
Operational Algorithmic Game Semantics

Benedict Bunting, University of Oxford, UK
Andrzej S. Murawski, University of Oxford, UK∗

Extended paper

Abstract

We consider a simply-typed call-by-push-value calculus with state, and provide a fully
abstract trace model via a labelled transition system (LTS) in the spirit of operational game
semantics. By examining the shape of configurations and performing a series of natural op-
timisation steps based on name recycling, we identify a fragment for which the LTS can be
recast as a deterministic visibly pushdown automaton. This implies decidability of contextual
equivalence for the fragment identified and solvability in exponential time for terms in canon-
ical form. We also identify a fragment for which these automata are finite-state machines.

Further, we use the trace model to prove that translations of prototypical call-by-name (IA)
and call-by-value (RML) languages into our call-by-push-value language are fully abstract.
This allows our decidability results to be seen as subsuming several results from the literature
for IA and RML. We regard our operational approach as a simpler and more intuitive way of
deriving such results. The techniques we rely on draw upon simple intuitions from operational
semantics and the resultant automata retain operational style, capturing the dynamics of the
underlying language.

1 Introduction

The notion of contextual equivalence has been much studied in programming language theory, as it
captures an especially natural form of equality between programs, widely applicable in verification.
This has spurred efforts to produce denotational models in which equality in the model coincides
exactly with contextual equivalence. These ‘fully abstract’ models represent the ‘gold standard’.
One particularly successful approach to this problem has arisen through game semantics [1, 2, 3],
where a term is modelled as a strategy for a game of question and answer played between the
term and its context. Over the past 25 years, game semantics has proven to be a powerful tool,
providing fully abstract models for languages with a variety of features. A more recent development
is operational game semantics [4, 5], in which strategies are represented as sets of traces generated
by a labelled transition system (LTS) derived from the operational semantics of the language. This
approach gives an intuitive and concrete representation of strategies, amenable to the application
of operational techniques, as opposed to the abstract properties emphasised in earlier work. We
summarise the main contributions of this paper below.

Firstly, we define a Call-By-Push-Value (CBPV) language equipped with dynamically gener-
ated first-order store. It can be seen as a canonical language for studying first-order state with
arbitrary evaluation order.

Secondly, we present an operational game model for this language, and prove that it is fully
abstract with respect to contextual equivalence. This means that terms have the same set of
complete traces if and only if they are contextually equivalent.

∗This research was funded in whole or in part by EPSRC EP/T006579 and EPSRC Studentship 2742896. For
the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

1

We provide translations from the prototypical languages RML [6] and IA [7] into CBPV, and
using our model, prove that these translations are fully abstract. This validates the assertion of
CBPV subsuming CBV and CBN in this setting, and justifies studying CBPV as a vehicle for
investigating first-order store.

Our final result is to identify two fragments of CBPV where contextual equivalence is decidable,
and derive a decision procedure for these fragments. We achieve this by using operational intuitions
to refine the corresponding LTS so that it produces traces over a finite alphabet. In particular, we
identify a fragment for which the refined LTS can be viewed as a deterministic visibly pushdown
automaton (VPA), and a smaller fragment where it is a deterministic finite automaton (DFA).
The CBPV language is particularly suited to carrying out this transformation, as it provides a
notion of thunks, which turns out to offer the appropriate level of abstraction to discuss when a
passage to VPA and DFA should be possible.

The results follow the spirit of algorithmic game semantics by modelling strategies as au-
tomata [8], though our automata are more intuitive thanks to their close relation to the opera-
tional semantics. Because of the translations into RML and IA, our results unify and provide new
proofs for several results from this school [9, 10, 11, 12]. At the technical level, we rely on purely
operational techniques, and our work should be accessible to readers without a game semantics
background. Overall, our approach represents a simpler way to obtain such decidability results
and provides an operational understanding of why they hold.

Other Related Work

Typed Normal Form Bisimulations [13] are arguably closest to our setting. They were developed
for Jump-With-Argument, a continuation passing-style version of CBPV without state. Although
not made explicit, the transition system these bisimulations are defined on bears similarity to
operational game semantics (OGS).

CBPV is already known to accommodate fully abstract translations from CBN and CBV, but
their full abstraction in [14] was established in a different setting from ours (with printing as the
side-effect). Consequently, we had to develop a separate argument.

We believe ours is the first work seeking to give decision procedures for contextual equivalence
by refining operational game models into automata. However, OGS has been used as a foundation
for other techniques, particularly bisimulation-based. An example of this strand of work is the
equivalence checker SyTeCi [15] for automatically proving contextual equivalences with respect to
contexts with general references. It is based on Symbolic Kripke Open Relations, which can be
seen as an abstraction of OGS. The associated decidability result is incomparable to ours: it uses
more powerful contexts and disallows reference creation inside functions, albeit without a type
restriction. HOBBIT is a bounded-complete inequivalence checker, which exploits ‘symbolic up-
to’ techniques to allow it to (semi-) automatically prove many equivalences [16]. Kripke Normal
Form Bisimulations [17] are a sound and complete technique for showing contextual equivalence
for a family of CBV languages with control and higher-order state, but the cited paper does not
discuss decidability. Apart from OGS-inspired research, there has been much related work based
on logical relations [18, 19] and normal form bisimulations [20], also without decision procedures.

2 The language

2.1 Syntax

The language being studied in this paper extends Levy’s Call-by-Push-Value λ-calculus [21] with
mutable state and basic data types. We will deal with the finitary fragment of the language,
lacking infinite types and recursion. The types and terms are shown in Figure 1. The types
are stratified into values (generated by σ) and computations (generated by τ). The slogan often
associated with this division is ‘A value is, a computation does’.

2

Value Type σ ≜ Uτ | Unit | Int | Ref Computation Type τ ≜ Fσ | σ → τ

Value Term V ≜ thunk M | x | () | n̂ | ℓ | MkVar V V

Computation Term M ≜ force V | return V | λxσ.M | let x be V.M | M to x.M
| case V of (Mi)i∈I | MV | ref V | !V | V := V | whileM doM

Evaluation Context K ≜ • | K to x.M | KV
Value Context VC ≜ thunk C | MkVar VC V | MkVar V VC
Context C ≜ • | force VC | return VC | λxσ.C | let x be VC .M | let x be V.C | C to x.M

| M to x.C | case V of (Mi)i<j , C, (Mi)j<i | CV | MVC | !VC | VC := V
| whileC doM | whileM doC

Notational conventions: x, y ∈ Var, ℓ ∈ Loc, I = {0, · · · ,max}, n ∈ I
Syntactic sugar: If x does not occur free in N , we write M ;N for M to x.N , and Ω for

while (return 1̂) do (return ()). We write V1 + V2 for case V1 of (case V2 of (î+ j)j∈I)i∈I

Figure 1: CBPV syntax

A typing judgement gives a type to a term given the types of locations and variables. In
CBPV, we have separate judgments for value types and computation types. For values we write
Σ; Γ ⊢v V : σ and for computations we write Σ; Γ ⊢v M : τ , where Γ is a finite partial function that
assigns types to variables, and Σ is a list of locations. We abbreviate ∅; Γ ⊢ M : τ to Γ ⊢ M : τ
and Σ; ∅ ⊢M : τ to Σ ⊢M : τ . Typing judgements are derived using the rules in Figure 2.

We treat the type Ref as if it were a pair of thunks: a read thunk of type UF Int and a write
thunk of type U(Int → FUnit). This is an old idea, due to Reynolds [22], and is a feature of many
game models of languages with references. As a consequence, we need the construct MkVar, which
embeds a pair of thunks into the Ref type, allowing ‘bad variables’, which possibly return different
values from those last written. When reading (!V) or writing (V := U) such a bad variable, we use
the appropriate thunk. We include bad variables for comparability with existing results, although
they can be avoided by incorporating parts of the heap into the trace semantics [4]. For space
reasons, we will sometimes write {|V1, V2|} for MkVar V1 V2.

2.2 The operational semantics

We present the operational semantics as the reduction relation → in Figure 3 on configurations,
which are pairs of a computation and a heap h (a mapping of locations to values). We write h : Σ
for Σ ⊆ dom(h). h[ℓ 7→ V] denotes updating ℓ in h.

2.3 Contextual equivalence

Contexts C can be seen as computations with a hole, •, into which another computation may be
substituted. We can also type a context, by saying Σ; Γ ⊢k C : τ =⇒ τ ′ : if Σ; Γ, x : τ ⊢c
C[x] : τ ′ : for a fresh x. One key notion of terms being ‘equal’ is contextual equivalence, which is
formalised in terms of termination. A terminal is a (closed) computation of the form return V
or λxσ.M . Termination means that a term reduces to a terminal: we write (M,h) ⇓ter if there
exist N,h′ such that (M,h) →∗ (N,h′) and N is a terminal.

Definition 1. Given computations Γ ⊢c M1,M2 : τ , we define Γ ⊢c M1 ≲CBPV
ter M2 to hold, when

for all contexts ⊢k C : τ =⇒ Fσ, we have (C[M1], ∅) ⇓ter implies (C[M2], ∅) ⇓ter . We write
∼=CBPV

ter for the equivalence induced by ≲CBPV
ter .

A standard result is that contexts considered for contextual approximation can be restricted to
evaluation contexts after instantiating the free variables of computations to closed values (closed
instances of use, CIU). We write Σ,Γ′ ⊢ γ : Γ for substitutions γ such that, for any (x, σx) ∈ Γ,

3

Σ;Γ ⊢v () : Unit

n ∈ {0, · · · ,max}
Σ;Γ ⊢v n̂ : Int

(x, σ) ∈ Γ

Σ; Γ ⊢v x : σ

ℓ ∈ Σ

Σ;Γ ⊢v ℓ : Ref
Σ; Γ ⊢c M : τ

Σ;Γ ⊢v thunk M : Uτ

Σ;Γ ⊢v V : σ

Σ;Γ ⊢c return V : Fσ

Σ;Γ ⊢v V : Uτ

Σ;Γ ⊢c force V : τ

Σ;Γ ⊢v V : σ Σ;Γ, x : σ ⊢c M : τ

Σ;Γ ⊢c let x be V.M : τ

Σ;Γ ⊢v V : Int Σ; Γ ⊢c Mi : τ

Σ;Γ ⊢c case V of (Mi)i∈I : τ

Σ;Γ ⊢c M : Fσ Σ;Γ, x : σ ⊢c N : τ

Σ;Γ ⊢c M to x.N : τ

Σ;Γ, x : σ ⊢c M : τ

Σ;Γ ⊢c λxσ.M : σ → τ

Σ;Γ ⊢c M : σ → τ Σ;Γ ⊢v V : σ

Σ;Γ ⊢c MV : τ

Σ;Γ ⊢v V : Int

Σ; Γ ⊢c ref V : FRef

Σ; Γ ⊢v Vread : UF Int Σ; Γ ⊢v Vwrite : U(Int → FUnit)

Σ; Γ ⊢v MkVar Vread Vwrite : Ref

Σ; Γ ⊢v V : Ref

Σ; Γ ⊢c!V : F Int

Σ; Γ ⊢v V : Ref Σ; Γ ⊢v U : Int

Σ; Γ ⊢c V := U : FUnit

Σ; Γ ⊢c M : F Int Σ; Γ ⊢c N : FUnit

Σ; Γ ⊢c whileM doN : FUnit

Figure 2: CBPV typing rules

(K[let x be V.M], h) → (K[M{V/x}], h)
(K[(λxσ.M)V], h) → (K[M{V/x}], h)
(K[case i of (Mi)], h) → (K[Mi], h)
(K[force thunk M], h) → (K[M], h)
(K[return V to x.M], h) → (K[M{V/x}], h)

(K[ref V], h) → (K[return ℓ], h · [ℓ 7→ V])
(K[!ℓ], h) → (K[return h(ℓ)], h)
(K[ℓ := V], h) → (K[return ()], h[ℓ 7→ V])
(K[!(MkVar Vr Vw)], h) → (K[force Vr], h)
(K[(MkVar Vr Vw) := U], h) → (K[(force Vw)U], h)

(K[whileM doN], h) → (K[M to x.case x of return (), (N to y.whileM doN)i>0], h) x, y are fresh

Figure 3: Operational semantics for CBPV

the value γ(x) satisfies Σ; Γ′ ⊢v γ(x) : σx. Then M{γ} stands for the outcome of applying γ to
M .

Definition 2 (CIU Approximation). Let Γ ⊢c M1,M2 : Fσ be CBPV computations. Then

Γ ⊢c M1 ≲
CBPV(ciu)
ter M2, when for all Σ, h,K, γ, such that h : Σ, Σ ⊢k K : τ =⇒ Fσ, and

Σ ⊢ γ : Γ, we have (K[M1{γ}], h) ⇓ter implies (K[M2{γ}], h) ⇓ter .

We obtain a CIU Lemma establishing the sufficiency of CIU testing following the framework
of [23].

Lemma 3 (CIU Lemma). We have Γ ⊢c M1 ≲CBPV
ter M2 iff Γ ⊢c M1 ≲

CBPV(ciu)
ter M2.

As with other results, the proof is relegated to the Appendix. We make the observation that
the only contexts we really need to consider are those of type Fσ =⇒ Fσ′.

Lemma 4. Let Γ ⊢c M1,M2 : σ1 → · · · → σk → Fσ. Then Γ ⊢c M1 ≲CBPV
ter M2 iff

Γ, (x1, σ1), · · · , (xk, σk) ⊢c M1 x1 · · ·xk ≲CBPV
ter M2 x1 · · ·xk.

3 Labelled Transition System

We develop a labelled transition system (LTS) to capture the semantics of terms in the style
of [24]. Its traces can be thought of as exchanges of moves between two players, representing the

4

AValσ(V) ≜ {(V, ∅)} for σ ∈ {Unit, Int} ASeq(Fσ) ≜ {ϵ}
AValUτ (V) ≜ {(f, [f 7→ V]) | f ∈ TNamesUτ} ASeq(σ → τ) ≜ {A s | s ∈ ASeq(τ),

AValRef (MkVar V1 V2) ≜ {(MkVar f g, [f 7→ V1, g 7→ V2])} A : σ an abstract value}
AValRef (ℓ) ≜ {(MkVar f g, [f 7→ thunk (!ℓ), g 7→ thunk (λx.ℓ := x)])}

Figure 4: Value decomposition into abstract values and substitutions, and generation of abstract
value sequences

context and the term respectively. This way of modelling contextual interactions is often called
operational game semantics.

3.1 Names and Abstract Values

In actions of this game, players pass (fresh) names to represent thunks passed between the two
players. As these represent thunks, the names have a type Uτ . In keeping with the Reynolds
approach of embedding references as a pair of thunks, we will ‘decompose’ references into separate
thunk names for reading and writing respectively.

We will also use continuation names, to identify the question move being answered in an
answer move. This is simply a technical convenience, as in the setting without control operators,
all continuation names can be reconstructed due to the bracketing condition.

Definition 5. Let TNames =
⊎
τ TNamesUτ be the set of thunk names, partitioned into mu-

tually disjoint countably infinite sets TNamesUτ . We use f, g to range over TNames, and write
f : Uτ for f ∈ TNamesUτ . Analogously, let CNames =

⊎
σ CNamesσ be the set of continuation

names. c ranges over CNames, and c : σ denotes c ∈ CNamesσ. We assume CNames,TNames
are disjoint and let Names = TNames ⊎ CNames. Elements of Names will appear in structures
throughout this work, and so ν(X) refers to the set of names used in some entity X.

Players will take actions which consist of a name applied to some (sequence of) values. To
handle passing thunks, we will use abstract values. These are values with occurrences of thunks
replaced by names, so are generated by the grammar:

A ≜ f | () | n̂ | MkVar A A

As names are intrinsically typed, abstract values can be typed in the obvious way, denoted A : σ.
Given a value V : σ, AValσ(V) is the set of pairs (A, γ) such that A is an abstract value and
γ : ν(A) → Vals is a substitution (defined in Figure 4). It is not quite the case that A{γ} = V
due to the treatment of locations. However, it is the case that M{V/x} ⇓ter iff M{A{γ}/x} ⇓ter .

Remark 6. Note that · implicitly requires that function domains be disjoint, and ⊎ means the
argument sets are disjoint.

Unlike in CBV, it does not suffice to consider passing only single abstract values. In CBPV,
question actions occur when a thunk is forced (i.e. as we need a computation from the environment
to occur), and answer actions correspond to a thunk returning a value (i.e reducing to return V).
Operationally, a CBPV thunk, when forced, will consume all of its arguments (the sequence of
values it is applied to) before returning a value to a consumer (a context of form • to x.M). As
these arguments are values, they cannot change during the reduction of the computation before
they are consumed. Thus, from the view of contextual equivalence, a forced thunk behaves as if
all arguments are consumed immediately when the thunk is forced.

To handle this, actions include sequences of abstract values, denoted by
−→
A , and referred to

as abstract argument sequences. Given a sequence of values (an argument sequence, written
−→
V),

we can find a decomposition into an abstract argument sequence and a substitution by applying

5

AVal() to the values and combining the substitutions (ensuring names are disjoint). We abuse

notation to write AVal(
−→
V) for the result.

For a given computation type, we can construct a sequence of abstract values using the function
in Figure 4 (assuming name choices are fresh). We define the return type of a computation by
RType(σ1 → · · · → σk → Fσ) ≜ σ.

3.2 Play

Our traces will consist of actions that have a polarity, either P (Player) or O (Opponent), de-
pending on whether they are made by the term being tested (P) or the context (O). Names will
be introduced either in a set NO of names already introduced by O, a set NP of names already
introduced by P, or in values appearing in actions. Names are owned by the player whose action
introduced the name (with names in NO owned by O, NP by P), and are referred to as O-names
or P-names. The players take alternating actions, applying a name introduced by the other player
to an abstract argument sequence. The types of actions are:

• Player Answer (PA) c̄(A), where c : σ and A : σ. This corresponds to the term returning
a value A to the consumer corresponding to continuation name c.

• Player Question (PQ) f̄(
−→
A, c), where f : Uτ ,

−→
A ∈ ASeq(τ), c : RType(τ). This corre-

sponds to the term forcing the thunk named by f , passing
−→
A as arguments, and expecting

the result with the consumer corresponding to continuation name c.

• Opponent Answer (OA) c(A), c : σ then A : σ. In this case, the environment is producing
a value A to the term, which is acting as a consumer with continuation name c.

• Opponent Question (OQ) f(
−→
A, c), where f : Uτ ,

−→
A ∈ ASeq(τ), c : RType(τ). This

action corresponds to the environment forcing the thunk named by f from the term, passing−→
A as arguments, and expecting the result with the consumer corresponding to continuation
name c.

In what follows, a is used to range over actions. We refer to f in f̄(
−→
A, c) and f(

−→
A, c), and to c in

c̄(A) and c(A) as the head names of a.

Definition 7. Let NO, NP ⊆ Names. An (NO, NP)-trace is a sequence t of actions such that:
the actions alternate between P and O actions; no name is introduced twice; names from NO, NP
need no introduction; any action a must have the form f̄(

−→
A, c), f(

−→
A, c), c̄(A) or c(A), where the

head name of a has been introduced by an earlier action a′ of opposite polarity or (respectively)
f ∈ NO, f ∈ NP , c ∈ NO, c ∈ NP .

Note that the first action in a (NO, ∅)-trace must be by P .

Example 8. Let NO = {f : U(Ref → Int → FUnit), c : U(UF Int → F Int)}. Then t =
f̄([r, w] 4̂, c1) w(1̂, c2) c̄2(()) c1(()) c̄(g) g(h, c3) h̄(ϵ, c4) c4(2̂) c̄3(3̂). is an (NO, ∅)-trace.

3.3 Visibility, bracketing, and completeness

It will turn out that the traces required to capture our CBPV language will have special properties,
which correspond to the fact that our language lacks higher-order store (visibility) and control-
flow operations (bracketing). The identification of these properties occurred in game semantics
[3, 25, 26], and they are enforced by our transition system in the style of [24].

Definition 9. Given a prefix t of a (NO, NP)-trace:

• an OQ-action f(
−→
A, c) occurring in t is said to be unanswered in t if there does not exist a

PA-move of the form c̄(A′) in t;

6

VisO(ϵ) = NT
P

VisO(t c̄(A)) = (NT
P) ∪ ν(A) c ∈ NO

VisO(t f̄(
−→
A′, c) t′ c̄(A)) = VisO(t) ∪ ν(A)

VisO(t f̄(
−→
A, c)) = ν(

−→
A) ∪ {c} f ∈ NO

VisO(t f
′(
−→
A′, c′) t′ f̄(

−→
A, c)) = VisO(t) ∪ ν(

−→
A) ∪ {c} f ∈ ν(

−→
A′)

VisO(t c
′(A′) t′ f̄(

−→
A, c)) = VisO(t) ∪ ν(

−→
A) ∪ {c} f ∈ ν(A′))

TopO(ϵ) = NC
P

TopO(t c̄(A)) = NC
P c ∈ NO

TopO(t f(
−→
A′, c) t′ c̄(A)) = TopO(t)

TopO(t f̄(
−→
A, c)) = {c}

Figure 5: O-visible names VisO(t) and top continuation name TopO(t) for (NO, NP)-trace t, where
NT
P = NP ∩ TNames and NC

P = NP ∩ CNames.

• a PQ-action f̄(
−→
A, c) occurring in t is said to be unanswered in t if there does not exist an

OA-move of the form c(A′) in t.

To define the O-visibility and O-bracketing constraints, we will define a set VisO(t) ofO-visible
names and the top continuation name TopO(t) in Figure 5. The function TopO(t) essentially
identifies the latest unanswered PQ-action, and returns the continuation name introduced then.
VisO(t) is defined by tracing the head name of a move to its introduction, analogously to the game
semantic notion of view [3].

Definition 10. Let t be a (NO, NP)-trace. t is O-visible if, for any prefix t′ f ′(
−→
A′, c′) of t, we

have f ′ ∈ VisO(t
′). t is O-bracketed if, for any prefix t′ c′(A) of t (i.e. any prefix ending with an

O-answer), we have c′ ∈ TopO(t
′).

We now introduce some useful notation. Given a (NO, NP)-trace t, we write t⊥ for the

(NP , NO)-trace obtained by changing the polarity of each name: f(
−→
A, c′) becomes f̄(

−→
A, c′) (and

vice versa) and c(A) becomes c̄(A) (and vice versa). Using this we can provide the dual notions to
O-visibility and O-bracketing. We say an (NO, NP)-trace t is P-visible if t

⊥ is O-visible (and define
VisP (t) = VisO(t

⊥)), and t is P-bracketed if t⊥ is O-bracketed (and define TopP (t) = TopO(t
⊥)).

To capture termination, it will suffice to reason about complete traces [24].

Definition 11. An O-bracketed (NO, ∅)-trace t starting with a P action is complete if TopO(t) =
∅. A P-bracketed ({◦}, NP)-trace t starting with an O action is complete if TopP (t) = {◦}.

Example 12. The trace t from Example 8 is an O-bracketed, P-bracketed, O-visible, P-visible,
complete trace.

3.4 Transition System

Using the above, we can define an LTS, called LCBPV, which will generate the set of traces
corresponding to a term. LCBPV will contain terms built from CBPV syntax, extended with
all thunk names as values (with the obvious typing rule), with → behaving accordingly. LCBPV

will contain configurations of the form (S, S), where S is a state and S a stack. There are two
types of states in LCBPV (and so two kinds of configurations): ⟨γ, ϕ, h,H,Fn⟩ (passive, O to play)
and ⟨M, c, γ, ϕ, h,H⟩ (active, internal or P to play). In both, ϕ contains all names introduced
so far by both players and h is the current heap. γ is an environment mapping thunk names
introduced by P to thunks. In an active configuration, M is the term component, which captures
the current behaviour of P, and c is the continuation name to produce the result to. The stack
is used to enforce O-bracketing. It consists of elements of the form (cP , (K, cO)) where cP is a
continuation P-name, K is an evaluation context in which to use the value produced to cP , and cO
is an continuation O-name to return the result of K to. Fn represents the set of thunk P-names
currently available to O (so after generating a prefix t, Fn contains thunk names from VisO(t)),
and H contains historical information about availability. This is used to enforce O-visibility, by

7

maintaining the property that for a thunk O-name f , H(f) contains the thunk P-names available
to O when f was introduced. P-visibility is a consequence of the behaviour of the term.

We can now present the LCBPV transition rules in Figure 6. These are presented as labelled
transitions between states, with a/m denoting pushing m to the stack when producing a, and
a,m denoting popping m when producing a.

(Pτ) ⟨M, c, γ, ϕ, h,H⟩ τ−−→ ⟨N, c, γ, ϕ, h′, H⟩
when (M,h) → (N,h′)

(PA) ⟨return V, c, γ, ϕ, h,H⟩ c̄(A)−−−→ ⟨γ · γ′, ϕ ⊎ ν(A), h,H,H(c) ⊎ ν(A)⟩
when c : σ, (A, γ′) ∈ AValσ(V)

(PQ) ⟨K[(force f)
−→
V], c, γ, ϕ, h,H⟩ f̄(

−→
A,c′)/(c′,(K,c))−−−−−−−−−−−−→ ⟨γ · γ′, ϕ ⊎ ϕ′, h,H,H(f) ⊎ ν(

−→
A)⟩

when f : Uτ, (
−→
A, γ′) ∈ AVal(

−→
V), σ = RType(τ), c′ : σ and ϕ′ = ν(

−→
A) ⊎ {c′}

(OA) ⟨γ, ϕ, h,H,Fn⟩ c(A),(c,(K,c′))−−−−−−−−−→ ⟨K[return A], c′, γ, ϕ ⊎ ν(A), h,H · [ν(A) 7→ Fn]⟩
when c : σ, A : σ

(OQ) ⟨γ, ϕ, h,H,Fn⟩ f(
−→
A,c)−−−−→ ⟨(force V)

−→
A, c, γ, ϕ ⊎ ϕ′, h,H · [ϕ′ 7→ Fn]⟩

when f ∈ Fn, f : Uτ,
−→
A ∈ ASeq(τ), σ = RType(τ), c : σ, γ(f) = V and ϕ′ = ν(

−→
A) ⊎ {c}

Given N ⊆ Names, [N 7→ V] stands for the map [n 7→ V |n ∈ N].

Figure 6: LCBPV transition rules

Let Γ ⊢c M : Fσ be a CBPV computation such that Γ = {x1 : σ1, · · · , xk : σk}. A Γ-
assignment ρ is a map from {x1, · · · , xk} to the set of abstract values such that, for all 1 ≤
i ̸= j ≤ k, we have ρ(xi) : σi and ν(ρ(xi)) ∩ ν(ρ(xj)) = ∅. ρ simply creates a supply of names
corresponding to the context. Let c : σ and NO = ν(ρ)∪{c}. Then the active initial configuration
Cρ,cM is defined to be

(⟨M{ρ}, c, ∅, NO, ∅, [NO 7→ ∅]⟩,⊥)

Definition 13. Given two configurations C,C′, we write C
a
=⇒ C′ if C

τ−→∗ C′′ a−→ C′, with
τ−→∗ representing multiple (possibly none) τ -actions. This notation is extended to sequences of

actions: given t = a1 . . .an, we write C
t
=⇒ C′, if there exist C1, . . . ,Cn−1 such that C

a1==⇒

C1 · · ·Cn−1
an==⇒ C′. We define TrCBPV(C) = {t | there exists C′ such that C

t
=⇒ C′}.

Remark 14. Due to the freedom of name choice, note that TrCBPV(C) is closed under type-
preserving renamings that preserve names from C.

Definition 15. A path in an LTS from a configuration C to C′ is a sequence of transitions
and intermediate configurations by which C′ can be reached from C when viewing the LTS as a
directed graph.

Traces of LCBPV satisfy the following property.

Lemma 16. Given Γ ⊢c M : Fσ and a Γ-assignment ρ, for any t ∈ TrCBPV(C
ρ,c
M), we have t is

O-visible, O-bracketed, P-visible and P-bracketed.

Definition 17. The trace semantics of a CBPV computation Γ ⊢c M : Fσ is defined to be
TrCBPV(Γ ⊢c M : Fσ) ≜ {((ρ, c), t) | ρ is a Γ-assignment, c : σ, t ∈ TrCBPV(C

ρ,c
M), t is complete}.

Example 18. Let Γ = {f : U(Ref → Int → FUnit)}, σ = U(UF Int → F Int), and

M = ref 0̂ to x.(force f)x 4̂; return thunk (λh.force h to y.!x to z.y + z)

8

If ρ = [f 7→ f] and t is the trace in Example 8, then ((ρ, c), t) ∈ TrCBPV(Γ ⊢c M : Fσ). The full
derivation of this trace is presented below. Let NO = ν(ρ) ∪ {c} and H0 = [NO 7→ ∅]

Cρ,cM
τ−→∗ (⟨M0, c, ∅, NO, [ℓ 7→ 0̂], H0⟩,⊥)

where M0 = (force f) ℓ 4̂; return thunk (λh.force h to y.!ℓ to z.y + z)
f̄([r,w] 4̂,c1)−−−−−−−→ (⟨γ0, ϕ0, {r, w}, [ℓ 7→ 0̂], H0⟩, (c1, (K1, c)) : ⊥) where ϕ0 = NO ∪ {r, w, c1}

γ0 = [r 7→ thunk (!ℓ), w 7→ thunk (λx.ℓ := x)]
and K1 = •; return thunk (λh.force h to y.!ℓ to z.y + z)

w(1̂,c2)−−−−−→ (⟨(force thunk (λx.ℓ := x))1̂, c2, γ0, ϕ1, [ℓ 7→ 0̂], H1⟩, (c1, (K1, c)) : ⊥)
where H1 = H0 · [c2 7→ {r, w}] and ϕ1 = ϕ0 ∪ {c2}

τ−→∗ (⟨return (), c2, γ0, ϕ1, h1, H1⟩, (c1, (K, c)) : ⊥) where h1 = [ℓ 7→ 1̂]
c̄2(())−−−→ (⟨γ0, ϕ1, h1, H1, {r, w}⟩, (c1, (K1, c)) : ⊥)
c1(())−−−→ (⟨K1[return ()], c, γ0, ϕ1, h1, H1⟩,⊥)
τ−→∗ (⟨return thunk (λh.force h to y.!x to z.y + z), c, γ0, ϕ1, h1, H1⟩,⊥)
c̄(g)−−→ (⟨γ1, ϕ2, h1, H1, {g}⟩,⊥)

where γ1 = γ0 · [g 7→ thunk (λh.force h to y.!ℓ to z.y + z)] and ϕ2 = ϕ1 ∪ {g}
g(h,c3)−−−−→ (⟨(force thunk (λh.force h to y.!x to z.y + z))h, c3, γ1, ϕ3, h1, H2⟩,⊥)

where H2 = H1 · [h, c3 7→ {g}] and ϕ3 = ϕ2 ∪ {h, c3}
τ−→∗ (⟨force h to y.!x to z.y + z, c3, γ1, ϕ3, h1, H2⟩,⊥)
h̄(ϵ,c4)−−−−→ (⟨γ1, ϕ4, h1, H2, {g}⟩, (c4, (K2, c3)) : ⊥)

where K2 = • to y.!ℓ to z.y + z and ϕ4 = ϕ3 ∪ {c4}
c4(2̂)−−−→ (⟨K2[return 2̂], c3, γ1, ϕ4, h1, H2⟩,⊥)
τ−→∗ (⟨return 3̂, c3, γ1, ϕ4, h1, H2⟩,⊥)
c̄3(3̂)−−−→ (⟨γ1, ϕ4, h1, H2, {g}⟩,⊥)

4 Full Abstraction

To establish the soundness of this model (trace inclusion implies contextual inclusion), we will
wish to reason about a computation in a specific context. Let Γ ⊢c M : Fσ. Using the CIU
lemma, we will consider testing using a heap h : Σ, evaluation context ⊢k K : Fσ =⇒ Fσ′ and
a substitution γ : Γ. Let us fix a continuation name ◦ : σ′, which we use to determine when a
context has returned.

Next we define the set AValΓ(γ) of all disjoint decompositions of values from γ into abstract
values and the corresponding matchings by

AValΓ(γ) = {(A⃗i, γ⃗i) | 1 ≤ i ≤ k, (Ai, γi) ∈ AValσi
(γ(xi)),

ν(A1), · · · , ν(Ak)mutually disjoint }

where Γ = {x1 : σ1, · · · , xk : σk}, A⃗i stands for (A1, · · · , Ak), and γ⃗i for (γ1, · · · , γk).

Definition 19 (Context configuration). Given Σ, h : Σ, Σ ⊢c K : Fσ =⇒ Fσ′, Σ ⊢c γ : Γ,

(A⃗i, γ⃗i) ∈ AValΓ(γ) and c : σ (c ̸∈ ◦), the corresponding configuration Cγ⃗i,ch,K,γ is defined by

Cγ⃗i,ch,K,γ = (⟨
k⊎
i=1

γi, ϕ
′ ⊎ {c}, h, [◦ 7→ ∅], ϕ′ ⟩, (c, (K, ◦)) : ⊥)

where ϕ′ =
⊎k
i=1 ν(Ai)

Intuitively, the names ν(Ai) correspond to thunks extracted from γ, whereas c corresponds to

K. Note that traces in TrCBPV(C
γ⃗i,c
h,K,γ) will be ({◦},

⊎k
i=1 ν(Ai) ⊎ {c})-traces.

9

For the next result, we introduce the following notation. Given (A⃗i, γ⃗i) ∈ AValΓ(γ), we define

a Γ-assignment ρA⃗i
by ρA⃗i

(xi) = Ai. Note that ν(ρA⃗i
) =

⊎k
i=1 dom(γi). The key lemma we now

need to prove will relate traces of a term to its ability to converge in a given evaluation context.
From correctness, we can then obtain soundness.

Lemma 20 (Correctness). Let Γ ⊢c M : Fσ be a CBPV computation, let Σ, h,K, γ be as above,

(A⃗i, γ⃗i) ∈ AValΓ(γ), and c : σ (c ̸= ◦). Then (K[M{γ}], h) ⇓ter iff there exist t, A such that

t ∈ TrCBPV(C
ρA⃗i

,c

M) and t⊥ ◦̄(A) ∈ TrCBPV(C
γ⃗i,c
h,K,γ). Moreover, t satisfies ν(t) ∩ {◦} = ∅.

Theorem 21 (Soundness). For any CBPV computations Γ ⊢c M1,M2 : Fσ, TrCBPV(Γ ⊢c M1) ⊆
TrCBPV(Γ ⊢c M2) then Γ ⊢c M1 ≲

CBPV(ciu)
ter M2.

For the opposite direction, we establish that any trace of a suitable shape corresponds to a
context.

Lemma 22 (Definability). Suppose ϕ ⊆ TNames and t is an even-length O,P-visible, O,P-
bracketed ({◦}, ϕ ⊎ {c})-trace starting with an O-action, such that t = t′ ◦̄(A) and t′ is com-
plete. There exists a passive configuration C such that Treven(C) is the even-length prefixes of
t (along with their renamings via permutations on Names that fix ϕ ⊎ {◦}). Moreover, C =
⟨γ, ϕ ⊎ {c}, h, [◦ 7→ ∅], ϕ⟩, (c, (K, ◦)) : ⊥) for some h,K, γ.

Completeness follows from definability and correctness.

Theorem 23 (Completeness). For any CBPV computations Γ ⊢c M1,M2 : Fσ, if Γ ⊢c M1 ≲
CBPV(ciu)
ter

M2 then TrCBPV(Γ ⊢c M1) ⊆ TrCBPV(Γ ⊢c M2).

Using soundness (Theorem 21), completeness (Theorem 23), and CIU lemma (Lemma 3), we
have the following corollary.

Corollary 24 (Full Abstraction). For any CBPV computations Γ ⊢c M1,M2 : Fσ, then Γ ⊢c
M1 ≲CBPV

ter M2 iff TrCBPV(Γ ⊢c M1) ⊆ TrCBPV(Γ ⊢c M2).

5 From LTS to Automata (alphabet)

In this section, we demonstrate how LCBPV gives rise directly to an automaton, when considering
terms drawn from a particular fragment of CBPV. Initially, we will look for a fragment of CBPV
for which (a faithful representation of) a term’s traces can be captured using a (deterministic)
Visibly Pushdown Automaton (VPA) [27]. A VPA is a type of pushdown automata in which
the action on the stack is determined by the input symbol. The alphabet is partitioned into call
(push), return (pop), and internal (noop) symbols. This ensures that inclusion (and so equivalence)
of deterministic VPA is decidable in polynomial time.

Formally, a pushdown alphabet is a triple ⟨Σc,Σr,Σint⟩ of disjoint, finite alphabets, and we
write Σ = Σc∪Σr ∪Σint. Informally, we push on symbols in Σc, pop on symbols in Σr, and ignore
the stack on symbols in Σint.

Definition 25. A Visibly Pushdown Automaton (VPA) over ⟨Σc,Σr,Σint⟩ is a tuple A =
(Q,Q0,Γ, δ, QF), where:

• Q is a finite set of states,

• Q0 ⊆ Q is a set of initial states,

• Γ is a finite stack alphabet with distinguished bottom-of-stack symbol ⊥,

• δ ⊆ (Q× Σc ×Q× (Γ\{⊥})) ∪ (Q× Σr × Γ×Q) ∪ (Q× Σint ×Q), and,

• QF ⊆ Q is the set of final states.

10

A VPA is deterministic if Q0 is a singleton and for any q ∈ Q:

• for any a ∈ Σc there is at most one transition of the form (q, a, q′, γ) ∈ δ,

• for any a ∈ Σint there is at most one transition of the form (q, a, q′) ∈ δ,

• for any (a, γ) with a ∈ Σr, γ ∈ Γ there is at most one transition of the form (q, a, γ, q′) ∈ δ.

For a word w = a1 a2 ... ak ∈ Σ∗, a run of A on w is a sequence ρ = (q0, σ0), ... (qk, σk), where
each qi ∈ Q, each σi is a stack (from (Γ\{⊥})∗⊥), q0 ∈ Q0, and σ0 = ⊥ satisfying for every
1 ≤ i ≤ k:

• if ai ∈ Σc, then for some γ ∈ Γ, (qi, ai, qi+1, γ) ∈ δ and σi+1 = γ : σi.

• if ai ∈ Σint, then (qi, ai, qi+1) ∈ δ and σi+1 = σi.

• if ai ∈ Σr, then for some γ ∈ Γ, (qi, ai, γ, qi+1) ∈ δ and either γ ̸= ⊥ and σi = γ : σi+1 or
γ = ⊥ and σi = σi+1 = ⊥.

A run (q0, σ0), ... (qk, σk) is accepting if qk ∈ QF , a word is accepted if it has an accepting run,
and the language of a VPA A is the set L(A) of words it accepts.

VPAs are closed under intersection, complementation, concatenation and star [27], and have
the desirable property that equivalence and inclusion are decidable in EXPTIME in general, and
polynomial time for deterministic VPAs.

The VPA which we construct is deterministic, but it is convenient to consider silent ϵ-transitions
(which do not appear in the resulting word), which can be treated like transitions on Σint. As long

as an ϵ-transition q
ϵ−→ q′ is the only transition from q, we can eliminate it by ‘merging’ q and q′ into

a single state. In this sense ϵ-transitions can be ‘squeezed’ out. We can also use a weaker notion
of acceptance, where we require that the last stack in an accepting run is ⊥ (this is weaker in
the sense that automata with such acceptance conditions can accept fewer languages than general
VPA). We can easily convert a deterministic automaton over alphabet Σ with such an acceptance
condition into a standard one by intersecting it with the two state automaton accepting every
string over Σ which has at least as many symbols from Σr as from Σc.

In seeking to identify a fragment for which VPA’s suffice, we need to ensure that the space of
states and the alphabet of actions are finite. Primarily, this is an issue when it is not possible to
bound the set of names visible to O, VisO(t) for a trace t generated by the LTS. As the configuration
will require a map from (at least the visible) names to the corresponding thunks from P, not having
a bound on visible names will also mean we cannot bound the size of this map. We will see how
this consideration restricts the type of terms through examples.

Example 26. Let N1
O = {c : UFUF Int}. Consider (N1

O, ∅)-traces of the form c̄(g) g(ϵ, c1) c̄1(f1)
· · · g(ϵ, cn) c̄n(fn) fi(ϵ, c′). To capture them, one needs to generate arbitrarily many fresh names,
because the last action could refer to any fi. This issue arises whenever we permit P to provide
to O a thunk which returns a thunk (g in this case), as O can then obtain arbitrarily many,
(potentially) distinct thunks.

Let N2
O = {c : U(U(UF Int → FUnit) → FUnit)}. Consider (N2

O, ∅)-traces of the form c̄(g)
g(f1, c1) f̄1(h1, c

′
1) · · · g(fn, cn) f̄n(hn, c′n) hi(ϵ, c′). Here we can see that the same issue arises

when we allow an argument passed by O (fi) to itself receive an argument thunk (hi) from P.

The fragment defined below is designed precisely to circumvent the problems identified above.

Definition 27. A CBPV computation Γ ⊢c M : FσP is in the P-thunk-restricted (PTR)
fragment when all types in Γ can be generated by σ2 in the grammar below.

σ2 ≜ σ1 | Uτ2 σP ≜ σ0 | Ref | UτP
τ2 ≜ Fσ2 | σP → τ2 τP ≜ Fσ0 | σ1 → τP

σ1 ≜ σ0 | Ref | Uτ1 τ1 ≜ Fσ1 | σ0 → τ1

σ0 ≜ Int | Unit

11

BVals∆σ (d) ≜ {V | V : σ} where σ ∈ {Int,Unit} BValSeq∆(f) ≜ {ϵ} where f : Fσ

BVals∆Uτ (d) ≜ {f} where SucT(d) = f BValSeq∆(f) ≜ {B1 · · ·Bk | Bi ∈ BVals∆σi
((f, i))}

BVals∆Ref(d) ≜ {{|f, g|}} where SucT(d) = (f, g) where f : σ1 → · · · → σk → Fσ

Figure 7: Definition of base abstract values for given base head names and ∆ =
(TB,CB, ρ, c0,SucT,SucC)

Base∆t (n) ≜ n where n ∈ NO
Base∆t (c) ≜ SucC(g) where c is introduced in f(A, c) or f̄(A, c) and g = Base∆t (f)

Base∆t (f) ≜ g where f is introduced in c(A) or c̄(A) with c : σ, c′ = Base∆t (c)

{B} = BVals∆σ (c) and g = Match(A,B, f)

Base∆t (f) ≜ g where f is introduced in f ′(
−→
A, c) or f̄ ′(

−→
A, c) with g′ = Base∆t (f

′),
−→
B ∈ BValSeq∆(g′) and g = Match(

−→
A,

−→
B, f)

Marked(t) ≜ {t′ | a is an O-action in t, f is introduced in a, and t′ is t with f replaced by f̂}
Rename∆(t) ≜ Base∆(t) ∪

⋃
t′∈Marked(t) Base∆(t′)

Figure 8: The function Base∆t () which converting names appearing in t to base names from
∆ = (TB,CB, ρ, c0,SucT,SucC)

Remark 28. Note that all thunk P-names in a trace generated by a computation in the PTR-
fragment have the type UτP .

Remark 29. An alternative way to characterise the the PTR-fragment is by polarising the oc-
currences of U , which correspond to question actions. If one writes U+ for occurrences of U that
produce O-questions, and U− for those producing P-questions, the problematic types in Exam-
ple 26 are then U+FU+F Int and U+(U−(U+F Int → FUnit) → FUnit), both of which contain
nested occurrences of U+. The PTR-fragment is then obtained by forbidding nested occurrences
of U+, while allowing nested occurrences of U−.

Definition 30. A (NO, ∅)-trace is a PTR-trace when it is O- and P-bracketed, O- and P-visible,
and it starts with a P-action with {c} = NO ∩ CNames where c : σP , and for f ∈ NO ∩ TNames,
f : σ2, where σP , σ2 are as defined in Definition 27.

Observe that these are exactly the traces which LCBPV generates on PTR computations.
To provide a representation of traces without arbitrarily many fresh names, we develop the

notion of a name scheme. The idea is to associate each thunk type appearing in a typing
judgment with a fixed name. Readers familiar with game semantics will find the definition similar
to that of an arena, where thunk names and continuation names indicate the position of questions
and answers respectively, and SucT,SucC correspond to the enabling relation.

Definition 31. A (Γ, Fσ)-name scheme is a tuple (TB,CB, ρ, c0,SucT,SucC) such that ρ is
a Γ-assignment, c0 : σ, and TB ⊆ TNames and CB ⊆ CNames are the smallest sets such that
ν(ρ) ⊆ TB, c0 ∈ CB and the conditions listed below are satisfied. We set TBUτ ≜ TB∩TNamesUτ
and CBσ ≜ CB ∩ CNamesσ.

• SucT is the least partial function from (TB × N) ⊎ CB to TB ∪ (TB × TB) such that: if
c ∈ CBUτ then SucT(c) ∈ TBUτ ; if c ∈ CBRef then SucT(c) ∈ TBUF Int × TBU(Int→FUnit);
if f ∈ TBU(σ1→···→σk→FUσ′) and 1 ≤ i ≤ k then SucT(f, i) ∈ TBUτi for σi = Uτi and
SucT(f, i) ∈ TBUF Int × TBU(Int→FUnit) for σi = Ref.

• SucC : TB → CB is a function such that if f ∈ TBUτ then SucC(f) ∈ CBRType(τ).

12

• ν(SucX(d)) ∩ ν(SucX(d
′)) = ∅ for d ̸= d′ and X ∈ {T,C} (which implies injectivity) and

(img(SucT) ∪ img(SucC)) ∩ (ν(ρ) ∪ {c0}) = ∅.

Elements of TB and CB will be referred to as base thunk names and base continuation
names respectively. Abstract values containing base names only will be called base abstract
values. We shall write ∆Γ,Fσ for a (Γ, Fσ)-name scheme, and ∆ when we leave (Γ, Fσ) implicit.

Example 32. Consider τ = U(τ ′) → FUFUnit, where τ ′ = UF Int → UFUnit → F Int,
Γ = {f : Uτ}, c0 : Unit. For simplicity, assume f ∈ TBUτ and ρ(f) = f . Then ∆Γ,FUnit =
(TB,CB, ρ, c0,SucT,SucC) is a name scheme, where

• TB = {f : Uτ, g : UFUnit, h : Uτ ′, i : UF Int, j : UFUnit};

• CB = {c0 : Unit, cf : UFUnit, cg : Unit, ch : Int, ci : Int, cj : Unit};

• SucT(f, 1) = h, SucT(h, 1) = i, SucT(h, 2) = j, SucT(cf) = g; and

• SucC(f) = cf , SucC(g) = cg, SucC(h) = ch, SucC(i) = ci, SucC(j) = cj .

Showing SucT with solid arrows, and SucC with dashed, this can be visualised as a forest.

f //
))
cf // g // cg c0

h //
uu))

ch
i // ci j // cj

We can recast many definitions to use name schemes. For a start, we will redefine the notion
of a trace so that it relies on base head names only, and base abstract values depend upon the
name they are passed to via SucT or SucC. To this end, in Figure 7 we define BVals∆σ (d) (for
d ∈ (TB × N) ⊎ CB) and BValSeq∆(f) (for f ∈ TB) to indicate the associated base abstract
values and sequences thereof respectively. Note that they are determined uniquely up to numerical
constants.

Definition 33. Let ∆ = (TB,CB, ρ, c0,SucT,SucC) be a name scheme. A ∆-trace is a sequence
t of actions such that: the actions alternate between P and O actions; names from ν(ρ) ∪ c0 need
no introduction; and the possible actions are:

• f̄(
−→
A, c) where f ∈ TB, c = SucC(f),

−→
A ∈ BValSeq∆(f) and f was introduced by an earlier

O-action or f ∈ ν(ρ),

• c̄(A) where c : σ ∈ CB, A ∈ BVals∆σ (c) and c was introduced by an earlier O-action or
c = c0,

• f(
−→
A, c) where f ∈ TB, c = SucC(f),

−→
A ∈ BValSeq∆(f) and f was introduced by an earlier

P-action.

• c(A) where c : σ ∈ CB, A ∈ BVals∆σ (c) and c was introduced by an earlier P-action.

Given the structure on base names, we can now introduce some terminology to distinguish the
different classes of names.

Definition 34. Let ∆ = (TB,CB, ρ, c0,SucT,SucC). The names in ν(ρ) and c0 are said to be
initial. A name f ∈ TB is said to be a level-n name if n = 0 and the name is initial, or n = 1
and f ∈ ν(SucT(c0)), or there exists a level-(n−1) name g and j ∈ N such that f ∈ ν(SucT(g, j)),
or

• there exists a level-n name g and c ∈ CB such that f ∈ ν(SucT(c)) and c = SucC(g).

For level-n name f , the sequence of thunk names induced by the repeated use of the last rule will
be called an introduction chain, and the first name in the chain (i.e. introduced by the earlier
rules) is called the originator.

13

Example 35. In ∆Γ,FUnit from Example 32, f, g are level 0, h is level 1, and i, j are level 2. f is
the originator of g. These align with the position of names in the visualisation.

Remark 36. Observe that, when used in a trace, the level 0 names will be O-names, so the level
1 names will be P-names, and the level 2 names will be O-names. In the PTR-fragment, all thunk
names have level at most 2.

We shall say that a name scheme ∆ = (TB, CB, ρ, c0, SucT, SucC) agrees with NO ⊆ Names if
NO = ν(ρ)∪c0. Observe that, given a (NO, ∅)-trace t and a ∆ agreeing with NO, we can construct
a function Base∆t that maps names in ν(t) to base names by recursing on the introduction of
names until we reach names in N0. This is given formally in Figure 8, where Match(A,B, f)
finds the base name in B in the same position as f in A.We can extend Base∆t to sets of names,
abstract values, actions, and also to an entire trace, which we shall write simply as Base∆(t).
This is analogous to erasing justification pointers in game-semantic plays. We can now state a
first useful result about base names. Intuitively, it means that, in PTR traces, base names suffice
to distinguish O-visible thunk names, i.e. in such traces we can use base names to represent OQ
actions faithfully.

Lemma 37. Let t be a PTR (NO, ∅)-trace ending in a P -action. Then f, f ′ ∈ VisO(t), we have
Base∆t (f) ̸= Base∆t (f

′).

Proof. This is a proof by induction on the length of t. The base case is when t = t′ c̄0(A)

with c0 ∈ NO or t = t′ ḡ(
−→
A, c) with g ∈ NO. Then VisO(t) is ν(A) or ν(

−→
A), and so all the

base name are distinct. The inductive case t = t′ c̄(A) is trivial, as c : F Int or c : FUnit so

this reduces to an application of the I.H. The other inductive case is t = t′ ḡ(
−→
A, c). Assume

that there is some f, f ′ ∈ VisO(t) s.t. Base∆t (f) = Base∆t (f
′). Then by the I.H, one of f, f ′

is introduced in
−→
A . W.L.O.G, f was introduced in

−→
A , and f ′ in some earlier move ḡ′(

−→
A′, c′)

with Base∆t (g) = Base∆t (g
′). Observe that Base∆t (g) must be a level 0 name. Recall that the

definition of VisO(t) involves a process of chasing names. We can therefore consider the sequence of
O-names used as the head names for moves which introduce P-names in the definition of VisO(t).
We will show that the base names in this sequence are exactly the introduction chain forBase∆t (g),
from which it will follow that g′ cannot be in this sequence (and so f ′ ̸∈ VisO(t)).

We prove this by induction on the length of the introduction chain. In the base case, Base∆t (g)

is initial, so g ∈ NO, and VisO(t) = ν(
−→
A), so no other names in the sequence. In the inductive

case, let g ∈ ν(A) s.t. VisO(t) = VisO(s a d(A) s′ ḡ(
−→
A, c)) = ν(

−→
A) ∪ VisO(s a). Consider what a

is. If it is a PQ-action, then it must be on continuation name d′ ̸= c0, so we have VisO(s a) =

VisO(s1 h(
−→
A′′, d′) d̄′()) = VisO(s1). By repeating this, it suffices to consider only the case that a is

a PQ-action, and so by the bracketing condition, a = h̄(
−→
A′′, d). Then VisO(s a) = ν(

−→
A′′)∪VisO(s).

We must have Base∆t (d) = SucC(Base∆t (h)) and Base∆t (g) = SucT(Base∆t (d)), so Base∆t (h) is
earlier in the introduction chain of Base∆t (g), as required. Applying the I.H. to the introduction
chain of Base∆t (h) completes this proof.

It would be desirable if we could represent the traces of a PTR-computation using ∆-traces.
However, it turns out that simply applying Base∆ to a trace loses information.

Example 38. Let Γ = {f : UFUFUnit} and ∆ = ({ f : UFUFUnit, g : UFUnit }, {c0 : Unit,
d : UFUnit, e : Unit}, ρ, c0, [d 7→ g], [f 7→ d, g 7→ e]), where ρ = [f 7→ f]. Consider the two
computations Γ ⊢c M1,M2 : FUnit, where Mi = force f to g1.force f to g2.force gi. We have that
the complete traces in Tr(Cρ,c0Mi

) all have the form

ti = f̄(ϵ, c1) c1(g1) f̄(ϵ, c2) c2(g2) ḡi(ϵ, c3) c3(()) c̄0(())

That is, the traces are distinguished by the use of either g1 or g2. However, we haveBase∆Tr(Cρ,c0Mi
)

as given in Figure 9. That is, we lose the distinction between g1 and g2, and so if we simply used
∆-traces to model terms, we would equate M1 with M2, which would mean losing the soundness
property.

14

Base∆(Tr(Cρ,c0Mi
)) = {t} where t = f̄(ϵ, d) d(g) f̄(ϵ, d) d(g) ḡ(ϵ, e) e(()) c̄0(())

Rename∆(Tr(Cρ,c0M1
)) = {t, f̄(ϵ, d) d(ĝ) f̄(ϵ, d) d(g) ¯̂g(ϵ, e) e(()) c̄0(()), f̄(ϵ, d) d(g) f̄(ϵ, d) d(ĝ) ḡ(ϵ, e) e(()) c̄0(())}

Rename∆(Tr(Cρ,c0M2
)) = {t, f̄(ϵ, d) d(ĝ) f̄(ϵ, d) d(g) ḡ(ϵ, e) e(()) c̄0(()), f̄(ϵ, d) d(g) f̄(ϵ, d) d(ĝ) ¯̂g(ϵ, e) e(()) c̄0(())}

Figure 9: Translation of traces for Examples 38 and 39

A natural solution to this would be to take inspiration from the way that ti is presented in this
example, and use traces in which base names can appear scripted by when they are introduced.
We could also exploit Lemma 43 to allow us to reset these indices after a PA-action. However,
the presence of while loops means that this is not viable. A while loop might cause a PQ-action
to occur arbitrarily many times, seemingly requiring an unbounded number of indices. We could
attempt to exploit the fact that the scopes in the language ensure that any name introduced during
an iteration of a loop cannot escape that loop to reset the indices at the end of a loop. However,
the end of a loop cannot be apparent in a trace. This makes it difficult to see how to equate the
terms

N1 = (force f to g.force g); force f to g.force g
N2 = ref 2 to x.while !x do ((force f to g.force g);

!x to v.v − 1 to w.x := w)

This is because, for the first, we would want to have traces like f̄(ϵ, d1) d1(g1) ḡ1(ϵ, e1) e1(())
f̄(ϵ, d2) d2(g2) ḡ2(ϵ, e2) e2(()) c̄0(()), as it is not ‘safe’ to reset the index counter after the e1(()),
whereas for the second we would need to have traces like f̄(ϵ, d1) d1(g1) ḡ1(ϵ, e1) e1(()) f̄(ϵ, d1)
d1(g1) ḡ1(ϵ, e1) e1(()) c̄0(()), as we would be resetting the index at the end of every iteration.

This issue also appears in the work of Hopkins et al. [12], which they resolve by encoding a
single P-pointer in each word their automata generate, and then use the fact that a set of words,
each with one pointer, can be used to uniquely represent a full play. We adopt the same approach,
and adapt it to our name-based setting.

The key to this is the notion of a marked name, which we shall write as f̂ , where f is said to
be the underlying name, which can be either from TNames or TBNames for some ∆, depending
on context. We introduce f into our structures (traces, abstract values, etc.) by permitting a
marked name wherever the underlying name can occur, and will refer to these also as marked (e.g.
marked trace). In particular, for base abstract values, a marked name can appear in place of its
underlying name in BVals∆σ (d). We also extend the functions Base∆ and Base∆t so that they
preserve marks.

With this notion, we can now define an appropriate mapping of PTR-traces to a set of marked,
∆-traces as Rename∆(t) in Figure 8. Observe that Rename∆(t) consists of traces whose un-
derlying names are all the same, and for each trace, at most one O-base name introduced during
t has been marked. We lift Rename() to sets in the obvious way.

Example 39. Let ∆,M1,M2 be as in Example 38. Then we have Rename∆(Tr(Cρ,c0Mi
)) as shown

in Figure 9.

Rename∆() turns out to be sufficiently informative to provide a faithful representation of
PTR-traces.

Lemma 40. Suppose t1, t2 are PTR (NO, ∅)-traces, ∆ agrees with NO and Rename∆(t1) =
Rename∆(t2). Then t1 and t2 are equal up to a permutation of names that preserves NO.

Proof. We will prove this by contradiction. Let t1, t2 be s.t. Rename∆(t1) = Rename∆(t2)
but are not equal up to permutations of names which preserve NO. Observe that t1 and t2 must
have the same sequence of moves, differing only in the head names. Consider the shortest (equal
length) prefixes s1 and s2 of t1 and t2 which are not equal up to permutation of names. Apply a
permutation to s1 and s2 so that they are equal, save for the last action. Let s be the common

15

IVal∆σ (d, V, η) ≜ (V, ∅, η) for σ ∈ {Unit, Int}
IVal∆Uτ (d, V, η) ≜ (f i, [f i 7→ V], η[f 7→ i+ 1]) where SucT(d) = f, η(f) = i

IVal∆Ref(d, {|V1, V2|}, η) ≜ ({|fη(f), gη(j)|}, [fη(f) 7→ V1, g
η(g) 7→ V2], η[f, g 7→ η(f) + 1, η(g) + 1]) where SucT(d) = (f, g)

IVal∆Ref(d, ℓ, η) ≜ ({|f i, gj |}, [f i 7→ thunk (!ℓ), gj 7→ thunk (λx.ℓ := x)], η[f, g 7→ i+ 1, j + 1])
where SucT(d) = (f, g), η(f) = i, η(g) = j

IVal∆(f,
−→
V , η0) ≜ (A1 · · · Ak, γ1 · γ2 · · · γk, ηk) where f : U(σ1 → · · · → σk → Fσ),

−→
V = V1 · · · Vk

and for 1 ≤ i ≤ k, (Ai, γi, ηi) = IVal∆σi
((f, i), Vi, ηi−1)

IVals∆σ (d, η) ≜ {(V, η) | V : σ} where σ ∈ {Int,Unit}
IVals∆Uτ (d, η) ≜ {(f i, η[f 7→ i+ 1])} where SucT(d) = f, η(f) = i

IVals∆Ref(d, η) ≜ {(MkVar f i gj , η[f, g 7→ i+ 1, j + 1])} where SucT(d) = (f, g), η(f) = i, η(g) = j

IValSeq∆(f, η0) ≜ {(B1 · · ·Bk, ηk) | (Bi, ηi) ∈ IVals∆σi
((f, i), ηi−1)} where f : U(σ1 → · · · → σk → Fσ)

Figure 10: Functions for decomposing values in indexed abstract values and maps, for ∆ =
(TB,CB, ρ, c0,SucT,SucC)

prefix, and observe the action they disagree on must have been a question, as the head name used
in answer actions is determined by the bracketing conditions.

Now, by Lemma 37, this was not an OQ-action, as there are not distinct f, f ′ ∈ VisO(s) with
Base∆s (f) = Base∆s (f

′). So this last move was a PQ-action aq, so let f, f ′ be the two distinct

head names with Base∆s (f) = g = Base∆s (f
′). Let aa be the action f is introduced in. Now,

Rename∆(t1) will contain a marked ∆-trace with g marked at the action corresponding to aa,
and in the head of the action corresponding to aq. But Rename∆(t2) = Rename∆(s2) cannot
contain this trace, as Marked(s2) cannot contain a trace with both f in aa marked and f ′ in aq
marked. Thus, we have a contradiction.

Corollary 41. For PTR-computations Γ ⊢c M1,M2 : Fσ, continuation name c : σ, a Γ-
assignment ρ and ∆Γ,c = (TB,CB, ρ, c, SucT,SucC), we have Tr(C

M1
ρ,c) = Tr(CM2

ρ,c) iff Rename∆Γ,c(Tr(CM1
ρ,c)) =

Rename∆Γ,c(Tr(CM2
ρ,c)).

6 From LTS to Automata (transitions)

Let ∆ = (TB,CB, ρ, c0,SucT,SucC) be a name scheme. We wish to arrive at an LTS L∆
PTR

generating marked ∆-traces. In particular, the traces should be those arising from an application
of Rename∆(t), i.e. they need to include at most one introduction of a marked name, which
must be an O-name. Although traces of L∆

PTR will rely on base names, the configurations will
distinguish their occurrences via indexing. An indexed name has the form bi, where b ∈ TB∪CB,
and i ∈ N is an index. Indexed names will appear in the domain of components like γ and in
terms, but never in traces. Indexed names can also be marked in the same way as others.

To handle the generation of new indices, our configurations will contain a function η : TB ∪
CB → N mapping each base name to the next available index. In Figure 10 we define new versions
of functions analogous to AValσ(V), BVals∆σ (d), and BValSeq∆(f) but taking an additional
argument η. They generate abstract values with indexed names and an updated η′. Given an
abstract value or sequence with indexed names, we write β(A) to denote the same abstract value
with indices removed (but preserving marks).

Note that a typical update to η will make the values grow. In order to keep them bounded,
we will implement a recycling scheme for indices. In order to formulate it, we need to transfer
the notion of level to thunk names in a trace. Let t be an NO-trace such that ∆ agrees with NO.
Then f in t is a level-n name if Base∆t (f) is a level-n name, and g is the originator of f if g can
be reached from f by following the introduction of head names, and Base∆t (g) is the originator
of Base∆t (f).

16

Example 42. In trace t in Example 8, f is a level-0 name, r, w, g are level 1, and h is level 2.

Our recycling scheme is inspired by the Lemmata below.

Lemma 43. Let c : σ0 be a continuation name (one which corresponds to returning a value of

a basic type). Then, for any O/P-visible, and O/P-bracketed trace s = t f(
−→
A, c) t′ c̄(A′) t′′, no

names introduced in f(
−→
A, c) t′ appear in VisO(s) (if s ends in a P-action) or VisP (s) (if s ends in

an O-action).

Lemma 44. Let s = t f(
−→
A, c) t′ ḡ(

−→
A′, d) and s′ = s t′′ d(A) be PTR (NO, ∅)-traces, where

g is a level-2 name whose originator is introduced in
−→
A . Let X be the names introduced in

f(
−→
A, c) t′ ḡ(

−→
A′, d). Then if s′′ is a proper prefix of s′ at least as long as s, VisO(s

′′) ∩X = ∅ (if
s′′ ends in a P-action) and VisP (s

′′) ∩X = ∅ (if s′′ ends in an O-action).

To prove Lemma 44, we will need a helper Lemma.

Lemma 45. Let t g(
−→
A, c) t′ f̄(

−→
A′, c′) be a PTR-trace, with f a level 2 name, and f ′ its originator,

introduced in
−→
A . Then VisO(t g(

−→
A, c) t′ f̄(

−→
A′, c′)) = VisO(t)

Proof of Lemma 44. We proceed by induction on the length on the length of s′′.

• In the base case, the shortest s′′ is simply s, which has odd-length. We can then appeal to
Lemma 102 to obtain that VisO(s

′′) = VisO(t), so cannot contain any names in X.

• In the inductive case, we proceed by cases on the last action in s′′.

– s′′ = s′′′ f ′(
−→
A′′, c′′). s′′′ has odd length, so the I.H gives that f ′ ̸∈ X. Thus, f ′ is

introduced in either t or in t′′. In the first case, we have that VisP (s
′′) = VisP (t1)∪ν(

−→
A′′)

for some t1 a prefix of t, and so contains no names in X. In the second case, we get

that VisP (s
′′) = VisP (s1) ∪ ν(

−→
A′′) where s1 prefix of s′′ at least as long as s, so the

result hold by the I.H.

– s′′ = s′′′ c′′(A′′). This is an even length trace. Then, due to the bracketing condition,
we have that c′′(A′′) is answering a question in t′′. Thus we get that VisO(s

′′) =
VisO(s1) ∪ ν(A′′) where s1 prefix of s′′ at least as long as s, so the result hold by the
I.H.

– s′′ = s′′′ f̄ ′(
−→
A′′, c′′). s′′′ has even length, so the I.H gives that f ′ ̸∈ X. Thus, f ′ is

introduced in either t or in t′′. In the first case, we have that VisO(s
′′) = VisO(t1)∪ν(

−→
A′′)

for some t1 a prefix of t, and so contains no names in X. In the second case, we get

that VisO(s
′′) = VisO(s1) ∪ ν(

−→
A′′) where s1 prefix of s′′ at least as long as s, so the

result hold by the I.H.

– s′′ = s′′′ c̄′′(A′′). This is an odd length trace. Then, due to the bracketing condition,
we have that c̄′′(A′′) is answering a question in t′′. Thus we get that VisP (s

′′) =
VisP (s1) ∪ ν(A′′) where s1 prefix of s′′ at least as long as s, so the result hold by the
I.H.

Note that both Lemmata 43 and 44 state that certain names become unavailable. In the first
case this deactivation is permanent after c̄(A′), whereas in the second case it is temporary: it

starts after a level-2 name is used in ḡ(
−→
A′, d) and ends after the corresponding d(A). We will take

advantage of the deactivation period to reuse the deactivated indices. In the first case, this will be
done simply by resetting the relevant bounds. In the PTR fragment, all non-initial continuation
names have type σ0, so this recycling is actually widely applicable. In the second case, we will
reset the parameters temporarily and, to be able to restore them, will push the information related
to deactivated names on the stack (PQ). It can then be restored during the matching pop (OA).

17

(K[whileM doN], h, ih, η) →e (K[M to x.case x of return (), (N to y.end(ih, η).whileM doN)j>0], h, ih, η)
(K[end(ih, η

′).whileM doN], h, jh, η) →e (K[M to x.case x of return (), (N to y.end(ih, η).whileM doN)j], h<ih , ih, η
′)

Figure 11: The modifications needed to produce reduction relation →e

Example 46. To better explain why this second scheme is necessary, recall Γ and name scheme
∆Γ,FUnit from Example 32, and consider the computation Γ ⊢c (force f)(thunk λi.λj.(force i)) to g.force g :
FUnit. Some of the associated traces, written with base names and specific indices, have the fol-
lowing shape:

f̄0(h0, c0f) h
0(i0 j0, c0h) ī

0(ϵ, c0i) h
0(i1 j1, c1h) ī

1(ϵ, c1i)

What happens here is that, when P calls in, h0 becomes visible to O. This allows O to call h0

again with in+1. As this can repeat unboundedly many times, we must recycle the indices on i
and j, which is what the second recycling scheme permits.

Before we can present L∆
PTR we will need one final element, modifications to the operational

semantics given in Figure 3. Their purpose is to replace the generation of arbitrary new locations
with locations drawn sequentially from N, similarly to how we intend to use indexed names. This
will enable us to exploit the fact that Lemmata 43 and 44 mean that available locations are
also restricted. Instead of having configurations of the form (M,h), we have ones of the form
(M,h, ih, η), where ih is the next available location (and η will be a function as above). The
previous operational rules → (save those for ref V and whileM doN) are embedded into the new
reduction →e using the rule

(M,h) → (M ′, h′)

(M,h, ih, η) →e (M ′, h′, ih, η)
.

The reduction rule for handling new references is replaced by (K[ref V], h, ih, η) →e (K[ih], h ·
[ih 7→ V], ih+1, η). It uses ih as the location for the new reference, and then sets the next location
to be ih + 1. This gives an operational semantics which is behaviorally the same as generating a
fresh location, so long as ih is larger than any name appearing in h.

We also make changes to handle the while do construct. The idea is to reset both ih and η back
to the value before the loop once we reach the end of the loop. This is due to the fact that, by the
way the scopes work in the language, any name or location generated in the loop cannot be used
outside of (that iteration of) the loop. In particular, we introduce a new construct, end(ih, η).M ,
to indicate the end of an iteration of a loop. We provide rules for while and end in Figure 11,
where h<ih denotes the heap h restricted to domain of location smaller than ih. Similarly, if ζ
is a partial map from indexed names, and η maps base names to indices, we write ζη to mean ζ
restricted to indexed names f i for which i < η(f). We will use h≥ih and ζ≥η analogously.

Finally, we present the LTS L∆
PTR in Figure 12. Active configurations of L∆

PTR have the form
⟨M, c, γ, h,H, ih, η, µ, l⟩ and passive ones ⟨γ, h,H,Fn, ih, η, µ, l⟩. As described above, η is a function
from base names to the next available index, which we call the (next) index component. ih
is the (next) location component, the next available location. µ is the reset component, a
partial map from (indexed) level-2 thunk names and O-continuation names to the value of (ih, η)
prior to the move that introduced the name. l is a binary flag used to indicate whether a marked
name has been produced in the trace so far.

We now need to define initial configurations. Let Γ ⊢c M : Fσ be a PTR computation and ∆ =
(TB,CB, ρ, c0,SucT,SucC) be a (Γ, Fσ)-name scheme. Let ρ0 = [xi 7→ ρ(xi)

0], NO = ν(ρ) ∪ {c0}
and N0

O = {n0 |n ∈ N0}. Then the active initial configuration CPTR,∆
M is defined to be

(⟨M{ρ0}, c00, ∅, ∅, [N0
O 7→ ∅], 0, η, ∅, 0⟩,⊥)

where η = [NO, c0 7→ 1] · [(TB ∪ CB) \ (NO ∪ {c0}) 7→ 0].
The main change to the LTS, is to ‘recycle’ the indices, so as to keep the space of reachable

configurations finite. This is the role of the µ component, based on the properties identified in

18

(Pτ) ⟨M, cj , γ, h,H, ih, η, µ, l⟩
τ−−→ ⟨N, cj , γ<η′ , h′, H<η′ , i

′
h, η

′, µ<η′ , l⟩
when (M,h, ih, η) →e (N,h

′, i′h, η
′)

(PA) ⟨return V, c00, γ, h,H, ih, η, µ, l⟩
c̄0(β(A))−−−−−→ ⟨γ · γ′, h,H,H(c0) ⊎ ν(A), ih, η′, µ, l⟩

when c0 : σ, (A, γ′, η′) = IVal∆σ (c0, V, η)

(PA) ⟨return V, ci, γ, h,H, ih, η, µ, l⟩
c̄(V)−−−→ ⟨γ<η′ , h<i′h , H<η′ , H(ci), i′h, η

′, µ<η′ , l⟩
when c ̸= c0 and (i′h, η

′) = µ(ci)

(PQ) ⟨K[(force f i)
−→
V], c′j , γ, h,H, ih, η, µ, l⟩

f̄(β(
−→
A),c)/(c0,(K,c′j))−−−−−−−−−−−−−−→ ⟨γ · γ′, h,H,H(f i) ⊎ ν(

−→
A), ih, η

′, µ, l⟩
when f is not a level 2 name, (

−→
A, γ′, η′) ∈ IVal∆(f,

−→
V , η), and SucC(f) = c

(PQ) ⟨K[(force f i)
−→
V], c′j , γ, h,H, ih, η, µ, l⟩

f̄(
−→
V ,c)/(c0,(K,c′j),P)−−−−−−−−−−−−−−→ ⟨γ<η′ , h<i′h , H<η′ , H(f i), i′h, η

′, µ<η′ , l⟩
when f is a level 2 name, and (i′h, η

′) = µ(f i), SucC(f) = c, and P = (ih, η, γ≥η′ , h≥i′h , H≥η′ , µ≥η′)

(OA) ⟨γ, h,H,Fn, ih, η, µ, l⟩
c(β(A)),(c0,(K,c′j))−−−−−−−−−−−−−→ ⟨K[return A], c′j , γ, h,H · [ν(A) 7→ Fn], ih, η

′, µ, l′⟩
when c : σ, (A′, η′) ∈ IVals∆σ (c, η) and if l = 1 then A = A′, l′ = 1 else A ∈ Select(A′), and l′ = IsMark(A)

(OA) ⟨γ, h,H,Fn, ih, η, µ, l⟩
c(β(A)),(c0,(K,c′j),P)−−−−−−−−−−−−−−→ ⟨K[return A], c′j , γ · γ′, h,H ′, i′h, η

′, µ′, l′⟩
when c : σ, P = (i′h, η

′′, γ′, h′, H ′′, µ′′), (A′, η′) ∈ IVals∆σ (c, η
′′) and if l = 1 then A = A′, l′ = 1

else A ∈ Select(A′), and l′ = IsMark(A); and H ′ = H ·H ′′ · [ν(A) 7→ Fn], and µ′ = µ · µ′′ · [ν(A) 7→ (ih, η)]

(OQ) ⟨γ, h,H,Fn, ih, η, µ, l⟩
f(β(

−→
A),c)−−−−−−→ ⟨force V

−→
A, cj , γ, h,H · [ν(

−→
A), cj 7→ Fn], ih, η

′, µ′, l⟩
when f i ∈ Fn, (

−→
A′, η′′) ∈ IValSeq∆(f, η), SucC(f) = c, η(c) = j, η′ = η′′[c 7→ j + 1], γ(f i) = V, and

if l = 1 then A = A′, l′ = 1 else A ∈ Select(A′), and l′ = IsMark(A); and µ′ = µ · [ν(
−→
A), cj 7→ (ih, η)]

In the PQ rules, the name f can be either marked or unmarked. In the second PA (PQ), V (
−→
V)

does not contain thunks, so is an abstract value. The second OA rule is sound as γ′, h′, H ′′, µ′′

are disjoint from γ, h,H, µ. Select(A) is the set of marked indexed abstract values obtained by
marking at most one name in A. IsMark(A) = 1 if a name in A is marked, 0 otherwise.

Figure 12: L∆
PTR transition rules for name scheme ∆ = (TBNames,CBNames, ρ, c0,SucT,SucC)

Lemmata 43 and 44. In particular, after a PA-action (other than on the initial continuation name),
we ‘prune’ the domains of the components to the index names and locations introduced before
the OQ-action being answered. Similarly, after a PQ-action on a level-2 name f , we split the
components between the index names and locations introduced before the OQ-action introducing
the originator of f , and those after. Those from before the OQ-action become part of the next
configuration, whereas those from after are stored on the stack until they can be restored after
the matching OA-action. Let Tr∆PTR(C) be the set of base traces generated from C in L∆

PTR.

Definition 47. The PTR-trace semantics of a PTR-computation Γ ⊢c M : Fσ is defined to be
TrPTR(Γ ⊢c M : Fσ) ≜ { (∆, t) |∆ is a (Γ, Fσ)-name scheme, t ∈ Tr∆PTR(C

PTR,∆
M), t is complete}.

Example 48. Recall that in Example 18 we gave a derivation that the trace

t = f̄([r, w] 4̂, c1) w(1̂, c2) c̄2(()) c1(()) c̄(g) g(h, c3) h̄(ϵ, c4) c4(2̂) c̄3(3̂)

is in TrCBPV(C
ρ,c
M) where ρ = [x 7→ f], and

M = ref 0̂ to x.(force f)x 4̂; return thunk (λh.force h to y.!x to z.y + z)

Let ∆ = ({f, w, r, g, h}, {c, cf , cw, cr, cg, ch}, ρ, c, SucT,SucC) with SucC(f) = cf , SucC(w) = cw,
SucC(r) = cr, SucC(g) = cg, and SucC(h) = ch, and SucT(f, 1) = (w, r), SucT(c) = g, and
SucT(g, 1) = h. We will now show how the base trace

Base∆t (t) = f̄([r, w] 4̂, cf) w(1̂, cw) c̄w(()) cf (()) c̄(g) g(h, cg) h̄(ϵ, ch) ch(2̂) c̄g(3̂)

19

is in Tr∆PTR(C
PTR,∆
M). Let NO = {f, c} and η0 = [f, c 7→ 1] · [w, r, g, h, cf , cw, cr, cg, ch 7→ 0] and

H0 = [f0, c0 7→ ∅].

Cρ,cM
τ−→∗ (⟨M0, c

0, ∅, [0 7→ 0̂], H0, 1, η0, ∅, 0⟩,⊥)

where M0 = (force f0) ℓ 4̂; return thunk (λh.force h to y.!0 to z.y + z)
f̄([r,w] 4̂,cf)−−−−−−−−→ (⟨γ0, [0 7→ 0̂], H0, {r0, w0}, 1, η1, ∅, 0⟩, (c0f , (K1, c

0)) : ⊥)

where γ0 = [r0 7→ thunk (!0), w0 7→ thunk (λx.0 := x)], η1 = η0[w, r 7→ 1]
and K1 = •; return thunk (λh.force h to y.!0 to z.y + z)

w(1̂,cw)−−−−−→ (⟨(force thunk (λx.0 := x))1̂, c0w, γ0, [0 7→ 0̂], H1, 1, η2, [c
0
w 7→ (1, η1)], 0⟩, (c0f , (K1, c

0)) : ⊥)

where H1 = H0 · [c0w 7→ {r0, w0}] and η2 = η1[cw 7→ 1]
τ−→∗ (⟨return (), c0w, γ0, [0 7→ 1̂], H1, 1, η2, [c

0
w 7→ (1, η1)], 0⟩, (c0f , (K1, c

0)) : ⊥)
c̄w(())−−−−→ (⟨γ0, [0 7→ 1̂], H0, {r0, w0}, 1, η1, ∅, 0⟩, (c0f , (K1, c

0)) : ⊥)
cf (())−−−−→ (⟨K1[return ()], c0, γ0, [0 7→ 1̂], H0, 1, η1, ∅, 0⟩,⊥)
τ−→∗ (⟨return thunk (λh.force h to y.!0 to z.y + z), c0, γ0, [0 7→ 1̂], H0, 1, η1, ∅, 0⟩,⊥)
c̄(g)−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η2, ∅, 0⟩,⊥)

where γ1 = γ0 · [g0 7→ thunk (λh.force h to y.!0 to z.y + z)] and η2 = η1[g 7→ 1]
g(h,cg)−−−−→ (⟨(force thunk (λh.force h to y.!0 to z.y + z))h0, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h

0, c0g 7→ (1, η2)], 0⟩,⊥)
where H2 = H0 · [h0, c0g 7→ {g0}] and η3 = η2[h, cg 7→ 1]

τ−→∗ (⟨force h0 to y.!0 to z.y + z, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h
0, c0g 7→ (1, η2)], 0⟩,⊥)

h̄(ϵ,ch)−−−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η0, ∅, 0⟩, (c0h, (K2, c
0
g), P) : ⊥)

where K2 = • to y.!0 to z.y + z, and P = (1, η3, ∅, ∅, [h0, c0g 7→ {g0}], [h0, c0g 7→ (1, η2)])
ch(2̂)−−−→ (⟨K2[return 2̂], c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h

0, c0g 7→ (1, η2)], 0⟩,⊥)
τ−→∗ (⟨return 3̂, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h

0, c0g 7→ (1, η2)], 0⟩,⊥)
c̄g(3̂)−−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η2, ∅, 0⟩,⊥)

To gain a further understanding of the operation L∆Γ,σ

PTR , we also see how the trace

t′ = f̄([r, w] 4̂, cf) w(1̂, cw) c̄w(()) cf (()) c̄(g) g(h, cg) h̄(ϵ, ch) g(ĥ, cg)
¯̂
h(ϵ, ch) ch(2̂) c̄g(3̂) ch(2̂) c̄g(3̂)

in Tr∆PTR(C
PTR,∆
M) is derived.

20

Cρ,cM
τ−→∗ (⟨M0, c

0, ∅, [0 7→ 0̂], H0, 1, η0, ∅, 0⟩,⊥)

where M0 = (force f0) ℓ 4̂; return thunk (λh.force h to y.!0 to z.y + z)
f̄([r,w] 4̂,cf)−−−−−−−−→ (⟨γ0, [0 7→ 0̂], H0, {r0, w0}, 1, η1, ∅, 0⟩, (c0f , (K1, c

0)) : ⊥)

where γ0 = [r0 7→ thunk (!0), w0 7→ thunk (λx.0 := x)], η1 = η0[w, r 7→ 1]
and K1 = •; return thunk (λh.force h to y.!0 to z.y + z)

w(1̂,cw)−−−−−→ (⟨(force thunk (λx.0 := x))1̂, c0w, γ0, [0 7→ 0̂], H1, 1, η2, [c
0
w 7→ (1, η1)], 0⟩, (c0f , (K1, c

0)) : ⊥)

where H1 = H0 · [c0w 7→ {r0, w0}] and η2 = η1[cw 7→ 1]
τ−→∗ (⟨return (), c0w, γ0, [0 7→ 1̂], H1, 1, η2, [c

0
w 7→ (1, η1)], 0⟩, (c0f , (K1, c

0)) : ⊥)
c̄w(())−−−−→ (⟨γ0, [0 7→ 1̂], H0, {r0, w0}, 1, η1, ∅, 0⟩, (c0f , (K1, c

0)) : ⊥)
cf (())−−−−→ (⟨K1[return ()], c0, γ0, [0 7→ 1̂], H0, 1, η1, ∅, 0⟩,⊥)
τ−→∗ (⟨return thunk (λh.force h to y.!0 to z.y + z), c0, γ0, [0 7→ 1̂], H0, 1, η1, ∅, 0⟩,⊥)
c̄(g)−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η2, ∅, 0⟩,⊥)

where γ1 = γ0 · [g0 7→ thunk (λh.force h to y.!0 to z.y + z)] and η2 = η1[g 7→ 1]
g(h,cg)−−−−→ (⟨(force thunk (λh.force h to y.!0 to z.y + z))h0, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h

0, c0g 7→ (1, η2)], 0⟩,⊥)
where H2 = H0 · [h0, c0g 7→ {g0}] and η3 = η2[h, cg 7→ 1]

τ−→∗ (⟨force h0 to y.!0 to z.y + z, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h
0, c0g 7→ (1, η2)], 0⟩,⊥)

h̄(ϵ,ch)−−−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η0, ∅, 0⟩, (c0h, (K2, c
0
g), P) : ⊥)

where K2 = • to y.!0 to z.y + z, and P = (1, η3, ∅, ∅, [h0, c0g 7→ {g0}], [h0, c0g 7→ (1, η2)])
g(ĥ,cg)−−−−→ (⟨(force thunk (λh.force h to y.!0 to z.y + z))ĥ0, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [ĥ

0, c0g 7→ (1, η2)], 1⟩,
(c0h, (K2, c

0
g), P) : ⊥)

where Ĥ2 = H0 · [ĥ0, c0g 7→ {g0}]
τ−→∗ (⟨force ĥ0 to y.!0 to z.y + z, c0g, γ1, [0 7→ 1̂], Ĥ2, 1, η3, [h

0, c0g 7→ (1, η2)], 1⟩, (c0h, (K2, c
0
g), P) : ⊥)

¯̂
h(ϵ,ch)−−−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η0, ∅, 1⟩, (c0h, (K2, c

0
g), P̂) : (c

0
h, (K2, c

0
g), P) : ⊥)

where P̂ = (1, η3, ∅, ∅, [ĥ0, c0g 7→ {g0}], [ĥ0, c0g 7→ (1, η2)])
ch(3̂)−−−→ (⟨K2[return 3̂], c0g, γ1, [0 7→ 1̂], H2, 1, η̂3, [ĥ

0, c0g 7→ (1, η2)], 1⟩, (c0h, (K2, c
0
g), P) : ⊥)

τ−→∗ (⟨return 4̂, c0g, γ1, [0 7→ 1̂], H2, 1, η̂3, [ĥ
0, c0g 7→ (1, η2)], 1⟩, (c0h, (K2, c

0
g), P) : ⊥)

c̄g(4̂)−−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η2, ∅, 1⟩, (c0h, (K2, c
0
g), P) : ⊥)

ch(2̂)−−−→ (⟨K2[return 2̂], c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h
0, c0g 7→ (1, η2)], 1⟩,⊥)

τ−→∗ (⟨return 3̂, c0g, γ1, [0 7→ 1̂], H2, 1, η3, [h
0, c0g 7→ (1, η2)], 1⟩,⊥)

c̄g(3̂)−−−→ (⟨γ1, [0 7→ 1̂], H0, {g0}, 1, η2, ∅, 1⟩,⊥)

6.1 Full Abstraction of L∆
PTR

We can show that the new semantics agree with the full trace semantics on PTR-computations.
This aim can be expressed as the following Lemma.

Lemma 49. For any PTR-computation Γ ⊢M : Fσ, a (Γ, Fσ)-name scheme ∆ = (TB,CB, ρ, c0,SucT,SucC),

Tr∆PTR(C
PTR,∆
M) = Rename∆(TrCBPV(C

ρ,c0
M)).

To simplify the statement of results in this sections, we will fix a PTR-computation Γ ⊢c M :
Fσ0, (Γ, σ)-name scheme ∆ = (TB,CB, ρ, c0,SucT,SucC), and let NO = ν(ρ) ∪ {c0}.

We will prove Lemma 49 using a bisimulation technique, though we will not be able to give

a bisimulation directly between LCBPV and L∆Γ,σ

PTR . Instead, we will introduce a LTS L∆Γ,σ

Path , the

traces of which will be exactly Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)). Given a path p, let Tr(p) be the

trace induced by p.

21

Definition 50. The configurations of L∆Γ,σ

Path have the form (p, F) where p is a path in LCBPV

starting in Cρ,c0M and F is either empty, or a set containing a single name f s.t. f is introduced
in an O-action in Tr(p). Let Mark(f,X) for some structure X (an action etc.) be obtained by
marking every occurrence of f . The transitions are then (where a includes τ actions)

• (p, {f}) a′

−→ (p
a−→ C′, {f}) where p ends with C, C

a−→ C′, a′′ = Mark(f,a) and a′ =

Base
∆Γ,σ

Tr(p
a−→C′)

(a′′).

• (p, ∅) a′

−→ (p
a−→ C′, ∅) where p ends with C, C

a−→ C′, and a′ = Base
∆Γ,σ

Tr(p
a−→C′)

(a).

• (p, ∅) a′

−→ (p
a−→ C′, {g}) where a = c(A), g ∈ ν(A), a′′ = Mark(g,a) and a′ = Base

∆Γ,σ

Tr(p
a−→C′)

(a′′).

• (p, ∅) a′

−→ (p
a−→ C′, {g}) where a = f(

−→
A, c), g ∈ ν(

−→
A), a′′ = Mark(g,a) and a′ =

Base
∆Γ,σ

Tr(p
a−→C′)

(a′′).

Observe that L∆Γ,σ

Path is deterministic in the sense that if for configuration (p, F), there is only

one t s.t. (Cρ,c0M , ∅) t
=⇒ (p, F).

We can then establish the correctness of L∆Γ,σ

Path with respect to LCBPV and the tranlation

function Rename∆Γ,σ ().

Lemma 51. The traces of L∆Γ,σ

Path starting from (Cρ,c0M , ∅) are exactly Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)).

Proof. We prove using the following interemediate result. Let p is a path in LCBPV starting from
Cρ,c0M , and t = Tr(p), then

1. (Cρ,c0M , ∅) t′
=⇒ (p, ∅) where t′ = Base

∆Γ,σ

t (t); and

2. if t a thunk O-name introduced in t, then (Cρ,c0M , ∅) t′′
==⇒ (p, {f}), where t′′ = Base

∆Γ,σ

t (Mark(f, t)).

This proof proceeds by induction on the length of the path p.
Using this result, we can proceed to prove the Lemma as follows. For the first direction, let

t′′ ∈ Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)). Then there exists t ∈ TrCBPV(C

ρ,c0
M) and t′ ∈ Marked(t) s.t.

t′′ = Base
∆Γ,σ

t (t′). Let p be the path in generating t. If t = t′, we have by the above property

that (Cρ,c0M , ∅) t′′
==⇒ (p, ∅), so t′′ is generated by L∆Γ,σ

Path starting from (Cρ,c0M , ∅). Otherwise, let f be

the name marked in t′. By the above property, (Cρ,c0M , ∅) t′′
==⇒ (p, {f}), so t′′ is generated by L∆Γ,σ

Path

starting from (Cρ,c0M , ∅).
For the other direction, let t′′ be a trace generated by L∆Γ,σ

Path starting from (Cρ,c0M , ∅). Then

there must be a path p s.t. Cρ,c0M , ∅) t′′
==⇒ (p, ∅) or Cρ,c0M , ∅) t′′

==⇒ (p, {f}) for some f introduced in

an O-action of p. Let t = Tr(p), so t ∈ TrCBPV(C
ρ,c0
M). Then it follows from the above result,

and the deterministm of L∆Γ,σ

Path , that t′′ = Base
∆Γ,σ

t (t) or t′′ = Base
∆Γ,σ

t (Mark(f, t)). Thus,

t′′ ∈ Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)).

Now, to prove Lemma 49, we construct a bisimulation between L∆Γ,σ

Path and L∆Γ,σ

PTR . To do this,
we will use the function Conv(p), which will take path p to a tuple (κ, ψ, η, µ, ψh, ih, N, T). κ
maps names introduced in p to indexed base names, and locations to numerical locations. We lift
κ to any structure containing names and/or locations in the obvious way. ψ maps indexed base
names to names introduced in p (a partial inverse of κ), η maps base names to the next index
and µ maps level 2 and O-continuation indexed base names to the value of (ih, η) before their

22

introduction. ψh, ih play an analogous role to ψ, η but for locations. Finally, N is simply the term
components of the final state in p (or ∅ if the last configuration is passive), but with the result
of expanding while loops annotated with end(ih, η)..T is an extended stack, which relates to the
stack in the same way as N does to term, but with added elements at some levels of the stack. We
also define the reduction (N,h) →m (N ′, h′) on terms of the extended syntax (with end(ih, η).),
as having the same rules as → (and so getting stuck if it encounters end(ih, η).). Let Ñ be the
function which removes occurrences of end(ih, η). from a term/context.

We write p′ C
a−→ C′ when C,C′ are the last two configurations in a path (where p′ can be

empty). Recall also that we have Match(A,B, f) transfers any mark on f in A to its result.

Definition 52. We define ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T) with the following cases. If p =
Cρ,c0M then µ = ψh = ∅, ih = 0, N =M, K = ⊥, κ = [NO 7→ N0

O], ψ = [N0
O 7→ NO], η is 1 on NO,

0 otherwise. Otherwise, p = p′ C
a−→ C′. Let ConvF (p

′ C) = (κ′, ψ′, η′, µ′, ψ′h, i′h, N
′, T ′). We

then proceed by the follwoing cases:

• a = τ , C = (⟨K[ref V], · · · ⟩, S) and C′ = (⟨K[ℓ], · · · ⟩, S). If N ′ = K ′[ref V] then N =
K ′[i′h], ih = i′h +1, κ = κ′ · [ℓ 7→ i′h], ψ

h = ψ′h · [i′h 7→ ℓ], ψ = ψ′, η = η′, µ = µ′, and T = T ′;

• a = τ where C = (⟨K[whileN1 doN2], · · · ⟩, S).

– If N ′ = K ′[whileN1 doN2], then

N = K ′[N1 to x.case x of return (), (N2 to y.end(ih, η).whileN1 doN2)j>0]

and κ = κ′, ψ = ψ′, η = η′, µ = µ′, ψh = ψ′h, ih = i′h, and T = T ′;

– If N ′ = K ′[end(ih, η).whileN1 doN2], then

N = K ′[endM to x.case x of return (), (N to y.end(ih, η).whileM doN)j>0.]

ψ = ψ′
<η, ψ

h = ψ′h
<ih

, κ = κ′, µ = µ′, and T = T ′;

• a = τ otherwise, where C = (⟨M ′, c, γ, ϕ, h,H⟩, S), C′ = (⟨M ′′, c, γ, ϕ, h′, H⟩, S)). Then N
is s.t (N ′, h) →m (N,h′), κ = κ′, ψ = ψ′, η = η′, µ = µ′, ψh = ψ′h, ih = i′h, and T = T ′ ;

• a = f̄(
−→
A, c) where f is not a level 2 name, and C = (⟨K[force f

−→
V], c′, · · · ⟩, S′). If N ′ =

K ′[force f
−→
V], then T = (c, (K ′, c′)) : T ′, N = ∅ µ = µ′, ψh = ψ′h, and ih = i′h. If

gi = κ′(f),d = SucC(g), and (
−→
B, γ, η′′) = IVal∆(g,

−→
V , η′), then κ = κ′ · [c 7→ d0] · [f ′ 7→

Match(
−→
A,

−→
B, f ′)]

f ′∈ν(
−→
A)

, and ψ = ψ′ · [Match(
−→
A,

−→
B, f ′) 7→ f ′]

f ′∈ν(
−→
A)

;

• a = f̄(
−→
A, c) where f is a level 2 name and C = (⟨K[force f

−→
V], c′, · · · ⟩, S′). If N ′ =

K ′[force f
−→
V] and (ih, η) = µ(f), then ψ = ψ′

<η, ψ
h = ψ′h

<ih
, T = (c, (K ′, c′), (i′h, η

′, ψ′h
≥ih , ψ

′
≥η)) :

T ′, N = ∅, κ = κ′ · [c 7→ d0], and µ = µ′;

• a = f(
−→
A, c) where C = (⟨γ, ϕ, h,H,Fn⟩, S). If N ′ = ∅ then N = γ(f), ψh = ψ′h, ih =

i′h, and T = T ′. If gi = κ′(f), d = SucC(g), j = η(d), (
−→
B, η′′) = IValSeq∆(g, η′) and

−→
A′ = Mark(F,

−→
A), then κ = κ′ · [c 7→ dj] · [f 7→ Match(

−→
A′,

−→
B, f)]

f∈ν(
−→
A)

, ψ = ψ′ · [dj 7→

c] · [Match(
−→
A′,

−→
B, f) 7→ f]

f∈ν(
−→
A)

, µ = µ′ · [ν(
−→
A), c 7→ (ih, η)], and η = η′′[d 7→ j + 1];

• a = c̄0(A) where C = (⟨return V, · · · ⟩, S). If (B, γ, η) = IVal∆σ (c0, V, η
′), then N = ∅,

κ = κ′ · [f 7→ Match(A,B, f)]f∈ν(A), ψ
′ = ψ · [Match(A,B, f) 7→ f]f∈ν(A), µ = µ′,

ψh = ψ′h, ih = i′h,and T = T ′;

• a = c̄(A). If (ih, η) = µ(c), then ψ = ψ′
<η, ψ

h = ψ′h
<ih

, N = ∅, κ = κ′, µ = µ′, and T = T ′;

• a = c(A) with A : σ.

23

– If T ′ = (c, (K, c′)) : T ′′ and d = κ′(c), then T = T ′′, N = K[return A], and for
A′ = Mark(F,A), for any (B′, η) ∈ IVals∆σ (d, η

′), κ = κ′ ·[f 7→ Match(A′, B, f)]f∈ν(A),

ψ = ψ′ · [Match(A′, B, f) 7→ f]f∈ν(A), µ = µ′, ψh = ψ′h, and ih = i′h;

– If T ′ = (c, (K, c′), (ih, η
′′, ψ′′h, ψ′′)) : T ′′, d = κ′(c), and ψ′′h, ψ′′ disjoint from ψ′h, ψ′

then T = T ′′, N = K[returnA], and forA′ = Mark(F,A), for any (B′, η) ∈ IVals∆σ (d, η
′′),

ψh = ψ′h ·ψ′′h κ = κ′ · [f 7→ Match(A′, B, f)]f∈ν(A), ψ = ψ′ ·ψ′′ · [Match(A′, B, f) 7→
f]f∈ν(A) and µ = µ′ · [ν(A) 7→ (i′h, η

′)].

We can prove via simple inductions, that for any path p, ConvF (p) is defined (that is, the
conditions assume in the inductive construction do hold).

An important yet unsurprising property of ConvF (p) is that for names and locations in the
last configuration of p, κ and ψ (ψh) are inverses.

Lemma 53. Let (p, F) be a configuration of L∆
Path, and ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T).

Then:

• if p ends in a active state (⟨N, c, γ, ϕ, h,H⟩, S), then for f ∈ ν(N), we have (ψ ◦ κ)(f) = f ,
(ψ ◦ κ)(c) = c, and for location ℓ in N , (ψh ◦ κ)(ℓ) = ℓ;

• if p ends in a passive state (⟨γ, ϕ, h,H,Fn⟩, S), then for f ∈ Fn, we have (ψ ◦ κ)(f) = f .

We define the following function mapping extended stacks to stacks with the same structure
as L∆

PTR.

Stackγ,h,H,µ(⊥) ≜ ⊥
Stackγ,h,H,µ((c, (K, c

′)) : T) ≜ (c, (K, c′)) : Stackγ,h,H,µ(T)

Stackγ,h,H,µ((c, (K, c
′), (ih, η, ψ

h, ψ)) : T) ≜ (c, (K, c′), (ih, η, γ ◦ ψ, h ◦ ψh, H ◦ ψ, µ ◦ ψ)) : Stackγ,h,H,µ(T)

Finally, we can define a functional bisimulation Θ from LPath to L∆Γ,σ

PTR :

Θ((p C, F)) ≜ (⟨κ(N), κ(c), κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T))),
if C = (⟨N ′, c, γ, ϕ, h,H⟩, S)

Θ((p C, F)) ≜ (⟨κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, κ(Fn), ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T))),
if C = (⟨γ, ϕ, h,H,Fn⟩, S)

where (κ, ψ, η, µ, ψh, ih, N, T) = ConvF (p C) and if F = ∅ then l = 0, otherwise l = 1.

Lemma 54. Θ is a functional bisimulation between L∆
Path and L∆

PTR

Using this bisimulation, we can complete our proof of correctness.

Proof of Lemma 49. This follows from Lemma 51 and Lemma 54, as bisimulation implies trace
equivalence for deterministic LTS.

Lemma 49 with Corollaries 24 and 41 imply the following.

Theorem 55 (PTR Full Abstraction). For any PTR computations Γ ⊢ M1,M2 : Fσ, then
Γ ⊢M1 ≲CBPV

ter M2 iff TrPTR(Γ ⊢M1) ⊆ TrPTR(Γ ⊢M2).

6.2 L∆
PTR is an automaton

L∆
PTR turns out to be a VPA for any PTR-computation. In general, it inherits the non-elementary

bounds from the λ-calculus but, for terms in canonical form (see Figure 13), we obtain an expo-
nential bound. The main result for these canonical forms are that every term has a contextually
equivalent cannonical form.

24

Ground Types β ≜ Unit | Int
Restricted Values V0 ≜ x | () | n̂ | ℓ | MkVar V0 V0
Values V ≜ V0 | thunk M | MkVar (thunk M) (thunk M)

Restricted Computations M0 ≜ force V0 | return V0 | M0V | ref V | !V0 | V0 := V0
Computations M ≜ M0 | return V | λxσ.M | let xβ be V.M

| M to xβ .M | M0 to x.M | case V of (Mi)i∈I | whileM doM

Figure 13: The grammar for terms in canonical form

Lemma 56. Given a CBPV computation Γ ⊢c M : τ , there exists a computation Γ ⊢c Canon(M) :
τ in canonical form such that Γ ⊢c M ≃CBPV

ctx Canon(M) : τ

We can then establish the finiteness of the reachable state space of L∆
PTR for any computation.

Lemma 57. For PTR-computation Γ ⊢c M : Fσ, (Γ, σ)-name scheme ∆, the set of of states

reachable from CPTR,∆
M in L∆

PTR is finite. If M is in canonical form, it is exponential in the size
of M .

The overview of our technique is to consider that state space of L∆
PTR reachable from the inital

configuration, but ignoring potential differences in the heap. We will obtain a bound on this state
space by looking at the maximal length of paths before we reach a duplicated state. We can then
account for the heap seperately, by considering how many locations can be generated along such
paths.

In line with this, we say two states differ only in the heap when all components other than
the heap (h) and tag (l) are the same, and that they are distinct beyond the heap when some
component other than the heap or tag is different. We extend these notions analogously to
configurations.

To prove Lemma 57, we will need a series of intermediate results. To simplify the statement
of results in this section, we will fix a PTR-computation Γ ⊢c M : Fσ, (Γ, σ)-name scheme

∆ = (TBNames,CBNames, ρ, c0,SucT,SucC), and let C0 = CPTR,∆
M and NO = ν(ρ) ∪ {c0}.

The first tranche of result establish states in a path which must differ only in the heap from
some earlier state in the path.

Lemma 58. Let C be a passive configuration reachable from C0 in L∆
PTR. Let C′ be a passive

state reachable from C with the same stack component S as C, and with the stack never being
shorter than S in an intermediate configuration. Then C and C′ differ only in the heap.

Lemma 59. LetM1 = N1 to x.case x of return (), (N2 to y.end(ih, η).whileM doN)j>0. Let C =
(⟨K[M1], c, γ, h,H, ih, η, µ, l⟩, S) be reachable from C0. Let C

′ = (⟨K[M1], c, γ
′, h′, H ′, i′h, η

′, µ′, l′⟩, S)
be a configuration reached from C by a path p which does not include a PA-action on c. Then C
and C′ differ only in the heap.

Lemma 60. Let C = (⟨γ, h,H,Fn, ih, η, µ, l⟩, S) be reachable from C0, which occurs immediately

before OQ-action g(
−→
A, c) introducing a level 2 name f ′. Let f be a name which has f ′ as its

originator. Let p be a path from C such that

• no answer action in p answers a question not occurring in p;

• no τ -action is produced involving reducing an occurrence of end. found in C;

• p includes no unanswered PQ-actions on a level 2 name whose;

• p ends in active C′ = (⟨K[force f i
−→
V], c′, γ′, h′, H ′, i′h, η

′, µ′, l′⟩, S′).

Then we have if C′ f̄(
−→
A,d)−−−−→ C′′, the states of C and C′′ differ only in the heap.

25

We then wish to determine how long the paths reaching these repeated states can be. For this,
we have results regarding the number of unanswered questions may occur before an PQ-action
using a level 2 head name must occur, and the number of distinct beyond the heap states which
may occur between unanswered questions.

Lemma 61. Let Γ ⊢c M : Fσ be a PTR-computation in canonical form, Γ-assignment ρ and
continuation name c0. Let t ∈ Tr(Cρ,c0M) be a trace which does not have an unanswered PQ-action
using a level 2 head name, then the number of unanswered PQ-actions in t is bounded by the size
of M .

Lemma 62. Let M be in canonical form. Let C be an active configuration reachable from C0,
which occurs immediately after a OQ-action, or is C0. Let C′ be an active configuration reachable
from C by a path p in which no OQ or PA-actions occur, and each occurrence of the while construct
is reduced at most once. Then the number of intermediate configurations which are distinct beyond
the heap is polynomial in M .

We are finally ready to prove Lemma 57.

Proof of Lemma 57. To conduct this proof, we are going to exploit the fact that a state can be
decomposed into the heap and tag, and ‘everything else’. Formally, we decompose as follows:

Decomp((⟨N, c, γ, h,H, ih, η, µ, l⟩, S)) =
((⟨N, c, γ,H, ih, η, µ⟩, S), (h, l))

Decomp((⟨γ, h,H,Fn, ih, η, µ, l⟩, S)) =
((⟨γ, h,H,Fn, ih, η, µ⟩, S), (h, l))

We will write configurations without the heap and tag as C̄. Then we can write that C̄ −→ C̄′ if
there is some C, h, l,C′, h, l′ and action a (inc. τ) s.t. Decomp(C) = (C̄, (h, l)), C

a−→ C′, and
Decomp(C′) = (C̄′, (h′, l′)).

Let Decomp(C0) = (C̄0, (h0, l0)). Then define the set Reach inductively as follows:

• C̄0 ∈ Reach

• if C̄ is in reach, and C̄ −→ C̄′, then C̄′ ∈ Reach

Now, let us write |Reach| for the number of (distinct) states (not configurations) appearing in
Reach. Then the set of states reachable from C0 in LSO has size bounded by the product of
|Reach|, the size of the set of all possible heaps, and the number of possible values of tags. Thus,
we seek to obtain a bound on |Reach|.

First, we will consider the case where M is canonical, so we are seeking an exponetial bound.
We do this by observing that the inductive definition gives rise to a tree. The branching factor

is the maximum number of successors a configuration can have, which is fixed by the size of the
Int-type and the maximum arity of functions in the Σ, ρ. The maximum length of a branch in the
tree (that is of a derivation that C̄ ∈ Reach), is polynomial in the size of M , as we now show. By
Lemma 58, we only need to consider derivations where all OQ-actions are unanswered. Further,
by Lemma 60, we only need to consider derivations in which all PQ-actions using level 2 names
are answered immediately. This is as the state a PQ on a level 2 name is the same as that before
the move introducing the originator of that name, so we can only reach states already on the path
until the PQ is answered, as the stack plays no role until then. Lemma 61 places a bound on the
number of such unanswered OQ-actions which can occur in a derivation where these PQ-actions
are answered. By Lemma 59 we need only consider derivations which include a single iteration of
while loops. Lemma 62 then gives a polynomial bound on the number of configurations appearing
between two OQ-actions, which overall gives a polynomial bound on the length of a branch. Thus,
we have an exponential bound on |Reach|.

Recall that for any state, the size of the heap is bounded by the next location component ih.
Due to the construction above, it follows that the ih is bounded by a polynomial in the size of M

26

(as, in each step of a derivation that C′
h is in Reach, the next location component can increase

at most once). Thus, as the heap stores integers, the set of possible heaps is exponential in the
size of M . Similarly, the tag can only be 0 or 1, which simply doubles the state space. Putting all
this together yields an exponential bound on the state space. We can generate this state space in
exponential time by observing that the states in Reach can be constructed in exponential time.
This is as, when we compute configurations C̄′ s.t. C̄ →̂ C̄′, it suffices to observe that at most 1
element of the heap can be read, and so this reduces considering all possible heaps to considering
the values in Int.

Now, consider what must change ifM is not in canonical form. The first issue is that Lemma 61
provides a bound on the unanswered OQ-actions only ifM is in canonical form. But by Lemma 56,
we have that Canon(M) is contextually equivalent to M , thus CPTR,∆

Canon(M) generates the same

traces as M , and so can obtain a finite bound on unanswered OQ-actions (as the blow up in going
to canonical forms is finite, although non-elementary). The second issue is that Lemma 62 only
applies to canonical terms. However, we can easily see that any term component in the LTS is
finite, and a reduction sequence from such a finite term reaches finitely many states. Thus, it
follows in the same way as above that the state space is finite.

Lemma 63. For PTR-computation Γ ⊢c M : Fσ and (Γ, σ)-name scheme ∆, one can effec-

tively construct a deterministic VPA accepting Tr∆PTR(C
PTR,∆
M). If M is in canonical form, the

construction can be carried out in exponential time.

Proof. We can construct VPA A = (Q, {q0},Π, δ, QF) with epsilon transitions, and accepting
on the condition of reaching both a state and an empty stack as follows (which we recall can be
converted into a standard VPA by appealing to the construction given at the begining of Section 5).
Thus, from A one can obtain a standard VPA. The alphabet are the actions which can appear
in any ∆-trace, and is partitioned so that OQ ,PA-actions are internal, PQ-actions are calls, and
OA-actions are returns.

We take the states (Q) to be the states of L∆Γ,σ

PTR reachable from C
PTR,∆Γ,σ

M , and the initial

state q0 is the one in configuration C
PTR,∆Γ,σ

M . We take the transitions (δ) to be those transitions

in L∆Γ,σ

PTR from states in Q (so (q,a, q′) ∈ δ iff q
a−→ q′, (q, ϵ, q′) ∈ δ iff q

τ−→ q′, (q,a, q′, π) ∈ δ iff

q
a/π−−→ q′ and (q,a, π, q′) ∈ δ iff q

a,π−−→ q′). The stack symbols (Π) are those pushed onto the stack

in the transitions in δ (so pushed in the transitions obtained from L∆Γ,σ

PTR) and ⊥. As a τ -transition
is the unique transition from a state, so the corresponding ϵ-transtion is the sole transition from
that state, so by the discussion given at the begining of Section 5, we can safely ‘squeeze’ them
out.

We obtain an automaton accepting exactly the complete traces by making passive states fi-
nal (QF), as the acceptance condition ensures that the stack is empty, and so the trace has no
unanswered PQ-actions (and as only passive are accepting, no unanswered OQ-actions).

It follows from Lemma 57 that the state space is finite (exponential in the size of M for
canonical forms), and so the outbound transitions must also be finite (exponential for canonical
forms), as there can be at most one transtion from one state to another (so quadratic in the state
space). Further, we can see that the alphabet is bound by Γ, σ and the size of Int, due to the
shape of possible actions. The stack alphabet is bounded by the state space, as each symbol is
determined entirely by the state before it is pushed. For terms in canonical from, the construction
can be done in exponential time, by first constructing the state space (as in Lemma 57), and then
for each state generating the possible transitions.

The VPA is deterministic as L∆Γ,σ

PTR is. In particular, for each state, action, and stack symbol,
there is exactly one sucessor.

7 Decidability, complexity and translations

Theorem 64. Contextual approximation for the PTR-fragment of CBPV is decidable. For com-
putations in canonical form, it is decidable in exponential time.

27

Proof. From Theorem 55, testing two computations Γ ⊢c M1,M2 : Fσ for contextual approxima-
tion can be done by comparing the complete traces generated by L∆

PTR for every possible name
scheme ∆. As choice of base names in Γ, σ is arbitrary, we need only care about the Ints occurring
in Γ, which gives exponentially many ∆. By Lemma 63, each comparison reduces to a language
equivalence test. For canonical forms, the two VPA’s are constructible in exponential time. In
particular, they will be of exponential size. Because language equivalence is in P for deterministic
VPA, the lemma follows.

One can show that it is the use of level-2 names that forces us to make use of an unbounded
stack. The computations that omit level-2 names are of the form Γ ⊢c M : Fσ1, where each type
in Γ is a σ2 type according to the grammar given below.

σ2 ≜ σ1 | Uτ1 σ1 ≜ σ0 | Ref | Uτ0
τ1 ≜ Fσ2 | σ1 → τ1 τ0 ≜ Fσ0 | σ0 → τ0

σ0 ≜ Int | Unit

In this case one can show that the stack height is bounded and, for canonical forms, the bound is
linear. Consequently, we can treat the (bounded) stack as part of the state space and convert the
VPA to a finite-state machine.

The fact that our results are stated for CBPV makes it possible to specialise them to the CBN-
and CBV-variants of the language, known in the literature as Idealised Algol [7] and RML [6]
respectively. This can be done by translation provided it is fully abstract (preserves and reflects
contextual equivalence). Our translations extend the standard translations from the CBN and
CBV λ-calculus respectively [21]. The translations of types are given in the table below. For
RML, a term M : σ is translated into a computation MRML : FσRML.

RML type CBPV value types
Int,Unit,Ref Int,Unit,Ref
σ1 → σ2 U(σ1

RML → Fσ2
RML)

IA type CBPV computation types
expr, com F Int, FUnit

var Int → Int → F Int
τ1 → τ2 Uτ1

IA → τ2
IA

Remark 65. The CBN translation of var into Int → Int → F Int uses the first argument as a
boolean flag to indicate whether reading or writing will take place. The term translation ensures
that, during reading, the second parameter will be ignored. For writing, the translated term will
always return 0. If the first argument is different from 0 or 1, the translated term will diverge.

That the translations turn out fully abstract is not completely surprising: there are several similar
results in the literature, though none of them applies to the framework we are considering, e.g.
the results from [21] are phrased for higher-order references and observing output instead of ter-
mination. Our fully abstract model LCBPV plays a crucial role in establishing the full abstraction
of our translations.

Theorem 66. Let ≲IA
ter , ≲

RML
ter be the notions of contextual approximation in IA and RML re-

spectively. For IA terms Γ ⊢ M1 ≲IA
ter M2 iff ΓIA ⊢c M1

IA ≲CBPV
ter M2

IA, and for RML terms
Γ ⊢M1 ≲RML

ter M2 iff ΓRML ⊢c M1
RML ≲CBPV

ter M2
RML.

The above result means that Theorem 64 subsumes existing decidability results for IA and
RML from [10, 12], as the translations of third-order IA types [10] and O-strict RML types [12]
belong to the PTR fragment. Consequently, the present results can be seen as an operational
explanation of the earlier results for CBN and CBV.

28

8 Conclusion

We demonstrated an approach to proving decidability results for contextual equivalence by deriving
decidable automata models from labelled transitions systems through a series of relatively easy
optimisations. The configurations of these automata retain operational character, which makes
them suitable for specification of further program analysis tasks. Since operational game models
are in general easier to construct and understand, we believe the approach is likely to turn out
fruitful when it comes to analyzing more complicated frameworks in the future.

References

[1] H. Nickau, “Hereditarily Sequential Functionals,” in Proceedings of LFCS, ser. LNCS, vol.
813. Springer, 1994, pp. 253–264.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full Abstraction for PCF,” Inf. Comput.,
vol. 163, no. 2, pp. 409–470, 2000.

[3] J. M. E. Hyland and C. L. Ong, “On Full Abstraction for PCF: I, II, and III,” Inf. Comput.,
vol. 163, no. 2, pp. 285–408, 2000.

[4] J. Laird, “A Fully Abstract Trace Semantics for General References,” in Proceedings of
ICALP, ser. LNCS, vol. 4596. Springer, 2007, pp. 667–679.

[5] G. Jaber, “Operational Nominal Game Semantics,” in Proceedings of FoSSaCS, ser. LNCS,
vol. 9034. Springer, 2015, pp. 264–278.

[6] S. Abramsky and G. McCusker, “Call-by-Value Games,” in Proceedings of CSL, ser. LNCS,
vol. 1414. Springer, 1997, pp. 1–17.

[7] ——, “Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol
with active expressions,” in Algol-like languages, P. W. O’Hearn and R. D. Tennent, Eds.
Birkhaüser, 1997, pp. 297–329.

[8] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong, “Applying Game Semantics to
Compositional Software Modelling and Verification,” in Proceedings of TACAS, ser. LNCS,
vol. 2988. Springer, 2004, pp. 421–435.

[9] D. R. Ghica and G. McCusker, “The regular language semantics of second-order Idealized
Algol,” Theor. Comput. Sci., vol. 309, pp. 469–502, 2003.

[10] A. S. Murawski and I. Walukiewicz, “Third-order Idealized Algol with iteration is decidable,”
Theor. Comput. Sci., vol. 390, no. 2-3, pp. 214–229, Jan. 2008.

[11] A. S. Murawski, “Functions with local state: Regularity and Undecidability,” Theor. Comput.
Sci., vol. 338, no. 1-3, pp. 315–349, 2005.

[12] D. Hopkins, A. S. Murawski, and C.-H. L. Ong, “A Fragment of ML Decidable by Visibly
Pushdown Automata,” in Proceedings of ICALP, ser. LNCS, vol. 6756. Springer, 2011, pp.
149–161.

[13] S. B. Lassen and P. B. Levy, “Typed Normal Form Bisimulation,” in Proceedings of CSL, ser.
LNCS, vol. 4646. Springer, 2007, pp. 283–297.

[14] P. B. Levy, “Call-by-push-value: Decomposing call-by-value and call-by-name,” High. Order
Symb. Comput., vol. 19, no. 4, pp. 377–414, 2006.

[15] G. Jaber, “SyTeCi: automating contextual equivalence for higher-order programs with refer-
ences,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp. 59:1–59:28, 2019.

29

[16] V. Koutavas, Y. Y. Lin, and N. Tzevelekos, “From Bounded Checking to Verification of
Equivalence via Symbolic Up-to Techniques,” in Proceedings of TACAS, ser. LNCS, vol.
13244. Springer, 2022, pp. 178–195.

[17] G. Jaber and A. S. Murawski, “Compositional relational reasoning via operational game
semantics,” in Proceedings of LICS. IEEE, 2021, pp. 1–13.

[18] A. M. Pitts and I. D. B. Stark, “Operational Reasoning for Functions with Local State,”
in Higher-Order Operational Techniques in Semantics, A. D. Gordon and A. M. Pitts, Eds.
CUP, 1998, pp. 227–273.

[19] D. Dreyer, G. Neis, and L. Birkedal, “The impact of higher-order state and control effects on
local relational reasoning,” J. Funct. Program., vol. 22, no. 4-5, pp. 477–528, 2012.

[20] D. Biernacki, S. Lenglet, and P. Polesiuk, “A Complete Normal-Form Bisimilarity for State,”
in Proceedings of FoSSaCS, ser. LNCS, vol. 11425. Springer, 2019, pp. 98–114.

[21] P. B. Levy, Call-By-Push-Value. A Functional/Imperative Synthesis, ser. Semantics Struc-
tures in Computation. Springer, 2004, vol. 2.

[22] J. C. Reynolds, “The Essence of Algol,” in Algol-like languages, P. W. O’Hearn and R. D.
Tennent, Eds. Birkhaüser, 1997, pp. 67–88.

[23] C. Talcott, “Reasoning about Programs With Effects,” Electron. Notes Theor. Comput. Sci.,
vol. 14, pp. 301–314, 1998.

[24] G. Jaber and A. S. Murawski, “Complete trace models of state and control,” in Proceedings
of ESOP, ser. LNCS, vol. 12648. Springer, 2021, pp. 348–374.

[25] S. Abramsky, K. Honda, and G. McCusker, “A Fully Abstract Game Semantics for General
References,” in Proceedings of LICS. IEEE, 1998, pp. 334–344.

[26] J. Laird, “Full Abstraction for Functional Languages with Control,” in Proceedings of LICS.
IEEE, 1997, pp. 58–67.

[27] R. Alur and P. Madhusudan, “Visibly Pushdown Languages,” in Proceedings of STOC. ACM,
2004, pp. 202–211.

[28] D. Hopkins, “Game Semantics Based Equivalence Checking of Higher-Order Programs,”
Ph.D. dissertation, Oxford University, UK, 2016.

[29] P. B. Levy, “Call-by-push-value,” Ph.D. dissertation, Queen Mary University of London,
UK, 2001. [Online]. Available: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233

30

A CIU lemma

A.1 Proof of CIU lemma

To prove this result, we will show that ≲CBPV(ciu)
ter is a precongruence (meaning that the relation

respects the inductive construction of terms). We will prove a couple of helper lemmata to do
this. The first handles the case of a computation appearing in a value context.

Lemma 67. Suppose Γ ⊢c M1 ≲
CBPV(ciu)
ter M2. Let VC be a value context s.t. Γ′ ⊢v VC [M1] :

VC [M2]. Define

CV ≜ force • | return • | let x be • .M | M • | ! • | • := V

Then we have (where types match) Γ ⊢c CV [VC [M1]] ≲
CBPV(ciu)
ter CV [VC [M2]]

Proof. Take K, γ, h such that (K[CV [VC [M1]]{γ}], h) ⇓ter . Write Mγ
i for M1{γ}. We need to

show (K[CV [VC [M2]]{γ}], h) ⇓ter .
We shall prove the more general result that for any M,V ′

C , h
′, we have for fresh z that

(M{V ′
C [M

γ
1]/z}, h′) ⇓ter implies (M{V ′

C [M
γ
2]/z}, h′) ⇓ter . We get the desired result by setting

M = K[CV [z]].
We use induction on the number of steps k in (M{V ′

C [M
γ
1]/z}, h′) ⇓ter .

• If k = 0 thenM = return z, in which caseM{V ′
C [M

γ
2]/z} is terminal, so (M{V ′

C [M
γ
2]/z}, h′) ⇓ter .

• If k > 0, we have the following case:

– (M = K ′[N] and (K ′[N], h′) → (K ′[N ′], h′′))

Then (K ′[N ′]{V ′
C [M

γ
1]/z}, h′) ⇓ter in (k−1) steps. So by IH (K ′[N ′]{V ′

C [M
γ
2]/z}, h′) ⇓ter

in (k − 1) steps, and as (M{V ′
C [M

γ
2]/z}, h′) → K ′[N ′]{V ′

C [M
γ
2]/z}, h′) we are done.

– (M = K ′[force z]) Then V ′
C = thunk •.

We have that (K ′[Mγ
1]{V ′

C [M
γ
1]/z}, h′) ⇓ter in (k−1) steps. By the IH (K ′[Mγ

1]{V ′
C [M

γ
2]/z}, h′) ⇓ter .

BecauseM1 ≲
CBPV(ciu)
ter M2, this implies (K ′[Mγ

2]{V ′
C [M

γ
2]/z}, h′) ⇓ter , and as (M{V ′

C [M
γ
2]/z}, h′) →

(K ′[Mγ
2]{V ′

C [M
γ
2]/z}, h′) we are done.

– (M = K ′[!z]) Then V ′
C = MkVar thunk • V .

We have that (K ′[force thunk Mγ
1]{V ′

C [M
γ
1]/z}, h′) ⇓ter in (k − 1) steps. By the IH

(K ′[force thunk Mγ
1]{V ′

C [M
γ
2]/z}, h′) ⇓ter . Because M1 ≲

CBPV(ciu)
ter M2, this implies

(K ′[force thunk Mγ
2]{V ′

C [M
γ
2]/z}, h′) ⇓ter , and as (M{V ′

C [M
γ
2]/z}, h′) →

(K ′[force thunk Mγ
2]{V ′

C [M
γ
2]/z}, h′) we are done.

– (M = K ′[z := V ′]) Then V ′
C = MkVar V thunk •.

We have that (K ′[(force thunk Mγ
1)V

′]{V ′
C [M

γ
1]/z}, h′) ⇓ter in (k − 1) steps. By the

IH (K ′[(force thunk Mγ
1)V

′]{V ′
C [M

γ
2]/z}, h′) ⇓ter . Because M1 ≲

CBPV(ciu)
ter M2, this

implies (K ′[(force thunk Mγ
2)V

′]{V ′
C [M

γ
2]/z}, h′) ⇓ter , and as (M{V ′

C [M
γ
2]/z}, h′) →

(K ′[(force thunk Mγ
2)V

′]{V ′
C [M

γ
2]/z}, h′) we are done.

Lemma 68 (while CIU). Suppose Γ ⊢c M1 ≲
CBPV(ciu)
ter M2. Then Γ ⊢c whileM1 doM ≲

CBPV(ciu)
ter

whileM2 doM and Γ ⊢c whileM doM1 ≲
CBPV(ciu)
ter whileM doM2.

Proof. We will show the first case only, as the other is analogous. Let the number of iterations of a
loop be the number of times we reach a configuration of the form (K ′[(whileM1 doM){γ′}], h′) dur-
ing reduction. We prove by induction on k that for any γ,K, h if (K[(whileM1 doM){γ}], h) ⇓ter

in k iterations, then (K[(whileM2 doM){γ}], h) ⇓ter .

31

• k = 1 The base case occurs when (M1{γ}, h) →∗ (return 0̂, h′). This means

(K[(whileM1 doM){γ}], h) → (K[(M1 to x.case x of return (), (M to y.whileM1 doM)i>0){γ}], h)
→∗ (K[(return 0̂ to x.case x of return (), (M to y.whileM1 doM)i>0){γ}], h′)
→ (K[(case 0̂ of return (), (M to y.whileM1 doM)i>0){γ}], h′)
→ (K[return ()], h′)

So (K[return ()], h′) ⇓ter . TakingK
′ = K[• to x.(case x of return (), (M to y.whileM2 doM)i>0){γ}],

by following the above reduction, we have (K ′[M1{γ}], h) ⇓ter , and so as Γ ⊢c M1 ≲
CBPV(ciu)
ter

M2, we have (K
′[M2{γ}], h). As (K[(whileM2 doM){γ}], h) → (K ′[M2{γ}], h) we are done.

• k > 1 As we are not on the last iteration, (M1{γ}, h) →∗ (return n̂, h′), with n > 0. This
means

(K[(whileM1 doM){γ}], h) → (K[(M1 to x.case x of return (), (M to y.whileM1 doM)i>0){γ}], h)
→∗ (K[(return n̂ to x.case x of return (), (M to y.whileM1 doM)i>0){γ}], h′′)
→ (K[(case n̂ of return (), (M to y.whileM1 doM)i>0){γ}], h′′)
→ (K[(M to y.whileM1 doM){γ}], h′′)
→∗ (K[(whileM1 doM){γ}], h′)

Thus, (K[(whileM1 doM){γ}], h′) ⇓ter in k
′ < k iterations, so by the I.H., (K[(whileM2 doM){γ}], h′) ⇓ter .

Taking K ′ = K[• to x.(case x of return (),
(M to y.whileM2 doM)i>0){γ}], by following the above reduction, we have (K ′[M1{γ}], h) →∗

(K[(whileM2 doM){γ}], h′), and so (K ′[M1{γ}], h) ⇓ter . Thus as Γ ⊢c M1 ≲
CBPV(ciu)
ter M2,

we have (K ′[M2{γ}], h) ⇓ter , and as (K[(whileM2 doM){γ}], h) → (K ′[M2{γ}], h) we are
done.

In one step

Lemma 69. Suppose Γ ⊢c M1 ≲
CBPV(ciu)
ter M2. Then, as long as the types work, we have:

• Γ ⊢c M1 to x.M ≲CBPV(ciu)
ter M2 to x.M , Γ ⊢c M1V ≲

CBPV(ciu)
ter M2V

• Γ ⊢c λx.M1 ≲
CBPV(ciu)
ter λx.M2,

Γ ⊢c case V of (M i)i<j ,M1, (M
i)j<i ≲

CBPV(ciu)
ter case V of (M i)i<j ,M2, (M

i)j<i,

Γ ⊢c let x be V.M1 ≲
CBPV(ciu)
ter let x be V.M2,

Γ ⊢c M to x.M1 ≲
CBPV(ciu)
ter M to x.M2.

Proof. We handle the classes separately, as the proofs for the cases within each class are similar.

• These cases are trivial, as these constructs are those used in evaluation contexts.

• We will show the first case only, as the others follow analogously. Let γ,K, h be s.t.
(K[(λx.M1){γ}], h) ⇓ter . Observe that (λx.Mi){γ} = λx.(Mi{γ}). Due to the types, we
must have K = K ′[•V]. Thus, we have (K ′[M1{γ · [x 7→ V]}], h) ⇓ter , and so as Γ ⊢c

M1 ≲
CBPV(ciu)
ter M2, we have (K ′[M2{γ · [x 7→ V]}], h) ⇓ter . Thus (K[(λx.M2){γ}], h) ⇓ter .

Proof of Lemma 3. The left-to-right implication follows directly from the fact that testing with
γ,K, h is a special case of testing with an arbitrary context. The right-to-left direction fol-

lows from the fact that if Γ ⊢c M1 ≲
CBPV(ciu)
ter M2 and Γ′ ⊢c C[M1], C[M2] : Fσ, then Γ′ ⊢c

C[M1] ≲
CBPV(ciu)
ter C[M2]. This result can be proved using structural induction on contexts, using

the above three lemmata.

32

A.2 Proof of Lemma 4

Proof of Lemma 4. The left-to-right implication is trivial. For the right-to-left implication, we

can use Lemma 3, so we need only show that Γ ⊢c M1 ≲
CBPV(ciu)
ter M2. Let h,K, γ be s.t.

(K[M1{γ}], h) ⇓ter . Now, observe thatK = K ′[•V1 · · · Vk]. Let C = K ′[let x1 be V1. · · · let xk be Vk.•].
Observe that for anyM , (K[M{γ}], h) ⇓ter iff (C[M], h) ⇓ter . From the fact that Γ, (x1, σ1), · · · , (xk, σk) ⊢c

M1 x1 · · ·xk ≲CBPV
ter M2 x1 · · ·xk, it follows (K[M2{γ}], h) ⇓ter , and so Γ ⊢c M1 ≲

CBPV(ciu)
ter

M2.

A.3 CBPV equational theory

It will be useful to be aware of the equational theory of CBPV, and its relation to contextual
equivalence, to facilitate some of our proofs regarding canonical forms and translations. Our
equational theory is that presented by Levy [14], specialised to the constructions we include, and
extended with the appropriate rules for state. We present three relation ⇝β , ⇝η and ⇝ς below,
implicitly requiring the two sides to have the same type when typed under appropriate Σ; Γ.

β-rules
(λx.M)V ⇝β M{V/x}

let x be V.M ⇝β M{V/x}
return V to x.M ⇝β M{V/x}
force thunk M ⇝β M

case n̂ of (Mi)i∈I ⇝β Mn

!MkVar V1 V2 ⇝β force V1
MkVar V1 V2 := V ⇝β (force V1)V

whileM doN ⇝β M to x.case x of return (), (N to y.whileM doN)i
x, y are fresh
η-rules

M to x.return x ⇝η M
M to x.return () ⇝η M where x : Unit

λx.M x ⇝η M x not free in M
thunk force V ⇝η V

MkVar (thunk !V) (thunk λy.V := y) ⇝η V y not free in V
ς-rules

(N1 to x.N2) to y.N3 ⇝ς N1 to x.(N2 to y.N3) x not free in N3

M to x.λy.N ⇝ς λy.(M to x.N) y not free in M
(case V of (Mi)i) to x.M ⇝ς case V of (Mi to x.M)i

case V of (λx.Mi)i ⇝ς λx.case V of (Mi)i x not free in V
Ω to x.M ⇝ς Ω

We can obtain notions of equality from ⇝β , ⇝η, and ⇝ς , namely =β (β-equality), =η (η-
equality), and =ς (sequence or ς-equality) by making each a symmetric, transitive, congruence
(closing under the constructions of terms). We can also obtain the equality from their union, =βης
(βης-equality).

The key property we are interested in is that βης-equality implies contextual equivalence.

Lemma 70. If Γ ⊢c M1,M2 : τ are CBPV terms and M1 =βης M2, then Γ ⊢c M1
∼=CBPV

ter M2.

Proof. For this, it suffice to check that ⇝β , ⇝η, and ⇝ς imply contextual equivalence, as the
construction for a congruence and equality relation preserve this. More specifically, we will do
this when ⇝β , ⇝η, and ⇝ς relate computations. When we have rules relating values, we have
to show if V1 ⇝ V2, that Γ ⊢c CV [V1] ∼=CBPV

ter CV [V2] for any CV defined as in Lemma 67. We
will do this by appealing to the CIU Lemma (3), and showing that M1 ⇝β M2 (or M1 ⇝η M2

or M1 ⇝ς M2) imply Γ ⊢c M1
∼=CBPV(ciu)

ter M2, as this reduces the contexts we must consider. As

33

these are similar in each case, we will show a few enlightening cases only. Let Σ, h,K, γ be s.t.
h : Σ, Σ ⊢k K : τ =⇒ Fσ, and Σ ⊢ γ : Γ.

• Now, suppose M1 ⇝β M2 by the first rule, so M1 = (λx.M)V and M2 =M{V/x}, where x
is not free in γ. Then it is the case that

(K[M1{γ}], h) = (K[((λx.M)V){γ}], h) = (K[(λx.M{γ})V {γ}], h)
→ (K[(M{γ}){V {γ}/x}], h) = (K[(M{V/x}){γ}], h) = (K[M2{γ}], h)

Thus, we obtain that (K[M1{γ}], h) ⇓ter iff (K[M2{γ}], h) ⇓ter . Thus, Γ ⊢c M1
∼=CBPV(ciu)

ter

M2.

• Instead suppose that M1 ⇝η M2 by the final η-rule. Then it must be the case that M1 =
CV [MkVar (thunk !V) (thunk λy.V := y)] andM2 = CV [V]. Let V ′ = MkVar (thunk !V) (thunk λy.V :=
y). We will proceed to show that for anyM ,h′, (M{V ′{γ}/z}, h′) ⇓ter iff (M{V {γ}/z}, h′) ⇓ter ,
from which our result follows by takingM = CV [z]. We first show that (M{V ′{γ}/z}, h′) ⇓ter

implies M{V/z}{γ} by induction on the number of steps k in (M{V ′{//γ}z}, h′) ⇓ter .

If k = 0, then M = return z, so both (M{V ′{γ}/z}, h′) and (M{V {γ}/z}, h′) are terminal.
If k > 0 we proceed by case.

– M = K ′[N] and (K ′[N], h′) → (K ′[N ′], h′). Thus (K ′[N ′]{V ′{γ}/z}, h′) ⇓ter in (k−1)
steps, so by the I.H. (K ′[N ′]{V {γ}/z}, h′) ⇓ter in (k−1) steps, so (M{V {γ}/z}, h′) ⇓ter .

– M = K ′[!z]. Then

(M{V ′{γ}/z}, h′) → (K ′[!V ′{γ}]{V ′{γ}/z}, h′)
= (K ′[!MkVar (thunk !V {γ}) (thunk λy.V {γ} := y)]{V ′{γ}/z}, h′)
→ (K ′[force thunk !V {γ}]{V ′{γ}/z}, h′)
→ (K ′[!V {γ}]{V ′{γ}/z}, h′)

Now, by the I.H, we have (K ′[!V {γ}]{V {γ}/z}, h′) ⇓ter , so (M{V {γ}/z}, h′) ⇓ter .

– M = K ′[z :=W] Follows same pattern as above.

This proves one direction. The other is by a similar induction on the number of steps in
(M{V {//γ}z}, h′) ⇓ter .

• Instead suppose the M1 ⇝ς M2 by the first ς-rule. Then M1 = (N1 to x.N2) to y.N3

and M2 = N1 to x.(N2 to y.N3) where x is not free in γ. Now, if (N1{γ}, h) ̸⇓ter then
clearly (K[M1{γ}], h) ̸⇓ter and (K[M2{γ}], h) ̸⇓ter . In the case (N1{γ}, h) ⇓ter , assume
that (N1{γ}, h) →∗ (return V1, h

′). Then

(K[M1{γ}], h) = (K[(N1{γ} to x.N2{γ}) to y.(N3{γ})], h)
→∗ (K[(return V1{γ} to x.N2{γ}) to y.(N3{γ})], h′)
→ (K[N2{γ}{V1{γ}/x} to y.(N3{γ})], h′)
= (K[N2{V1/x}{γ} to y.(N3{γ})], h′)

and
(K[M2{γ}], h) = (K[N1{γ} to x.(N2{γ} to y.(N3{γ}))], h)

→∗ (K[return V1{γ} to x.(N2{γ} to y.(N3{γ}))], h′)
→ (K[N2{γ}{V1{γ}/x} to y.(N3{γ}{V1{γ}/x})], h′)
= (K[N2{γ}{V1{γ}/x} to y.(N3{γ})], h′)
= (K[N2{V1/x}{γ} to y.(N3{γ})], h′)

Thus, we obtain that (K[M1{γ}], h) ⇓ter iff (K[M2{γ}], h) ⇓ter . Thus, Γ ⊢c M1
∼=CBPV(ciu)

ter

M2.

34

From this it follows that β- η- and ς-equality imply contextual equivalence.

Lemma 71. If Γ ⊢c M1,M2 : τ are CBPV terms and M1 =β M2, then Γ ⊢c M1
∼=CBPV

ter M2.

Lemma 72. If Γ ⊢c M1,M2 : τ are CBPV terms and M1 =η M2, then Γ ⊢c M1
∼=CBPV

ter M2.

Lemma 73. If Γ ⊢c M1,M2 : τ are CBPV terms and M1 =ς M2, then Γ ⊢c M1
∼=CBPV

ter M2.

B Correctness and Soundness

B.1 Proof of Correctness (Lemma 20)

To prove this we will consider the ‘composite interaction’ of a ‘compatible’ term configuration and
context configuration.

Definition 74. A composite configuration D is (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO)
with M a term, c a continuation name, γP , γO two environments, ϕ a set of names, hP , hO two
heaps HP , HO two histories, Fn a set of available thunk names and SP , SO two stacks (with
element of the form (c, (K, c′))).

We write ◦ for the final continuation name, used by Opponent to answer the resulting value of
the whole interaction.

Definition 75. A valid composite configuration D is (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO)
with:

• dom(γP) ∩ dom(γO) = ∅ and ◦ /∈ dom(γP) ∪ dom(γO);

• dom(γO) = dom(HP) ∩ TNames and dom(γP) = dom(HO) ∩ TNames.

• ◦ ∈ dom(HO)

• If (c, (K, c′)) in SP then c ∈ dom(HO) ∩ ϕ and if (c, (K, c′)) in SO then c ∈ dom(HP) ∩ ϕ

• codom(HP) = P(dom(γP)) and codom(HO) = P(dom(γO))

• dom(γP) ∪ dom(γO) = ϕ;

• γP · γO is well-typed;

• c ∈ ϕ ∪ {◦} with c : σ and ⊢c M : Fσ;

• For c ̸= ◦ either SP = (c, (K, c′)) : S′
P or SO = (c, (K, c′)) : S′

O

• dom(hP) ∩ dom(hO) = ∅;

• No continuation name appears twice in SP or SO

• SP RS SO where RS is the least relation s.t.:

⊥ RS ⊥
⊥ RS (c, (K, ◦)) : ⊥

(c, (K, c′)) : S RS (c′, (K ′, c′′))S′

if S RS (c′, (K ′, c′′)) : S′

(c′, (K ′, c′′)) : S RS (c, (K, c′)) : S′

if (c′, (K ′, c′′)) : S RS S
′

35

(Pτ) (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO)
τ−−→ (⟨N, c, γP , γO, ϕ, h′P , hO, HP , HO,Fn⟩, SP , SO)

when (M,hP) → (N,h′P), and SO = (c, (K, c′)) : S′
O

(PA) (⟨return V, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , (c, (K, c′)) : SO)
c̄(A)−−−→

(⟨K[return A], c′, γP · γ′, γO, ϕ ⊎ ν(A), hP , hO, HP , HO · [ν(A) 7→ Fn], HP (c) ⊎ ν(A)⟩, SP , SO)
when c : σ, (A, γ′) ∈ AValσ(V)

(PQ) ⟨K[(force f)
−→
V], c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , (c, (K, c′)) : SO)

f̄(
−→
A,c′)−−−−−→

(⟨force U
−→
A, c′′, γP · γ′, γO, ϕ ⊎ ϕ′, hP , hO, HP , HO · [ϕ′ 7→ Fn], HP (f) ⊎ ν(

−→
A))⟩, (c′′, (K, c)) : SP , (c, (K, c′)) : SO)

when
−→
V is maximal, f : τ , f ∈ Fn, U = γO(f), (

−→
A, γ′) ∈ AVal(

−→
V), σ = RType(τ), c′′ : σ and ϕ′ = ν(

−→
A) ⊎ {c′}

(Oτ) (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO)
τ−−→

(⟨N, c, γP , γO, ϕ, hP , h′O, HP , HO,Fn⟩, SP , SO)
when (M,hO) → (N,h′O), and SP = (c, (K, c′)) : S′

P or c = ◦
(OA) (⟨return V, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, (c, (K, c′)) : SP , SO)

c(A)−−−→
(⟨K[return A], c′, γP , γO · γ′, ϕ ⊎ ν(A), hP , hO, HP · [ν(A) 7→ Fn], HO, HO(c) ⊎ ν(A)⟩, SP , SO)

when c : σ, (A, γ′) ∈ AValσ(V)

(OQ) ⟨K[(force f)
−→
V], c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, (c, (K, c′)) : SP , SO)

f(
−→
A,c′)−−−−−→

(⟨force U
−→
A, c′′, γP , γO · γ′, ϕ ⊎ ϕ′, hP , hO, HP · [ϕ′ 7→ Fn], HO, HO(f) ⊎ ν(

−→
A))⟩, (c, (K, c′)) : SP , (c′′, (K, c)) : SO)

when
−→
V is maximal, f : τ , f ∈ Fn, U = γP (f), (

−→
A, γ′) ∈ AVal(

−→
V), σ = RType(τ), c′′ : σ and ϕ′ = ν(

−→
A) ⊎ {c′}

Figure 14: The composite LCBPV transition rules

36

The composite LTS, defined on such composite configurations, is given in Figure 14. Up to
choice of name, it is deterministic.

Definition 76. Two valid configurations CP ,CO are said to be compatible if one of the two is
active and the other one is passive, and, without loss of generality, supposing that CP is the active
configuration (⟨M, c, γP , ϕP , hP , HP ⟩, SP) andCO the passive configuration (⟨γO, ϕO, hO, HO,Fn⟩, SO),
then ϕO = ϕP = ϕ and the composite configuration (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO),
written CP ∧∧ CO, is valid.

The first half of the proof builds towards Lemma 83, which relates the behavior of the composite
LTS on CP ∧∧ CO to the traces generated by CP and CO independently, in the manner needed
by Lemma 20. Intuitively, we wish to consider cases where CP corresponds to a term, and CO a
context.

Lemma 77. Taking D a valid composite configuration and D′ a composite configuration s.t.
D

a
=⇒ D′, then D′ is valid.

Proof. Simple case analysis and induction on the number of τ transitions.

Lemma 78. Taking CP ,CO two compatible configurations, for all composite configuration D′, if
(CP ∧∧ CO)

a
=⇒ C′ then there exists two compatible configurations C′

P ,C
′
O s.t.:

• D′ = C′
P ∧∧ C′

O;

• CP
a
=⇒ C′

P and CO
a⊥

==⇒ C′
O.

Proof. W.L.O.G, we suppose thatCP is active andCO passive. So letCP = (⟨M, c, γP , ϕ, hP , HP ⟩, SP)
and CO = (⟨γO, ϕ, hO, HO,Fn⟩, SO). We then proceed by cases.

• If a is PA c̄(A), then there exists V, h′P s.t.

(CP ∧∧ CO)
τ−→ (⟨return V, c, γP , γO, ϕ, h′P , hO, HP , HO,Fn⟩, SP , (c, (K, c′)) : SO)

s.t. (M,hP) → (return V, h′P). We have c : σ and (A, γ′) ∈ AValσ(V), giving

D′ = (⟨K[return A], c′, γP · γ′, γO, ϕ ⊎ ν(A), h′P , hO, HP , HO · [ν(A) 7→ Fn], HP (c) ⊎ ν(A)⟩, SP , S′
O)

Let C′
P = (⟨γP · γ′, ϕ⊎ ν(A), h′P , HP , HP (c)⊎ ν(A)⟩, SP) and C′

O = (⟨K[return A], c′, γ, ϕ⊎
ν(A), hO, HO · [ν(A) 7→ Fn]⟩, S′

O). It is easy to verify that:

– C′
P ,C

′
O are two compatible configurations;

– D′ = C′
P ∧∧ C′

O;

– CP
τ−→ (⟨return V, c, γP , ϕ, h′p, HP ⟩, SP)

c̄(A)−−−→ C′
P ;

– CO
c(A)−−−→ C′

O.

• If a is a PQ f̄(
−→
A, c′), then there exists K,h′P and maximal

−→
V , s.t.

(CP ∧∧ CO)
τ−→ (⟨K[(force f)

−→
V], c, γP , γO, ϕ, h

′
P , hO, HP , HO,Fn⟩, SP , SO)

With (M,hP) → (K[(force f)
−→
V], h′P). Then f : τ , f ∈ Fn, U = γO(f), (

−→
A, γ′) ∈ AVal(

−→
V), σ =

RType(τ), c′ : σ and ϕ′ = ν(
−→
A) ⊎ {c′} so that

D′ = (⟨force U
−→
A, c′, γP · γ′, γO, ϕ ⊎ ϕ′, h′P , hO, HP , HO · [ϕ′ 7→ Fn], HP (f) ⊎ ν(

−→
A))⟩, (c′, (K, c)) : SP , SO)

LetC′
P = (⟨γP ·γ′, ϕ⊎ϕ′, h′P , HP , HP (c)⊎ν(

−→
A)⟩, (c′, (K, c)) : SP) andC′

O = (⟨K[force U
−→
A], c′, γ, ϕ⊎

ϕ′, hO, HO · [ϕ′ 7→ Fn]⟩, SO). It is easy to verify that:

37

– C′
P ,C

′
O are two compatible configurations;

– D′ = C′
P ∧∧ C′

O;

– CP
τ−→ (⟨K[(force f)

−→
V], c, γP , ϕ, h

′
p, HP ⟩, SP)

f̄(
−→
A,c′)−−−−−→ C′

P ;

– CO
f(

−→
A,c′)−−−−−→ C′

O.

Lemma 79. Let CP ,CO be compatible configurations. If

• CP
a
=⇒ C′

P ;

• CO
a⊥

==⇒ C′
O;

then C′
P ,C

′
O are two compatible configurations and (CP ∧∧ CO)

a
=⇒ (C′

P ∧∧ C′
O).

Proof. W.L.O.G, we suppose thatCP is active andCO passive. So letCP = (⟨M, c, γP , ϕ, hP , HP ⟩, SP)
and CO = (⟨γO, ϕ, hO, HO,Fn⟩, SO). We then proceed by cases.

• If a is a PA c̄(A), then there exists V, h′P s.t. CP
τ−→ (⟨return V, c, γP , ϕ, h

′
P , HP ⟩, SP) so

that (M,hP) → (V, h′P). Then:

– there exists σ s.t. c : σ, and γ′, s.t. (A, γ′) ∈ AValσ(V) so that C′
P = (⟨γP · γ′, ϕ ⊎

ν(A), h′P , HP , HP (c) ⊎ ν(A)⟩, SP);
– SO = (c, (K, c′)) : S′

O and C′
O = (⟨K[return A], c′, γO, ϕ ⊎ ν(A), hO, HO · [ν(A) 7→

Fn]⟩, S′
O).

Then it is easy to verify C′
P ,C

′
O are compatible, and:

(CP ∧∧ CO)
τ−→ (⟨return V, c, γP , γO, ϕ, h′P , hO, HP , HO,Fn⟩, SP , SO)
c̄(A)−−−→ (⟨K[return A], c′, γP · γ′, γO, ϕ ⊎ ν(A), h′P , hO, HP ,

HO · [ν(A) 7→ Fn], HP (c) ⊎ ν(A)⟩, SP , S′
O)

= C′
P ∧∧ C′

O

• If a is a PQ f̄(
−→
A, c′), there existsK,h′P and maximal

−→
V s.t. CP

τ−→ (⟨K[(force f)
−→
V], c, γP , ϕ, h

′
P , HP ⟩, SP)

so that (M,hP) → (K[(force f)
−→
V], h′P). Then:

– there exist τ, σ, γ′ s.t. f : τ , (
−→
A, γ′) ∈ AVal(

−→
V), σ = RType(τ) c′ : σ and let ϕ′ =

ν(
−→
A) ⊎ {c′} so that C′

P = ⟨γP · γ′, ϕ ⊎ ϕ′, h′P , HP , HP (f) ⊎ ν(
−→
A ⟩, (c′, (K, c)) : SP ;

– f ∈ Fn,
−→
A ∈ ASeq(τ) and there exists U s.t. γO(f) = U andC′

O = (⟨(force U)
−→
A, c′, γO, ϕ⊎

ϕ′, hO, HO · [ϕ′ 7→ Fn]⟩, SO).

Then one easily checks that C′
P ,C

′
O are two compatible configurations, and:

(CP ∧∧ CO)
τ−→ (⟨(force f)

−→
V , c, γP , γO, ϕ, h

′
P , hO, HP , HO,Fn⟩, SP , SO)

f̄(A,c′)−−−−→ (⟨(force f)
−→
A, c′, γP · γ′, γO, ϕ ⊎ ϕ′, h′P , hO, HP , HO · [ϕ′ 7→ Fn],

HP (c) ⊎ ν(A)⟩, (c′, (K, c)) : SP , SO)
= C′

P ∧∧ C′
O

38

Definition 80. A composite configuration D terminates following a trace t, written D ⇓t
ter , when

there exists a final composite configuration Df = (⟨return V,
◦, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) s.t. D

t
=⇒ Df . We often omit the trace t and simply

write D ⇓ter .

Remark 81. Note that if we begin with a valid composite configuration, we have that SP , SO
will both be ⊥.

Definition 82. Taking CP ,CO two compatible configurations, write (CP |CO) ↓tter , when t ∈
Tr(CP) and t⊥ · ◦̄(A) ∈ Tr(CO) for some A.

Lemma 83. Taking CP ,CO two compatible configurations and t a trace, then (CP |CO) ↓tter iff
(CP ∧∧ CO) ⇓t

ter .

Proof. We first prove that if (CP |CO) ↓tter then (CP ∧∧ CO) ⇓t
ter by induction on the length of t:

• if t is empty, then ◦̄(A) ∈ Tr(CO), so there exists V, γO, ϕ, hO, HO, σ s.t. (A,−) ∈ AValσ′(V)

and CO
τ−→ (⟨return V, ◦, γO, ϕ, hO, HO⟩, SO) = C′

O. Since C′
O is an active configuration,

CP must be a passive configuration, (⟨γP , ϕ, hP , HP ,Fn⟩, SP). Then CP ∧∧ CO
τ−→ CP ∧∧

C′
O = (⟨return V, ◦, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO), so (CP ∧∧ CO) ⇓ϵter .

• if t = a · t′, then there exists two configurations C′
P ,C

′
O s.t.:

– CP
a
=⇒ C′

P ;

– CO
a⊥

==⇒ C′
O;

– (C′
P |C′

O) ↓t
′

ter .

From Lemma 79, we get that C′
P ,C

′
O are two compatible configurations and (CP ∧∧ CO)

a
=⇒

(C′
P ∧∧ C′

O). By the induction hypothesis, (C′
P ∧∧ C′

O) ⇓t′

ter , and so (CP ∧∧ CO) ⇓t
ter .

We now prove that if (CP ∧∧ CO) ⇓t
ter then (CP |CO) ↓tter , by induction on the length of t:

• if t is empty, then (CP ∧∧ CO)
τ−→ (⟨return V, ◦, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO).

So CO
τ−→ (⟨return V, ◦, γO, ϕ, hO, HO⟩, SO) and CP = (⟨γP , ϕ, hP , HP ,Fn⟩, SP). Thus

CO
◦̄(A)
===⇒ (⟨γ · γ′, ϕ ⊎ ν(A), h,H, ν(A)⟩, SO), where (A, γ′) ∈ AValσ′(V) so (CP |CO) ↓ϵter .

• if t = a · t′, then there exists D′ s.t. (CP ∧∧ CO)
a
=⇒ D′ and D′ ⇓t′

ter . By Lemma 78, there

exist two compatible configurations C′
P ,C

′
O s.t.:

– D′ = C′
P ∧∧ C′

O;

– CP
a
=⇒ C′

P ;

– CO
a⊥

==⇒ C′
O.

Thus we have (C′
P ∧∧ C′

O) ⇓t′

ter , so by the induction hypothesis (C′
P |C′

O) ↓t′ter and so
(CP |CO) ↓tter .

To complete the proof of Lemma 20, we will need to show that for any M,K, γ etc. we have

(C
ρA⃗i

,c

M ∧∧ Cγ⃗i,ch,K,γ) ⇓ter coincides with (K[M{γ}], h) ⇓ter which we shall do by constructing a
bisimulation. To do this, we will first need a way of constructing term and heap from a composite
configuration, for which we need a few auxiliary notions.

39

The first is a subtle modification to operational semantics. This is to account for the fact that
the decomposition of a value V into an abstract value A and substitution γ does not satisfy A{γ} =
V , due to the treatment of references. It has the effect of η-expanding occurrences of locations
passed a arguments between the term and the context. We handle this by considering terms which
never have an occurrence of MkVar thunk !ℓ thunk λx.ℓ := x, by allowing η-contractions whenever
such sub-terms form.

Definition 84.

• For a term M , we define η(M) to be the term obtained by replacing all sub-terms of the
form MkVar (thunk !ℓ) (thunk λx.ℓ := x) by ℓ, iteratively.

• We define the reduction relation →η by

(M,h) →η (η(M ′), h′) where (M,h) → (M ′, h′)

• We write (M,h) ⇓ηter if there exists N, h′ such that (M,h) →η (N,h′) and N is terminal.

We can then easily prove the following result relating termination under → to termination
under →η.

Lemma 85. For a CBPV term Σ;Γ ⊢c M : τ and h : Σ, then (M,h) ⇓ter iff (η(M), h) ⇓ηter .

We will now proceed to show a bisimulation result between reduction of composite configura-
tions, and →η. Next, we need a way to construct a continuation from the pair of stacks.

Definition 86. Taking two stacks SP and SO, with c, c
′ two continuation names, we define the

evaluation context Kc,c′ (if possible) by Kc,c′(SP , SO) where:

• Kc,c(SP , SO) ≜ •

• Kc,c′((c, (K, c
′′) : SP , SO) ≜ Kc′′,c′(SP , SO)[K]

• Kc,c′(SP , (c, (K, c
′′) : SO) ≜ Kc′′,c′(SP , SO)[K]

We write Kc for Kc,◦.

Definition 87. To an environment γ, we associate an idempotent substitution δ defined as the
relation:

• δ0 ≜ {(f, V) | f ∈ dom(γ) ∧ γ(f) = V }}

• δi+1 ≜ {(f, V {δi}) | (f, V) ∈ δi}} with V {δi} denoting substitution.

then there exists n ∈ N s.t. δn+1 = δn, and δ is then defined as δn.

The iterative construction is to give idempotency. The reason we give this construction is that
in an environment, the image of some thunk names will be a thunk containing other thunk names,
and so by doing this iteration, we fill in those names with closed thunks. This is possible because
there is no cycles between names. The reason we do this is to handle environments formed of
γP · γO, where names in γP are defined using names in γO and vice versa, corresponding to the
interleaving of questions between P and O.

With this in hand, we can now define a way to construct a term and heap from a composite
configuration, which will allow us to establish the desired bisimulation result.

Definition 88. One define the configuration transformation θ from valid composite configurations
to pair formed by a term and a heap, defined as

θ : (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) 7→ (η((Kc[M]){δ}), hP · hO)

with δ the idempotent substitution associated to γP · γO.

40

Notice how in the definition of θ, we see that HP , HO,Fn play no role. This is because they
are redundant in the composite LTS. These components enforce the visibility constraints on the
original LTS, and so a present in the composite one to simplify the proof of Lemma 83. We can
now show that they are functionally redundant by proving the following lemma.

Definition 89. A composite configuration D = (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) is
visibly valid if it is valid and also satisfies the properties

• ν(M) ⊆ Fn

• for f ∈ dom(γP), ν(γP (f)) ⊆ HO(γP (f))

• for f ∈ dom(γO), ν(γO(f)) ⊆ HP (γO(f))

• for (c, (K, c′)) ∈ SO, ν(K) ⊆ HP (c)

• for (c, (K, c′)) ∈ SP , ν(K) ⊆ HO(c)

Lemma 90. Given a visibly valid composite configuration D, then if D
a−→ D′, the D′ is a visibly

valid composite configuration.

Proof. The proof of this is by case analysis on a. We omit the O cases, as they are symmetric
with the P cases. Let D = (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO).

• D
τ−→ (⟨M ′, c, γP , γO, ϕ, h

′
P , hO, HP , HO,Fn⟩, SP , SO)

In this case, γP , γO, SP , SO, HP , and HO remain unchanged, and so the conditions upon
them hold. We need to check that ν(M ′) ⊆ Fn, but this follows from the fact that the rules
defining → do not introduce new names.

• D
c̄(A)−−−→ (⟨K[return A], c′, γP · γ′, γO, ϕ ⊎ ν(A), hP , hO, HP , HO · [ν(A) 7→ Fn], HP (c) ⊎

ν(A)⟩, SP , S′
O) where SO = (c, (K, c′)) : S′

O,M = return V and (A, γ′) ∈ AValσ(V).

γO, HP are unchanged, so we do not need to check. As SP is unchanged, S′
O smaller than

SO, and the mapping HO enlarged, we don’t need to check the condition on stacks. So we
are left to check that

– For f ∈ dom(γ′), we have ν(γ′(f)) ⊆ HO · [ν(A) 7→ Fn](f).

If f ∈ dom(γ′), then f ∈ ν(A) and γ′(f) occurs in V . Thus, as D is visibly valid,
ν(γ′(f)) ⊆ ν(return V) ⊆ Fn = HO · [ν(A) 7→ Fn](f).

– ν(K[return A]) ⊆ HP (c) ⊎ ν(A)
As D is visibly valid, ν(K) ⊆ HP (c), and as ν(K[return A]) = ν(K) ∪ ν(A) we are
done.

• D
f̄(

−→
A,c′)−−−−−→ (⟨force U

−→
A, c′, γP ·γ′, γO, ϕ⊎ϕ′, h′P , hO, HP , HO·[ϕ′ 7→ Fn], HP (f)⊎ν(

−→
A)⟩, (c′, (K, c)) :

SP , SO) where U = γO(f) (
−→
A, γ′) ∈ AVal(

−→
V), ϕ′ = ν(

−→
A) ⊎ {c′} and M = K[force f

−→
V].

γO, HP are unchanged, so we do not need to check. SO is unchanged and the mapping HO

is expanded, so we don’t need to check the condition on SO. So we are left to check that

– For f ∈ dom(γ′), we have ν(γ′(f)) ⊆ HO · [ϕ′ 7→ Fn](f).

If f ∈ dom(γ′), then f ∈ ν(
−→
A) ⊆ ϕ′ and γ′(f) occurs in

−→
V . Thus, as D is visibly valid,

ν(γ′(f)) ⊆ ν(
−→
V) ⊆ Fn = HO · [ϕ′ 7→ Fn](f).

– ν(K) ⊆ HO · [ϕ′ 7→ Fn](f)(c′)

As D is visibly valid, ν(K) ⊆ Fn, and as c′ ∈ ϕ′, we are done.

– ν(force U
−→
A) ⊆ HP (f) ⊎ ν(

−→
A)

As D is visibly valid, ν(U) ⊆ HP (f), and as ν(force U
−→
A) = ν(U)∪ ν(

−→
A) we are done.

41

Due to this lemma, we can ignore the condition that f ∈ Fn in question moves. Before proving
a bisimulation, we will need a few extra results to bring the behavior of the composite LTS closer
to reduction. The following lemma shows that, in essence, we can safely ignore situations in which
γ(f) = g, where we simply have a name mapped to another name, as these are artifacts of the
LTS, and not of the underlying reduction taking place on θ(D).

Lemma 91. Taking D = (⟨K[(force f)
−→
V], c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) a valid com-

posite configuration that is going to perform a question, with f ∈ dom(γ), where γ = γP · γO,
there exists a functional name g, an abstract value sequence

−→
A , a composite configuration D′ and

a trace t formed by questions s.t.:

• γ(g) has the form thunkM , (MkVarMr Mw).read, (MkVarMr Mw).write,ℓ.read, or ℓ.write;

• δ(f) = δ(g), writing δ for the idempotent substitution associated to γ (that is, alternate
substitutions from γP and γO make no difference);

• D
t−→ D′;

• D′ can be written as (⟨K ′[(force g)
−→
V ′], c′, γP · γ′P , γO · γ′O, ϕ ⊎ dom(γ′P) ⊎ dom(γ′O), hP , hO,

H ′
P , H

′
O,Fn

′⟩, S′
P , S

′
O);

• η(
−→
V ′{δ′}) = η(

−→
V), with δ′ the idempotent substitution associated to γ′P · γ′O;

• if c′ = c, then Kc′,c(S
′
P , S

′
O) = • and K ′ = K, otherwise Kc′,c(S

′
P , S

′
O) = K and K ′ = •

The next lemma shows that when we have continuations on the stacks which are empty, we
can safely ignore the interleaving of answer moves between P and O as these are again merely
artifacts of the LTS, and don’t correspond to any underlying reduction.

Lemma 92. Let D = (⟨return V, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) be a valid composite
configuration that is going to perform an answer. Suppose that there exists c′ s.t. Kc,c′ = •.
Then there exists a composite configuration D′ = (⟨return V ′, c′, γP · γ′P , γO · γ′O, ϕ ⊎ dom(γ′P) ⊎
dom(γ′O), hP , hO, H

′
P , H

′
O,Fn

′⟩, S′
P , S

′
O) and a trace t formed only by answers s.t. D

t−→ D′ and
η(V ′{δ′}) = η(V), with δ′ the idempotent substitution associated to γ′P · γ′O.

Lemma 93. Taking D,D′ two valid composite configuration and a an action (different of τ) s.t.

D
a−→ D′ then θ(D) = θ(D′).

Proof. Let D = (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) and D′ = (⟨M ′, c′,
γ′P , γ

′
O, ϕ

′, hP , hO, H
′
P , H

′
O,Fn

′⟩, S′
P , S

′
O). W.L.O.G assume D is P -active, so SO = (c, (K, c′)) :

S′′
O. Let δ be the idempotent substitution associated to γP · γO and δ′ be the idempotent substi-

tution associated to γ′P · γ′O.
We reason by case analysis over α:

• If α = c̄(A), so that M = return V . Then we have:

– c : σ;

– γ′O = γO, γ
′
P = γP · γA and ϕ′ = ϕ ⊎ dom(γA); with (A, γA) ∈ AValσ(V);

– S′
P = SP , S

′
O = S′′

O

– M ′ = K[return A].

We conclude using these and the fact that:

– Kc(TP , (c, (K, c
′)) : TO) = Kc′(TP , TO)[K];

– η(A{γA}) = η(V);

42

– if f ∈ dom(δ), δ′(f) = δ(f);

that (η(Kc(SP , SO)[return V])){δ} = (η(Kc′(SP , S
′
O)[K[return A]])){δ′}. So θ(D) = θ(D′).

• If α = f̄(
−→
A, c′), so that M = K[(force f)

−→
V] for some context K, value sequence

−→
V , and

thunk name f . Then we have:

– γO(f) = U ;

– γ′O = γO, γ
′
P = γP · γ−→

A
, with (

−→
A, γ−→

A
) ∈ AVal(

−→
V);

– S′
P = (c′, (K, c)) : SP , S

′
O = SO

– M ′ = (force U)
−→
A .

We conclude using these and the fact that:

– Kc′((c
′, (K, c)) : TP , TO) = Kc(TP , TO)[K];

– η(
−→
A{γ−→

A
}) = η(

−→
V);

– if f ∈ dom(δ), δ′(f) = δ(f);

that (Kc(SP , SO)[K[(force f)
−→
V]]){δ} = (Kc′(S

′
P , SO)[(force U)

−→
A){δ′}. So θ(D) = θ(D′).

We need a way to capture those transition that a composite configuration make simply to carry
out η-contraction.

Definition 94. Taking D = (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO),D′ two composite

configuration, we write D
η−→ D′ if one of the following hold:

• M =!MkVar (thunk !ℓ) (thunk λx.ℓ := x) and

D
τ−→ (⟨force thunk !ℓ, · · · ⟩, SP , SO)

τ−→ (⟨!ℓ, · · · ⟩, SP , SO)

• M = MkVar (thunk !ℓ) (thunk λx.ℓ := x) := V and

D
τ−→ (⟨(force thunk λx.ℓ := x)V, · · · ⟩, SP , SO)

τ−→

(⟨(λx.ℓ := x)V, · · · ⟩, SP , SO)
τ−→ (⟨(ℓ := V, · · · ⟩, SP , SO)

• M =!MkVar f g where f, g ∈ ϕ and f{δ} = thunk ℓ, g{δ} = thunk λx.ℓ := x where δ is
the idempotent substitution associated with γP · γO and for some t consisting entirely of
question actions,

D
τ−→ (⟨force f, · · · ⟩, SP , SO)

t−→ (⟨force thunk !ℓ, · · · ⟩, S′
P , S

′
O)

τ−→ (⟨!ℓ, · · · ⟩, S′
P , S

′
O)

• M = MkVar f g := V where f, g ∈ ϕ and f{δ} = thunk ℓ, g{δ} = thunk λx.ℓ := x where δ
is the idempotent substitution associated with γP · γO and for some t consisting entirely of
question actions,

D
τ−→ (⟨(force g)V, · · · ⟩, SP , SO)
t−→ (⟨(force thunk λx.ℓ := x)V, · · · ⟩, S′

P , S
′
O)

τ−→ (⟨(λx.ℓ := x)V, · · · ⟩, S′
P , S

′
O)

τ−→ (⟨(ℓ := V, · · · ⟩, S′
P , S

′
O)

43

Lemma 95. Taking D = (⟨K[M], c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO) a valid composite
configuration where M =!MkVar Vread Vwrite or M = (MkVar Vread Vwrite) := U , with Vread{δ} =
thunk !ℓ and Vwrite{δ} = thunk λx.ℓ := x where δ is the idempotent substitution associated with

γp · γO, there exists D′ s.t. D
η−→ D′. Furthermore, θ(D) = θ(D′).

Definition 96. Taking D,D′ two composite configuration, we write D⇝ D′ when D
η−→ D′′ τ−→

D′, or if there exist no such D′′, there exists a trace t of actions (without any τ -actions) s.t.

D
t·τ−−→ D′ (t can be ϵ only if there is no possible →η reduction).

Lemma 97. The configuration transformation θ is a functional bisimulation between the transition
system over visibly valid composite configurations (CompConf,⇝) and the operational transition
system (Λ×Heap,→η), that is, for all visibly valid composite configuration D:

• for all composite configuration D′, if D⇝ D′ then θ(D) →η θ(D
′);

• for all pairs (N,h) formed by a term an a heap h′, if θ(D) →η (N,h′) then there exists a
valid composite configuration D′ s.t. D⇝ D′ and (N,h′) = θ(D′)

Proof. To simplify the proof, we let:

• D = (⟨M, c, γP , γO, ϕ, hP , hO, HP , HO,Fn⟩, SP , SO);

• γ = γP · γO;

• δ be the idempotent substitution associated to γP · γO;

• θ(D) = ((Kc[M]){δ}, h) with h = (hP · hO).

We first suppose that D ⇝ D′. We first consider the case where there exists a trace t of

actions (without any τ) and a composite configurations D1 s.t. D
t−→ D1

τ−→ D′. From Lemma 93,
we get that θ(D) = θ(D1).

Instead suppose that there exists D1 s.t D
η−→ D1

τ−→ D′. Due to the fact that the construction
of θ does η-contraction, we can easily verify that θ(D) = θ(D1).

Without loss of generality, we suppose the composite configurationD1 is P -active. We writeD′

as (⟨M ′, c′, γ′P , γ
′
O, ϕ

′, h′P , hO, H
′
P , H

′
O,Fn

′⟩, S′
P , S

′
O) andD1 as (⟨M1, c

′, γ′P , γ
′
O, ϕ

′, hP , hO, H
′
P , H

′
O,Fn

′⟩, S′
P , S

′
O),

so that we have (M1, hP) → (M ′, h′P). If M = K[!V] or M = K[V := U], we must have that
V is a location ℓ due to the definition of ⇝. Therefore, (η(M1), hP) →η (η(M ′), h′P). It follows
that θ(D1) = (η((Kc′(S

′
P , S

′
O)[M1]){δ′}), hP ·hO) →η (η((Kc′(S

′
P , S

′
O)[M

′]){δ′}), h′P ·hO) = θ(D′)
where δ′ is the idempotent substitution associated to γ′P · γ′O.

Now, we suppose that there exists a term N and a heap h′ s.t. θ(D) →η (N,h′). We now
proceed by cases on the possible ways that θ(D) →η (N,h′):

• θ(D) = (K[!ℓ], h) or (K[ℓ := V], h), andM = K ′[!MkVar Vread Vwrite] orK
′[MkVar Vread Vwrite :=

V]. By Lemma 95, there exists D1 s.t D
η−→ D1 and θ(D) = θ(D1). We write D1 as

(⟨K1[M1], c
′, γ′P , γ

′
O, ϕ

′, hP , hO, H
′
P , H

′
O,Fn

′⟩, S′
P , S

′
O), where M1 =!ℓ or ℓ := V as appropri-

ate. W.L.O.G, we assume ℓ ∈ hP . So either (N,h
′) = (η(Kc(S

′
P , S

′
O)[K1[return hP (ℓ)]]{δ}), hP ·

hO) or (η(Kc(S
′
P , S

′
O)[K1[return ()]]{δ}), hP · [ℓ 7→ V] · hO) as appropriate. So we take D =

(⟨K1[return hP (ℓ)], c
′, γ′P , γ

′
O, ϕ

′, hP , hO, H
′
P , H

′
O,Fn

′⟩, S′
P , S

′
O) or (⟨K1[return ()], c′, γ′P , γ

′
O, ϕ

′, hP ·
[ℓ 7→ V], hO, H

′
P , H

′
O,Fn

′⟩, S′
P , S

′
O) as appropriate. The D

η−→ D1
τ−→ D′ and θ(D′) = (N,h′)

as required.

• Either (η(M), hP · hO) is reducible. W.L.O.G, we suppose that D is P -active, so that
(η(M), hP) is reducible. Then there exists (M ′, h′P) s.t.:

– (η(M), hP) → (M ′, h′P);

– N = η(Kc(SP , SO)[M
′]{δ});

– h′ = h′P · hO.

44

So we take D′ = (⟨M ′, c, γP , γO, ϕ, h
′
P , hO, HP , HO,Fn⟩, SP , SO) so that D

τ−→ D′.

• Or M is forcing a thunk name:

– M = K[(force f)
−→
V] for some context K, value sequence V , and thunk name f ;

– δ(f) is thunk M ′ for some computation M ′;

– N = η((Kc(SP , SO)[K[M ′−→V]]){δ});
– h′ = h;

From Lemma 91, there exists a functional name g, an abstract value A1, a composite con-
figuration D1 and a trace t formed by questions s.t.:

– γ(g) is thunk M̂ ′ for some computation M̂ ′;

– δ(f) = δ(g);

– D
t−→ D1;

– D1 can be written as (⟨K1[(force g)
−→
V1], c1, γP ·γ1,P , γO·γ1,O, ϕ⊎dom(γ1,P)⊎dom(γ1,O), hP , hO,

H1,P , H1,O,Fn1⟩, S1,P , S1,O);

– η(
−→
V1{δ1}) = η(

−→
V), with δ1 the idempotent substitution associated to γ1,P · γ1,O;

– if c1 = c, then Kc1,c(S1,P , S1,O) = • and K ′ = K, otherwise Kc1,c(S1,P , S1,O) = K and
K ′ = •.

Without loss of generality, we suppose the composite configuration D1 is P -active. By
Lemma 90, g ∈ Fn1, so we have:

D
t−→ D1

ḡ(A2,c2)−−−−−→
D2︷ ︸︸ ︷

(⟨(force thunk M̂ ′)
−→
A2, c2, γ2,P , γO · γ1,O, ϕ2, hP , hO, H1,P , H2,O,Fn2⟩, (c2, (K1, c1)) : S1,P , S1,O)

τ−−→ (⟨M̂ ′−→A2, c2, γ2,P , γO · γ1,O, ϕ2, hP , hO, H1,P , H2,O,Fn2⟩, (c2, (K1, c1)) : S1,P , S1,O)︸ ︷︷ ︸
D′

with γ2,P = γP ·γ1,P ·γ−→A2
and η(

−→
A2{γ−→A2

}) = η(
−→
V1). From Lemma 93, we have θ(D) = θ(D2).

We have that η((M ′−→V){δ}) = η((M̂ ′−→A2){δ2}) from:

– η(
−→
A2{δ2}) = η(

−→
V) since η(

−→
V1{δ1}) = η(

−→
V) and η(

−→
V1) = η(A2{γA2

})
– M̂ ′{δ} =M ′{δ} since δ(f) = δ(g) and γ(g) = thunk M̂ ′.

As Kc2((c2, (K1, c1)) : S1,P , S1,O) = Kc1(S1,P , S1,O)[K1] = Kc(SP , SO)[K] we have θ(D′) =
(N.h).

• Otherwise, M = return V for a value V and Kc an evaluation context larger than •. Then
there exists a continuation name c1 s.t.:

– Kc,c1(SP , SO) = •;
– (c1, (K, c2)) is in SP or SO with K an evaluation context larger than •.

From Lemma 92, there exists a value V1, a composite configuration D1 and a trace t formed
by answers s.t.:

– D
t−→ D1;

– D1 can be written as (⟨return V1, c1, γP ·γ1,P , γO·γ1,O, ϕ⊎dom(γ1,P)⊎dom(γ1,O), hP , hO,
H1,P , H1,O,Fn1⟩, S1,P , S1,O);

45

– η(V1{δ1}) = η(V), with δ1 the idempotent substitution associated to γ1,P · γ1,O;

Since K is larger than •, we must have for some K ′ that K = K ′[• to y.M ′]. W.L.O.G
suppose the composite configurationD1 is P -active. Then asD1 is valid S1,O = (c1, (K, c2)) :
S2,O. Then we have:

D
t−→ D1

c̄1(A2)−−−−→
D2︷ ︸︸ ︷

(⟨K[return A2], c2, γ2,P , γO · γ1,O, ϕ2, hP , hO, H1,P , H2,O,Fn2⟩, S1,P , S2,O)

with γ2,P = γ1,P · γA2
and η(A2{γA2

}) = η(V1).

From Lemma 93, we have that θ(D) = θ(D2). From Kc,c1(SP , SO) = •, we get that
Kc(SP , SO) = Kc1(S1,P , S1,O), so Kc2(S1,P , S2,O)[K] = Kc(SP , SO).

Thus, we have θ(D) = η((Kc2(S1,P , S2,O)[K
′[return A2 to y.M ′]]{δ2}), h) →η

η((Kc2(S1,P , S2,O)[K
′[M ′{A2/y}]]{δ2}), h) = (N,h′). So, if we letD′ = (⟨K ′[M ′{A2/y}], c2, γ2,P , γO·

γ1,O, ϕ2, hP , hO, H1,P , H2,O,Fn2⟩, S1,P , S2,O), and we get D ⇝ D′ and θ(D′) = (N,h′), as
required.

Using this bisimulation, we can easily prove this corollary using induction:

Corollary 98. Taking D a visibly valid composite configurations, then D ⇓ter iff θ(D) ⇓ηter .

We are finally in a position to prove Lemma 20.

Proof of Lemma 20. Note that (K[M{γ}], h) ⇓ter iff θ(C
ρA⃗i

,c

M ∧∧ Cγ⃗ih,K,γ) ⇓
η
ter . Furthermore, we can

check that C
ρA⃗i

,c

M ∧∧ Cγ⃗ih,K,γ is visibly valid. From Corollary 98, this is equivalent to the existence of

a trace t such that (C
ρA⃗i

,c

M ∧∧ Cγ⃗ih,K,γ) ⇓t
ter . By Lemma 83, this is the same as (C

ρA⃗i
,c

M |Cγ⃗ih,K,γ) ↓tter ,
which implies the Lemma.

Remark 99. Observe that if t⊥ ◦̄(A) ∈ TrCBPV(C
γ⃗i,c
h,K,γ), then as these trace satisfies P-bracketing,

TopP (t
⊥) = {◦} and so the (NO, ∅)-trace t ∈ TrCBPV(C

ρA⃗i
,c

M) satisfies TopO(t) = ∅, and so must
be a complete trace.

B.2 Proof of Soundness

Proof of Theorem 21. Suppose TrCBPV(Γ ⊢c M1) ⊆ TrCBPV(Γ ⊢c M2).

Let Σ, h,K, γ be such that (K[M1{γ}], h) ⇓ter . Suppose (A⃗i, γ⃗i) ∈ AValΓ(γ). By Lemma 20

(left-to-right), there exist t, c′ such that t ∈ TrCBPV(C
ρA⃗i

,c

M1
) and t⊥ ◦̄(A) ∈ TrCBPV(C

γ⃗i,c
h,K,γ). Fur-

ther more, by Remark 99, we have that t is complete. By TrCBPV(Γ ⊢c M1) ⊆c TrCBPV(Γ ⊢c M2),

we have t ∈ TrCBPV(C
ρA⃗i

,c

M2
). Because t ∈ TrCBPV(C

ρA⃗i
,c

M2
) and t⊥ ◦̄(A) ∈ TrCBPV(C

γ⃗i,c
h,K,γ), by

Lemma 20 (right-to-left) we can conclude (K[M2{γ}], h) ⇓ter . Thus, Γ ⊢c M1 ≲
CBPV(ciu)
ter M2.

C Definability and Completeness

C.1 Proof of Definability (Lemma 22)

To prove Lemma 22, we will use backwards induction on the traces. To do this, we will need a
more general lemma, from which Lemma 22 can be recovered by taking i = 0.

Lemma 100. Suppose ϕ ⊆ TNames, c ∈ CNames and t = o1p1 · · · onpn is a P-visible, P-bracketed,
O-visible, P-visible ({◦}, ϕ ⊎ {c})-trace starting with an O-action, so that o1 · · · on is complete.
Given 0 ≤ i ≤ n, let ti = oi+1pi+1 · · · onpn. There exist passive configurations Ci such that
Treven(Ci) is the even-length prefixes of ti (along with their renamings via permutations on Names
that fix ϕi).

Moreover, Ci = ⟨γi, ϕi, hi, Hi,Fni⟩, Si) , where

46

• dom(γi) consists of ϕ and all names introduced by P in o1p1 · · · oipi;

• ν(γi(x)) ⊆ VisP (o1p1 · · · oj) if x has been introduced in pj (ϕ ⊎ {c} are deemed to have been
introduced in p0 and VisP (o1 · · · o0) = ∅);

• if pj is the k-th most recent unanswered PQ-action in o1p1 · · · oipi, and c′ is the continuation
name introduced by pj, then the k-th item from the top of Si has the form (c′, (K, c′′));

• if (c′, (K, c′′)) ∈ Si, and c
′ : σ′ is introduced in action pj, then {c′′ : σ′′} ∈ TopP (o1 · · · oj),

ν(K) ∈ VisP (o1p1 · · · oj) and K : σ′ =⇒ σ′′;

• the bottom-most element of Si is (c, (K, ◦)) if no OA-action using c has occurred, and the
stack is empty if a move using ◦ has occurred;

• Fn = VisO(o1p1 · · · oipi);

• if f ∈ ϕi, and was introduced in oj, then H(f) = VisO(o1p1 · · · oj−1pj−1);

• ϕi consists of ϕ ⊎ {c} and all names introduced in o1p1 · · · oipi;

• hi = {time 7→ i}, where time : Ref .

Proof. This construction works by using the single reference, time to count the steps in the trace.
This will then be used to allow the correct action to be enabled and all others disabled.

(Note that if Int is set to be smaller than n, we can use multiple references, and encode the
time step across them. For simplicity, we assume Int can hold a large enough value.) In defining
terms using the language, we will need some shorthand.

• We will make use of operations such as + and equality, even though they are not in the
language, as a shorthand for the appropriate construction using case.

• We abuse notation to write Ω for a non-terminating computation of arbitrary type (which
can easily be constructed from the Ω : FUnit in the language by doing Ω to x.M , where M
is any computation of the correct type).

• We write inc time for the computation !time to t.(t+ 1) to t′.time := t′.

• Given an abstract value sequence
−→
A introduced in pi, we write

−→
A{γi+1} for the substitution

of the names introduce in A by thunks from γi+1.

• We will write λ.−→x to indicate a sequence of lambda abstractions, which we shall use to
match the sequence of arguments of a computation type.

• If −→x is a sequence of variables, and
−→
A is a sequence of abstract values with matching types,

we write M{−→x /
−→
A} for the act of substituting names found in

−→
A with the corresponding

variable from −→x in M (ignoring values occurring in
−→
A). In particular, if we need to make

a substitution of x : Ref for MkVar f g, we do the following: occurrences of force f are
replaced by !x, and occurrences of (force g)V by x := V .

• Finally, we define assert(x ∼ A) to be a test comparing a variable with an abstract value. If
the type ofA is not Int, this is empty (i.e. return (), otherwise it is defined as case x of (Ω)i<A,

return (), (Ω)A<i. We extend this to sequences as assert(−→x ∼
−→
A)

The above description already specifies ϕi,dom(γi), Hi,Fni, and hi. It also specifies the con-
tinuation names appearing in Si, but not the continuations K appearing in the stack. To complete
the definition of Ci, we will need to specify the environment γi and the stack Si.

Recall that, we need to define γ0(f) for f ∈ ϕ and, in other cases, γj(f) (f ∈ TNames) will be
defined for all j ≥ i if x was introduced by P in pi. Recall also that once γj(f) is defined, it never

47

changes. Hence if f was introduced by in pi, we will only specify γi(f) on the understanding that
γi′(f) = γi(f) for all i

′ > i.
We will provide these definitions using a backwards induction on i, meaning we define Si and

γi(f) for f introduced in pi with reference to S′
i and γi′(f

′) for i′ > i and f ′ introduced in p′i. In
particular, the names ϕ are deemed to be introduced in a (fictional) po. Once γi(x) is defined,
we will argue that ν(γi(x)) ⊆ VisP (o1p1 · · · oi). Similarly, once Si is defined, we will argue that if
(c′, (K, c′′) ∈ Si with c

′ introduced in pj , then ν(K) ∈ VisP (o1p1 · · · oj).
For the base case, where i = n, things are straight forward. The stack in this case must be

empty (as we have just done a ◦̄(A) action, so popped the last thing from the stack). The names
introduced in pn are never used, so we can define γn(f) = Ω.

For the inductive case, will consider γi(f) and Si separately. We first define γi(f) for f ∈
TNames introduced in pi, or ϕ if i = 0. Let If be the set of occurrences of f as head name in ti.

That is, If = {i < u ≤ n | ou = f(
−→
Au, cu)}. We will now define

γi(f) = thunk (λ−→x .(inc time; !time to t.case t of (Mj)0≤j≤n)

This code simply increments the time, and dispatches to the appropriate Mj based on the
time, which we now define by cases, analysis the type of move pj is.

• j ̸∈ If . In this case, we wish simply to diverge, so Mj = Ω.

• j ∈ If and pj = c̄j(A
′
j). cj is the continuation name introduced by oj due to P-bracketing.

Thus, the call to f at time j needs to simply return the value corresponding to A′
j . As i < j,

we can use the inductive hypothesis to get that names introduced in A′
j are defined in γj+1.

So we have
Mj = assert(−→x ∼

−→
Aj); return A

′
j{γj+1}{−→x /

−→
Aj}

Mj uses only names in A′
j{γj+1} which are not introduced in

−→
Aj . We have by the IH that

ν(
−→
A′
j{γj+1}) ⊆ VisP (o1 · · · oj) = VisP (o1 · · · oi)∪ ν(

−→
Aj). Thus, we have Mj ⊆ VisP (o1 · · · oi).

• j ∈ If and pj = ḡ(
−→
A′
j , c

′
j). In this case, by the fact pj is an unanswered question, we have

Sj+1 = (c′j , (K, cj)) : S′
j+1. So what the call to f at time j needs to do is call g with

argument sequence corresponding to
−→
A′
j , and then have the result of this returned to K. As

i < j, we can use the inductive hypothesis to get that names introduced in A′
j are defined

in γj+1. So we have

Mj = assert(−→x ∼
−→
Aj);K[(force g)(

−→
A′
j{γj+1})]{−→x /

−→
Aj}

This uses only names in
−→
A′
j{γj+1} and K which are not introduced in

−→
Aj . By the IH, we

have that ν(
−→
A′
j{γj+1}) ∈ VisP (o1 · · · oj) = VisP (o1 · · · oi) ∪ ν(

−→
Aj). Similarly, we have that

ν(Ki+1) ⊆ VisP (o1 · · · oj). Thus, we have ν(Mj) ⊆ VisP (o1 · · · oi).

Now we turn to constructing Si, for which we proceed by a case analysis on oi.

• oi is a OQ action. Then this action does not change the stack. Consider then pi. If this
is a PA action, then we simply take Si = Si+1 as neither action changes the stack. If it is

a PQ action f̄(
−→
A, c′), then as this is the most recent unanswered question, we have that

Si+1 = (c′, (K, c′′)) : S′
i+1. We can therefore take Si = S′

i+1. In either case, the inductive
construction means this satisfies the visibility condition on Si.

• oi is a OA action, c′(A). We therefore need to arrange that the topmost item on the stack
is of the form (c′, (K, c′′)). As mentioned above, c′′ is fixed. The appropriate definition for
K depends on pi.

48

– If pi is a PA action, it has the form c̄′′(A′). We therefore construct K so that is returns the
value corresponding to A′ if time is i and diverges otherwise. By the IH, names introduced
in A′ are defined in γi+1. So

K = • to x.(assert(x ∼ A); inc time; !time to t.
case t of ((Ω)i<t, (return (A′){γi+1}{x/A}), (Ω)t<i))

This uses only names in A′{γi+1} which are not introduced in A. Assume c′ is introduced
in pj . By the IH, we have that ν(A′{γi+1}) ⊆ VisP (o1 · · · oi) = VisP (o1 · · · oj)∪ ν(A). We
then have that ν(K) ⊆ VisP (o1 · · · oj), as required. Thus we let Si = (c′, (K, c′′)) : Si+1

– If pi is a PQ action, it has form f̄(
−→
A′, c′′′). In this case, as pi is the most recent unanswered

question, it must be that Si+1 = (c′′′, (Ki+1, c
′′) : S′

i+1. This means that we wish to

construct K which calls f with argument sequence corresponding to
−→
A′ time i, then uses

the result of this in Ki+1. By the IH, names introduced in
−→
A′ are defined in γi+1.

K = • to x.(assert(x ∼ A); inc time; !time to t.

case t of ((Ω)i<t, (Ki+1[(force f) (
−→
A′{γi+1})]{x/A}), (Ω)t<i))

This uses only names in
−→
A′{γi+1} and Ki+1 which are not introduced in A. Let c′ be intro-

duced in pj . By the IH, we have that ν(
−→
A′{γi+1}) ∈ VisP (o1 · · · oi) = VisP (o1 · · · oj)∪ν(A).

Similarly, we have that ν(Ki+1) ⊆ VisP (o1 · · · oi). Thus, we have ν(K) ⊆ VisP (o1 · · · oj).
Thus we let Si = (c′, (K, c′′)) : S′

i+1.

It is easy to verify that this definition of Ci does indeed generate the required traces. In particular,
we can see that if O takes an action not corresponding to the one taken at oi (an odd position),
then the subsequent term component will reduce to Ω, and so produce no action.

Proof of Theorem 23. Suppose Γ ⊢c M1 ≲
CBPV(ciu)
ter M2. Let ρ be a Γ-assignment, Ai = ρ(xi),

c : σ and t ∈ TrCBPV(C
ρA⃗i

,c

M1
) s.t. t is complete. Then t is a (ν(ρ) ⊎ {c}, ∅)-trace. W.L.O.G,

due to the closure of TrCBPV(C
ρA⃗i

,c

M1
) under renaming, we can ensure that ◦ does not appear in

t. Let ◦ : Unit and t1 = t⊥ ◦̄(()), a ({◦}, ν(ρ) ⊎ {c})-trace. Then, as t is O-visible, O-bracketed,
P-visible, P-bracketed and complete, so is t⊥ and so t1 is. Thus, we can appeal to Lemma 22
to get a passive configuration CO = ⟨γO, ϕ ⊎ {c}, h, [◦ 7→ ∅], ϕ⟩, (c, (K, ◦)) : ⊥) for some h,K, γ,
such that TrevenCBPV(CO) consists of all even-length prefixes of t1, up to renamings which preserve
ν(ρ) ⊎ {c, ◦}.

Observe that CO = Cγ⃗i,ch,K,γ where γ(xi) = Ai{γO} and γi = γO ↾ ν(Ai). Then we have the

t ∈ TrCBPV(C
ρA⃗i

,c

M1
) and t1 ∈ TrCBPV(C

γ⃗i,c
h,K,γ). We can then apply Lemma 20 (right-to-left) to

obtain (K[M1]{γ}, h) ⇓ter , and as Γ ⊢c M1 ≲
CBPV(ciu)
ter M2, we have (K[M2]{γ}, h) ⇓ter . By

Lemma 20 (left-to-right), we have a complete trace t′ ∈∈ TrCBPV(C
ρA⃗i

,c

M2
) such that t′⊥ ◦̄(()) ∈

TrCBPV(C
γ⃗i,c
h,K,γ). By the definition of CO, all complete traces in TrCBPV(CO) are equal to t1 up to

renaming of names preserving ν(ρ)⊎{c, ◦}, so t′ is equal to t (up to a renaming of names preserving

ν(ρ) ⊎ {c}). Therefore, by the closure property, we have t ∈ TrCBPV(C
ρA⃗i

,c

M2
), as required.

C.2 Additional material on Name Schemes

In Figure 15 we present the full definition of Base∆t (), including the function Match(A,B, f).

Proof of Lemma 37. This is a proof by induction on the length of t. The base case is when

t = t′ c̄0(A) with c0 ∈ NO or t = t′ ḡ(
−→
A, c) with g ∈ NO. Then VisO(t) is ν(A) or ν(

−→
A), and so

all the base name are distinct. The inductive case t = t′ c̄(A) is trivial, as c : F Int or c : FUnit

so this reduces to an application of the I.H. The other inductive case is t = t′ ḡ(
−→
A, c). Assume

that there is some f, f ′ ∈ VisO(t) s.t. Base∆t (f) = Base∆t (f
′). Then by the I.H, one of f, f ′

49

Base∆t (n) ≜ n where n ∈ NO
Base∆t (c) ≜ SucC(g) where c is introduced in f(A, c) or f̄(A, c) and g = Base∆t (f)

Base∆t (f) ≜ g where f is introduced in c(A) or c̄(A) with c : σ, c′ = Base∆t (c)

{B} = BVals∆σ (c) and g = Match(A,B, f)

Base∆t (f) ≜ g where f is introduced in f ′(
−→
A, c) or f̄ ′(

−→
A, c) with g′ = Base∆t (f

′),
−→
B ∈ BValSeq∆(g′) and g = Match(

−→
A,

−→
B, f)

Match(f, g, f) ≜ g

Match({|f, f ′|}, {|g, g′|}, f) ≜ g

Match({|f ′, f |}, {|g′, g|}, f) ≜ g

Match(
−→
A,

−→
B, f) ≜ Match(

−→
A i,

−→
B i, f) where f ∈ ν(

−→
A i)

Figure 15: The function Base∆t () which converting names appearing in t to base names from
∆ = (TBNames,CBNames, ρ, c0,SucT,SucC)

is introduced in
−→
A . W.L.O.G, f was introduced in

−→
A , and f ′ in some earlier move ḡ′(

−→
A′, c′)

with Base∆t (g) = Base∆t (g
′). Observe that Base∆t (g) must be a level 0 name. Recall that the

definition of VisO(t) involves a process of chasing names. We can therefore consider the sequence of
O-names used as the head names for moves which introduce P-names in the definition of VisO(t).
We will show that the base names in this sequence are exactly the introduction chain forBase∆t (g),
from which it will follow that g′ cannot be in this sequence (and so f ′ ̸∈ VisO(t)).

We prove this by induction on the length of the introduction chain. In the base case, Base∆t (g)

is initial, so g ∈ NO, and VisO(t) = ν(
−→
A), so no other names in the sequence. In the inductive

case, let g ∈ ν(A) s.t. VisO(t) = VisO(s a d(A) s′ ḡ(
−→
A, c)) = ν(

−→
A) ∪ VisO(s a). Consider what a

is. If it is a PQ-action, then it must be on continuation name d′ ̸= c0, so we have VisO(s a) =

VisO(s1 h(
−→
A′′, d′) d̄′()) = VisO(s1). By repeating this, it suffices to consider only the case that a is

a PQ-action, and so by the bracketing condition, a = h̄(
−→
A′′, d). Then VisO(s a) = ν(

−→
A′′)∪VisO(s).

We must have Base∆t (d) = SucC(Base∆t (h)) and Base∆t (g) = SucT(Base∆t (d)), so Base∆t (h) is
earlier in the introduction chain of Base∆t (g), as required. Applying the I.H. to the introduction
chain of Base∆t (h) completes this proof.

Proof of Lemma 40. We will prove this by contradiction. Let t1, t2 be s.t. Rename∆(t1) =
Rename∆(t2) but are not equal up to permutations of names which preserve NO. Observe that
t1 and t2 must have the same sequence of moves, differing only in the head names. Consider the
shortest (equal length) prefixes s1 and s2 of t1 and t2 which are not equal up to permutation of
names. Apply a permutation to s1 and s2 so that they are equal, save for the last action. Let s
be the common prefix, and observe the action they disagree on must have been a question, as the
head name used in answer actions is determined by the bracketing conditions.

Now, by Lemma 37, this was not an OQ-action, as there are not distinct f, f ′ ∈ VisO(s) with
Base∆s (f) = Base∆s (f

′). So this last move was a PQ-action aq, so let f, f ′ be the two distinct

head names with Base∆s (f) = g = Base∆s (f
′). Let aa be the action f is introduced in. Now,

Rename∆(t1) will contain a marked ∆-trace with g marked at the action corresponding to aa,
and in the head of the action corresponding to aq. But Rename∆(t2) = Rename∆(s2) cannot
contain this trace, as Marked(s2) cannot contain a trace with both f in aa marked and f ′ in aq
marked. Thus, we have a contradiction.

C.3 Proof of Lemma 44

To complete the proof of Lemma 44, we need to give a proof of Lemma 45. To do this, we need
the following result.

50

Lemma 101. Let t f̄(
−→
A, c) t′ c(A) be a PTR-trace, with f a level 2 name. Then VisO(t f̄(

−→
A, c) t′) =

VisO(t f̄(
−→
A, c))

Proof. We prove this with the following induction hypothesis: for s a prefix of t′ with no unan-

swered OQ-action, VisO(t f̄(
−→
A, c) s) = VisO(t f̄(

−→
A, c)). As t′ is such a prefix, this shows the

results.

• Base case In the case s has length 0, then the result is immediate.

• Inductive case Observe that the bracketing condition implies that s = s′ f ′(
−→
A′, c′) s′′ c̄′(A′),

and so VisO(t f̄(
−→
A, c) s) = VisO(t f̄(

−→
A, c) s′)∪ ν(A′) = VisO(t f̄(A

′, c′) s′) as in PTR, A′

contains no thunk names. We can then appeal to the I.H. on s′′ to get the result.

Lemma 102 (Lemma 45). Let t g(
−→
A, c) t′ f̄(

−→
A′, c′) be a PTR-trace, with f a level 2 name, and

f ′ its originator, introduced in
−→
A . Then VisO(t g(

−→
A, c) t′ f̄(

−→
A′, c′)) = VisO(t)

Proof. This proof is by induction on the length of the introduction chain of f .

• Base case If f = f ′ (f is its own originator), we have VisO(t g(
−→
A, c) t′ f̄(

−→
A′, c′)) = VisO(t).

• Inductive case We have that t′ = s f̄ ′′(
−→
A′′, c′′) s′ c′′(A′′) s′′ where f ′ is the originator of f ′′,

and f is introduced inA′′. We have that VisO(t g(
−→
A, c) t′ f̄(

−→
A′, c′)) = VisO(t g(

−→
A, c) s f̄ ′′(

−→
A′′, c′′) s′).

Now, by the I.H. VisO(t g(
−→
A, c) s f̄ ′′(

−→
A′′, c′′)) = VisO(t). By Lemma 101 we have VisO(t g(

−→
A, c)

s f̄ ′′(
−→
A′′, c′′) s′) = VisO(t). Thus VisO(t g(

−→
A, c) t′ f̄(

−→
A′, c′)) = VisO(t), as required.

C.4 Proof of Correctness for LPTR

In this appendix, we give more fully the proof of correctness for LPTR. For clarity, we will state
again some of the definitions and results given in the main body of the paper. We will identify when
we have repeated definitions or results. To simplify the statement of results in this sections, we
will fix a PTR-computation Γ ⊢c M : Fσ0, (Γ, σ)-name scheme ∆ = (TB,CB, ρ, c0,SucT,SucC),
and let NO = ν(ρ) ∪ {c0}.

We start with a helpful result relating BVals∆σ (d) and IVal∆σ (d, V, η). We write ◦ for compo-
sition of (partial) functions.

Lemma 103. Let κ be a mapping from names to (indexed) base names, V : σ and (A, γ) ∈
AValσ(V). Let t be a (NO, ∅)-trace in which A occurs in an action answer a with head name c. If
(B, γ′, η′) = IVal∆σ (Base∆t (c), κ(V), η), then β(B) = Base∆t (A), and γ

′ = κ◦γ◦[Match(A,B, f) 7→
f]f∈ν(A).

Lemma 104. Let κ be a mapping from names to (indexed) base names, V : σ and (
−→
A, γ) ∈

AVal(
−→
V). Let t be a (NO, ∅)-trace in which

−→
A occurs in an question answer a with with head

name f . If (
−→
B, γ′, η′) = IVal∆σ (Base∆t (f), κ(V), η), then β(

−→
B) = Base∆t (

−→
A), and γ′ = κ ◦ γ ◦

[Match(
−→
A,

−→
B, g) 7→ g]

g∈ν(
−→
A)

.

Lemma 105. Let c : σ ∈ CB, η a map from TB ∪ CB to indexes, and (B, η′) ∈ IVals∆σ (c, η).
Let t be an (NO, ∅)-trace and c′ a P-name in t s.t. c = Base∆t (c

′). Then there exists A s.t.
β(B) = Base∆t c(A)(A).

Lemma 106. Let f ∈ TB, η a map from TB ∪ CB to indexes, and (
−→
B, η′) ∈ IValSeq∆(f, η).

Let t be an (NO, ∅)-trace and f ′ a P-name in t s.t. f = Base∆t (f
′). Then there exists

−→
A s.t.

β(
−→
B) = Base∆

t f ′(
−→
A,c)

(
−→
A).

51

We will prove the correctness using a bisimulation technique, though we will not be able to

give a bisimulation directly between LCBPV and L∆Γ,σ

PTR . Instead, we will introduce an LTS L∆Γ,σ

Path ,

the traces of which will be exactly Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)). Given a path p, let Tr(p) be the

trace induced by p.

Definition 107 (Definition 50). The configurations of L∆Γ,σ

Path have the form (p, F) where p is a
path in LCBPV starting in Cρ,c0M and F is either empty, or a set containing a single name f s.t. f
is introduced in an O-action in Tr(p). Let Mark(f,X) for some structure X (an action etc.) be
obtained by marking every occurrence of f . The transitions are then (where a includes τ actions)

• (p, {f}) a′

−→ (p
a−→ C′, {f}) where p ends with C, C

a−→ C′, a′′ = Mark(f,a) and a′ =

Base
∆Γ,σ

Tr(p
a−→C′)

(a′′).

• (p, ∅) a′

−→ (p
a−→ C′, ∅) where p ends with C, C

a−→ C′, and a′ = Base
∆Γ,σ

Tr(p
a−→C′)

(a).

• (p, ∅) a′

−→ (p
a−→ C′, {g}) where a = c(A), g ∈ ν(A), a′′ = Mark(g,a) and a′ = Base

∆Γ,σ

Tr(p
a−→C′)

(a′′).

• (p, ∅) a′

−→ (p
a−→ C′, {g}) where a = f(

−→
A, c), g ∈ ν(

−→
A), a′′ = Mark(g,a) and a′ =

Base
∆Γ,σ

Tr(p
a−→C′)

(a′′).

Observe that L∆Γ,σ

Path is deterministic in the sense that if for configuration (p, F), there is only

one t s.t. (Cρ,c0M , ∅) t
=⇒ (p, F).

Lemma 108 (Lemma 51). The traces of L∆Γ,σ

Path starting from (Cρ,c0M , ∅) are exactly Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)).

Proof. We prove this by first proving the follwing result. Let p is a path in LCBPV starting from
Cρ,c0M , and t = Tr(p). Then

1. Then (Cρ,c0M , ∅) t′
=⇒ (p, ∅) where t′ = Base

∆Γ,σ

t (t).

2. If t a thunk O-name introduced in t, then (Cρ,c0M , ∅) t′′
==⇒ (p, {f}), where t′′ = Base

∆Γ,σ

t (Mark(f, t)).

This proceeds by induction on the length of the path p. The base case is when p is simply Cρ,c0M ,

which is trivial. The inductive cases are as follows. Let p = p1
a−→ C′ and t1 = Tr(p1). If a ̸= τ ,

then t = t1 a.

1. Let t′1 = Base
∆Γ,σ

t1 (t1). By the I.H.(1), we have that Cρ,c0M , ∅) t′1=⇒ (p1, ∅). Now, by definiton of

the transition, (p1, ∅)
a′

−→ (p1
a−→ C′, ∅) where a′ = Base

∆Γ,σ

t (a). If a = τ , t′ = Base
∆Γ,σ

t (t) =

t′1, otherwise t
′ = Base

∆Γ,σ

t (t) = t′1 a′. Thus, we obtain Cρ,c0M , ∅) t′
=⇒ (p, ∅), as required.

2. For this case, do a case analysis on whether f is introduced in a.

If it is, then let t′1 = Base
∆Γ,σ

t1 (t1). By the I.H.(1), we have that Cρ,c0M , ∅) t′1=⇒ (p1, ∅). Now,

by definiton of the transition, (p1, ∅)
a′

−→ (p1
a−→ C′, {f}) where a′ = Base

∆Γ,σ

t (a′′) and

a′′ = Mark(f,a). Observe that Mark(f, t) = t1 a′′, so t′′ = Base
∆Γ,σ

t (Mark(f, t)) = t′1 a′.

Thus we obtain (Cρ,c0M , ∅) t′′
==⇒ (p, {f}), as required.

If it is not, then f must be intoduced in t1. Let t′′1 = Base
∆Γ,σ

t1 (Mark(f, t1)). By the

I.H(2), we have Cρ,c0M , ∅) t′′1==⇒ (p1, {f}). Now, by definiton of the transition, (p1, {f})
a′

−→

52

(p1
a−→ C′, {f}) where a′ = Base

∆Γ,σ

t (a′′) and a′′ = Mark(f,a). If a = τ , then Mark(f, t) =

Mark(f, t1) so t
′′ = Base

∆Γ,σ

t (Mark(f, t)) = t′′1 . Otherwise, Mark(f, t) = Mark(f, t1) a
′′, so

t′′ = Base
∆Γ,σ

t (Mark(f, t)) = t′′1 a′. Thus we obtain (Cρ,c0M , ∅) t′′
==⇒ (p, {f}), as required.

From this we can prove the result as follows.
For the first direction, let t′′ ∈ Rename∆Γ,σ (TrCBPV(C

ρ,c0
M)). Then there exists t ∈ TrCBPV(C

ρ,c0
M)

and t′ ∈ Marked(t) s.t. t′′ = Base
∆Γ,σ

t (t′). Let p be the path in generating t. If t = t′, we have

by the above property that (Cρ,c0M , ∅) t′′
==⇒ (p, ∅), so t′′ is generated by L∆Γ,σ

Path starting from (Cρ,c0M , ∅).

Otherwise, let f be the name marked in t′. By the above property, (Cρ,c0M , ∅) t′′
==⇒ (p, {f}), so t′′ is

generated by L∆Γ,σ

Path starting from (Cρ,c0M , ∅).
For the other direction, let t′′ be a trace generated by L∆Γ,σ

Path starting from (Cρ,c0M , ∅). Then

there must be a path p s.t. Cρ,c0M , ∅) t′′
==⇒ (p, ∅) or Cρ,c0M , ∅) t′′

==⇒ (p, {f}) for some f introduced in

an O-action of p. Let t = Tr(p), so t ∈ TrCBPV(C
ρ,c0
M). Then it follows from the above result,

and the deterministm of L∆Γ,σ

Path , that t′′ = Base
∆Γ,σ

t (t) or t′′ = Base
∆Γ,σ

t (Mark(f, t)). Thus,

t′′ ∈ Rename∆Γ,σ (TrCBPV(C
ρ,c0
M)).

We will now establish a bisimulation between LPath and L∆Γ,σ

PTR . To construct this, we will use
the function Conv(p), which will take path p to a tuple (κ, ψ, η, µ, ψh, ih, N, T). κ maps names
introduced in p to indexed base names, and locations to numerical locations. We lift κ to any
structure containing names and/or locations in the obvious way. ψ maps indexed base names to
names introduced in p (a partial inverse of κ), η maps base names to the next index and µ maps
level 2 and O-continuation indexed base names to the value of (ih, η) before their introduction.
ψh, ih play an analogous role to ψ, η but for locations. Finally, N is simply the term components
of the final state in p (or ∅ if the last configuration is passive), but with the result of expanding
while loops annotated with end(ih, η).. T is an extended stack, which relates to the stack in the
same way as N does to term, but with added elements in some levels of the stack. We also define
the reduction (N,h) →m (N ′, h′) on terms of the extended syntax (with end(ih, η).), as having the
same rules as → (and so getting stuck if it encounters end(ih, η).). Let Ñ be the function which
removes occurrences of end(ih, η). from a term/context.

We write p′ C
a−→ C′ when C,C′ are the last two configurations in a path (where p′ can be

empty). Recall also that we have Match(A,B, f) transfers any mark on f in A to its result.
We recall Definition 52. We defined ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T) with the following

cases.
If p = Cρ,c0M then µ = ψh = ∅, ih = 0, N =M, K = ⊥, κ = [NO 7→ N0

O], ψ = [N0
O 7→ NO], η is

1 onNO, 0 otherwise. Otherwise, p = p′ C
a−→ C′. LetConvF (p

′ C) = (κ′, ψ′, η′, µ′, ψ′h, i′h, N
′, T ′).

We then proceed by the follwoing cases:

• a = τ , C = (⟨K[ref V], · · · ⟩, S) and C′ = (⟨K[ℓ], · · · ⟩, S). If N ′ = K ′[ref V] then N =
K ′[i′h], ih = i′h +1, κ = κ′ · [ℓ 7→ i′h], ψ

h = ψ′h · [i′h 7→ ℓ], ψ = ψ′, η = η′, µ = µ′, and T = T ′;

• a = τ where C = (⟨K[whileN1 doN2], · · · ⟩, S).

– If N ′ = K ′[whileN1 doN2], then

N = K ′[N1 to x.case x of return (), (N2 to y.end(ih, η).whileN1 doN2)j>0]

and κ = κ′, ψ = ψ′, η = η′, µ = µ′, ψh = ψ′h, ih = i′h, and T = T ′;

– If N ′ = K ′[end(ih, η).whileN1 doN2], then

N = K ′[endM to x.case x of return (), (N to y.end(ih, η).whileM doN)j>0.]

ψ = ψ′
<η, ψ

h = ψ′h
<ih

, κ = κ′, µ = µ′, and T = T ′;

53

• a = τ otherwise, where C = (⟨M ′, c, γ, ϕ, h,H⟩, S), C′ = (⟨M ′′, c, γ, ϕ, h′, H⟩, S)). Then N
is s.t (N ′, h) →m (N,h′), κ = κ′, ψ = ψ′, η = η′, µ = µ′, ψh = ψ′h, ih = i′h, and T = T ′ ;

• a = f̄(
−→
A, c) where f is not a level 2 name, and C = (⟨K[force f

−→
V], c′, · · · ⟩, S′). If N ′ =

K ′[force f
−→
V], then T = (c, (K ′, c′)) : T ′, N = ∅ µ = µ′, ψh = ψ′h, and ih = i′h. If

gi = κ′(f),d = SucC(g), and (
−→
B, γ, η′′) = IVal∆(g,

−→
V , η′), then κ = κ′ · [c 7→ d0] · [f ′ 7→

Match(
−→
A,

−→
B, f ′)]

f ′∈ν(
−→
A)

, and ψ = ψ′ · [Match(
−→
A,

−→
B, f ′) 7→ f ′]

f ′∈ν(
−→
A)

;

• a = f̄(
−→
A, c) where f is a level 2 name and C = (⟨K[force f

−→
V], c′, · · · ⟩, S′). If N ′ =

K ′[force f
−→
V] and (ih, η) = µ(f), then ψ = ψ′

<η, ψ
h = ψ′h

<ih
, T = (c, (K ′, c′), (i′h, η

′, ψ′h
≥ih , ψ

′
≥η)) :

T ′, N = ∅, κ = κ′ · [c 7→ d0], and µ = µ′;

• a = f(
−→
A, c) where C = (⟨γ, ϕ, h,H,Fn⟩, S). If N ′ = ∅ then N = γ(f), ψh = ψ′h, ih =

i′h, and T = T ′. If gi = κ′(f), d = SucC(g), j = η(d), (
−→
B, η′′) = IValSeq∆(g, η′) and

−→
A′ = Mark(F,

−→
A), then κ = κ′ · [c 7→ dj] · [f 7→ Match(

−→
A′,

−→
B, f)]

f∈ν(
−→
A)

, ψ = ψ′ · [dj 7→

c] · [Match(
−→
A′,

−→
B, f) 7→ f]

f∈ν(
−→
A)

, µ = µ′ · [ν(
−→
A), c 7→ (ih, η)], and η = η′′[d 7→ j + 1];

• a = c̄0(A) where C = (⟨return V, · · · ⟩, S). If (B, γ, η) = IVal∆σ (c0, V, η
′), then N = ∅,

κ = κ′ · [f 7→ Match(A,B, f)]f∈ν(A), ψ
′ = ψ · [Match(A,B, f) 7→ f]f∈ν(A), µ = µ′,

ψh = ψ′h, ih = i′h,and T = T ′;

• a = c̄(A). If (ih, η) = µ(c), then ψ = ψ′
<η, ψ

h = ψ′h
<ih

, N = ∅, κ = κ′, µ = µ′, and T = T ′;

• a = c(A) with A : σ.

– If T ′ = (c, (K, c′)) : T ′′ and d = κ′(c), then T = T ′′, N = K[return A], and for
A′ = Mark(F,A), for any (B′, η) ∈ IVals∆σ (d, η

′), κ = κ′ ·[f 7→ Match(A′, B, f)]f∈ν(A),

ψ = ψ′ · [Match(A′, B, f) 7→ f]f∈ν(A), µ = µ′, ψh = ψ′h, and ih = i′h;

– If T ′ = (c, (K, c′), (ih, η
′′, ψ′′h, ψ′′)) : T ′′, d = κ′(c), and ψ′′h, ψ′′ disjoint from ψ′h, ψ′

then T = T ′′, N = K[returnA], and forA′ = Mark(F,A), for any (B′, η) ∈ IVals∆σ (d, η
′′),

ψh = ψ′h ·ψ′′h κ = κ′ · [f 7→ Match(A′, B, f)]f∈ν(A), ψ = ψ′ ·ψ′′ · [Match(A′, B, f) 7→
f]f∈ν(A) and µ = µ′ · [ν(A) 7→ (i′h, η

′)].

The following Lemmata follow from simple inductions, and ensure that for any path p,ConvF (p)
is defined (that is, the conditions assume in the inductive construction do hold).

Lemma 109. Let (p, F) be a configuration of L∆
Path, and ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T).

Then for name d ∈ dom(κ), κ(d) = bi for some i where b = Base∆Tr(p)(d).

Lemma 110. Let (p, F) be a configuration of L∆
Path with p ending in active configuration (⟨M ′, c, · · · ⟩, S),

and ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T). Then M ′ = Ñ and replacing entries of the form
(c1, (K, c2), P) by (c1, (K̃, c2)) in T produces S.

Lemma 111. Let (p, F) be a configuration of L∆
Path, and ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T).

Then for name bi ∈ dom(ψ), i < η(b), and for i ∈ dom(ψh), i < ih.

Lemma 112. Let (p, F) be a configuration of L∆
Path where p ends with a passive state and

ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, (c, (K, c
′), (i′h, η

′, ψ′h, ψ′)) : T). Then the domains of ψ,ψ′, and
ψh, ψ′h are disjoint. Moreover, ψ′ is defined on di where η(d) ≤ i < η′(d), and ψ′h on ih ≤ i < i′h.

The following two Lemmata express the intuitive property that extending a path does not
remove mappings from κ, µ in ConvF (p), and that the stack T follows a stack discipline.

Lemma 113. Let (p, F) be a configuration of L∆
Path, and (p′F ′) a configuration s.t F ′ = F or

F = ∅, p′ is a path extending p. Let ConvF (p C) = (κ, ψ, η, µ, ψh, ih, N, T) and ConvF (p
′ C′) =

(κ′, ψ′, η′, µ′, ψ′h, i′h, N
′, T ′). Then κ′, µ′ are extensions of κ, µ.

54

Lemma 114. Let (p C, F) be a configuration of L∆
Path, and (p′ C′, F ′) a configuration s.t F ′ = F

or F = ∅, p′ is a path extending p C, no answer to a question before C occurs between C and C′,
and C′ has the same stack as C. Let ConvF (p C) = (κ, ψ, η, µ, ψh, ih, N, T) and ConvF (p

′ C′) =
(κ′, ψ′, η′, µ′, ψ′h, i′h, N

′, T ′). Then T = T ′.

We now establish a useful Lemma regarding the preservation of values of ψ along a path.

Lemma 115. Let (p C, F) be a configuration of L∆
Path, and (p′ C′, F ′) a configuration s.t F ′ = F

or F = ∅, p′ is a path extending p C, no answer to a question before C occurs between C and C′,
and C′ has the same stack as C. Let ConvF (p C) = (κ, ψ, η, µ, ψh, ih, N, T) and ConvF (p

′ C′) =
(κ′, ψ′, η′, µ′, ψ′h, i′h, N

′, T ′).
Then if C and C′ are both active (with N containing no occurrences of end.) or both passive,

then ψ = ψ′
<η and ψh = ψ′h

<ih
. Further, if they are both passive, η = η′ and ih = i′h, and if they

are both active, for all b, η(b) ≤ η′(b) and ih ≤ i′h.

Proof. This is by an induction on the difference in length between p and p′. We then proceed by
cases on the last action a in p′. By the constraints on p′, if C′ is active, a is either a τ transition
or a OA-action. The case of a τ -transition is simple to verify. The most interesting one is when
the ConvF (p

′) = (κ′′, ψ′′, η′′, µ′′, ψ′′h, i′′h,K[end(i′h, η
′).whileM1 doM2], T). In this case, we can

appeal to the I.H, but need to confirm that ih ≤ i′h and for all b, η(b) ≤ η(b′). To do this consider
the path p′′ up to the configuration immediately after this iteration of the loop is expanded. Then
we have that ConvF (p

′′) = (κ′′′, ψ′′′, η′, µ′′′, ψ′′′h, i′h, N
′′′, T), and so by the I.H, ih ≤ i′h and for

all b, η(b) ≤ η(b′).

In the case of an OA-action c(A), we partition p′ C′ into p1 C1
f̄(

−→
A,c)−−−−→ C2 p2 C3

c(A)−−−→

C′. Let ConvF (p1 C1
f̄(

−→
A,c)−−−−→ C2) = (κ2, ψ2, η2, µ2, ψ

h
2 , ih2, ∅, T2), then by the I.H applied to

p1 C1
f̄(

−→
A,c)−−−−→ C2 and p1 C1

f̄(
−→
A,c)−−−−→ C2 p2 C3 (and Lemma 114) we have thatConvF (p1 C1

f̄(
−→
A,c)−−−−→

C2 p2 C3) = (κ3, ψ2, η2, µ3, ψ
h
2 , ih2, ∅, T2). From this is follows that ifConvF (p1 C1) = (κ1, ψ1, η1,

µ1, ψ
h
1 , ih1, N1, T1), then ψ

′ = ψ1 ·ψ′′, ψ′h = ψh1 ·ψ′′h and for all b η1(b) ≤ η′(b) and ih1 ≤ i′h. Thus
the result holds by applying the I.H to p and p1 C1.

Similarly, if C′ is passive, then a must be an PA-action c̄(A). We can partition p′, C′

into p1 C1
f(

−→
A,c)−−−−→ C2 p2 C3

c̄(A)−−−→ C′. Let ConvF (p1 C1) = (κ1, ψ1, η1, µ1, ψ
h
1 , ih1, ∅, T1).

Then by the I.H, η1 = η, ih1 = ih, and so ψ1 = ψ, ψh1 = ψh. If ConvF (p1 C1
f(

−→
A,c)−−−−→

C2) = (κ2, ψ2, η2, µ2, ψ
h
2 , ih2, N1, T1), then ψ2<η = ψ and ψh2<ih = ψh and µ2(c) = (ih, η). If

ConvF (p1 C1
f(

−→
A,c)−−−−→ C2 p2 C3) = (κ3, ψ3, η3, µ3, ψ

h
3 , ih3, N3, T1), then by Lemma 113, we have

that µ3(c) = µ2(c) = (ih, η), i
′
h = ih and η′ = η. By the I.H applied to p1 C1

f(
−→
A,c)−−−−→ C2 and

p1 C1
f(

−→
A,c)−−−−→ C2 p2 C3, we obtain that ψ′ = ψ3<η = ψ2<η = ψ and ψ′h = ψh3<ih = ψ2<ih =

ψ.

Using this, we can prove the following.

Lemma 116. Let (p, F) be a configuration of L∆
Path, s.t. f is a level 2 name in Tr(p) with

originator g. If ConvF (p C) = (κ, ψ, η, µ, ψh, ih, N, T), then µ(g) = µ(f).

We can prove by a straight forward induction, the above Lemmata, Lemmata 43 and 44, the
following property.

Lemma 117 (Lemma 53). Let (p, F) be a configuration of L∆
Path, and ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T).

Then:

• if p ends in a active state (⟨N, c, γ, ϕ, h,H⟩, S), then for f ∈ ν(N), we have (ψ ◦ κ)(f) = f ,
(ψ ◦ κ)(c) = c, and for location ℓ in N , (ψh ◦ κ)(ℓ) = ℓ;

• if p ends in a passive state (⟨γ, ϕ, h,H,Fn⟩, S), then for f ∈ Fn, we have (ψ ◦ κ)(f) = f .

55

Proof. This proof is done by an induction with a slightly stronger property. Define by mutual
induction the sets

ν(N) ⊆ NamesPH,γ(N)
S ⊆ NamesOH,γ(S)

NamesPH,γ(N) = ν(N) ∪
⋃
f∈ν(N) NamesOH,γ(H(f))

NamesOH,γ(S) = S ∪
⋃
f∈S NamesPH,γ(γ(f))

We can then also define

Loc(M) = {ℓ | ℓ appears in M}
Locγ(S) =

⋃
f∈S,f∈dom(γ) Loc(γ(f))

Our stronger inductive hypothesis is that:

1. if p ends in a active state (⟨N, c, γ, ϕ, h,H⟩, S), then

(a) for f ∈ NamesPH,γ(N), (ψ ◦ κ)(f) = f ;

(b) (ψ ◦ κ)(c) = c;

(c) for f ∈ NamesOH,γ(H(c)), (ψ ◦ κ)(f) = f ;

(d) for ℓ ∈ Loc(N), (ψh ◦ κ)(ℓ) = ℓ;

(e) for ℓ ∈ Locγ(NamesPγ(N) ∪NamesOH,γ(H(c))), (ψh ◦ κ)(ℓ) = ℓ;

2. if p ends in a passive state (⟨γ, ϕ, h,H,Fn⟩, S),

(a) for f ∈ NamesOH,γ(Fn), (ψ ◦ κ)(f) = f ;

(b) for ℓ ∈ Locγ(NamesOH,γ(Fn)), (ψ
h ◦ κ)(ℓ) = ℓ;

(c) if T = (c, (K, c′)) : T ′, then

• (ψ ◦ κ)(c′) = c′;

• for f ∈ NamesPH,γ(K), (ψ ◦ κ)(f) = f ;

• for ℓ ∈ Loc(K) ∪ Locγ(NamesPH,γ(K)), (ψh ◦ κ)(ℓ) = ℓ;

(d) if T = (c, (K, c′), (i′h, η
′, ψ′h, ψ)) : T ′, then

• ((ψ · ψ′) ◦ κ)(c′) = c′;

• for f ∈ NamesPH,γ(K), ((ψ · ψ′) ◦ κ)(f) = f ;

• for ℓ ∈ Loc(K) ∪ Locγ(NamesPH,γ(K)), ((ψh · ψ′h) ◦ κ)(ℓ) = ℓ;

The induction proceeds by considering the last action in p. We show some the two interesting
cases.

• p = p′
f̄(

−→
A,c)−−−−→ (⟨γ, ϕ, h,H,Fn⟩, S) = C with f a level 2 name. Let g be the originator of f .

Let g be introduced in an action f ′(
−→
A′, c′), and so partition p′ into p1 C1

f ′(
−→
A′,c′)−−−−−→ p2 C2,

where C1 = (⟨γ1, ϕ1, h1, H1,Fn1⟩, S1) and C2 = (⟨K[force f
−→
A], c2, γ2, ϕ2, h2, H2⟩, S2). Then

by Lemma 44 and Lemma 16, H2(f) = Fn = Fn1, and γ = γ2, H = H2, (which are
conservative extensions of γ1,H1) and S = (c, (K, c2)) : S2.

LetConvF (p1 C1) = (κ1, ψ1, η1, µ1, ψ
h
1 , ih1, N1, T1) andConvF (p

′) = (κ2, ψ2, η2, µ2, ψ
h
2 , ih2, N2, T2).

Then N2 = K ′[force f
−→
A] where K = K̃ ′. By Lemma 116, we obtain that (ih, η) = µ2(f) =

(ih1, η1), so ψ = ψ2<η, ψ
h = ψh2<ih and T = (c, (K ′, c2), (ih2, η2, ψ

h
2≥ih , ψ2≥η)) : T2.

Observe that if f ′′ ∈ NamesOH,γ(Fn), then f ′′ ∈ NamesOH2,γ2(Fn2), and by Lemma 113
κf ′′ = κ1f

′′ = bi. By the I.H applied to p1 C1, it must be the case that (ψ1 ◦ κ1)(f ′′) = f ′′,
so by Lemma 111, we obtain that i < η(b). So if (ψ2 ◦ κ2)(f ′′) = f ′′, then (ψ ◦ κ)(f ′′) =
(ψ2<η ◦ κ2)(f ′′) = f ′′. Similarly, for ℓ ∈ Locγ(NamesOH,γ(Fn)), κ(ℓ) < ih, and so if
(ψh2 ◦ κ2)(ℓ) = ℓ, (ψh ◦ κ)(ℓ) = ℓ.

The result then hold by applying the inductive hypothesis to p′, and for the stack, the
observation that ψ2<η · ψ2≥η = ψ2 and ψh2<ih · ψh2≥ih = ψh2 .

56

• p = p′
c̄(A)−−−→ (⟨γ, ϕ, h,H,Fn⟩, S) = C with c ̸= c′. Due to the bracketing conditions,

there exists an action f(
−→
A, c) that this action answers, so let p′ = p1 C′ f(

−→
A,c)−−−−→ p2 where

C′ = (⟨γ′, ϕ′, h′, H ′,Fn ′⟩, S). It follows by Lemma 43 that Fn ′ = Fn, and by the construction
of LCBPV that γ,H are conservative extensions of γ′, H ′. By Lemma 114, T = T ′.

Let ConvF (p1 C′) = (κ′, ψ′, η′, µ′, ψ′h, i′h, N
′, T ′). Then by Lemma 113 κ is an extension of

κ′. By Lemma 115, ψ′ = ψ<η′ and ψ
′h = ψh<i′h

. The result then follows from applying the

I.H. to p1 C′ and using the observations that if ψ′(κ′(d)) = d then ψ(κ(d)) = ψ<η′(κ(d)) = d,
and if ψ′h(κ′(ℓ)) = ℓ then ψh(κ(ℓ)) = ψh<ih(κ(ℓ)) = ℓ.

We define the following function mapping extended stacks to stacks with the same structure
as L∆

PTR.

Stackγ,h,H,µ(⊥) ≜ ⊥
Stackγ,h,H,µ((c, (K, c

′)) : T) ≜ (c, (K, c′)) : Stackγ,h,H,µ(T)

Stackγ,h,H,µ((c, (K, c
′), (ih, η, ψ

h, ψ)) : T) ≜ (c, (K, c′), (ih, η, γ ◦ ψ, h ◦ ψh, H ◦ ψ, µ ◦ ψ)) : Stackγ,h,H,µ(T)

Finally, we can define a functional bisimulation Θ from LPath to L∆Γ,σ

PTR :

Θ((p C, F)) ≜ (⟨κ(N), κ(c), κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T))),
if C = (⟨N ′, c, γ, ϕ, h,H⟩, S)

Θ((p C, F)) ≜ (⟨κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, κ(Fn), ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T))),
if C = (⟨γ, ϕ, h,H,Fn⟩, S)

where (κ, ψ, η, µ, ψh, ih, N, T) = ConvF (p C) and if F = ∅ then l = 0, otherwise l = 1.

Lemma 118 (Lemma 54). Θ is a functional bisimulation between L∆
Path and L∆

PTR

Proof. It is easy to check that Θ(Cρ,c0M) = C
PTR,∆Γ,σ

M . We then need to check both directions of

the bisimulation. Checking one direction (that (p, F)
a−→ (p′, F ′) implies Θ((p, F))

a−→ Θ(p′, F)) is
straight froward given the construction. The other direction is more challenging, and given below.

Let D = Θ((p, F)) and D′ be s.t D
a−→ D′, then we wish to show there exist (p′, F ′) s.t.

(p, F)
a−→ (p′, F ′) and D′ = Θ((p′, F ′)). Let ConvF (p) = (κ, ψ, η, µ, ψh, ih, N, T).

We proceed by cases. First we consider cases whereD is active. ThenC = (⟨Ñ , c, γ, ϕ, h,H⟩, S),
p = p′ C (by Lemma 110) andD = (⟨κ(N), κ(c), κ◦γ◦ψ, h◦ψh, κ◦H◦ψ, ih, η, µ◦ψ, l⟩, κ(Stackγ,h,H,µ(T)))
where l = 0 if F = ∅ and l = 1 otherwise.

• D
τ−→ D′ where κ(N) = K[ref V]. Then there exists K ′ s.t K = κ(K ′) and N = K ′[ref V].

Thus

D′ = (⟨K[ih], κ(c), κ◦γ◦ψ, (h◦ψh) · [ih 7→ V], κ◦H ◦ψ, ih+1, η, µ◦ψ, l⟩, κ(Stackγ,h,H,µ(T)))

Now, for some ℓ, C
τ−→ (⟨K̃ ′[ℓ], c, γ, ϕ, h · [ℓ 7→ V], H⟩, S) = C′. Then ConvF (p

τ−→ C′) =
(κ · [ℓ 7→ ih + 1], ψ, η, µ, ψh · [ih + 1 7→ ℓ], ih + 1,K ′[ℓ], T). As (h ◦ ψh) · [ih 7→ V] = (h · [ℓ 7→
V]) ◦ (ψh · [ih + 1 7→ ℓ]) we obtain that D′ = Θ((p

τ−→ C′, F)).

• D
τ−→ D′ where κ(N) = K[end(i′h, η

′).whileN1 doN2]. Then these exists K ′, N ′
1, N

′
2 s.t.

K = κ(K ′), N ′
i = κ(N ′

i) and N = K ′[end(i′h, η
′).whileN ′

1 doN
′
2]. Thus

D′ = (⟨K[N1 to x.case x of return (), (N2 to y.end(i′h, η
′).whileN1 doN2)j>0],

κ(c), (κ ◦ γ ◦ ψ)<η′ , (h ◦ ψh)<ih′ , (κ ◦H ◦ ψ)<ψ, i′h, η′, (µ ◦ ψ)<η′ , l⟩, κ(Stackγ,h,H,µ(T)))

57

Now, C
τ−→ (⟨K̃ ′[N1 to x.case x of return (), (N ′

2 to y.whileN ′
1 doN

′
2)j>0], c, γ, ϕ, h,H⟩, S) =

C′, so

ConvF (p
τ−→ C′) = (κ, ψ<η′ , η

′, µ, ψh<i′h
, i′h,K

′[N ′
1 to x.case x of return (),

(N ′
2 to y.end(i′h, η

′).whileN ′
1 doN

′
2)j>0], S)

As (χ◦ψ)<η′ = χ◦(ψ<η′) and (h◦ψh)<i′h = h◦(ψh<ih), we obtain that D′ = Θ((p
τ−→ C′, F)).

• D
τ−→ D′ where κ(N) = K[whileN1 doN2]. Then these exists K ′, N ′

1, N
′
2 s.t. K = κ(K ′),

Ni and N = K ′[whileN ′
1 doN

′
2]. Thus

D′ = ⟨K[N1 to x.case x of return (), (N2 to y.end(ih, η).whileN1 doN2)j>0],

κ(c), κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T)))

Now, C
τ−→ (⟨K̃ ′[N1 to x.case x of return (), (N ′

2 to y.whileN ′
1 doN

′
2)j>0], c, γ,

ϕ, h,H⟩, S) = C′, so

ConvF (p
τ−→ C′) = (κ, ψ, η, µ, ψh, ih,K

′[N ′
1 to x.case x of return (),

(N ′
2 to y.end(ih, η).whileN

′
1 doN

′
2)j>0], S)

so we obtain that D′ = Θ((p
τ−→ C′, F)).

• D
τ−→ D′ where κ(N) = K[!j]. Then there exist K ′, ℓ s.t. K = κ(K ′) j = κ(ℓ) and

N = K ′[!ℓ]. Then

D′ = (⟨K[(h ◦ ψh)(j)], κ(c), κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T)))

NowC
τ−→ (⟨K̃ ′[h(ℓ)], c, γ, ϕ, h,H⟩, S) = C′, soConvF (p

τ−→ C′) = (κ, ψ, η, µ, ψh, ih,K
′[h(ℓ)], T).

Now, by Lemma 117, we have that h(ℓ) = (h ◦ ψh)(κ(ℓ)), so we obtain that D′ = Θ((p
τ−→

C′, F)).

• D
τ−→ D′ where κ(N) = K[j := V]. Then there exist K ′, ℓ s.t. K = κ(K ′) j = κ(ℓ) and

N = K ′[ℓ := V]. Then

D′ = (⟨K[return ()], κ(c), κ◦γ◦ψ, (h◦ψh)[j 7→ V], κ◦H◦ψ, ih, η, µ◦ψ, l⟩, κ(Stackγ,h,H,µ(T)))

NowC
τ−→ (⟨K̃ ′[return ()], c, γ, ϕ, h[ℓ 7→ V], H⟩, S) = C′, soConvF (p

τ−→ C′) = (κ, ψ, η, µ, ψh,
ih,K

′[return ()], T). Now, by Lemma 117, we have that h[ℓ 7→ V] = (h ◦ ψh)[κ(ℓ) 7→ V], so

we obtain that D′ = Θ((p
τ−→ C′, F)).

• D
τ−→ D′ otherwise. ThenD′ = (⟨N1, κ(c), κ◦γ◦ψ, h◦ψh, κ◦H◦ψ, ih, η, µ◦ψ, l⟩, κ(Stackγ,h,H,µ(T)))

where (κ(N), h ◦ ψh, ih, η) →e (N1, h ◦ ψh, ih, η). This reduction used neither names or lo-
cations, it follows that there exists N ′ s.t. N1 = κ(N ′) and (N,h) →m (N ′, h), and so

(Ñ , h) → (Ñ ′, h). Then C
τ−→ (⟨Ñ ′, c, γ, ϕ, h,H⟩, S) = C′, so we obtain that D′ = Θ((p

τ−→
C′, F)).

• D
f̄(

−→
V ,b)−−−−→ D′ where f is a level 2 name. Then κ(N) = K[force f i

−→
V] and b = SucC(f).

Then there exist K ′, f ′ s.t. K = κ(K ′), f i = κ(f ′) and N = K ′[force f ′
−→
V]. By Lemma 117,

(µ ◦ ψ)(κ(f ′)) = µ(f ′) = (i′h, η
′) . Then

D′ = (⟨(κ ◦ γ ◦ ψ)<η′ , (h ◦ ψh)<i′h , (κ ◦H ◦ ψ)<η′ , (κ ◦H ◦ ψ)(f ′), i′h, η′, (µ ◦ ψ)<η′ , l⟩,
(b0, (K,κ(c)), P) : κ(Stackγ,h,H,µ(T)))

58

where P = (ih, η, (κ ◦ γ ◦ ψ)≥η′ , (h ◦ ψh)≥i′h , (κ ◦H ◦ ψ)≥η′ , (µ ◦ ψ)≥η′).

It follows that for fresh continuation name c′,C
f̄ ′(

−→
V ,c′)−−−−−→ (⟨γ, ϕ⊎{c′}, h,H,H(f ′)⟩, (c′, (K̃ ′, c)) :

S) = C′. By Lemma 109, (p, F)
f̄(V,b)−−−−→ (p

f̄ ′(
−→
V ,c′)−−−−−→ C′, F), and ConvF (p

f̄ ′(
−→
V ,c′)−−−−−→ C′) =

(κ · [c′ 7→ b], ψ<η′ , η
′, µ, ψh<i′h

, i′h, ∅, (c′, (K ′, c), (ih, η, ψ
h
≥i′h

, ψ≥η′)) : T).

By Lemma 117, (κ ◦H ◦ ψ)(f i) = κ(H(f ′)), and (χ ◦ ψ)<η′ = χ ◦ (ψ<η′) and (h ◦ ψh)<i′h =

h ◦ (ψh<ih). Finally, as (χ ◦ ψ)≥η′ = χ ◦ (ψ≥η′) and (h ◦ ψh)≥i′h = h ◦ (ψh≥ih), we have

(b0,K, κ(c)), P) : κ(Stackγ,h,H,µ(T)) = κ·[c′ 7→ b0](Stackγ,h,H,µ((c
′, (K ′, c), (ih, η, ψ

h
≥i′h

, ψ≥η′)) :

T)), so we obtain that D′ = Θ((p
f̄ ′(

−→
V ,c′)−−−−−→ C′, F)).

• D
f̄(β(

−→
A),b)−−−−−−→ D′ where f is not a level 2 name. Then κ(N) = K[force f i

−→
V] where

(
−→
A, γ′, η′) = IVal∆(f,

−→
V , η) and b = SucC(f). Then there exist K ′,

−→
V ′, f ′ s.t. K =

κ(K ′),
−→
V = κ(

−→
V ′), f i = κ(f ′) and N = K ′[force f ′

−→
V ′]. Then

D′ = (⟨(κ ◦ γ ◦ ψ) · γ′, h ◦ ψh, κ ◦H ◦ ψ, (κ ◦H ◦ ψ)(f i) ⊎ ν(
−→
A), ih, η

′, µ ◦ ψ, l⟩,
(b0, (K,κ(c))) : κ(Stackγ,h,H,µ(T)))

There exist abstract value sequence
−→
A′ and γ′′ s.t. (

−→
A′, γ′′) ∈ AVal(

−→
V ′), so C

f̄ ′(
−→
A′,c′)−−−−−→

(⟨γ · γ′′, ϕ⊎ ν(
−→
A′)⊎{c′}, h,H,H(f ′)⊎ ν(

−→
A′)⟩, (c′, (K̃ ′, c)) : S) = C′. Following Lemmata 109

and 104, (p, F)
f̄(β(

−→
A),b)−−−−−−→ (p

f̄ ′(
−→
A′,c′)−−−−−→ C′, F) and γ′ = κ ◦ γ′′ ◦ [Match(A′, A, g) 7→

g]
g∈ν(

−→
A′)

. As (
−→
A, η′) ∈ IValSeq∆(f, η), we have ConvF (p

f̄ ′(
−→
A′,c′)−−−−−→ C′) = (κ · κ′, ψ ·

ψ′, η′, µ, ψh, ih, ∅, (c′, (K ′, c)) : T) where κ′ = [c′ 7→ b0] · [f 7→ Match(A′, A, f)]f∈ν(A′)

and ψ′ = [Match(A′, A, f) 7→ f]f∈ν(A′). By Lemma 117, (κ ◦ H ◦ ψ)(f i) ⊎ ν(
−→
A) =

κ(H(f ′)) ⊎ κ′(ν(
−→
A′)) = (κ · κ′)(H(f ′) ⊎ ν(

−→
A′)). Further, we have that (κ ◦ γ ◦ ψ) · γ′ =

(κ◦γ◦ψ)·(κ◦γ′′◦ψ′) = κ◦(γ·γ′′)◦(ψ·ψ′) = (κ·κ′)◦(γ·γ′′)◦(ψ·ψ′), κ◦H◦ψ = (κ·κ′)◦H◦(ψ·ψ′),
and

(κ · κ′)(Stackγ·γ′′,h,H,µ((c
′, (K ′, c)) : T))) = (b0, (K,κ(c)) : (κ · κ′)(Stackγ·γ′′,h,H,µ(T)))

= (b0, (K,κ(c)) : κ(Stackγ,h,H,µ(T)))

so we obtain that D′ = Θ((p
f̄ ′(

−→
A′,c′)−−−−−→ C′, F)).

• D
c̄0(β(A))−−−−−→ D′. Then κ(N) = return V where (A, γ′, η′) = IVal∆σ (c0, V, η), so it follows

there exists V ′ s.t V = κ(V ′) and N = return V . Then

D′ = (⟨(κ ◦ γ ◦ ψ) · γ′, h ◦ ψh, κ ◦H ◦ ψ, (κ ◦H ◦ ψ)(c00) ∪ ν(A), ih, η′, µ ◦ ψ, l⟩,
κ(Stackγ,h,H,µ(T)))

There exits abstract value A′ and mapping γ′′ s.t. (A′, γ′′) ∈ AValσ(V), so C
c̄0(A

′)−−−−→ (⟨γ ·
γ′′, ϕ ⊎ ν(A′), h,H,H(c0) ⊎ ν(A′)⟩, S) = C′. Following Lemma 109 and 103, (p, F)

c̄0(β(A))−−−−−→
(p

c̄0(A
′)−−−−→ C′, F) and γ′ = κ◦γ′′◦[Match(A′, A, f) 7→ f]f∈ν(A′). As (A, η′) ∈ IVals∆σ (c0, η),

we haveConvF (p
c̄0(A

′)−−−−→ C′) = (κ·κ′, ψ·ψ′, η′, µ, ψh, ih, ∅, T) where κ′ = [f 7→ Match(A′, A, f)]f∈ν(A′)

and ψ′ = [Match(A′, A, f) 7→ f]f∈ν(A′). As (κ ◦H ◦ψ)(c00)⊎ ν(A) = (κ · κ′)(H(c0)⊎ ν(A′)),
(κ ◦ γ ◦ ψ) · γ′ = (κ ◦ γ ◦ ψ) · (κ ◦ γ′′ ◦ ψ′) = κ ◦ (γ · γ′′) ◦ (ψ · ψ′) = (κ · κ′) ◦ (γ · γ′′) ◦ (ψ · ψ′)

and κ ◦H ◦ ψ = (κ · κ′) ◦H ◦ (ψ · ψ′), we obtain that D′ = Θ((p
c̄0(A

′)−−−−→ C′, F)).

59

• D
b̄(V)−−−→ D′ where κ(c) = bi, c is not c0. Then N = κ(N) = return V , and by Lemma 117,

(µ ◦ ψ)(κ(c)) = µ(c) = (i′h, η
′). So

D′ = (⟨(κ ◦ γ ◦ ψ)<η′ , (h ◦ ψh)<i′h , (κ ◦H ◦ ψ)<η′ , (κ ◦H ◦ ψ)(bi), i′h, η′, (µ ◦ ψ)<η′ , l⟩,
κ(Stackγ,h,H,µ(T)))

Then C
c̄(V)−−−→ (⟨γ, ϕ, h,H,H(c)⟩, S) = C′, so by Lemma 109 (p, F)

b̄(V)−−−→ (p
c̄(V)−−−→ C′, F),

and ConvF (p
c̄(V)−−−→ C′) = (κ, ψ<η′ , η

′, µ, ψh<i′h
, i′h, ∅, T). As by Lemma 117, (κ◦H ◦ψ)(bi) =

κ(H(c)), and (χ ◦ ψ)<η′ = χ ◦ (ψ<η′) and (h ◦ ψh)<i′h = h ◦ (ψh<ih), we obtain that D′ =

Θ((p
c̄(V)−−−→ C′, F)).

We now proceed to the cases where D is passive. Then C = (⟨γ, ϕ, h,H,Fn⟩, S), p = p′ C and
D = (⟨κ ◦ γ ◦ ψ, h ◦ ψh, κ ◦H ◦ ψ, κ(Fn), ih, η, µ ◦ ψ, l⟩, κ(Stackγ,h,H,µ(T))) where l = 0 if F = ∅
and l = 1 otherwise.

• D
f(β(

−→
B),c)−−−−−−→ D′. Then f i ∈ κ(Fn), (

−→
B′, η′) ∈ IValSeq∆(f, η),, and c = SucC(f). If l = 1,

then
−→
B =

−→
B′ and l′ = 1, else

−→
B ∈ Select(

−→
B′) and l′ = 1 if a name is marked in

−→
B , otherwise

l′ = 0. Let j = η(c) and V = (γ ◦ ψ)(f i), then

D′ = (⟨force κ(V)
−→
B, bj , κ ◦ γ ◦ ψ, h ◦ ψh, (κ ◦H ◦ ψ) · [ν(

−→
B), cj 7→ κ(Fn)], ih, η

′′,

(µ ◦ ψ) · [ν(
−→
B), cj 7→ (ih, η)], l

′⟩, κ(Stackγ,h,H,µ(T)))

where η′′ = η′[c 7→ j + 1].

Now, there exist f ′ ∈ Fn s.t. f i = κ(f ′), so by Lemma 109, f = Base∆Tr(p)(f
′), and

by Lemma 117 γ(f ′) = (γ ◦ ψ)(f i) = V . By Lemma 106, there exists
−→
A s.t C

f ′(
−→
A,c′)−−−−−→

(⟨force V
−→
A, c′, γ, ϕ, h,H · [ν(

−→
A), c′ 7→ Fn]⟩, S) = C′ and β(

−→
B′) = Base∆t (

−→
A) where t =

Tr(p
f ′(

−→
A,c′)−−−−−→ C′). If no name in

−→
B is marked, then F ′ = F , otherwise F ′ = {g ∈

ν(
−→
A) |Match(

−→
A,

−→
B, g) is marked}. Then (p, F)

f(β(
−→
B),c)−−−−−−→ (p

f ′(
−→
A,c′)−−−−−→ C′, F ′) andConvF ′(p

f ′(
−→
A,c)−−−−−→

C′) = (κ·κ′, ψ·ψ′, η′′, µ·µ′, ψh, ih, force V
−→
A, T) where κ′ = [c′ 7→ cj]·[g 7→ Match(

−→
A,

−→
B, g)]

g∈ν(
−→
A)

,

ψ′ = [cj 7→ c′] · [Match(
−→
A,

−→
B, g) 7→ g]

g∈ν(
−→
A)

and µ′ = [ν(
−→
A), c′ 7→ (ih, η)].

As (κ·κ′)(force V
−→
A) = force (κ·κ′)(V)(κ·κ′)(

−→
A) = force κ(V)

−→
B , κ◦γ◦ψ = (κ·κ′)◦γ◦(ψ·ψ′),

(κ◦H◦ψ)·[ν(
−→
B), cj 7→ κ(Fn)] = κ◦((H◦ψ)·([ν(

−→
A), c′ 7→ Fn]◦ψ′)) = (κ·κ′)◦(H ·[ν(

−→
A), c′ 7→

Fn]) ◦ (ψ ·ψ′), (µ ◦ψ) · [ν(
−→
B), cj 7→ (ih, η)] = (µ ◦ψ) · (µ′ ·ψ′) = (µ · µ′) ◦ (ψ ·ψ′), l′ = 0 if F

is empty and l′ = 1 otherwise, we obtain that D′ = Θ((p
f ′(

−→
A,c′)−−−−−→ C′, F ′)).

• D
c(β(B))−−−−−→ D′ where κ(Stackγ,h,H,µ(T))) = (c0, (K, bj)) : κ(Stackγ,h,H,µ(T

′))) and T =

(c′, (K ′, c′′)) : T ′. Then c0 : σ = κ(c′),K = κ(K ′), bj = κ(c′′), and (B′, η′) ∈ IVals∆σ (c, η).
If l = 1, then B = B′ and l′ = 1, else B ∈ Select(B′) and l′ = 1 if a name is marked in B,
otherwise l′ = 0. Then

D′ = (⟨K[return B], bj , κ ◦ γ ◦ ψ, h ◦ ψh, (κ ◦H ◦ ψ) · [ν(B) 7→ κ(Fn)], ih, η
′, µ ◦ ψ, l′⟩,

κ(Stackγ,h,H,µ(T
′)))

By Lemma 109, c = Base∆Tr(p)(c
′), by Lemma 110, S = (c′, (K̃ ′, c′′)) : S′, and by Lemma 105

there exists A s.t. C
c′(A)−−−→ (⟨K̃ ′[return A], c′′, γ, ϕ, h,H · [ν(A) 7→ Fn]⟩, S′) = C′ and

60

β(B′) = Base∆t (A) where t = Tr(p
c′(A)−−−→ C′). If no name in B is marked, then F ′ = F ,

otherwise F ′ = {g ∈ ν(A) | Match(A,B, g) is marked}. Then (p, F)
c(β(B))−−−−−→ (p

c′(A)−−−→
C′, F ′) and ConvF ′(p

c′(A)−−−→ C′) = (κ · κ′, ψ · ψ′, η′, µ, ψh, ih, force V
−→
A, T) where κ′ = [g 7→

Match(A,B, g)]g∈ν(A), and ψ
′ = [Match(A,B, g) 7→ g]g∈ν(A).

As (κ · κ′)(K ′[return A]) = K[return κ′(A)] = K[return B], κ ◦ γ ◦ ψ = (κ · κ′) ◦ γ ◦ (ψ · ψ′),
(κ ◦H ◦ ψ) · [ν(B) 7→ κ(Fn)] = κ ◦ ((H ◦ ψ) · ([ν(A) 7→ Fn] ◦ ψ′)) = (κ · κ′) ◦ (H · [ν(A) 7→
Fn]) ◦ (ψ · ψ′), µ ◦ ψ = µ ◦ (ψ · ψ′), l′ = 0 if F is empty and l′ = 1 otherwise, we obtain that

D′ = Θ((p
c′(A)−−−→ C′, F ′)).

• D
c(β(B))−−−−−→ D′ where κ(Stackγ,h,H,µ(T))) = (c0, (K, bj), (i′h, η

′, h ◦ ψ′h, κ ◦ γ ◦ ψ′, κ ◦ H ◦
ψ′, µ ◦ ψ′)) : κ(Stackγ,h,H,µ(T

′))) and T = (c′, (K ′, c′′), (i′h, η
′, ψ′h, ψ′)) : T ′. Then c0 : σ =

κ(c′),K = κ(K ′), bj = κ(c′′), and (B′, η′′) ∈ IVals∆σ (c, η
′). If l = 1, then B = B′ and l′ = 1,

else B ∈ Select(B′) and l′ = 1 if a name is marked in B, otherwise l′ = 0. Then

D′ = (⟨K[return B], bj , (κ ◦ γ ◦ψ) · (κ ◦ γ ◦ψ′), (h ◦ψh) · (h ◦ψ′h), (κ ◦H ◦ψ) · (κ ◦H ◦ψ′) · [ν(B) 7→ κ(Fn)],

ih, η
′, (µ ◦ ψ) · (µ ◦ ψ′) · [ν(B) 7→ (ih, η)], l

′⟩, κ(Stackγ,h,H,µ(T ′)))

By Lemma 109, c = Base∆Tr(p)(c
′), by Lemma 110, S = (c′, (K̃ ′, c′′)) : S′, and by Lemma 105

there exists A s.t. C
c′(A)−−−→ (⟨K̃ ′[return A], c′′, γ, ϕ, h,H ·[ν(A) 7→ Fn]⟩, S′) = C′ and β(B′) =

Base∆t (A) where t = Tr(p
c′(A)−−−→ C′). If no name in B is marked, then F ′ = F , otherwise

F ′ = {g ∈ ν(A) | Match(A,B, g) is marked}. Then (p, F)
c(β(B))−−−−−→ (p

c′(A)−−−→ C′, F ′) and

ConvF ′(p
c′(A)−−−→ C′) = (κ ·κ′, ψ ·ψ′ ·ψ′′, η′′, µ ·µ′, ψh ·ψ′h, ih, force V

−→
A, T) where κ′ = [g 7→

Match(A,B, g)]g∈ν(A), ψ
′′ = [Match(A,B, g) 7→ g]g∈ν(A) and µ

′ = [ν(A) 7→ (ih, η)].

As (κ · κ′)(K ′[return A]) = K[return κ′(A)] = K[return B], (κ ◦ γ ◦ ψ) · (κ ◦ γ ◦ ψ′) =
κ ◦ γ ◦ (ψ · ψ′) = (κ · κ′) ◦ γ ◦ (ψ · ψ′), (κ ◦ H ◦ ψ) · (κ ◦ H ◦ ψ′) · [ν(B) 7→ κ(Fn)] =
κ ◦ ((H ◦ ψ) · (H ◦ ψ′) · ([ν(A) 7→ Fn] ◦ ψ′′)) = (κ · κ′) ◦ (H · [ν(A) 7→ Fn]) ◦ (ψ · ψ′ · ψ′′),
(µ ◦ψ) · (µ ◦ψ′) · [ν(B) 7→ (ih, η)] = (µ ◦ψ) · (µ ◦ψ′) · (µ′ ·ψ′′) = (µ · µ′) ◦ (ψ ·ψ′ ·ψ′′), l′ = 0

if F is empty and l′ = 1 otherwise, we obtain that D′ = Θ((p
c′(A)−−−→ C′, F ′)).

Proof of Lemma 49. This follows from Lemma 108 and Lemma 118, as bisimulation implies trace
equivalence for deterministic LTS.

C.5 Canonical Forms

To simplify our work, we introduce a ‘canonical form’ for terms. The key property of this is that
only thunks from the context will be able to bound to variables. In the CBN setting, β-normal,η-
long form has been used for this purpose [10], whereas for CBV a slightly more subtle form is need
[12]. We adopt a canonical form similar in style to the CBV case.

Definition 119 (Canonical Form). A CBPV computation (value) is in canonical form if it can
be generated by M (V) in the grammar in Figure 16.

A useful result is that all terms can be placed into a contextually equivalent canonical form.

Lemma 120 (Lemma 56). Given a CBPV computation Γ ⊢c M : τ , there exists a computation
Γ ⊢c Canon(M) : τ in canonical form such that Γ ⊢c M ≃CBPV

ctx Canon(M) : τ

Our proof is modelled on the one in [28]. We first prove a helper lemma. In these proofs, the
transformations used can all be proved to maintain contextual equivalence using the equational
theory from Appendix A.3.

61

Ground Types β ≜ Unit | Int
Restricted Values V0 ≜ x | () | n̂ | ℓ | MkVar V0 V0
Values V ≜ V0 | thunk M | MkVar (thunk M) (thunk M)

Restricted Computations M0 ≜ force V0 | return V0 | M0V | ref V | !V0 | V0 := V0
Computations M ≜ M0 | return V | λxσ.M | let xβ be V.M

| M to xβ .M | M0 to x.M | case V of (Mi)i∈I | whileM doM

Figure 16: The grammar for terms in canonical form

Lemma 121. Given CBPV computation M in canonical form

1. for a value V : σ also in canonical form, then if M{V/x} is type-able, it can be placed into
canonical form;

2. for a value V : σ also in canonical form, then if M V is type-able, it can be placed into
canonical form;

3. for a computation N : Fσ also in canonical form, then if N to x.M is type-able, it can be
placed into canonical form;

s.t Lemma 120 is satisfied.

Proof. We proceed by induction on σ, considering the points in turn.

1. If V has a base type β, then we are done. Similarly, if V is a restricted value, we are done,
as restricted values can occur wherever variables can. Otherwise σ is of the form Uτ or Ref.
We handle these two cases in turn.

• If σ is of the form Uτ then V = thunk M ′. Let us consider the substitution for the
right-most occurrence of x. If this creates a violating, non-canonical sub-term, then

that sub-term will have the form (force thunk M ′)
−→
V or (force thunk M ′)

−→
V to y.M ′′.

Observe that we can reduce the second case to the first, as y must have a type smaller

than σ, so we can apply the third point of the I.H. once (force thunk M ′)
−→
V is in

canonical form. We can apply the transformation

force thunk M ′ 7→M ′

to reduce this to placing M ′−→V into canonical form. For this, we can repeatedly apply

the second point of the I.H., as the types of
−→
V are all smaller than σ. This replaces the

violating sub-term with a canonical one, leaving the whole term in canonical form.

We have a way of obtaining a canonical form ofM with V substituted for the rightmost
occurrence of x. As it was the rightmost occurrence of x, none of the terms we trans-
form involve x, so the total number of occurrences of x has decreased. Thus, we can
repeatedly make right-most substitutions and apply this process to obtain the canonical
form for M{V/x}.

• If σ is Ref, then V = MkVar (thunk Mread) (thunk Mwrite). As M is in canonical
form, due to the typing rules, x either occurs in a position V can occur and remain in
canonical form, or in a sub-term of the form !x, x := V0 , !x to y.N , or x := V0 to y.N .
As above, the later two cases reduce to the first via the third point. We can then use
the following transformations (which are exactly the operational reductions)

!MkVar (thunk Mread) (thunk Mwrite) 7→ Mread

(MkVar (thunk Mread) (thunk Mwrite)) := V0 7→ Mread V0

62

In the first case, we are done. In the other, we can use the second point of the I.H.

2. We can assume that M is a restricted computation or has the from λz.N repeatedly apply
the following transformations

(case V0 of (Mi)i∈I)V 7→ case V0 of (MiV)i∈I
(let yβ be V ′.M1)V 7→ let zβ be V ′.(M1{z/y}V)

where z is not free in V
(M1 to y.M2)V 7→ M1 to z.(M2{z/y}V)

where z is not free in V

If M is a restricted computation, then we are done. If it has the from λz.N , we use that

(λz.N)V 7→ N{V/z}

and appeal to the first point.

3. We can assume that N is a restricted computation, or of the form return V by repeated
application of the following transformations:

(case V of (Mi)i∈I) to x.M 7→ case V of (Mi to x.M)i∈I
(let yβ be V.M1) to x.M2 7→ let zβ be V.(M1{z/y} to x.M2)

where z is not free in M2, and z ̸= x
(M1 to y.M2) to x.M3 7→ M1 to z.(M2{z/y} to x.M3)

where z is not free in M3, and z ̸= x

If N is a restricted computation, then we are done. If it has the form return V , we can use
the fact return V to x.M ≡M{V/x} and appeal to the first point.

Proof of Lemma 120. We prove this result by induction on the structure of terms. We strengthen
the hypothesis to also apply to values. Terms of the form return V , thunkM , λx.M , case V of (Mi)i∈I ,
let V be yβ .M , and whileM doN can be dealt with simply by applying the I.H. to the sub-terms.
M V and M to x.N can be handled by apply the I.H. to the sub-terms, and applying Lemma 121.
The other cases are:

• let x be V.N Then we apply the I.H. to V and N , the transformation

let x be V.N 7→ N{V/x}

and appeal to the first point of Lemma 121.

• force V If V is a variable we are done, otherwise V = thunk M , in which case we use

force thunk M 7→M

and appeal to the I.H.

• !V or V := V0 If V is a variable we are done, otherwise we appeal to the I.H. to get
an equivalent V ′ in canonical form. If V ′ = MkVar x y we are done. Otherwise V ′ =
MkVar thunk Mread thunk Mwrite, so we use

!MkVar (thunk Mread) (thunk Mwrite) 7→ Mread

(MkVar (thunk Mread) (thunk Mwrite)) := V0 7→ Mread V0

and Lemma 121.

• MkVar Vread Vwrite By the I.H we obtain V ′
write, V

′
read in canonical form. If V ′

write, V
′
read are

both variables or both thunks, we are done. Otherwise, we can turn a variable x in to the
thunk thunk force x

63

Given our canonical forms, we have a number of useful results, which can be proved by simple
case analysis and inductions.

Lemma 122. If M is a term in canonical form, then if (M,h) →∗ (N,h′), then N is in canonical
form.

Definition 123. A computation N is said to be in weak canonical form if it can be generated
from the following grammar, potentially with thunk names substituted for variables:

N ≜M | (force thunk M)
−→
V0 | M

−→
V0 | return V0 to x.M

where M,V denote terms in canonical form, and V0 a restricted value.

Lemma 124. If Γ ⊢c M ′ : Fσ is in canonical form, and ρ a Γ-assignment, then for any active
configuration (⟨N, c′, γ, ϕ, h,H⟩, S) reachable from Cρ,cM ′ , N is in weak canonical form.

Lemma 125. If M is a computation not of the form whileN1 doN2 in (weak) canonical form, if
(M,h) → (N,h′), then N is smaller than M , where size is measured by the size of the derivation
of the computation in the grammar, treating all restricted values as having the same size.

Proof. The key to this proof is that substitutions never cause the duplication of a term of the
form thunk M , so β-reductions do not cause terms to grow in size.

C.6 Proof of exponential size for L∆
PTR (Lemma 57 and Lemma 63)

In giving the full detail of these proofs, we will provide the Lemmata used again, for clarity,
and indicate the number under which they appear in the main body of the paper. To simplify
the statement of results in this section, we will fix a PTR-computation Γ ⊢c M : Fσ, (Γ, σ)-name

scheme ∆ = (TBNames,CBNames, ρ, c0,SucT,SucC), and let C0 = CPTR,∆
M and NO = ν(ρ)∪{c0}.

We introduce the notation that for η, η′ : (TBNames ∪ CBNames) → N we write η ≤ η′ if
for all d ∈ TBNames ∪ CBNames, η(d) ≤ η′(d). We write η < η′ if η ≤ η′ and for some
d ∈ TBNames ∪ CBNames, η(d) < η′(d).

We first make the observation that, for any configuration (of form (⟨N, c, γ, h,H, ih, η, µ, l⟩, S)
or (⟨γ, h,H,Fn, ih, η, µ, l⟩, S)), reachable from C0 has that the domains of γ,H, µ only contain di

s.t. i < η(d). Similarly, the domain of h consists only of locations smaller than ih.
We will also observe that, when analysing the asymptotic size of the reachable state space, we

can effectively ignore the tag l, as it simply gives a factor of 2 increase.
We say two states differ only in the heap when all components other than the heap (h) and tag

(l) are the same, and that they are distinct beyond the heap when some component other than
the heap or tag is different. We extend these notions analogously to configurations.

Lemma 126. Let η be an index component. Let p be a path in LPTR s.t. every configuration C
in p with index component η′ satisfies η ≤ η′. Then the environment (γ), history (H), and reset
(µ) components of all configurations in the path agree when restricted to η (i.e. γ<η).

Proof. The key observation is that no type of transition causes the mappings γ,H, µ in a config-
uration to be ‘updated’, that is to have an existing binding changed. The only way we can end
up changing the binding for an indexed name ni with i < η(n) is for a PA-action to occur using a
head name cj s.t. j < η(c). But this would involve a configuration in p with index component η′

having η ̸≤ η′, which is not permitted. Thus, all γ,H, µ components must agree when restricted
by η.

Lemma 127. Let C be a configuration (of form (⟨N, c, γ, h,H, ih, η, µ, l⟩, S) or (⟨γ, h,H,Fn, ih, η, µ, l⟩, S))
reachable from C0. Let C

′ (of form (⟨N ′, c′, γ′, h′, H ′, i′h, η
′, µ′, l′⟩, S′) or (⟨γ′, h′, H ′,Fn ′, i′h, η

′, µ′, l′⟩, S′))
be a configuration reachable from C via a path p s.t.

64

• no answer action in p answers a question not occurring in p;

• no τ -action is produced involving reducing an occurrence of end.N found in C;

• p includes no unanswered PQ-actions on a level 2 name.

Then γ′<η = γ, H ′
<η = H, and µ′

<η = µ.

Proof. We proceed by induction on the number of PQ-actions on the level 2 names. In the base
case, we have no level 2 names. It is easy to confirm that the first two conditions on p ensure
that all intermediate configurations have index component η ≤ η′′ (as the three actions which can
reduce the index component are constrained so that they can only reduce it to a value it held after
C which, inductively, is larger that held in C). Thus, the result follows from Lemma 126.

In the inductive case, consider the last OA-action answering a level 2 question. Let this

be c1(A) answering f̄(
−→
A, c1). Now, we can partition p into the following way: p1 C1 f̄(

−→
A,c1)−−−−−→

C2 p2 C3 c1(A)−−−→ C4 p3. Let C1 = (⟨N1, dj , γ1, h1,
H1, i1h, η

1, µ1, l1⟩, S1). Then we can apply the inductive hypothesis (as p1 C1 includes no unan-
swered PQ-actions on a level 2 name and has strictly fewer answered question than p) to obtain
γ1<η = γ, H1

<η = H, and µ1
<η = µ. Let (i′′h, η

′′) = µ(f), then C2 = (⟨γ1<η′′ , h1<i′′h , H
1
<η′′ ,Fn

2, i′′h, η
′′,

µ1
<η′′ , l

2⟩, (c0, (K, dj), P) : S1) where P = (i1h, η
1, γ1≥η′′ , h

1
≥i′′h

, H1
≥η′′ , µ

1
≥η′′).

We obtain that the index component of C3 is η′′ from Lemma 115 and Lemma 118 (the
bi-simulation relating LPath to L∆

PTR). Applying the I.H. between C2 and C3, and the above
result, means that C3 = (⟨γ1<η′′ , h′, H1

<η′′ ,Fn
3, i′′h, η

′′, µ1
<η′′ , l

3⟩, (c0, (K, dj), P) : S1). Therefore,

as ζ<η′′ ·ζ≥η′′ = ζ, we obtain that C4 = (⟨K[A], dj , γ1, h4, H1 ·[ν(A) 7→ Fn3], i1h, η
1 ·ηA, µ1 ·[ν(A) 7→

(i1h], l
1⟩, S1). Finally, we can apply Lemma 126 to C4 p3 (as all intermediate configuration have

index component at least η), which gives the desired result.

A simple application of Lemma 127 yields the following, which essentially tells us it is okay to
consider on a single iteration of a while loop.

Lemma 128 (Lemma 59). LetM1 = N1 to x.case x of return (), (N2 to y.end(ih, η).whileM doN)j>0.
Let C = (⟨K[M1], c, γ, h,H, ih, η, µ, l⟩, S) be reachable from C0. Let C

′ = (⟨K[M1], c, γ
′, h′, H ′, i′h, η

′, µ′, l′⟩, S)
be a configuration reached from C by a path p which does not include a PA-action on c. Then C
and C′ differ only in the heap.

Lemma 129 (Lemma 58). Let C be a passive configuration reachable from C0 in L∆
PTR. Let C′

be a passive state reachable from C with the same stack component S as C, and with the stack
never being shorter than S in an intermediate configuration. Then C and C′ differ only in the
heap.

Proof. Let C = (⟨γ, h,H,Fn, ih, η, µ, l⟩, S) and C′ = (⟨γ′, h′, H ′,Fn ′, i′h, η
′, µ′, l′⟩, S). It suffices to

prove this hold when no passive configuration C′′ with the same stack S appears in the (shortest)
path p between C and C′. If C = C′, this is trivial. Otherwise, the first action in p is a

OQ-action leading to a configuration (⟨force V
−→
A, cj , γ, h,H · [cj 7→ Fn], ih, η

′, µ′, l⟩, S) (where
η′ = η[c 7→ j + 1] and µ′ = µ · [cj 7→ (ih, η)]), and so the last action must be the answering
PA-action from some (⟨return A, c′′, γ′, h′′, H ′′, i′′h, η

′′, µ′′, l′′⟩, S). The conditions in the statement
ensure that Lemma 127 is applicable, so we have that Fn ′ = H ′′(cj) = H · [cj 7→ Fn](cj) = Fn,
(i′h, η

′) = µ′′(cj) = µ · [cj 7→ (ih, η)] = (ih, η), and further that, as η′ = η, γ = γ′, H = H ′, η = η′,
and µ = µ′, as required.

Lemma 130. Let C = (⟨γ, h,H,Fn, ih, η, µ, l⟩, S) be reachable from C0, which occurs immediately

before OQ-action g(
−→
A, c) introducing a level 2 name f ′. Let f be a name which has f ′ as its

originator. Let p be a path from C such that

• no answer action in p answers a question not occurring in p;

65

• no τ -action is produced involving reducing an occurrence of end.N found in C;

• p includes no unanswered PQ-actions on a level 2 name;

• p ends in active C′ = (⟨K[force f i
−→
V], c′, γ′, h′, H ′, i′h, η

′, µ′, l′⟩, S′).

Then we have µ′(f i) = (ih, η), H
′(f i) = Fn.

Proof. We proceed inductively on the introduction chain showing that f ′ is the originator of
f . In the base case, we have that f = f ′. Then it follows that in the configuration C′′ =
(⟨N ′′, c′′, γ′′, h′′, H ′′, i′′h, η

′′, µ′′, l′′⟩, S′) immediately afterC, we have µ′′(f i) = (ih, η) andH
′′(f i) =

Fn. Applying Lemma 127 to p between C′′ and C′ gives the desired result.
For the inductive case, consider the action in which (the instance visible here of) f i is in-

troduced (i.e. an action d(A) after which the term includes return B where f i ∈ B, and after
which no PQ-action answering a question from before d(A) occurs). Let this action answer action

f̄ ′′(
−→
A′′, d). Then we can partition p as follows: p1 C1 f̄ ′′(

−→
A′′,d)−−−−−−→ C2 p2 C3 d(A)−−−→ C4 p3. It must

be the case that f ′ is the originator of f ′′. Then if C1 = (⟨K[force f ′′k
−→
V 1], c′j , γ1, h1, H1, i1h, η

1,
µ1, l1⟩, S1), by the I.H. µ1(f ′′k) = (ih, η), H

1(f ′′k) = Fn. Thus, in C2 = (⟨γ1<η, h1<ih , H
1
<η,

Fn, ih, η, µ
1
<η, l

1⟩, (d0, (K, c′j), P) : S1) where P1 = (i1h, η
1, γ≥η, h≥ih , H≥η, ν≥η). Now, it must

be the case that the stack in C3 is that same as the one in C2, due to bracketing. There-
fore, by Lemma 129, we obtain that C2 and C3 are the same up to the heap. Thus, if C4 =
((K[return A], c′j , γ4, h4, H4, i4h, η

4, µ4, l4), S1), we have µ4(f i) = (ih, η) and H4(f i) = Fn. Fi-
nally, we can appeal to Lemma 127 to obtain that µ4, µ′, and H4, H ′ must agree on f i, from
which the result follows.

From Lemma 130 and Lemma 127 we obtain the following

Lemma 131 (Lemma 60). Let C = (⟨γ, h,H,Fn, ih, η, µ, l⟩, S) be reachable from C0, which occurs

immediately before OQ-action g(
−→
A, c) introducing a level 2 name f ′. Let f be a name which has

f ′ as its originator. Let p be a path from C such that

• no answer action in p answers a question not occurring in p;

• no τ -action is produced involving reducing an occurrence of end. found in C;

• p includes no unanswered PQ-actions on a level 2 name whose;

• p ends in active C′ = (⟨K[force f i
−→
V], c′, γ′, h′, H ′, i′h, η

′, µ′, l′⟩, S′).

Then we have if C′ f̄(
−→
A,d)−−−−→ C′′, the states of C and C′′ differ only in the heap.

Proof. By Lemma 127, we have that γ′<η = γ, H ′
<η = H, and µ′

<η = µ. By Lemma 130, we have

µ′(f i) = (ih, η), H
′(f i) = Fn. Thus, the state of C′′ is ⟨γ, h′<ih , H,Fn, ih, η, µ, l

′⟩, as required.

Lemma 132 (Lemma 62). LetM be in canonical form. Let C be an active configuration reachable
from C0, which occurs immediately after a OQ-action, or is C0. Let C′ be an active configuration
reachable from C by a path p in which no OQ or PA-actions occur, and each occurrence of the
while construct is reduced at most once. Then the number of intermediate configurations which
are distinct beyond the heap is polynomial in M .

Proof. Let C = (⟨N, c, γ, h,H, ih, η, µ, l⟩, S). We can easily show that the size of N is bounded by
the size of M and the types in Γ and σ (the need for this is that a OQ-action creates applications
to abstract value, but this is restricted by the types). Further, observe that any PQ-action must
be followed immediately by an OA-action (as it cannot be an OQ-action). Thus, in the path, we

always have reductions of the form (⟨K[(force f)
−→
V], c′, γ′, h′, H ′, i′h, η

′, µ′, l′⟩, S) f̄(
−→
A,i′′t)−−−−−→ C′′ i′′t (A)−−−→

(⟨K[return A], c′, γ′′, h′, H ′′, i′h, η
′′, µ′, l′⟩, S)

66

Let us consider a measure of the size of M which treats all values as having the same size.
Recall from Lemma 124 that the term components are in weak canonical form. We can then see
that every τ -action in p (save expanding whiles) decreases the size of the term component. Every
PQ-action followed by an OA-action does not increase the size of the term component, and as
every such pair is either the end of p, or is followed by a τ -action, we can conclude that the triple
of actions decreases the size of the term component. In the absence of while, this would suffice
to bound the number of distinct configurations. With while, we can appeal to the fact that each
occurrence of the while construct is reduced at most once. This means we can treat expansions
of while as if they took whileM1 doM2 to M to x.case x of return (), (N to y.end(ĩh, η̃).Ω)j>0.
Thus, expanding a while increases the size of the term component, but by a constant amount. As
the number of while constructs is bound by the size of N , this gives us that the number of distinct
configurations is linear in N .

We now prove Lemma 61, the technques for which are independent of those used for the other
results.

Lemma 133 (Lemma 61). Let Γ ⊢c M : Fσ be a PTR-computation in canonical form, Γ-
assignment ρ and continuation name c0. Let t ∈ Tr(Cρ,c0M) be a trace which does not have an
unanswered PQ-action using a level 2 head name, then the number of unanswered PQ-actions in
t is bounded by the size of M .

Proof. Let p be the path which generates t.
Let Forces(N) be the function which counts the number of occurrences in weak canonical

form term N , of the construct force x, !x, x := V , !MkVar x y, MkVar x y := V , and any of these
where thunk names appear substituted for variables1. We will also allow the natural extension to
reduction contexts K in weak canonical normal form, Forces(K). For a term (or context) N and
mapping from names to thunks γ, define inductively the least set of reachable P -names,

ReachTγ,H(N) =
⋃

g∈ν(N)
g is not level 2

(ReachNγ,H(H(g)))

ReachNγ,H(S) = S ∪
⋃
f∈SReachTγ,H(γ(f))

which simply finds the P -names reachable from the top-most element of the stack (if there is one).
In the natural way, we can lift γ to act on a set of P -names, and Forces to sets of terms by summing
over the elements. Using this, we can then define the function Forces(C) on computations as

Forces((⟨γ, ϕ, h,H,Fn⟩,⊥)) = Forces(γ(ReachNγ,H(Fn)))
Forces((⟨γ, ϕ, h,H,Fn⟩, (c, (K, c′)) : S)) = Forces(γ(ReachNγ,H(Fn) ∪ReachTγ,H(K)))

+Forces(K)
Forces((⟨N, c, γ, ϕ, h,H⟩, S)) = Forces(N) + Forces(γ(ReachTγ,H(N)))

We will now consider how Forces(C) changes as we move along the path p.
First, we observe that if C = (⟨γ, ϕ, h,H,Fn⟩, S) is the configuration immediately before an

OQ-transition in p, and C′ = (⟨γ′, ϕ′, h′, H ′,Fn ′⟩, S) is the configuration immediately after the
answering PA-transition in p, then Forces(C) = Forces(C′). This is consequence of the fact that
in the PTR-fragment, visibility entails that Fn = Fn ′, and on all names already introduced at C,
γ,H and γ′, H ′ agree (γ′, H ′ extends γ,H). Thus, we can essentially ‘skip’ such sections of the
path, and will not have to consider the case of a answering PA-transition.

Similarly, let C = (⟨K[(force f)
−→
V], c, γ, ϕ, h,H⟩, S) be the state immediately before a PQ-

action f̄(
−→
A, c′) where f is a level 2 name, and let C′ = (⟨K[return A], c, γ′, ϕ′, h′, H ′⟩, S) be

the state immediately following the answering OA-action c′(A). Now, γ,H and γ′, H ′ agree on
all names already introduced by C. Observe that any names in ν(A) must be level 2 names,
so we have that Forces(C′) = Forces(K[return A]) + Forces(γ(ReachTγ′,H′(K[return A]))) <

1We need to count these uses of reference types, as they might reduce to a force f .

67

Forces(K[(force f ′)
−→
V])+Forces(γ(ReachTγ,H(K[(force f ′)

−→
V]))) = Forces(C). Thus, we can

also ‘skip’ these sections of a path, and as PQ-actions on level two names must be answered, we
do not need to consider this case.

Finally, let C be a configuration in p where we are about to expand a while loop, which clearly
will duplicate occurrences of force f etc. However, consider what occurs later in p. If we reach the
point when we are expanding the same while loop again, we will have reached a configuration C′

with Forces(C) = Forces(C′), which follows from the fact that when we reach the end of a loop,
any name introduced in a loop does not escape the iteration it was introduced in. In the case that
we never reduce the loop again (i.e. the condition is 0), then we observe that a path produced
by instead expanding whileN1 doN2 into K[N1 to x.case x of return (), (N2 to y.Ω)i>0] produces
the same trace, without increasing the value of Forces(). Thus, we do not need to consider while
loops.

What we will wish to show is that a PQ-transitions on non-level 2 names reduce the value of
Forces(C), and all other types of transitions (other than answering PA-transitions, PQ-transitions
on level 2 names and those expanding while loops) do not increase the value.

Let C = (⟨K[force f
−→
V], c, γ, ϕ, h,H⟩, S) f̄(

−→
A,c′)−−−−−→ (⟨γ · γA, ϕ′, h,H,H(f) ∪ ν(

−→
A)⟩, (c′, (K, c)) :

S) = C′ occur in path p. Now,

Forces(C) = 1 + Forces(K) + Forces(
⋃
V ∈

−→
V
{V })+

Forces(γ(ReachNγ,H(H(f)) ∪
⋃
V ∈

−→
V
ReachTγ,H(V) ∪ReachTγ,H(K)))

Forces(C′) = Forces(K)+

Forces(γ · γA(ReachNγ·γA,H(H(f) ∪ ν(
−→
A)) ∪ReachTγ·γA,H(K)))

And as we have

ReachTγ·γA,H(K) = ReachTγ,H(K)

ReachNγ·γA,H(H(f) ∪ ν(
−→
A))) = ReachNγ·γA,H(H(f)) ∪

⋃
g∈ν(

−→
A)

ReachTγ·γA,H(γ · γA(g)) ∪ ν(
−→
A)

= ReachNγ,H(H(f)) ∪
⋃
g∈ν(

−→
A)

ReachTγ,H(γA(g)) ∪ ν(
−→
A)

= ReachNγ,H(H(f)) ∪
⋃
V ∈

−→
V
ReachTγ,H(V) ∪ ν(

−→
A)

Forces(γ · γA(ReachTγ·γA,H(K) ∪ReachNγ·γA,H(H(f) ∪ ν(
−→
A)))))

as names in ν(
−→
A) are mapped into

−→
V under γA

= Forces(γ(ReachTγ,H(K) ∪ReachNγ,H(H(f))) ∪
⋃
V ∈

−→
V
ReachTγ,H(V) ∪

⋃
V ∈

−→
V
{V })

= Forces(γ(ReachTγ,H(K) ∪ReachNγ,H(H(f))) ∪
⋃
V ∈

−→
V
ReachTγ,H(V)) + Forces(

⋃
V ∈

−→
V
{V })

we can conclude that Forces(C′) < Forces(C).
We can now check that the other cases do no cause an increase.

• τ -transition. It is easy to check that for N in weak canonical normal form, (N,h) → (N ′, h′),
then Forces(N) ≥ Forces(N ′). The key to this is that the weak canonical form ensures
that reductions do not duplicate sub-terms of the from thunk M ′. The case of expanding a
while loop was handled above.

• OQ-transitions Suppose C = (⟨γ, ϕ, h,H,Fn⟩, S) f(
−→
A,c)−−−−→ (⟨force V

−→
A, c, γ, ϕ⊎ϕ′, h,H · [ϕ′ 7→

Fn]⟩, S) = C′ in path p, with V = γ(f) and ϕ′ = ν(
−→
A)⊎{c′}. Now, all the names in ν(

−→
A) are

level 2 names. Thus Forces(C′) = Forces(V) + Forces(γ(ReachTγ,H(V))). Now, as f ∈
Fn, and Forces(C) ≥ Forces(γ(ReachNγ,H(Fn))) ≥ Forces(γ({f} ∪ReachTγ,H(V))) =
Forces(C′) (as f ∈ ν(V))

• OA-transitions Suppose C = (⟨γ, ϕ, h,H,Fn⟩, (c, (K, c′)) : S) c(A)−−−→ (⟨K[return A], c′, γ, ϕ ⊎
ν(A), h,H · [ν(A) 7→ Fn]⟩, S) = C′. Now,

⋃
g∈ν(A) ReachNγ,H·[ν(A) 7→Fn](H · [ν(A) 7→

68

Fn](A)) = ReachNγ,H(Fn), and Forces(return A) = 0. So

Forces(C′) = Forces(K) + Forces(return A)+
Forces(γ(

⋃
g∈ν(A) ReachNγ,H·[ν(A)7→Fn](H · [ν(A) 7→ Fn](A)) ∪ReachTγ,H·[ν(A) 7→Fn](K)))

= Forces(K) + Forces(γ(ReachNγ,H(Fn) ∪ReachTγ,H(K)))
= Forces(C)

• PA-transitions By the consideration above, we only need to check PA-transitions with head

name c0. Let C = (⟨return V, c0, γ, ϕ, h,H⟩,⊥)
c̄0(A)−−−→ (⟨γ · γ′, ϕ ⊎ ν(A), h,H,H(c0) ⊎

ν(A)⟩,⊥) = C′ where (A, γ′) ∈ AValσ(V). Now, H(c0) = ∅, so

Forces(C′) = Forces(γ · γ′(ReachNγ·γ′,H(ν(A))))
= Forces(ν(A) ∪ γ(

⋃
g∈ν(A) ReachTγ·γ′,H(γ · γ′(g))))

= Forces(V ∪ γ(ReachTγ,H(V)))
= Forces(V) + Forces(γ(ReachTγ,H(V)))
= Forces(C)

Now, we simply conclude by observing that Forces(Cρ,c0M) is bounded inM , as it simply reduces
to Forces(M). As for an OQ-actions to occur from C, Forces(C) > 0, we obtain the desired
bound on the number of unanswered OQ-actions in t.

C.7 The IA and RML translations

We present the syntax of RML in Figure 17, and of IA in Figure 18. The languages have the usual
operational semantics, which we shall write as →RML and →IA (or simply as → when clear from
context). In particular, RML is operator first reduction. For termination (reducing to a value) we
write (M,h) ⇓RML

ter and (M,h) ⇓IA
ter . We can define contextual approximation in the standard way

using the notions of context define below:

• For RML terms Γ ⊢M1,M2 : σ, Γ ⊢M1 ≲RML
ter M2 holds when for all contexts C ⊢ σ =⇒ σ′,

(C[M1], h) ⇓RML
ter implies (C[M2], h) ⇓RML

ter .

• For IA terms Γ ⊢M1,M2 : τ , Γ ⊢M1 ≲IA
ter M2 holds when for all contexts C ⊢ τ =⇒ com,

(C[M1], h) ⇓IA
ter implies (C[M2], h) ⇓IA

ter .

RML Types σ ≜ Unit | Int | Ref | σ → σ

RML Value V ≜ x | n̂ | () | ℓ | MkVar V V | λxσ.M
RML Term M ≜ V | MM | M :=M | !M | refM | MkVar M M | whileM doM | case M of (Mi)i∈I
RML Eval Ctx K ≜ • | KM | V K | M := K | K := V | !K | refK | MkVar K M | MkVar V K

| case K of (Mi)i∈I
RML Ctx C ≜ • | MkVar C M | MkVar M C | λxσ.C | CM | M C | C :=M | M := C | !C | refK

case C of (Mi)i∈I | case M of (Mi)i<j , C, (Mi)j<i | whileC doM | whileM doC

Notational conventions: x, y ∈ Var, ℓ ∈ Loc, n ∈ Z
Syntactic sugar: We write letx = N inM for (λx.M)N , and if x does not occur free in M , we
write N ;M for letx = N inM , and Ω for while 1̂ do ()

Figure 17: RML syntax

We recall the translation of types is given in the following table.

69

IA types τ ≜ com | expr | var | τ → τ

IA Value V ≜ skip | x | n̂ | () | ℓ | MkVar M M | λxτ .M
IA Term M ≜ V | MM | M ;M | M :=M | !M | new x inM | whileM doM | case M of (Mi)i∈I
IA Eval Ctx K ≜ • | KM | M := K | K := V | !K | MkVar K M | MkVar V K | case K of (Mi)i∈I
IA Ctx C ≜ • | MkVar C M | MkVar M C | λxσ.C | CM | M C | C;M | M ;C | C :=M | M := C

| !C | new x inC | case C of (Mi)i∈I | case M of (Mi)i<j , C, (Mi)j<i
| whileC doM | whileM doC

Notational conventions: x, y ∈ Var, ℓ ∈ Loc, n ∈ Z
Syntactic sugar: We write Ω for while 1̂ do skip

Figure 18: IA syntax

RML type CBPV value types
Int,Unit,Ref Int,Unit,Ref
σ1 → σ2 U(σ1

RML → Fσ2
RML)

IA type CBPV computation types
expr, com F Int, FUnit

var Int → Int → F Int
τ1 → τ2 Uτ1

IA → τ2
IA

We provide the translation −RML on terms in the table below.

RML term M : σ CBPV computation MRML : FσRML

x return x
() return ()
n̂ return n̂
ℓ return ℓ

λx.M return thunk λx.MRML

MkVar M N MRML to fr.N
RML to fw.MkVar (thunk force fr()) fw

M N MRML to f.NRML to x.(force f)x
M := N NRML to x.MRML to y.y := x

!M MRML to x.!x
refM MRML to x.ref x

whileM doN whileMRML doNRML

case M of (Mi)i∈I MRML to x.case x of (Mi
RML)i∈I

For a RML environment Γ = {x1 : σ1 · · ·xk : σk}, we let ΓRML = {x1 : σ1
RML · · ·xk : σk

RML}.
Thus, the sequent Γ ⊢M : σ is translated into ΓRML ⊢c MRML : FσRML.

For IA, we need to ensure terms are in η-long form: that is we η-expand so that all occurances
of variables with function type are fully applied. η-expansion does not effect contexual equivalence
in IA. This is so that any arguments that sub-terms of M take with type τ1 → · · · τk → var are
exposed. We provide the translation −IAP on terms in the table below, then define M IA to be
M ′IAP

where M has η-long form M ′. Let assert(x ∼ n) be short for case x of (Ω)i<n, (), (Ω)n<i.

70

IA term M : τ IA computation M IAP : τ IA

x : τ1 → · · · τk → var λy1. · · ·λyk.λmode.λw.case mode of

((assert(w ∼ 0); (force x)y1 · · · yk0̂0̂), ((force x)y1 · · · yk1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1)
x otherwise force x

skip return ()
n̂ return n̂

ℓ λmode.λw.case mode of ((assert(w ∼ 0); !ℓ), (ℓ := w; return 0̂), (Ω)i>1)
λx.M λx.M IAP

MkVar M N λmode.λw.case mode of ((assert(w ∼ 0);M IAP), (N IAP(thunk return w); return 0̂), (Ω)i>1)
M N M IAP (thunk N IAP)
M ;N M IAP to x.N IAP

M := n̂ M IAP 1̂ n̂ to y.assert(y ∼ 0)

M := N otherwise N IAP to x.M IAP 1̂x to y.assert(y ∼ 0)

!M M IAP 0̂ 0̂

new x inM ref 0̂ to x′.let x be thunk λmode.λw.case mode of ((assert(w ∼ 0); !x′), (x′ := w; return 0̂), (Ω)i>0).
M IAP

whileM doN whileM IAP doN IAP

case M of (Mi)i∈I M IAP to x.case x of (Mi
IAP)i∈I

For an IA environment Γ = {x1 : τ1 · · ·xk : τk}, we let ΓIA = {x1 : Uτ1
IA · · ·xk : Uτk

IA}. Thus,
the sequent Γ ⊢M : τ is translated into ΓIA ⊢c M IA : τ IA

C.8 Full abstraction of the RML and IA translations

To prove Theorem 66, we will need to provide both soundness and completeness results.
We first present a useful result which deals with the somewhat unusual translation of variables

with a type returning var.

Lemma 134. For Σ;Γ ⊢c M IAP : Uτ1 → · · · → Uτk → Int → Int → F Int (where k can be 0),

for any ⊢v Vi : Uτi, Σ ⊢ γ : Γ, and heap h : Σ, (M IA{γ}V1 · · · Vk ĵ m̂, h) ⇓ter only if j = 0 and
m = 0, or j = 1. If j = 1, then if this terminates, it reduces to (return 0, h′).

Proof. The proof of this is by induction on the structure of M . In the base cases, we have that
M is either ℓ, MkVar M1 M2, or x. It is easy to verify the requirements hold in these cases. We
show the last case.

(xIAP{γ}V1 · · ·Vk ĵ m̂, h) = ((λy1. · · ·λyk.λmode.λw.case mode of ((assert(w ∼ 0); (force x{γ})y1 · · · yk0̂0̂),
((force x{γ})y1 · · · yk1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1))V1 · · ·Vk ĵ m̂, h)

→∗ ((λmode.λw.case mode of ((assert(w ∼ 0); (force x{γ})V1 · · ·Vk0̂0̂),
((force x{γ})V1 · · ·Vk1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1)) ĵ m̂, h)

→∗ (case ĵ of ((assert(m̂ ∼ 0); (force x{γ})V1 · · ·Vk0̂0̂),
((force x{γ})V1 · · ·Vk1̂m̂ to z.assert(z ∼ 0); return 0̂), (Ω)i>1)), h)

Observe that if j ̸= 0 and j ̸= 1, then this reduces to (Ω, h), which does not terminate. Further,
if j = 0, then this reduces to (assert(m̂ ∼ 0); (force x{γ})V1 · · ·Vk0̂0̂, h), and as assert(m̂ ∼ 0)
reduces to Ω if m ̸= 0, for this to terminate, we get m = 0. Finally, if j = 1, then this reduces
to ((force x{γ})V1 · · ·Vk1̂m̂ to z.assert(z ∼ 0); return 0̂, h), which, if it terminates, reduces to
(return 0̂, h′), as required.

The inductive cases for M having the form N1N2, N1;N2, case N of (Ni)i∈I are all straight
forward. Observe that, due to the typing rule, M cannot have the form new x inN . We check the
most interesting case, that M has the form λx.N . In this case we have (λx.N)

IAP
= λx.N IAP.

Thus, for any ⊢v Vi : Uτi, Σ ⊢ γ : Γ, and heap h : Σ, we have

((λx.N)
IAP{γ}V1 · · ·Vk ĵ m̂, h) = ((λx.N IAP{γ})V1 · · ·Vk ĵ m̂, h) → (N IAP{γ·[x 7→ V1]}V2 · · ·Vk ĵ m̂, h)

71

Thus, by an appeal to the I.H on N IAP, we obtain that ((λx.N)
IAP{γ}V1 · · ·Vk ĵ m̂, h) terminates

only if j = 0 and m = 0, or j = 1, and if j = 1, then it terminates only if it reduces to
(return 0, h′).

Lemma 135. Let Γ ⊢ M : τ → τ ′ be an IA-term. Then there exists an IA-term N s.t. M IA =β
λx.N IA.

Proof. This proceeds by induction on the structure of M .
In the base cases, are as follows. First, we haveM = λx.N , which is trivial, asM IA = λx.N IA.

The second case is xN1 · · ·Nk where x : τ1 → · · · → τn → τ . ThenM IA = λxk+1. · · ·λxn.xIAP(thunkN1
IA)

· · · (thunk NkIA) (thunk xk+1
IA) · · · (thunk xnIA) = λxk+1.(xN1 · · ·Nk xk+1)

IA
, as required.

The inductive cases are fairly straight forward, following mainly from the ς-rules. For example,
in the case of M = M1;M2. By the I.H., we have N2 s.t. M2

IA =βης λx.N2
IA, so we have

M IA = M1
IA;M2

IA =βης M1
IA;λx.N2

IA =ς λx.(M1
IA;N2

IA) = λx.(M1;N2)
IA
. The interesting

case is M = M1M2. By the I.H., there exists N ′ s.t. M1
IA =βης λy.N

′IA. By the I.H., there

exists N ′′ s.t. N ′IA =βης λx.N
′′IA. Thus, we have M IA =βης (λy.λx.N ′′IA)thunk M2

IA =β
λx.N ′′IA{thunk M2

IA/y} =β λx.(N
′′IAthunk M2

IA) = λx.(N ′′M2)
IA
, as required.

The following result, a kind of substitution lemma, is useful in what follows.

Lemma 136. Let Γ, x : τN ⊢M : τM and Γ ⊢ N : τN be IA-terms, then Γ ⊢M IA{thunk N IA/x} ∼=CBPV
ter

(N{M/x})IA.

Sketch. This proof proceeds by induction on the type of x (its IA-type in M , τN) and secondarily
on the structure of M .

• The base case is that x : expr, x : com, or x : var. For the induction on structure, the base

case is that M = x. In the first two cases, xIA = force x, so we get xIA{thunk N IA/x} =
force thunk N IA =η N

IA. In the other case we have

xIA{thunk N IA/x} = λmode.λw.case mode of ((assert(w ∼ 0); (force thunk N IA)0̂0̂),

((force thunk N IA)1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1)

=β λmode.λw.case mode of ((assert(w ∼ 0); (N IA)0̂0̂),

((N IA)1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1)

Now, by Lemma 3, it suffices to check CIU equivalence. So taken any Σ ⊢ K : τM
IA =⇒

Fσ, Σ ⊢ γ : ΓIA, and h : Σ. By the types, K = K ′[• ĵ m̂]. We wish to show that
(K[N IA{γ}], h) ⇓ter iff (K[xIA{thunk N IA/x}{γ}], h) ⇓ter .

Going right-to-left, for the above it is immediate that (K[xIA{thunk N IA/x}{γ}], h) ⇓ter

only if j = 0 and m = 0 or j = 1. In the first case, we have (K[xIA{thunk N IA/x}{γ}], h) →
(K[N IA{γ}], h), and so are done. In the second case (K[xIA{thunk N IA/x}{γ}], h) →
(K ′[N IA{γ}1̂m̂ to z.assert(z ∼ 0); return 0̂], h). For this to terminate, it follows that
(N IA{γ}1̂m̂, h) → (return 0̂, h′) and (N IA{γ}1̂m̂ to z.assert(z ∼ 0); return 0̂, h) → (return 0̂, h′).
Thus (K[N IA{γ}], h) ⇓ter .

Now going left-to-right, by Lemma 134, (K[N IA{γ}], h) ⇓ter implies that j = 0 and m = 0,
or j = 1, and if j = 1, then (N IA{γ}, h) → (return 0̂, h′). If j = 0 and m = 0,
then (K[xIA{thunk N IA/x}{γ}], h) → (K[N IA{γ}], h), and so are done. If j = 1 then
(K[xIA{thunk N IA/x}{γ}], h) → (K ′[N IA{γ}1̂m̂ to z.assert(z ∼ 0); return 0̂], h), and as
(N IA{γ}1̂m̂ to z.assert(z ∼ 0); return 0̂, h) → (return 0̂, h′), we obtain (K[xIA{thunkN IA/x}{γ}], h).
The inductive cases on the structure of M are then straight-forward.

• The inductive case is that x : τ1 → · · · τn → expr, x : τ1 → · · · τn → com, or x : τ1 →
· · · τn → var.

72

For the inductive proof on the structure of M , we reduce the problem to showing that the
equivalence holds when the right-most occurance of x is substituted. This means that the
base case is M = xN1 · · ·Nk, where x not free in Ni and 0 ≤ k ≤ n. We have

M IA = λxk+1 · · ·λxn.xIAP thunk N1
IA · · · thunk NkIAthunk xk+1

IA · · · thunk xnIA

for fresh xi, and (M{N/x})IA = N IA (thunk N1
IA) · · · (thunk NkIA).

For the first two cases, we have

M IA{thunk N IA/x} = (λxk+1 · · ·λxn.force x (thunk N1
IA) · · · (thunk NkIA)

(thunk xk+1
IA) · · · (xnIA)){thunk N IA/x}

= λxk+1 · · ·λxn.force thunk N IA (thunk N1
IA) · · · (thunk NkIA)

(thunk xk+1
IA) · · · (thunk xnIA)

=β λxk+1 · · ·λxn.N IA (thunk N1
IA) · · · (thunk NkIA)
(thunk xk+1

IA) · · · (thunk xnIA)

By Lemma 135, we have that there exists some N ′ s.t. Γ ⊢ N IA ∼=CBPV
ter λx1. · · ·λxn.N ′IA.

Thus, we have that

Γ ⊢ M IA{thunk N IA/x}
=β λxk+1 · · ·λxn.N IA (thunk N1

IA) · · · (thunk NkIA)(thunk xk+1
IA) · · · (thunk xnIA)

∼=CBPV
ter λxk+1 · · ·λxn.(λx1. · · ·λxn.N ′IA) (thunk N1

IA) · · · (thunk NkIA)
(thunk xk+1

IA) · · · (thunk xnIA) by above

=β λxk+1 · · ·λxn.(N ′IA{thunk N1
IA/x1} · · · {thunk NkIA/xk}

{thunk xk+1
IA/xk+1} · · · {thunk xnIA/xn})

∼=CBPV
ter λxk+1 · · ·λxn.((N ′{N1/x1})IA{thunk N2

IA/x2} · · · {thunk NkIA/xk}
{thunk xk+1

IA/xk+1} · · · {thunk xnIA/xn}) by I.H
∼=CBPV

ter λxk+1 · · ·λxn.((N ′{N1/x1} · · · {Nk/xk}{xk+1/xk+1} · · · {xn/xn})IA) by I.H

= λxk+1 · · ·λxn.((N ′{N1/x1} · · · {Nk/xk})IA)
∼=CBPV

ter λxk+1 · · ·λxn.(N ′IA{thunk N1
IA/x1} · · · {thunk NkIA/xk}) by I.H

= (λxk+1 · · ·λxn.N ′IA){thunk N1
IA/x1} · · · {thunk NkIA/xk}

=β (λx1. · · ·λxn.N ′IA) (thunk N1
IA) · · · (thunk NkIA)

∼=CBPV
ter N IA (thunk N1

IA) · · · (thunk NkIA) by above

= (M{N/x})IA

For the case of x : τ1 → · · · τn → var, the reasoning is the obvious combination of the
preceeding and the reasoning for the case of x : var.

The inductive cases on the structure of M are again straight-forward.

We need to generalise the translations to be applicable to contexts. This is simple, we simply
define •RML = • and •IA = •.

Lemma 137. • For RML term Γ ⊢ M : σ and context ⊢ C : σ =⇒ σ′, then (C[M])
RML

=
CRML[MRML].

• For IA term Γ ⊢M : τ and context ⊢ C : τ =⇒ com, then (C[M])
IA ∼=CBPV

ter CIA[M IA].

Proof. By induction on the structure of contexts. For IA, the resort to contextual equivalence
arises due to the base case that M is not a fully applied variable, where we need to appeal to
Lemma 136.

Lemma 138. • for RML context C, C is an RML evaluation context iff CRML is a CBPV
evaluation context.

73

• for IA context C, C is an IA evaluation context iff CIA is a CBPV evaluation context.

Proof. By induction on the structure of contexts.

We are now ready to establish that termination is preserved and reflected under the transla-
tions.

Lemma 139. • For closed RML-term M , (M, ∅) ⇓RML
ter iff (MRML, ∅) ⇓ter .

• For closed IA-term M , (M, ∅) ⇓IA
ter iff (M IA, ∅) ⇓ter .

Sketch. This can be obtained by following the style of proof given by Levy in his thesis [29,
Appendix A]. The RML-case is more straight-forward, and involves proving a simple substitution
Lemma. In the IA case, we will to use Lemma 136 to handle substitutions.

To be concrete, we will sketch the proof for IA. We have to prove the more general result that
for IA-term Σ ⊢M : τ , for any heap h : Σ, then (M,h) ⇓IA

ter iff (M IA, h) ⇓ter .
Now, observe that if N be the η-long form of M , (M,h) ⇓IA

ter iff (N,h) ⇓IA
ter , and M

IA = N IA.
Thus, W.L.O.G assume that M is in η-long form, so M IA =M IAP.

We first prove left-to-right, so assume that (M,h) ⇓IA
ter . We proceed by an induction on the

length of the reduction sequence from (M,h). In the base case, M is terminal, so has the form
skip,n̂, ℓ, λx.N , or MkVar N1 N2. It is trival to check that M IA is terminal.

In the inductive cases we have that (M,h) →IA (M ′, h′) where (M ′, h′) ⇓IA
ter in one fewer steps.

The proof then proceeds on the rules for →IA. We will show two of the interesting cases.

• M = K[(λx.M1)M2],M
′ = K[M1{M2/x}] and h = h′. Now,M IA = KIA[(λx.M1

IA) (thunkM2
IA)].

By Lemma 138, KIA is a reduction context, so (M IA, h) → (KIA[M1
IA{thunk M2

IA/x}], h).
Now, by Lemmata 136 and 137, ⊢ KIA[M1

IA{thunkM2
IA/x}] ∼=CBPV

ter KIA[(M1{M2/x})IA] ∼=CBPV
ter

M ′IA. Thus by I.H., (KIA[M1
IA{thunk M2

IA/x}], h) ⇓ter , so (M IA, h) ⇓ter .

• M = K[ℓ := n̂], M ′ = K[skip], h′ = h[ℓ 7→ n̂].

Now,M IA = KIA[(λmode.λw.casemode of ((assert(w ∼ 0); !ℓ), (ℓ := w; return 0̂), (Ω)i>1)) 1̂ n̂ to
y.assert(y ∼ 0)]. By Lemma 138, KIA is a reduction context, so

(M IA, h) →∗ (KIA[ℓ := n̂; return 0̂ to y.assert(y ∼ 0)], h)

→ (KIA[return (); return 0̂ to y.assert(y ∼ 0)], h[ℓ 7→ n̂]) →∗ (KIA[return ()], h[ℓ 7→ n̂])

As M ′IA = KIA[return ()], by the I.H., we obtain that (KIA[return ()], h[ℓ 7→ n̂]) ⇓ter and
so (M IA, h) ⇓ter .

We now turn to the right-to-left implication, so assume that (M IA, h) ⇓ter . We proceed by an
induction on the length of the reduction sequence from (M IA, h).

In the base case, M IA is terminal, so has the form return V or λx.M ′. By considering −IAP,
it must have the form return (), return n̂, λx.N IA, λmode.λw.
case mode of ((assert(w ∼ 0); !ℓ), (ℓ := w; return 0̂), (Ω)i>1), or λmode.λw.case mode
of ((assert(w ∼ 0);N1

IA), (N2
IA(thunk return w); return 0̂), (Ω)i>1) with M being skip, n̂, λx.N ,

ℓ, or MkVar N1 N2, respectively, which are all terminal.
For the inductive case, we have that (M IA, h) → (M ′, h) where (M ′, h′) ⇓IA

ter in one fewer steps.
The proof then proceeds on the rules for →. We will show three cases.

• M IA = K[(λx.N)V2], where V2 : Uτ , M ′ = K[N{V2/x}], and h = h′. By considering −IAP,
we can observe that there must existKI s.t. K = KI

IA,M1 s.t. N =M1
IA, andM2 s.t. V2 =

thunk M2
IA. By Lemma 138, KI is a reduction context, so (M,h) →IA (KI [M1{M2/x}], h).

Now, by Lemmata 137 and 136, ⊢ (KI [M1{M2/x}])IA ∼=CBPV
ter KI

IA[(M1{M2/x})IA] ∼=CBPV
ter

M ′. By the I.H., ((KI [M1{M2/x}])IA, h) ⇓ter , so (M IA, h) ⇓ter .

74

• M IA = K[(λmode.N)1̂n̂], M ′ = K[N{1̂/mode}], and h = h′. By consideration of −IAP,
N = λw.case mode of ((assert(w ∼ 0); !ℓ), (ℓ := w; return 0̂), (Ω)i>1) or

λw.case mode of ((assert(w ∼ 0);M IA), (N IA(thunk return w); return 0̂), (Ω)i>1)

and there exists KI s.t. K = KI
IA[• to y.assert(y ∼ 0)]. We will consider the first

case. Thus, M = K[ℓ := n̂]. By Lemma 138, KI is a reduction context, so (M,h) →IA

(KI [skip], h[ℓ 7→ n̂]). Now, in this case we have

(M IA, h) →∗ (KI
IA[ℓ := n̂; return 0̂ to y.assert(y ∼ 0)], h)

→ (KI
IA[return (); return 0̂ to y.assert(y ∼ 0)], h[ℓ 7→ n̂]) →∗ (KI

IA[return ()], h[ℓ 7→ n̂])

As (KI [skip])
IA

= KI
IA[return ()], by the I.H., we obtain that (KI [skip], h[ℓ 7→ n̂]) ⇓ter and

so (M,h) ⇓ter .

• M IA = K[return n̂ to x.N], M ′ = K[N{n̂/x}], and h = h′. By considering −IAP, KI s.t.
K = KI

IA, and that N must have the form case x of (Ni
IA)i∈I . In this case we must have

M = case n̂ of (Ni)i∈I . Thus (M,h) →IA (KI [Nn], h). We also have that (M IA, h) →
(K[case n̂ of (Ni

IA)i∈I], h) → (K[Ni
IA], h), Thus, by Lemma 137 and the I.H., we are done.

Lemma 140 (Soundness). • Let Γ ⊢ M1,M2 : σ be RML-terms. If ΓRML ⊢ M1
RML ≲CBPV

ter

M2
RML, then Γ ⊢M1 ≲RML

ter M2.

• Let Γ ⊢M1,M2 : τ be IA-terms. If ΓIA ⊢M1
IA ≲CBPV

ter M2
IA, then Γ ⊢M1 ≲RML

ter M2.

Proof. Let T be RML or IA. Suppose that (C[M1], ∅) ⇓Tter . Then by Lemma 139 (left-to-right),
((C[M1])

T , ∅) ⇓ter . By Lemma 137 (left-to-right), (CT [MT
1], ∅) ⇓ter , and so as MT

1 ≲
CBPV
ter MT

2 ,
(CT [MT

2], ∅) ⇓ter . By Lemma 137 (right-to-left), ((C[M2])
T , ∅) ⇓ter , and so by Lemma 139 (right-

to-left), (C[M1], ∅) ⇓Tter as required.

We can now specialise our definability result when dealing with traces produced by image of
RML and IA terms. For this we will need a few helper Lemmata.

We first deal with RML. We have the following result for sequencing in RML.

Lemma 141. Let letx =M inN be an RML-term. Then (letx =M inN)
RML

=β M
RML to x.NRML.

Specifically, if M ;N be an RML-term, then (M ;N)
RML

=β M
RML;NRML.

Proof. Recall that in RML, letx =M inN syntactic sugar for (λx.N)M . Then (letx =M inN)
RML

=
return (thunk λx.NRML) to f.MRML to x.force f x =β M

RML to x.(λx.NRML)x =β M
RML to x.NRML.

Lemma 142. For RML-terms M,N which are either a variable, an integer literal, a location,
or (), we have the following:

• !MRML =β !M

• M := NRML =β M := N

• (case M of (Mi)i∈I)
RML

=β case M of (Mi
RML)iI

Proof. The proof of all of these is similar, so we show the first case. (!M)
RML

=MRML to x.!x
= return M to x.!x =β !M .

75

Lemma 143 (Definability for RML). Suppose ϕ ⊆ TNames, c : σ is s.t. the types are in the image
of −RML. Suppose t is an even-length P-visible, P-bracketed, O-visible, P-visible ({◦}, ϕ ⊎ {c})-
trace starting with an O-action, such that t = t′ ◦̄(A) and t′ is complete. There exists a passive
configuration C such that Treven(C) is the even-length prefixes of t (along with their renamings
via permutations on Names that fix ϕ ⊎ {◦}).

Moreover, C = ⟨γRML, ϕ ⊎ {c}, h, [◦ 7→ ∅], ϕ⟩, (c, (KRML, ◦)) : ⊥) for some h,K, γ, where

return γRML(x) = γ(x)
RML

.

Proof. This proof stems form the fact the constructions in Lemma 100 when dealing with the
image of RML types are themselves the image of RML terms (up to β-equality). That is, we will
show that there exists K, γ so that KRML, γRML are equal up to β-equality to the ones found in
Lemma 22 (and so produce the same trace). First, observe that for the translation of RML types,

that abstract value sequences
−→
A always consist of exactly one entry. We check the constructions

that are used below.

• The non-terminating term at any type (Ω;M) is, by Lemma 141, β-equal to (Ω;M ′)
RML

,

where M ′ is s.t. M ′RML
=M .

• The constructions for operations like + can be seen to be the translation of the RML con-
struction.

• The construction inc time =!time to t.(t+1) to t′.time := t′ is β-equal to the translation of
the term let t =!time in let t′ = t+ 1̂ in time := t′, by appeal to Lemmata 141 and 142.

• The construction assert(x ∼ A) for Int is β-equal to the translation of case x of (Ω)i<A, (), (Ω)A<i
by Lemma 142.

• The substitution M{−→x /
−→
A} is such that if M is β-equal to the image under −RML of an

RML-term (with names substituted for free variables), then the substitution also is β-equal
to the image under −RML of an RML-term (with names substituted for free variables).

• Similarly, the substitution A{γ} where γ is s.t. return γ(x) is β-equal to the image under
−RML of an RML-term (with names substituted for free variables) then return A{γ} is β-
equal to the image under −RML of an RML-term (with names substituted for free variables).

• Consider (force g)A{γ} where γ is s.t. return γ(x) is β-equal to the image under −RML

of an RML-term (with names substituted for free variables). Let M be a RML-term
s.t. return A{γ} is β-equal MRML (with names substituted for free variables). Then
(force g)A{γ} is β-equal to the image under −RML of yM , with g substituted for y.

Given the above observation, and Lemmata 141 and 142, we can see that

• the inductive construction for γi satisfies the property that for all x ∈ dom(γi), return γi(x)
is β-equal to the image under −RML of an RML-term (with names substituted for free
variables), and

• the inductive construction for Si satisfies the property that for all contexts K ∈ Si, K
is β-equal to the image under −RML of an RML-context (with names substituted for free
variables).

Formally this can be done by a mutual induction. The desired result then follows form the case
of i = 0.

Lemma 144 (Completeness for RML). Let Γ ⊢M1,M2 : σ be RML-terms. If Γ ⊢M1 ≲RML
ter M2,

then ΓRML ⊢M1
RML ≲CBPV

ter M2
RML.

76

Proof. Suppose Γ ⊢M1 ≲
IA(ciu)
ter M2. Let ρ be a ΓRML-configuration, Ai = ρ(xi), c : σ

RML and t ∈
TrCBPV(C

ρA⃗i
,c

M1
RML) s.t. t is complete. Then t is a (ν(ρ)⊎{c}, ∅)-trace s.t. the types are in the image

of −RML. W.L.O.G, due to the closure of TrCBPV(C
ρA⃗i

,c

M1
RML) under renaming, we can ensure that ◦

does not appear in t. Let ◦ : Unit and t1 = t⊥ ◦̄(()), a ({◦}, ν(ρ)⊎{c})-trace. Then, as t is O-visible,
O-bracketed, P-visible, P-bracketed and complete, so is t⊥ and so t1 is. Thus, we can appeal to
Lemma 143 to get a passive configuration CO = ⟨γORML, ϕ⊎{c}, h, [◦ 7→ ∅], ϕ⟩, (c, (KRML, ◦)) : ⊥)
for some h,KRML, γRML

O , such that TrevenCBPV(CO) consists of all even-length prefixes of t1, up to
renamings which preserve ν(ρ) ⊎ {c, ◦}.

Observe that CO = Cγ⃗i,c
h,KRML,γRML where γ(xi) = Ai{γRML

O } and γRML
i = γRML

O ↾ ν(Ai). Then

we have the t ∈ TrCBPV(C
ρA⃗i

,c

M1
RML) and t1 ∈ TrCBPV(C

γ⃗i,c
h,KRML,γRML). We can then apply Lemma 20

(right-to-left) to obtain (KRML[M1
RML]{γRML}, h) ⇓ter . We can then define the (closed) RML

context C = let t = ref 0 in (letx1 = γ(x1) in · · · letxn = γ(xn) inK){t/time}, which is such that

CRML is equivalent to ref 0 to t.(return γ(x1)
RML

to x. · · · return γ(xn)RML
to xn.K

RML){t/time},
by Lemma 141. Thus (CRML[M1

RML], h) ⇓ter .
So by Lemma 137 (right-to-left) and Lemma 139 (right-to-left), (C[M1], h) ⇓RML

ter . Thus by the
assumption, (C[M2], h) ⇓RML

ter , and so by Lemma 139 (left-to-right) and Lemma 137 (left-to-right)
(CRML[M2

RML], h) ⇓ter and so (KRML[M2
RML]{γRML}, h) ⇓ter . By Lemma 20 (left-to-right), we

have a complete trace t′ ∈∈ TrCBPV(C
ρA⃗i

,c

M2
RML) such that t′⊥ ◦̄(()) ∈ TrCBPV(C

γ⃗i,c
h,KRML,γRML). By

the definition of CO, all complete traces in TrCBPV(CO) are equal to t1 up to renaming of names
preserving ν(ρ) ⊎ {c, ◦}, so t′ is equal to t (up to a renaming of names preserving ν(ρ) ⊎ {c}).
Therefore, by the closure property, we have t ∈ TrCBPV(C

ρA⃗i
,c

M2
RML).

Thus, we obtain that TrCBPV(Γ
RML ⊢c M1

RML) ⊆ TrCBPV(Γ
RML ⊢c M2

RML), and so by The-

orem 21 (Soundness), we have ΓRML ⊢c M1
RML ≲CBPV(ciu)

ter M2
RML, as required.

We can now turn to IA, where we will prove similarly prove some helpful lemmata.

Lemma 145. For IA-terms M,N which are either an integer literal or a location, then we have
the following:

• (!M)
IA

=β !M

• (M := N)
IA

=β M := N

• (case M of (Mi)i∈I)
IA

=β case M of (Mi
IA)i∈I

Proof. We handle the first case. Recall that !M IA =M IA 0̂ 0̂. IfM = ℓ, then ℓIA = λmode.λw.casemode
of ((assert(w ∼ 0); !ℓ), (ℓ := w; return 0̂), (Ω)i), so (!M)

IA
=β case 0̂ of ((assert(0̂ ∼ 0); !ℓ), (ℓ :=

0̂; return 0̂), (Ω)i) =β assert(0̂ ∼ 0); !ℓ =β !ℓ.

Lemma 146. Let new x inM be an IA-term (in which x is not rebound in M) and all occurrences
of x have the form !x or x := N . Recall that

(new x inM)
IA

= ref 0̂ to x′.let x be thunk λmode.λw.case mode of

((assert(w ∼ 0); !x′), (x′ := w; return 0̂), (Ω)i).M
IA

This is βης-equivalent to ref 0̂ to x′.M ′, where M ′ is M IA but with occurrences of !x translated as
!x′ and x := N as N IA to y.x′ := y

Proof. First, observe that (new x inM)
IA

is β-equivalent to ref 0̂ to x′.M IA{thunk N/x} where
N = λmode.λw.case mode of ((assert(w ∼ 0); !x′), (x′ := w; return 0̂), (Ω)(i > 1)). Now, an
occurrence of !x in M becomes

(λmode.λw.case mode of ((assert(w ∼ 0); (force x)0̂0̂),

((force x)1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1)) 0̂ 0̂

77

in M IA so in M IA{thunk M ′/x} becomes

(λmode.λw.case mode of ((assert(w ∼ 0); (force thunk M ′)0̂0̂),

((force thunk M ′)1̂w to z.assert(z ∼ 0); return 0̂), (Ω)i>1)) 0̂ 0̂

=β case 0̂ of ((assert(0̂ ∼ 0); (force thunk M ′)0̂0̂),

((force thunk M ′)1̂
̂̂
0 to z.assert(z ∼ 0); return 0̂), (Ω)i>1)

=β assert(0̂ ∼ 0); (force thunk M ′)0̂0̂ =β (force thunk M ′)0̂0̂ =β M
′0̂0̂

=β case 0̂ of ((assert(0̂ ∼ 0); !x′), (x′ := 0̂; return 0̂), (Ω)i>1) =β assert(0̂ ∼ 0); !x′ =β !x
′

Similarly, an occurrence of x := N in M(where N is not n̂) becomes

N IA to y.(λmode.λw.case mode of ((assert(w ∼ 0); (force x)0̂0̂),

((force x)1̂w to z.assert(z ∼ 0)); return 0̂, (Ω)i>1)) 1̂ y to z.assert(z ∼ 0̂)

in M IA so in M IA{thunk M ′/x} becomes

N IA to y.(λmode.λw.case mode of ((assert(w ∼ 0); (force thunk M ′)0̂0̂),

((force thunk M ′)1̂w to z.assert(z ∼ 0)); return 0̂, (Ω)i>1)) 1̂ y to z.assert(z ∼ 0̂)

=β N
IA to y.case 1̂ of ((assert(y ∼ 0); (force thunk M ′)0̂0̂),

((force thunk M ′)1̂y to z.assert(z ∼ 0)); return 0̂, (Ω)i>1) to z.assert(z ∼ 0̂)

=β N
IA to y.((force thunk M ′)1̂y to z.assert(z ∼ 0)); return 0̂ to z.assert(z ∼ 0̂)

=β N
IA to y.((M ′)1̂y to z.assert(z ∼ 0)); return 0̂ to z.assert(z ∼ 0̂)

=β N
IA to y.((case 1̂ of ((assert(w ∼ 0); !x′), (x′ := y; return 0̂), (Ω)i>1))

to z.assert(z ∼ 0)); return 0̂ to z.assert(z ∼ 0̂)

=β N
IA to y.((x′ := y; return 0̂) to z.assert(z ∼ 0)); return 0̂ to z.assert(z ∼ 0̂)

=ς N
IA to y.x′ := y; return 0̂ to z.assert(z ∼ 0); return 0̂ to z.assert(z ∼ 0̂)

=β N
IA to y.x′ := y; assert(0̂ ∼ 0); assert(0̂ ∼ 0) =η N

IA to y.x′ := y

The case where N = n̂ is analogous.

Definition 147. A (ϕ⊎ {c}, ∅)-trace t is an IA trace if ϕ ⊆ TNames, c : σ is s.t. the types are in
the image of −IA, and for f : U(Uτ1 → · · · → Uτk → Int → Int → F Int) (where k can be 0):

• Any OQ-action in t with head name f has the form f(A1 · · · Ak 0̂ 0̂, c) or f(A1 · · · Ak 1̂n̂, c);

• Any PQ-action in t with head name f has the form f̄(A1 · · · Ak 0̂0̂, c) or f̄(A1 · · · Ak 1̂n̂, c);

• Any OA-action answering a PQ-action of the form f̄(A1 · · · Ak 1̂ n̂, c) has the form c(0̂);

• Any PA-action answering a OQ-action of the form f(A1 · · · Ak 1̂ n̂, c) has the form c̄(0̂).

Lemma 148. Let Γ ⊢c N : Fσ be s.t. Γ, N, Fσ are the image of an IA term under −IA. Let
ρ be a Γ-assignment, and c a continuation name. Then complete trace t ∈ TrCBPV(C

ρ,c
M) is an

IA-trace.

Proof. We will first consider the case of an OQ-action. Suppose that f(
−→
A ĵ n̂, c) is in t. Now,

consider C = (⟨γ, ϕ, h,H,Fn⟩, S) as being the configuration immediately before f(
−→
A ĵ n̂, c) in

the path p generating t. We have that γ(f) = N , where N is equivalent to some N ′IA with
names substituted for free variables (which we can prove by induction on paths, using Lemma 136

78

to handle OQ-actions). The term component of the configuration after C′ is N
−→
A ĵ n̂, so by

consideration similar to Lemma 134, we can determine that p can only produce the answering
PA-action if j = 0 and n = 0, or j = 1 (as we would otherwise reach a point where the term
component is non-terminating). As t is complete, it must be the case j = 0 and n = 0, or j = 1.
Further more, if j = 1, it must be the case that the configuration before the answering PA-action
in p is return 0̂, and so the answering PA-action is c̄(0̂).

Now, consider the case of a PQ-action. Suppose that f(
−→
A ĵ n̂, c) is in t. Then let C =

(⟨N, c′, γ, ϕ, h,H⟩, S) as being the configuration immediately before f(
−→
A ĵ n̂, c) in the path p gen-

erating t. It must be the case that N = K[(force f)
−→
V ĵ n̂]. By considering the types, we observe

that this must result from the translation of IA term with the form !N , N1 := N2, or a varible x.
As (!N)

IA
= N IA 0̂ 0̂, (N1 := N2)

IA
= N2

IA to x.N1
IA 1̂x to z.assert(z ∼ 0), and for a suitable x,

λy1. · · ·λyk.λmode.λw.casemode of ((assert(w ∼ 0); (force x)y1 · · · yk0̂0̂), ((force x)y1 · · · yk1̂w to z.assert(z ∼
0); return 0̂), (Ω)i>1) we can conclude that j = 0 and n = 0, or j = 1.

Now suppose that j = 1. Then it must be that K = K ′[• to z.assert(z ∼ 0)]. Let c(m̂) be
the answering action in t, and C′ the configuration after this action in the path p generating t.
It follows from bracketing that the term component of C′ is K ′[return m̂ to z.assert(z ∼ 0)].
Therefore, before the next PA or PQ action, p must reach a configuration with term component
K ′[assert(m ∼ 0)]. For t to be complete, assert(m ∼ 0) must terminate, and so m = 0.

Lemma 149 (Definability for IA). Suppose t is an even-length P-visible, P-bracketed, O-visible,
P-visible ({◦}, ϕ ⊎ {c})-trace starting with an O-action, such that t = t′⊥ ◦̄(A) and t′ is an IA-
trace. There exists a passive configuration C such that Treven(C) is the even-length prefixes of t
(along with their renamings via permutations on Names that fix ϕ ⊎ {◦}).

Moreover, C = ⟨γIA, ϕ ⊎ {c}, h, [◦ 7→ ∅], ϕ⟩, (c, (KIA, ◦)) : ⊥) for some h,K, γ, where γIA(x) =

thunk γ(x)
IA
.

Proof. This proof stems form the fact the constructions in Lemma 100 when considering an IA-
trace are (contextually) equivalent to the image of IA terms (we names substituted for free vari-
ables). That is, we will show that there is K, γ so that KIA, γIA is equivalent to the one found in
Lemma 22 (and so produces the same trace).

We check that the constructions we use are the image of IA terms.

• The non-terminating term at any type (Ω;M) is (Ω;M ′)
IA
, where M ′ is s.t. M ′IA =M .

• The constructions for operations like + are equivalent to the translation from IA, in particular
we have that M + n̂IA is equivalent to M to y.y+ n̂, as the implementation is done in terms
of case.

• The construction inc time =!time to t.(t+1) to t′.time := t′ is equivalent to the translation
of the term time :=!time + 1, by appeal to Lemma 145 and the above point.

• The translation is s.t. we never have a type of the form FUτ or FRef. Thus occurrences of
return A in our constructions will only have A of the form (), n̂, in which cases return A is
simply the translation of A under −IA.

• Further, in the construction ofK for Si, x will only be used in the assertion, as the restriction
observed above ensures that x has type Unit or Int, so this equivalent to the translation of
assert(• ∼ A).

• The substitution M{−→x /
−→
A} is such that if M is equivalent to the image under −IA of an

IA-term (with names substituted for free variables), then the substitution also is equivalent
to the image under −IA of an IA-term (with names substituted for free variables).

• Consider (force g)
−→
A{γ} where γ is s.t. γ(x) is equivalent to the thunk N IA for IA-term N

(with names substituted for free variables). Now, it must be the case that all of the values

in
−→
A have types of the form Uτ , or (force g)

−→
A{γ} ≡ (force g)

−→
A′{γ} ĵ n̂.

79

In the first case, all values in
−→
A are names, and so assume it equals f1 · · · fk. Assume Nk is

an IA term s.t. γ(fi) is equivalent to thunk Ni
IA (with names substituted for free variables).

Then (y N1 · · · Nk)IA = (λx1. · · ·λxk.(force y)(thunk x1IA) · · · (thunk xkIA))thunkN1
IA · · · thunkNkIA,

so by repeated appeals to Lemma 136, we obtain that this is equivalent to (force y)(thunkN1
IA)

· · · (thunk NkIA). Thus force g
−→
A{γ} is equivalent to (y N1 · · · Nk)IA (with g substituted

for y, and names substituted for free variables).

Consider now the second case. It follows from a similar argument to the first case that
(y N1 · · · Nk)IA is equivalent to yIAP(thunk N1

IA) · · · (thunk Nk
IA). By the fact t′ is an

IA-trace, we have that j = 1, or j = 0 and n = 0. Then we can easily check that

(force y)
−→
A′{γ} 0̂ 0̂ is equivalent to (yIAP)

−→
A′{γ} 0̂ 0̂, so we obtain that (force g)

−→
A′{γ} 0̂ 0̂

is equivalent to !(y N1 · · · Nk)IA (with g substituted for y, and names substituted for some
variables).

Similarly, we have that (force g)
−→
A′{γ} 1̂ n̂ to z.assert(z ∼ 0) is equivalent to (y N1 · · · Nk) := n̂

IA

(with g substituted for y, and names substituted for free variables). Now, recall that con-
texts K on the stack have the form • to x.assert(x ∼ 0);N , equivalent to the image of

assert(• ∼ 0);N ′, whereN ′ is equivalent toN IA. Then it is the case thatK[force g
−→
A′{γ} 1̂ n̂]

is equivalent to ((y N1 · · · Nk) := n̂;N ′)
IA

(with g substituted for y, and names substituted
for free variables).

• Observe that the construction γi(f) where f : U(Uτ1 → · · · → Uτk → Int → Int → F Int) is
equivalent to

thunk (λx1. · · ·λxk.(inc time; !time to t.case t of (M ′
j)0≤j≤n)

where M ′
j is either Ω, or of the form λmode.λw.assert(mode ∼ mj); assert(w ∼ nj);Nj , for

some mj , nj , where Nj is the case dependent inductive construction. By the fact that t is
an IA-trace, we have that mj = 0 and nj = 0, or mj = 1.

In the case mj = 0 and nj = 0, then M ′
j is equivalent to

λmode.λw.(case mode of (return ()), (Ω)i>0); assert(w ∼ 0);Nj

=ς λmode.λw.case mode of (return (); assert(w ∼ 0);Nj), (Ω)i>0

=β λmode.λw.case mode of (assert(w ∼ 0);Nj), (Ω)i>0

Then if Nj is equivalent to (N ′
j)

IA
for IA-term N ′

j (with names substituted for free variables),

then Mj is equivalent to (MkVar N ′
j Ω)

IA
(with name substituted for free variables).

In the second case, then M ′
j is equivalent to

λmode.λw.(case mode of (Ω), (return ()), (Ω)i>1); assert(w ∼ nj);Nj

=ς λmode.λw.case mode of (Ω), (return (); assert(w ∼ nj);Nj), (Ω)i>1

=β λmode.λw.case mode of (Ω), (assert(w ∼ nj);Nj), (Ω)i>1

=β λmode.λw.case mode of (Ω),

((λx.force x to x′.assert(w′ ∼ nj))(thunk return w);Nj), (Ω)i>1

Now, by the fact t is an IA-trace, we can conclude that Nj ; return 0̂ is equivalent to Nj ,
as it must be that case that Nj terminates, it returns 0. Then if Nj is equivalent to

(N ′
j)

IA
for IA-term N ′

j (with names substituted for free variables), then Mj is equivalent

to (MkVar Ω (λx.assert(x ∼ nj);N
′
j))

IA
(with name substituted for free variables).

Given the above observation, and Lemma 145, we can see that

80

• the inductive construction for γi satisfies the property that for all x ∈ dom(γi), γi(x) is
equivalent to thunk M IA for an IA-term M (with names substituted for free variables), and

• the inductive construction for Si satisfies the property that for all contexts K ∈ Si, K
is equivalent to the image under −IA of an IA-context (with names substituted for free
variables).

Formally this can be done by a mutual induction. The desired result then follows form the case
of i = 0, so taking γ = γ0 and K s.t S0 = (c, (K, ◦)) : ⊥.

For IA, we must handle the fact that the image of the translation of types includes those of
the from σ1 → · · · → σk → Fσ, for which we cannot directly use our trace model. The following
Lemma allows us to resolve this.

Lemma 150. Let Γ ⊢Mτ → τ ′. Then Γ, (x, σ) ⊢ (M x)
IA ∼=CBPV

ter M IA x.

Proof. By Lemma 135,M IA =βης λx.N
IA. Thus, (M x)

IA
=βης N

IA{thunk xIA/x} andM IA x =βης
N IA{x/x} = N IA = (N{x/x})IA. We can the appeal to Lemma 136 to get the desired result.

Lemma 151 (Completeness for IA). Let Γ ⊢M1,M2 : τ be IA-terms. If Γ ⊢M1 ≲RML
ter M2, then

ΓIA ⊢M1
IA ≲CBPV

ter M2
IA.

Proof. Suppose Γ ⊢ M1 ≲
IA(ciu)
ter M2. Recall Lemma 4. Therefore, if Mi

IA has type σ1 →
· · · → σk → Fσ, we consider Ni = Mi

IA y1 · · · yk and Γ′ = ΓIA, (y1, σ1), · · · , (yk, σk), where
ΓIA = (x1, σ

′
1), · · · , (xm, σ′

m). Observe, because of the Lemma 150, for any IA context C, that

(CIA[(Mi y1 · · · yn)IA], h) ⇓ter iff (CIA[Mi
IA y1 · · · yn], h) ⇓ter .

Let ρ be a Γ′-configuration, Ai = ρ(xi), c : σ and t ∈ TrCBPV(C
ρA⃗i

,c

N1
) s.t. t is complete. Then

by Lemma 148, t is a (ν(ρ) ⊎ {c}, ∅) IA-trace. W.L.O.G, due to the closure of TrCBPV(C
ρA⃗i

,c

N1
)

under renaming, we can ensure that ◦ does not appear in t′. Let ◦ : Unit and t1 = t⊥ ◦̄(()), a
({◦}, ν(ρ) ⊎ {c})-trace. Then, as t is O-visible, O-bracketed, P-visible, P-bracketed and complete,
so is t⊥ and so t1 is. Thus, we can appeal to Lemma 149 to get a passive configuration CO =
⟨γOIA, ϕ⊎{c}, h, [◦ 7→ ∅], ϕ⟩, (c, (KIA, ◦)) : ⊥) for some h,KIA, γIAO , such that TrevenCBPV(CO) consists
of all even-length prefixes of t (up to renamings which preserve ν(ρ) ⊎ {c, ◦}).

Observe that CO = Cγ⃗i,c
h,KIA,γIA where γ(xi)

IA
= Ai{γIAO } and γi = γIAO ↾ ν(Ai). Then we

have that t ∈ TrCBPV(C
ρA⃗i

,c

N1
) and t1 ∈ TrCBPV(C

γ⃗i,c
h,KIA,γIA). We can then apply Lemma 20

(right-to-left) to obtain (KIA[N1]{γIA}, h) ⇓ter .
Consider the case thatMi

IA has type Uτ1 → · · · → Uτn → Fσ (so k = n). We can then define
the (closed) IA context

C = new t in ((λx1. · · ·λxm.λy1. · · ·λyn.K) γ(x1) · · · γ(xm)

γ(y1) · · · γ(yn)){t/time}

which is such that CIA is equivalent to ref 0̂ to t.((λx1. · · ·
λxm.K

IA) γ(x1)
IA · · · γ(xm)

IA
){t/time}, by Lemma 146. Thus (CIA[N1], h) ⇓ter .

In the case that Mi
IA has type Uτ1 → · · · → Uτn → Int → Int → F Int (so k = n + 2).

Then by Lemma 134, for (KIA[N1]{γIA}, h) ⇓ter to terminate, we must have γIA(yn+1) = 0̂ and
γIA(yn+2) = 0̂, or γIA(yn+1) = 1̂. Thus we can define (closed) IA context C = new t in (!(λx1. · · ·λxm.
λy1. · · ·λyn.K) γ(x1) · · · γ(xm) γ(y1) · · · γ(yn)){t/time} or C = new t in (((λx1. · · ·λym.λy1. · · ·λyn.K)
γ(x1) · · · γ(xm) γ(y1) · · · γ(yn)) := γ(yn+2)){t/time} (respectively), which are such that, by Lemma 146,
CIA is equivalent to

ref 0̂ to t.((λx1. · · ·λxm.λy1. · · ·λyn.KIA[• γ(yn+1)
IA
γ(yn+2)

IA
])

γ(x1)
IA · · · γ(xm)

IA
γ(y1)

IA · · · γ(yn)IA){t/time}

81

By the observation above, (CIA[(M1 y1 · · · yn)IA], h) ⇓ter , so by Lemma 137 (right-to-left) and

Lemma 139 (right-to-left), (C[M1 y1 · · · yn], h) ⇓IA
ter . Thus by the assumption that Γ ⊢M1 ≲

IA(ciu)
ter

M2, we have (C[M2 y1 · · · yn], h) ⇓IA
ter , and so by Lemma 139 (left-to-right) and Lemma 137 (left-to-

right) (CIA[(M2 y1 · · · yn)IA], h) ⇓ter , and by the observation above, (CIA[(M2)
IA
y1 · · · yn], h) ⇓ter .

Thus we have (KIA[N2]{γIA}, h) ⇓ter . By Lemma 20 (left-to-right), we have a complete trace

t′ ∈∈ TrCBPV(C
ρA⃗i

,c

N2
) such that t′⊥ ◦̄(()) ∈ TrCBPV(C

γ⃗i,c
h,KIA,γIA). By the definition of CO, we

obtain that t′ is equal to t (up to a renaming of names preserving ν(ρ) ⊎ {c}). Therefore, by the

closure property, we have t ∈ TrCBPV(C
ρA⃗i

,c

N2
IA).

Thus, we obtain that TrCBPV(Γ
′ ⊢c N1) ⊆ TrCBPV(Γ

′ ⊢c N2), and so by Theorem 21 (Sound-

ness), we have Γ′ ⊢c N1 ≲
CBPV(ciu)
ter N2. By Lemma 4, we obtain ΓIA ⊢c M1

IA ≲CBPV(ciu)
ter M2

IA

as required.

Proof of Theorem 66. Follows from Lemmata 144, 151 and 140.

82

