
Reachability in Pushdown Register Automata?

Andrzej S. Murawski1, Steven J. Ramsay1, and Nikos Tzevelekos2

1 University of Warwick
2 Queen Mary University of London

Abstract. We investigate reachability in pushdown automata over infi-
nite alphabets: machines with finite control, a finite collection of registers
and pushdown stack. First we show that, despite the stack’s unbounded
storage capacity, in terms of reachability/emptiness these machines can
be faithfully represented by using only 3r elements of the infinite alpha-
bet, where r is the number of registers. Moreover, this bound is tight.
Next we settle the complexity of the associated reachability/emptiness
problems. In contrast to register automata, where differences in regis-
ter storage policies gave rise to differing complexity bounds, the empti-
ness problem for pushdown register automata is EXPTIME-complete in
all cases. We also provide a solution to the global reachability problem,
based on representing pushdown configurations with a special register au-
tomaton. Finally, we examine extensions of pushdown storage to higher
orders and show that reachability is undecidable already at order 2, un-
like in the finite alphabet case.

1 Introduction

Recent years have seen lively interest in automata over infinite alphabets, driven
by applications in quite diverse areas where abstraction by a finite domain was
deemed unsatisfactory. A case in point are markup languages [18,4], most no-
tably XML, which permit the use of potentially unbounded data values in doc-
uments and allow queries to perform comparison tests on such data. A simi-
lar scenario occurs in reference-based programming languages, such as object-
oriented [6,2,12] or ML-like languages [16,17], where memory is managed with
the help of abstract addresses (reference names) that can be created afresh,
compared for equality but little else. Other examples include array-accessing
programs [1] as well as programs with restricted integer parameters [7].

Such applications call for a robust theory of automata over infinite alphabets,
which will match our understanding of the finite-alphabet setting. Thus the lim-
its will be exposed and a complexity-theoretic guide established for applications.
A lot of the groundwork, surveyed in [20,3], was already dedicated to uncover-
ing a notion of “regularity” in the infinite-alphabet case. One way to extend
the concept of finite memory to such a setting consists of introducing a fixed
number of registers for storing elements of the alphabet [13]. Another strand of

? Research supported by the Engineering and Physical Sciences Research Council
(EP/J019577/1) and the Royal Academy of Engineering (RF: Tzevelekos).

work aimed to identify the infinite-alphabet “context-free” languages. Cheng and
Kaminski [8] introduced context-free grammars over infinite alphabets and de-
fined a corresponding notion of pushdown automata. Segoufin presents a similar
definition in [20], albeit couched in a way suitable to process data words.

Our paper is devoted to studying exactly such computational scenarios through
a study of pushdown register systems (PDRS), devices in which registers are in-
tegrated with a pushdown store. Although of foundational nature, the work is
largely motivated by the pertinence of such machines to software model check-
ing [6,2], and in particular their application to game-semantics-based verifica-
tion [17]. We present several new results on the complexity of reachability testing.
Altogether they fill a gap in the theory of “context-free” languages over infinite
alphabets. More specifically, we make the following contributions.

Alphabet distinguishability A finite-memory automaton [13] with r registers can
store r elements of the infinite alphabet at any instant. In fact, such automata
are only capable of remembering r elements of the infinite alphabet over the
course of a run — for any accepting run one can construct another one involving
only r elements of the alphabet. Even though pushdown register systems have
no bound on the number of elements of the alphabet that can be stored at any
instant, we show that, over the course of a run, they can nevertheless remember
at most 3r of them. More precisely, we show that for any run of a PDRS with
r registers there exists an equivalent run involving only 3r elements. Moreover,
no smaller number is enough: we exhibit a family of PDRS whose runs require
remembering at least 3r elements.

Reachability testing The above-mentioned result yields an obvious methodology
for reductions to the finite-alphabet setting, which immediately implies decid-
ability of associated reachability problems, and language emptiness. While the
decidability of emptiness has already been proved in [8] using context-free gram-
mars, we provide exact complexity bounds for the problem, namely, EXPTIME-
completeness.

In the pushdown-free setting, language nonemptiness was known to be NL-,
NP- and PSPACE-complete, depending on the register discipline. In contrast,
in the pushdown case, such distinctions do not affect the complexity: even if
identical elements can be kept in different registers, the problem can still be
solved in EXPTIME, while it is EXPTIME-hard already in the case where only
distinct elements are allowed. In the last case, the hardness proof is technically
involved since sequences of distinct names do not provide a supportive frame-
work for representing memory content (as needed in reduction arguments using
computation histories).

We show how to conduct global reachability analysis, which asks for a rep-
resentation of all configurations from which a specified set of configurations can
be reached. In the finite-alphabet case, it is well known that, if the target set is
regular, the set of configurations that reach it can be captured by a finite au-
tomaton [5]. We prove an analogous result in the infinite-alphabet setting using
a variant of register automata.

Higher-order Higher-order pushdown automata [15] take the idea of pushdown
storage further by allowing for nesting. Standard pushdown store is considered
to be order 1, while the elements stored in an order-k (k > 1) pushdown store are
(k−1)-pushdown stores. In the finite alphabet setting this leads to an infinite
hierarchy of decidable models of computation with a (k−1)-EXPTIME-complete
problem at order k. We examine how the model behaves in the infinite alphabet
setting, after the addition of a fixed number of registers for storing elements of
the infinite alphabet.

We first observe that one can no longer establish a uniform bound on the
number of symbols of the infinite alphabet that suffice to represent arbitrary
runs. The existence of such a bound would imply decidability of the associated
reachability problems, but the lack of a bound is not sufficient for establishing
undecidability: indeed, the decidable class of data automata from [4] contains an
automaton that can recognize all words consisting of distinct letters. Still, we
show that the reachability problem for higher-order register pushdown automata
is undecidable, already at order 2 and with one register.

2 Basic Definitions

Let us assume a countably infinite alphabet D of data values or names. We
introduce a simple formalism for computations based on a finite number of
D-valued registers and a pushdown store. Writing [r] for {1, · · · , r}, by an r-
register assignment we mean an injective map from [r] to D. We write Regr
for the set of all such assignments.

Definition 1. A pushdown r-register system (r-PDRS) is a tuple S =
〈Q, qI , τI , δ〉, where:
– Q is a finite set of states, with qI ∈ Q being initial,
– τI ∈ Regr is the initial r-register assignment,
– and δ ⊆ Q×Opr ×Q is the transition relation,

with Opr = { i•, push(i), pop(i) | 1 ≤ i ≤ r } ∪ { pop• }.3

The operations executed in each transition have the following meaning: –
the i• operation refreshes the content of the ith register; – push(i) pushes the
symbol currently in the ith register on the stack; – pop(i) pops the stack if
the top symbol is the same as that stored in the ith register; – pop• pops the
stack if the top of the stack is currently not present in any of the registers. This
semantics is given formally below.

Definition 2. A configuration of an r-PDRS S is a triple (q, τ, s) ∈ Q ×
Regr×D∗. We say that (q2, τ2, s2) is a successor of (q1, τ1, s1), written (q1, τ1, s1) `
(q2, τ2, s2), if (q1, op, q2) ∈ δ for some op ∈ Opr and one of the following condi-
tions holds.

3 For technical reasons, it is convenient to have ε-transitions. However, to keep the
definition minimal, we observe that they can be simulated with push(1) followed by
pop(1).

– op = i•, ∀j. τ2(i) 6= τ1(j), ∀j 6= i. τ2(j) = τ1(j) and s2 = s1.
– op = push(i), τ2 = τ1 and s2 = τ1(i)s1.
– op = pop(i), τ2 = τ1 and τ1(i)s2 = s1.
– op = pop•, τ2 = τ1 and, for some d ∈ D, ∀j. τ1(j) 6= d and ds2 = s1.

A transition sequence of S is a sequence ρ = κ0, · · · , κk of configurations with
κj ` κj+1, for all 0 ≤ j < k. We say that ρ ends in a state q if qk = q, where qk
is the state in κk. We call ρ a run if κ0 = (qI , τI , ε).

Remark 3. r-PDRS is meant to be a minimalistic model allowing us to study
reachability in the infinite-alphabet setting with registers and pushdown storage.
Existing related models [8], [20] feature transitions of a more compound shape,
which can be readily translated into sequences of PDRS transitions.

For instance, a transition of an infinite-alphabet pushdown automaton [8]
typically involves a refreshment (i•) followed by pop (pop(j)) and a sequence of
pushes (push(j)). This decomposition leads to a linear blow-up in size for trans-
lations of reachability questions into the r-PDRS setting. For register pushdown
automata [20], an additional complication is their use of non-injective register
assignments. Observe, though, that transitions in the non-injective framework
can be easily mimicked using injective register assignments provided we keep
track of the partitions determined by duplicated values in the original automa-
ton. The book-keeping can be implemented inside the control state, which leads
to an exponential blow-up in the size of the system, because the number of all
possible partitions is exponential. Note that the number of registers does not
change during such a simulation. Another difference is that register pushdown
automata [20] are tailored towards data languages, i.e. a stack symbol is an
element of D paired up with a tag drawn from a finite set. From this perspec-
tive, r-PDRSs use a singleton set of tags. Still, richer tag sets could be encoded
via sequences of elements of D (for example, to simulate the ith out of k tags,
we could push sequences of the form di1d2 for d1, d2 ∈ D with d1 6= d2). This
reduction is achievable in polynomial time.

Following [13,8,18], we mostly use injective register assignments. This is done
to allow us to explore whether the restriction still leads to asymptotically more
efficient reachability testing, as in the pushdown-free case. On a foundational
note, injectivity gives a more essential treatment of freshness with respect to a
set of registers: non-injective assignments can easily be used to encode PSPACE
computations that have little to do with the interaction between finite control
(and pushdown) and freshness.

Name permutations There is a natural action of the group of permutations of
D on stacks, assignments, runs, etc. For instance, given permutation π : D → D
and an assignment τ , the result of applying π to τ is the register assignment
π · τ given by {(i, π(d)) | (i, d) ∈ τ}. Similarly, π · s = π(dn) · · ·π(d1) for any
stack s = dn · · · d1 while, on the other hand, π · q = q for all states q. Hence,
π · (q, τ, s) = (q, π · τ, π · s) and, for ρ = κ0 ` · · · ` κn a transition sequence, π · ρ
is the sequence π · κ0, · · · , π · κn.

Note that, as long as our constructions involve finitely many names, they will
always have a finite support: we say that a set S ⊆ D supports some (nominal)
element x if, for all permutations π, if π(n) = n for all n ∈ S then π · x = x.
Accordingly, the support ν(x) of x is the smallest set S supporting x. For
example, ν(τ) = {τ(i) | i ∈ [r]}, for all assignments τ . The support of a run
ρ = κ0 ` · · · ` κn is ν(ρ) =

⋃n
j=0 ν(κj), i.e. it consists of all elements of D that

occur in it. The finite-support setting can be formally described by means of
nominal sets [11] and closure results such as the following hold.

Fact 4 (Closure Under Permutations) Fix an r-PDRS and let ρ be a tran-
sition sequence and π : D → D a permutation. Then π · ρ is also a transition
sequence.

3 Distinguishability

Devices with r registers but without pushdown storage, such as finite-memory
automata [13], can take advantage of the registers to distinguish r elements of D
from the rest. Consequently, any run can be replaced with a run that ends in the
same state, yet is supported by merely r elements of the infinite alphabet [13,
Proposition 4].

With extra pushdown storage, an r-PDRS is capable of storing unboundedly
many elements of D. Nevertheless, the restricted nature of the stack makes it
possible to place a finite bound on the size of the support needed for a run to a
given state, which is again a function of the number of registers.

Lemma 5 (Limited Distinguishability). Fix an r-PDRS. For every transi-
tion sequence ρ = (q0, τ0, ε) `n (qn, τn, ε), there is a transition sequence ρ′ =
(q0, τ

′
0, ε) `n (qn, τ

′
n, ε) with τ ′0 = τ0, τ ′n = τn and |ν(ρ′)| ≤ 3r.

Proof. The proof is by induction on n. For n ≤ 1 the result is trivial. Otherwise,
the difficult case arises when the transition sequence is of the form: (q0, τ0, ε) `k
(qk, τk, ε) `n−k (qn, τn, ε) with 0 < k < n. It follows from the induction
hypothesis that there are sequences: ρ1 = (q0, τ

′
0, ε) `k (qk, τ

′
k, ε) and ρ2 =

(qk, τ
′
k, ε) `n−k (qn, τ

′
n, ε) with τ ′0 = τ0, τ ′n = τn, τ ′k = τk and which each,

individually, use no more than 3r names. Let N ⊇ ν(τ0)∪ ν(τk)∪ ν(τn) be a set
of names of size 3r. We aim to map ν(ρ1) and ν(ρ2) into N by injections i and j
respectively. For i we set i(a) = a for any a ∈ ν(τ0)∪ν(τk) and otherwise choose
some distinct b ∈ N \ (ν(τ0) ∪ ν(τk)). Similarly, for j we set j(a) = a for any
a ∈ (ν(τk) ∪ ν(τn)) and otherwise choose some distinct b ∈ N \ (ν(τk) ∪ ν(τn)).
Note that these choices are always possible because |ν(ρ1)| ≤ |N | ≥ |ν(ρ2)|.
Finally, we extend i and j to permutations πi and πj on D. Since transition
sequences are closed under permutations (Fact 4): (q0, πi · τ0, ε) `k (qk, πi · τk =
πj · τk, ε) `n−k (qn, πj · τn, ε) is a valid transition sequence with πi · τ0 = τ0,
πj · τn = τn and which is supported by a subset of N . ut

Corollary 6. Fix an r-PDRS S and a state q of S. If there is a run of S ending
in q then there is a run of S ending in q that is supported by at most 3r distinct
names.

The 3r bound given above is optimal in the sense that there exists an r-PDRS
such that all runs to a certain state will have to rely on 3r elements of D.

Lemma 7 (Most Discriminating r-PDRS). There exists an r-PDRS 〈Q, qI , τI , ε〉
and q ∈ Q such that |ν(ρ)| = 3r for any run ρ ending in q.

Proof. Consider the following high-level description of an r-PDRS. The machine
proceeds as follows:
1. Push registers in numerical order, twice, to obtain stack τI(r) · · · τI(1)τI(r) · · · τI(1).
2. Refresh registers by performing i• for all 1 ≤ i ≤ r. Let the new assignment

be τ1.
3. Perform pop• r-times, thus ensuring that, for each 1 ≤ i, j ≤ r, τI(i) 6= τ1(j).
4. Push all registers in numerical order, to obtain stack τ1(r) · · · τ1(1)τI(r) · · · τI(1).
5. Refresh all registers. Let the new assignment be τ2.
6. Perform pop• 2r-times, thus, for each i, , j, τ2(i) 6= τ1(j) and τ2(i) 6= τI(j).
7. Silently transition to state q.

Now observe that the conditions in steps 3 and 6 and the fact that register
assignments are injective ensure that |ν(τI) ∪ ν(τ1) ∪ ν(τ2)| = 3r. Hence, any
run reaching q is supported by exactly 3r distinct names. ut

Remark 8. The 3r bound given above can be adapted to the automata presen-
tations of [8,20] yielding bounds 3r+Θ(1). An adaptation of Lemma 7 improves
upon Example 6 of [8], where a language requiring 2r−1 different symbols was
presented.

Being able to bound the number of registers is useful for obtaining reachability
algorithms as it allows us to remove the complications of the infinite alphabet
and reduce problems to the well-studied finite alphabet setting (e.g. Theorem 9).

4 Reachability is EXPTIME-complete

We consider the following decision problem, call it r-PDRS Reach:

Given an r-PDRS S and q ∈ Q, is there a run of S ending in q?

We shall show that the problem (and its counterparts for all the other closely
related machine models) is EXPTIME-complete. Note that reachability is equiv-
alent to language non-emptiness in the automata case.

Theorem 9. r-PDRS Reach and language emptiness for infinite-alphabet push-
down automata [8] and register pushdown automata [20] are solvable in exponen-
tial time.

Proof. Lemma 5 yields an exponential-time reduction of r-PDRS Reach to
the classic reachability problem for pushdown systems over finite alphabets [5]:
one can replace the r D-valued registers with r [3r]-valued registers, and then
incorporate them into the finite control (for a singly-exponential blow-up of the
state space). Since the latter problem is solvable in polynomial time, it follows
that r-PDRS Reach is in EXPTIME.

By Remark 3, the emptiness problem for infinite-alphabet pushdown au-
tomata [8] can be reduced to r-PDRS Reach in polynomial time, immediately
yielding the EXPTIME upper bound4. For register pushdown automata [20] we
have an exponential-time reduction to r-PDRS Reach, which does not yield
the required bound. However, recall that the translation into r-PDRS preserves
the number of registers, so Lemma 5 still implies a linear upper bound for the
number of D-values needed for finding an accepting run. Consequently, we can
reduce language emptiness of register pushdown automata to a reachability prob-
lem for pushdown systems at an exponential cost. Since the latter is in P, the
former is in EXPTIME. ut

The bound given above is tight: we simulate a polynomial-space Turing ma-
chine with a stack (aka polynomial-space auxiliary pushdown automaton [9]),
which has an EXPTIME-complete halting problem5.

Theorem 10. r-PDRS Reach is EXPTIME-hard.

Proof (sketch). For simplicity, let us assume a binary tape alphabet. The main
challenge in the proof is the modelling of n tape cells using p(n) registers, for a
polynomial p. Recall that register assigments are injective, so it is not clear which
registers represent 0’s and which represent 1’s. Thus, to encode n bits b1, · · · , bn,
we shall use a special encoding scheme based on 2n names r1, · · · , r2n ∈ D stored
in registers and an auxiliary “mask” of names m1, · · · ,m2n ∈ D stored on the
stack. The registers and masks will be related by {r2j−1, r2j} = {m2j−1,m2j}
and bj = 0 will be represented by the case r2j−1 = m2j−1, r2j = m2j . Note that,
due to injectivity, both rj ’s and mj ’s cannot be present in registers at the same
time and hence the latter will be pushed on the stack. However, the stack is also
needed for pushing and popping ordinary stack symbols by the Turing machine,
so masks will not always be at the top of stack at the time when they are needed
for decoding6. We overcome this obstacle by employing 3 different masks for
encoding memory: one is used whilst simulating push-transitions (push-mode),
one for pops (pop-mode) and an auxiliary one to ensure continuity between the
different instances of masks. Let us call these masks M1, M2 and M3 respectively.

In push-mode, instead of popping M1 from the stack in order to compare
it with the registers and hence decode the memory, we will be guessing it and
pushing the guess onto the stack, on the understanding that the correctness of
each guess (call it M̂1) is to be verified later in the corresponding pop steps.
Moreover, in push-mode we will also be pushing the mask M2 so that it is

4 Through a careful reading of the argument for emptiness in [8] one can infer an
exponential upper bound, but here Lemma 5 gives a direct argument.

5 A reduction from the more familiar alternating polynomial-space Turing machines
would also be possible, but Cook’s model is closer to r-PDRS, which allows us to
concentrate on the main issue of encoding binary memory content without the need
to model alternation.

6 For example, after simulating a push-transition, the mask used for realising the
transition will be hidden by the pushed symbol and thus unavailable to support the
next transition.

readily available for pop-mode. When it is time to switch to pop-mode, the tape
content so far encoded with mask M1 will be re-encoded with M2 so that the
forthcoming pop-move can be simulated with M2. During pop-transitions, in
addition to stack symbols and the mask M2 used for decoding, we will also pop
the accompanying guessed mask M̂1 and verify its correctness by comparing it
with the last unverified M̂1, which is stored in registers apart from the simulated
memory. Because at the bottom of the stack we have the actual mask M1, such
equality comparisons will eventually assert that M̂1 = M1 for all guesses M̂1.

A final complication arises when we want to switch from pop-mode to push-
mode. We said that, when popping, we verify the guesses M̂1. Thus, if a push
follows a pop, the mask M̂1 that resides in the registers needs to be pushed back
on the stack so that it can be verified later once we return to pop-mode. At the
same time, we need to store in our registers some content X, so that X and M̂1

encode the current tape content. However, the formation of X destroys M̂1 in the

registers. To prevent the information from being lost, we make another guess
ˆ̂
M1

and use the third mask M3 to check that the guess was correct (more precisely,

on the stack we store M3 and some M̂3 such that M̂1 =
ˆ̂
M1 iff M̂3 = M3).

Whether M̂3 = M3 holds is verified in a later pop step. ut

The EXPTIME-hardness carries over to the language emptiness problem as-
sociated with infinite-alphabet pushdown automata [8] and register pushdown
automata [20]. Since the latter allows for storage of identical values in different
registers, their hardness can also be established more directly by encoding rela-
tive to two fixed data values for 0 and 1. These different policies for register man-
agement are known to lead to different complexity bounds for emptiness testing
in the absence of pushdown store: NP-completeness [19]7 (injective assignment)
vs PSPACE-completeness (non-injective assignment) [10]. Perhaps surprisingly,
we have shown the presence of pushdown store cushions the differences and there
is no gap analogous to that between [8] and [20].

5 Global Reachability

We now move on to investigate global reachability for r-PDRS. We show that,
given an r-PDRS S and a representation C of a set of configurations of S, one
can construct, in exponential time, a representation of the set of configurations
Pre∗P(C) from which S can reach a configuration in C. To that end we extend
the methodology of Bouajjani, Esparza and Maler [5] to the infinite alphabet
setting.

The developments in this section rely on an auxiliary variant of (stack-free)
register automata which feature symbolic transitions representing multiple rear-
rangements of registers. In order to describe them, let us introduce r-register

7 This result is affected by registers initially containing a special undefined value,
without which the emptiness problem is reducible to that for finite automata and,
consequently, NL-complete.

manipulations, which are partial functions R ∈ [r] × [r] ↪→ {0, 1} such that
R−1{1} is a partial injection. We denote the set of all such partial functions by
RegManr and use Rb to refer to R−1{b}, for b ∈ {0, 1}. Given R,S ∈ RegManr,
we define R ; S as follows.

(R ; S)(i, j) =

{
1 (S1 ◦R1)(i) = j

0 ∃k ∈ [r]. (R1(i) = k ∧ S0(k) = j) ∨ (R0(i) = k ∧ S1(k) = j)

Moreover, given i ∈ [r], we shall write Ri• for the partial function defined by,
for all j ∈ [r], Ri•(j, i) = 0 and, for all j 6= i, Ri•(j, j) = 1.

Register manipulations can be seen as abstract predicates on register assign-
ments. In particular, given two register assignments τ, τ ′, we write τ R τ ′ just if,
for all (i, j) ∈ domR, R(i, j) = 0 implies τ(i) 6= τ ′(j) and R(i, j) = 1 implies
τ(i) = τ ′(j).

Definition 11. A register-manipulating r-register automaton (r-RMRA)
is a tuple 〈Q, F, ∆〉 with Q a finite set of states, F ⊆ Q a subset of final states
and ∆ ⊆ Q×OPr ×Q the transition relation, with OPr = [r] ∪ {•} ∪ RegManr.

The operations of RMRAs generalise the stack-free operations of PDRSs: i ∈ [r]
specifies reading a name already present in the ith register, • reads a locally

fresh name and R ∈ RegManr is an internal action such that if q
R−→ q′ then any

configuration (q, τ) may transition to any configuration (q, τ ′) satisfying τ R τ ′.
In what follows, we will start RMRAs from various initial configurations, so we
do not include an initial state or register assignment in their specifications.

Definition 12. Given an r-RMRA A = 〈Q,F,∆〉, a state q ∈ Q and an r-
register assignment τ , we set: L(A)(q, τ) = {w ∈ D∗ | w is accepted by A from (q, τ)}.
Moreover, given an r-PDRS S = 〈P, qI , τI , δ〉 such that P ⊆ Q, we say that
A represents the S-configuration (p, τ, s) whenever s ∈ L(A)(p, τ). We write
C(A) for the set of S-configurations represented by A.

Given an r-RMRA characterising a set of configurations of an r-PDRS S, our aim
is to construct another RMRA that represents exactly those configurations of S
that can reach configurations in C(A), i.e. we aim to construct a representation
of Pre∗P(C(A)).

We shall do this in the “saturation” style of the classical construction of [5]
but we need more notation in order to deal with the infinite alphabet. Given
R ∈ RegManr, we say that R is consistent with the statement i = j (respectively
i•) just if R(i, j) 6= 0 and [i ∈ domR1 ∨ j ∈ ranR1] implies R1(i) = j (resp.
i 6∈ domR1) and in that case we write R || i = j (resp. R || i•). So, the meaning
of R || i•, is that i in the situation before R may be locally fresh with respect to
the situation after R. If R || i = j (resp. R || i•) then we write R[i = j] (resp.
R[i•]) for R ∪ {(i, j) 7→ 1} (resp. R ∪ {(i, j) 7→ 0 | j ∈ [r]}). Note the difference

between Ri• and R[i•]. We write q
R−→∗ q′ just if there is some finite, possibly

empty, sequence 〈qi〉i∈[n] such that q1 = q and qn = q′ and, for all i ∈ [n − 1],

qi
Ri−−→ qi+1 and R1 ; · · · ; Rn−1 = R.

Definition 13. Given an r-PDRS S over states P and an r-RMRA A over
states Q and transitions ∆ and such that P ⊆ Q and ∆ contains no transitions
to states in P , we construct another r-RMRA SAT(A) by induction (note that
op ranges over OPr):

p
op−→
A

p′

p
op−−−−−→

SAT(A)
p′

(N)

p
i•−→
S
p′

p
Ri•−−−−−→

SAT(A)
p′

(i)

p
push(i)−−−−−→
S

p′ p′
R−−−−−→

SAT(A)

∗ q q
j−−−−−→

SAT(A)
q′

p
R[i=j]−−−−−→
SAT(A)

q′
(ii)

p
push(i)−−−−−→
S

p′ p′
R−−−−−→

SAT(A)

∗ q q
•−−−−−→

SAT(A)
q′

p
R[i•]−−−−−→

SAT(A)
q′

(iii)

p
pop(i)−−−−→
S

p′

p
i−−−−−→

SAT(A)
p′

(iv)

p
pop•−−−→
S

p′

p
•−−−−−→

SAT(A)
p′

(v)

where we additionally require R || i = j in rule (ii), and R || i• in rule (iii).

The above construction can be carried out in exponential time: consider
that there are at most |Q × OPr × Q| many transitions added, which is at
most exponential in the size of the input. For each transition, computation is
either trivial or, in (ii) and (iii), involves computing exponentially many graph
reachability queries.

Theorem 14. Given r-PDRS S and r-RMRA A as above, C(SAT(A)) = Pre∗P(C(A)).

We can thus verify whether one can reach a configuration represented by
A from a given configuration: construct the corresponding SAT(A) and check
membership. To implement the latter in nondeterministic space, given a source
configuration (q, τ, w), we need O(log |QSAT(A)|+p(r) + log |w|) bits to track the
state, register assignment and position in w respectively. This is polynomial space
in S,A, w which, along with the construction of SAT(A), yields an exponential-
time reachability testing routine.

Finally, let us remark that RMRAs are no more expressive than register
automata with nondeterministic reassignment [14]. An r-RMRA A = 〈Q, F, ∆〉
can be seen as an r-register automaton with nondeterministic reassignment (r-
RAnr) if ∆ ⊆ Q× OP−r ×Q, with OP−r = [r] + {Ri• | i ∈ [r] }.

Lemma 15. For any r-RMRA A, one can construct a (2r+1)-RAnr Â such
that, for each A-configuration κ there exists a Â-configuration κ̂ satisfying L(A)(κ) =
L(Â)(κ̂).

6 Higher-Order Pushdown Systems

We now consider reachability at higher orders, defining pushdown register au-
tomata as a register-equipped analogue of the classical definition of [15]. We
show that the state reachability problem is undecidable.

A 1-stack is just a finite sequence of elements of D. For n> 1, an n-stack is a
finite sequence of n−1-stacks. We consider the following operations on 1-stacks:

• pusha1〈al, . . . , a1〉 = 〈a, al . . . , a1〉 for any a ∈ D
• pop1〈al, al−1, . . . , a1〉 = 〈al−1, . . . , a1〉
• top1〈al, al−1, . . . , a1〉 = al

and, in connection with n-stacks for n > 1:

• pusha1〈sl, . . . , s1〉 = 〈pusha1 sl, sl−1, . . . , s1〉
• pushk〈sl, . . . , s1〉 = 〈pushk sl, sl−1, . . . , s1〉 if 2 ≤ k < n
• pushk〈sl, . . . , s1〉 = 〈sl, sl, . . . , s1〉 if k = n
• popk〈sl, . . . , s1〉 = 〈popk sl, sl−1, . . . , s1〉 if 1 ≤ k < n
• popk〈sl, . . . , s1〉 = 〈sl−1, . . . , s1〉 if k = n
• top1〈sl, . . . , s1〉 = top1 sl

noting that every operation except pusha1 is undefined when applied to an empty
stack. Finally, we write 〈 〉k for the k-stack defined as ε when k = 1 and 〈〈 〉k−1〉
otherwise.

Definition 16. An order-n pushdown r-register system (r-nPDRS) is an
r-PDRS with the vocabulary of operations Opr extended in the following way:

Opnr = Opr ∪ { pushk, popk | 2 ≤ k ≤ n }

A configuration of an r-nPDRS is a triple (q, τ, s) with q and τ as before
and s now an n-stack. The initial configuration is (qI , τI , 〈 〉n). A configura-
tion (q2, τ2, s2) is said to be a successor of a configuration (q1, τ1, s1) just if
there is some op ∈ Opnr such that (q1, op, q2) ∈ δ and one of the following is
true:

– op = i•, ∀j. τ2(i) 6= τ1(j), ∀j 6= i. τ2(j) = τ1(j) and s1 = s2.

– op = push(i), τ2 = τ1 and s2 = push
τ1(i)
1 s1.

– op = pop(i), τ2 = τ1, top1 s1 = τ1(i) and s2 = pop1 s1.
– op = pop•, τ2 = τ1, ∀j. τ1(j) 6= top1 s1 and s2 = pop1 s1.
– op = pushk, k > 1, τ2 = τ1 and s2 = pushk s1.
– op = popk, k > 1, τ2 = τ1 and s2 = popk s1.

We show that, for all r and n > 1, r-nPDRS have undecidable reachability
problems by showing undecidability for r = 1 and n = 2. For 1-2PDRS, we
will write a configuration (q, {1 7→ a}, s) generally as (q, a, s). The following
example shows how data held on a 1-stack of a 1-2PDRS can be copied and
interrogated.

Example 17. We demonstrate the lack of a uniform bound on the number of
distinct data values needed to reach a designated state (for r-PDRS that bound
is 3r). For every k ∈ N, there is an 1-2PDRS needing more than k names in
order to reach state pk:

q0 q1 q2 q3 q4 q5

q6

q7q8q9p0· · ·pk

push(1) push(1) 1• push(1) push2

pop(1)

pop•1•pop(1)pop(1)

pop2ε
pop•pop•

The idea is as follows, let the initial register assignment be the single element #.
Whenever the machine is in state q2, its 2-stack is of the form 〈〈am, . . . , a1,#,#〉〉,
for m ≥ 0, with ai 6= aj 6= # for all i 6= j. The use of ## serves to mark out the
bottom of the stack. On each iteration of the cycle starting in q2, an additional
data value is pushed onto the singleton 1-stack (upon leaving state q3) which is
then verified to be different from all the others. This verification is implemented
by first taking a copy of the 1-stack using push2, then checking that the data
value in the register is different from all other values on the stack using pop•.
Now, the top copy of the 1-stack will be exhausted and the machine simply
discards it with pop2, restoring the invariant and returning to state q2. Finally,
note that the automaton can transition from q2 to pk only if it has gathered at
least k non-# values in its stack.

To show the undecidability of the state reachability problem for higher-order
PDRS, we reduce from the emptiness problem for weak pebble automata, which
is known to be undecidable [18,21]. We find it convenient to use pebbles, as the
push and pop instructions have a direct analogue in placing and lifting a pebble.

Theorem 18. The state-reachability problem for r-nPDRS is undecidable for
any n > 0.

Proof (Sketch). Given a weak k-PA A, we construct a 1-2PDRS S that first
guesses a word w and then checks that w ∈ L(A) by simulating an accepting
run of A on w. To simulate A running on input w in some state q with head
pebble m ≤ k and where each of its placed pebbles i ∈ {1, . . . ,m} is over
some position p(i) of w, the construction has S in a configuration of shape:
((q, m), d, 〈〈cm, . . . , c1, an, bn, . . . , a1, b1,#,#〉〉). The state component (q,m) of
the configuration records both the state and the index of the head pebble of A;
d is the data value stored in the single register. The stack component, which is
a 2-stack containing a single 1-stack, records the input word and positions of
the pebbles. The input w is encoded by the indexed word (an, bn) · · · (a1, b1),
in which w = bn · · · b1 and, for all i, j ∈ [n], ai 6= bj and, when i 6= j, ai 6= aj
(such distinctness can be guaranteed by using the technique of Example 17).
The positions of the pebbles are encoded by the vector cm · · · c1, with ci = aj iff
p(i) = n− j+ 1. The pair ##, with # different to all other elements, marks the
bottom of the stack.

Under this encoding scheme, the placement of a new pebble is simply copy-
ing the top element of the 1-stack and the lifting of the head pebble is simply
popping the top element of the 1-stack. To move the head pebble right and,
more generally, to check the applicability of a given transition of A, requires in-
terrogating the data structure held on the stack. However, since all the relevant
data from the simulation is encoded into the state of S and its single 1-stack (no
relevant data is encoded in the register), by using push2 and pop2 this data can
be preserved, interrogated (which will likely result in elements being discarded)
and then restored without any overall loss of information.

For example, to simulate moving the head pebble m right, S first pops the
top of its 1-stack, cm (encoding p(m)), into its register. It then takes a copy

of the whole 1-stack using push2, thus preserving a snapshot of the simulation.
In the working copy it discards the vector cm · · · c1 and then loops, repeatedly
using pop• to discard each element of the indexed word until it finds (ai, bi), the
unique pair such that ai = cm, the value in its register (discarding of the top of
stack can be arranged by allowing a transition to be made on either of pop(1) or
pop•). Finally it discards ai and bi and replaces the contents of its register by
the new top of 1-stack, ai−1, which encodes the position one place to the right of
the head pebble. The working 1-stack can then be discarded using pop2 and new
head position, ai−1, pushed onto the restored 1-stack. Checking applicability of
transitions is similar. ut

References

1. R. Alur, P. Cerný and S. Weinstein. Algorithmic analysis of array-accessing pro-
grams. ACM Trans. Comput. Log., 13(3), 2012.

2. M. F. Atig, A. Bouajjani and S. Qadeer. Context-Bounded Analysis for Concurrent
Programs with Dynamic Creation of Threads. Log. Meth. Comput. Sci., 7(4), 2011.

3. H. Björklund and T. Schwentick. On notions of regularity for data languages.
Theor. Comput. Sci., 411(4-5), 2010.

4. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4), 2011.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR, 1997.

6. A. Bouajjani, S. Fratani, and S. Qadeer. Context-bounded analysis of multi-
threaded programs with dynamic linked structures. In CAV, 2007.

7. A. Bouajjani, P. Habermehl and R. Mayr. Automatic verification of recursive
procedures with one integer parameter. Theor. Comput. Sci., 295: 85-106, 2003.

8. E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets.
Acta Inf., 35(3):245–267, 1998.

9. S. A. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM, 18(1):4–18, 1971.

10. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3), 2009.

11. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13, 2002.

12. R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification
based on register automata. In TACAS, 2013.

13. M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2), 1994.

14. M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic
reassignment. Int. J. Found. Comput. Sci., 21(5), 2010.

15. A. N. Maslov. Multilevel stack automata. Probl. of Inf. Transm., 12, 1976.
16. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In

ESOP, 2011.
17. A. S. Murawski and N. Tzevelekos. Algorithmic games for full ground references.

In ICALP, 2012.
18. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over

infinite alphabets. ACM Trans. Comput. Log., 5(3), 2004.
19. H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory

automata. Theor. Comput. Sci., 231(2), 2000.
20. L. Segoufin. Automata and logics for words and trees over an infinite alphabet.

In CSL, 2006.
21. T. Tan. On pebble automata for data languages with decidable emptiness problem.

J. Comput. Syst. Sci., 76(8), 2010.

	Reachability in Pushdown Register Automata

