
39

Linearity in Higher-Order Recursion Schemes

PIERRE CLAIRAMBAULT, Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France

CHARLES GRELLOIS, Inria, Sophia Antipolis and Aix Marseille Université, CNRS, ENSAM, Université de

Toulon, LSIS UMR 7296, Marseille, France

ANDRZEJ S. MURAWSKI, University of Oxford, United Kingdom

Higher-order recursion schemes (HORS) have recently emerged as a promising foundation for higher-order

program verification. We examine the impact of enriching HORS with linear types. To that end, we introduce

two frameworks that blend non-linear and linear types: a variant of the λY -calculus and an extension of HORS,

called linear HORS (LHORS).

First we prove that the two formalisms are equivalent and there exist polynomial-time translations between

them. Then, in order to support model-checking of (trees generated by) LHORS, we propose a refined version of

alternating parity tree automata, called LNAPTA, whose behaviour depends on information about linearity. We

show that the complexity of LNAPTA model-checking for LHORS depends on two type-theoretic parameters:

linear order and linear depth. The former is in general smaller than the standard notion of order and ignores

linear function spaces. In contrast, the latter measures the depth of linear clusters inside a type. Our main

result states that LNAPTA model-checking of LHORS of linear order n is n-EXPTIME-complete, when linear

depth is fixed. This generalizes and improves upon the classic result of Ong, which relies on the standard

notion of order.

To illustrate the significance of the result, we consider two applications: the MSO model-checking problem

on variants of HORS with case distinction (RSFD and HORSC) on a finite domain and a call-by-value resource

verification problem. In both cases, decidability can be established by translation into HORS, but the implied

complexity bounds will be suboptimal due to increases in type order. In contrast, we show that the complexity

bounds derived by translations into LHORS and appealing to our result are optimal in that they match the

respective hardness results.

CCS Concepts: · Software and its engineering→Model checking; · Theory of computation→ Linear

logic;

Additional KeyWords and Phrases: Higher-order computation, recursion schemes, linear logic, model checking

ACM Reference Format:

Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski. 2018. Linearity in Higher-Order Recursion

Schemes. Proc. ACMProgram. Lang. 2, POPL, Article 39 (January 2018), 29 pages. https://doi.org/10.1145/3158127

1 INTRODUCTION

Higher-order recursion schemes (HORS) are typed grammars that generate potentially infinite

ranked trees. Their history can be tracked back to early research in semantics in the 1970s [Damm

1977; Nivat 1972], but recently they have become a successful foundation for program verification,

in the functional paradigm [Kobayashi 2009] and beyond [Tsukada and Kobayashi 2010].

Authors’ addresses: Pierre Clairambault, Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France, pierre.clairambault@

ens-lyon.fr; Charles Grellois, Inria, Sophia Antipolis and Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS

UMR 7296, Marseille, France, charles.grellois@inria.fr; Andrzej S. Murawski, Department of Computer Science, University

of Oxford, United Kingdom.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART39

https://doi.org/10.1145/3158127

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3158127
https://doi.org/10.1145/3158127

39:2 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

At the theoretical level, the approach takes advantage of the fact that monadic second-order

logic (MSO) over trees generated by HORS is decidable [Ong 2006]. In practice, though, various

restricted versions of the problem are being considered [Kobayashi 2009; Kobayashi and Ong 2011],

notably reachability. Numerous verification tools, e.g. [Broadbent et al. 2013; Kobayashi et al. 2011;

Murase et al. 2016; Ramsay et al. 2014], have been constructed to test the approach, exploring both

type-based and automata-theoretic techniques. Krivine machines have also been exploited in that

context [Salvati and Walukiewicz 2016] as well as finite models [Aehlig 2007; Grellois and Melliès

2015a; Hofmann and Ledent 2017; Salvati and Walukiewicz 2015]. Despite the rather disappointing

worst-case complexity (n-EXPTIME for MSO model-checking of order-n HORS), experiments paint

a more promising story and there is need for identifying better complexity indicators than standard

type-theoretic order.

In order to adapt the original results on HORS to more advanced scenarios, it is often necessary

to encode desirable features or evaluation mechanisms into the rather crude language of (call-by-

name) HORS. This often leads to increases in type order, e.g. due to CPS transformations, suggesting

drastic changes to expected worst-case complexity. In this paper we introduce linear higher-order

recursion schemes (LHORS) that facilitate a more refined type-theoretic analysis and, consequently,

make it possible to derive more accurate complexity bounds. This is achieved by mixing linear

and non-linear types [Girard 1987]. In order to model-check such schemes, we introduce a special

notion of linear non-linear alternating parity automaton (LNAPTA), which are a refinement of

alternating parity automata that is sensitive to linearity.

We find that the complexity of LNAPTA model-checking for LHORS is governed by two crucial

parameters: linear order and linear depth. In particular, the linear order of a type remains unaffected

by linear function spaces and, consequently, can be much smaller than the corresponding standard

order of a type. Linear depth, in turn, measures the depth of linear clusters inside a type (by a

linear cluster we mean, roughly, a segment of contiguous linear type constructors, separated by

non-linear arrows). Our main result states that LNAPTA model-checking of LHORS of linear order

n is n-EXPTIME-complete, when linear depth is fixed. This subsumes the result of Ong [2006], as

the linear depth of any intuitionistic (non-linear) type is always equal to 0.

Our proof extends the intersection-type approach of Kobayashi [2009] to linear and product

types, and takes advantage of the observation that, when it comes to counting type refinements,

standard function spaces induce exponential blow-ups in the search space while linear ones do not.

HORS are well known to be equivalent in expressivity to Böhm trees of ground-type λY -calculus

terms, under the assumption that their free variables are of at most order 1, which makes it possible

to represent leaves and nodes [Salvati and Walukiewicz 2016]. Accordingly, we start our analysis

by introducing a calculus, called the λℓY -calculus, that combines the expressivity of λY with a linear

type system. The λℓY -calculus will turn out convenient as the target language of translations that

aim to take advantage of our type system. To match the calculus, we define linear higher-order

recursion schemes (LHORS) and show that they induce the same trees as the λℓY -calculus in a way

that preserves linear order and depth. The translations in both directions are of polynomial-time

complexity, meaning that the two formalisms can be used interchangeably for the purpose of

calculating complexity bounds.

Using the new developments, one can study model-checking problems for formalisms different

and richer than HORS by translation into LHORS. We demonstrate this by generalizing several

results from the literature. Without the refined analysis afforded by our result, the relevant transla-

tions would imply exponential or doubly-exponential cost. In contrast, the complexity bounds that

we can derive by translation are optimal and match the respective hardness results.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:3

As applications of the new result, we first revisit two other formalisms used in higher-order

model-checking: recursive schemes over finite data domains (RSFD) [Kobayashi et al. 2010] and

higher-order recursion schemes with cases (HORSC) [Neatherway et al. 2012]. In both cases, we show

how one can translate the associated terms into LHORS in such a way that the linear order will

be unaffected by the translation, even though the standard type-theoretic order would. The linear

depth will grow during the translation, but only by a constant. This makes it possible to extend

Ong’s result for order-n HORS [Ong 2006] (i.e. n-EXPTIME-completeness of MSO model-checking)

to RSFD and HORSC simply by translation.

Finally, we investigate a call-by-value framework. Here the associated reachability problem

was shown to be n-EXPTIME-complete for programs of depth-n in Tsukada and Kobayashi [2014].

We consider the more general resource usage verification problem and also show its n-EXPTIME-

completeness. In contrast to Tsukada and Kobayashi [2014], our result is obtained through a linear

variant of a CPS transformation, which maps call-by-value programs of depth n to call-by-name

λℓY -terms of linear order n. CPS translations are known to cause an increase in type order, but in

our case linear order does not increase. As the linear depth of the types involved turns out to be

constant (equal to 2), our result for LHORS implies the desired complexity.

To sum up, we present a new unifying framework, founded on linear types. The addition of

linearity is shown to have far-reaching consequences:

(1) our results subsume the original ones on HORS for non-linear types,

(2) they provide much more accurate complexity-theoretic bounds than any earlier work,

(3) many existing results can be unified and extended simply by translating into the framework.

Consequently, we believe our framework to be highly suitable as a metalanguage for future work

in higher-order verification.

2 THE λℓY -CALCULUS

We start off by introducing the λℓY -calculus, which is a simply-typed λ-calculus extended with a

fixpoint combinator (in the spirit of the λY -calculus [Statman 2004]) and refined with a linear-non-

linear type system (in the style of [Barber and Plotkin 1996]). We refer to its types as kinds to avoid

collision with the intersection type system to come.

2.1 Kinds and Terms

2.1.1 Kinds and Their Measures. The kinds include a ground kind o (the kind of trees), two arrow

constructors→ (standard non-linear arrow) and⊸ (linear arrow [Girard 1987]), and products &.

Furthermore, we define the kinds as having the following restricted shape.

Definition 1. Kinds are generated by either of φ or ϖ in the following grammar.

φ,ψ , . . . ::= o | ϖ ⊸ ψ | φ → ψ

ϖ,κ, ι, . . . ::= φ | &i ∈Iφi

with I any finite set ś we write φ &ψ for the binary case.

We refer to kinds generated by φ as functional kinds, and those generated by ϖ as product kinds.

Note that any functional kind can be regarded as a (singleton) product kind, so ϖ,κ, ι, . . . really

range over arbitrary kinds. Abusing notation, we sometimes identify a functional kind φ and the

unary product &{⋆}φ. This allows us to write expressions such as &i ∈Iφi ⇝ ψ , where⇝ is either

⊸ or → (it is then understood that I is singleton if⇝=→).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:4 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

Our restriction on kinds amounts to forbidding products on the left of a non-linear arrow, and

on the right of any arrow. However, any non-restricted kind built from {o,⊸,→,&} is isomorphic

to a kind from Definition 1 through the isomorphisms (of Intuitionistic Linear Logic [Girard 1987]):

κ → (&i ∈Iκi) � &i ∈I (κ → κi) κ ⊸ (&i ∈Iκi) � &i ∈I (κ ⊸ κi)

(&i ∈{1, ...,n }κi) → κ � κ1 → · · · → κn → κ

The first two equations hide a combinatorial explosion: converting a non-restricted kind to one in

Definition 1 may cause an exponential blow-up. For some of our developments, it will be important

that we opt for the notion of kind in Definition 1, with no such hidden complexity.

Measures. The size |κ | and linear order ℓo(κ) of a kind κ are defined inductively:

|o | = 1 ℓo(o) = 0

|ϖ ⊸ φ | = |ϖ | + |φ | + 1 ℓo(ϖ ⊸ φ) = max(ℓo(ϖ), ℓo(φ))

|φ → ψ | = |φ | + |ψ | + 1 ℓo(φ → ψ) = max(ℓo(φ) + 1, ℓo(ψ))

| &i ∈I φi | = 1 +
∑

i ∈I |φi | ℓo(&i ∈Iφi) = maxi ∈I ℓo(φi)

While the definition of size is straightforward, that of linear order deserves a comment. If we

ignore the clauses for⊸ and &, we simply obtain the standard notion of order of a simple type,

see e.g. [Salvati and Walukiewicz 2016]. The order is extended to⊸ and & simply by ignoring the

constructors and taking the maximum of the linear order of their operands. This should be natural

to the reader familiar with linear logic [Girard 1987]: indeed, recall that the call-by-name Girard

translation interprets φ → ψ as !φ⊸ ψ in linear logic. Hence, one can understand the definition of

linear order above as simply counting the maximal nesting of exponentials in the corresponding

linear logic formula. A key inspiration for this work is the idea that the main source of complexity

in the higher-order model-checking problem is the exponential, and not the arrow in itself.

While our main theorem will substantiate this claim, there will be a proviso because linear kinds,

to an extent, do impact complexity. Consequently, to arrive at our asymptotic bounds, we will need

to control the use of linear kinds by bounding the extent to which purely linear type constructors

can occur contiguously (without being separated by the left-hand side of a non-linear arrow, i.e. by

a !). For that purpose we introduce the notion of linear depth of a kind.

Definition 2. The local linear depth lld(κ) of a kind κ is defined inductively as follows

lld(o) = 0 lld(ϖ ⊸ φ) = max(lld(ϖ), lld(φ)) + 1

lld(&i ∈Iφi) = maxi ∈I lld(φi) + 1 lld(φ → ψ) = lld(ψ)

The linear depth of κ, written ℓd(κ), is the maximum of lld(ι), taken over all subkinds ι of κ.

Observe that purely non-linear kinds have linear depth 0. We shall see that, even though bounded

linear depth increases expressivity, this does not affect the asymptotic complexity of model-checking.

In particular, our translations of Sections 5 and 6 will yield kinds with bounded linear depth.

2.1.2 Kinded Terms and Their Measures.

Definition 3. Raw terms are defined as follows.

t ,u ::= x | λxφ .u | ℓxκ .u | t u | ⟨ui | 1 ≤ i ≤ n⟩ | πi | Yx
κ .u

After Definition 1, we wrote that we will sometimes identify a functional kind φ with the unary

product &{⋆}φ. Accordingly, we will also identify a (non-product) term t and the unary tuple

⟨t | i ∈ {⋆}⟩ ś this will enable more uniform notations later on.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:5

Γ,x :: κ | ∆ ⊢ x :: κ

j ∈ I

Γ | ∆,x :: &i ∈I φi ⊢ πj x :: φ j

Γ | ∆1 ⊢ t :: κ ⊸ φ Γ | ∆2 ⊢ u :: κ

Γ | ∆1,∆2 ⊢ t u :: φ

Γ | ∆ ⊢ t :: φ → ψ Γ | _ ⊢ u :: φ

Γ | ∆ ⊢ t u :: ψ

Γ,x :: φ | ∆ ⊢ t :: ψ

Γ | ∆ ⊢ λxφ . t :: φ → ψ

Γ | ∆,x :: κ ⊢ t :: φ

Γ | ∆ ⊢ ℓxκ . t :: κ ⊸ φ

Γ | ∆ ⊢ ti :: φi (1 ≤ i ≤ n)

Γ | ∆ ⊢ ⟨ti | 1 ≤ i ≤ n⟩ :: &1≤i≤nφi

Γ | ∆ ⊢ t :: &1≤i≤nφi

Γ | ∆ ⊢ πi t :: φi

Γ,x : κ | _ ⊢ t :: κ

Γ | _ ⊢ Yxκ . t :: κ

Fig. 1. Kinding rules for λℓY

Our abstractions explicitly carry kinds: the language is à la Church. For notational convenience

we have two different function abstractions: one for the linear arrow (ℓ) and another for the non-

linear arrow (λ). This is a superficial distinction: as in this paper we will only consider well-kinded

terms, the information of whether an abstraction is linear or not is redundant with the kinds.

Now, we give the kinding rules for terms. The kinding judgements of λℓY have the form Γ | ∆ ⊢

u :: κ, where Γ = x1 :: κ1, . . . ,xn :: κn is a non-linear context and ∆ = y1 :: κ1, . . . ,yp :: κp is

a linear context. The rules are given in Figure 1. The non-linear context may comprise variables of

product kinds ś though these cannot be abstracted, they can be used to compute a fixpoint. Empty

contexts are denoted as _. In particular, note that λℓY contains the standard λY -calculus [Statman

2004] as a sub-language: any λY -term Γ ⊢ t : φ can be kinded in λℓY with Γ | _ ⊢ t :: φ.

From now on, all terms are implicitly kinded. We write KTΓ |∆(κ) for the set of terms Γ | ∆ ⊢ t :: κ.

Every subterm of a kinded term t automatically comes with a kind, so we can say whether a subterm

u1 u2 of t is a linear application (if u1 has kind ϖ ⊸ φ) or a non-linear one (if u1 has kind φ → ψ).

Measures. The linear order of t ∈ KTΓ |∆(κ), written ℓo(t), is the maximum of all ℓo(κ), where κ

ranges over the kinds of subterms of t . The local linear depth of t (written lld(t)) is defined to be

lld(ϖ1⊸ . . .⊸ ϖn ⊸ κ)

where ∆ = x1 :: ϖ1, . . . ,xn :: ϖn . The linear depth ℓd(t) of t is taken to be the maximum of all

lld(u), where u ranges over subterms of t . We also define the size of t , written |t |, as follows.

|x | = 1 |t1 t2 | = |t1 | + |t2 | + 1

|λxκ . t | = |κ | + |t | + 1 |ℓxκ . t | = |κ | + |t | + 1

|πi t | = |t | + 1 |⟨ti | i ∈ I ⟩| = 1 +
∑

i ∈I |ti |

|Yxκ . t | = |κ | + |t | + 1

Representing trees. In the λY -calculus or Higher-Order Recursion Schemes, trees are usually

represented as normal terms of kind o, using variables of first-order kind. For instance, a variable

b : o → · · · → o
︸ ︷︷ ︸

n

→ o can be used to represent n-ary branching, i.e. tree nodes with n descendants.

Let Σ be a finite set of such variables. Salvati and Walukiewicz [2016] have shown that Böhm trees

of λY -terms of the form Σ ⊢ u : o coincide with the trees generated by order-n recursion schemes,

where Σ is taken to be the set of terminal symbols of the scheme.

In λℓY , there is more flexibility as to how branching may be kinded. The role of the first-order

kinds of λY (or HORS) will be played by the more general notion of tree kinds, defined below, which

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:6 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

C[(λxφ . t)u] ▷β C[t[u/x]] C[λxφ . t x] ▷η C[t] x<fv(t)

C[(ℓxκ . t)u] ▷β C[t[u/x]] C[ℓxκ . t x] ▷η C[t] x<fv(t)

C[πi ⟨ti | i ∈ I ⟩] ▷β C[ti] C[⟨πi t | i ∈ I ⟩] ▷η C[t]

Fig. 2. β-reduction and η-contraction on λℓY -terms

may have linear order 0 or 1. We shall see that the choice of kinding may have significant impact

on the set of infinite trees generated and the set of properties that can be verified.

Definition 4. Tree kinds are the kinds θ generated by

θ ::= o | ν ⊸ θ | o → θ and ν ::= &1≤i≤n o

A tree signature is a finite list Σ = b1 :: θ1, . . . , bn :: θn where θi is a tree kind for all 1 ≤ i ≤ n.

Remark 5. Tree kinds have the form θ = &1≤j≤p1o ⇝1 . . . ⇝n−1 &1≤j≤pno ⇝n o, where

⇝i∈ {→,⊸}, and pi = 1 whenever⇝i=→, with the convention that o may be written as &{⋆} o

to uniformize notations. A tree kind θ induces a first-order kind {|θ |} if one ignores the linear

information: {|θ |} = o → · · · → o
︸ ︷︷ ︸

p1

→ · · · → o → · · · → o
︸ ︷︷ ︸

pn

→ o is called the delinearization of θ .

Likewise, by applying the above transformation to each kind of a tree signature Σ, we can obtain a

first-order signature in the standard sense, written {|Σ|}.

If Σ is a tree signature, any finite tree on {|Σ|} can be presented as a finite term Σ | _ ⊢ t :: o, the

latter possibly containing tuples to represent different branches. For instance, the tree of Example

11 (with dots replaced with ⊥ :: o) is represented by the term t ∈ KTΓ |_(o) given below on the left

b ⟨c (d e),

b ⟨c (c (d (d e))),

b ⟨c (c (c (d (d (d e))))),

b ⟨c (c (c (c⊥))),⊥⟩⟩⟩⟩

with Γ = b :: o & o ⊸ o, c :: o ⊸ o, d :: o ⊸ o, e :: o,⊥ :: o.

Note that tuples of terms were introduced to match the linear

specification of Σ. Next we define notions of reduction on λℓY -

terms, and explain how to use them to generate infinite trees

represented in an analogous way.

2.2 Reduction and Böhm Trees

In this section, we study operational properties of the λℓY -calculus. We define notions of reduction,

state its basic properties, and define the Böhm tree (infinite normal form) of a term.

2.2.1 β-reduction and η-contraction. We define as usual a context as a term with a hole, i.e. a

term defined by the following grammar:

C[−] ::= [−] | λxφ .C[−] | ℓxκ .C[−] | C[−]u | t C[−] | πi C[−] |

⟨u1, . . . ,ui−1,C[−],ui+1, . . . ,un⟩ | Yx
κ .C[−]

The basic reductions are β-reduction (for linear and non-linear functions, and for products),

and η-contraction (again, for all three constructors). The rules are in Figure 2 ś fv(t) denotes the

set of free variables in t , either linear or non-linear. We will occasionally refer to η-expansion, the

opposite of η-contraction, only defined for terms of appropriate kind. We write ▷βη for the union

of ▷β , ▷η . Without any rules for unfolding fixpoints, reduction is strongly normalizing:

Proposition 6. The reduction ▷βη is confluent, and strongly normalizing.

Proof. Immediate by embedding into the simply-typed λ-calculus with surjective pairing, which

is well-known to be strongly normalizing [Pottinger 1981]. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:7

2.2.2 Unfolding Fixpoints to Böhm Trees. For simplicity, when computing the Böhm tree of a

term we will only expand fixpoints in head position. We define the head contexts as follows.

H [−] ::= [−] | λxφ .H [−] | ℓxκ .H [−] | H [−]u | πi H [−]

The fixpoint expansion rule is then defined to be

H [Yxκ . t] ▷δ H [t[Yxκ . t/x]].

Let us write ▷βηδ for the union of ▷βη and ▷δ . Clearly, ▷δ and ▷βηδ are no longer normalizing: for

instance, we have Yxo . x ▷δ Yx
o . x . However, we retain confluence.

Lemma 7. The reduction ▷βηδ is confluent.

Proof. Elementary reasoning, using determinism of ▷δ (by construction there is at most one

▷δ -redex in a term), confluence of ▷βη and easy commutations properties between ▷δ and ▷βη . □

While ▷βηδ does not necessarily terminate, it will produce a head normal form (i.e. a ▷βη-

normal term of the form H [x] for a variable x) whenever it does. If ▷βηδ terminates on t , we also

say that it is solvable, following standard terminology in λ-calculus. We are now in position to

define the Böhm tree of a kinded term.

Definition 8. Let Γ | ∆ ⊢ t :: κ be a kinded term. Its Böhm tree, written BT(t), is defined

(co)recursively as follows.

BT(t) = ⟨BT(πi t) | i ∈ I ⟩ (κ = &i ∈Iφi)

BT(t) = λxφ . BT(t x) (κ = φ → ψ)

BT(t) = ℓxϖ . BT(t x) (κ = ϖ ⊸ ψ)

BT(t) = Ω (κ = o and t is not solvable)

BT(t) = x BT(t1) . . . BT(tn) (κ = o and t ▷βηδ x t1 . . . tn)

Böhm trees give a notion of infinite normal forms for λℓY -terms. In this paper, we primarily use

it to define the infinite tree generated by a λℓY -term of ground kind with a tree signature.

2.2.3 Infinite Trees Generated by λℓY -terms. As hinted in Section 2.1.2, all finite ▷βηδ -normal

terms Σ | _ ⊢ t :: o with Σ a tree signature are representations of finite trees on {|Σ|}. This motivates:

Definition 9. For any Σ | _ ⊢ t :: o, the infinite tree generated by t is defined as BT(t).

Let us identify tuples with branching and view, for instance, a tree b ⟨T1, . . . Tn ⟩ as equivalent to

the tree bT1 · · · Tn (such transformations will be formalized later as delinearizations of trees). Then,

an infinite tree can be generated by a λℓY -term iff it can be generated by a λY -term, or a HORS ś it

is straightforward to establish this by providing translations in both directions. However, the trees

generated are different if one takes the (linear) order into account. Let us write BTℓn for the set of

(possibly infinite) trees generated by a λℓY -term of linear order n. We will write BTn for the set of

(possibly infinite) trees generated by a λY -term of order n. By [Salvati and Walukiewicz 2016], BTn
is equal to the set of trees generated by higher-order recursion schemes of order n. Because any

λY -term of order n is also a λℓY -term of linear order n, we can immediately conclude the following:

Proposition 10. For all n, we have BTn ⊆ BTℓ
n .

However, the other inclusion fails. In particular, we have BTℓ
0 ⊈ BT1.

Example 11. Consider the tree signature Σ = {b :: o & o ⊸ o, c :: o ⊸ o, d :: o ⊸ o, e :: o}.

Consider the λℓY -term t given below.

Σ | _ ⊢ (YF (o⊸o)⊸o . ℓ f o⊸o . b ⟨f e, F (ℓxo . c (f (dx)))⟩)(ℓyo . c (dy)) : o

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:8 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

Γ,x :: φ | ∆ ⊢ap x :: φ Γ | ∆,x :: &i ∈Iφi ⊢ap πi x :: φi

Γ | ∆ ⊢ap ti :: φi (i ∈ I)

Γ | ∆ ⊢ap ⟨ti | i ∈ I ⟩ :: &i ∈Iφi

Γ | ∆1 ⊢ap t :: ϖ ⊸ φ Γ | ∆2 ⊢ap u :: ϖ

Γ | ∆1,∆2 ⊢ap t u :: φ

Γ | ∆ ⊢ap t :: φ1 → φ2 Γ | _ ⊢ap u :: φ1

Γ | ∆ ⊢ap t u :: φ2

Fig. 3. Applicative terms

b

c b

d c2 b

e d2 c3 b

e d3 c4 . . .

e . . .

All subterms of t have purely linear kinds, so its linear order is 0. The

infinite tree BT(t) generated starts as pictured on the left. Themaximal

branches of this infinite tree have the form bncndne for all n ∈ N,

which is not context-free. Thus, due to the correspondence between

order-1 higher-order recursion schemes and pushdown automata

(e.g. [Hague et al. 2008]), BT(t) cannot belong to BT1. However, it does

belong to BT2: it is generated by the order-2 HORS G = ⟨Σ,N ,R, S⟩,

where Σ = {b :: o → o → o, c :: o → o, d :: o → o, e :: o},

N = {S :: o, F :: (o → o) → o,G :: o → o,H :: (o → o) → o → o},

and R contains the following rules:

S = FG F f = b(f e)(F (H f)) Gx = c(dx) H f x = c(f (dx))

Remark 12. As shown above, for schemes, a fixed linear order may turn out to be more expressive

than the corresponding standard order. This extra expressivity will turn out to have surprisingly

little cost in terms of complexity: we will still be able to show that (under certain constraints) the

corresponding model-checking problem is in n-EXPTIME, where n is the linear order. However,

there will be a price to pay in terms of the kind of properties that can be verified, as captured by

the forthcoming definition of automata (Definition 21).

3 AN ALTERNATIVE: LINEAR HIGHER-ORDER RECURSION SCHEMES

Higher-order model-checking can be expressed in terms of the λY -calculus, or in terms of higher-

order recursion schemes [Salvati and Walukiewicz 2016]. The new framework described earlier

was introduced as a generalization of the λY -calculus. Now, we show that it can also be presented

as a generalization of HORS, which we call linear higher-order recursion schemes (LHORS).

3.1 Definition of LHORS

Though based on terms of λℓY , LHORS are superficially different: rather than having fixpoint

operators, they handle recursion through a list of mutually recursive function definitions. Whereas

the λℓY -calculus comes from the tradition of the λ-calculus, LHORS (like HORS) are inspired by

grammars [Damm 1977] and program schemes [Nivat 1972].

3.1.1 Definition. A term t ∈ KTΓ |∆(κ) is called applicative if one can derive Γ | ∆ ⊢ap t :: κ

using the kinding rules from Figure 3. An applicative term is necessarily ▷βηδ -normal. It does

not contain any fixpoints or abstractions, and only consists of pairing and applying (projections

of) variables from the contexts. We write App
Γ |∆(κ) for the set of applicative terms t such that

Γ | ∆ ⊢ap t :: κ. A linear HORS will associate to every non-terminal a term of the form

t = l1x1. . . . lnxn . t
′ ∈ KTΓ |_(φ)

where t ′ ∈ App
Γ,Vλ |Vℓ

(o), li ∈ {λ, ℓ} andVl = {xi | li = l}. We call such terms function definitions

of kind φ in context Γ, and write DefΓ(φ) for the corresponding set.

Definition 13. A linear HORS (LHORS) is a 4-tuple G = ⟨Σ,N ,R, S⟩ where:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:9

• Σ is a tree signature,

• N is a finite set of kinded non-terminals, with a functional kind; we use upper-case letters

F ,G,H , . . . to range over them.We denoteN(F) the functional kind of F and write F :: N(F).

• S ∈ N is a distinguished start symbol of kind o,

• R is a function associating to each F in N a kinded term R(F) ∈ DefΣ,N(N(F)).

We define some measures on LHORS: the linear order (resp. linear depth) of a LHORS G =

⟨Σ,N ,R, S⟩, written ℓo(G) (resp. ℓd(G)), is the maximal linear order (resp. linear depth) of the kinds

of its non-terminals in N . Its size is

|G| =
∑

F :φ ∈N

|N(F)|.

Example 14. The HORS of Figure 11 can be given linear kinds and presented as a LHORS

G = ⟨Σ,N ,R, S⟩ where Σ is the tree signature given in Example 11, the non-terminals N = {S ::

o, F :: (o ⊸ o) ⊸ o,G :: o ⊸ o,H :: (o ⊸ o) ⊸ o ⊸ o} are kinded simply by replacing the

non-linear arrows with linear arrows in the HORS of Example 11; and, finally:

R(S) = F G :: o

R(F) = ℓ f o⊸o .b ⟨f e, F (H f)⟩ :: (o⊸ o)⊸ o

R(G) = ℓxo . c (dx) :: o⊸ o

R(H) = ℓ f o⊸o . ℓxo . c (f (dx)) :: (o⊸ o)⊸ o⊸ o

3.1.2 Value Tree of a LHORS. Given a LHORS G = ⟨Σ,N ,R, S⟩ we now define the infinite

tree it generates: its value tree. It is possible to do so using an ω-CPO of trees, or using Böhm

evaluation, but we favour here an alternative presentation which underlies our proof of soundness

and completeness of the intersection type system to come. It is a variant of a relation introduced by

Kobayashi and Ong [2009] for proving soundness and completeness of their system. The value tree

is computed by iterating a rewriting relation ▷ on applicative terms.

We begin by defining tree contexts:

T [−] ::= [−] | a t1 . . . ti−1T [−] ti+1 . . . tn | ⟨t1, . . . , ti−1,T [−], ti+1, . . . , tn⟩

where a is a terminal symbol in Σ. We give a reduction on applicative terms t ∈ App
Σ,N|_(o) by:

T [F t1 . . . tn] ▷ T [t[ti/xi]] (R(F) = l1x1. . . . lnxn . t)

T [(πj ⟨ti | i ∈ I ⟩)u1 . . . up] ▷ T [tj u1 . . . up]

Definition 15. A linear HORS G is productive when the limit of any potentially infinite sequence

of reductions S ▷ R(S) ▷ t2 ▷ · · · which is fair, i.e. which eventually rewrites everything that

can be rewritten, exists. This limit is then called the value tree V(G) of G.

On productivity. In the traditional definition of the value tree of a higher-order recursion scheme

as the limit of a sequence of trees, see e.g. [Kobayashi and Ong 2009], the value tree always exists,

but may contain a divergence symbol Ω, in which case the HORS is said to be unproductive. Various

techniques to detect and enforce productivity exist, one of them using an interpretation of the

HORS in an appropriate model [Haddad 2013]. Another possibility, which we adapt here from

[Serre 2013, p.61], is to introduce a new unary symbol ε : &{⋆} o⊸ o in the tree signature Σ, and

to replace every reduction rule R(F) = lx1 . . . lxn . t with R(F) = lx1 . . . lxn . ε t . This can also be

applied to a linear HORS G, and always results in a productive linear HORS Gε .

To do model-checking, it then remains to lift the property we want to specify over the treeV(G)

and checked by an APTA A to a property checked by an extended APTA Aε over V(Gε). Several

choices are possible. One can, for instance, choose to reject all branches of the form a1 · · ·an · εω

(where an , ε), which correspond to branches ending in diverging computation. Dually, one may

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:10 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

wish to accept them. We shall take a more liberal approach and let the specifier choose whether a

diverging branch a1 · · ·an · ε
ω should be accepted or not depending on the state in which the APTA

is when it visits an . Each of these options can be implemented by building Aε from A through

simple modifications, such as additions of new states.

In what follows, we therefore suppose that all linear HORS are productive, replacing G with Gε

if needed. This will allow us to build on [Kobayashi and Ong 2009], in which (standard) HORS are

all supposed to be productive.

3.2 Equivalence of λℓY and LHORS

In the rest of this section, we show that there are polynomial-time transformations between λℓY

and LHORS, preserving the linear order and the generated infinite tree.

3.2.1 From LHORS to λℓY . Consider a LHORS G = ⟨Σ,N ,R, S⟩, and write N = F1 ::

φ1, . . . , Fn :: φn , with S = Fi0 . We are going to emulate the recursive definitions via a single

use of the fixpoint, exploiting product kinds in λℓY . We define a term Σ | _ ⊢ R∗ : &1≤i≤nφi by:

R∗
= YR&1≤i≤nφi . ⟨R(Fi)[πi R/Fi] | i ∈ {1, · · · ,n}⟩

Proposition 16. For any LHORS G = ⟨Σ,N ,R, S⟩, there is Σ | _ ⊢ G⊛ : o defined as

G⊛
= R(S)[πi (R

∗)/Fi]

satisfying:

BT(G⊛) = V(G) ℓo(G⊛) = ℓo(G) ℓd(G⊛) ≤ ℓd(G) + 1 |G⊛ | = O(poly(|G|))

Proof. The first equality follows e.g. by co-induction, as the chains of reductions are essentially

the same (with a few additional β-reduction steps for G⊛). The second and third conditions can be

verified directly. For the last one, we have |G⊛ | = O(|G|2) because of the substitution. □

This translation from LHORS to λℓY is particularly simple, because the shape of the LHORS

recursive definition along with its dynamics can be directly replicated in λℓY thanks to products.

In contrast, the correspondence between the λY -calculus and standard HORS is much less direct.

In the absence of products, Salvati and Walukiewicz [2016] show how to emulate a HORS by a

sequence of fixpoint definitions. However, the approach involves a sequence of substitutions that

may cause an explonential blow-up, meaning that the outcome need not be of polynomial size.

3.2.2 From λℓY to LHORS. The translation from λℓY to LHORS will proceed along the lines

of [Salvati andWalukiewicz 2016], with complications due to linear variables and products. Another

difference is that op. cit. performs β-reduction first, in order to focus on translating β-normal terms.

In contrast, we do not rely on prior β-reduction, so as to obtain a polynomial-time transformation.

Lemma 17. For any Σ, Γ | ∆ ⊢ t :: κ, there exist t ⊙,N ,F such that N = {F1 :: φ1, . . . , Fn :: φn}

is a set of kinded non-terminals, t ⊙ is an applicative term satisfying Σ, Γ,N | ∆ ⊢ap t
⊙ :: φ, and F

associates to each Fi some F (Fi) ∈ App
Σ,N(φi). Moreover, we have

BT(t ⊙[πi (YF)/Fi]) = BT(t)

max(ℓo(Γ) + 1, ℓo(∆), ℓo(t ⊙),max
i ∈I
ℓo(φi)) = max(ℓo(Γ) + 1, ℓo(∆), ℓo(t))

max(ℓd(t ⊙),max
Fi ∈N
ℓd(φi)) = ℓd(t)

|t ⊙ | +
∑

1≤i≤n

|F (Fi)| = O(poly(|t |))

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:11

Proof. For the transformation to LHORS, it suffices to have the above transformation for terms

Σ | _ ⊢ t :: o, but the more general statement given permits a direct proof by induction on t .

Given Σ | _ ⊢ t :: o, for every subterm u of t of the form λxφ .u ′, ℓxκ .u ′ or Yxκ .u ′, we are going

to introduce a non-terminal Fu in N , so as to replace u with Fu . However, we cannot quite do that,

because u ′ is not closed (not counting variables in Σ). Hence, we perform λ-lifting on the fly. □

As a consequence, we obtain:

Proposition 18. For any Σ | _ ⊢ t :: o there is a LHORS G = ⟨Σ,N ,R, S⟩ such that

V(G) = BT(t) ℓo(G) = ℓo(t) ℓd(G) = ℓd(t) |G| = O(poly(|t |)).

Proof. By Lemma 17, there are (t ⊙,N ,F) as above (write N = F1 :: φ1, . . . , Fn :: φn). Set

N ′
= N , Fn+1 :: o; and F ′

= F ⊎ {Fn+1 7→ t ⊙}. We almost got a linear recursion scheme, except

that the F (Fi) are not necessarily η-expanded. We can perform η-expansion in polynomial time,

yielding a LHORS ⟨Σ,N ′,F ′, Fn+1⟩ such that

BT(t) = BT(R(S)[πi (YF ′)/Fi])

Hence we conclude that BT(t) = V(G) by Proposition 16. □

This completes the proof of the equivalence between λℓY and LHORS. Not only have we proved

that, for any linear order n, the λℓY -terms and the LHORS of linear order n generate the same trees,

but also we have established that the translations in both directions preserve linear depth and

cause only a polynomial increase in size. We stress that they can be computed in polynomial time.

Therefore, λℓY and LHORS are completely interchangeable from the point of view of the higher-

order model-checking problem. When developing the model-checking algorithm via intersection

type in the next section, we will work with LHORS. As their structure is more constrained, they

provide a more comfortable setting for our analysis. On the other hand, when using the result, we

will appeal to the more liberal λℓY -calculus as a target for translations, in Sections 5 and 6.

4 AN INTERSECTION TYPE SYSTEM FOR MODEL-CHECKING LINEAR HORS

4.1 Linear-Nonlinear Alternating Parity Tree Automata

From alternating parity tree automata to intersection types. Higher-order model-checking has

traditionally considered the verification of MSO (equivalently, modal µ-calculus) formulñ over the

infinite trees generated by HORS. The problem is typically solved by translating the formula of

interest into an equivalent alternating parity tree automaton (APTA), and then lifting the behaviour

of this APTA from trees to HORS. Below we recall the connection between APTA and intersection

types, which was first made in [Kobayashi 2009] for Büchi automata and then extended to APTA in

[Kobayashi and Ong 2009]. A typical transition of an APTA over a binary symbol a :: o → o → o

is δ (q,a) = [(1,q0)] ∨ [(2,q1) ∧ (2,q2)], meaning that when the APTA encounters a in state q, it

can choose nondeterministically between the following:

• (1,q0), which visits only the first subtree (the left child of a) in state q0, and drops the other

subtree so that the run-tree will have only one child at the current position;

• (2,q1) ∧ (2,q2), which drops the first subtree and visits the second one twice, duplicating it in

the run-tree (starting an execution from state q1 in one copy and from state q2 in the other).

This behaviour allowing duplication or erasure during the run of an automaton is called alternation.

Its connections with linear logic have been studied in [Grellois and Melliès 2015b]. In addition,

APTAs use a parity condition: a function Ω attributes a colour Ω(q) ∈ N to each state q ∈ Q . Then,

a run-tree is accepting if and only if the maximal colour seen infinitely often along each branch is

even. When there is an accepting run-tree, the tree over which the APTA runs satisfies the MSO

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:12 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

property checked by the automaton. Kobayashi and Ong observed that the transition mentioned

above amounts to typing the symbol a with the intersection types

a :
∧

{⋆}

□Ω(q0) q0 →
∧

∅ → q and a :
∧

∅ →
∧

i ∈{1,2}

□Ω(qi) qi → q

in a type system that we are about to define (our precise formulation is informed by later work [Grel-

lois and Melliès 2015b]). In this way, they gave a correspondence between APTAs and sets of

intersection types for terminals. Accordingly, every (accepting) run-tree of an APTA over a tree t

can be translated to a (winning) typing derivation in the intersection type system, see for instance

[Grellois 2016]. In what follows, exploiting this type-theoretic intuition, we redefine APTA and

define LNAPTA as sets of typings rather than usual transition-based definitions.

Intersection types refining kinds. In [Kobayashi and Ong 2009], the intersection types that describe

APTA behaviour over symbol a are required to refine the kinding Σ(a) of the tree constructor a. We

extend the approach, taking into account the fact that our system of kinds is more elaborate (we

can form products and take linear arrows). This results in a richer set of intersection types.

Definition 19 (Intersection types). Let Q be a finite set of states and Col a finite set of colours. The

intersection types σ over Q and Col are defined by the grammar below.

σ ::= q | P ⊸ σ | E⊸ σ | A→ σ (q ∈ Q)

A ::=
∧

i ∈I □ci σi (ci ∈ Col)

P ::= ⟨ ∅, . . . , ∅,□c σ , ∅, . . . , ∅ ⟩ (c ∈ Col)

E ::= ⟨ ∅, . . . , ∅, . . . , ∅ ⟩

We say that a type is product-free if it is generated by the grammar σ ::= q | A→ σ (q ∈ Q). The

intersection connective is assumed to be associative, commutative and idempotent. We suppose

also that it is stable under reindexing, and we identify intersection types modulo reindexing.

A refinement relation ensures that types formed by intersection share a common structure:

Definition 20 (Refinement). The refinement relation between intersection types and kinds is

defined by the following rules.

q ∈ Q

q :: o

P :: ϖ σ :: φ

P ⊸ σ :: ϖ ⊸ φ

E :: ϖ σ :: φ

E⊸ σ :: ϖ ⊸ φ

A :: φ σ :: φ ′

A→ σ :: φ → φ ′

∀i ∈ I , σi :: φ
∧

i ∈I

□ci σi :: φ

σ :: φ j
〈

∅, . . . , ∅, □c σ
︸︷︷︸

position j

, ∅, . . . , ∅

〉

:: &i ∈Iφi
E :: ϖ

We may now define the new notion of linear-nonlinear APTA in a way reminiscent of the

connection between APTA and intersection types discussed above.

Definition 21 (Linear-nonlinear APTA). A linear-nonlinear APTA (LNAPTA) is a tuple ⟨Σ, Q, δ , q0⟩,

where Σ is a tree signature, Q is a finite set of states, q0 ∈ Q is the inital state, and δ is a map from

Σ to sets of intersection types over Q and Col such that σ :: Σ(a) for any a ∈ Σ and σ ∈ δ (a).

The usual notion of APTA (without colouring) can now be recovered as follows.

Definition 22 (APTA). A linear-nonlinear APTA ⟨Σ, Q, δ , q0⟩ will be called an APTA if, for a ∈ Σ

and σ ∈ δ (a), the type σ is product-free.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:13

Suppose there is Ω : Q → Col such that, for all a ∈ Σ, each σ ∈ δ (a) has the shape
∧

i1∈I1

□ci1
qi1 → · · · →

∧

in ∈In

□cin qin → q

where ci j = Ω(qi j) for all 1 ≤ j ≤ n and i j ∈ Ij . Then this type-theoretic definition is precisely

equivalent to the usual notion of APTA, as defined, for instance, in [Kobayashi and Ong 2009].

In the remainder of the paper, we shall assume that APTA always come with such Ω so that we

can write ⟨Σ, Q, δ , q0, Ω⟩. Similarly, we shall only consider LNAPTA whose delinearizations into

APTA (to be introduced) satisfy this assumption.

It should be noted that, on signatures whose kindings have particular shapes, LNAPTA cor-

respond to various known classes of APTA. It has already been remarked by Melliès [Grellois

and Melliès 2015b; Melliès 2014] that APTA restricted according to linearly kinded signatures

would correspond to non-deterministic parity tree automata. In the more general framework of

LNAPTA, this observation amounts to saying that LNAPTA over signatures with kinds of the shape

&{⋆} o ⊸ · · · ⊸ &{⋆} o ⊸ o yield, via delinearization, non-deterministic parity tree automata.

A similar result can be given for the class of disjunctive APTA [Kobayashi and Ong 2011]: they

are precisely the LNAPTA over signatures whose kinds are all of the form &i ∈I o ⊸ o. To our

knowledge, this latter observation is new.

Example 23. Consider the tree signature Σ = {b :: o & o ⊸ o, c :: o ⊸ o, d :: o ⊸ o, e :: o} of

Example 11. Given a LHORS over this signature, suppose we want to check that, on any branch,

after a c is encountered, we never encounter b again and we eventually encounter e (call this

property P). By the remark above, any LNAPTA over Σ is disjunctive and, hence, cannot express

P , which is not a disjunctive property [Kobayashi and Ong 2011]. However, we can express the

disjunctive property that some branch satisfies ¬P by the LNAPTAA = ⟨Σ, {q0,q1}, δ , q0⟩, where:

δ (b) = {⟨□1q0, ∅⟩⊸ q0, ⟨∅,□1q0⟩⊸ q0, ⟨∅, ∅⟩⊸ q1}

δ (c) = {⟨□2q1⟩⊸ q0, ⟨□2q1⟩⊸ q1}

δ (d) = {⟨□1q0⟩⊸ q0, ⟨□2q1⟩⊸ q1}

The reader may convince themselves that this LNAPTA expresses the correct property by consider-

ing the corresponding disjunctive APTA. Following [Kobayashi and Ong 2011], such a disjunctive

APTA expressing ¬P on branches may be obtained systematically by complementing a deterministic

parity word automaton for P and reformulating it as a (disjunctive) APTA running on branches.

Using our model-checking algorithm to come, we may then check that a LHORS satisfies P by

checking that it is rejected by A.

LNAPTA run-tree. A LNAPTA can be seen as an APTA in the traditional sense, but defined in a

more structured way and running over trees containing tuples. In fact, we shall define LNAPTA

run-trees using the standard notion of run-trees for a traditional APTA. The idea is that a LNAPTA

running over the tree a T1 ⟨T2, T3⟩ is constrained with respect to a usual APTA: it can pick a

transition nondeterministically but then, while it can duplicate or dropT1, it has to run over exactly

one copy of either T2 or T3. For instance, the type a :
∧

i ∈{1,2} □Ω(qi) qi → ⟨□Ω(q3) q3, ∅⟩ ⊸ q

corresponds to a transition whose effect on the production of a run-tree will be:

aq

⟨T2,T3⟩T1

⇝

aq

T
q3
2T

q2
1T

q1
1

where the automaton duplicates T1 and explores T2 exactly once. Consequently, the resulting run-

tree is a tree in the usual sense: there are no products, which correspond to choices that must be

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:14 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

resolved during the execution of a LNAPTA. Observe that the previous transition could have been

performed by an APTA in the traditional sense, executed on the tree a T1 T2 T3. This tree will be

called the delinearization of a T1 ⟨T2, T3⟩ over which we shall execute the delinearization of the

LNAPTA in question to extract a run-tree.

Definition 24 (Delinearizations).

• The delinearization {|φ |} of a kind is defined as follows.

{|o |} = o and {|φ1 → φ2 |} = {|φ1 |} → {|φ2 |}

{|&i ∈Iφi ⊸ φ |} = {|φ1 |} → · · · → {|φn |} → {|φ |}

• The delinearization {|Σ|} of a tree signature Σ maps a to {|Σ(a)|}

• The delinearization {|σ |} (resp. {|A|}, {|P |}) of an intersection type is given below.

{|q |} = q

{|⟨ ∅, . . . , ∅,□c σ , ∅, . . . , ∅ ⟩⊸ τ |} =
∧

∅ → · · · →
∧

∅ →
∧

{⋆} □c {|σ |} →
∧

∅ → · · · →
∧

∅ → {|τ |}

{|⟨ ∅, . . . , ∅, . . . , ∅ ⟩⊸ τ |} =

∧

∅ → · · · →
∧

∅ → · · · →
∧

∅ → {|τ |}
{�
�
∧

i ∈I □ci σi → τ
�
�
}

=

∧

i ∈I □ci {|σi |} → {|τ |}

• The delinearization {|A|} of a linear-nonlinear APTA A = (Σ, Q, δ , q0) is the APTA

{|A|} = ({|Σ|} , Q, {|δ |} , q0) such that {|δ |} (a) = {{|σ |} | σ ∈ δ (a)} for every a ∈ Σ.

• Let Σ be a tree signature. The delinearization {|t |} of a term t ∈ KTΣ |_(o) is defined as
{�
�a ⟨T11, . . . ,T1k1⟩ . . . ⟨Tn1, . . . ,Tnkn ⟩

�
�
}

= a {|T11 |} . . .
{�
�T1k1

�
�
}

. . . {|Tn1 |} . . .
{�
�Tnkn

�
�
}

where n can be 0 and where we used the convention that unary tuples of terms can be written

instead of a term to uniformize notation.

We note the following consequences, which are easy to verify.

Lemma 25. • Suppose that τ :: φ. Then {|τ |} :: {|φ |}.

• Suppose that t ∈ KTΣ |_(o). Then {|t |} ∈ KT{|Σ |} |_(o).

LNAPTA run-trees are now defined following the intuition that LNAPTAs are traditional APTAs

obeying additional constraints on duplication and linearity in their executions.

Definition 26. Let A be a LNAPTA and t ∈ KTΣ |_(o) be a ground term over the same signature Σ.

A (accepting) run-tree of the delinearized APTA {|A|} over the delinearized term {|t |} will be called

a (accepting) run-tree of A over t .

4.2 The Intersection Type System L(A) for Linear-Nonlinear APTA Model-Checking

In this section, we define a generalization of the type system from [Kobayashi and Ong 2009] taking

advantage of our finer notion of a kind. The intersection types we consider are the ones of Section

4.1. A nonlinear context Γ (resp. a linear context ∆) is a sequence of bindings

Γ = x1 : A1 :: κ1, . . . , xn : An :: κn
(

resp. ∆ = y1 : P1 :: κ ′1, . . . , ym : Pm :: κ ′m
)

where Ai :: κi (resp. Pj :: κ ′j). We write x : □c σ ∈ Γ when the intersection type for x contains

□c σ . We also rely on two partial operations on contexts. The union ∆1, ∆2 of two linear contexts

is defined if and only if they have disjoint domains, and contains the variables of ∆1 and of ∆2 with

the unique intersection type and kind they have in ∆1 and ∆2. The intersection (or contraction)

Γ1 ∧ Γ2 of nonlinear contexts contains:

• the variables of Γ1 (resp. Γ2) which are not in Γ2 (resp. Γ1) with the intersection type and kind

they have in Γ1 (resp. Γ2),

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:15

σ ∈ δ (a)

_ | _ ⊢A a : σ :: Σ(a)

x < Σ

x :
∧

{⋆}

□ε σ :: φ | _ ⊢A x : σ :: φ

x < Σ ∪ N

_ | x : ⟨ ∅, . . . , ∅,□ε σ , ∅, . . . , ∅ ⟩ :: &i ∈Iφi ⊢A πi x : σ :: φi

Γ, x :
∧

i ∈I

□ci σi :: φ1 | ∆ ⊢A t : τ :: φ2 I ⊆ J

Γ | ∆ ⊢A λx . t :
∧

j ∈J

□c j σj → τ :: φ1 → φ2

Γ | ∆ ⊢A t : τ :: φ2 x < dom(Γ,∆)

Γ | ∆ ⊢A λx . t :
∧

∅ → τ :: φ1 → φ2

Γ | ∆, x : P :: ϖ ⊢A t : σ :: φ

Γ | ∆ ⊢A ℓx . t : P ⊸ σ :: ϖ ⊸ φ

Γ | ∆ ⊢A t : σ :: φ x < dom(Γ,∆)

Γ | ∆ ⊢A ℓx . t : E⊸ σ :: ϖ ⊸ φ

Γ1 | ∆1 ⊢A t : ⟨ ∅, . . . , ∅,□c σ , ∅, . . . , ∅ ⟩⊸ τ :: ϖ ⊸ φ Γ2 | ∆2 ⊢A uj : σ :: ϖ

Γ1 ∧ □c Γ2 | ∆1,□c ∆2 ⊢A t ⟨u1, . . . , uj , . . . ,un⟩ : τ :: φ

Γ | ∆ ⊢A t : E⊸ σ :: ϖ ⊸ φ

Γ | ∆ ⊢A t ⟨u1, . . . , uj , . . . ,un⟩ : σ :: φ

Γ | ∆ ⊢A uj : σ :: φ j ∈ I

Γ | ∆ ⊢A πj ⟨ui | i ∈ I ⟩ : σ :: φ

Γ0 | ∆ ⊢A t :
∧

i ∈I

□ci σi → τ :: φ1 → φ2 ∀i ∈ I , Γi | _ ⊢A u : σi :: φ1

Γ0 ∧ □c1Γ1 ∧ · · · ∧ □cn Γn | ∆ ⊢A t u : τ :: φ2

Fig. 4. The intersection type system L(A).

• and the variables x which appear in both Γ1 and Γ2 if they have the same kind κ in both; oth-

erwise, the operation is undefined. We exploit stability of intersection types under reindexing

to writeAi =
∧

j ∈Ji □c j σj for the type of x in Γi , with J1 ∩ J2 = ∅. Then x appears in Γ1 ∧ Γ2

as x :
∧

j ∈J1⊎J2 □c j σj :: κ (by idempotence some of these types may collapse).

We also define the operation □c , for c ∈ Col, on types of the shape A, P and E and on contexts as

follows:

□c

(∧

i ∈I □ci σi
)

=

∧

i ∈I □max(c,ci) σi
□c ⟨ ∅, . . . , ∅,□c ′ σ , ∅, . . . , ∅ ⟩ =

〈

∅, . . . , ∅,□max(c,c ′) σ , ∅, . . . , ∅
〉

□c (x : A :: φ, Γ) = x : □c A :: φ, □c Γ

□c (x : P :: φ,∆) = x : □c P :: φ, □c ∆

where □c applied to the empty context is again the empty context and □c E = E.

Given a LNAPTA A, the intersection type system is defined in Figure 4. Sequents are of the

shape Γ | ∆ ⊢A t : σ :: φ, where we assume Γ and ∆ to have disjoint domains.

As such, the type system is only a way to type the terms R(F), to which non-terminals of the

given recursion scheme rewrite. To account for recursion, Kobayashi and Ong define a parity game

that we extend to our setting. Note that, following [Grellois and Melliès 2015b], we introduce a

neutral colour ε in the parity game, which is smaller than all others and losing.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:16 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

Definition 27 (Typing game). Let G be a linear HORS and A be a linear-nonlinear APTA with

an associated colouring function Ω. We define the typing game Typ(G,A) as the parity game

(V∀, V∃, (S, q0, ε) , E, Ω), where:

• V∃ = {(F ,σ , c) | F ∈ N , σ :: N(F), c ∈ Col}

• V∀ = {Γ s.t. dom(Γ) ⊆ N}

• E = {((F ,σ , c), Γ) | Γ | _ ⊢A R(F) : σ :: N(F)} ⊎ {(Γ, (F ,σ , c)) | F : □c σ :: N(F) ∈ Γ}

• The edges of the shape (Γ, (F ,σ , c)) have colour c and the edges of the shape ((F ,σ , c), Γ)

have neutral colour ε .

The idea is that two players, Adam (who owns the vertices from V∀) and Eve (who owns those

from V∃), build incrementally a typing as follows:

• Eve starts from (S, q0, ε), and must answer with a context Γ such that Γ | _ ⊢A R(S) : q0 :: o.

Γ contains typings for the nonterminals introduced when rewriting S to R(S).

• If Γ is empty, Eve wins. Otherwise, Adam picks a typed nonterminal F : □cσ :: N(F) ∈ Γ

and outputs the colour c .

• Then Eve provides a context Γ′ such that Γ′ | _ ⊢A R(F) : σ :: N(F), and so on.

The interaction stops if Eve can answer with the empty context (she wins), if she cannot answer (she

loses) or if the play is infinite (Eve wins iff the parity condition is satisfied). We can use the parity

game to obtain a refined version of Kobayashi and Ong’s soundness-and-completeness theorem.

Theorem 28 (Soundness and Completeness). Let G be a linear HORS and A be a LNAPTA. Eve

has a winning strategy in the typing game Typ(G,A) if and only if there is an accepting run-tree of

A over the treeV(G) produced by G.

Proof. For Soundness, suppose that Eve has a winning strategy in Typ(G,A). One can define a

series of notions of delinearization and, notably, one for proofs, which allows Eve to translate her

moves in Typ(G,A) into moves of Typ({|G|} , {|A|}), opening the same (up to delinearization of

types) moves for Adam. It can be shown that Eve obtains a winning strategy in Typ({|G|} , {|A|}) this

way. Then we observe that the delinearized typing derivations that Eve uses are precisely typing

derivations of the Kobayashi-Ong system, modulo the fact that sequents are written Γ | _ ⊢A t :

σ :: κ instead of Γ ⊢ t : σ :: κ. It follows that the definition of our parity game Typ({|G|} , {|A|})

coincides with their parity game for {|G|} and {|A|} (more precisely, it coincides with its modal

rephrasal by Grellois and Melliès given in [Grellois 2016]). As a consequence of the original result

of soundness of [Kobayashi and Ong 2009], there is an accepting run-tree of {|A|} over the tree

V({|G|}). By definition, there is an accepting run-tree of A over the treeV(G).

For Completeness, one can carefully adapt the argument from [Kobayashi and Ong 2009]. The

main changes necessary concern product constructions and the presence of linear contexts. □

Example 29. Consider the LHORS G from Example 14 and the LNAPTA A from Example 23.
Despite the linear typing, Typ(G,A) is still too big to be presented fully.

On the left, we display its small fragment, where circled nodes belong to

Eve and rectangles to Adam.

This diagram follows a strategy for Eve in which she declares a typing

that only explores the infinite branch on the right of the infinite tree from

Example 14, encountering only occurrences of b; and a counter-strategy

for Adam exploring only F . The infinite loop visits colour 1 infinitely

often, therefore it is losing for Eve. In fact, Adam has a winning strategy

in Typ(G,A): accordingly, G is rejected by A, which corresponds to the

fact that it satisfies the original property P considered in Example 23.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:17

The parity game Typ(G,A) is finite; therefore, the LNAPTA model-checking problem for infinite

trees generated by LHORS is decidable. Of course, that in itself is not new since a LHORS can be

easily translated to a HORS generating the same infinite tree (but with higher order). The value of

the development above will appear more clearly in the next section with the complexity analysis.

4.3 Complexity Analysis

We have seen that given a LHORS G and a LNAPTA A, the model-checking problem is reduced to

the existence of a winning strategy for Eve in the parity game Typ(G,A). Since the parity game is

played on typing judgements of our intersection type system, the key element of the complexity

analysis will be finding an upper bound on the number of intersection types refining a given kind.

As pointed out before, linear kinds will affect the complexity in a relatively small manner.

4.3.1 Bounding the Size of Refinements. First, let us explain briefly why only non-linear arrows

are expected to cause an exponential blow-up. Fix a LHORS G and a linear-nonlinear APT A.

The source of the tower of exponentials in the complexity of higher-order model-checking is the

following refinement rule for non-linear arrows:
∧

i ∈I

□ci σi → σ :: φ → ψ

(which combines two refinement rules of Definition 20), where for all i ∈ I , σi :: φ and σ :: ψ . The

intersection types are idempotent, so assuming φ and ψ have only finitely many refinements it

follows that the same holds for φ → ψ . Writing ♯κ for the number of distinct intersection type

refinements of κ, we get ♯(φ → ψ) ≤ 2C♯φ♯ψ , where C is the number of colours. It should be clear

to the reader how non-linear arrows nested on the left will iterate this exponential, culminating in

a tower of height equal to the order of the kind. The impact of the other kind constructors is milder:

♯(o) = Q ♯(&i ∈Iφi) =
∑

i ∈I

C ♯φi ♯(ϖ ⊸ φ) = (♯ϖ + 1)(♯φ)

where Q is the number of states of A.

None of these cause directly an exponential blow-up. However, it would be naive to ignore their

effect. From our discussions, one might expect that, for purely linear kinds κ, ♯κ will be linear in

|κ |. Unfortunately, it is easy to see that this is not the case: the kind o ⊸ . . .⊸ o ⊸ o has size

O(n), but admits O(Qn) refinements. To circumvent the apparent issue, we introduce the notion of

linear depth, capturing the maximal depth of isolated linear chunks of kinds.

In the purely non-linear case [Kobayashi and Ong 2009], the bound also involves the maximal

arity of kinds. The presence of linear kinds forces us to switch to a generalized notion of arity.

Definition 30. We define the local generalized arity ga(σ) for a kind σ by:

ga(o) = 1 ga(κ ⊸ φ) = max(ga(κ), ga(φ)) + 1

ga(&i ∈Iφi) = maxi ∈I ga(φi) ga(φ → ψ) = 1 + ga(ψ)

We say that σ has generalized arity A iff for all subkind ι of σ , we have ga(ι) ≤ A.

Assume from now on that kinds in G have linear depth D, and generalized arity A. For the key

lemma below, we assume that the number of colours ofA is bounded byQ (from the definition it is

bounded byQ + 1 as the intersection type system uses an additional colour ε , but the requirement is

easy to ensure with no loss of generality, for instance, by adding a dummy state) ś we find it more

convenient to give a bound expressed inQ than inC andQ , which can be proved by induction on κ.

Lemma 31. For all d ≥ 0, define f0(n,x ,y, z) = (xy)2
n
and fd+1(n,x ,y, z) = x

yz2n fd (D,x,y,A). Then,

for all kinds κ appearing in G, we have ♯κ ≤ fℓo(κ)(lld(κ), |κ | + 1,Q, ga(κ)).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:18 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

From there, it is relatively easy to derive the following by arithmetic reasoning:

Corollary 32. If G has linear order n, linear depth D and generalized arity A, then for all κ in G:

♯κ ≤ expn(A 2D+1(Q |κ |)2
D
+1), where exp0(x) = x , expn+1(x) = 2expn (x).

The tower is two steps higher than usual if one considersD as a variable. It is easy to come up with

a sequence of purely linear kinds showing that the additional double exponential is unavoidable.

However, if D is fixed, we get bounds of the form expn(O(poly(AQS))) for refinements of kinds of

linear order n, generalized arity A, size S , with types built from Q states ś as hoped. We will see

later that this is not an unreasonable assumption, as our translations yield a small linear depth.

Finally, from the above one can deduce complexity bounds for solving Typ(G,A).

Proposition 33. Given a LHORS G with N non-terminals, kinds of maximal size S , linear depth

D and linear order n; and a linear-nonlinear APT A with colours bounded by p and states bounded by

Q ≥ p. For n ≥ 1, the time complexity for solving Typ(G,A) is O(N ⌈p/2⌉+2 expn(O(2
D)(QS)O (2D))).

Proof. The following inequalities follow immediately from the definition of Typ(G,A) and

Corollary 32 (using also that the generalized arity of a kind is always bounded by its size).

|V∀ |, |V∃ | ≤ N expn(O(2
D)(QS)O (2D)) |E | ≤ N 2 expn(O(2

D)(QS)O (2D))

The result follows by applying the algorithm from [Jurdziński 2000]. □

Finally, let us fix some D ≥ 1. A LHORS is D-deep if its linear depth does not exceed D. Our

main theorem then follows as a corollary of the above:

Theorem 34. Assume n ≥ 1. The time complexity of checking whether a LNAPTAA = ⟨Σ,Q,δ ,q0⟩

accepts the value tree of a D-deep LHORS G of linear order n is expn(O(poly(|Q||G|))). In particular,

the problem is n-EXPTIME complete (hardness follows from [Ong 2006]).

5 IMMEDIATE CONSEQUENCES

Although recent developments in higher-order program verificationwere prompted by a decidability

result for HORS [Ong 2006], subsequent complexity results for richer formalisms did not appeal to

the result directly. Instead, their authors were developing dedicated decision procedures.

There are at least two reasons for this. Firstly, HORS represent only the part of the control flow

of a program coming from higher-order computation, while programs typically manipulate data,

and their behaviour depends on the data. Secondly, programs typically follow a different evaluation

strategy, such as call-by-value. Both problems can be dealt with using plain HORS: data types can

be represented via their Church encoding, e.g. with B∗ = o → o → o, while call-by-value programs

can be translated to HORS (call-by-name) with CPS. Unfortunately, both translations increase type

order and suggest increases in complexity.

In contrast, we are going to show that, thanks to Theorem 34, LHORS (equivalently, the λℓY -

calculus) are a suitable target for such translations. First, in this section, we shall derive optimal

bounds for MSO model-checking in two extensions of HORS by translation into LHORS. In the

next section, we shall follow the same methodology (translation into the λℓY -calculus) to handle

accurately a resource verification problem in the call-by-value setting.

5.1 Recursion Schemes Over Finite Data Domains

Recursive schemes over finite data domains (RSFD) [Kobayashi et al. 2010] extend standard (non-

linear) HORS with a new ground kind d representing a finite domain whose elements correspond

to constants d1, · · · ,dk of that kind. Terms of RSFDs are those of standard HORS extended with

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:19

constants di :: d, caseo :: d → o → · · · → o
︸ ︷︷ ︸

k

→ o and the reduction rule caseo di u1 . . . uk ▷ ui .

Importantly, RSFD kinding rules force u1, . . . ,uk to have the ground kind o. Terminals b are kinded

as usual by o → · · · → o → o. For RSFDs, we prove:

Proposition 35. Given a RSFD G = ⟨Σ,N ,R, S⟩, we construct a λℓY -term Σ | _ ⊢ G∗ :: o as

follows. First, we define the translation on kinds and terms.

o∗ = o

d∗ = o⊸ · · ·⊸ o
︸ ︷︷ ︸

k

⊸ o

(φ → ψ)∗ = φ∗ → ψ ∗

b∗ = b F ∗ = F

(t u)∗ = t∗ u∗ (λxθ . t)∗ = λxθ
∗
. t∗

d∗i = ℓxo1 ℓx
o
k
. xi

case∗o = λdd
∗
. λxo1 λx

o
k
.d x1 . . . xk

In this way, for each θ = N(F), we obtain Σ,N∗ | _ ⊢ R(F)∗ :: θ ∗. Next let us take a fixpoint over the

product of the non-terminals as in Proposition 16. Then, (−)∗ sends an RSFD G of order n (note that

ord(d) = 0) to a λℓY -term G∗ of linear order n, of size linear in that of G, and linear depth k ; producing

the same tree.

This allows us to conclude that:

Corollary 36. For a fixed finite domain d, the MSO model-checking problem on infinite trees

generated by RSFDs of order n is n-EXPTIME complete.

Proof. Hardness is obvious, since regular HORS are RSFDs. For the upper bounds, by Proposition

35 and Theorem 34, we get that LNAPTA model-checking is in n-EXPTIME. But the expressiveness

of LNAPTA depends on non-terminals. Since they are kinded non-linearly, (as we observed in

Section 4.1) they concide with regular APTAs in this case. Therefore, they can express arbitrary

MSO properties. □

Note for completeness that Kobayashi et al. [2010] prove (n − 1)-EXPTIME completeness for

reachability, but do not address general MSO properties. Note also that the n-EXPTIME bounds

only hold under the requirement that d is fixed, because the linear depth depends on the size of d ś

a constraint that will be lifted in the next subsection with a different translation.

5.2 Higher-Order Recursion Schemes with Cases

Higher-order recursion schemes with cases (HORSC) [Neatherway et al. 2012] are similar to RSFD,

with a few significant distinctions. Firstly, branching is allowed on d as well as on o, i.e. we have

caseo as well as cased :: d → d → · · · → d
︸ ︷︷ ︸

k

→ d. Furthermore, the elements di ∈ d are themselves

terminal symbols, and can appear in the value tree. Of course, this means that terminal symbols

can have kind d as well as o. In general, terminal symbols that are not in d have kinds of the form:

a :: β1 → · · · → βn → o

where βi ∈ {o, d}; so in particular they have return kind o.

Translating HORSCs to LHORS/λℓY is slightly more elaborate than for RSFDs, though it remains

rather simple. Given a HORSC G = ⟨Σ,N ,R, S⟩, we first observe that Σ is many-sorted. In contrast,

the translated LHORS will have terminal symbols in Σ
∗, defined as having the same symbols as Σ

but rekinded by replacing every occurrence of d with o. Then, we prove:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:20 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

Proposition 37. Given a HORSC G = ⟨Σ,N ,R, S⟩ we construct a λℓY -term Σ | _ ⊢ G∗ :: o as

follows. First, we define the translation on kinds and terms.

o∗ = o d∗i = ℓx&1≤i≤ko . πi x

d∗ = (&1≤i≤ko)⊸ o a∗ = λx
β1
1 . . . x

βn
n . a ⟨elimβi xi | 1 ≤ i ≤ n⟩

(φ → ψ)∗ = φ∗ → ψ ∗ x∗ = x F ∗ = F

(t u)∗ = t∗ u∗ (λxφ . t)∗ = λxφ
∗
. t∗

(caseo t u1 . . . uk)
∗
= t∗ ⟨u∗i | 1 ≤ i ≤ k⟩ (ui : o)

(cased t u1 . . . uk)
∗
= ℓx&1≤i≤ko . t∗ ⟨u∗i x | 1 ≤ i ≤ k⟩ (ui : d)

where elimo x = x , elimd x = x ⟨di | 1 ≤ i ≤ k⟩. Dealing with the recursive definition as before, this

yields Σ∗ | _ ⊢ G∗ :: o of linear order n, linear depth 2, size linear in that of G; and the same value tree.

Note the usage of product kinds, essential in order to represent the generalized case distinction

of HORSC. As for RSFDs, from Proposition 37 and Theorem 34 we obtain:

Corollary 38. The MSO model-checking problem on HORSC of order n is n-EXPTIME complete.

Note that, unlike for our translation of RSFDs, the one for HORSC yields λℓY -terms of constant

linear depth thanks to the use of products. This eliminates the need for a fixed data domain

assumption in the corollary above. A posteriori, of course, the same holds for RSFDs: an RSFD is in

particular a HORSC.

5.3 Kinding of Terminals

As demonstrated above, Theorem 34 can often be used to obtain better worst-complexity bounds

than those implied by the classic result [Ong 2006], provided we can introduce linearity into the

underpinning types. This could also be done by typing terminals (i.e. tree nodes) through linear

types, such as o⊸ o⊸ o and o&o⊸ o. Every regular HORS can be transformed into an equivalent

LHORS (wrt the induced value tree) with terminals rekinded linearly, either multiplicatively (i.e.

o⊸ . . .⊸ o⊸ o) or additively (i.e. o & · · · & o⊸ o).

As we have seen in Section 4.1, the kinding of terminals affects properties expressible with linear-

nonlinear APTAs. In particular, if we adopt the additive linear kinding for terminals mentioned

above, then LNAPTAs correspond to disjunctive APTAs [Kobayashi and Ong 2011], which admit

(n − 1)-EXPTIME model-checking on standard HORS of order n. Therefore, it is tempting to

conjecture that rekinding the terminals as suggested above always reduces the linear order, saving

one exponential. Unfortunately, that is not the case. It turns out that there exist HORS that (even

with terminals kinded linearly) do not admit a refined linear kinding reducing the linear order.

Thus, the linearity information conveyed by linear kinding in λℓY is too rough to reproduce the

argument of [Kobayashi and Ong 2011], which exploits the flexibility of intersection types to reduce

the search space. Still, terminals kinded with additive types will play an important role in the next

section, where we tackle a less immediate application of our main result to call-by-value programs.

6 CALL-BY-VALUE PROGRAMS

To avoid the complexity blow-up due to CPS translation, Tsukada and Kobayashi [2014] gave a

direct intersection type system to show that the reachability problem for depth-n call-by-value

programs is n-EXPTIME-complete. We show that, using Theorem 34, one can recover their result

through a linear CPS transformation, and the refined complexity analysis afforded by the Theorem

does yield the optimal bound. Moreover, we show that the same complexity bound applies to the

more general problem of resource verification [Kobayashi 2009] in the call-by-value setting.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:21

E; Γ ⊢L tt : B E; Γ ⊢L ff : B E; Γ,x : A ⊢L x : A

E, fi : Ei ; Γ ⊢L uj : Aj (1 ≤ j ≤ pi)

E, fi : Ei ; Γ ⊢L fi ⟨uj | 1 ≤ j ≤ pi ⟩ : Bi

E; Γ ⊢L t : B E; Γ ⊢L u1 : A E; Γ ⊢L u2 : A

E; Γ ⊢L if t u1 u2 : A

E; Γ ⊢L skip : U

E; Γ ⊢L t : U E; Γ ⊢L u : A

E; Γ ⊢L t ;u : A

E; Γ ⊢L t : R

E; Γ ⊢L usea t : U

E; Γ,x1 : A1, . . . ,xn : An ⊢L t : B

E; Γ ⊢L λ⟨x1, . . . ,xn⟩. t : A1 × · · · ×An ⇒ B

E; Γ,x : R ⊢L t : A

E; Γ ⊢L newx from q in t : A

E; Γ ⊢L t : A1 × · · · ×An ⇒ B E; Γ ⊢L ui : Ai

E; Γ ⊢L t ⟨ui | 1 ≤ i ≤ n⟩ : B

E; Γ ⊢L u1 : A E; Γ ⊢L u2 : A

E; Γ ⊢L u1 ⊕ u2 : A

Fig. 5. Typing rules for L

6.1 A Call-By-Value Language

We consider a language L, extending the simply-typed call-by-value calculus with primitives for

resource generation and access.

Definition 39 (Types). L-types are defined by the grammar

A,B ::= B | U | R | A1 × · · · ×An ⇒ B

where B is the type of booleans, U is the unit type, and R is a type for resources, which could be used

to model e.g. file, network or memory accesses. B and U (but not R) will be referred to as base types.

Let us fix a setAct of actions.WewriteAct∞ for the set of possibly infinitewords onAct, i.e. it con-

tains both finite and infinite words.We fix a deterministic parity automatonA = ⟨Q,Act,δ ,q0, Σ, F ⟩,

which describes the allowed ways to use the resource. Note that this automaton recognizes both

finite and infinite words: a finite wordw is recognized if the automaton reaches F after readingw ,

and it recognizes an infinite word according to the parity acceptance condition. We write Lq(A)

for the set of words (both finite and infinite) accepted by A from state q.

Definition 40 (Terms). L-terms are defined by the grammar

t ,u,v ::= x | f | λ⟨x1, . . . ,xn⟩.t | t ⟨u1, . . . ,un⟩ | tt | ff | if t u1 u2 |

skip | t ;u | t ⊕ u | usea t | newx from q inu

where a ∈ Act, q ∈ Q and all the tuplings are non-empty.

L-terms will be typed using typing judgements of the form E; Γ ⊢L t : A, where E is the

environment comprising typed function names, which are to be defined later in the whole program,

and Γ is a standard typing context. The typing rules appear in Figure 5.

Definition 41 (Definitions). A function definition in L is D ::= { fi = λ⟨xi,1, . . . ,xi,pi ⟩. ti }i≤N ,

where for all 1 ≤ i ≤ N we have E; _ ⊢L λ⟨xi,1, . . . ,xi,pi ⟩. ti : Ei where Ei = Ai,1×· · ·×Ai,pi ⇒ Bi ,

Bi a base type, and E = { fi : Ei | 1 ≤ i ≤ N }. We will sometimes write D(fi) = λ⟨xi,1, . . . ,xi,pi ⟩. ti .

Definition 42 (Programs). A L-program is a pair (P ,D), where D is a function definition and P

is a term satisfying E; _ ⊢L P : B, where B is a base type.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:22 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

E[if tt u1 u2] {v E[u1] E[if ff u1 u2] {v E[u2]

E[skip; t] {v E[t] E[fi ⟨vi | 1 ≤ j ≤ pi ⟩] {
D E[ti [vj/x j]]

E[(λ⟨xi | i ∈ I ⟩.t) ⟨vi | i ∈ I ⟩] {v E[t[vi/xi]]

Fig. 6. Resource-free reduction rules on programs in L

(E[t1 ⊕ t2],n)
τ

−→ (E[ti],n) (P ,n)
τ

−→ (Q,n) (P {D
v Q)

(E[usea r],n)
a

−→ (E[skip],n) (E[usea r
′],n)

τ
−→ (E[skip],n) (r , r ′)

(E[newx from q in t], r)
q

−→ (E[t[r/x]], r + 1)

(E[newx from q in t],n)
τ

−→ (E[t[n/x]],n + 1) (n , r)

Fig. 7. Transitions between configurations

Our operational semantics will track, throughout execution, access to resources. It is defined via

two sets of rules: standard (small-step) call-by-value reduction rules and a collection of rules for

tracking resource usage. First we present the rules for plain call-by-value computation. For the rest

of this section, we fix a function definition D, as it is not affected by reduction.

6.1.1 Call-By-Value Reduction. Values are terms of one of the forms: tt, ff, skip, λ⟨x1, . . . ,xn⟩. t ;

or resources, represented by natural numbers. We use v,w, . . . to range over values, or r in case the

value is a resource. The call-by-value evaluation contexts are generated as described below.

E[] ::= [] | (E[]) ⟨ti | i ∈ I ⟩ | E[]; t | (λ⟨x1, . . . ,xn⟩. t) ⟨v1, . . . ,vi ,E[], ti+2, . . . , tn⟩ |

fi ⟨v1, . . . ,vj ,E[], tj+2, . . . , tpi ⟩ | ifE[] u1 u2 | usea E[]

Recursively defined variables fi are treated as values ś by definition of our programs, we know

that they are always bound to non-empty abstractions, i.e. values. Treating them as values forces

the evaluation of arguments before substitution of D(fi) for fi . This will later allow for a closer

match with the CPS translation.

In Figure 6 we present the rules for pure call-by-value reduction, not taking into account resource

usage and non-deterministic choice. Keep in mind that these rules operate on programs, i.e. terms

E; _ ⊢ P : B with B a base type. We write{D
v for the union of{v and{D .

6.1.2 Resource Usage. Now, we enrich our operational semantics to track resource usage. As in

[Tsukada and Kobayashi 2014], resources can be dynamically created and the properties we aim to

verify are resource-conscious: each resource, taken separately, must be accessed according to A.

To track usage of the r th initialized resource we build a labelled transition system L(r).

Definition 43. Fix D and r ∈ N. The configurations of L(r) are pairs (P ,n), where n ∈ N is the

index of the next resource to be created and (P ,D) is a program. Transitions are given in Figure 7.

The operational semantics is well-behaved, as can be proved by an induction on P :

Lemma 44. For each (P ,n), either P is a value; or exactly one of the rules of Figures 6 and 7 applies.

The labels of L(r) are taken from L = Act ⊎ Q ⊎ {τ }. Forw ∈ L∞ (possibly an infinite word on

alphabet L), we write tr(w) forw with occurrences of τ removed. We can finally formulate:

Definition 45 (Correct program). Let (P ,D) be an L-program and r ∈ N be a tracked resource. A

maximal (possibly infinite) reduction sequence ρ in L(r)

ρ = (P , 0)
v1
−→ (P1,N1)

v2
−→ . . .

vi
−→ (Pi ,Ni)

vi+1
−→ . . .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:23

is correct either if tr(ρ) = tr(v1v2 . . .vi . . .) = ε (the resource tracked is never initialized), or

tr(ρ) = qa1a2 . . . aj . . . , where a1a2 . . . aj · · · ∈ Lq(A). The program (P ,D) is called correct if, for

all r ∈ N, any reduction sequence in L(r) starting from (P , 0) is correct.

Definition 46 (Resource correctness problem). The resource correctness problem asks whether

a given L-program is correct.

Next we state the main result of this section, about the complexity of the resource correctness

problem in our setting. The next subsection will be devoted to its proof, by a linear CPS translation

into the λℓY -calculus.

The depth of a type of our language is defined by depth(B) = depth(U) = depth(R) = 0, and

depth(A1 × · · · ×An ⇒ B) = max(depth(A1), . . . , depth(An), depth(B)) + 1.

The depth of a program (P ,D) is the maximal depth of the type of a subterm of P or of a term

occurring in D. In the remainder of the section, we will prove:

Theorem 47. The resource correctness problem is n-EXPTIME-complete for programs of depth n.

6.2 Linear CPS Translation

We now detail the CPS translation from L to the λℓY -calculus, which accommodates the translation

better than LHORS. Thanks to the translations between LHORS and λℓY , we will be able to take

advantage of Theorem 34, though.

Our translation exploits the observation that in the CPS of call-by-value into call-by-name,

the continuations carried around are actually linearly used, in the sense of [Berdine et al. 2002].

Hence we can exploit the linearity offered by our target language, and give the terms obtained by

translation a more precise kinding. Technically, our translation is a variant of the linear CPS (e.g.

[Laird 2005]) extended with products and recursive definitions.

6.2.1 Translation of Terms. The types of L are translated to types of the λℓY -calculus as follows.

B∗ = o & o⊸ o and U∗ = o⊸ o and R∗
= o⊸ o

((A1 × · · · ×An) ⇒ B)∗ = A∗
1 → · · · → A∗

n → (B∗ → o)⊸ o

To all terms E; Γ ⊢L t : A, the translation will associate a Y -free term of the λℓY -calculus

E∗, Γ∗ | _ ⊢ t∗ :: (A∗ → o)⊸ o.

Note that the translation of a term will not have any free linear variables, though it does have

some linear kinding. In Figure 8, we give the translation for the basic λ-calculus primitives. For the

resource primitives, we fix the tree signature to be Σ, defined as:

{⊕ :: o&o⊸ o, e :: o, t :: o⊸ o, nt :: o⊸ o} ∪ {νq :: o&o⊸ o | q ∈ Q}∪ {a :: o⊸ o | a ∈ Act}

To any program (P ,D) we will associate a λℓY -term of ground type in context Σ, whose Böhm

tree is a representation of the tree of all executions of P . The binary constructor ⊕ will track

nondeterministic choice and each action a ∈ Act will be recorded via a unary constructor a :: o⊸ o.

The terminal ewill be used to terminate branches, corresponding to completed computations. Finally,

the remaining primitives νq , t, nt are used to handle dynamic creation of resources, following a

trick from [Kobayashi 2009]. Each creation of a resource will be recorded as an occurrence of νq in

the tree. The constructor νq is binary. In a tree generated by (the CPS translation of) a program,

both sub-trees of νq will be almost identical. Their only difference will be that in the left branch,

the accesses to the generated resource will be tracked (all accesses to that resource will be prefixed

with t), whereas in the right branch, the accesses to the generated resource will be non-tracked (all

accesses to that resource will be prefixed with nt). Later, when verifying properties of this tree, we

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:24 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

(E; Γ ⊢L tt : B)∗ = ℓk (o&o⊸o)→o .k (ℓxo&o . π1 x) :: ((o & o⊸ o) → o)⊸ o

(E; Γ ⊢L ff : B)∗ = ℓk (o&o⊸o)→o .k (ℓxo&o . π2 x) :: ((o & o⊸ o) → o)⊸ o

(E; Γ,x : A ⊢L x : A)∗ = ℓkA
∗→o .k x :: (A∗ → o)⊸ o

(E; Γ ⊢L if t u1 u2 : A)
∗
= ℓkA

∗→o . t∗ (λbo&o⊸o .b ⟨u∗1 k,u
∗
2 k⟩) :: (A∗ → o)⊸ o

(E; Γ ⊢L skip : U)∗ = ℓk (o⊸o)→o .k (ℓxo . x) :: ((o⊸ o) → o)⊸ o

(E; Γ ⊢L t ;u : A)∗ = ℓkA
∗→o . t∗ (λxo⊸o . x (u∗ k)) :: (A∗ → o)⊸ o

(E; Γ ⊢L λ⟨x1, . . . ,xn⟩. t : A1 × · · · ×An ⇒ B)∗ = ℓk .k (λx
A∗
1

1 . . . λx
A∗
n

n . t
∗)

:: ((
−→
A∗
i → (B∗ → o)⊸ o) → o)⊸ o

(E; Γ ⊢L t ⟨ui | 1 ≤ i ≤ n⟩ : B)∗ = ℓkB
∗→o . t∗

(λlA
∗
1→···→A∗

n→(B∗→o)⊸o .

u∗1 (λx
A∗
1

1 .

. . .

u∗n (λx
A∗
n

n . l x1 . . . xn k

) . . .)

:: (B∗ → o)⊸ o

(E, fi : Ei ; Γ ⊢L fi ⟨uj | 1 ≤ j ≤ pi ⟩ : Bi)
∗
= ℓkB

∗
i→o .u∗1 (λx

A∗
1

1 .

. . .

u∗pi (λxpi . fi x1 . . . xpi k) . . .)

:: (B∗ → o)⊸ o

Fig. 8. Linear CPS translation for non-resource primitives

(E; Γ ⊢L u1 ⊕ u2 : A)
∗
= ℓkA

∗→o . ⊕ ⟨u∗1 k,u
∗
2 k⟩ :: (A∗ → o)⊸ o

(E; Γ ⊢L usea t : U)
∗
= ℓk (o⊸o)→o . t∗ (λyo⊸o .y (a (k (ℓxo . x)))) :: ((o⊸ o) → o)⊸ o

(E; Γ ⊢L newx from q in t)∗ = ℓkA
∗→o . νq ⟨t∗[t/x]k, t∗[nt/x]k⟩ :: (A∗ → o)⊸ o

Fig. 9. Linear CPS translation for the resource primitives

will make sure to explore branches visiting the left sub-tree of a νq at most once, ensuring that at

most one resource is tracked.

We can finally complete the CPS-translation. In Figure 9, we give the translation for all the

primitives pertaining to resource access. This wraps up the definition of the translation of terms of

our language: for each E; Γ ⊢L t : A, we obtain Σ, E∗, Γ∗ | _ ⊢ t∗ :: (A∗ → o)⊸ o.

6.2.2 Translation of Definitions and Programs. Assume we have a definition

D = { fi = λ⟨xi,1, . . . ,xi,pi ⟩. ti }i≤N

with types as indicated before. Note that we insisted (as in [Tsukada and Kobayashi 2014]) that

in such definitions, each abstraction be non-empty, i.e. for all 1 ≤ i ≤ n, pi ≥ 1. This means, in

particular, that each term in the definition is a value. As is usual with CPS translations, translations

of values have a particular shape, which can be confirmed directly from the definitions:

Lemma 48. Let E; Γ ⊢L v : A be a value. Then, v∗ has the shape:

Σ, E∗, Γ∗ | _ ⊢ ℓkA
∗→o .k v• :: (A∗ → o)⊸ o

for some E∗, Γ∗ | _ ⊢ v• :: A∗.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:25

In particular, for all 1 ≤ i ≤ N , we have Σ, E∗ | _ ⊢ (D(fi))
•
= λx

A∗
1

1 . . . x
A∗
pi

pi
. t∗i :: E∗i . Exploiting

the presence of products in λℓY , we can finally form a closed λℓY -term ⊢ D∗ :: &1≤i≤N E
∗
i , defined as

YD :
˘

1≤i≤N E∗
i
. ⟨(D(fi))

•[πj D/fj] | 1 ≤ i ≤ N ⟩.

Finally, (P ,D) will be translated to Σ ⊢ (P ,D)∗ = P∗[πi D
∗/fi] (λk

o⊸o .k e) :: o.

6.2.3 Complexity of the Translation. The remainder of this section will be concerned with

correctness of the translation, i.e. showing that the Böhm tree of the translation describes the

resource usage of P adequately. Also, in order to exploit our model-checking algorithm, we need to

ensure that the translation of a program of depth n has linear order n, bounded linear depth, and

that its size is polynomial in the size of the original term. The last point is straightforward, so let

us focus on the previous ones. It is easy to show that

Lemma 49. For any type A of L, we have depth(A) = ℓo(A∗).

However, for terms there is a mismatch: a subterm E; Γ ⊢L t : A is interpreted as E∗, Γ∗ | _ ⊢

t∗ :: (A∗ → o)⊸ o. So, if a program has depth d , i.e. a subterm of type A with depth(A) = d , its

translation will have a subterm t∗ :: (A∗ → o)⊸ o of linear order d + 1. Fortunately, one can always

track a subterm of maximal depth in (P ,D) to an abstraction, which can be simplified exploiting

the intuition that it will never itself be used as an argument of a function.

Let d be the depth of (P ,D). To perform the simplification, we introduce an optimized translation

operation (−)◦. On any subterm of depth strictly less than d , (−)◦ will work just as (−)∗. However,

for A = A1 × · · · × An → B with depth(A) = d , and E; Γ ⊢L t : A, writing ∆ = y1 :: (A
∗
1 → o)⊸

o, . . . ,yn :: (A∗
n → o)⊸ o, we shall have E∗, Γ∗,∆ | k :: B∗ → o ⊢ t◦ :: o defined by:

(λ⟨x1, . . . ,xn⟩. t)
◦
= y1 (λx1. · · · yn (λxn . t

∗ k) . . .) (u1 ⊕ u2)
◦
= ⊕ ⟨u◦1 ,u

◦
2⟩

(if t u1 u2)
◦
= t∗ (λb .b ⟨u◦1 ,u

◦
2⟩) (t ⟨u1, . . . ,un⟩)

◦
= ℓkB

∗→o . t◦[u∗i /yi]

(t ;u)◦ = t∗ (λx . x u◦) (newx from q in t)◦ = νq ⟨t◦[t/x], t◦[nt/x]⟩

where we sometimes still use (−)∗ to emphasize terms where the translation is not changed (because

the translated term has a type of depth strictly smaller than d). In the clause for t ⟨u1, . . . ,un⟩, we

assume that t has type A ś note that this clause only covers application of a term to arguments; the

translation of the application of a recursively defined function is not changed. This definition does

not cover, e.g., free variables of type A of maximal depth; but those cannot appear in a program (as

they would need to be abstracted at some point, yielding a term of depth exceeding d). Thus, the

following lemma can be proved by induction on t :

Lemma 50. For any subterm E; Γ ⊢L t : A of (P ,D) with depth(A) < d , E∗, Γ∗ | _ ⊢ t◦ ::

(A∗ → o)⊸ o has linear order less than d , size linear in that of t , and linear depth 2. t◦ and t∗ are

βη-equivalent.

For a program (P ,D) of depth d , we change the translation of recursively defined functions to

(D(fi))
•
= λx

A∗
1

1 . . . x
A∗
pi

pi
. t◦i , leaving the rest of the definition unchanged. Thus we get (P ,D)◦, a

λℓY -term of kind o in context Σ, βη-equivalent to (P ,D)∗ but of order d , size linear in that of (P ,D),

and linear depth 2. In the remainder of this section, we prove the correctness of the translation;

hence we will work with the un-optimized translation (−)∗. The reader should keep in mind that

(P ,D)∗ �βη (P ,D)◦, so any correctness result proved for one of them will hold for the other.

6.2.4 Simulation. We now set to establish a correspondence between reductions on both sides

of the CPS translation. We first focus on the reduction{v . This part of the proof follows standard

lines, and we only point out the major steps.

First, we prove by induction on t that the translation preserves the substitution with a value.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:26 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

({⊕ ⟨t1, t2⟩},n)
τ

−→ ({ti },n) ({t (a t)},n)
a

−→ ({t},n)

({nt (a t)},n)
τ

−→ ({t},n) ({νq ⟨t1, t2⟩}, r)
q

−→ ({t1}, r + 1)

({νq ⟨t1, t2⟩},n)
τ

−→ ({t2},n + 1) (n , r)

Fig. 10. Transitions of L′(r).

Lemma 51. Let E; Γ,x : A ⊢L t : B be any term of L, and E; Γ ⊢L v : A be a value of type A. Then,

(t[v/x])∗ = t∗[v•/x], where v∗
= ℓkA

∗→o .k v• as given by Lemma 48.

From that, we can easily deduce that the translation is a simulation with respect to β-reduction.

Lemma 52. For any E; _ ⊢L t : A, if there exists u such that t {v u then t∗ ▷∗
β
▷ηu

∗.

Proof. For all E[−], there is a λℓY -contextC[−] such that for all appropriately typed Γ; _ ⊢L t : A;

(E[t])∗ = C[t∗]. We check all{v -redexes of Figure 6, using Lemma 51 for application. □

Now that we have established our simulation result without recursion, we add recursion to the

mix. It will be useful to note that the redexes that come from the translation of CBV redexes always

appear in head position: we define the head contexts in the λℓY -calculus, as follows:

H [−] ::= [−] | λx .H [−] | ℓx .H [−] | H [−]u | πi H [−]

Lemma 53. Let E[−] be a CBV evaluation context. Then, there exists a head context H [−], such that

for all E; Γ ⊢L t : A of the appropriate type, (E[t])∗ ▷∗
β
H [t∗].

Consider a program (P ,D), interpreted as in Section 6.2.2. We observe that the use of recursive

calls in P matches fixpoint unfoldings in the translated term. Leveraging Lemma 53, we have:

Lemma 54. Fix a definition D. Then, if P1 {
D P2, we have (P1,D)∗ �βη ▷δ �βη (P2,D)∗, where

�βη is βη-equivalence.

From there, we can finally prove the adequacy of the translation.

Proposition 55 (Adeqacy). For (P ,D) a program,{D
v terminates on P iff (P ,D)∗ is solvable.

Proof. The translation is designed so that recursion matches on both sides of the translations:

precisely, the translation induces a bisimulation between the relation {∗
v{

D on programs-in-

definition, and relation ▷δ on βη-equivalence classes of λℓY -terms.

That it is a simulation is Lemma 54. Assume (P ,D)∗ �βη ▷δ , thus the βη-normal form of (P ,D)∗

has a Yx . t subterm in head position. Reduce P via {∗
v as much a possible ś this terminates. If

it terminates on anything else than a{D-redex, then the βη-normal form of the translation has

a variable in head position, contradicting that it is a ▷δ -redex. So it is indeed a {D-redex, and

necessarily firing it translates to firing the unique ▷δ -redex of (the normal form of) (P ,D)∗.

The proposition follows easily from this bisimulation. □

6.2.5 Resource Verification as λℓY Model-Checking. Finally, using the adequacy of the translation,

we study its action on the resource usage primitives. For that, we construct a second LTS, this time

from λℓY -terms Σ | _ ⊢ t :: o, matching L(r) from Definition 43. Its configurations are pairs (t,n)

where t is a βηδ -equivalence class of λℓY -terms (we will often write such equivalence classes as

{t}, for t a representative), and where as before, n ∈ N represents the next resource index to be

initialized. The transitions, labeled again by L, are given in Figure 10. We write L′(r) for this LTS.

Paths in this LTS starting from ({t}, 0) perform an exploration of BT(t) (with the proviso that

BT(t) is such that each occurrence of a is preceeded by t or nt, which will be true in the translation),

branching non-deterministically at occurrences of ⊕, and turning left exactly once at occurrences

of νq: when the required index has been reached. L′(r) satisfies the following key property.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

Linearity in Higher-Order Recursion Schemes 39:27

Proposition 56. For any r ∈ N, the relation B between configurations of L(r) and L′(r) having

(P ,n) B ({(P ,D)∗[nt/i]},n) (n ≤ r)

(P ,n) B ({(P ,D)∗[t/r][nt/i | i , r]},n) (otherwise)

for any E; 0 : R, . . . , (n − 1) : R ⊢L P : B with B a base type, is a weak bisimulation.

Proof. From the definition of translation and using Lemma 53, it is a simulation. The other

direction follows by Proposition 55: if (P ,n) B ({t},n) and {t} makes one of the transitions of

Figure 10, then t is solvable. Hence, {D
v terminates on P ; eventually reducing to Q . But from

Lemma 44, either Q is a value (absurd or that would contradict that {t} makes a transition), or a

rule from Figure 7 applies ś but only the rule matching the transition of {t} is possible. □

For every closed E; _ ⊢L P : B with B base type, we have (P , 0) B ((P ,D)∗, 0), so the trees of L(r)

and L′(r) respectively reachable from those are weakly bisimilar: their maximal branches have the

same traces. By definition of L(r), P is correct if for all r ∈ N, the maximal branches of L(r) have

correct trace. Likewise, by definition of L′(r), its maximal branches correspond to the maximal

branches of BT((P ,D)∗) taking the left sub-tree of a νq exactly once, when encountering a νq for

the r -th time. Hence, P is correct iff all the branches of BT((P ,D)∗) visiting the left subtree of a νq

exactly once are correct. As this property is MSO definable, it follows that:

Corollary 57. For any program (P ,D) and deterministic parity automaton A there exist

• a λℓY -term Σ | _ ⊢ (P ,D)◦ :: o of linear order equal to the depth of (P ,D), of size linear in that

of (P ,D), and linear depth 2,

• a linear-non-linear APTA A ′ of size linear in that of A

such that P is correct iff A ′ rejects BT((P ,D)◦).

The construction ofA ′ fromA proceeds as in [Kobayashi and Ong 2011]. Theorem 47 now follows.

7 FURTHER DIRECTIONS

Our results demonstrate the potential of λℓY and LHORS to serve a unifying framework for studies

into higher-order verification. The significant body of literature on connections between linear

logic and programming languages opens up many avenues for future work. Verification algorithms

for LHORS have, by design, quite a wide application range, and the translations we considered

exploit linearity to a small extent only.

Some obvious and short-term directions beyond model-checking include global model-checking

[Broadbent et al. 2010] and selection [Carayol and Serre 2012], which we expect (as in the standard

case) to enjoy the same complexity, with respect to the same measures.

Amongst other more open-ended questions, we would like to understand better the additional

expressiveness contributed by the addition of linear kinds. What new infinite trees can we get,

while retaining efficient verification algorithms? What is the trade-off between the complexity

boost coming from linear typing and properties expressible by LNAPTAs?

Finally, it would be interesting to explore the practical impact of our work, for instance, by using

type inference to obtain more refined linear-non-linear typings for functional programs, so as to

improve the complexity of verification.

ACKNOWLEDGMENTS

The second author acknowledges the support of LABEXMILYON (ANR-10-LABX-0070) of Université

de Lyon, within the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by the

French National Research Agency (ANR), and the ANR Project RAPIDO, ANR-14-CE25-0007. The

research also benefited from the support of the London Mathematical Society.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

39:28 Pierre Clairambault, Charles Grellois, and Andrzej S. Murawski

REFERENCES

K. Aehlig. 2007. A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of Automata. Logical Methods in

Computer Science 3, 3 (2007).

A. Barber and G. Plotkin. 1996. Dual Intuitionistic Linear Logic. Technical Report LFCS-96-347. LFCS, Division of Informatics,

University of Edinburgh.

J. Berdine, P. W. O’Hearn, U. S. Reddy, and H. Thielecke. 2002. Linear Continuation-Passing. Higher-Order and Symbolic

Computation 15, 2-3 (2002), 181ś208.

C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. 2013. C-SHORe: a collapsible approach to higher-order verification. In

Proceedings of ICFP. 13ś24.

C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. 2010. Recursion Schemes and Logical Reflection. In Proceedings of

LICS. 120ś129.

A. Carayol and O. Serre. 2012. Collapsible Pushdown Automata and Labeled Recursion Schemes: Equivalence, Safety and

Effective Selection. In Proceedings of LICS. 165ś174.

W. Damm. 1977. Higher type program schemes and their tree languages. In Theoretical Computer Science, 3rd GI-Conference,

Darmstadt, Germany, March 28-30, 1977, Proceedings (Lecture Notes in Computer Science), Vol. 48. Springer, 51ś72.

J.-Y. Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987), 1ś102.

C. Grellois. 2016. Semantics of linear logic and higher-order model-checking. Ph.D. Dissertation. Paris Diderot University,

France. https://tel.archives-ouvertes.fr/tel-01311150

C. Grellois and P.-A. Melliès. 2015a. Finitary Semantics of Linear Logic and Higher-Order Model-Checking. In Proceedings

of MFCS (Lecture Notes in Computer Science), Vol. 9234. Springer, 256ś268.

C. Grellois and P.-A. Melliès. 2015b. Relational Semantics of Linear Logic and Higher-order Model Checking. In Proceedings

of CSL. 260ś276.

A. Haddad. 2013. Shape-Preserving Transformations of Higher-Order Recursion Schemes. Thèse de Doctorat. Université Paris

Diderot - Paris 7.

M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. 2008. Collapsible Pushdown Automata and Recursion Schemes. In

Proceedings of LICS. Computer Society Press, 452ś461.

M. Hofmann and J. Ledent. 2017. A cartesian-closed category for higher-order model checking. In Proceedings of LICS. 1ś12.

M. Jurdziński. 2000. Small Progress Measures for Solving Parity Games. In Proceedings of STACS. 290ś301.

N. Kobayashi. 2009. Types and higher-order recursion schemes for verification of higher-order programs. In Proceedings of

POPL. 416ś428.

N. Kobayashi and C.-H. L. Ong. 2009. A Type System Equivalent to the Modal Mu-Calculus Model Checking of Higher-Order

Recursion Schemes. In Proceedings of LICS.

N. Kobayashi and C.-H. L. Ong. 2011. Complexity of Model Checking Recursion Schemes for Fragments of the Modal

Mu-Calculus. Logical Methods in Computer Science 7, 4 (2011).

N. Kobayashi, R. Sato, and H. Unno. 2011. Predicate abstraction and CEGAR for higher-order model checking. In Proceedings

of PLDI. 222ś233.

N. Kobayashi, N. Tabuchi, and H. Unno. 2010. Higher-order multi-parameter tree transducers and recursion schemes for

program verification. In Proceedings of POPL. 495ś508.

J. Laird. 2005. Game semantics and linear CPS interpretation. Theor. Comput. Sci. 333, 1-2 (2005), 199ś224.

P.-A. Melliès. 2014. Linear logic and higher-order model-checking. Talk at Institut Henri Poincaré, http://www.pps.

univ-paris-diderot.fr/~mellies/slides/workshop-IHP-model-checking.pdf.

A. Murase, T. Terauchi, N. Kobayashi, R. Sato, and H. Unno. 2016. Temporal verification of higher-order functional programs.

In Proceedings of POPL. ACM, 57ś68.

R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong. 2012. A traversal-based algorithm for higher-order model checking. In

Proceedings of ICFP. 353ś364.

M. Nivat. 1972. On the interpretation of recursive program schemes. In Symposia Matematica.

C.-H. L. Ong. 2006. On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In Proceedings of LICS.

Computer Society Press, 81ś90.

G. Pottinger. 1981. The Church-Rosser theorem for the typed λ-calculus with surjective pairing. Notre Dame J. Formal Logic

22 (3) (1981), 264ś268.

S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. 2014. A type-directed abstraction refinement approach to higher-order

model checking. In Proceedings of POPL. 61ś72.

S. Salvati and I. Walukiewicz. 2015. A Model for Behavioural Properties of Higher-order Programs. In Proceedings of CSL

(LIPIcs), Vol. 41. 229ś243.

S. Salvati and I. Walukiewicz. 2016. Simply typed fixpoint calculus and collapsible pushdown automata. Mathematical

Structures in Computer Science 26, 7 (2016), 1304ś1350.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

https://tel.archives-ouvertes.fr/tel-01311150
http://www.pps.univ-paris-diderot.fr/~mellies/slides/workshop-IHP-model-checking.pdf
http://www.pps.univ-paris-diderot.fr/~mellies/slides/workshop-IHP-model-checking.pdf

Linearity in Higher-Order Recursion Schemes 39:29

O. Serre. 2013. Playing with Trees and Logic. Habilitation à Diriger des Recherches. Université Paris Diderot - Paris 7.

http://www.liafa.univ-paris-diderot.fr/~serre/papers/HDR.pdf

R. Statman. 2004. On the lambdaY calculus. Ann. Pure Appl. Logic 130, 1-3 (2004), 325ś337.

T. Tsukada and N. Kobayashi. 2010. Untyped Recursion Schemes and Infinite Intersection Types. In Proceedings of FOSSACS

(Lecture Notes in Computer Science), Vol. 6014. Springer, 343ś357.

T. Tsukada and N. Kobayashi. 2014. Complexity of Model-Checking Call-by-Value Programs. In Proceedings of FOSSACS’14.

180ś194.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 39. Publication date: January 2018.

http://www.liafa.univ-paris-diderot.fr/~serre/papers/HDR.pdf

	Abstract
	1 Introduction
	2 The linear lambdaY-calculus
	2.1 Kinds and Terms
	2.2 Reduction and Böhm Trees

	3 An Alternative: Linear Higher-Order Recursion Schemes
	3.1 Definition of LHORS
	3.2 Equivalence of Y and LHORS

	4 An Intersection Type System for Model-checking Linear HORS
	4.1 Linear-Nonlinear Alternating Parity Tree Automata
	4.2 The Intersection Type System L(A) for Linear-Nonlinear APTA Model-Checking
	4.3 Complexity Analysis

	5 Immediate Consequences
	5.1 Recursion Schemes Over Finite Data Domains
	5.2 Higher-Order Recursion Schemes with Cases
	5.3 Kinding of Terminals

	6 Call-by-value Programs
	6.1 A Call-By-Value Language
	6.2 Linear CPS Translation

	7 Further directions
	Acknowledgments
	References

