Reachability games and game semantics: comparing nondeterministic programs*

ANDRZEJ S. MURAWSKI
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

We investigate the notions of may- and must-
approximation in Erratic Idealized Algol (a nondeter-
ministic extension of Idealized Algol), and give explicit
characterizations of both inside its game model. Notably,
must-approximation is captured by a novel preorder on
nondeterministic strategies, whose definition is formulated
in terms of winning regions in a reachability game. The
game is played on traces of one of the strategies and
its objective is reaching a complete position without
encountering any divergences.

The concrete accounts of may- and must-approximation
make it possible to derive tight complexity bounds for
the corresponding decision problems in the finitary (finite
datatypes) variant E|A; of Erratic Idealized Algol. In
fact we give a complete classification of the complexity
of may- and must-approximation for fragments of EIAy of
bounded type order (for terms in 3-normal form). The com-
plexity of the decidable cases ranges from PSPACE to 2-
EXPTIME for may-approximation and from EXPSPACE to
3-EXPTIME for must-approximation.

Our decidability results rely on a representation theo-
rem for nondeterministic strategies which, for a given term,
vields a single (finite or visibly pushdown) automaton cap-
turing both traces and divergences of the corresponding
strategy with two distinct sets of final states. The decision
procedures producing optimal bounds incorporate numer-
ous automata-theoretic techniques: complementation, de-
terminization, computation of winning regions in reacha-
bility games over finite and pushdown graphs as well as
product constructions.

We see our work as a starting point of research that re-
lates game semantics with other game-based theories.

1. Introduction

Game semantics [3, 20] has emerged as a versatile
methodology for giving semantics to programming lan-
guages. In particular, its concrete flavour has quickly in-

* A long version of this paper is available online [26].

spired applications to program analysis [23, 24, 25]. In
recent years a subarea, called algorithmic game seman-
tics [1], was born, which seeks to establish connections
between game semantics and models of computation with
a view to applying them to software verification. The in-
sights obtained this way have already contributed several
verification tools [1, 11, 14, 7, 22] and helped to prove
new decidability/undecidability results in program verifica-
tion [13, 32, 27, 31, 29, 30, 33].

A significant number of papers in this spirit concerned
Idealized Algol, a “golden standard” for investigating
higher-order imperative computation and a good starting
point to an automata-theoretic analysis of game semantics.
They have exploited full abstraction of game models in or-
der to provide effective means for analyzing contextual ap-
proximation and equivalence. Intuitively, one program is
said to approximate another iff, in any context, the latter
behaves at least as well as the former. Two programs are
equivalent iff their behaviour is indistinguishable in any
context. Of course, these definitions crucially depend on
what “behaviour” means. In a deterministic setting, such as
Idealized Algol, one typically defines “behaviour” as termi-
nation. In many game models contextual approximation and
equivalence can be recast in a more explicit way, opening up
the way to using games to reason about these concepts. In-
deed, in recent years a complete classification of complexity
bounds was obtained for the problems of deciding approx-
imation and equivalence in finitary fragments of Idealized
Algol, restricted by type order and the availability of recur-
sion [32, 27, 28, 31, 29]. The table below summarizes the
bounds' for equivalence; they apply to 3-normalized terms.
Those for approximation are the same except that “decid-
able” should be replaced with “undecidable”.

order pure +while ‘ +2 o ‘ +11
1 co-NP PSPACE dec. dec.
2 PSPACE PSPACE dec. undec.
3 EXPTIME | EXPTIME | dec. undec.
4 undec. undec. undec. | undec.

'Whenever a complexity class is mentioned, completeness has been
proved. “dec.” stands for “decidable”; more precisely, “reducible to the
language equivalence problem for deterministic pushdown automata (of
exponentially larger size)” [36].

24, signifies the availability of recursion at order 3, i.e. the outcome

The goal of this paper is to contribute an equally compre-
hensive understanding of Erratic Idealized Algol, i.e. Ide-
alized Algol extended with (finite) nondeterminism. In the
nondeterministic case, one traditionally distinguishes two
notions of “behaviour” inducing two complementary no-
tions of contextual approximation [10]: the possibility of
termination (may-terminate) leading to may-approximation
and the guarantee of termination (must-terminate) giving
rise to must-approximation. As in the deterministic case,
both are problematic to reason about directly because of
quantification over all contexts.

The two preorders have been studied for Erratic Ideal-
ized Algol by Harmer and McCusker in [17, 16] through
game semantics. In order to capture must-approximation
they extended the deterministic definition of strategies
(solely based on traces) to a notion of nondeterministic
strategy, which comprises two components: traces and di-
vergences, the latter being inspired by process-algebraic se-
mantics [18]. Although they show how to capture both
may- and must-approximation in this framework, the cor-
responding full abstraction results rely on quotienting with
respect to the so-called intrinsic preorder, which, similarly
to the notions of contextual approximation and equivalence,
involves quantification over all strategies mimicking con-
texts. The first two of our results (Propositions 3.1 and 3.8)
show how to avoid the intrinsic preorder when characteriz-
ing may- and must-approximation.

As in other settings, may-approximation turns out easier
to account for, because — as in the deterministic case — it can
be captured through (complete) traces. Consequently, may-
approximation corresponds to the containment problem for
the sets of induced complete plays. This, in conjunction
with a representation theorem (Theorem 4.5) for terms of
finitary Idealized Algol (EIAy), allows us to derive decid-
ability results for may-approximation via the language con-
tainment problem for the corresponding automata. More-
over, we can also give exact complexity bounds for may-
approximation between terms in $-normal form. The opti-
mality of the bounds is confirmed by reductions via compu-
tation histories. The flavour of the hardness proofs is sim-
ilar to hardness proofs for universality problems in formal
language theory: one finds a term whose game semantics
corresponds to strings not representing a successful compu-
tation. We summarize the bounds for may-approximation
below in a table analogous to the previous one. The bounds
for may-equivalence are exactly the same.

order | pure | +while | + 10
1 PSPACE EXPSPACE | undecidable
2 EXPSPACE | EXPSPACE | undecidable
3 2-EXPTIME | 2-EXPTIME | undecidable
4 undecidable | undecidable | undecidable

of a recursive definition can be a term whose type is of order (at most) 7.

Must-approximation in EIA; presents a more diffi-
cult challenge, as it does not seem to correspond to
any explicit preorder on traces and divergences known to
date [37]. Thus we see our explicit characterization of must-
approximation given in Proposition 3.8 as arguably the most
interesting contribution of the paper. The new preorder we
introduce in Definition 3.7 is based on concepts borrowed
from the theory of reachability games, as used in program
verification [15]. In short, we view a nondeterministic strat-
egy as a reachability game, in which the player O tries
to complete a play without encountering any divergences.
This perspective allows us to ask whether a given play is
winning for either of the players, which forms the basis of
our new preorder: one strategy improves upon another if
any difference between the former and the latter (trace or
divergence) is compensated by a winning position for the
player P in the reachability game associated with the latter.

This more concrete account of must-approximation
makes it possible to use techniques for solving reachabil-
ity games on finite and pushdown graphs in order to decide
must-approximation in EIA;. Indeed we demonstrate how
this can be done through our representation theorem (The-
orem 4.5), which shows how, given a suitably restricted
EIA; 4 while term, one can construct a corresponding
automaton with two sets of final states that capture traces
and divergences respectively. Then we can decide must-
approximation with a decision procedure that integrates de-
terminization theorems for finite and visibly pushdown au-
tomata, algorithms for calculating winning regions in reach-
ability games over finite and pushdown graphs, backward
determinization of alternating finite automata and product
constructions. The complexity bounds obtained this way
are given below. They turn out tight as confirmed by hard-
ness proofs in which, in each case, we construct a term of
relevant order such that the associated reachability game
corresponds to building up a valid (alternating) machine
run of the desired complexity (and divergences correspond
to possible errors). Bounds for must-equivalence are the
same as those given below, as are bounds for may&must-
approximation and may&must-equivalence.

pure ‘ +while)
1 PSPACE 2-EXPTIME | undecidable
2 | 2-EXPTIME | 2-EXPTIME | undecidable
3 | 3-EXPTIME | 3-EXPTIME | undecidable
4 | undecidable | undecidable | undecidable

We view our paper as establishing a happy marriage be-
tween two game-based theories that were developed inde-
pendently and for different purposes. We hope further fruit-
ful interplay will be possible. For game semantics this
would have to entail a shift of emphasis to winning dur-
ing play. This aspect was already present in one of the early
game models [2], based on strategies that were winning in

an abstract sense, but later on turned out dispensable in re-
search on full abstraction. Fortunately, it seems reasonable
to expect that attempts to apply game semantics to program
specification and verification should create new opportuni-
ties for interaction between game semantics and other kinds
of games, possibly including those with more complicated
objectives than reachability.

2. Erratic Idealized Algol and its game model

Erratic Idealized Algol [17] is a nondeterministic vari-
ant of Reynolds’s Idealized Algol [34]. Its types are gen-
erated by the grammar 6 ::= (|6 — 6, where [ranges
over the ground types com, exp, var of commands, ex-
pressions and variables respectively. The order ord(6) of
a type is defined by: ord(8) = 0 and ord(6; — 6) =
max(ord(6;) + 1,0rd(62)). We shall consider a finitary
version EIA; of Erratic Idealized Algol, intended to make
the original language more amenable to automata-theoretic
analysis. The ground types of EIA are finite and recursion
is forbidden. The syntax is given in Figure 1. T" consists
of typed free identifiers « : 6. The Qg constant represents
divergence. In what follows we shall consider some exten-
sions of EIA ¢, notably, with while-loops and fixed points:

''M:exp ' H N :com z:0F M:0
I' - while M do N : com D pa?. M:0°

We call a term-in-context I' = M : 6 an ith-order term
provided its typing derivation uses exclusively judgments
of the shape IV + M’ : ¢, where the types of the free
identifiers in I are of order less than ¢ and ord(#') < i.
The collection of ith-order EIAf terms will be denoted by
EIA;. Similarly we can define ith-order fragments of EIA s+
while and EIA ¢+ pi, which we refer to as EIA; +while and
EIA; 4 1 respectively. For a finer analysis of fixed points we
also distinguish subfragments EIA; + p; (7 < @) of EIA; + 1
in which the fixed-point rule has been applied to types 6
with ord(6) < j.

The call-by-name operational semantics of EIA; + 1 is
given in the Appendix (Figure 3). The judgments have
the shape s, M | s',V, where s,s" : {1, - ,z,} —
{0, - -, max} represent the store before and after reduction
(we assume that variables are always initialized to 0).

Note that, due to nondeterminism introduced by the rule
for or, for any given s, we may have s, M | s,V for
multiple pairs s’,V. Hence s, M | s’,V is best read as
“M may converge to V”. Using |/, one can define a notion
of program approximation for arbitrary terms-in-context as
follows. By convention M | V stands for), M | ,V.

Definition 2.1. Given two terms I' + M 6 and
I' v My : 0, we shall say that ' + M; : 6 may-
approximates T' + My : @ iff, for any context C'[—] such
that C[M;] : com (equivalently C'[Ms] : com), whenever

C[M,] | skip we also have C[M;] |} skip. We then
write ' - M; L mayMa. Two terms are may-equivalent,
noted I' = M; =,,, My, if they may-approximate one
another.

Intuitively, may-approximation measures capability for pro-
ducing values without accounting for possible failures. For
instance, skip =,,,, skip or com. A complementary no-
tion of approximation is provided by changing the focus
from potential termination to the possibility of divergence
so that an approximant is required to be “at least as di-
vergent” as the term it approximates. Typically, this is de-
fined by stating the contrapositive with the help of a must-
converge predicate s, M |must- We give its exact defini-
tion in the Appendix (Figure 4). Informally, s, M { st 1S
supposed to mean that, no matter how nondeterminism is
resolved during the reduction of M from state s, divergence
will not occur.

Definition 2.2. Given two terms I' + M, 6 and
I' v My : 6, we shall say that I' + M; : 6 must-
approximates I' = Mo : 0 iff, for any context C[—] such
that C[M;] : com (equivalently C[M3] : com), whenever
C[M;] Ymust we also have C[Ms] {must- We then write
I' b M & nust M. Two terms are must-equivalent, noted
I' B My Zst Mo, if they must-approximate one another.

For instance, it turns out that ¢ : com F ¢ Qcom Zmust
Qcom- In fact they are both may- and must-equivalent.
Combining may- and must-approximation (resp. equiva-
lence) gives rise to may&must-approximation (resp. equiv-
alence), which is a more comprehensive way of compar-
ing nondeterministic programs. In what follows we shall
first study may- and must-concepts in isolation. Bounds for
may&must-approximation and equivalence will then turn
out easy to derive.

Example 23. Let us write [cond] for
if cond then skip else Q. For simplicity we often
put predicates such as !X = 0 in place of cond on the un-
derstanding that they may easily be coded up as expressions
(returning O iff the predicate does not hold). Let us consider
the term f : com — com F new X in (f(X:=1);[IX =
0))or (f(X:=1);[!X = 1]) : com. It turns out the
term is may-equivalent to f(skip), must-equivalent to
Qcom and may&must-equivalent to f(skip) or Qcom. The
truthfulness of these claims will become apparent at the end
of Section 3, in which we give explicit characterizations of
both may- and must-approximation.

Game semantics views computation as an exchange of
moves (a play) between two players, called O and P. It in-
terprets terms as strategies for P in an abstract game derived
from the underlying types. A game model of EIA; + pu,
based on nondeterministic strategies, has been presented
in [17].

i€{0,---,maz}

I' - M :exp I' - M :exp

I' - skip : com I'Fi:exp

'M:com T'HFN:g(

I'FQp:p
'FM:exp TENg:B8 TEN;:

I' F succ(M) : exp I F pred(M) : exp

I'-M;:com T'F Ms:com

' M;N:p I' F if M then N, else Ny : 3 I' F M; or M5 : com
T+ M:var ' M:var TH N :exp I' X :var - M : com I'X :var - M : exp
I'FTM :exp I' F M:=N : com I' F new X in M : com I' F new X in M : exp

Fz:0-M:¢

FrEM:0—60 TTHFN:§ I M:exp—com TI'F N:exp

Fx:0Fx:0 Tr X M:0—0

'~ MN:o

I' - mkvar(M, N) : var

Figure 1. Syntax of EIA;.

Definition 2.4. A (nondeterministic) strategy o on an arena
A, written o : A, is a pair (7, D,,) satisfying the following
two conditions. (i) 7, is a non-empty set of even-length
plays of A such that sab € 7, entails s € 7, (we use a and
b to range over moves in A). Elements of 7, are called the
traces of 0. (ii) D, is a set of odd-length plays of A such
that sa € D, implies s € 7,. Moreover, if s € 7, sa is a
play and there is no b such that sab € 7, then there must
exist d € D, such that d is a prefix of sa. Elements of D,
are referred to as the divergences of o.

For the purpose of modelling Erratic Idealized Algol one
considers single-threaded strategies whose behaviour is de-
termined by the current thread only. Hence, in the following
we focus exclusively on analyzing and representing plays
and divergences with single initial moves. In particular,
7, and D, will stand for single-threaded plays and diver-
gences generated by the strategy o, P4 will be the set of
single-threaded plays in the arena A. M4 will stand for the
set of moves of A. Note that in [17] the full abstraction re-
sults have been shown by quotienting with respect to the so-
called instrinsic preorder. In the next section we give more
explicit characterizations of may- and must-approximation
that will ultimately allow us to derive decision procedures
for the two problems.

3 Program approximation concretely

A play s € Py is called complete iff all of the questions
occurring in it have been answered, i.e. any question-move
acts as a justifier to an answer-move. Given a set of plays
o, let comp (o) be the set of non-empty (single-threaded)
complete plays in o. May-approximation can be charac-
terized by inclusion between the sets of induced complete
plays. The proof is essentially the same as in the determin-
istic case [4].

Proposition 3.1. I' + M; L&, M, if and only if
comp ([T" + M;]) C comp ([T’ F Ms]).

In order to characterize must-approximation explicitly,
it turns out fruitful to view strategies as two-player games

between O and P. Specifically, we shall take advantage of
reachability games over countable graphs.

Definition 3.2. A reachability game G is a tuple
(V,VO, VP E W) such that V is a countable set, V =
VO + VP (V,E)is a directed graph and W© C V. Ele-
ments of VO and V7 are called O- and P-vertices respec-
tively and TW© is the set of winning vertices for O.

Given an initial vertex v € V, the two players make
“moves” in G by picking edges from E repeatedly: if the
current vertex is in VO then O gets to choose an outgoing
edge, otherwise P does it; “action” then moves on to the tar-
get of the selected edge. The players continue making their
choices and moving from one vertex to another as long as
they can, i.e. ad infinitum or until a vertex without any out-
going edges is reached.

Formally, a (finite) play of G is a sequence vy - - - v, €
V* (m > 0) such that (v;,v;41) € F forany 1 < i < m.
An infinite play is a sequence from V*° each of whose pre-
fixes is a finite play. Thus, a round of G, started at some
initial vertex, will generate either a finite maximal or an in-
finite play. If a vertex from ¢ has been visited during
the play, O is declared the winner. By convention, even if
no vertex from WO has been visited, O also wins once a
vertex from VT without outgoing transitions is ultimately
reached. P wins in all other cases, i.e. when the resultant
play (finite or infinite) does not contain any vertices from
WO and ends in a vertex from VO, if finite.

v is called a winning vertex for O if, starting from v, O
can play in such a way that he always wins. The set con-
taining all such vertices is called O’s winning region and
denoted by Wing. P’s winning region ng is defined
analogously. Obviously Wing N ng = (). Reachabil-
ity games belong to the class of closed games (whenever
O wins, the victory is secured in a finite number of steps),
which are well-known to be determined [12]: at each vertex
one of the players can secure a win for himself. Conse-
quently, V' = Wing + Wing .

Definition 3.3. Suppose G; = (V;, VO, VP B, WP)isa

reachability game for i = 1,2. We say that G; and G, are
isomorphic iff there exists a graph isomorphism f between
the graphs (V1, E1) and (Va, E») such that f(V,°) = V2,
f(VE) = VP and f(WP) = WE. Note that, if G; and Go
are isomorphic, for any v € V; we have: v € Wing1 if and
only if f(v) € Win82.

Given a game G and a vertex v € V' we define a closely
related game Unf,(G), which is essentially the “game tree”
of G started in v.

Definition 3.4. Suppose G = (V,VO VP E WO) is
a reachability game and v € V. Let Play,?,Playf
be the sets of finite plays in G starting in v and ending
in vertices from VO and V'’ respectively. Further, let
Play, = Playvo + Playf. The unfolding of G from v
is the game Unf,(G) = (Play,, Play", Play® , E,, W2),
where E, = {(pu,puw) | pu € Play,, (u,w) € E} and
WO = {pw € Play, | we WO°}.

Remark 3.5. It is easy to see that the underlying graph of
Unf,(G) is a tree with root v. Winning regions in Unf,(G)
can be related to those in G in the following way: for any
play p € Play, endinginw € V,w € ng if and only if
P € Wingnfu(g).

Next we construct a reachability game for an arbitrary
strategy, in which O will win if and only if a non-empty
complete position is eventually reached and none of its pre-
fixes is a divergence.

Definition 3.6. Suppose o : A. The associated reachabil-
ity game G, is defined by (VO + VP VO VP E, W)
where VO =T, + {0}, VF = {sa € Py | s € T,,a €
My},

E; = {(s1,82) € (VP x VYU (V] x V) |
da € M4.s2 = s1a} U (D, x {o}),
We = {se€comp(c) | Vs Cs. s¢&D,}.

Observe that F, is essentially the tree of plays generated
by o (edges correspond to allowable moves in A) except for
edges of the form (d, o), where d € D, which are added
for a technical reason. Recall that O is also deemed to win
if a vertex from v € V.’ with no outgoing edges is reached.
By Definition 2.4 (ii), if sa € V.’ cannot be extended to
a play in 7, then sa must be a divergence. Because we
do not want vertices d € D, to become winning for O, we
have added an edge from d to the dummy vertex o (which
has no outgoing transitions and allows P to win instead).
Consequently, P will never “get stuck” in G, so O can win
if and only if the players arrive at a non-empty complete
position none of whose prefixes is a divergence. To make
notation less verbose, we shall write Wz'nao and Wz'nf,D for
the respective winning regions in G, (instead of Wingﬂ and

Winga respectively).

Now, using winning regions for G,, we shall define a
new relation <, on strategies over any arena A, which
will turn out to characterize must-approximation. Intu-
itively, we want o1 <p,us¢ 02 to hold iff whenever the use of
o9 causes divergent behaviour, o; can replicate it. In short,
we shall balance all behaviours of o5 unavailable to o with
winning regions for P. Note that the definition of <.t i
phrased in terms of both traces and divergences, because a
trace may also contribute to a divergence indirectly, when
the environment diverges after exploring the trace.

Definition 3.7. Suppose 01,02 : A. We define 01 <nust
o9 to hold iff for any s € (75, UD,,) \ (75, U Dy,) there
exists a prefix s’ of s such that s’ € V' n Win, .

<imust turns out to capture must-approximation in EIA¢.

Proposition 3.8. T' + M L st M> if and only if [T" +
Ml]] Smust [[F = MQH

Example 3.9. We can now reexamine the term f
comy1 — comy F newXin(f(X:=1);[!X =
Ohor (f(X:=1);[!X = 1] com from Exam-
ple 2.3. We have labelled the various occurrences
of com to make it easier to trace the origin of
moves contributed by them. The corresponding strat-
egy is o = (7,,D,), where 7, consists of even-
length prefixes of plays matching the regular expression
run runy (runys ., doney1)* doney done and D, contains
words matching run runy (runy doneys1)* dones. Ob-
serve that run € Win! . Thanks to Propositions 3.1 and 3.8
it is now easy to ascertain that the equivalences given in Ex-
ample 2.3 are indeed valid.

4 Strategies as automata

In this section we show how to define automata repre-
senting strategies that correspond to third-order EIA ¢ terms
with iteration. In fact, EIA3 + while is the largest frag-
ment of EIA¢ 4 p for which may- and must-approximation
can be proved decidable. The translation is defined for
terms in ($-normal form and, in this and subsequent sec-
tions, whenever we mention EIA; + p-terms, we mean
terms in J-normal form only. The automata we are aim-
ing to construct will have runs corresponding to plays from
7, = T, UVZE. Depending on 6 we can decompose
7, as shown in Figure 2 by highlighting initial moves (in
any non-empty position) and final ones (only in complete
positions). Given § = 6; — ---0; — [we define
tail(9) to be B. In the Figure, + is meant to represent
the disjoint sum so that [[- - -], [[-]|, [[- - -7, [[- - - [}’ cor-
respond to decomposing the respective sets of complete
plays, while [[---[[, -+ ll;; [l-- -1, l- - -]l capture incom-
plete plays. Note that we have [[-- -] C || ||, if tail(0) =

run ||I' = M|+ run [T B M] done
g B M| +q 37 (1T = M 5)

tail(#) = com
tail(6) = exp

Tire-a0l =\ reqd IT = M|+ read Y27C ([T = M1 j)+
> (write(5) [T B M| + write(j) [T = MT¥ ok) tail(0) = var
run (' - M) tail(0) = com
Dirr gy = ¢ (T = M) tail(f) = exp

read (U = M)" + 37750 (write(5) (T = M)Y) tail () = var

Figure 2. Decompositions of traces and divergences

com, and analogous inclusions also hold in other cases. Di-
vergences can be decomposed in a similar way to incom-
plete plays (see Figure 2).

For a given EIA; + while-term we shall construct au-
tomata that represent all of the associated distinguished sets
e.g. |I'--l,T---7 and (- -) for tail(f) = com) in a suit-
able sense. In the first two cases (tail(f) = com,exp)
the outcome will be a single automaton whose runs cap-
ture ||-- ||, while the accepting ones represent both [[- -]|
(resp. [[--“Tlo, > I - “Tlmaz) and (- --). In order to differ-
entiate complete plays from divergences we use two kinds
of final states. In the second case (tail(§) = exp), in or-
der to distinguish between [[-- -], for different j, we add
extra information to final states in the form of subsets of
{0,---, maz}, which can be thought of as returned values
and will correspond to the indices involved. For the remain-
ing types 6 such tail(§) = var our construction will yield
as many as mazr + 2 automata, corresponding to each of the
maz + 2 possible initial moves in the semantics.

Definition 4.1. Let A be an arena corresponding to an
EIAs-type. We define the order of any move in A as fol-
lows. If the move is initial then its order is 0. The order
of any other question is one greater than the order of any of
its enablers (this definition is never ambiguous for the are-
nas in question). Answer-moves have the same order as the
questions that enable them.

Suppose I' = M : 6 is an EIA3 + while-term and
A = [I' + 0]. Then moves of A can have order at most
3. Besides, any question of order 3 is a P-move and, conse-
quently, any answer of order 3 is an O-move. Let us write
M}é (resp. ME?D) for the set of O-moves (resp. P-moves)
in A whose order does not exceed 2. M3, (resp. M3 p)
will stand for the set of O-moves (resp. P-moves) of A of
order 3. As already mentioned, M,?Zxo consists of answer-
moves and elements of M3, are question-moves. Next we
define the particular kind of automata that will be used to
capture third-order terms with while. The automata are in-
stances of visibly pushdown automata [6].

Definition 4.2. Suppose I' = M : 0 is a EIA; 4+ while-
term and A = [I" + 6]. An A-automaton A is a tuple

(Q,i,C,D,A,d,) such that: @ is the finite set of states,
partitioned into Q© (O-states) and Q7 (P-states); i € Q
is the initial state; C' C @ and D C Q¥ are two sets of
final states; A is the stack alphabet; 6 C (QO X Mfé X
Q) x (QF x M35 x QO) x ((Q° x A) x M3, x QF) x
(QF x M35 x (QP x A)) is the transition function; :
C — 210maz}\ L1 is a selector function (its role will
be explained below).

Each run (a valid sequence of transitions from the ini-
tial state) of A determines a word from A }. We shall
write R(A) for the set of words generated by runs of A.
The language accepted by A using the final set D will be
denoted by D(A). For any j € {0,---, maz} we write
C;(A) for the language accepted by A using the final set

{seCljepns)}

The transition function is divided into four kinds of tran-
sitions. The first two are stack-independent transitions, the
third kind are pop-transitions and the last group are push-
transitions.

Definition 4.3. Suppose I' = M : 6 is an EIA3 + while-
term and A = [I' + 60]. A tuple (Ag,---,Ag) of A-
automata represents I' = M : 6 if and only if the following
conditions hold.

e Inany A; (i = 0,---, k) the initial state and the final
states in C' are P-states.

o If tail(f) = com then k = 0, R(Ag) = |[I' = M|,
Co(Ap) =T = MT and D(Ap) = (I' = M)]. Moreover,
we require that ;s 4, (s) = {0} for any C-state s of Aj.

o If tail(6) = exp, then k = 0, R(Ap) = ||’ + M|,
Cij(Ag) = [T v M]; j = 0,---,maz) and D(Ag) =
(T - M).

o If tail(f) = var, then k = maz + 2 and R(A;) =
IT = M|Y, R(Amaz+1) = [[I' = M|", Co(A;) =T +
MY, C5(Amas+1) = T+ MTF. D(A,) = (I - MY,
D(Apmaz+1) = (U = M) forany j = 0,---, maz. Fur-
thermore, we require that 114, (s) = {0} for any C-state s
of A; (j =0, , max).

Theorem 4.4. For any EIA3 + while-term I' - M : 6 (in
(B-normal form) there exists a tuple of [I" - @]-automata

that represents this term. The construction is effective and
can be carried out in exponential time.

Proof. One advantage of considering || - - ||, [[- - -]] and (- - -
instead of the full semantics [- - -] is the fact that they can be
defined equationally (by recursion on the syntax) using sim-
pler extended regular expressions and context-free gram-
mars. Our constructions then closely follow the pattern of
these definitions.

To account for pointers (it suffices to capture pointers
from third-order moves) we maintain labels that record the
depth of the occurrence of the corresponding free variable.

The exponential time in the worst case comes from the
constructions for new X in M and fM (where f’s type is
order two). See [26] for more details. O

Using the decompositions defined at the beginning of
this section we can derive the following result.

Theorem 4.5. Let I' = M : 6 be an EIA; + while-term
(in B-normal form) and ¢ = [I" + M : 0]. There exists a
[T - 6]-automaton A such thati € Q9,C = {f} C Q°,
u(f) = {0}, R(A) = Tp, D(A) = D, and Co(A) =
comp (o). A can be constructed in exponential time.

Proof. 1t suffices to appeal to the previous Theorem, add
i, f as new states and define new outgoing transitions as
prescribed by . O

Remark 4.6. (i) Without any loss of generality we can as-
sume that the unique final state from Theorem 4.5 has no
outgoing transitions, because a complete position is maxi-
mal among single-threaded plays.

(i1) In the proof of Theorem 4.4 the stack is only ever
used for interpreting second-order free identifiers, e.g. f :
(com — com) — com, which become available in EIA3
and its extensions. Consequently, Theorem 4.5 yields finite
automata for terms belonging to EIAs 4+ while.

(iii) Further simplifications apply to terms of EIA;. Since
loops are formed only when interpreting while, first- and
second-order identifiers, the finite automata corresponding
to EIA;-terms will be loop-free. Hence, for any EIA;-term,
there exists a bound on the length of words that the associ-
ated automaton accepts, which we shall call its depth. While
the size of the automaton produced by Theorem 4.5 for an
EIA;-term can still be exponential with respect to the term
size (due to new), its depth turns out to be linear, because
the construction for new does not increase it.

vy f ' F ClnewXinM] is an EIA;-term
(in B-normal form), then it is equivalent to I' F

new X in C[M]. Consequently, any ElA;-term " F
M : 6 is equivalent to a term of the form
)\x?l . ~x§nm.newX1, -+, X, in M’, where M’ is new-

free and not larger than M. Intuitively, globalization of lo-
cal variables in EIA;-terms preserves equivalence, because
EIA; has no mechanisms for repetition.

(v) A practical consequence of the previous point is that, for
ElA;-terms, the new constructions can be postponed until
the very end without violating Theorem 4.5. Hence, it is
easy to see that, for EIA;-terms, the corresponding automa-
ton can be produced in polynomial space in such a way that
the size of (the representation of) each state is polynomial
(essentially, the state will consist of a state of the automaton
corresponding to M’ and a tuple of variables correspond-
ing to the values of Xy, --,X,). Consequently, all runs
of the automaton can be explored in polynomial space by
a depth-first recursive procedure, because the depth of the
automaton is linear in the size of M (hence the stack size
will be linear) and any configuration is of polynomial size
(consequently, each stack frame will be of polynomial size).

S Complexity of may-approximation

By Proposition 3.1, in order to decide may-approximation,
it suffices to check containment of the induced sets of com-
plete plays. Thanks to Theorem 4.5 and the subsequent re-
marks the following upper bounds are obtained.

Theorem 5.1. May-approximation is in 2-EXPTIME for
EIA; + while, in EXPSPACE for EIA; + while and in
PSPACE for EIA;.

Proof. By Proposition 3.1 along with Theorem 4.5 may-
approximation in EIA3 + while can be reduced to the con-
taintment problem for visibly pushdown automata, which
is known to be EXPTIME-complete [6]. Since the au-
tomata involved can be (at most) exponentially larger than
terms, this yields a 2-EXPTIME algorithm for deciding
may-approximation between EIA3 4+ while-terms.

Recall from Remark 4.6 (ii) that EIA; + while-terms
generate nondeterministic finite automata. The associ-
ated containment problem is well-known to be PSPACE-
complete [19], implying an EXPSPACE decision procedure
for may-aproximation in EIAs + while.

Finally, EIA; allows for even faster may-approximation
checks. Because the depth of the associated automata is
linear (Remark 4.6 (iii)), may-approximation can be con-
tradicted by a word whose size is linear in the size of the
terms in question. By Remark 4.6 (v) membership and co-
membership can be decided in PSPACE, so the correctness
of such a certificate can be verified in polynomial space.
Because NPSPACE=PSPACE [35], may-approximation in
ElA; is in PSPACE. O

Theorem 5.2. May-approximation is PSPACE-hard in
EIA;, EXPSPACE-hard for EIA; and EIA; + while, and
2-EXPTIME-hard for EIA5.

In order to justify the remaining results from the ta-
ble given in the introduction, we observe that the unde-
cidability of may-approximation in EIA4 follows immedi-
ately from the undecidability of contextual equivalence in

the deterministic case [27]. The undecidability of may-
approximation in EIA; 4 o in turn follows from the un-
decidability of the containment problem for context-free
languages [19] and the encoding of pushdown automata in
EIA; + po from [29], which can easily be generalized to
nondeterministic pushdown automata.

The same bounds as for may-approximation apply to
the induced notion of may-equivalence. To see that up-
per bounds are preserved, note that equivalence between
two terms can be decided by running two approximation
checks. For lower bounds, we observe that in all of our
hardness arguments for M T may IV, it was already the case
that N & 1,y M. Hence, M & 5, N was in fact equivalent
to M =,y N. Similarly to may-approximation, the unde-
cidability of may-equivalence in EIA4 is an immediate con-
sequence of the analogous result in the deterministic case.
For EIA; + uo we simply appeal to the undecidability of
language equivalence for (nondeterministic) pushdown au-
tomata.

6 Complexity of must-approximation

Here we show how one can take advantage of Propo-
sition 3.8 and Theorem 4.5 in order to decide must-
approximation in EIA3 + while, which turns out to be the
largest decidable fragment. By Proposition 3.8 we have
I' = M; § st Mo if and only if

(75, UDs,) N (T5, UDg,) N
{s € Piri-gp Vs’ Cs.if s’ € Valj then s’ € Wingl} =0,

where o; = [I" + M;] (i = 1,2),

We shall construct visibly pushdown automata accept-
ing each of the three conjuncts distinguished above. The
largest of them will be triply exponentially larger than the
terms involved, yielding a 3-EXPTIME bound for must-
approximation in EIAz+while, because intersection empti-
ness of a fixed number of VPAs can be decided in polyno-
mial time simply by building up the product automaton [6]
and checking it for emptiness.

The VPAs accepting the first two conjuncts can be con-
structed quite easily via Theorem 4.5. For the second one,
the complementation procedure [6] needs to be applied,
leading to two exponential blow-ups in total. The last con-
junct presents the biggest challenge, because of the refer-
ence to the winning region Wz'nUO1 . To handle it, we observe
that G,, can be viewed as a pushdown reachability game
and take advantage of the associated methods for comput-
ing winning regions [8, 9].

Definition 6.1. A pushdown game system is a triple P =
(Q,Q°,QF,A,§), where Q is a finite set of states, Q =
Q° + QF, Ais a finite stack alphabet and § C (Q x A) x
(Q x A*) is a finite transition function. We assume the exis-
tence of the bottom-of-stack symbol | € A, which cannot
be taken off the stack.

Definition 6.2. Given a pushdown game system P =
(Q,Q°,QF,A,5) and a target set W C QA*,
one can define the corresponding reachability game
Grw = (QA* Q°A*,QPA* E,W), where E =
{(gzw’, qww’) | ((¢,2),(d,w)) € §, w' € A*}. Games
derived in this way are called pushdown reachability games.

Observe that, as VPAs can be determinized, we can deter-
mize Theorem 4.5 as well (at an exponential cost). Let A j¢¢
be the deterministic VPA for I' = M obtained in this way.
A et is crucial to relating G, with pushdown games.

Lemma 6.3. There exists a pushdown game system P =
(Q,Q°,QF,A,6), atarget set W C Q and ¢ € Q such
that G, is isomorphic to Unf, 1)(Gp w).

Proof. We show how to obtain P by erasing transition la-
bels in a VPA. Note that Theorem 4.5 (for I' - M) is not
sufficient for this purpose, because the automaton it pro-
duces is in general nondeterministic and, consequently, sev-
eral runs of the automaton might correspond a single play in
Go, - This failure is eliminated if we consider A .; instead.
To finish the proof, we need to account for those edges of
Go, that lead from divergences to o in G,,, and define the
target set of the game. The former problem is solved by
adding new transitions to A4.;. Then, to address the lat-
ter, we can use additional finite memory to keep track of
whether the resultant automaton has encountered a diver-
gence during its run (i.e. whether a D-state of A44.; was
ever entered) and thus identify a set of final states F' C @Q
such that the goal set can be taken to be {f L | f € F'}. We
take the initial set of Ag.; as q. O

The next lemma is a handle on the winning regions.

Lemma 6.4. Let P = (Q,Q°,QF,A,§) be a pushdown
game system and F' C (). Consider the goal set W =
{fL | f € F}. There exists a deterministic labelled tran-
sition system, 7Sp w = (29+{+} A "), constructible
from P in exponential time, such that quw € Wingpw if
and only if ¢ € &' ({*}, w’), where w® is the reversal of w.

Proof. The given winning set can be captured (in the sense
of [8]) with an alternating finite automaton over the state-set
@ + {*} such that the size of the transition function is lin-
ear in () and * is the only accepting state. Bouajanii et al [8]
(see also [9]) show how, given an alternating automaton rep-
resenting the target set, one can construct (in exponential
time) another alternating automaton representing the corre-
sponding winning region. Its transition function "' can be
exponential in the size of P, but the set of states remains
@ + {*}. To define 7 S w it now suffices to “reverse” (cf.
Theorem 2.13 in [38]) the latter alternating automaton by
(X,2) ={qge Q+{x} | Y C X(¢q,2,Y) € §}.
Note that the last step remains exponential in the size of P
and thus the lemma follows. O

When the stack content was represented with a word
w € A* in the definition of pushdown reachability games,
the leftmost symbol corresponded to the top of the stack.
Consequently, the transition system from the above Lemma
processes the stack in the bottom-up fashion. This turns
out very convenient for us, because the key to capturing the
third conjunct is making A 4., “aware” of whether it is cur-
rently inside O’s winning region. For that purpose, A 4.: can
remember and maintain the state that the associated transi-
tion system 7Sp w (i.e. the one that Lemma 6.4 yields
for the pushdown game system obtained from Lemma 6.3)
reaches on processing the current stack contents of A ;.
This is not difficult to implement for push moves and inter-
nal moves. For pop-moves though, the information stored in
the finite memory is not sufficient for performing a suitable
update, because we then need to “backtrack™ in the corre-
sponding run of 7Sp . However, if we arrange for the
states of 7Sp v to be pushed on the stack during push-
moves, the relevant information will become readily avail-
able during pop-moves. To be more precise, during push-
moves the modified A4.; should, in addition to the usual
symbol, push the currently stored state of 7Sp i before
updating it to the post-push state.

Note that on the way from I" - M to the VPA capturing
the third conjunct we have combined three exponential-time
procedures: Theorem 4.5, determinization and Lemma 6.4.
Hence, the VPA can be produced in triply exponential time.

Theorem 6.5. Must-approximation is in 3-EXPTIME for
EIAs + while, in 2-EXPTIME for EIA; 4+ while and in
PSPACE for EIA;.

Proof. The bound for EIA3 + while follows from the pre-
ceding discussion. For ElIA; + while, recall from Re-
mark 4.6 that in this case Theorem 4.5 yields finite au-
tomata. Thus, the pushdown game system obtained from
Lemma 6.3 is simply a bipartite finite graph. Winning re-
gions (vertices) can then be determined without the addi-
tional blow-up entailed by appealing to Lemma 6.4. In
fact, the calculation of winning regions in this case cor-
responds to the well-known PTIME-complete problem of
alternating graph reachability [21] (see also Theorem 2.3
in [9]). Hence, must-approximation in EIA; + while is in
2-EXPTIME. A tighter bound can be proved for EIA;. Re-
call from Remark 4.6 (iii) that in this case there exists a
linear bound (with respect to the term size) on the length of
accepted words. Hence, any counterexample to the empti-
ness of the intersection above can be stored in linear space
wrt to the sizes of M and M>. By Remark 4.6 (v), the cor-
rectness of such a certificate can be verified in polynomial
space. To confirm membership in the winning region we
rely on the brute-force nondeterministic decision procedure
that guesses the winning strategy. O

The above bounds are tight. In fact hardness can be

shown for the following problem OMEGA: does a given

term I' + M com must-approximate F Qcom

com? Note that we have ' F M C st Qcom iff 7un €
P

ng[[o

Theorem 6.6. OMEGA is PSPACE-hard for EIA;-terms, 2-
EXPTIME-hard for EIA;- and EIA; + while-terms, and
3-EXPTIME-hard for EIA5.

For undecidability of must-approximation in EIA; we
observe that, for any Turing machine 7' and input w,
the construction in [27] for (deterministic) Idealized Al-
gol yields an ElA4-term + M : 6 (without or) such that
€ € ng[[F a1 iff T" halts on w. Hence, OMEGA is unde-
cidable for EIA4 and so is must-approximation.

For EIA; + pg in turn, we can reduce the undecidable
problem of checking intersection emptiness for determinis-
tic context-free languages [19] to OMEGA. Indeed, given
DCFLs Ly, Lo, using the construction from [29] we can
construct EIA; + po-terms = : exp + My, My : com
whose complete plays represent precisely the words in L,
and Lo respectively (rung,al - - - q.a” done is used to rep-
resent a' ---a™). Then L; N Ly is not empty iff run €
ngﬂ;:exw Ayornty] Consequently, must-approximation in
EIA; + po must be undecidable.

Identical bounds apply to must-equivalence. The upper
bounds are still valid, because checking must-equivalence
can be done by checking must-approximation twice. The
lower bounds carry over, because they all concerned the
problem I' = ML €, which is equivalent to I"
M =t €. What’s more, the bounds are also accurate for
may&must-approximation and may&must-equivalence, be-
cause in all cases may-approximation is easier to verify than
must-approximation and I' = M T € is equivalent to
=M E may&mustM orQaswellasI' - M gmay&must
M or).

7 Related and future work

We presented a complete classification of complexity
bounds for may-, must- and may&must-approximation as
well as the induced notions of equivalence in Erratic Ideal-
ized Algol. The results rely on a combination of game se-
mantics with automata-theoretic techniques, notably, meth-
ods for solving reachability games.

The usefulness of winning regions in our work raises the
question whether game semantics itself could be based on
the concept of winning regions (along with a suitable notion
of composition) instead of the usual traces and divergences.

The transfer of control in Erratic Idealized Algol ad-
heres to the usual discipline of block entry and exit. This
feature turns out to complicate reasoning about must-
approximation. Indeed we claim that with non-local flow

control must-approximation corresponds to the preorder <*
defined in [17], whose definition is similar to <,.st, but
is phrased in terms of divergences rather than winning re-
gions. Consequently, it seems that must-approximation in
Erratic Idealized Algol with control could be decided with-
out recourse to reachability games, leading to better com-
plexity bounds. Note that <* is clearly too strong to cap-
ture must-equivalence in Erratic Idealized Algol (for in-
stance, it distinguishes ¢; Qcom from Qo and invalidates
the must-equivalences from Example 2.3). In fact, we have
Sﬁ g Smusb

All the terms studied in the paper were assumed to be
in #-normal form. As any EIA; term can be 3-normalized
the decidability/undecidability results are also relevant to
EIA + p-terms with 3-redexes. One can try to derive com-
plexity bounds in this case by #-normalization and then ap-
plying the decision procedures of this paper. However, the
bounds thus obtained are unlikely to be tight. In future work
we would like to relate terms with (3-redexes with hierarchi-
cal machine models such as those from [5].

References

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L.
Ong. Applying game semantics to compositional software
modelling and verification. LNCS 2988: 421-435 (2004).
S. Abramsky and R. Jagadeesan. Games and full complete-
ness for multiplicative linear logic. J. Symb. Log. 59(2): 543-
574 (1994).

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstrac-
tion for PCF. Inf. Comput. 163: 409-470 (2000).

S. Abramsky and G. McCusker. Linearity, sharing and state:
a fully abstract game semantics for Idealized Algol with ac-
tive expressions. Algol-like languages: 297-329 (1997).

R. Alur, S. Kannan, and M. Yannakakis. Communicating
hierarchical state machines. LNCS 1644: 169-178 (1999).
R. Alur and P. Madhusudan. Visibly pushdown languages.
Proc. of STOC’04: 202-211 (2004).

A. Bakewell and D. R. Ghica. On-the-fly techniques for
games-based software model checking. Proc. of TACAS, to
appear.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analy-
sis of pushdown automata: Application to model-checking.
LNCS 1243: 135-150 (1997).

T. Cachat. Symbolic strategy synthesis for games on push-
down graphs. LNCS 2380: 704-715 (2002).

R. De Nicola and M. Hennessy. Testing equivalence for pro-
cesses. Theor. Comput. Sci.: 34 (1984).

A. Dimovski, D. R. Ghica, and R. Lazic. A counterexample-
guided refinement tool for open procedural programs. LNCS
3925: 288-292 (2006).

D. Gale and F. M. Steward. Infinite games with perfect infor-
mation. Annals of Mathematics Studies 28: 245-266 (1953).
D. R. Ghica and G. McCusker. Reasoning about Ideal-
ized Algol using regular expressions. LNCS 1853: 103-115
(2000).

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]
(10]

[11]

[12]

[13]

10

(14]

(15]

[16]

(17]

(18]
(19]
(20]
(21]

(22]

(23]
(24]

[25]

(26]
(27]

(28]

[29]

(30]

(31]

(32]
(33]
(34]

(35]

(36]

(37]

(38]

D. R. Ghica and A. S. Murawski. Compositional model ex-
traction for higher-order concurrent programs. LNCS 3920:
303-317 (2006).

E. Griadel, W. Thomas, and T. Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research,
LNCS 2500 (2002).

R. Harmer. Games and full abstraction for non-deterministic
languages. PhD thesis, University of London, 2000.

R. Harmer and G. McCusker. A fully abstract game se-
mantics for finite nondeterminism. Proc. of LICS: 422-430
(1999).

C. A. R. Hoare.
(1985).

J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation (1979).

J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
PCF. Inf. Comput. 163(2):285-408 (2000).

N. Immerman. Number of quantifiers is better than number
of tape cells. J. Comput. Syst. Sci. 22(3): 384-406 (1981).
A. Legay, A. S. Murawski, J. Ouaknine, and J. Worrell. On
automated verification of probabilistic programs. Proc. of

TACAS, to appear.
P. Malacaria and C. Hankin. Generalized flowcharts and

games (extended abstract). LNCS 1443: 363-374 (1998).
P. Malacaria and C. Hankin. A new approach to control flow

analysis. LNCS 1383: 95-108 (1998).
P. Malacaria and C. Hankin. Non-deterministic games and

program analysis: an application to security. Proc. of LICS:

443-452 (1999).
A.S.Murawski. http://users.comlab.ox.ac.uk/

andrze’j.murawski/long.pdf
A. S. Murawski. On program equivalence in languages with

ground-type references. Proc. of LICS: 108-117 (2003).

A. S. Murawski. Games for complexity of second-order call-
by-name programs. Theor. Comput. Sci. 343(1/2): 207-236
(2005).

A. S. Murawski, C.-H. L. Ong, and 1. Walukiewicz. Ideal-
ized Algol with ground recursion and DPDA equivalence.
LNCS 3580: 917-929 (2005).

A. S. Murawski and J. Ouaknine. On probabilistic program
equivalence and refinement. LNCS 3653: 156-170 (2005).
A. S. Murawski and I. Walukiewicz. Third-order Idealized
Algol with iteration is decidable. LNCS 3441: 202-218
(2005).

C.-H. L. Ong. Observational equivalence of 3rd-order Ide-
alized Algol is decidable. Proc. of LICS: 245-256 (2002).
C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. Proc. of LICS: 81-90 (2006).

J. C. Reynolds. The essence of Algol. Algorithmic Lan-

guages: 345-372. North Holland, 1978.

W. J. Savitch. Relationships between nondeterministic
and deterministic tape complexities. J. Comput. Syst. Sci.
4(2):177-192 (1970).

G. Sénizergues. L(A)=L(B)? decidability results from com-
plete formal systems. Theor. Comput. Sci. 251(1-2):1-166
(2001).

R. J. van Glabbeek. The linear time - branching time spec-
trum I. In Handbook of Process Algebra, Chapter 1: 3-99.
Elsevier, 2001.

S. Yu. Regular languages. In Handbook of Formal Lan-
guages, Chapter 1: 41-110. Springer Verlag, 1997.

Communicating Sequential Processes

A Proof of Proposition 3.8

Proof. W.lo.g. we assume that ' = (), i.e. = My, My :
6. If M;,Ms are not closed, one can simply take
Al My, A'. M5 instead, where A" stands for a sequence of
A-abstractions with respect to each variable from I'. Let

(=R = —L) Suppose there exists s € (75, UD,,)\ (7, U
Dy,) such that all prefixes of s which are in Valj are
not in Winf1 (they must be in Win?1 then). Observe
that s # €, because € € 7,, N 7,,.

Let ¢ be the longest odd-length prefix of s such that
te Vglf . Note that ¢ is well-defined, because s # € and
the first move of s, viewed as a single-move sequence,
is in VUIf . Let ¢ be an odd-length prefix of t. Observe
that ' € V(,}j and thus ¢/ € Win?l. In particular, no
prefix of #' is in D,,. Recall that ¢ € Wing, implies
that O has a winning strategy in the game G/, started
from ¢/, i.e., regardless of P’s responses, O will eventu-
ally be able to extend ¢’ to a complete position without
encountering any divergences. Let 7,5 (resp. 7,9) be
the set of even-length (resp. odd-length) suffixes of
t' generated by O’s winning strategy when deployed
against all possible behaviours of P in the game G,
with starting vertex t'. Recall that ¢’ ranges over odd-
length prefixes of t. Let 7° = | J,, 7,9, 7° = U,, 7;5.
Define the set U C Pjg_.com] by

{ e} U { runu | we7° } U
{ runudone | w€&comp(7T®) }.

e Suppose ¢ = s. Since t has odd length, we have
s € D,,. Consider the strategy 7 = (U, 0) :
[6 — com]. Then D,,.. = 0 by choice of 7.
However, D,,.. # 0, because run s = runt €
U =T, and s € D,,. By w-algebraicity and
definability results from [17], there exists 7/ =
[z:60 F Clz] : com] such that D,,.,» = () and
D,,.r+ # (. Consequently, by Adequacy [17],
C[M1] Ymust holds, but C[Ma] {must does not.

e Suppose t is a proper prefix of s. Let tp be a (not
necessarily proper) prefix of s. Then we claim
that tp & 75,

— If tp = s then indeed tp ¢ 7,,, because
5¢ T,

— If tp is a proper prefix of s and tp € 7,
then we would have tpo € V"', where tpo
is a prefix of s. This would contradict the
choice of ¢.

Consider the strategy 7 = (U, {runtp}) : [0 —
com]. By choice of I and thanks to tp & 7,,, we

11

have D,,., = (. However, D,,., # 0, because
tp € 1,, (since tp is a prefix of s € 7, UD,,).
As in the previous case, we can now conclude
that = M E st Mo does not hold.

(—L = —R) Suppose it is not the case that

F M E s Mo. Then, by soundness results
from [17], there exists 7 : [@ — com] such that
D,,.r = 0 and D,,., # (. We need to show that there
exists s € (7,, UDy,) \ (75, U Dy,) such that, for
any prefix t of s, if ¢ € Vglf then t € Wz'nf,)l. We
examine all possible causes of divergence during the
composition of o2 and 7, and in each case identify a
suitable s.

o Suppose runu € Ty, 47,. Then, since D,,., =
(), there must exist a prefix run v’ of run u such
thatw' € 7,, \ 75,. Let s = u’.

e Suppose the divergence is caused by some inter-
action sequence .

- Ifu | [0] € D,, then, since D,,., = 0, we
must have u [[0] € Dy, \ Dy, Let s =
u | [6].

- Suppose u | ([0], [com]) = runu’ € D;.
Then, since D,,,, =), we must have v’ €
Toy, \ T, Let s = /.

Since we have D, ., = (), any prefix of s which is in
P : . P
V,,, must also be in Win, .

O

s, V.| s,V

s,M |} s i s,M | s i
s,succ(M) | ¢, (i + 1) mod mazx s,pred(M) |} ¢, (i — 1) mod maz
s,M |} s’ skip s, N | s’V s(X—0),M]J| s,V
s, M;N | §",V s\ X,newXinM || ¢\ X,V
s,M || s',0 s',Ny | s,V 1>0 s,M | s,i s,N || s'\V
s,if M then Ny else Ny || s,V s,if M then N; else Ny |} s,V
s, My || §,skip s, My || ¢,skip
s, My or My |} ¢,skip s, Mjor My | ¢,skip
s,M || s,z s,M | ¢,mkvar(M’',N") s N' | s",i
s,IM || ¢, (x) s,\M |} s",1

s,N | s,i s M1IJ|s"x
s, M:=N | s"(x— i),skip
s, Ny s,i s,MJ| s mkvar(M',N') " M'i || s, skip
s,M:=N | s, skip
s,M || s, a?. M s M'[N/z] | ",V
s MN | 57,V
s, M(uz?.M) || s',V
s,ur®. M |} s,V

V' stands for terms in canonical form:
V = skip|i| 2| A\z’. M | mkvar(M, N).
There is no rule for €23, as the term is not supposed to converge.

Figure 3. Operational semantics

12

5,V Jmust
8, M st 8, M Jmust
s,succ(M) must S, pred(M) Ymust
S, M Jmust Ve (s, M || §,skip = s, N {must)
8, My N dmust
5, M Ymust Vor(5, M I 8',0 = 8", No bmust) VoViso(s, M | 8,0 = 5", N1 {must)
s,if M then N; else Ny {must
S, M Jmust Ve (s, M || §',skip = s, N {must)
8, M N dmust
8, M1 st 8, M2 Jmust
s, My or My {must
S, M Jmust Ve (s, M | ', mkvar(M',N') = ¢, N {must)
8, 1M Unust
SN must Vori(s, N I ;i = 8, M Jpust AVsr (s, M | ", mkvar(M’',N') = s, M"i Jmust))

8, 1M U must
5(X = 0), M Jmust
s\ X,new X in M {ust
M Vst Vomr (s, M | ' de.M' = s', M'[N/z] Jmust)
MN {must
s, M (px? . M) | must
8, p? M st

Figure 4. The must-converge predicate

13

