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ABSTRACT
Probabilistic pushdown automata (recursive state machines) are a
widely known model of probabilistic computation associated with
many decidable problems concerning termination (time) and linear-
time model checking. Higher-order recursion schemes (HORS) are a
prominent formalism for the analysis of higher-order computation.

Recent studies showed that, for the probabilistic variant of HORS,
even the basic problem of determining whether a scheme termi-
nates almost surely is undecidable. Moreover, the undecidability
already holds for order-2 schemes (order-1 schemes are known to
correspond to pushdown automata).

Motivated by these results, we study restricted probabilistic tree-
stack automata (rPTSA), which in the nondeterministic setting are
known to characterise a proper extension of context-free languages,
namely, the multiple context-free languages. We show that several
veri�cation problems, such as almost-sure termination, positive
almost-sure termination and l-regular model checking are decid-
able for this class.

At the level of higher-order recursion schemes, this corresponds
to being able to verify a probabilistic version of MAHORS (which
are a multiplicative-additive version of higher-order recursion
schemes). MAHORS extend order-1 recursion schemes and are
incomparable with order-2 schemes.
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1 INTRODUCTION
Probabilistic (or randomised) programs are widely recognised as
essential to solving numerous algorithmic problems e�ciently [22].
In probabilistic programming [13, 23, 30], an approach to Bayesian
statistical machine learning that utilises ideas and methods from
programming languages, probabilistic programs are used to express
generative models whose posterior probability can be computed
by general purpose inference engines. The universal probabilistic
programming languages (for example, Church [12], Anglican [28],
Gen [7], Pyro [3], Edward [29] and Turing [10]) are typically higher-
order, recursive functional programming language equipped with
random primitives (and conditioning constructs).

This paper is concerned with a central property of probabilistic
programs: termination. When a probabilistic program implements a
solution to an algorithmic problem, we naturally require the compu-
tation to terminate with probability 1, in which case the program is
called almost surely terminating (AST). Indeed, it is standard for de-
signers and implementors of probabilistic programming systems to
regard non-AST programs as de�ning invalid models, and hence in-
admissible [12, 23]. (Yet none of these systems provides any support
for the development or veri�cation of AST programs.) Moreover,
various theorems about probabilistic programs rely on the assump-
tion that the program terminates almost surely (see e.g. [12, 19]).
The AST problem is not just important, but also di�cult: deciding
AST of �rst-order imperative programs with discrete probabilities
is ⇧0

2-complete [15, 18] . In recent work [2], the AST problem for
higher-order programs (with continuous distributions) was shown
to have the same complexity.

To investigate scenarios involving probability and higher-order
computation, Kobayashi, Dal Lago and Grellois introduced the no-
tion of probabilistic higher-order recursion schemes (PHORS) [17].
In the deterministic case, higher-order recursive schemes (HORS)
have been a fruitful approach to algorithmic analysis of higher-
order programs [16], which applies to all orders [21]. In stark con-
trast, the authors of [17] report that the AST problem for PHORS
is undecidable already at order 2, and provide decidability results
for order-1 PHORS only.

Contributions. In this paper, we consider a subclass of PHORS,
called Probabilistic Additive HORS (PAHORS). They are inspired by
Multiplicative Additive HORS (MAHORS) [6], in which the order
of computation is unbounded, but function de�nitions must obey
the discipline of multiplicative additive linear logic [11], i.e. vari-
able sharing is controlled by a linear additive type system. In the
deterministic case, MAHORS are known to be more expressible
than order-1 HORS and incomparable with order-2 HORS. We are
interested in �nding decision procedures for the almost-sure termi-
nation (AST) and positive almost-sure termination (PAST) problems
for PAHORS. The latter concerns the question whether the expected
time to termination is �nite.

https://doi.org/10.1145/3531130.3533351
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Our starting point is the model of restricted tree-stack automata
(rTSA) [8], known to be expressively equivalent to MAHORS [6]
(with respect to tree generation). A tree-stack is a tree-shaped
stack (growing upwards) satisfying restriction: each node can be
visited from below no more than an a priori �xed number (: , say) of
times. We �rst adapt the automata to the probabilistic case—called
rPTSA—and show how to characterise the associated termination
probability and expected time to termination equationally, over the
real numbers with addition and multiplication.

The central idea that enables the equational characterisation
is a decomposition of rPTSA runs into �nitely many “patterns”
(which we call TripsW⇡ ), as succinctly captured in Decomposition
Formula 1 (Equation (1)). This (de)construction may be viewed as
a generalisation of decomposition techniques for runs of push-
down automata [4]. To each pattern, one can associate a probability
(weight), and the mutual dependency among the (subject node’s
and its children’s) patterns de�nes a system of polynomial equa-
tions. Once the equations have been derived, the existence and
properties of their least �xpoints can be decided using the existen-
tial fragment of the �rst-order theory of the reals (EToR), similarly
to probabilistic pushdown automata [4]. Thanks to the decidability
of EToR [5, 26], the AST and PAST problem of the automata model,
rPTSA, can be solved e�ectively; moreover one can query the logic
to approximate the exact values. The total number of these patterns
depends on the restriction : . This makes it possible to determine
a complexity bound (EXPSPACE) under the assumption that : is
given in unary.

A similar decomposition principle underpins l-regular model
checking of rPTSA. Now, using an additional type of “patterns”
(called UpW⇡ ) for in�nite runs, we obtain a corresponding equa-
tional characterisation in Decomposition Formula 2 (Equation (6)).
Moreover, these UpW⇡ patterns form themselves into a �nite Markov
chain. We can determine whether each bottom SCC (BSCC) of the
digraph underlying the Markov chain is accepting, thanks to the
decomposition formulas. Further the probability of reaching an
accepting BSCC can be speci�ed in EToR as a solution to a system
of equations. Thus, as before, both the qualitative and quantitative
veri�cation problems are decidable (in EXPSPACE).

We can now transfer decidability results from rPTSA to PAHORS.
Our �rst result about PAHORS states that the AST problem for PA-
HORS is decidable and that the associated termination probabilities
can be approximated e�ectively. This subsumes analogous results
for order-1 PHORS [17]. Moreover, we investigate the associated
PAST problem. We can show that, for PAHORS, the problem is also
decidable and the expected time to termination can be approximated
e�ectively too.

When it comes to the AST problem, PAHORS are the �rst decid-
able extension of PHORS that goes beyond order 1 [17]. For PAST,
we are not aware of any prior results, so we believe we are the
�rst to identify a non-trivial class of higher-order programs with
decidable PAST.

All EToR queries used in the paper are of exponential size and
can be constructed in (at most) exponential space. This implies that
the respective decision problems are in EXPSPACE.

Outline. In Section 2 we present the basic de�nitions and the
technical preliminaries. Section 3 discusses the termination proba-
bility of rPTSA (and hence PAHORS). In Section 4, we investigate
the expected time to termination. In Section 5 we present our l-
regular model checking results. In Section 6 we show how to relate
PAHORS to rPTSA, thus enabling us to derive decidability results
for PAHORS. We conclude in Section 7.

2 TECHNICAL PRELIMINARIES
In this section, we introduce two formalisms, namely rPTSA and
PAHORS, which will be related in Section 6.

2.1 Restricted probabilistic tree stack automata
We introduce restricted probabilistic tree-stack automata (rPTSA),
which will be the main model of probabilistic computation studied
in the paper. The automata can be thought of as �nite-control
devices walking on trees built from the stack alphabet, starting at
the root. Each node will have a local memory and the number of
times a node can be visited from below will be restricted. rPTSA
can be viewed as a probabilistic variant of tree-stack automata
introduced by Denkinger [8]. Given a �nite set- , we write Dist (- )
for the set of probability distributions over - .

De�nition 2.1. A probabilistic tree stack automaton (PTSA) is
a tuple h&,M, �,�,@init ,Winit ,<initi where

- & is a �nite set of states, @init 2 & is the initial state;
- M is a �nite set of possible local memories, and<init 2 M
is the initial memory;

- � is a �nite set called the stack alphabet,Winit 2 � is the initial
stack symbol;

- � : & ⇥M ⇥ � ! Dist (Op) is the transition function, where
Op := & +

�
& ⇥M ⇥ ({upW | W 2 �} + {down})

�
and + stands

for the disjoint union of sets.

We will refer to speci�c transitions as tuples X = (@,<,W, op, ?),
where op 2 Op, which stands for �(@,<,W) (op) = ? .

Con�gurations of PTSA will rely on a (�,M)-tree-stack, which
is a partial function �⇤ ô M with a pre�x-closed domain. Thus, a
tree-stack can be viewed as a tree whose edges are labelled with
elements of � and nodes with elements ofM. The latter play the
role of local memory. As we shall see, a PTSA will maintain a tree-
stack during its lifetime and will walk inside it, possibly extending
it and updating the local memories.

A con�guration, typically written 2 , is a triple (@, C, d) where
@ 2 & , C is a (�,M)-tree-stack, and d 2 dom(C). We call d the
pointer (in the tree-stack C ) of the con�guration. The last symbol of
d , if any, is called the current stack symbol. If the pointer is not empty,
we often write it as dW to make the current stack symbol explicit.
Con�gurations with the empty pointer n are called terminating.
The initial con�guration is 2init := (@init , Cinit ,Winit ) where Cinit :=
{(Winit ,<init )}.

We distinguish three types of transitions according to the shape
of op: horizontal, upW (or simply up) and down. Horizontal tran-
sitions do not change the stack pointer, i.e. the automaton stays
in the same node; non-horizontal transitions move the pointer up
or down in the tree-stack, initialising local memory to<init on a
�rst visit, and preserving the memory otherwise. Formally, suppose
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X = (@,<,W, op, ?) 2 � and 2 = (@, C, dW) is a con�guration such
that C (dW) =<. Figure 1 speci�es when and how 2 may evolve into

another con�guration 2 0. We then write 2
X�! 2 0. We say that the

probability of 2
X�! 2 0 is equal to the last component of X , written

?X .

A sequence c = 20 · · · 2= of con�gurations such that 2 9
X 9��! 2 9+1

(0  9 < =), will be called a run (from 20 to 2=). Note that c uniquely
determines the corresponding sequence of transitions. We de�ne
the weight of a run to be wt (c) := Œ=�1

9=0 ?X 9
. A run is terminating

if 2= is terminating, i.e. the stack pointer in 2= is empty. Let us
write 'term for the set of all terminating runs from 2init . Then the
termination probability of a PTSA P, written P(P), is de�ned
to be

Õ
c 2'term wt (c).

A run c is said to satisfy :-restriction if, for all d and W , it
contains at most : pairs of contiguous con�gurations that match
(�,�, d) (�,�, dW). Intuitively, c cannot enter any node of the tree-
stack from below more than : times.

De�nition 2.2. Given : � 1, a PTSA is called :-restricted if all of
its runs satisfy :-restriction. It is called restricted (rPTSA) if there
exists : such that it is :-restricted.

From now on, we shall assume that we work with a :-restricted
PTSA P, where the parameter : � 1 is given in unary along-
side P. When we talk of exponential complexity for PTSA, we
mean exponentiality in ( |P| + :), i.e. an upper bound of the shape
exp(poly( |P| + :)).

Example 2.3. We consider an rPTSA that imitates the work of a
probabilistic printer and generates all words of the formF F , where
F 2 {�,⌫}⇤. Initially, it will choose F at random by deciding at
each step whether to print � (with probability ?�), print ⌫ (with
probability ?⌫ ) or stop generatingF (with probability ?⇢ ) in order to
proceed to re-printing the chosenF . Reprinting is possible, because
F will be recorded in the tree-stack using<� and<⌫ . We assume
?� + ?⌫ + ?⇢ = 1. The automaton is presented in Figure 2, where
each transition is accompanied by a short explanation.The rPTSA
is 2-restricted, because it makes two up-and-down passes over the
stack-tree.

Remark 2.4. It is well known that the language {F F |F 2 {�,⌫}⇤}
is not context-free. Indeed, the nondeterministic variant of rPTSA
has been introduced to capture multiple context-free languages
(MCFL) [25], which subsume context-free languages (CFL). Inside
the higher-order (collapsible) pushdown hierarchy [14], MCFLs are
situated between order 1 (CFL) and order 3 [24], and are incompa-
rable with order 2 (indexed languages) [25]. The fact that rPTSA
can simulate probabilistic PDA is not completely obvious. Due to
the :-restriction, one cannot simply replace push and pop with upW
and down. Nevertheless, it is possible to simulate probabilistic PDA
with 1-restriction only.

De�nition 2.5. A threshold problem for the termination proba-
bility of an rPTSA P asks whether P(P) ⇠ A for a given rational
A and ⇠ 2 {<, , >, �}. The threshold problem corresponding to
P(P) � 1 (equivalently, P(P) = 1) is known as the almost sure
termination (AST) problem.

Note that, using queries to the threshold problem, one can ap-
proximate P(P) to an arbitrary level of precision via bisection.

We will also be interested in the expected time to termination
for rPTSA. rPTSA has a natural notion of time: each transition can
be viewed as taking a single unit of time. However, in order to
apply our techniques to higher-order recursive computation, we
will consider a more selective way of timing, where only designated
horizontal transitions are counted. Speci�cally, we assume that each
horizontal transition comes with a �ag that indicates whether or
not it should be counted, and up, down transitions do not contribute
to time. The expected time to termination for an rPTSA is then
calculated with respect to the �agged transitions only.

De�nition 2.6. Given an rPTSA P and c 2 'term, let ✓ (c) be
the number of �agged transitions in c . Then the expected time to
termination is e� (P) := Õ

c 2'term (✓ (c) · wt (c)).

Remark 2.7. Our de�nition of e� (P) is equivalent to expected total
accumulated reward, when ✓ (c) is taken to be the sum of rewards
accumulated along c , where the reward of each transition is given
by a customised reward function. In this paper we focus on ter-
mination time, but all our developments can easily be adapted to
rewards.

De�nition 2.8. The PAST problem for rPTSA P asks whether
e� (P) is �nite. A threshold problem for the expected time to
termination of rPTSA P asks whether e� (P) ⇠ A , given a rational
A and ⇠ 2 {<, , >, �}.

2.2 Probabilistic additive HORS (PAHORS)
Higher-order recursion schemes (HORS) are a computational for-
malism based on rewriting typed terms. Each reduction step corre-
sponds to unfolding a non-terminal according to a corresponding
rule, which corresponds to substituting actual arguments (which
may well be functions) into the function body. In standard HORS,
the type discipline follows that of the simply-typed _-calculus. In
recent work [17], a probabilistic extension of HORS was introduced,
and undecidability (of almost sure termination) was shown to hold
already at order 2, i.e. when arguments can be of base type or
�rst-order functions. In this paper, we will not introduce any re-
strictions on the type-theoretic order. However, we are going to use
a stricter type discipline to restrict the shape of allowable terms.
That discipline will come from linear logic [11].

We use types de�ned by the grammar \ ::= >= | \ ( \ , where >
is a base type and >= stands for the =-fold product of > , i.e. >& · · ·&>|     {z     }

=
(= � 1), and ( is the linear function space. Let N be a �nite set
of typed variables, called non-terminals. We use upper-case letters
� ,⌧, · · · to range overN and writeN(� ) for the type of � . We shall
consider probabilistic (a�ne additive) _-terms with non-terminals
fromN and constant (terminal)> : > , which represents termination.
The typing judgments N | � ` C : \ , where � is a partial function
from variable names to types and dom(�) \N = ;, are de�ned by
induction over the rules given in Figure 3.

The rules restrict the way in which function parameters (free
variables) occur inside a term. However, non-terminals from N are
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Transition type op 2 0 pre-condition
Horizontal @0 (@0, C, dW) none

Up (@0,<0, upW 0)
(@0, C [dW 7!<0], dWW 0) dWW 0 2 dom(C)

(@0, C [dW 7!<0] [dWW 0 7!<init ], dWW 0) dWW 0 8 dom(C)
Down (@0,<0, down) (@0, C [dW 7!<0], d) none

Figure 1: Speci�cation of 2
X�! 2 0, where 2 = (@, C, dW) is such that C (dW) =< and X = (@,<,W, op, ?)

The rPTSA is given by h{@init ,@⇢ }, {<init ,<�,<⌫,<⇢ }, {Winit ,W},�,@init ,<init ,Winiti, where � contains the following transitions.

(@init ,<init ,Winit , (@init ,<�, upW ), ?�) choose �
(@init ,<init ,Winit , (@init ,<⌫, upW ), ?⌫) choose ⌫
(@init ,<init ,Winit , (@⇢ ,<⇢ , down), ?⇢ ) F = n , terminate
(@init ,<init ,W, (@init ,<�, upW ), ?�) choose �
(@init ,<init ,W, (@init ,<⌫, upW ), ?⌫) choose ⌫
(@init ,<init ,W, (@⇢ ,<⇢ , down), ?⇢ ) end �rstF
(@⇢ ,<�,W, (@⇢ ,<�, down), 1) descend after �rstF
(@⇢ ,<⌫,W, (@⇢ ,<⌫, down), 1) descend after �rstF

(@⇢ ,<�,Winit , (@init ,<⇢ , upW ), 1) re-print �rst letter ofF
(@⇢ ,<⌫,Winit , (@init ,<⇢ , upW ), 1) re-print �rst letter ofF
(@init ,<�,W, (@init ,<⇢ , upW ), 1) re-print �
(@init ,<⌫,W, (@init ,<⇢ , upW ), 1) re-print ⌫
(@init ,<⇢ ,W, (@⇢ ,<⇢ , down), 1) end secondF
(@⇢ ,<⇢ ,W, (@⇢ ,<⇢ , down), 1) descend after secondF
(@⇢ ,<⇢ ,Winit , (@⇢ ,<⇢ , down), 1) terminate

Figure 2: Automaton for Example 2.3

N(� ) = \

N | � ` � : \
�(G) = \

N | � ` G : \ N | � ` > : >
N | �1 ` C1 : \ ( \ 0 N | �2 ` C2 : \

N | �1,�2 ` C1 C2 : \ 0

N | � ` C8 : > 8 = 1, · · · ,=
N | � ` hC1, · · · , C=i : >=

N | � ` C : >= 8 2 {1, · · · ,=}
N | � ` c8 C : >

N | �, G : \ ` C : \ 0
N | � ` _G .C : \ ( \ 0

Figure 3: A�ne additive typing rules

R(� ) = _G1 · · · G: .C

�C1 · · · C:
1�! C [C1/G1, · · · , C:/G: ]

c8 hC1, · · · , C=i
1�! C8 C1 �? C2

?
�! C1 C1 �? C2

1�?
�! C2

Figure 4: PAHORS reduction rules

excluded from these restrictions. In addition, we include probabilis-
tic branching

N | � ` C1 : > N | � ` C2 : > ? 2 Q
N | � ` C1 �? C2 : >

with the intention that ? and 1 � ? will be the probabilities of
choosing the left and right branches respectively. Note that, like in
the rule for pairing, the variables in � can be shared. In contrast, in
the rule for function application, they cannot be shared.

De�nition 2.9. A Probabilistic Additive HORS (PAHORS) is a
tuple G = hN ,R, (i, whereN is a �nite set of typed non-terminals,
( 2 N is the start symbol such that N(() = > , and R is a function
that associates to each � 2 N a term N | ; ` _G1 · · · G: .C : N(� )
such that C does not contain _-abstractions and N | G1, · · · , G: `
C : > .

Example 2.10. Let ?1, ?2, ?3 2 Q. Consider the PAHORS G =
hN ,R, (i, where N = {((,>), (� ,> ( >), (� , (> ( >) (

>), (⌧, (> ( >) ( > ( >)}, and R is speci�ed below.
( = � (⌧ � )

� 5 = � (⌧5 ) �?1 5 >
� G = G

⌧ 5 G = 5 (G �?3 >) �?2 >
Because � ,⌧ use functional arguments, G is classi�ed as order 2.

Remark 2.11. PAHORS subsume order-1 probabilistic HORS [17].
To simulate an order-1 non-terminal � : > ! · · · ! > !|              {z              }

=

> , one

can take � : >& · · ·&>|     {z     }
=

( > . A typical rule, such as � G ~ =

� (� G G) (� ~ ~) �? G , can then be simulated by

� I = � h� hc1I, c1Ii, � hc2 I, c2 Iii �? (c1 I) .
In order to de�ne the termination probability P(G), we rely on

reduction rules of the shape C
?

�! C 0 given in Figure 4, where ? 2 Q.
Wewrite Red> (G) for the set of terminating reduction sequences,

i.e. those from ( to >. The subset of Red> (G) consisting of reduc-
tions of length not exceeding = will be written Red>= (G). Similarly,
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we write Red>= (G) for the subset of Red>= (G) comprising reduc-

tions of length =. Given Z = ((
?1�! . . .

?=�! >) 2 Red>= (G), we
de�ne P(Z ) := Œ=

8=1 ?8 .

De�nition 2.12. The termination probability P(G) of a PA-
HORS G is

Õ
Z 2Red> (G) P(Z ). Given a PAHORS G, the associated

almost sure termination (AST) problem asks whether P(G) = 1.

De�nition 2.13. The expected time to termination e� (G) of a
PAHORS G is

Õ1
==0 (1 �

Õ
Z 2Red>= (G) P(Z )). Given a PAHORS G,

the associated positive almost sure-termination problem (PAST)
asks whether e� (G) is �nite.
Remark 2.14. [15] It is known that PAST implies AST, i.e. P(G) < 1
implies e� (G) = 1. Moreover, if P(G) = 1, then e� (G) = Õ1

==0 = ·
(ÕZ 2Red>= (G) P(Z )).

By analogy to rPTSA, one can also study threshold problems for
P(G) and e� (G).
Remark 2.15. For G from Example 2.10, one can show that P(G) = 1
and e� (G) is �nite as long as ?1 < 1 (otherwise P(G) = 0 and
e� (G) = 1). For example, for ?1 = ?2 = ?3 = 0.5, we have
e� (G) = 176

21 . In the setting of probabilistic HORS, the problem of
establishing AST is already undecidable for order-2 probabilistic
HORS [17]. Nonetheless, we will show that the AST and PAST
problems for PAHORS are decidable, even though the order of
schemes in PAHORS is unrestricted.

Remark 2.16. If we replace probabilistic branching �?1 , �?2 , �?3 in
G from Example 2.10 with terminal symbols 0,1, 2 : > ! > ! > , we
obtain an order-2 recursion scheme featuring the following rules.

( = � (⌧ � )
� 5 = 0 (� (⌧ 5 )) (5 >)

� G = G

⌧ 5 G = 1 (5 (2 G >)) >
Unfolding the start symbol ( will now generate an in�nite tree
where terminating branches (those that end with >) will have one
of the forms: 0= >, 0= 1< > and 0= 1= 2< >, where 1  <  =. Note
that the corresponding word language is not context-free (because
of the third case). Consequently, no order-1 probabilistic scheme
can mimic the branching structure of G.

First-order theory of the reals. In this work, we design algorithms
that rely on (decision) procedures for the �rst-order theory of the
reals, (R, +,⇥, ). Given a closed �rst-order formula q over the
signature {+,⇥, }, the problem whether q holds in the universe
of real numbers, with the standard interpretation of + and ⇥, is
decidable [26]. The existential fragment of (R, +,⇥, ), which will
be referred to as EToR, is decidable in polynomial space [5].

3 CHARACTERISING TERMINATION
PROBABILITIES

Let us �x an rPTSA h&,M, �,�,@init ,<init ,Winiti. The goal of this
section is to construct a system of equations that captures the depen-
dencies between parent and child nodes. In order to construct it, we
introduce several auxiliary notions that will help us to decompose
runs.

De�nition 3.1. A prerun is a sequence of runs. Its weight is
de�ned to be the product of weights of the constituent runs.

We will use preruns to represent incomplete runs: we take the
points of contact between adjacent runs in a prerun to be places
(or “gaps”) that are missing transition sequences, and we will show
that transition sequences of certain shapes can be slotted into these
places to complete a prerun to a run.

De�nition 3.2. A run from a con�guration of the form (@, C,W) to
a con�guration of the form (@0, C 0, n) is called a trip.

Note that the last transition in a trip is necessarily a down tran-
sition and that terminating runs are instances of trips.

De�nition 3.3. Let ⇡ = [@1, · · · ,@28 ] (8 � 0). Let TripsW⇡ be the
set of preruns obtained by concatenating 8 trips g1 · · · g8 such that,
for all 1  9  8 , g 9 is a trip from (@29�1, C 9 ,W) to (@29 , C 9+1, n), and
C1 = {(W,<init )}. For 8 = 0, this degenerates to TripsW[] = {n}.

For 8 > 0, it will be useful to see preruns from TripsW⇡ as se-
quences in which 8�1 gaps have been left between trips. Intuitively,
the 8 � 1 gaps (between (@29 , C 9+1, n) to (@29+1, C 9+1,W) for 1  9 < 8;
notice that the tree-stack C 9+1 does not change) can be viewed as
placeholding transitions with weight 1. Our decomposition princi-
ple will consist in �lling the gaps with appropriate transitions.

Overall, TripsW⇡ captures the history of a node, which we will
call the subject node, that has been visited 8 times and ultimately
left by executing down, along with the history of all nodes above
it. Thanks to the requirement that C1 = {(W,<init )}, the �rst entry
into the node is consistent with creating the node.

Figure 5 shows a typical element of TripsW⇡ : the solid arrow start-
ing from @29�1 ( 9th entry) and ending at @29 ( 9th exit) depicts the
9th trip.

Figure 5: A prerun from TripsW⇡ with ⇡ = [@1, · · · ,@28 ]

Remark 3.4. De�ne TerWinit@init :=
–

@2& TripsWinit[@init ,@ ] . Note that Ter
Winit
@init

contains exactly the terminating runs. Consequently, P(P) =Õ
c 2TerWinitqinit

wt (c).

3.1 Inductive characterisation of TripsW⇡
Let = � 1, we write [=] := {1, · · · ,=}. Let � = {W1, · · · ,W |� | }. Then
the set TripsW⇡ of preruns admits the following decomposition with
respect to the child nodes of the subject node. (We view tree-stacks
the way trees occur in nature: the root is at the bottom.) We use
D to denote an assignment of an even-length list of states D8 to
each direction W8 , such that |D8 |  2: . Formally D is a function
on [|� |] := {1, · · · , |� |}, but we sometimes present it as a tuple
D = (D1, · · · ,D |� | ). The decomposition expresses the fact that
each prerun from TripsW⇡ is an interleaving of
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• a prerun of TripsW8D8
(whose subject node is the W8 -child of

the subject node of TripsW⇡ ), for each 1  8  |� |, with
• a “synchronising” prerun consisting of horizontal transitions
inside the subject node, and upW8 transitions and down tran-
sitions from the subject node,

for some D. Note thatD captures assumptions on the behaviour
of each child node of the subject node.

We can describe the decomposition equationally. De�ning
wt (TripsW⇡ ) :=

Õ
c 2TripsW⇡

wt (c), we have:

Decomposition formula 1: TripsW⇡

wt (TripsW⇡ ) =
’
D

⇣ � ÷
82 [ |� | ]

wt (TripsW8D8
)
�
·

’
c 2SynPDW ,⇡

wt (c)
⌘

(1)

where SynPDW ,⇡ consists of (synchronising) preruns of TripsW⇡ in
which transitions from descendant nodes of the subject node are
erased, creating gaps that are consistent withD8 for each W8 , (i.e.,
for each contiguous pair @029�1 @

0
29 from D8 there must be a gap

from @029�1 to @029 and the gaps must occur in the same order as
the list D8 ). See Example 3.5 for an illustration of a synchronising
prerun.

Now if we use D8 to �x the subject node’s up-and-down be-
haviour in the direction W8 , constrain its down-and-up behaviour
by ⇡ , and interpret the gaps as placeholding transitions of weight
1 then the node becomes a �nite Markov chain (see De�nition 3.6),
such that each c 2 SynPDW,⇡ is a trajectory of the chain (that hits
a certain set of states). Consequently,

Õ
c 2SynPD⇡

wt (c) coincides
with the hitting probability, and can be computed e�ectively.

Example 3.5. Suppose ⇡ = [@1,@2,@3,@4,@5,@6], D1 = [@11, @12,
@13, @

1
4],D2 = [@21,@22] with � = {W1,W2}. A possible decomposition

described by Equation (1) is depicted in Figure 6. The blue and grey
preruns are from TripsW1D1

and TripsW2D2
respectively. The prerun

consisting of the black (solid) arrows is a (synchronising) prerun in
SynPDW,⇡ .

Figure 6: A decomposition of TripsW⇡ as per Equation (1)

3.2 Synchronising Markov chain
Given W , ⇡ and D, we de�ne SynPDW ,⇡ as the set of trajectories
(that hit a certain set of states) of a Markov chain. Intuitively, the

Markov chain is a product construction on ( |� | + 1) �nite-state au-
tomata (Markov chains): for each 8 2 {1, · · · , |� |}, the 8-automaton
is the straight-line code given by the list D8 = [@81, · · · ,@8|D8 | ].
The 0-automaton, synchronising with the 8-automata (8 > 0), then
generates elements of SynPDW,⇡ .

De�nition 3.6. Set ⇡ = [@01, · · · ,@0|⇡ | ]. The state set of the syn-
chronising Markov chain, MarkovDW,⇡ , consists of triples of the
form (U, `, d) where U 2 & , ` 2 M, and d is a ( |� | + 1)-tuple with
d0 2 {0, 1, · · · , |⇡ |}, and for each 8 > 0, d8 2 {0, 1, · · · , |D8 |}. (We
view d as a function on the set {0, 1, · · · , |� |}, and use the standard
function update notation d [8 7! 3].)

The transition matrix

(U, `, d) g�! (U 0, ` 0, d 0) (2)

is de�ned by cases of g as follows:

(1) horizontal transition (within the subject node of TripsW⇡ ), where
(U, `,W,@0, ?) 2 � and U < @0|⇡ | .
Then U 0 := @0, ` 0 := `, and d 0 := d.

(2) upW8 transition (from the subject node of TripsW⇡ ),
where (U, `,W, (@0,<0, upW8 ), ?) 2 �, and d8 is even,
and d8 < |D8 |, and @0 = @8d8+1.
Then U 0 := @0, ` 0 :=<0, and d 0 := d [8 7! d8 + 1].

(3) down transition (from the subject node of TripsW⇡ ), where
(U, `,W, (@0,<0, down), ?) 2 �, and d0 is odd, and @0 = @0d0+1.
Then U 0 := @0, ` 0 :=<0, and d 0 := d [0 7! d0 + 1].

(4) odd-to-even (inD8 ), where d8 is odd, and U = @8d8
.

Then U 0 := @8d8+1, and ` 0 := `, and d 0 := d [8 7! d8 + 1].
(5) even-to-odd (in ⇡), where d0 is even, and d0 + 1 < |⇡ |, and

U = @0d0
.

Then U 0 := @0d0+1, and ` 0 := `, and d 0 := d [0 7! d0 + 1].

In the odd-to-even and even-to-odd cases (i.e. the gaps), the proba-
bility of the transition (2) is de�ned to be 1; otherwise we take it to
be ? from the transition in question. Finally, set

EndStates := {(@0|⇡ |,<, ( |⇡ |, |⇡W1 |, · · · , |⇡W |� | |)) | < 2 M}

and de�ne states in EndStates to be absorbing. Thus de�ned, the
transition matrix is a stochastic matrix, because � satis�es stochas-
ticity.

Each trajectory of the Markov chain starts from a state of the
form (@01,<init , (1, 0, · · · , 0)). Preruns in SynPDW,⇡ then correspond
to the trajectories of the chain MarkovDW,⇡ that hit EndStates. It fol-
lows that

Õ
c 2SynPDW ,⇡

wt (c) is the hitting probability of EndStates,

denoted hpDW ,⇡ , which is expressible as a system of linear equations
(see e.g. [20, Theorem 1.3.2]). Since the Markov chain is �nite, this
system is �nite, and hence algorithmically solvable [26].

We write mhtDW ,⇡ for the mean hitting time of EndStates, where
time is calculated with respect to the �agged transitions only (this
could be viewed as a particular case of expected total accumulated
reward).
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3.3 Solution via �xpoints and EToR
Recall that we work in the setting of rPTSA for some �xed restric-
tion : � 1. Then Equation (1) induces an operator � : R= ! R= ,
where = =

Õ:
8=0 ( |& |28 |� |) is the number of TripsW⇡ variables. The

following lemma is a direct consequence of the decomposition.

Lemma 3.7. (�⌘ (Æ0))TripsW⇡ , meaning the TripsW⇡ -component of the

tuple �⌘ (Æ0), corresponds to the aggregate weight of preruns from
TripsW⇡ that can visit up to ⌘ levels in the tree stack.

Corollary 3.8. The termination probability of the given rPTSA isÕ
@2& (LFP (� ))TripsWinit[@init ,@ ]

, where LFP (� ) is the least �xpoint of the
operator � .

Thanks to the above result, we can solve all the threshold
problems associated with termination probabilities. First, using
EToR, one can easily specify the existence of a �xpoint ÆG of �
(i.e. ÆG = � (ÆG)). Then, in order to solve threshold problems for
⇠ 2 {<, }, it su�ces to ask additionally whether Gterm ⇠ A for
the given rational A , where Gterm =

Õ
@2& GTripsWinit[@init ,@ ]

. Note that,

because ⇠ 2 {<, }, it is not necessary to insist that ÆG be the least
�xpoint. To tackle threshold problems for ⇠ 2 {>, �}, we can solve
the complement �rst (using ⇠ 2 {, <}) and reverse the answer.

Closer analysis of the equation system reveals that it can be
constructed in exponential time (assuming : given in unary).

• The number of TripsW⇡ variables is
Õ:
8=0 ( |& |28 |� |) 

|& |2:+2 |� |.
• The number of summands in eq. (1), i.e. possible choices for
D, is (Õ:

8=0 |& |28 ) |� |  |& | (2:+2) |� | .
• Each summand involves |� | variables and the computation
of a hitting probability in MarkovDW ,⇡ . This can be done in
polynomial time with respect to the number of states, so
we focus on this next. By de�nition, the number of states in
MarkovDW,⇡ is |& | |M|(2: + 1) |� |+1.

Overall, we can conclude that the corresponding system of equa-
tions can be constructed in exponential time (wrt ( |P|+:)). Because
EToR is decidable in polynomial space, this implies membership in
EXPSPACE for all the problems concerned.

Theorem 3.9. For any rPTSA P, the threshold problems for P(P)
are decidable and solvable in exponential space. In particular, the
same applies to the AST problem.

4 CHARACTERISING EXPECTED TIME TO
TERMINATION

In this section we give a �xpoint characterisation of the expected
time to termination of an rPTSA, which will help us establish that
the PAST problem and the associated threshold problems are decid-
able.

Remark 4.1. Because we are interested in time to termination, we
will restrict our attention to W,⇡ such that wt (TripsW⇡ ) > 0, as only
such sequences can contribute to termination. Note that W,⇡ such
that wt (TripsW⇡ ) = 0 can be identi�ed e�ectively via reachability
analysis of the system of equations considered in Section 3.

As in Section 3, we �x a :-restricted PTSA, and use notations
introduced therein. We begin by introducing a number of random

variables. Given W and ⇡ , de�ne the expected length (or expected
time to termination) of sequences from TripsW⇡ as

E[TimeW,⇡ ] :=
’

c 2TripsW⇡

? (c) · ✓ (c)

where ? : c 7! wt (c )Õ
c wt (c ) = wt (c )

wt (TripsW⇡ ) is a probability distribution

over TripsW⇡ , and ✓ (·) is the length function, which counts the num-
ber of �agged horizontal transitions in c (recall from Section 2.1
that we aim to count �agged transitions only). Here TimeW,⇡ is
a N-valued random variable de�ned on the sample space TripsW⇡ ,
with probability measure given by ? .

Remark 4.2. Let ⇡ = [@1, · · · ,@28 ] and W 2 �. Note that ? can be
viewed as a conditional distribution, where the condition states that
“a fresh W-node started from state @1 will behave consistently with
the behaviour prescribed by TripsW⇡ ”, i.e. when started in (@1, C1,W)
(C1 = {(W,<init )}), it will terminate in (@2, C2, n) (for some C2), and
when restarted from (@3, C2,W) it will terminate in (@4, C3, n) (form
some C3), and so on. Crucially, if ⇡ = [@init ,@] then the condition
in question states that the rPTSA has a terminating run from 2init
to (@, C, n) for some C .

Given the conditional de�nition of E[TimeW,⇡ ], we have:

Lemma 4.3. For any rPTSA P,

e� (P) =
’
@2&

(E[TimeWinit , [@init ,@ ] ] · wt (Trips
Winit
[@init ,@ ] )).

Note that, if wt (TerWinit@init ) = 1 and there is only one @ such that
wt (TripsWinit[@init ,@ ] ) > 0, then wt (TripsWinit[@init ,@ ] ) = 1 and e� (P) =
E[TimeWinit , [@init ,@ ] ].

De�nition 4.4. Recall from Section 3.1 that for every c 2 TripsW⇡ ,
there exists a unique tuple of even-length lists Æ⇡ = (⇡1, · · · ,⇡ |� | )
where each |⇡ 9 |  2: , such that c decomposes into c � 8 2 TripsW8⇡8

for each 8 2 [|� |], and a synchronising sequence, c �W 2 SynP Æ⇡
W,⇡ .

We express such a decomposition as c = (c � 1, · · · , c � |� |) k c �W ,
and say that the interface (of the decomposition) is Æ⇡ .

De�nition 4.5. Given W and ⇡ , let DW,⇡ be a random variable
which is de�ned on the probability space TripsW⇡ whose values
are tuples of the form Æ⇡ = (⇡1, · · · ,⇡ |� | ). Given c 2 TripsW⇡ , we
de�neDW ,⇡ (c) to be the decomposition interface of c . We write
P[DW ,⇡ = Æ⇡] for the probability that c 2 TripsW⇡ decomposes with
interface Æ⇡ .

Thus we de�ned P[DW,⇡ = Æ⇡] := wt (DW ,⇡= Æ⇡)Õ
Æ⇡ wt (DW ,⇡= Æ⇡)

. Note that by

Equation (1), we have
Õ

Æ⇡ wt (DW ,⇡ = Æ⇡) = wt (TripsW⇡ ).

Lemma 4.6. Recall that hpDW ,⇡ is the hitting probability of EndStates.
Then

P[DW,⇡ = Æ⇡] =
Œ

82 [ |� | ] wt (Trips
W8
⇡8
) · hp Æ⇡

W ,⇡

wt (TripsW⇡ )
(3)
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The set of subsets D�1
W ,⇡ (⇡1, · · · ,⇡ |� | ), where each ⇡8 ranges

over even-length lists of states such that |⇡8 |  2: , is a partition
of the sample space of the random variable TimeW ,⇡ . Hence, by the
Law of Total Expectation, we have

E[TimeW,⇡ ] =
’
Æ⇡
E[TimeW ,⇡ | DW,⇡ = Æ⇡] · P[DW,⇡ = Æ⇡]

Let c 2 TripsW⇡ , de�ne random variables TimeinsideW,⇡ (c) :=
✓ (c �W), and TimeoutsideW,⇡ (c) := Õ

82 [ |� | ] ✓ (c � 8), and so

E[TimeinsideW,⇡ ] =
’

c 2TripsW⇡

? (c) · ✓ (c �W)

E[TimeoutsideW ,⇡ ] =
’

c 2TripsW⇡

? (c) ·
’

82 [ |� | ]
✓ (c � 8)

Thus E[TimeinsideW,⇡ ] is the expected length of preruns obtained by re-
stricting sequences from TripsW⇡ to the horizontal transitions inside
the subject node, and upW and down transition from the subject node;
and E[TimeoutsideW ,⇡ ] is the expected length of preruns c � 8 2 TripsW8⇡8

,
where (⇡1, · · · ,⇡ |� | ) is the decomposition interface of c .

As TimeW,⇡ = TimeinsideW ,⇡ + TimeoutsideW ,⇡ , by the linearity of expec-

tation, we have E[TimeW ,⇡ | DW ,⇡ = Æ⇡] = E[TimeinsideW,⇡ | DW ,⇡ =
Æ⇡] + E[TimeoutsideW ,⇡ | DW,⇡ = Æ⇡].

Lemma 4.7. Recall that mhtDW ,⇡ is the mean hitting time of
EndStates (taking only �agged transitions into account). Suppose
hp Æ⇡

W ,⇡ > 0. Then

1. E[TimeinsideW,⇡ | DW,⇡ = Æ⇡] =
mht Æ⇡W,⇡

hp Æ⇡
W,⇡

2. E[TimeoutsideW ,⇡ | DW,⇡ = Æ⇡] = Õ
82 [ |� | ] E[TimeW8 ,⇡8

]

To sum up:

E[TimeW ,⇡ ] =
’

Æ⇡ :hp Æ⇡
W ,⇡>0

- . (4)

where

- =
mht Æ⇡W ,⇡

hp Æ⇡
W ,⇡

+
’

82 [ |� | ]
E[TimeW8 ,⇡8

]

. =

Œ
82 [ |� | ] wt (Trips

W8
⇡8
) · hp Æ⇡

W ,⇡

wt (TripsW⇡ )

Let Time0W,⇡ := E[TimeW8 ,⇡8
] · wt (TripsW⇡ ). Equation (4) then

implies

Time0W ,⇡ (5)

=
’
Æ⇡

hp Æ⇡
W ,⇡>0

©≠≠≠
´
mht Æ⇡W ,⇡ +

’
82 [ |� | ]

©≠≠≠
´
Time0W8 ,⇡8

·
÷

82 [ |� | ]
9<8

wt (TripsW8⇡8
) · hp Æ⇡

W ,⇡

™ÆÆÆ
¨

™ÆÆÆ
¨

Observe that e� (P) = Õ
@2& Time0Winit , [@init ,@ ] .

Using Equations (1) and (5), one can now de�ne an operator
⌧ : R=1 ! R=1 that combines equations for TripsW⇡ and Time0W,⇡ .

We have =  2
Õ:
8=0 ( |& |28 |� |) (recall that we discard W,⇡ with

wt (TripsW⇡ ) = 0). Note that⌧ will consist of multivariate polynomi-
als with positive coe�cients, i.e. it will be monotone and, thus, have
a non-negative least �xpoint ÆG in R=1 [27]. To make sure that the
least �xpoint contains 1 only if e� (P) = 1, we will discard equa-
tions for variables GTime0W ,⇡ that are irrelevant to e� (P), i.e. those
that no Time0Winit , [@init ,@ ] depends on according to Equation (5) (this
can be determined statically by analysing dependencies in Equa-
tion (5)).

Lemma 4.8. (⌧⌘ (Æ0))TripsW⇡ and (⌧⌘ (Æ0))Time0W ,⇡ correspond to

wt (TripsW⇡ ) and Time0W,⇡ calculated using sequences from TripsW⇡
that can visit up to ⌘ levels in the tree stack. Hence, e� (P) =Õ
@2& LFP (⌧)Time0W ,[@init ,@ ]

.

Then the PAST problem can be solved in EToR by a query that
simply asks about the existence of a �xpoint of ⌧ . The threshold
problems for ⇠ 2 {<, } can be solved similarly by asking about the
existence of a �xpoint ÆG and checking

Õ
@2& GTime0Winit ,[@init ,@ ]

⇠ A .
For ⇠ 2 {>, �}, we can appeal to the complement problem and
then reverse the answer.

By inspecting the shape of the equations involved (similarly to
the previous analysis for TripsW⇡ ) one can con�rm that the �nal
EToR formula is of exponential size. Note that in order to prepare
the �nal EToR query corresponding to⌧ , we need to perform depen-
dency/reachability analysis on Equations (1) and (5), which requires
exponential time. Overall, this implies solvability in exponential
space.

Theorem 4.9. For any rPTSA P, the PAST problem and threshold
problems for e� (P) are decidable and in EXPSPACE.

5 MODEL CHECKING l-REGULAR
PROPERTIES

Let P = h&,M, �,�,@init ,<init ,Winiti be an rPTSA. Our earlier anal-
yses all concerned �nite runs. In this section we investigate in�nite
ones. In order to measure the probability of sets containing such
runs, we follow the standard approach based on deriving f-algebras
from a Markov chain [1]. In our case, this is the Markov chain on
con�gurations of P implied by �, in which terminating con�gu-
rations are assumed to be absorbing states. We use deterministic
Rabin automata as the speci�cation formalism.

De�nition 5.1. A deterministic Rabin automaton (DRA) is a tuple
U = h* , ⌃,!,Dinit ,'i ,where * is a �nite set of control states,
⌃ is a �nite input alphabet, ! ✓ * ⇥ ⌃ ⇥ * is a determinis-
tic and total transition relation, Dinit 2 * is an initial state and
' = {(⇢1, �1), · · · , (⇢=, �=)} is a Rabin acceptance condition, where
⇢8 , �8 ✓ * .

Let x = G0G1 · · · 2 ⌃l . A computation ofU overF is an in�nite
sequence u = D0D1 · · · 2 *l such that D0 = Dinit , (D8 , G8 ,D8+1) 2 !
for all 8 � 0. Let Inf (u) ✓ * be the set of states that appear
in�nitely often in u. We say that x is accepted byU if there exists a
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computation u ofU over x such that Inf (u) \ ⇢8 = ; and Inf (u) \
�8 < ; for some 8 that 1  8  =.

To specify properties of in�nite runs, we use DRA over the input
alphabet ⌃ = & ⇥ �. We will assume that DRA process sequences
of (non-terminating) con�gurations by reading the state and the
current stack symbol of each con�guration. To make sure that
the current stack symbol is always available, we assume that P
generates in�nite sequences almost surely, i.e. wt (TerWinit@init ) = 0. Let
AcceptP,U be the set of in�nite runs from generated by P that
start in 2init and are accepted byU. We will consider the following
veri�cation problems.

- Qualitative: given an rPTSA P and a DRA U over & ⇥ �, is
it true that % (AcceptP,U) = A for A 2 {0, 1}?

- Quantitative: given a rational A , does % (AcceptP,U) ⇠ A hold,
where ⇠ 2 {<, , >, �}?

Both will turn out to be decidable.

5.1 Automata constructions
As a �rst step towards a decision procedure, we apply a product
construction to P andU, to obtain another rPTSA, called PU . The
rPTSA operates in the same way as P, running U concurrently.
Accordingly, its set of states is& ⇥* , whereas the stack alphabet �
remains the same.

To analyze in�nite runs of an rPTSA, it is convenient to assume
that it is given in a normal form, in which there are no horizontal
transitions. Due to the restriction condition, only a �nite number
of transitions can then occur in any node and the restriction of
an in�nite run to any node will be �nite. This will simplify the
decomposition of in�nite runs in what follows.

The construction that eliminates horizontal transitions replaces
each of them with an up> (> 8 �) and records information about
the current state, memory current stack symbol using new states
of the form p((@,D),<,W)q. This continues until a non-horizontal
transition, op (say), is to be �red, in which case the automaton
will return to the original node via a cascade of down operations
that remember—in new state @op—what non-horizontal transition
should be executed, once we reach the original node. Because of
the restriction condition the number of up> operations executed in
a single node will also be restricted.

More formally, we add > to � and modify the rules of PU as
follows.

- Any transition of the form ((@,D),<,W, (@0,D 0), ?) is replaced
by ((@,D),<,W, (p((@0,D 0),<,W)q,<, up>), ?) and
(p((@,D),<,W)q,<init ,>, (p((@0,D 0),<,W)q,<init , up>), ?).

- For any transition ((@,D),<,W, op, ?), where
op is non-horizontal, add (p((@,D),<,W)q,
<init ,>, (@op,<init , down), ?),
(@op,<init ,>, (@op,<init , down), 1) and (@op,<,W, op, 1).

We refer to the normalised automaton as Pnorm
U . Note that

% (AcceptP,U) now corresponds to the probability of in�nite runs
of Pnorm

U in which, for some 1  8  =, all states from ⇢8 occur
�nitely often, and some state from �8 does so in�nitely often. For
the purpose of identifying occurrences of a U-state D in the states
of Pnorm

U , we deem D to occur not only in the original states of the

form (@,D), but also in states of the form p((@,D),<,W)q as well as
@op (provided D occurs in op).

5.2 Decomposition equation
Here we discuss how to decompose in�nite runs. Recall that in
the decomposition equation for TripsW⇡ , |⇡ | was even, because we
considered scenarios in which each up had a matching down. When
working with in�nite runs, we will also need to consider scenarios
with unmatched up’s.

De�nition 5.2. Suppose ⇡ = [@1, · · · ,@28 ,@28+1] and 8 � 0.
- For 8 = 0, we let UpW[@1 ] be the set of in�nite runs c from the
con�guration (@1, {(W,<init )},W).

- For 8 > 0, we let UpW⇡ consist of sequences bc , where b 2
TripsW[@1, · · · ,@28 ] and c is an in�nite run such that if b ends in
(@28 , C8+1, n) then c begins from 2b = (@28+1, C8+1,W). Writing
'
inf
b

for the set of in�nite runs starting at 2b , we de�ne

wt (UpW⇡ ) :=
Õ
b 2TripsW⇡

(wt (b) · wt ('inf
b

)).

Overall, UpW⇡ captures the history of a node that has been visited
8 + 1 times (from below), and ultimately left via one of its children,
along with the history of all nodes above it.

Lemma 5.3 (Subtraction). Let 8 � 0, ⇡ = [@1, · · · ,@28 ] and @28+1 2
& . Then

wt (UpW
⇡++[@28+1 ] ) = wt (TripsW⇡ ) �

’
@2&

wt (TripsW
⇡++[@28+1,@ ] )

where ++ stands for list concatenation. For 8 = 0, we assume TripsW[] =
{n} and wt (n) = 1.

P����. Suppose b 2 TripsW⇡ . Let 2b := (@2+1, C8+1,W) if b ends

with (@28 , C8+1, n). Let '�nb be the set of terminating runs from 2b
(i.e. �nite runs from 2b ending in a con�guration with empty stack
pointer). Observe that wt ('�n

b
) + wt ('inf

b
) = 1. Then we have

wt (TripsW⇡ )

=
’

b 2TripsW⇡

wt (b) =
’

b 2TripsW⇡

wt (b) (wt ('�n
b
) + wt ('inf

b
))

=
’

b 2TripsW⇡

(wt (b)wt ('�n
b
)) +

’
b 2TripsW⇡

(wt (b)wt ('inf
b

))

=
’
@

’
b 2TripsW⇡++[@28+1,@ ]

wt (b) + wt (UpW
⇡++[@28+1 ] )

=
’
@

wt (TripsW
⇡++[@28+1,@ ] ) + wt (UpW

⇡++[@28+1 ] )

⇤

Note that our assumption wt (TerWinit@init ) = 0 is equivalent to
wt (UpWinit[@init ] ) = 1.

A typical sequence from UpW⇡ will enter the subject node, make
several return trips to all but one child and then leave the node by
moving on to that child and never returning again. This is captured
by the following.
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Decomposition formula 2: UpW⇡

wt (UpW⇡ ) =
’
D

⇣ � ÷
82 [ |� | ]

wt (TripsOrUpW8D8
)
�
·

’
c 2SynPDW ,⇡

wt (c)
⌘

(6)

where D ranges over (D1, · · · ,D |� | ) such that all but one D8 are
of even length and

TripsOrUpW8D8
=

(
TripsW8D8

|D8 | is even
UpW8D8

|D8 | is odd

In this case SynPDW ,⇡ ranges over �nitely many �nite trajectories
that reach (@,<, ( |⇡ |, |⇡W1 |, · · · , |⇡W |� | |)), where@ is the last element
of the unique odd-length D8 (this is the node to which the trace
moves eventually).

5.3 Auxiliary Markov chain
Next we construct a Markov chain that will capture dependencies
between the sets UpW⇡ . Its states will be of the form UpW⇡ , where
wt (UpW⇡ ) > 0. Similarly, below we only mean to refer to TripsW⇡
such that wt (TripsW⇡ ) > 0. Such cases are decidable, thanks to the
results in Section 3. We do this to make sure that the probabilities
involved are non-zero. We set UpW⇡

?
�! UpW8⇡8

, where ? is taken to
be Õ

D
D8=⇡8

⇣ �Œ
9<8 wt (Trips

W:
D 9

)
�
·Õc 2SynPDW ,⇡

wt (c)
⌘
· wt (UpW8⇡8

)

wt (UpW⇡ )
.

This expresses the conditional probability that an in�nite trace,
on entering a W-node, will leave a “footprint” ⇡8 in W8 (in particular
it will leave the node via W8 ) under the condition that its W “foot-
print” is ⇡ . We obtain a Markov chain this way, because when an
in�nite trace starts a W-node leaving an odd-length footprint ⇡ , it
must produce an odd-length footprint in one of its upper nodes.
Consequently, the weights of outgoing transitions from UpW⇡ add
up to 1.

5.4 Strongly connected components
Let ⇠ be a bottom strongly connected component (BSCC) of the
Markov chain de�ned above. Note that, in order to determine such
components, we can ignore probabilities and only use the under-
lying directed graph. We are interested in BSCCs, because this is
where in�nite runs will (almost surely) end up. Consequently, the
BSCC where an in�nite run ends up determines the acceptance
status of that run.

Recall that all states of ⇠ have the form UpW⇡ . Pick UpW⇡ from ⇠ .
We will be interested in computing the set ⇠inf of states of* that
occur inside sequences from UpW⇡ (recall that states of the converted
rPTSA Pnorm

U contain occurrences of states from * , which were
initially introduced by the product construction and then preserved
by the normalisation routine).

⇠inf can be calculated via reachability analysis on the decompo-
sition equations for Up and Trips: we need to record all the states

from * occurring on the relevant synchronising paths and those
corresponding to the associated Trips- and Up-sets. The latter can
be calculated recursively using the decomposition equations. We
stop the recursion when we encounter the same set in a recursive
branch, as no new states can be found by inspecting the same equa-
tions. A BSCC ⇠ is accepting if ⇠inf \ ⇢8 = ; and ⇠inf \ �8 < ; for
some 8 .

After accepting BSCC have been identi�ed, calculating
% (AcceptP,U) boils down to calculating the probability of reaching
such an accepting BSCC from UpWinit[ (@init ,Dinit ) ] in the Markov chain
de�ned in Section 5.3. This can be done by solving a system of linear
equations, as the relevant probability corresponds to the probability
of hitting states from good BSCCs.

5.5 Solution via EToR
Ultimately, we will solve both the qualitative and quantitative
model-checking problems via an EToR query. In earlier sections,
it su�ced to build EToR queries that referred to any �xpoint of
the system of questions de�ning wt (TripsWD). However, in order to
express the above methodology in EToR, it is necessary to specify
the exact values ofwt (TripsWD) (i.e. the LFP) in EToR, so that we can
construct the directed graph behind the auxiliary Markov chain,
identify the relevant BSCCs and be able to specify the weights
from the auxiliary Markov in EToR. It is clear that the LFP can
be expressed in the �rst-order theory of the reals but, to do the
same in EToR, we will augment the system of equations with
additional constraints, which will deliver the LFP as the unique
�xpoint. To this end, we follow ideas from [4, 9] and, in addi-
tion to �xpoint equations for G , include constraints of the form
GTripsW⇡

= 0 or GTripsW⇡ = 1 or 0 < GTripsW⇡
< 1, depending on

whether wt (TripsW⇡ ) = 0, wt (TripsW⇡ ) = 1 or 0 < wt (TripsW⇡ ) < 1
respectively. Note that we can determine which is the case for
any given W,⇡ using techniques from Section 3, i.e. auxiliary EToR
queries.

Theorem 5.4. Both the qualitative and quantitative DRA model-
checking problems for rPTSA are decidable.

P����. To solve both problems, we start o� with the automata-
theoretic constructions. Then, using the methodology of Sections 3
and 4 (decidable EToR queries), one can e�ectively construct the
directed graph underlying the auxiliary Markov chain (Section 5.3).
Using standard graph-theoretic algorithms, one can then decom-
pose it into strongly connected components and identify the bottom
ones. For each BSCC⇠ , we then verify whether it is accepting with
the help of the decomposition formula, as discussed above. Next
the probability of reaching an accepting BSCC can be speci�ed
in EToR as a solution to a system of linear equations, since the
coe�cients (probabilities from the auxiliary Markov chain) can
be. This is because they are arithmetic expressions built from ei-
ther wt (TripsW⇡ ) (whose speci�cation is discussed above), wt (UpW⇡ )
(which can be derived from wt (TripsW⇡ )’s) or hitting probabilities
from the synchronising Markov chain, which is �nite. Finally, both
the qualitative and quantitative veri�cation problems can be speci-
�ed in EToR. ⇤
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One can show that the �nal EToR query will be of exponential
size and that it can be produced using exponential space, due to
the auxiliary EToR queries and graph construction. This implies
membership in EXPSPACE.

Theorem 5.5. The qualitative and quantitative DRA model-
checking problems for rPTSA are in EXPSPACE.

6 PROBABILISTIC ADDITIVE HORS
(PAHORS)

In this section we return to PAHORS, show how to relate them
to rPTSA, which will enable us to derive decidability results for
PAHORS.

Let G = hN ,R, (i be a PAHORS. The connection to rPTSA is
based on a relationship between the deterministic version of rPTSA
and a class of recursion schemes called MAHORS [6]. MAHORS
are tuples h⌃,N ,R, (i, where ⌃ is a �nite alphabet of terminals
0 : >= ( > andN ,R, ( are de�ned as for PAHORS except that prob-
abilistic choice is disallowed. ( is then rewritten using (unweighted
versions of) rules for unfolding non-terminals and projecting, which
can be applied in contexts of the form

⇠ ::= [ ] | 0hC1, · · · , C8 ,⇠, C8+1, · · · , C=i.
Thus, MAHORS generate a potentially in�nite tree over a �nite
ranked alphabet of terminals, whereas PAHORS do not generate
any structure at all (indeed termination is the only thing observable
about PAHORS computation). In what follows we recast the termi-
nation probability of a PAHORS as a summation over terminating
branches of a tree generated by a MAHORS.

6.1 From PAHORS to MAHORS
The translation is based on replacing probabilistic branching �?
with a terminal0? : >&> ( > . LetQG be the set of rational numbers
that occur in the rules of G. De�ne the alphabet ⌃G to consist of
terminals 0? : >&> ( > for each ? 2 QG . We write C for the term C
in which each subterm of the formD1�?D2 is replaced by 0? hD1,D2i
inductively. Let R(� ) be R(� ). Then G = h⌃G [ {>},N ,R, (i is a
MAHORS. Accordingly, one can view TG as a partial function from
{!,'}⇤ to ⌃G [ {>} with a pre�x-closed domain. Let Top(TG) =
{c 2 {!,'}⇤ | TG (c) = >}. Given c = ✓1 · · · ✓: 2 Top(TG), with
✓8 2 {!,'}, let 0?1 · · ·0?:> be the corresponding branch of TG0 .
Let the corresponding weight P(G, c) be Œ:

8=1 ?
0
8 , where ?

0
8 = ?8

(if ✓8 = !) and ? 08 = 1 � ?8 (if ✓8 = '). Notice that there is a 1-
1 correspondence between maximal reduction sequences of the
PAHORS G and maximal branches of the tree TG . Moreover we
have P(G) = Õ

c 2Top (TG) P(G, c).

Lemma 6.1. For any PAHORS G, there exists an rPTSA whose ter-
mination probability is P(G).

P����. We take advantage of the correspondence between PA-
HORS andMAHORS. Consider theMAHORSG. In [6], it was shown
how to construct a restricted tree-generating tree-stack automaton
that generates the same tree as G. In particular, the automaton will
have transitions of the form�(@,<,W) = 0? (@1,@2) and�(@,<,W) =
> associated with terminals of G. To obtain an rPTSA, we replace

�(@,<,W) = 0? (@1,@2) with (@,<,W,@1, ?) and (@,<,W,@2, 1 � ?).
To handle �(@,<,W) = >, we add a new state @term and transi-
tions that will trigger a cascade of down’s: (@,<,W,@term, 1) and
(@term,<0,W 0, (@term,<0, down), 1) for any stack symbolW 0 andmem-
ory<0. Because P(G) = Õ

c 2Top (TG) P(G, c), the resultant rPTSA
has the same termination probability as P(G). ⇤

The result makes it possible to apply techniques developed in
Section 3 for rPTSA to PAHORS. In particular, we have:

Theorem 6.2. The AST problem and the threshold problem for PA-
HORS are decidable.

6.2 From PAHORS to MAHORS with steps
In order to investigate the expected time to termination for PA-
HORS, we will consider another conversion to MAHORS. In addi-
tion to generating a tree corresponding to the structure of proba-
bilistic branching, it will also keep track of the number of reduction
steps related to unfolding non-terminals and the projection rules.
For short, we shall call them u/p rules.

This will be done with the help of a dedicated terminal step :
> ( > . Given a term N | ; ` C : > , let Ĉ be C in which each sub-
term of the form D1 �? D2 is replaced with 0? hD1,D2i (as in C ) and
each subterm of the form c8 D is replaced with step(c8D) (all in an
inductive manner).

De�nition 6.3. Given a PAHORS G = hN ,R, (i, let Ĝ = h⌃G [
{>, step}, R̂, (i be a MAHORS in which, given R(� ) = _G1 · · · G: .C ,
we set R̂ (� ) = _G1 · · · G: .step(Ĉ).

Let us write �!� for a u/p step of Ĝ executed in an evaluation
context � , de�ned by � ::= [ ] | step� . Then Ĝ turns out to track
the number of u/p steps in G in the following sense.

Lemma 6.4. Suppose G = hN ,R, (i is a PAHORS and N ` C : > .
We have C

n,1�!= C 0 via u/p steps if and only if Ĉ �!=
� step= (Ĉ 0).

P����. Observe that C
n,1�! C 0 via a u/p step if and only if Ĉ �!�

step(Ĉ 0). To conclude the Lemma, it su�ces to iterate the above
observation, because �!� permits reductions under step. ⇤

Lemma 6.4 shows that u/p steps in G are faithfully represented in
Ĝ. In particular, an in�nite sequence of u/p steps in G will generate
in�nitely many occurrences of step. On the other hand, if a sequence
of u/p steps in G cannot be extended with another u/p step then
the reduction must have encountered > or D1 �? D2. In this case, by
Lemma 6.4, the corresponding �!⇤

� reduction in Ĝ will get stuck
at � [>] or � [0? hD̂1, D̂2i] respectively, for some context � . In the
former case, both G and Ĝ are stuck. In the latter case, in G the
reduction will continue from D1 or D2. Correspondingly, in Ĝ we
can start reducing D̂1 or D̂2 (using �!� ) respectively. Consequently,
reduction sequences in G are in 1-1 correspondence with branches
of Ĝ. We will rely on Ĝ when calculating e� (G). Note that the
de�nitions of e� (·) are slightly di�erent for rPTSA and PAHORS,
but they coincide if P(G) = 1 (Remark 2.14). Recall that P(G) < 1
implies e� (G) = 1.

Lemma 6.5. For any PAHORS G with P(G) = 1, there exists an
rPTSA whose expected time to termination is e� (G).
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P����. This time, we exploit the MAHORS Ĝ. Via [6], we can
obtain a restricted tree-generating tree-stack automaton that gen-
erates the same tree as Ĝ. In particular, the automaton will have
transitions of the form �(@,<,W) = step(@0), �(@,<,W) = 0? (@1,@2)
and �(@,<,W) = >.

To obtain an rPTSA, we replace them with horizontal transi-
tions. To handle �(@,<,W) = step(@0), we add (@,<,W,@0, 1). For
�(@,<,W) = 0? (@1,@2), we add (@,<,W,@1, ?) and (@,<,W,@2, 1 �
?); for �(@,<,W) = >, we add a new state @term along
with (@,<,W,@term, 1) and (@term,<0,W 0, (@term,<0, down), 1) for any
stack symbol W 0 and memory<0.

Note that all terminals have been replaced with horizontal tran-
sitions but only the �rst two cases should be �agged as those to
be counted. Note also that the extra down transitions related to
termination will not be counted. By Lemma 6.4 and the following
discussion, the expected time to termination in the resultant rPTSA
will coincide with e� (G). ⇤

The above result enables us to bring the results developed in
Section 4 to bear on PAHORS. Recall that before referring to rPTSA,
it is necessary to check P(G) = 1, which can be done using Theo-
rem 6.2. If P(G) < 1, G can be classi�ed immediately as a negative
instance of PAST.

Theorem 6.6. The PAST problem for PAHORS is decidable.

Using similar conversions to the above-mentioned PAHORS-
to-rPTSA translations, one can also deploy our results on DRA
model-checking (Section 5) in the setting of PAHORS. In order
to specify interesting properties of PAHORS, we can reintroduce
terminals (in the spirit of step), which will map to special states
using the translation from [6]. One can then use these states in
DRA speci�cations. In turn, access to � gives DRA the ability to
talk about the current active procedure (non-terminal).

The above translations to rPTSA can be implemented in poly-
nomial time, because the underpinning translation in the tree-
generating case has this complexity [6, Theorem 7]. Also, the re-
striction parameter : is polynomial in the size of G. Consequently,
the exponential-space complexity for rPTSA (wrt automaton size
and :) extends to decision problems for PAHORS.

Theorem 6.7. The AST, PAST and threshold problems for PAHORS
are in EXPSPACE.

7 CONCLUSION
To our knowledge, PAHORS is the �rst non-trivial class of higher-
order programs with decidable AST and PAST problems. What is
more, we have developed decision procedures that help analyse the
associated termination probability, expected termination time, and
omega-regular properties. They can be reduced to statements in
the existential fragment of the �rst-order theory of the reals.
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