of possible
counter operations. These operations, and meanings, are as follows: (i) newi

(i ≤ k) turns mi from ⊥ into the empty level-i multiset; (ii) inca (a ∈ A) adds a
to m1; (iii) deca (a ∈ A) removes a from m1; (iv) storei (i < k) adds mi to mi+1

and sets mi to ⊥; (v) loadi (i < k) non-deterministically removes an m from
mi+1 and turns mi from ⊥ to m. This can happen only when m1 . . .mi are all
⊥. The automaton reads the input word from left to right, updating m1 . . .mk

as determined by the transitions. A word is accepted by the automaton just if
there is a run of the word such that the automaton ends up in configuration
(q,m1, . . . ,mk) where q ∈ F and each mi is hereditarily empty.

3 Weak Class Memory Automata

In this section we introduce a restriction of class memory automata, weak class
memory automata (WCMA), that have improved closure and complexity proper-
ties. We show that WCMA correspond to a natural restriction of data automata,
locally-prefix closed data automata, as well as two other independent automata
models, class counting automata and non-reset history register automata.

Definition 1. A class memory automaton 〈Q,Σ,∆, q0, FL, FG 〉 is weak if all
states are locally accepting (i.e. FL = Q).
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When defining a weak CMA (WCMA) we may omit the set of locally accepting
states, and just give one set of final states, F .

The emptiness problem for class memory automata is reducible (in fact, equiva-
lent) to emptiness of multicounter automata (MCA) [4, 3]. This reduction works by
using counters to store the number of data values last seen in each state. The local-
acceptance condition is checked by the zero-test of each counter at the end of a run
of an MCA. In the weak CMA case, this check is not necessary, and so emptiness
is reducible to emptiness of weak MCA. Just as MCA emptiness is equivalent to
Petri net reachability, weak MCA emptiness is equivalent to Petri net coverability.

p1 p2

t2t1

p1 p2

t2t1

Fig. 1. An example Petri net with ini-
tial and target markings

Example 2. We give an example showing
how a very simple Petri net reachability
query can be reduced to an emptiness of
CMA problem, and the small change re-
quired to reduce coverability queries to
emptiness of WCMA. The idea is to en-
code tokens in the Petri net using data
values: the location of the token is stored
by the class memory function’s memory
for the data value. Transitions in the Petri net will be simulated by sequences of
transitions in the automaton, which change class memory function appropriately.
Consider the Petri net shown in Figure 1, with initial marking above and target
marking below.

s0start

s1 s2

s4 s5

s3

s6

s7

⊥

ε

s1s3

⊥

ε

⊥ ε

s5

s5

Fig. 2. A class memory automaton simulating
the Petri net query shown in Figure 1

We give the automaton which
models this reachability query in
Figure 2. The first transitions from
the initial state just set up the
initial marking. As there is only
one token in the initial marking,
this just involves reading one fresh
data value: this is the transition
from s0 to s1 below. Once the
initial marking has been set up
(reaching s2 below), the automa-
ton can simulate the transitions
firing any number of times. Each
loop from s2 back to itself repre-
sents one transition in the Petri
net firing: the loop above represents t1 firing, and the loop below represents t2
firing. For t1 to fire, no preconditions must be met, and a new data value can be
read in state s3, thus data values last seen in either of states s1 and s3 represent
tokens in p1. For t2 to fire, a token must be removed from p1, since tokens in
p1 are represented by tokens in either s1 or s3, the first transition in this loop –
to s4 – involves reading a data value last seen in one of these states. Thus data
values seen in s4 represent removed tokens, which we do not use again. Then a
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new token is placed in p2 by reading a fresh data value in s5. Once back in s2
these loops can be taken more, or the fact that a marking covering the target
marking has been reached can be checked by reading two data values last seen in
s5 to reach a final state. The only globally accepting state is s7, and all states
except those which are used to represent tokens – i.e. all except s1, s3, and s5 –
are locally accepting. The local acceptance condition thus checks that no other
tokens remain in the simulated Petri net.

If we were interested in a coverability query, the same automaton, but without
the local acceptance condition, would obviously suffice. Thus emptiness of WCMA
is equivalent to Petri net coverability, which is ExpSpace-complete.

We now give the main observation of this section: that weak CMA are
equivalent to three independent existing automata models.

Theorem 3. Weak CMA, locally prefix-closed DA, class counting automata, and
non-reset history register automata are all PTime-equivalent.

Proof. That Weak CMA and pDA are equivalent is a simple alteration of the
proof of equivalence of CMA and DA provided in [3].

Recall that CCA use a “bag”, which essentially gives a counter for each data
value. Weak CMA can easily be simulated by CCA by identifying each state with
a natural number; then the bag can easily simulate the class memory function,
by setting the data value’s counter to the appropriate number when it is read. To
simulate a CCA with a WCMA, we first observe that for any CCA, since counter
values can only be incremented or reset, there is a natural number, N , above
which different counter values are indistinguishable to the automaton. Thus we
need only worry about a finite set of values. This means the value for the counter
of each data value can be stored in the automaton state, and thereby the class
memory function.

In [18] the authors already show that nrHRA can be simulated by CMA.
Their construction does not make use of the local-acceptance condition, so the
fact that nrHRA can be simulated by WCMA is immediate. In order to simulate
a given WCMA with state set [m], one can take a nrHRA of type m, with place
i storing the data values last seen in state i.

Data automata, and hence pDA, unlike CMA and WCMA, do not have a natural
notion of determinism, nor a natural restriction corresponding to deterministic
CMA or WCMA. What about for CCA? We define CCA to be deterministic if
for each state q and input letter a, the transitions (q, a, c, . . . ) ∈ ∆ are such that
the c’s partition N. The same translations given in Theorem 3 also show that
deterministic WCMA and deterministic CCA are equivalent. We can ask the
same question of non-reset HRA. We find that the natural notion of determinism
here is: for each q ∈ Q, a ∈ Σ, and X ⊆ [m] there is precisely one Y ⊆ [m] and
q′ ∈ Q such that (q, a, (X,Y ), q′) ∈ δ. Similarly, the translations discussed above
show deterministic WCMA to be equivalent to deterministic nrHRA.

It follows from the results for CCA in [12] that Weak CMA, like normal
CMA, are closed under intersection and union, though these closures can easily
be shown directly using product constructions (and these constructions preserve
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determinism). In fact, Deterministic Weak CMA have even nicer closure properties:
the language recognised can be complemented using the same method as for
DFA: complementing the final states.

Proposition 4. Deterministic Weak CMA are closed under all Boolean opera-
tions.

Corollary 5. The containment and equivalence problems for Deterministic Weak
CMA are ExpSpace-complete.

4 Nested Data Class Memory Automata

In Section 1 we discussed how data values fail to provide a good model for
modelling computations in which names are used hierarchically, such as a system
of concurrent processes which can spawn subprocesses. Motivated by these
applications, in this section we introduce a notion of nested data values in which
the data set has a forest-structure. This is a stylistically different presentation to
earlier work on nested data in that [3, 5] require that each position in the words
considered have a data value in each of a fixed number of levels. By giving the
data set a forest-structure, we can explicitly handle variable levels of nesting
within a word. However, we note that there is a natural translation between the
two presentations.

Definition 6. A rooted tree (henceforth, just tree) is a simple directed graph
〈D, pred 〉, where pred : D ⇀ D is the predecessor map defined on every node of
the tree except the root, such that every node has a unique path to the root. A
node n of a tree has level l just if pred l−1(n) is the root (thus the root has level
1). A tree has bounded level just if there exists a least l ≥ 1 such that every node
has level no more than l; we say that such a tree has level l.

We define a nested dataset 〈D, pred 〉 to be a forest of infinitely many trees
of level l which is full in the sense that for each data value d of level less than l,
d has infinitely many children (i.e. there are infinitely many data values d′ s.t.
pred(d′) = d).

We now extend CMA to nested data by allowing the nested data class memory
automaton (NDCMA), on reading a data value d, to access the class memory
function’s memory of not only d, but each ancestor of d in the nested data
set. Once a transition has been made, the class memory function updates the
remembered state not only of d, but also of each of its ancestors. Formally:

Definition 7. Fix a nested data set of level l. A Nested Data CMA of level l is
a tuple 〈Q,Σ, δ, q0, FL, FG 〉 where Q is a finite set of states, q0 ∈ Q is the initial
state, FG ⊆ FL ⊆ Q are sets of globally and locally accepting states respectively,
and δ is the transition map. δ is given by a union δ =

⋃
1≤i≤l δi where each δi is

a function:

δi : Q×Σ × ({i} × (Q⊥)i)→ P(Q)
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The automaton is deterministic if each set in the image of δ is a singleton;
and is weak if FL = Q. A configuration is a pair (q, f) where q ∈ Q, and
f : D → Q⊥ is a class memory function (i.e. f(d) = ⊥ for all but finitely
many d ∈ D). The initial configuration is (q0, f0) where f0 is the class memory
function mapping every data value to ⊥. A configuration (q, f) is final if q ∈
FG and f(d) ∈ FL ∪ {⊥} for all d ∈ D. The automaton can transition from
configuration (q, f) to configuration (q′, f ′) on reading input (a, d) just if d is a
level-i data value, q′ ∈ δ(q, a, (i, f(predi−1(d)), . . . , f(pred(d)), f(d))), and f ′ =
f [d 7→ q, pred(d) 7→ q, . . . , predi−1(d) 7→ q]. A run (q0, f0), (q1, f1), . . . , (qn, fn)
is accepting if the configuration (qn, fn) is final. w ∈ L(A) if there is an accepting
run of A on w.

It is clear that level-1 NDCMA are equivalent to normal CMA. We know that
emptiness of class memory automata is equivalent to reachability in Petri nets; it
is natural to ask whether there is any analogous correspondence – to some kind
of high-level Petri net – once nested data is used.

Example 8. In Example 2, we showed how CMA (resp. WCMA) can encode Petri
net reachability (resp. coverability). A similar technique allows reachability (resp.
coverability) of Petri nets with reset arcs to be reduced to emptiness of NDCMA
(resp. weak NDCMA). The key idea is to have, for each place in the net, a level-1
data value – essentially as a “bag” holding the tokens for that place. Nested
under the level-1 data value, level-2 data values are used to represent tokens just
as before. When a reset arc is fired, the corresponding level-1 data value is moved
to a “dead” state – from where it and the data values nested under it are not
moved again – and a fresh level-1 data value is then used to hold subsequently
added tokens to that place.

Theorem 9. The emptiness problem for NDCMA is undecidable. Emptiness of
Weak NDCMA is decidable, but Ackermann-hard.

Proof. This result follows from Theorem 12 together with results in [5], though
we also provide a direct proof.

We show decidability by reduction to a well-structured transition system [8]
constructed as follows: a class memory function on a nested data set can be
viewed as a labelling of the data set by labels from the set of states. Since we only
care about the shape of the class memory function (i.e. up to automorphisms
of the nested data set), we can remove the nodes labelled by ⊥, and view a
class memory function as a finite set of labelled trees. The set of finite forests
of finite trees of bounded depth with the order given by F ≤ F ′ iff there is a
forest homomorphism from F to F ′ (where a forest is the natural extension of
tree homomorphisms to forests) is a well-quasi-order [7], which provides the basis
for the well-structured transition system.

Undecidability for NDCMA and Ackermann-hardness for Weak NDCMA
follow from the ideas in Example 8: the reachability (resp. coverability) problem
for Petri nets with reset arcs is encodable in NDCMA (resp. Weak NDCMA),
and this is undecidable [1] (resp. Ackermann-hard [15]).
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Weak Nested Data CMA have similar closure properties to Weak CMA (and this
can be shown using the same techniques as for DFA).

Proposition 10. (i) Weak NDCMA are closed under intersection and union.
(ii) Deterministic Weak NDCMA are closed under all Boolean operations.

Hence, as for weak CMA, the containment and equivalence problems for Deter-
ministic Weak NDCMA are decidable.

4.1 Link with Nested Data Automata

In [5] Decker et al. also examined “Nested Data Automata” (NDA), and showed
the locally prefix-closed NDA (pNDA) to have decidable emptiness (via reduction
to well-structured transition systems). In fact, these NDA precisely correspond
to NDCMA, and again being locally prefix-closed corresponds to weakness. In
this section we briefly outline this connection.

Nested Data Automata. ([5]) A k-nested data automaton (k-NDA) is a
tuple (A,B1, . . . ,Bk) where (A,Bi) is a data automaton for each i. Such automata
run on words over the alphabet Σ × Dk, where D is a (normal, unstructured)
dataset. As for normal data automata, the transducer, A, runs on the string
projection of the word, giving output w. Then for each i the class automaton Bi
runs on each subsequence of w corresponding to the positions which agree on the
first i data values. The NDA is locally prefix-closed if each (A,Bi) is.

Since these NDA are defined on a slightly different presentation of nested
data, we provide the following presentation of NDCMA over multiple levels of
data.

Definition 11. A Nested Data CMA of level k over the alphabet Σ ×Dk is a
tuple 〈Q,Σ, δ, q0, FL, FG 〉 where Q is a finite set of states, q0 ∈ Q, FG ⊆ FL ⊆ Q,
and δ : Q×Σ × (Q⊥)k → P(Q) is the transition map.

A configuration is a tuple (q, f1, f2, . . . , fk), where each fi : Di → Q⊥ maps an
i-tuple of data values to a state in the automaton (or ⊥). The initial configuration
is (q0, f

0
1 , . . . , f

0
k ) where f0i maps every tuple in the domain to ⊥. A configuration

(q, f1, . . . , fk) is final if each fi maps into FL∪{⊥}. The automaton can transition
from configuration (q, f1, . . . , fk) to configuration (q′, f ′1, . . . , f

′
k) on reading input

(a, d1, . . . , dk) just if q′ ∈ δ(q, a, (f1(d1), f2(d1, d2), . . . , fk(d1, . . . , dk))), and each
f ′i = fi[(d1, . . . , di) 7→ q′].

Using ideas from the proof of equivalence between CMA and DA in [3], we can
show the following result:

Theorem 12. NDCMA (resp. weak NDCMA) and NDA (resp. pNDA) are
expressively equivalent, with effective translations.

4.2 Link with Higher-Order Multicounter Automata

In [2] the authors examined a link between nested data values and shuffle
expressions. In doing so, they introduced higher-order multicounter automata
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(HOMCA). While not explicitly over nested data values, they are closely related
to the ideas involved, and we show that, just as multicounter automata and
CMA are equivalent, there is a natural translation between HOMCA and the
NDCMA we have introduced. Further, just as the equivalence between MCA and
CMA descends to one between weak multicounter automata and weak CMA,
we find an equivalence between weak NDCMA and “weak” HOMCA in which
the corresponding acceptance condition – hereditary emptiness – is dropped.
To show this, we introduce HOMCA’, which add restrictions to the storei and
newi counter operations analogous to the restriction for the loadi operation.

HOMCA

��

weak HOMCAoo

��
HOMCA’

OO

��

weak HOMCA’oo

OO

��
NDCMA

OO

weak NDCMAoo

OO

Fig. 3. Translations between HOMCA,
HOMCA’, NDCMA, and their weak
counterparts

We show that these HOMCA’ are equiv-
alent to HOMCA, and that HOMCA’ are
equivalent to NDCMA, with both of these
equivalences descending to the weak ver-
sions. These equivalences are summarised
in Figure 3.

Definition 13. We define weak HOMCA
to be just as HOMCA, but without the
hereditary-emptiness condition on accep-
tance, i.e. a run is accepting just if it ends
in a final state.

Definition 14. We define HOMCA’ to be
the same as HOMCA, except for the fol-
lowing changes to the counter operations: (i) storei operations are only enabled
when m1 = m2 = · · · = mi−1 = ⊥; and (ii) newi operations are only enabled
when mk 6= ⊥,mk−1 6= ⊥, . . . ,mi+1 6= ⊥ and mi−1 = mi−2 = · · · = m1 = ⊥.

As for HOMCA, we define weak HOMCA’ to be HOMCA’ without the
hereditary-emptiness condition.

This means that each reachable configuration (q,m1, . . . ,mk) is such that there
is a unique 0 ≤ i ≤ k such that for all j ≤ i, mj = ⊥ and each l > i, ml 6= ⊥.

Theorem 15. HOMCA (respectively weak HOMCA) and HOMCA’ (resp. weak
HOMCA’) are expressively equivalent, with effective translations between them.

Proof. This requires simulating the HOMCA operations storei and newi in
HOMCA’: which can be difficult if, for instance, the HOMCA is carrying out a
storei operation when it has a current level-(i−1) multiset in memory. The trick is
to move the level-(i− 1) multiset across to be nested under a new level-i multiset,
and this can be done one element at a time in a “folding-and-unfolding” method.
The hereditary emptiness condition checks that the each of these movements was
completed, i.e. no element was left unmoved. In the weak case some elements not
being moved could not change an accepting run to a non-accepting run, so the
fallibility of the moving method does not matter.

Theorem 16. For every (weak) level-k NDCMA, A, there is a (weak) level-
k HOMCA’, A′, such that L(A′) is equal to the Σ-projection of L(A), and
vice-versa.
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Proof. This proof rests on the strong similarity between the nesting of data values,
and the nesting of level-i multisets in level-(i+ 1) multisets. For a NDCMA to
simulate a HOMCA’, we use level-k data values to represent instances of the
multiset letters, level-(k − 1) data values to represent level-1 multisets, and so
on, up to level-1 data values representing level-(k − 1) multisets. Since each run
of a HOMCA’ can have at most one level-k multiset, this does not need to be
encoded in data values. Conversely, when simulating a NDCMA with a HOMCA’,
a level-k data value is represented by an instance of an appropriate multiset
letter. The letter contains the information on which state the data value was last
seen in. Level-(k − 1) data values are represented by level-1 multisets, which also
include a multiset letter storing the state that data value was last seen in.
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