
Operational Algorithmic Game Semantics
Benedict Bunting

University of Oxford, UK
Andrzej S. Murawski

University of Oxford, UK

Abstract—We consider a simply-typed call-by-push-value cal-
culus with state, and provide a fully abstract trace model via
a labelled transition system (LTS) in the spirit of operational
game semantics. By examining the shape of configurations and
performing a series of natural optimisation steps based on name
recycling, we identify a fragment for which the LTS can be recast
as a deterministic visibly pushdown automaton. This implies
decidability of contextual equivalence for the fragment identified
and solvability in exponential time for terms in canonical form.
We also identify a fragment for which these automata are finite-
state machines.

Further, we use the trace model to prove that translations
of prototypical call-by-name (IA) and call-by-value (RML) lan-
guages into our call-by-push-value language are fully abstract.
This allows our decidability results to be seen as subsuming
several results from the literature for IA and RML. We regard
our operational approach as a simpler and more intuitive way
of deriving such results. The techniques we rely on draw upon
simple intuitions from operational semantics and the resultant
automata retain operational style, capturing the dynamics of the
underlying language.

I. INTRODUCTION

The notion of contextual equivalence has been much studied
in programming language theory, as it captures an especially
natural form of equality between programs, widely applicable
in verification. This has spurred efforts to produce denotational
models in which equality in the model coincides exactly with
contextual equivalence. These ‘fully abstract’ models represent
the ‘gold standard’. One particularly successful approach to
this problem has arisen through game semantics [1], [2], [3],
where a term is modelled as a strategy for a game of question
and answer played between the term and its context. Over the
past 25 years, game semantics has proven to be a powerful
tool, providing fully abstract models for languages with a
variety of features. A more recent development is operational
game semantics [4], [5], in which strategies are represented
as sets of traces generated by a labelled transition system
(LTS) derived from the operational semantics of the language.
This approach gives an intuitive and concrete representation
of strategies, amenable to the application of operational tech-
niques, as opposed to the abstract properties emphasised in
earlier work. We summarise the main contributions of this
paper below.

Firstly, we define a Call-By-Push-Value (CBPV) language
equipped with dynamically generated first-order store. It can

This research was funded in whole or in part by EPSRC EP/T006579 and
EPSRC Studentship 2742896. For the purpose of Open Access, the author has
applied a CC-BY public copyright licence to any Author Accepted Manuscript
(AAM) version arising from this submission.

be seen as a canonical language for studying first-order state
with arbitrary evaluation order.

Secondly, we present an operational game model for this
language, and prove that it is fully abstract with respect to
contextual equivalence. This means that terms have the same
set of complete traces if and only if they are contextually
equivalent.

We provide translations from the prototypical languages
RML [6] and IA [7] into CBPV, and using our model, prove
that these translations are fully abstract. This validates the
assertion of CBPV subsuming CBV and CBN in this setting,
and justifies studying CBPV as a vehicle for investigating
first-order store.

Our final result is to identify two fragments of CBPV where
contextual equivalence is decidable, and derive a decision
procedure for these fragments. We achieve this by using
operational intuitions to refine the corresponding LTS so that
it produces traces over a finite alphabet. In particular, we
identify a fragment for which the refined LTS can be viewed
as a deterministic visibly pushdown automaton (VPA), and a
smaller fragment where it is a deterministic finite automaton
(DFA). The CBPV language is particularly suited to carrying
out this transformation, as it provides a notion of thunks, which
turns out to offer the appropriate level of abstraction to discuss
when a passage to VPA and DFA should be possible.

The results follow the spirit of algorithmic game semantics
by modelling strategies as automata [8], though our automata
are more intuitive thanks to their close relation to the oper-
ational semantics. Because of the translations into RML and
IA, our results unify and provide new proofs for several results
from this school [9], [10], [11], [12]. At the technical level, we
rely on purely operational techniques, and our work should be
accessible to readers without a game semantics background.
Overall, our approach represents a simpler way to obtain such
decidability results and provides an operational understanding
of why they hold.

Other Related Work: Typed Normal Form Bisimula-
tions [13] are arguably closest to our setting. They were
developed for Jump-With-Argument, a continuation passing-
style version of CBPV without state. Although not made
explicit, the transition system these bisimulations are defined
on bears similarity to operational game semantics (OGS).
CBPV is already known to accommodate fully abstract

translations from CBN and CBV, but their full abstraction
in [14] was established in a different setting from ours (with
printing as the side-effect). Consequently, we had to develop979-8-3503-3587-3/23/$31.00 ©2023 IEEE

a separate argument.
We believe ours is the first work seeking to give decision

procedures for contextual equivalence by refining operational
game models into automata. However, OGS has been used as
a foundation for other techniques, particularly bisimulation-
based. An example of this strand of work is the equivalence
checker SyTeCi [15] for automatically proving contextual
equivalences with respect to contexts with general references.
It is based on Symbolic Kripke Open Relations, which can
be seen as an abstraction of OGS. The associated decidability
result is incomparable to ours: it uses more powerful contexts
and disallows reference creation inside functions, albeit with-
out a type restriction. HOBBIT is a bounded-complete inequiv-
alence checker, which exploits ‘symbolic up-to’ techniques to
allow it to (semi-) automatically prove many equivalences [16].
Kripke Normal Form Bisimulations [17] are a sound and
complete technique for showing contextual equivalence for
a family of CBV languages with control and higher-order
state, but the cited paper does not discuss decidability. Apart
from OGS-inspired research, there has been much related
work based on logical relations [18], [19] and normal form
bisimulations [20], also without decision procedures.

II. THE LANGUAGE

1) Syntax: The language being studied in this paper extends
Levy’s Call-by-Push-Value λ-calculus [21] with mutable state
and basic data types. We will deal with the finitary fragment
of the language, lacking infinite types and recursion. The types
and terms are shown in Figure 1. The types are stratified into
values (generated by σ) and computations (generated by τ).
The slogan often associated with this division is ‘A value is,
a computation does’.

A typing judgement gives a type to a term given the types of
locations and variables. In CBPV, we have separate judgments
for value types and computation types. For values we write
Σ;Γ ⊢v V : σ and for computations we write Σ;Γ ⊢v M :
τ , where Γ is a finite partial function that assigns types to
variables, and Σ is a list of locations. We abbreviate ∅; Γ ⊢
M : τ to Γ ⊢ M : τ and Σ; ∅ ⊢ M : τ to Σ ⊢ M : τ . Typing
judgements are derived using the rules in Figure 2.

We treat the type Ref as if it were a pair of thunks:
a read thunk of type UF Int and a write thunk of type
U(Int → FUnit). This is an old idea, due to Reynolds [22],
and is a feature of many game models of languages with
references. As a consequence, we need the construct MkVar,
which embeds a pair of thunks into the Ref type, allowing
‘bad variables’, which possibly return different values from
those last written. When reading (!V) or writing (V := U)
such a bad variable, we use the appropriate thunk. We include
bad variables for comparability with existing results, although
they can be avoided by incorporating parts of the heap into
the trace semantics [4]. For space reasons, we will sometimes
write {|V1, V2|} for MkVar V1 V2.

2) The operational semantics: We present the operational
semantics as the reduction relation → in Figure 3 on con-
figurations, which are pairs of a computation and a heap

h (a mapping of locations to values). We write h : Σ for
Σ ⊆ dom(h). h[ℓ 7→ V] denotes updating ℓ in h.

3) Contextual equivalence: Contexts C can be seen as
computations with a hole, •, into which another computation
may be substituted. We can also type a context, by saying
Σ;Γ ⊢k C : τ =⇒ τ ′ : if Σ;Γ, x : τ ⊢c C[x] : τ ′ : for a
fresh x. One key notion of terms being ‘equal’ is contextual
equivalence, which is formalised in terms of termination. A
terminal is a (closed) computation of the form return V
or λxσ.M . Termination means that a term reduces to a
terminal: we write (M,h) ⇓ter if there exist N,h′ such that
(M,h) →∗ (N,h′) and N is a terminal.

Definition 1. Given computations Γ ⊢c M1,M2 : τ , we
define Γ ⊢c M1 ≲CBPV

ter M2 to hold, when for all contexts
⊢k C : τ =⇒ Fσ, we have (C[M1], ∅) ⇓ter implies
(C[M2], ∅) ⇓ter . We write ∼=CBPV

ter for the equivalence induced
by ≲CBPV

ter .

A standard result is that contexts considered for contextual
approximation can be restricted to evaluation contexts after
instantiating the free variables of computations to closed
values (closed instances of use, CIU). We write Σ,Γ′ ⊢ γ : Γ
for substitutions γ such that, for any (x, σx) ∈ Γ, the value
γ(x) satisfies Σ;Γ′ ⊢v γ(x) : σx. Then M{γ} stands for the
outcome of applying γ to M .

Definition 2 (CIU Approximation). Let Γ ⊢c M1,M2 : Fσ

be CBPV computations. Then Γ ⊢c M1 ≲CBPV(ciu)
ter M2,

when for all Σ, h,K, γ, such that h : Σ, Σ ⊢k K : τ =⇒
Fσ, and Σ ⊢ γ : Γ, we have (K[M1{γ}], h) ⇓ter implies
(K[M2{γ}], h) ⇓ter .

We obtain a CIU Lemma establishing the sufficiency of CIU
testing following the framework of [23].

Lemma 3 (CIU Lemma). We have Γ ⊢c M1 ≲CBPV
ter M2 iff

Γ ⊢c M1 ≲CBPV(ciu)
ter M2.

We make the observation that the only contexts we really
need to consider are those of type Fσ =⇒ Fσ′.

Lemma 4. Let Γ ⊢c M1,M2 : σ1 → · · · → σk → Fσ.
Then Γ ⊢c M1 ≲CBPV

ter M2 iff Γ, (x1, σ1), · · · , (xk, σk) ⊢c

M1 x1 · · ·xk ≲CBPV
ter M2 x1 · · ·xk.

III. LABELLED TRANSITION SYSTEM

We develop a labelled transition system (LTS) to capture
the semantics of terms in the style of [24]. Its traces can
be thought of as exchanges of moves between two players,
representing the context and the term respectively. This way
of modelling contextual interactions is often called operational
game semantics.

1) Names and Abstract Values: In actions of this game,
players pass (fresh) names to represent thunks passed between
the two players. As these represent thunks, the names have a
type Uτ . In keeping with the Reynolds approach of embedding
references as a pair of thunks, we will ‘decompose’ references
into separate thunk names for reading and writing respectively.

2

Value Type σ ≜ Uτ | Unit | Int | Ref Computation Type τ ≜ Fσ | σ → τ

Value Term V ≜ thunk M | x | () | n̂ | ℓ | MkVar V V

Computation Term M ≜ force V | return V | λxσ.M | let x be V.M | M to x.M
| case V of (Mi)i∈I | MV | ref V | !V | V := V | whileM doM

Evaluation Context K ≜ • | K to x.M | KV

Value Context VC ≜ thunk C | MkVar VC V | MkVar V VC

Context C ≜ • | force VC | return VC | λxσ.C | let x be VC .M | let x be V.C | C to x.M
| M to x.C | case V of (Mi)i<j , C, (Mi)j<i | CV | MVC | !VC | VC := V
| whileC doM | whileM doC

Notational conventions: x, y ∈ Var, ℓ ∈ Loc, I = {0, · · · ,max}, n ∈ I
Syntactic sugar: If x does not occur free in N , we write M ;N for M to x.N , and Ω for while (return 1̂) do (return ()).
We write V1 + V2 for case V1 of (case V2 of (î+ j)j∈I)i∈I

Fig. 1. CBPV syntax

Σ;Γ ⊢v () : Unit

n ∈ {0, · · · ,max}
Σ;Γ ⊢v n̂ : Int

(x, σ) ∈ Γ

Σ; Γ ⊢v x : σ

ℓ ∈ Σ

Σ;Γ ⊢v ℓ : Ref

Σ; Γ ⊢c M : τ

Σ;Γ ⊢v thunk M : Uτ

Σ;Γ ⊢v V : σ

Σ;Γ ⊢c return V : Fσ

Σ;Γ ⊢v V : Uτ

Σ;Γ ⊢c force V : τ

Σ;Γ ⊢v V : σ Σ;Γ, x : σ ⊢c M : τ

Σ;Γ ⊢c let x be V.M : τ

Σ;Γ ⊢v V : Int Σ; Γ ⊢c Mi : τ

Σ;Γ ⊢c case V of (Mi)i∈I : τ

Σ;Γ ⊢c M : Fσ Σ;Γ, x : σ ⊢c N : τ

Σ;Γ ⊢c M to x.N : τ

Σ;Γ, x : σ ⊢c M : τ

Σ;Γ ⊢c λxσ.M : σ → τ

Σ;Γ ⊢c M : σ → τ Σ;Γ ⊢v V : σ

Σ;Γ ⊢c MV : τ

Σ;Γ ⊢v V : Int

Σ; Γ ⊢c ref V : FRef

Σ; Γ ⊢v Vread : UF Int Σ; Γ ⊢v Vwrite : U(Int → FUnit)

Σ; Γ ⊢v MkVar Vread Vwrite : Ref

Σ; Γ ⊢v V : Ref

Σ; Γ ⊢c!V : F Int

Σ; Γ ⊢v V : Ref Σ; Γ ⊢v U : Int

Σ; Γ ⊢c V := U : FUnit

Σ; Γ ⊢c M : F Int Σ; Γ ⊢c N : FUnit

Σ; Γ ⊢c whileM doN : FUnit

Fig. 2. CBPV typing rules

(K[let x be V.M], h) → (K[M{V/x}], h)
(K[(λxσ.M)V], h) → (K[M{V/x}], h)
(K[case i of (Mi)], h) → (K[Mi], h)
(K[force thunk M], h) → (K[M], h)
(K[return V to x.M], h) → (K[M{V/x}], h)

(K[ref V], h) → (K[return ℓ], h · [ℓ 7→ V])
(K[!ℓ], h) → (K[return h(ℓ)], h)
(K[ℓ := V], h) → (K[return ()], h[ℓ 7→ V])
(K[!(MkVar Vr Vw)], h) → (K[force Vr], h)
(K[(MkVar Vr Vw) := U], h) → (K[(force Vw)U], h)

(K[whileM doN], h) → (K[M to x.case x of return (), (N to y.whileM doN)i>0], h) x, y are fresh

Fig. 3. Operational semantics for CBPV

We will also use continuation names, to identify the question
move being answered in an answer move. This is simply
a technical convenience, as in the setting without control
operators, all continuation names can be reconstructed due to
the bracketing condition.

Definition 5. Let TNames =
⊎

τ TNamesUτ be the set of
thunk names, partitioned into mutually disjoint countably
infinite sets TNamesUτ . We use f, g to range over TNames,
and write f : Uτ for f ∈ TNamesUτ . Analogously, let
CNames =

⊎
σ CNamesσ be the set of continuation names.

c ranges over CNames, and c : σ denotes c ∈ CNamesσ .
We assume CNames,TNames are disjoint and let Names =
TNames ⊎ CNames. Elements of Names will appear in
structures throughout this work, and so ν(X) refers to the
set of names used in some entity X .

Players will take actions which consist of a name applied
to some (sequence of) values. To handle passing thunks, we
will use abstract values. These are values with occurrences of
thunks replaced by names, so are generated by the grammar:

A ≜ f | () | n̂ | MkVar A A

3

As names are intrinsically typed, abstract values can be typed
in the obvious way, denoted A : σ. Given a value V : σ,
AValσ(V) is the set of pairs (A, γ) such that A is an abstract
value and γ : ν(A) → Vals is a substitution (defined in
Figure 4). It is not quite the case that A{γ} = V due
to the treatment of locations. However, it is the case that
M{V/x} ⇓ter iff M{A{γ}/x} ⇓ter .

Remark 6. Note that · implicitly requires that function do-
mains be disjoint, and ⊎ means the argument sets are disjoint.

Unlike in CBV, it does not suffice to consider passing
only single abstract values. In CBPV, question actions occur
when a thunk is forced (i.e. as we need a computation from
the environment to occur), and answer actions correspond
to a thunk returning a value (i.e reducing to return V).
Operationally, a CBPV thunk, when forced, will consume all
of its arguments (the sequence of values it is applied to) before
returning a value to a consumer (a context of form • to x.M).
As these arguments are values, they cannot change during
the reduction of the computation before they are consumed.
Thus, from the view of contextual equivalence, a forced thunk
behaves as if all arguments are consumed immediately when
the thunk is forced.

To handle this, actions include sequences of abstract values,
denoted by

−→
A , and referred to as abstract argument sequences.

Given a sequence of values (an argument sequence, written−→
V), we can find a decomposition into an abstract argument
sequence and a substitution by applying AVal() to the values
and combining the substitutions (ensuring names are disjoint).
We abuse notation to write AVal(

−→
V) for the result.

For a given computation type, we can construct a sequence
of abstract values using the function in Figure 4 (assuming
name choices are fresh). We define the return type of a
computation by RType(σ1 → · · · → σk → Fσ) ≜ σ.

2) Play: Our traces will consist of actions that have a
polarity, either P (Player) or O (Opponent), depending on
whether they are made by the term being tested (P) or the
context (O). Names will be introduced either in a set NO of
names already introduced by O, a set NP of names already
introduced by P, or in values appearing in actions. Names are
owned by the player whose action introduced the name (with
names in NO owned by O, NP by P), and are referred to
as O-names or P-names. The players take alternating actions,
applying a name introduced by the other player to an abstract
argument sequence. The types of actions are:

• Player Answer (PA) c̄(A), where c : σ and A : σ.
This corresponds to the term returning a value A to the
consumer corresponding to continuation name c.

• Player Question (PQ) f̄(
−→
A, c), where f : Uτ ,

−→
A ∈

ASeq(τ), c : RType(τ). This corresponds to the term
forcing the thunk named by f , passing

−→
A as arguments,

and expecting the result with the consumer corresponding
to continuation name c.

• Opponent Answer (OA) c(A), c : σ then A : σ. In this
case, the environment is producing a value A to the term,

which is acting as a consumer with continuation name c.
• Opponent Question (OQ) f(

−→
A, c), where f : Uτ ,

−→
A ∈

ASeq(τ), c : RType(τ). This action corresponds to
the environment forcing the thunk named by f from the
term, passing

−→
A as arguments, and expecting the result

with the consumer corresponding to continuation name c.
In what follows, a is used to range over actions. We refer to
f in f̄(

−→
A, c) and f(

−→
A, c), and to c in c̄(A) and c(A) as the

head names of a.

Definition 7. Let NO, NP ⊆ Names. An (NO, NP)-trace is a
sequence t of actions such that: the actions alternate between
P and O actions; no name is introduced twice; names from
NO, NP need no introduction; any action a must have the
form f̄(

−→
A, c), f(

−→
A, c), c̄(A) or c(A), where the head name

of a has been introduced by an earlier action a′ of opposite
polarity or (respectively) f ∈ NO, f ∈ NP , c ∈ NO, c ∈ NP .

Note that the first action in a (NO, ∅)-trace must be by P .

Example 8. Let NO = {f : U(Ref → Int → FUnit), c :
U(UF Int → F Int)}. Then t = f̄([r, w] 4̂, c1) w(1̂, c2) c̄2(())
c1(()) c̄(g) g(h, c3) h̄(ϵ, c4) c4(2̂) c̄3(3̂). is an (NO, ∅)-trace.

3) Visibility, bracketing, and completeness: It will turn out
that the traces required to capture our CBPV language will
have special properties, which correspond to the fact that our
language lacks higher-order store (visibility) and control-flow
operations (bracketing). The identification of these properties
occurred in game semantics [3], [25], [26], and they are
enforced by our transition system in the style of [24].

Definition 9. Given a prefix t of a (NO, NP)-trace:

• an OQ-action f(
−→
A, c) occurring in t is said to be unan-

swered in t if there does not exist a PA-move of the form
c̄(A′) in t;

• a PQ-action f̄(
−→
A, c) occurring in t is said to be unan-

swered in t if there does not exist an OA-move of the
form c(A′) in t.

To define the O-visibility and O-bracketing constraints,
we will define a set VisO(t) of O-visible names and the
top continuation name TopO(t) in Figure 5. The function
TopO(t) essentially identifies the latest unanswered PQ-action,
and returns the continuation name introduced then. VisO(t) is
defined by tracing the head name of a move to its introduction,
analogously to the game semantic notion of view [3].

Definition 10. Let t be a (NO, NP)-trace. t is O-visible if,
for any prefix t′ f ′(

−→
A′, c′) of t, we have f ′ ∈ VisO(t

′). t is
O-bracketed if, for any prefix t′ c′(A) of t (i.e. any prefix
ending with an O-answer), we have c′ ∈ TopO(t

′).

We now introduce some useful notation. Given a (NO, NP)-
trace t, we write t⊥ for the (NP , NO)-trace obtained by chang-
ing the polarity of each name: f(

−→
A, c′) becomes f̄(

−→
A, c′) (and

vice versa) and c(A) becomes c̄(A) (and vice versa). Using
this we can provide the dual notions to O-visibility and O-
bracketing. We say an (NO, NP)-trace t is P-visible if t⊥ is O-

4

AValσ(V) ≜ {(V, ∅)} for σ ∈ {Unit, Int} ASeq(Fσ) ≜ {ϵ}
AValUτ (V) ≜ {(f, [f 7→ V]) | f ∈ TNamesUτ} ASeq(σ → τ) ≜ {A s | s ∈ ASeq(τ),

AValRef (MkVar V1 V2) ≜ {(MkVar f g, [f 7→ V1, g 7→ V2])} A : σ an abstract value}
AValRef (ℓ) ≜ {(MkVar f g, [f 7→ thunk (!ℓ), g 7→ thunk (λx.ℓ := x)])}

Fig. 4. Value decomposition into abstract values and substitutions, and generation of abstract value sequences

VisO(ϵ) = NT
P

VisO(t c̄(A)) = (NT
P) ∪ ν(A) c ∈ NO

VisO(t f̄(
−→
A′, c) t′ c̄(A)) = VisO(t) ∪ ν(A)

VisO(t f̄(
−→
A, c)) = ν(

−→
A) ∪ {c} f ∈ NO

VisO(t f
′(
−→
A′, c′) t′ f̄(

−→
A, c)) = VisO(t) ∪ ν(

−→
A) ∪ {c} f ∈ ν(

−→
A′)

VisO(t c
′(A′) t′ f̄(

−→
A, c)) = VisO(t) ∪ ν(

−→
A) ∪ {c} f ∈ ν(A′))

TopO(ϵ) = NC
P

TopO(t c̄(A)) = NC
P c ∈ NO

TopO(t f(
−→
A′, c) t′ c̄(A)) = TopO(t)

TopO(t f̄(
−→
A, c)) = {c}

Fig. 5. O-visible names VisO(t) and top continuation name TopO(t) for (NO, NP)-trace t, where NT
P = NP ∩ TNames and NC

P = NP ∩ CNames.

visible (and define VisP (t) = VisO(t
⊥)), and t is P-bracketed

if t⊥ is O-bracketed (and define TopP (t) = TopO(t
⊥)).

To capture termination, it will suffice to reason about
complete traces [24].

Definition 11. An O-bracketed (NO, ∅)-trace t starting with
a P action is complete if TopO(t) = ∅. A P-bracketed
({◦}, NP)-trace t starting with an O action is complete if
TopP (t) = {◦}.

Example 12. The trace t from Example 8 is an O-bracketed,
P-bracketed, O-visible, P-visible, complete trace.

4) Transition System: Using the above, we can define an
LTS, called LCBPV, which will generate the set of traces
corresponding to a term. LCBPV will contain terms built
from CBPV syntax, extended with all thunk names as values
(with the obvious typing rule), with → behaving accordingly.
LCBPV will contain configurations of the form (S, S), where S
is a state and S a stack. There are two types of states in LCBPV

(and so two kinds of configurations): ⟨γ, ϕ, h,H,Fn⟩ (passive,
O to play) and ⟨M, c, γ, ϕ, h,H⟩ (active, internal or P to play).
In both, ϕ contains all names introduced so far by both players
and h is the current heap. γ is an environment mapping thunk
names introduced by P to thunks. In an active configuration, M
is the term component, which captures the current behaviour of
P, and c is the continuation name to produce the result to. The
stack is used to enforce O-bracketing. It consists of elements of
the form (cP , (K, cO)) where cP is a continuation P-name, K
is an evaluation context in which to use the value produced to
cP , and cO is an continuation O-name to return the result of K
to. Fn represents the set of thunk P-names currently available
to O (so after generating a prefix t, Fn contains thunk names
from VisO(t)), and H contains historical information about
availability. This is used to enforce O-visibility, by maintaining
the property that for a thunk O-name f , H(f) contains the
thunk P-names available to O when f was introduced. P-
visibility is a consequence of the behaviour of the term.

We can now present the LCBPV transition rules in Figure 6.
These are presented as labelled transitions between states, with
a/m denoting pushing m to the stack when producing a, and
a,m denoting popping m when producing a.

Let Γ ⊢c M : Fσ be a CBPV computation such that Γ =
{x1 : σ1, · · · , xk : σk}. A Γ-assignment ρ is a map from
{x1, · · · , xk} to the set of abstract values such that, for all
1 ≤ i ̸= j ≤ k, we have ρ(xi) : σi and ν(ρ(xi))∩ν(ρ(xj)) =
∅. ρ simply creates a supply of names corresponding to the
context. Let c : σ and NO = ν(ρ)∪{c}. Then the active initial
configuration Cρ,c

M is defined to be

(⟨M{ρ}, c, ∅, NO, ∅, [NO 7→ ∅]⟩,⊥)

Definition 13. Given two configurations C,C′, we write
C

a
=⇒ C′ if C

τ−→∗ C′′ a−→ C′, with τ−→∗ representing
multiple (possibly none) τ -actions. This notation is ex-
tended to sequences of actions: given t = a1 . . .an, we
write C

t
=⇒ C′, if there exist C1, . . . ,Cn−1 such that

C
a1==⇒ C1 · · ·Cn−1

an==⇒ C′. We define TrCBPV(C) =

{t | there exists C′ such that C t
=⇒ C′}.

Remark 14. Due to the freedom of name choice, note that
TrCBPV(C) is closed under type-preserving renamings that
preserve names from C.

Definition 15. A path in an LTS from a configuration C to
C′ is a sequence of transitions and intermediate configurations
by which C′ can be reached from C when viewing the LTS
as a directed graph.

Traces of LCBPV satisfy the following property.

Lemma 16. Given Γ ⊢c M : Fσ and a Γ-assignment ρ, for
any t ∈ TrCBPV(C

ρ,c
M), we have t is O-visible, O-bracketed,

P-visible and P-bracketed.

Definition 17. The trace semantics of a CBPV computation
Γ ⊢c M : Fσ is defined to be TrCBPV(Γ ⊢c M : Fσ) ≜

5

(Pτ) ⟨M, c, γ, ϕ, h,H⟩ τ−−→ ⟨N, c, γ, ϕ, h′, H⟩
when (M,h) → (N,h′)

(PA) ⟨return V, c, γ, ϕ, h,H⟩ c̄(A)−−−→ ⟨γ · γ′, ϕ ⊎ ν(A), h,H,H(c) ⊎ ν(A)⟩
when c : σ, (A, γ′) ∈ AValσ(V)

(PQ) ⟨K[(force f)
−→
V], c, γ, ϕ, h,H⟩ f̄(

−→
A,c′)/(c′,(K,c))−−−−−−−−−−−−→ ⟨γ · γ′, ϕ ⊎ ϕ′, h,H,H(f) ⊎ ν(

−→
A)⟩

when f : Uτ, (
−→
A, γ′) ∈ AVal(

−→
V), σ = RType(τ), c′ : σ and ϕ′ = ν(

−→
A) ⊎ {c′}

(OA) ⟨γ, ϕ, h,H,Fn⟩ c(A),(c,(K,c′))−−−−−−−−−→ ⟨K[return A], c′, γ, ϕ ⊎ ν(A), h,H · [ν(A) 7→ Fn]⟩
when c : σ, A : σ

(OQ) ⟨γ, ϕ, h,H,Fn⟩ f(
−→
A,c)−−−−→ ⟨(force V)

−→
A, c, γ, ϕ ⊎ ϕ′, h,H · [ϕ′ 7→ Fn]⟩

when f ∈ Fn, f : Uτ,
−→
A ∈ ASeq(τ), σ = RType(τ), c : σ, γ(f) = V and ϕ′ = ν(

−→
A) ⊎ {c}

Given N ⊆ Names, [N 7→ V] stands for the map [n 7→ V |n ∈ N].

Fig. 6. LCBPV transition rules

{((ρ, c), t) | ρ is a Γ-assignment, c : σ, t ∈ TrCBPV(C
ρ,c
M),

t is complete}.

Example 18. Let Γ = {f : U(Ref → Int → FUnit)}, σ =
U(UF Int → F Int), and

M = ref 0̂ to x.(force f)x 4̂;

return thunk (λh.force h to y.!x to z.y + z)

If ρ = [f 7→ f] and t is the trace in Example 8, then
((ρ, c), t) ∈ TrCBPV(Γ ⊢c M : Fσ).

IV. FULL ABSTRACTION

To establish the soundness of this model (trace inclusion
implies contextual inclusion), we will wish to reason about a
computation in a specific context. Let Γ ⊢c M : Fσ. Using
the CIU lemma, we will consider testing using a heap h : Σ,
evaluation context ⊢k K : Fσ =⇒ Fσ′ and a substitution
γ : Γ. Let us fix a continuation name ◦ : σ′, which we use to
determine when a context has returned.

Next we define the set AValΓ(γ) of all disjoint decompo-
sitions of values from γ into abstract values and the corre-
sponding matchings by

AValΓ(γ) = {(A⃗i, γ⃗i) | 1 ≤ i ≤ k, (Ai, γi) ∈ AValσi
(γ(xi)),

ν(A1), · · · , ν(Ak)mutually disjoint }

where Γ = {x1 : σ1, · · · , xk : σk}, A⃗i stands for
(A1, · · · , Ak), and γ⃗i for (γ1, · · · , γk).

Definition 19 (Context configuration). Given Σ, h : Σ, Σ ⊢c

K : Fσ =⇒ Fσ′, Σ ⊢c γ : Γ, (A⃗i, γ⃗i) ∈ AValΓ(γ)
and c : σ (c ̸∈ ◦), the corresponding configuration Cγ⃗i,c

h,K,γ is
defined by

Cγ⃗i,c
h,K,γ = (⟨

k⊎
i=1

γi, ϕ
′ ⊎ {c}, h, [◦ 7→ ∅], ϕ′ ⟩, (c, (K, ◦)) : ⊥)

where ϕ′ =
⊎k

i=1 ν(Ai)

Intuitively, the names ν(Ai) correspond to thunks extracted
from γ, whereas c corresponds to K. Note that traces in
TrCBPV(C

γ⃗i,c
h,K,γ) will be ({◦},

⊎k
i=1 ν(Ai) ⊎ {c})-traces.

For the next result, we introduce the following notation.
Given (A⃗i, γ⃗i) ∈ AValΓ(γ), we define a Γ-assignment ρA⃗i

by ρA⃗i
(xi) = Ai. Note that ν(ρA⃗i

) =
⊎k

i=1 dom(γi). The
key lemma we now need to prove will relate traces of a term
to its ability to converge in a given evaluation context. From
correctness, we can then obtain soundness.

Lemma 20 (Correctness). Let Γ ⊢c M : Fσ be a CBPV com-
putation, let Σ, h,K, γ be as above, (A⃗i, γ⃗i) ∈ AValΓ(γ), and
c : σ (c ̸= ◦). Then (K[M{γ}], h) ⇓ter iff there exist t, A such
that t ∈ TrCBPV(C

ρA⃗i
,c

M) and t⊥ ◦̄(A) ∈ TrCBPV(C
γ⃗i,c
h,K,γ).

Moreover, t satisfies ν(t) ∩ {◦} = ∅.

Theorem 21 (Soundness). For any CBPV computations Γ ⊢c

M1,M2 : Fσ, TrCBPV(Γ ⊢c M1) ⊆ TrCBPV(Γ ⊢c M2) then
Γ ⊢c M1 ≲CBPV(ciu)

ter M2.

For the opposite direction, we establish that any trace of a
suitable shape corresponds to a context.

Lemma 22 (Definability). Suppose ϕ ⊆ TNames and t is an
even-length O,P-visible, O,P-bracketed ({◦}, ϕ ⊎ {c})-trace
starting with an O-action, such that t = t′ ◦̄(A) and t′ is
complete. There exists a passive configuration C such that
Treven(C) is the even-length prefixes of t (along with their
renamings via permutations on Names that fix ϕ ⊎ {◦}).
Moreover, C = ⟨γ, ϕ ⊎ {c}, h, [◦ 7→ ∅], ϕ⟩, (c, (K, ◦)) : ⊥)
for some h,K, γ.

Completeness follows from definability and correctness.

Theorem 23 (Completeness). For any CBPV computations
Γ ⊢c M1,M2 : Fσ, if Γ ⊢c M1 ≲CBPV(ciu)

ter M2 then
TrCBPV(Γ ⊢c M1) ⊆ TrCBPV(Γ ⊢c M2).

Using soundness (Theorem 21), completeness (Theo-
rem 23), and CIU lemma (Lemma 3), we have the following
corollary.

Corollary 24 (Full Abstraction). For any CBPV computa-
tions Γ ⊢c M1,M2 : Fσ, then Γ ⊢c M1 ≲CBPV

ter M2 iff
TrCBPV(Γ ⊢c M1) ⊆ TrCBPV(Γ ⊢c M2).

6

V. FROM LTS TO AUTOMATA (ALPHABET)
In this section, we demonstrate how LCBPV gives rise

directly to an automaton, when considering terms drawn from
a particular fragment of CBPV. Initially, we will look for a
fragment of CBPV for which (a faithful representation of) a
term’s traces can be captured using a (deterministic) Visibly
Pushdown Automaton (VPA) [27]. A VPA is a type of push-
down automata in which the action on the stack is determined
by the input symbol. The alphabet is partitioned into call
(push), return (pop), and internal (noop) symbols. This ensures
that inclusion (and so equivalence) of deterministic VPA is
decidable in polynomial time.

In seeking to identify a fragment for which VPA’s suffice,
we need to ensure that the space of states and the alphabet
of actions are finite. Primarily, this is an issue when it is not
possible to bound the set of names visible to O, VisO(t) for a
trace t generated by the LTS. As the configuration will require
a map from (at least the visible) names to the corresponding
thunks from P, not having a bound on visible names will also
mean we cannot bound the size of this map. We will see how
this consideration restricts the type of terms through examples.

Example 25. Let N1
O = {c : UFUF Int}. Consider (N1

O, ∅)-
traces of the form c̄(g) g(ϵ, c1) c̄1(f1) · · · g(ϵ, cn) c̄n(fn)
fi(ϵ, c

′). To capture them, one needs to generate arbitrarily
many fresh names, because the last action could refer to any
fi. This issue arises whenever we permit P to provide to O a
thunk which returns a thunk (g in this case), as O can then
obtain arbitrarily many, (potentially) distinct thunks.

Let N2
O = {c : U(U(UF Int → FUnit) → FUnit)}.

Consider (N2
O, ∅)-traces of the form c̄(g) g(f1, c1) f̄1(h1, c

′
1)

· · · g(fn, cn) f̄n(hn, c
′
n) hi(ϵ, c

′). Here we can see that the
same issue arises when we allow an argument passed by O
(fi) to itself receive an argument thunk (hi) from P.

The fragment defined below is designed precisely to cir-
cumvent the problems identified above.

Definition 26. A CBPV computation Γ ⊢c M : FσP is in
the P-thunk-restricted (PTR) fragment when all types in Γ
can be generated by σ2 in the grammar below.

σ2 ≜ σ1 | Uτ2 σP ≜ σ0 | Ref | UτP

τ2 ≜ Fσ2 | σP → τ2 τP ≜ Fσ0 | σ1 → τP

σ1 ≜ σ0 | Ref | Uτ1 τ1 ≜ Fσ1 | σ0 → τ1

σ0 ≜ Int | Unit
Remark 27. Note that all thunk P-names in a trace generated
by a computation in the PTR-fragment have the type UτP .

Remark 28. An alternative way to characterise the the PTR-
fragment is by polarising the occurrences of U , which corre-
spond to question actions. If one writes U+ for occurrences
of U that produce O-questions, and U− for those producing
P-questions, the problematic types in Example 25 are then
U+FU+F Int and U+(U−(U+F Int → FUnit) → FUnit),
both of which contain nested occurrences of U+. The PTR-
fragment is then obtained by forbidding nested occurrences of
U+, while allowing nested occurrences of U−.

Definition 29. A (NO, ∅)-trace is a PTR-trace when it is
O- and P-bracketed, O- and P-visible, and it starts with a P-
action with {c} = NO ∩ CNames where c : σP , and for
f ∈ NO ∩ TNames, f : σ2, where σP , σ2 are as defined in
Definition 26.

Observe that these are exactly the traces which LCBPV

generates on PTR computations.
To provide a representation of traces without arbitrarily

many fresh names, we develop the notion of a name scheme.
The idea is to associate each thunk type appearing in a typing
judgment with a fixed name. Readers familiar with game
semantics will find the definition similar to that of an arena,
where thunk names and continuation names indicate the po-
sition of questions and answers respectively, and SucT,SucC
correspond to the enabling relation.

Definition 30. A (Γ, Fσ)-name scheme is a tuple
(TB,CB, ρ, c0,SucT,SucC) such that ρ is a Γ-assignment,
c0 : σ, and TB ⊆ TNames and CB ⊆ CNames are the
smallest sets such that ν(ρ) ⊆ TB, c0 ∈ CB and the conditions
listed below are satisfied. We set TBUτ ≜ TB ∩ TNamesUτ

and CBσ ≜ CB ∩ CNamesσ .

• SucT is the least partial function from (TB×N)⊎CB to
TB∪(TB×TB) such that: if c ∈ CBUτ then SucT(c) ∈
TBUτ ; if c ∈ CBRef then SucT(c) ∈ TBUF Int ×
TBU(Int→FUnit); if f ∈ TBU(σ1→···→σk→FUσ′) and
1 ≤ i ≤ k then SucT(f, i) ∈ TBUτi for σi = Uτi and
SucT(f, i) ∈ TBUF Int × TBU(Int→FUnit) for σi = Ref .

• SucC : TB → CB is a function such that if f ∈ TBUτ

then SucC(f) ∈ CBRType(τ).
• ν(SucX(d)) ∩ ν(SucX(d

′)) = ∅ for d ̸= d′ and X ∈
{T,C} (which implies injectivity) and (img(SucT) ∪
img(SucC)) ∩ (ν(ρ) ∪ {c0}) = ∅.

Elements of TB and CB will be referred to as base thunk
names and base continuation names respectively. Abstract
values containing base names only will be called base abstract
values. We shall write ∆Γ,Fσ for a (Γ, Fσ)-name scheme, and
∆ when we leave (Γ, Fσ) implicit.

Example 31. Consider τ = U(τ ′) → FUFUnit, where
τ ′ = UF Int → UFUnit → F Int, Γ = {f : Uτ}, c0 : Unit.
For simplicity, assume f ∈ TBUτ and ρ(f) = f . Then
∆Γ,FUnit = (TB,CB, ρ, c0,SucT,SucC) is a name scheme,
where

• TB = {f : Uτ, g : UFUnit, h : Uτ ′, i : UF Int,
j : UFUnit};

• CB = {c0 : Unit, cf : UFUnit, cg : Unit, ch : Int,
ci : Int, cj : Unit};

• SucT(f, 1) = h, SucT(h, 1) = i, SucT(h, 2) = j,
SucT(cf) = g; and

• SucC(f) = cf , SucC(g) = cg , SucC(h) = ch, SucC(i) =
ci, SucC(j) = cj .

Showing SucT with solid arrows, and SucC with dashed, this

7

BVals∆σ (d) ≜ {V | V : σ} where σ ∈ {Int,Unit} BValSeq∆(f) ≜ {ϵ} where f : Fσ

BVals∆Uτ (d) ≜ {f} where SucT(d) = f BValSeq∆(f) ≜ {B1 · · ·Bk | Bi ∈ BVals∆σi
((f, i))}

BVals∆Ref(d) ≜ {{|f, g|}} where SucT(d) = (f, g) where f : σ1 → · · · → σk → Fσ

Fig. 7. Definition of base abstract values for given base head names and ∆ = (TB,CB, ρ, c0, SucT,SucC)

Base∆t (n) ≜ n where n ∈ NO

Base∆t (c) ≜ SucC(g) where c is introduced in f(A, c) or f̄(A, c) and g = Base∆t (f)

Base∆t (f) ≜ g where f is introduced in c(A) or c̄(A) with c : σ, c′ = Base∆t (c)

{B} = BVals∆σ (c) and g = Match(A,B, f)

Base∆t (f) ≜ g where f is introduced in f ′(
−→
A, c) or f̄ ′(

−→
A, c) with g′ = Base∆t (f ′),

−→
B ∈ BValSeq∆(g′) and g = Match(

−→
A,

−→
B, f)

Marked(t) ≜ {t′ | a is an O-action in t, f is introduced in a, and t′ is t with f replaced by f̂}
Rename∆(t) ≜ Base∆(t) ∪

⋃
t′∈Marked(t) Base∆(t′)

Fig. 8. The function Base∆t () which converting names appearing in t to base names from ∆ = (TB,CB, ρ, c0, SucT,SucC)

can be visualised as a forest.

f //
))
cf // g // cg c0

h //
uu))

ch
i // ci j // cj

We can recast many definitions to use name schemes. For a
start, we will redefine the notion of a trace so that it relies on
base head names only, and base abstract values depend upon
the name they are passed to via SucT or SucC. To this end,
in Figure 7 we define BVals∆σ (d) (for d ∈ (TB× N) ⊎ CB)
and BValSeq∆(f) (for f ∈ TB) to indicate the associated
base abstract values and sequences thereof respectively. Note
that they are determined uniquely up to numerical constants.

Definition 32. Let ∆ = (TB,CB, ρ, c0,SucT,SucC) be a
name scheme. A ∆-trace is a sequence t of actions such that:
the actions alternate between P and O actions; names from
ν(ρ) ∪ c0 need no introduction; and the possible actions are:

• f̄(
−→
A, c) where f ∈ TB, c = SucC(f),

−→
A ∈

BValSeq∆(f) and f was introduced by an earlier O-
action or f ∈ ν(ρ),

• c̄(A) where c : σ ∈ CB, A ∈ BVals∆σ (c) and c was
introduced by an earlier O-action or c = c0,

• f(
−→
A, c) where f ∈ TB, c = SucC(f),

−→
A ∈

BValSeq∆(f) and f was introduced by an earlier P-
action.

• c(A) where c : σ ∈ CB, A ∈ BVals∆σ (c) and c was
introduced by an earlier P-action.

Given the structure on base names, we can now introduce
some terminology to distinguish the different classes of names.

Definition 33. Let ∆ = (TB,CB, ρ, c0,SucT,SucC). The
names in ν(ρ) and c0 are said to be initial. A name f ∈ TB
is said to be a level-n name if n = 0 and the name is initial,
or n = 1 and f ∈ ν(SucT(c0)), or there exists a level-(n− 1)
name g and j ∈ N such that f ∈ ν(SucT(g, j)), or

• there exists a level-n name g and c ∈ CB such that f ∈
ν(SucT(c)) and c = SucC(g).

For level-n name f , the sequence of thunk names induced by
the repeated use of the last rule will be called an introduction
chain, and the first name in the chain (i.e. introduced by the
earlier rules) is called the originator.

Example 34. In ∆Γ,FUnit from Example 31, f, g are level 0,
h is level 1, and i, j are level 2. f is the originator of g. These
align with the position of names in the visualisation.

Remark 35. Observe that, when used in a trace, the level 0
names will be O-names, so the level 1 names will be P-names,
and the level 2 names will be O-names. In the PTR-fragment,
all thunk names have level at most 2.

We shall say that a name scheme ∆ = (TB, CB, ρ, c0,
SucT, SucC) agrees with NO ⊆ Names if NO = ν(ρ) ∪ c0.
Observe that, given a (NO, ∅)-trace t and a ∆ agreeing with
NO, we can construct a function Base∆t that maps names
in ν(t) to base names by recursing on the introduction of
names until we reach names in N0. This is given formally in
Figure 8, where Match(A,B, f) finds the base name in B
in the same position as f in A.We can extend Base∆t to sets
of names, abstract values, actions, and also to an entire trace,
which we shall write simply as Base∆(t). This is analogous to
erasing justification pointers in game-semantic plays. We can
now state a first useful result about base names. Intuitively, it
means that, in PTR traces, base names suffice to distinguish
O-visible thunk names, i.e. in such traces we can use base
names to represent OQ actions faithfully.

Lemma 36. Let t be a PTR (NO, ∅)-trace ending in a
P -action. Then f, f ′ ∈ VisO(t), we have Base∆t (f) ̸=
Base∆t (f ′).

It would be desirable if we could represent the traces of a
PTR-computation using ∆-traces. However, it turns out that
simply applying Base∆ to a trace loses information.

8

Example 37. Let Γ = {f : UFUFUnit} and ∆ = ({ f :
UFUFUnit, g : UFUnit }, {c0 : Unit, d : UFUnit, e :
Unit}, ρ, c0, [d 7→ g], [f 7→ d, g 7→ e]), where ρ = [f 7→ f].
Consider the two computations Γ ⊢c M1,M2 : FUnit, where
Mi = force f to g1.force f to g2.force gi. We have that the
complete traces in Tr(Cρ,c0

Mi
) all have the form

ti = f̄(ϵ, c1) c1(g1) f̄(ϵ, c2) c2(g2) ḡi(ϵ, c3) c3(()) c̄0(())

That is, the traces are distinguished by the use of either g1 or
g2. However, we have Base∆Tr(Cρ,c0

Mi
) as given in Figure 9.

That is, we lose the distinction between g1 and g2, and so if
we simply used ∆-traces to model terms, we would equate M1

with M2, which would mean losing the soundness property.

A natural solution to this would be to take inspiration from
the way that ti is presented in this example, and use traces
in which base names can appear scripted by when they are
introduced. We could also exploit Lemma 42 to allow us to
reset these indices after a PA-action. However, the presence of
while loops means that this is not viable. A while loop might
cause a PQ-action to occur arbitrarily many times, seemingly
requiring an unbounded number of indices. We could attempt
to exploit the fact that the scopes in the language ensure that
any name introduced during an iteration of a loop cannot
escape that loop to reset the indices at the end of a loop.
However, the end of a loop cannot be apparent in a trace.
This makes it difficult to see how to equate the terms

N1 = (force f to g.force g); force f to g.force g
N2 = ref 2 to x.while !xdo ((force f to g.force g);

!x to v.v − 1 to w.x := w)

This is because, for the first, we would want to have traces
like f̄(ϵ, d1) d1(g1) ḡ1(ϵ, e1) e1(()) f̄(ϵ, d2) d2(g2) ḡ2(ϵ, e2)
e2(()) c̄0(()), as it is not ‘safe’ to reset the index counter
after the e1(()), whereas for the second we would need to
have traces like f̄(ϵ, d1) d1(g1) ḡ1(ϵ, e1) e1(()) f̄(ϵ, d1) d1(g1)
ḡ1(ϵ, e1) e1(()) c̄0(()), as we would be resetting the index at
the end of every iteration.

This issue also appears in the work of Hopkins et al. [12],
which they resolve by encoding a single P-pointer in each
word their automata generate, and then use the fact that a
set of words, each with one pointer, can be used to uniquely
represent a full play. We adopt the same approach, and adapt
it to our name-based setting.

The key to this is the notion of a marked name, which we
shall write as f̂ , where f is said to be the underlying name,
which can be either from TNames or TBNames for some
∆, depending on context. We introduce f into our structures
(traces, abstract values, etc.) by permitting a marked name
wherever the underlying name can occur, and will refer to
these also as marked (e.g. marked trace). In particular, for
base abstract values, a marked name can appear in place of its
underlying name in BVals∆σ (d). We also extend the functions
Base∆ and Base∆t so that they preserve marks.

With this notion, we can now define an appropriate mapping
of PTR-traces to a set of marked, ∆-traces as Rename∆(t)

in Figure 8. Observe that Rename∆(t) consists of traces
whose underlying names are all the same, and for each trace,
at most one O-base name introduced during t has been marked.
We lift Rename() to sets in the obvious way.

Example 38. Let ∆, M1,M2 be as in Example 37. Then we
have Rename∆(Tr(Cρ,c0

Mi
)) as shown in Figure 9.

Rename∆() turns out to be sufficiently informative to
provide a faithful representation of PTR-traces.

Lemma 39. Suppose t1, t2 are PTR (NO, ∅)-traces, ∆ agrees
with NO and Rename∆(t1) = Rename∆(t2). Then t1 and
t2 are equal up to a permutation of names that preserves NO.

Corollary 40. For PTR-computations Γ ⊢c M1,M2 : Fσ,
continuation name c : σ, a Γ-assignment ρ and ∆Γ,c =
(TB,CB, ρ, c, SucT,SucC), we have Tr(CM1

ρ,c) = Tr(CM2
ρ,c)

iff Rename∆Γ,c(Tr(CM1
ρ,c)) = Rename∆Γ,c(Tr(CM2

ρ,c)).

VI. FROM LTS TO AUTOMATA (TRANSITIONS)

Let ∆ = (TB,CB, ρ, c0,SucT,SucC) be a name scheme.
We wish to arrive at an LTS L∆

PTR generating marked ∆-
traces. In particular, the traces should be those arising from
an application of Rename∆(t), i.e. they need to include at
most one introduction of a marked name, which must be an O-
name. Although traces of L∆

PTR will rely on base names, the
configurations will distinguish their occurrences via indexing.
An indexed name has the form bi, where b ∈ TB ∪ CB, and
i ∈ N is an index. Indexed names will appear in the domain of
components like γ and in terms, but never in traces. Indexed
names can also be marked in the same way as others.

To handle the generation of new indices, our configurations
will contain a function η : TB∪CB → N mapping each base
name to the next available index. In Figure 10 we define new
versions of functions analogous to AValσ(V), BVals∆σ (d),
and BValSeq∆(f) but taking an additional argument η. They
generate abstract values with indexed names and an updated
η′. Given an abstract value or sequence with indexed names,
we write β(A) to denote the same abstract value with indices
removed (but preserving marks).

Note that a typical update to η will make the values grow.
In order to keep them bounded, we will implement a recycling
scheme for indices. In order to formulate it, we need to transfer
the notion of level to thunk names in a trace. Let t be an NO-
trace such that ∆ agrees with NO. Then f in t is a level-n
name if Base∆t (f) is a level-n name, and g is the originator
of f if g can be reached from f by following the introduction
of head names, and Base∆t (g) is the originator of Base∆t (f).

Example 41. In trace t in Example 8, f is a level-0 name,
r, w, g are level 1, and h is level 2.

Our recycling scheme is inspired by the Lemmata below.

Lemma 42. Let c : σ0 be a continuation name (one
which corresponds to returning a value of a basic type).
Then, for any O/P-visible, and O/P-bracketed trace s =

9

Base∆(Tr(Cρ,c0
Mi

)) = {t} where t = f̄(ϵ, d) d(g) f̄(ϵ, d) d(g) ḡ(ϵ, e) e(()) c̄0(())

Rename∆(Tr(Cρ,c0
M1

)) = {t, f̄(ϵ, d) d(ĝ) f̄(ϵ, d) d(g) ¯̂g(ϵ, e) e(()) c̄0(()), f̄(ϵ, d) d(g) f̄(ϵ, d) d(ĝ) ḡ(ϵ, e) e(()) c̄0(())}
Rename∆(Tr(Cρ,c0

M2
)) = {t, f̄(ϵ, d) d(ĝ) f̄(ϵ, d) d(g) ḡ(ϵ, e) e(()) c̄0(()), f̄(ϵ, d) d(g) f̄(ϵ, d) d(ĝ) ¯̂g(ϵ, e) e(()) c̄0(())}

Fig. 9. Translation of traces for Examples 37 and 38

IVal∆σ (d, V, η) ≜ (V, ∅, η) for σ ∈ {Unit, Int}
IVal∆Uτ (d, V, η) ≜ (f i, [f i 7→ V], η[f 7→ i+ 1]) where SucT(d) = f, η(f) = i

IVal∆Ref(d, {|V1, V2|}, η) ≜ ({|fη(f), gη(j)|}, [fη(f) 7→ V1, g
η(g) 7→ V2], η[f, g 7→ η(f) + 1, η(g) + 1]) where SucT(d) = (f, g)

IVal∆Ref(d, ℓ, η) ≜ ({|f i, gj |}, [f i 7→ thunk (!ℓ), gj 7→ thunk (λx.ℓ := x)], η[f, g 7→ i+ 1, j + 1])
where SucT(d) = (f, g), η(f) = i, η(g) = j

IVal∆(f,
−→
V , η0) ≜ (A1 · · · Ak, γ1 · γ2 · · · γk, ηk) where f : U(σ1 → · · · → σk → Fσ),

−→
V = V1 · · · Vk

and for 1 ≤ i ≤ k, (Ai, γi, ηi) = IVal∆σi
((f, i), Vi, ηi−1)

IVals∆σ (d, η) ≜ {(V, η) | V : σ} where σ ∈ {Int,Unit}
IVals∆Uτ (d, η) ≜ {(f i, η[f 7→ i+ 1])} where SucT(d) = f, η(f) = i

IVals∆Ref(d, η) ≜ {(MkVar f i gj , η[f, g 7→ i+ 1, j + 1])} where SucT(d) = (f, g), η(f) = i, η(g) = j

IValSeq∆(f, η0) ≜ {(B1 · · ·Bk, ηk) | (Bi, ηi) ∈ IVals∆σi
((f, i), ηi−1)} where f : U(σ1 → · · · → σk → Fσ)

Fig. 10. Functions for decomposing values in indexed abstract values and maps, for ∆ = (TB,CB, ρ, c0, SucT, SucC)

t f(
−→
A, c) t′ c̄(A′) t′′, no names introduced in f(

−→
A, c) t′ ap-

pear in VisO(s) (if s ends in a P-action) or VisP (s) (if s ends
in an O-action).

Lemma 43. Let s = t f(
−→
A, c) t′ ḡ(

−→
A′, d) and s′ = s t′′ d(A)

be PTR (NO, ∅)-traces, where g is a level-2 name whose
originator is introduced in

−→
A . Let X be the names introduced

in f(
−→
A, c) t′ ḡ(

−→
A′, d). Then if s′′ is a proper prefix of s′ at

least as long as s, VisO(s′′)∩X = ∅ (if s′′ ends in a P-action)
and VisP (s

′′) ∩X = ∅ (if s′′ ends in an O-action).

Note that both Lemmata state that certain names become
unavailable. In the first case this deactivation is permanent
after c̄(A′), whereas in the second case it is temporary: it
starts after a level-2 name is used in ḡ(

−→
A′, d) and ends

after the corresponding d(A). We will take advantage of the
deactivation period to reuse the deactivated indices. In the first
case, this will be done simply by resetting the relevant bounds.
In the PTR fragment, all non-initial continuation names have
type σ0, so this recycling is actually widely applicable. In the
second case, we will reset the parameters temporarily and, to
be able to restore them, will push the information related to
deactivated names on the stack (PQ). It can then be restored
during the matching pop (OA).

Example 44. To better explain why this second scheme
is necessary, recall Γ and name scheme ∆Γ,FUnit

from Example 31, and consider the computation
Γ ⊢c (force f)(thunk λi.λj.(force i)) to g.force g : FUnit.
Some of the associated traces, written with base names and
specific indices, have the following shape:

f̄0(h0, c0f) h
0(i0 j0, c0h) ī

0(ϵ, c0i) h
0(i1 j1, c1h) ī

1(ϵ, c1i)

What happens here is that, when P calls in, h0 becomes visible

to O. This allows O to call h0 again with in+1. As this can
repeat unboundedly many times, we must recycle the indices
on i and j, which is what the second recycling scheme permits.

Before we can present L∆
PTR we will need one final element,

modifications to the operational semantics given in Figure 3.
Their purpose is to replace the generation of arbitrary new
locations with locations drawn sequentially from N, similarly
to how we intend to use indexed names. This will enable us to
exploit the fact that Lemmata 42 and 43 mean that available
locations are also restricted. Instead of having configurations
of the form (M,h), we have ones of the form (M,h, ih, η),
where ih is the next available location (and η will be a function
as above). The previous operational rules → (save those for
ref V and whileM doN) are embedded into the new reduction
→e using the rule

(M,h) → (M ′, h′)

(M,h, ih, η) →e (M ′, h′, ih, η)
.

The reduction rule for handling new references is replaced
by (K[ref V], h, ih, η) →e (K[ih], h · [ih 7→ V], ih + 1, η). It
uses ih as the location for the new reference, and then sets the
next location to be ih+1. This gives an operational semantics
which is behaviorally the same as generating a fresh location,
so long as ih is larger than any name appearing in h.

We also make changes to handle the while do construct.
The idea is to reset both ih and η back to the value before the
loop once we reach the end of the loop. This is due to the fact
that, by the way the scopes work in the language, any name
or location generated in the loop cannot be used outside of
(that iteration of) the loop. In particular, we introduce a new
construct, end(ih, η).M , to indicate the end of an iteration
of a loop. We provide rules for while and end in Figure 11,
where h<ih denotes the heap h restricted to domain of location

10

smaller than ih. Similarly, if ζ is a partial map from indexed
names, and η maps base names to indices, we write ζη to mean
ζ restricted to indexed names f i for which i < η(f). We will
use h≥ih and ζ≥η analogously.

Finally, we present the LTS L∆
PTR in Figure 12. Active con-

figurations of L∆
PTR have the form ⟨M, c, γ, h,H, ih, η, µ, l⟩

and passive ones ⟨γ, h,H,Fn, ih, η, µ, l⟩. As described above,
η is a function from base names to the next available index,
which we call the (next) index component. ih is the (next)
location component, the next available location. µ is the reset
component, a partial map from (indexed) level-2 thunk names
and O-continuation names to the value of (ih, η) prior to the
move that introduced the name. l is a binary flag used to
indicate whether a marked name has been produced in the
trace so far.

We now need to define initial configurations. Let
Γ ⊢c M : Fσ be a PTR computation and ∆ =
(TB,CB, ρ, c0,SucT,SucC) be a (Γ, Fσ)-name scheme. Let
ρ0 = [xi 7→ ρ(xi)

0], NO = ν(ρ) ∪ {c0} and N0
O = {n0 |n ∈

N0}. Then the active initial configuration CPTR,∆
M is defined

to be

(⟨M{ρ0}, c00, ∅, ∅, [N0
O 7→ ∅], 0, η, ∅, 0⟩,⊥)

where η = [NO, c0 7→ 1] · [(TB ∪ CB) \ (NO ∪ {c0}) 7→ 0].
The main change to the LTS, is to ‘recycle’ the indices, so

as to keep the space of reachable configurations finite. This is
the role of the µ component, based on the properties identified
in Lemmata 42 and 43. In particular, after a PA-action (other
than on the initial continuation name), we ‘prune’ the domains
of the components to the index names and locations introduced
before the OQ-action being answered. Similarly, after a PQ-
action on a level-2 name f , we split the components between
the index names and locations introduced before the OQ-action
introducing the originator of f , and those after. Those from
before the OQ-action become part of the next configuration,
whereas those from after are stored on the stack until they can
be restored after the matching OA-action. Let Tr∆PTR(C) be
the set of base traces generated from C in L∆

PTR.

Definition 45. The PTR-trace semantics of a
PTR-computation Γ ⊢c M : Fσ is defined to be
TrPTR(Γ ⊢c M : Fσ) ≜ { (∆, t) | ∆ is a (Γ, Fσ)-name
scheme, t ∈ Tr∆PTR(C

PTR,∆
M), t is complete}.

We can show that the new semantics agree with the full
trace semantics on PTR-computations.

Lemma 46. For any PTR-computation Γ ⊢ M : Fσ,
a (Γ, Fσ)-name scheme ∆ = (TB,CB, ρ, c0,SucT,SucC),
Tr∆PTR(C

PTR,∆
M) = Rename∆(TrCBPV(C

ρ,c0
M)).

Lemma 46 with Corollaries 24 and 40 imply the following.

Theorem 47 (PTR Full Abstraction). For any PTR com-
putations Γ ⊢ M1,M2 : Fσ, then Γ ⊢ M1 ≲CBPV

ter M2 iff
TrPTR(Γ ⊢ M1) ⊆ TrPTR(Γ ⊢ M2).

L∆
PTR turns out to be a VPA for any PTR-computation.

In general, it inherits the non-elementary bounds from the λ-

calculus but, for terms in canonical form (see Figure 13), we
obtain an exponential bound.

Lemma 48. For PTR-computation Γ ⊢c M : Fσ, (Γ, σ)-
name scheme ∆, the set of of states reachable from CPTR,∆

M

in L∆
PTR is finite. If M is in canonical form, it is exponential

in the size of M .

Lemma 49. For PTR-computation Γ ⊢c M : Fσ and (Γ, σ)-
name scheme ∆, one can effectively construct a deterministic
VPA accepting Tr∆PTR(C

PTR,∆
M). If M is in canonical form,

the construction can be carried out in exponential time.

VII. DECIDABILITY, COMPLEXITY AND TRANSLATIONS

Theorem 50. Contextual approximation for the PTR-
fragment of CBPV is decidable. For computations in canon-
ical form, it is decidable in exponential time.

Proof. From Theorem 47, testing two computations Γ ⊢c

M1,M2 : Fσ for contextual approximation can be done by
comparing the complete traces generated by L∆

PTR for every
possible name scheme ∆. As choice of base names in Γ, σ
is arbitrary, we need only care about the Ints occurring in
Γ, which gives exponentially many ∆. By Lemma 49, each
comparison reduces to a language equivalence test. For canon-
ical forms, the two VPA’s are constructible in exponential
time. In particular, they will be of exponential size. Because
language equivalence is in P for deterministic VPA, the lemma
follows.

One can show that it is the use of level-2 names that forces
us to make use of an unbounded stack. The computations that
omit level-2 names are of the form Γ ⊢c M : Fσ1, where
each type in Γ is a σ2 type according to the grammar given
below.

σ2 ≜ σ1 | Uτ1 σ1 ≜ σ0 | Ref | Uτ0

τ1 ≜ Fσ2 | σ1 → τ1 τ0 ≜ Fσ0 | σ0 → τ0

σ0 ≜ Int | Unit

In this case one can show that the stack height is bounded
and, for canonical forms, the bound is linear. Consequently,
we can treat the (bounded) stack as part of the state space and
convert the VPA to a finite-state machine.

The fact that our results are stated for CBPV makes it
possible to specialise them to the CBN- and CBV-variants of
the language, known in the literature as Idealised Algol [7]
and RML [6] respectively. This can be done by translation
provided it is fully abstract (preserves and reflects contextual
equivalence). Our translations extend the standard translations
from the CBN and CBV λ-calculus respectively [21]. The
translations of types are given in the table below. For RML, a
term M : σ is translated into a computation MRML : FσRML.

RML type CBPV value types
Int,Unit,Ref Int,Unit,Ref

σ1 → σ2 U(σ1
RML → Fσ2

RML)

11

(K[whileM doN], h, ih, η) →e (K[M to x.case x of return (), (N to y.end(ih, η).whileM doN)j>0], h, ih, η)
(K[end(ih, η

′).whileM doN], h, jh, η) →e (K[M to x.case x of return (), (N to y.end(ih, η).whileM doN)j], h<ih , ih, η
′)

Fig. 11. The modifications needed to produce reduction relation →e

(Pτ) ⟨M, cj , γ, h,H, ih, η, µ, l⟩
τ−−→ ⟨N, cj , γ<η′ , h′, H<η′ , i′h, η

′, µ<η′ , l⟩
when (M,h, ih, η) →e (N,h′, i′h, η

′)

(PA) ⟨return V, c00, γ, h,H, ih, η, µ, l⟩
c̄0(β(A))−−−−−→ ⟨γ · γ′, h,H,H(c0) ⊎ ν(A), ih, η

′, µ, l⟩
when c0 : σ, (A, γ′, η′) = IVal∆σ (c0, V, η)

(PA) ⟨return V, ci, γ, h,H, ih, η, µ, l⟩
c̄(V)−−−→ ⟨γ<η′ , h<i′h

, H<η′ , H(ci), i′h, η
′, µ<η′ , l⟩

when c ̸= c0 and (i′h, η
′) = µ(ci)

(PQ) ⟨K[(force f i)
−→
V], c′j , γ, h,H, ih, η, µ, l⟩

f̄(β(
−→
A),c)/(c0,(K,c′j))−−−−−−−−−−−−−−→ ⟨γ · γ′, h,H,H(f i) ⊎ ν(

−→
A), ih, η

′, µ, l⟩
when f is not a level 2 name, (

−→
A, γ′, η′) ∈ IVal∆(f,

−→
V , η), and SucC(f) = c

(PQ) ⟨K[(force f i)
−→
V], c′j , γ, h,H, ih, η, µ, l⟩

f̄(
−→
V ,c)/(c0,(K,c′j),P)−−−−−−−−−−−−−−→ ⟨γ<η′ , h<i′h

, H<η′ , H(f i), i′h, η
′, µ<η′ , l⟩

when f is a level 2 name, and (i′h, η
′) = µ(f i), SucC(f) = c, and P = (ih, η, γ≥η′ , h≥i′h

, H≥η′ , µ≥η′)

(OA) ⟨γ, h,H,Fn, ih, η, µ, l⟩
c(β(A)),(c0,(K,c′j))−−−−−−−−−−−−−→ ⟨K[return A], c′j , γ, h,H · [ν(A) 7→ Fn], ih, η

′, µ, l′⟩
when c : σ, (A′, η′) ∈ IVals∆σ (c, η) and if l = 1 then A = A′, l′ = 1 else A ∈ Select(A′), and l′ = IsMark(A)

(OA) ⟨γ, h,H,Fn, ih, η, µ, l⟩
c(β(A)),(c0,(K,c′j),P)−−−−−−−−−−−−−−→ ⟨K[return A], c′j , γ · γ′, h,H ′, i′h, η

′, µ′, l′⟩
when c : σ, P = (i′h, η

′′, γ′, h′, H ′′, µ′′), (A′, η′) ∈ IVals∆σ (c, η′′) and if l = 1 then A = A′, l′ = 1
else A ∈ Select(A′), and l′ = IsMark(A); and H ′ = H ·H ′′ · [ν(A) 7→ Fn], and µ′ = µ · µ′′ · [ν(A) 7→ (ih, η)]

(OQ) ⟨γ, h,H,Fn, ih, η, µ, l⟩
f(β(

−→
A),c)−−−−−−→ ⟨force V

−→
A, cj , γ, h,H · [ν(

−→
A), cj 7→ Fn], ih, η

′, µ′, l⟩
when f i ∈ Fn, (

−→
A′, η′′) ∈ IValSeq∆(f, η), SucC(f) = c, η(c) = j, η′ = η′′[c 7→ j + 1], γ(f i) = V, and

if l = 1 then A = A′, l′ = 1 else A ∈ Select(A′), and l′ = IsMark(A); and µ′ = µ · [ν(
−→
A), cj 7→ (ih, η)]

In the PQ rules, the name f can be either marked or unmarked. In the second PA (PQ), V (
−→
V) does not contain thunks,

so is an abstract value. The second OA rule is sound as γ′, h′, H ′′, µ′′ are disjoint from γ, h,H, µ. Select(A) is the set of
marked indexed abstract values obtained by marking at most one name in A. IsMark(A) = 1 if a name in A is marked, 0
otherwise.

Fig. 12. L∆
PTR transition rules for name scheme ∆ = (TBNames,CBNames, ρ, c0, SucT,SucC)

Ground Types β ≜ Unit | Int
Restricted Values V0 ≜ x | () | n̂ | ℓ | MkVar V0 V0

Values V ≜ V0 | thunk M | MkVar (thunk M) (thunk M)

Restricted Computations M0 ≜ force V0 | return V0 | M0V | ref V | !V0 | V0 := V0

Computations M ≜ M0 | return V | λxσ.M | let xβ be V.M
| M to xβ .M | M0 to x.M | case V of (Mi)i∈I | whileM doM

Fig. 13. The grammar for terms in canonical form

IA type CBPV computation types
expr, com F Int, FUnit

var Int → Int → F Int
τ1 → τ2 Uτ1

IA → τ2
IA

Remark 51. The CBN translation of var into Int → Int →
F Int uses the first argument as a boolean flag to indicate
whether reading or writing will take place. The term translation
ensures that, during reading, the second parameter will be
ignored. For writing, the translated term will always return

0. If the first argument is different from 0 or 1, the translated
term will diverge.

That the translations turn out fully abstract is not completely
surprising: there are several similar results in the literature,
though none of them applies to the framework we are consid-
ering, e.g. the results from [21] are phrased for higher-order
references and observing output instead of termination. Our
fully abstract model LCBPV plays a crucial role in establishing
the full abstraction of our translations.

12

Theorem 52. Let ≲IA
ter , ≲RML

ter be the notions of contextual
approximation in IA and RML respectively. For IA terms
Γ ⊢ M1 ≲IA

ter M2 iff ΓIA ⊢c M1
IA ≲CBPV

ter M2
IA, and for

RML terms Γ ⊢ M1 ≲RML
ter M2 iff ΓRML ⊢c M1

RML ≲CBPV
ter

M2
RML.

The above result means that Theorem 50 subsumes existing
decidability results for IA and RML from [10], [12], as the
translations of third-order IA types [10] and O-strict RML
types [12] belong to the PTR fragment. Consequently, the
present results can be seen as an operational explanation of
the earlier results for CBN and CBV.

VIII. CONCLUSION

We demonstrated an approach to proving decidability results
for contextual equivalence by deriving decidable automata
models from labelled transitions systems through a series
of relatively easy optimisations. The configurations of these
automata retain operational character, which makes them suit-
able for specification of further program analysis tasks. Since
operational game models are in general easier to construct
and understand, we believe the approach is likely to turn
out fruitful when it comes to analyzing more complicated
frameworks in the future.

REFERENCES

[1] H. Nickau, “Hereditarily Sequential Functionals,” in Proceedings of
LFCS, ser. LNCS, vol. 813. Springer, 1994, pp. 253–264.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full Abstraction for
PCF,” Inf. Comput., vol. 163, no. 2, pp. 409–470, 2000.

[3] J. M. E. Hyland and C. L. Ong, “On Full Abstraction for PCF: I, II,
and III,” Inf. Comput., vol. 163, no. 2, pp. 285–408, 2000.

[4] J. Laird, “A Fully Abstract Trace Semantics for General References,”
in Proceedings of ICALP, ser. LNCS, vol. 4596. Springer, 2007, pp.
667–679.

[5] G. Jaber, “Operational Nominal Game Semantics,” in Proceedings of
FoSSaCS, ser. LNCS, vol. 9034. Springer, 2015, pp. 264–278.

[6] S. Abramsky and G. McCusker, “Call-by-Value Games,” in Proceedings
of CSL, ser. LNCS, vol. 1414. Springer, 1997, pp. 1–17.

[7] ——, “Linearity, Sharing and State: a fully abstract game semantics for
Idealized Algol with active expressions,” in Algol-like languages, P. W.
O’Hearn and R. D. Tennent, Eds. Birkhaüser, 1997, pp. 297–329.

[8] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong,
“Applying Game Semantics to Compositional Software Modelling and
Verification,” in Proceedings of TACAS, ser. LNCS, vol. 2988. Springer,
2004, pp. 421–435.

[9] D. R. Ghica and G. McCusker, “The regular language semantics of
second-order Idealized Algol,” Theor. Comput. Sci., vol. 309, pp. 469–
502, 2003.

[10] A. S. Murawski and I. Walukiewicz, “Third-order Idealized Algol with
iteration is decidable,” Theor. Comput. Sci., vol. 390, no. 2-3, pp. 214–
229, Jan. 2008.

[11] A. S. Murawski, “Functions with local state: Regularity and Undecid-
ability,” Theor. Comput. Sci., vol. 338, no. 1-3, pp. 315–349, 2005.

[12] D. Hopkins, A. S. Murawski, and C.-H. L. Ong, “A Fragment of ML
Decidable by Visibly Pushdown Automata,” in Proceedings of ICALP,
ser. LNCS, vol. 6756. Springer, 2011, pp. 149–161.

[13] S. B. Lassen and P. B. Levy, “Typed Normal Form Bisimulation,” in
Proceedings of CSL, ser. LNCS, vol. 4646. Springer, 2007, pp. 283–
297.

[14] P. B. Levy, “Call-by-push-value: Decomposing call-by-value and call-
by-name,” High. Order Symb. Comput., vol. 19, no. 4, pp. 377–414,
2006.

[15] G. Jaber, “SyTeCi: automating contextual equivalence for higher-order
programs with references,” Proc. ACM Program. Lang., vol. 4, no.
POPL, pp. 59:1–59:28, 2019.

[16] V. Koutavas, Y. Y. Lin, and N. Tzevelekos, “From Bounded Checking
to Verification of Equivalence via Symbolic Up-to Techniques,” in
Proceedings of TACAS, ser. LNCS, vol. 13244. Springer, 2022, pp.
178–195.

[17] G. Jaber and A. S. Murawski, “Compositional relational reasoning via
operational game semantics,” in Proceedings of LICS. IEEE, 2021, pp.
1–13.

[18] A. M. Pitts and I. D. B. Stark, “Operational Reasoning for Functions with
Local State,” in Higher-Order Operational Techniques in Semantics,
A. D. Gordon and A. M. Pitts, Eds. CUP, 1998, pp. 227–273.

[19] D. Dreyer, G. Neis, and L. Birkedal, “The impact of higher-order state
and control effects on local relational reasoning,” J. Funct. Program.,
vol. 22, no. 4-5, pp. 477–528, 2012.

[20] D. Biernacki, S. Lenglet, and P. Polesiuk, “A Complete Normal-Form
Bisimilarity for State,” in Proceedings of FoSSaCS, ser. LNCS, vol.
11425. Springer, 2019, pp. 98–114.

[21] P. B. Levy, Call-By-Push-Value. A Functional/Imperative Synthesis, ser.
Semantics Structures in Computation. Springer, 2004, vol. 2.

[22] J. C. Reynolds, “The Essence of Algol,” in Algol-like languages, P. W.
O’Hearn and R. D. Tennent, Eds. Birkhaüser, 1997, pp. 67–88.

[23] C. Talcott, “Reasoning about Programs With Effects,” Electron. Notes
Theor. Comput. Sci., vol. 14, pp. 301–314, 1998.

[24] G. Jaber and A. S. Murawski, “Complete trace models of state and
control,” in Proceedings of ESOP, ser. LNCS, vol. 12648. Springer,
2021, pp. 348–374.

[25] S. Abramsky, K. Honda, and G. McCusker, “A Fully Abstract Game
Semantics for General References,” in Proceedings of LICS. IEEE,
1998, pp. 334–344.

[26] J. Laird, “Full Abstraction for Functional Languages with Control,” in
Proceedings of LICS. IEEE, 1997, pp. 58–67.

[27] R. Alur and P. Madhusudan, “Visibly Pushdown Languages,” in Pro-
ceedings of STOC. ACM, 2004, pp. 202–211.

13

