
Full Abstraction for Reduced ML

Andrzej S. Murawski? and Nikos Tzevelekos

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We present the first effectively presentable fully abstract
model for Stark’s Reduced ML, the paradigmatic higher-order program-
ming language combining call-by-value evaluation and integer-valued ref-
erences. The model is constructed using techniques of nominal game
semantics. Its distinctive feature is the presence of carefully restricted
information about the store in plays, combined with conditions concern-
ing the participants’ ability to distinguish reference names. This leads to
an explicit characterization of program equivalence.

1 Introduction

Reduced ML is a programming language introduced by Stark [22] as part of
his investigations into generative aspects of programming languages. It com-
bines higher-order functions with integer references and is defined simply by
extending the call-by-value λ-calculus with primitives for integer and reference
manipulation. Despite its economy, Reduced ML manages to embody several
important paradigms (imperative programming, functional programming, call-
by-value evaluation, scope extrusion), which makes it an attractive object for
theoretical study. On the other hand, research into it offers wide scope for appli-
cability, as Reduced ML is intimately related to Standard ML [15] and, in fact,
has been designed with faithfulness to the latter in mind.

The first steps in the semantic analysis of Reduced ML were taken by Stark,
who has identified a matching categorical framework and considered example
categories, albeit without a general full abstraction result1. Further progress was
possible with the arrival of game semantics [4, 9, 19]. Although the first papers
concerned call-by-name computation, attention soon turned to the call-by-value
framework [8, 6]. In particular, Abramsky and McCusker presented a fully ab-
stract model for a language called RML [6], which is essentially Reduced ML ex-
tended with the “bad-variable” constructor mkvar. Its presence is a consequence
of adopting Reynolds’s principle of modelling references as objects with read
and write methods [21]. Thus, mkvar allows one to define terms of reference type
that need not correspond to actual memory locations. Unfortunately, this affects

? Supported by an EPSRC Advanced Research Fellowship (EP/C539753/1).
1 A denotational model of a programming language is fully abstract iff equality of

denotations coincides with program equivalence. Programs are equivalent iff they
can be used interchangeably without observable differences.

the induced notion of program equivalence, so the full abstraction result of [6]
does not apply to Reduced ML. More precisely, it can fail at types containing
occurrences of int ref. Typical counterexamples are the failures of equivalences
between x := !x and () (the terminating command), or between x := 1; x := 1 and
x := 1. In the former case the terms are inequivalent in RML, because x may
be instantiated with a mkvar-object whose reading or writing method diverges,
or causes side effects. Similarly, in the latter case, an assignment to a mkvar-
object might trigger a side effect that effectively allows one to count how many
assignments took place.

The “bad-variable” phenomenon, also present in the call-by-name setting,
has inspired subsequent developments in game semantics. It turned out that,
in the call-by-name framework, it could be circumvented by employing suitably
crafted (pre)orders on plays [14, 18], but no result of this kind has been reported
for call-by-value. However, an alternative and general approach to dealing with
bad variables seems to have emerged in the form of nominal game semantics [10,
2, 23]. Nominal game semantics advocates a departure from Reynolds’s mod-
elling rule and stipulates that reference types be modelled by names rather than
objects. Using this approach, Laird showed a full abstraction result for a call-by-
value language λν! with storable names rather than integers [10]. λν! turns out
more expressive than Reduced ML in its ability to distinguish reference names
and, consequently, the obvious adaptation of the model to Reduced ML results
in a failure of full abstraction. This can be illustrated by the terms2

f : int ref → unit ` letn1 = ref 0 in let n2 = ref 0 in ((fn1); (n2 := !n1); n2) : int ref.

and f : int ref → unit ` let n = ref 0 in (fn); n : int ref, which are equivalent in Re-
duced ML, but inequivalent3 in λν!. This is because a λν!-context can detect the
difference between n1 from n2 by storing the names and subsequently comparing
them. In contrast, as our results confirm, the same effect cannot be achieved by
a context belonging to Reduced ML.

Previous research into ML-like languages has also produced fully abstract
game models for more significant extensions of Reduced ML, notably languages
with higher-order references [3, 23]. The first of these models suffers from the
“bad-variable” problem outlined above. The second one, while adaptable to
Reduced ML, leans rather too heavily on quotienting in order to achieve full
abstraction (information on local state and store update is too explicit in the
intensional model and leads to substantial undesirable distinctions). Therefore,
it does not lead to an explicit characterization of program equivalence, which is
obtained in the present paper.

Our point of departure is the observation that, although a Reduced ML pro-
gram will in general not be able to keep track of all the names it encounters dur-
ing the course of interaction with another program, at any given execution point
there is a subset of such names that the program may have access to. In game
2 let x = M in N stands for the Reduced ML term (λx.N)M .
3 Strictly speaking, the terms are not in λν!, but the scenario can be easily recast in

λν! by replacing ref 0 with νn.n.

semantics, using the notion of P-view, we can describe this set conservatively as
one consisting of names that occur in the current P-view as well as those that the
program created itself. We call such names P-available. Intuitively, whenever a
program returns a name, it will be P-available. A corresponding condition inside
our model will be called P-availability.

As a consequence, since a program cannot have access to reference names
that are not P-available, its immediate behaviour will be independent of the
associated values kept in the store, because the program is simply unable to
read them. This leads us to found our game model on justified sequences with
partial information about the store, restricted to P-available names. Note that
this form of representation also conveys the idea that the program might depend
on former (possibly outdated) values of currently unavailable references, recorded
when the references were still available.

Unfortunately, P-availability and partiality of store alone do not yet suffice to
establish a definability result. As our example demonstrates, a Reduced ML con-
text may be unable to distinguish some occurrences of names introduced by the
environment. In game semantics, we can capture this oversight in concrete terms:
two (occurrences of) such names are indistinguishable to the program iff they
have never occurred within the same P-view. Consequently, regardless of whether
such occurrences are the same or not, the program’s behaviour should remain
the same. We formalize this observation via a saturation condition, called blind-
ness, and show that any finitary strategy subject to all the conditions discussed
above is definable, i.e. is a denotation of a Reduced ML term. This naturally
leads to a fully abstract model via the usual intrinsic quotient construction.

To obtain a more accessible account of program equivalence we next examine
the structure of the quotient in more detail. Crucially, we observe that blind
strategies are determined uniquely by plays in which the environment provides
a fresh name each time the name cannot be related by the program to any
existing names. We call such plays strict. Then, by symmetrizing the model, we
eventually obtain an explicit characterization of equivalence: terms of Reduced
ML are equivalent iff they induce the same mutually strict complete protoplays
(complete plays where O plays only O-available names and in which stores are
restricted to mutually available names).

For example, each of the two terms introduced above generates the following
such plays

∗ n
(n1,0)
1 ∗(n1,k) n

(n2,k)
2

,

where k ranges over the set of integers. Hence, the terms are indeed equivalent.

Notes. A long version with proofs is available from the authors’ webpages. We
are grateful to Jim Laird for email discussions.

2 Reduced ML

Reduced ML is the call-by-value λ-calculus over the ground types unit, int, int ref
augmented with basic commands (termination, divergence), primitives for inte-

u, Γ ` () : unit u, Γ ` Ω : unit
i ∈ Z

u, Γ ` i : int
l ∈ u

u, Γ ` l : int ref
(x : θ) ∈ Γ
u, Γ ` x : θ

u, Γ ` M1 : int u, Γ ` M2 : int
u, Γ ` M1 ⊕M2 : int

u, Γ ` M : int u, Γ ` N0 : θ u, Γ ` N1 : θ
u, Γ ` if M then N1 else N0 : θ

u, Γ ` M : int ref
u, Γ ` !M : int

u, Γ ` M : int ref u, Γ ` N : int
u, Γ ` M := N : unit

u, Γ ` M : int
u, Γ ` ref M : int ref

u, Γ ` M : θ → θ′ u, Γ ` N : θ
u, Γ ` MN : θ′

u, Γ ∪ {x : θ} ` M : θ′

u, Γ ` λxθ.M : θ → θ′

Fig. 1. Syntax of Reduced ML.

ger arithmetic (constants, zero-test, binary integer functions) and reference ma-
nipulation (locations, dereferencing, assignment, memory allocation). The typing
rules are given in Figure 1, where L stands for a countable set of locations, u for
a finite subset of L, and ⊕ for binary integer functions (e.g. +, −, ∗, =). Their
precise choice is to some extent immaterial: for the full abstraction argument
to hold it suffices to be able to compare integer variables with integer constants
and act on the result. The same can be said about the lack of recursion, which
can be added without affecting our results. Note that we did not include refer-
ence equality testing, because it is expressible [20]. For instance, one can define
eq : int ref → int ref → int as

λxint ref .λyint ref . let vx = ref !x in
let vy = ref !y in
let b = ref 0 in

(x := 0; y := 1; (if !x = 1 then b := 1 else ());x := !vx; y := !vy; !b)

In the above and in what follows, we write M ; N for the term (λzθ.N)M , where
z does not occur in N and θ matches the type of M .

To define the operational semantics of Reduced ML, we need to introduce a
notion of store. A store will simply be a function from a finite set of locations to
Z. We write s(l 7→ i) for the store obtained by updating s so that l is mapped
to i (this may extend the domain of s). Given a store s : {l1, · · · , ln} → Z and
a term M we say that the pair (s,M) is compatible iff all locations occurring in
M are from {l1, · · · , ln}. We say that a term is canonical if it is either (), an
integer constant, a location, a variable or a λ-abstraction. The big-step reduction
rules are given as judgements of the shape s,M ⇓ s′, V , where (s,M), (s′, V) are
compatible, dom s ⊆ dom s′ and V is canonical. We present them in Figure 2,
where we let l range over locations. Most rules take the form

M1 ⇓ V1 M2 ⇓ V2 · · · Mn ⇓ Vn

M ⇓ V

V is canonical
s, V ⇓ s, V

M ⇓ 0 N0 ⇓ V
if M then N1 else N0 ⇓ V

i 6= 0 M ⇓ i N1 ⇓ V
if M then N1 else N0 ⇓ V

M1 ⇓ i1 M2 ⇓ i2
M1 ⊕M2 ⇓ i1 ⊕ i2

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

s, M ⇓ s′, i l 6∈ dom s′

s, ref M ⇓ s′(l 7→ i), l
s, M ⇓ s′, l s′(l) = i

s, !M ⇓ s′, i
s, M ⇓ s′, l s′, N ⇓ s′′, i
s, M := N ⇓ s′′(l 7→ i), ()

Fig. 2. Big-step operational semantics of Reduced ML

which is meant to abbreviate

s1, M1 ⇓ s2, V1 s2,M2 ⇓ s3, V2 · · · sn,Mn ⇓ sn+1, Vn

s1,M1 ⇓ sn+1, V
.

In particular, this means that the ordering of the hypotheses is significant. We
shall write Γ ` M : θ iff ∅, Γ ` M : θ can be derived using the rules of Figure 1.
Similarly, ` M : θ is shorthand for ∅, ∅ ` M : θ. Given ` M : unit we write M ⇓
iff ∅, M ⇓ s, () for some store s.

Definition 1. We say that the term-in-context Γ ` M1 : θ approximates Γ `
M2 : θ (written Γ ` M1

@∼ M2) iff C[M1] ⇓ implies C[M2] ⇓ for any context C[−]
such that ` C[M1], C[M2] : unit. Two terms-in-context are equivalent if one
approximates the other (written Γ ` M1

∼= M2).

The only difference between our definition of Reduced ML and Stark’s is the
presence of Ω, the divergent constant without a reduction rule. Thanks to it,
we can define @∼ and reason about ∼= in a more concise way. At the same time,
program equivalence of Ω-free Reduced ML terms remains unaffected, because
C[M] ⇓, where M is Ω-free, is equivalent to ∅, C ′[M] ⇓ s′, 0 where C ′[−] ≡
letx = ref 0 inC[x := 1/Ω][M]; !x and s′ is a state.

3 Nominal game semantics

We begin this section with a brief review of the fundamentals of nominal game
semantics [2, 11, 24]. Let us fix a countably infinite set A, the set of atoms, the
elements of which we denote by a, b, c, n and variants. In nominal game semantics
two participants play a game by exchanging moves that might involve atoms.
However, when employing such moves, we are not interested in what exactly
the names are, though we would like to know how they relate to names that
have already been in play. Hence, the objects of study are rather the induced
equivalence classes with respect to name-invariance. Since we want all game-
semantic notions and constructions to be compatible with name-invariance, their
obvious adaptations would repeatedly have to include conditions that enforce

closure under name-renamings. Fortunately, this overhead can be dealt with
robustly using the language of nominal set theory [7].

Definition 2. Let us write PERM(A) for the group of finite permutations of
A. A nominal set X is a set |X| (usually written X) equipped with a group
action of PERM(A)4. Moreover, each x ∈ X must have finite support, that is,
there exists a finite set S ⊆ A such that, for all permutations π, (∀a ∈ S. π(a) =
a) =⇒ π · x = x.

Finite support is closed under intersection, and hence each element x of a nominal
set has a least support ν(x), which we call the support of x. Intuitively, ν(x)
is the set of names “involved” in x. Accordingly, we say that a is fresh for x
if a /∈ ν(x). Clearly, A is a nominal set by taking π · a = π(a), for each π and
a. More interestingly, so is the set A∗ of finite lists of atoms with permutations
acting elementwise. If X and Y are nominal sets then so is their cartesian product
X×Y , with permutations acting componentwise, and their disjoint union X]Y .
Moreover, X ′ ⊆ X is a nominal subset of X if X ′ is closed under permutation
actions, these acting as on X. Then we can define R ⊆ X × Y to be a nominal
relation iff R a nominal subset of X×Y . A nominal function is a function which
is also a nominal relation.

In game semantics a particular strengthening of the notion of support, called
strong support, has turned out necessary to guarantee correct behaviour under
strategy composition (see [24] for motivation and a detailed explanation of its
significance). Here we consider an even stronger notion of support, one in which
the support of each element can be linearly ordered in a canonical, nominal
manner. A nominal set X is called a linear nominal set if, for each element
x of X, there exists a linear order <x on ν(x) such that, for all a, b ∈ A, a <x b
implies π(a) <π·x π(b) for any permutation π 5. It is easy to check that all
elements in a linear nominal set have strong support. For example, the nominal
set A∗ is linear, whereas Pfin(A) is not. A nominal subset of a linear nominal
set is itself linear. Moreover, by straightforward manipulations of the orderings
available for linear X, Y we can render the nominal sets X×Y and X]Y linear.

Finally, in nominal sets we can define atom-abstractions. The form of ab-
straction we will be using is that of complete support abstraction, that is, for a
nominal set X and x ∈ X, we define [x] to be {y ∈ X | ∃π. y = π · x}.

3.1 Nominal arenas

Here we present nominal arenas (and prearenas), which are essentially the call-
by-value arenas of Honda and Yoshida [8] cast inside the theory of nominal sets.

Definition 3. An arena A = (MA, IA,`A, λA) is given by:

4 A group action of PERM(A) on X is a function · : PERM(A) ×X → X such
that, for all x ∈ X and π, π′ ∈ PERM(A), π · (π′ · x) = (π ◦ π′) · x and id · x = x,
where id is the identity permutation.

5 Equivalently, the relation {(a, b, x) | a, b ∈ A, x ∈ X, a <x b} is nominal.

– a linear nominal set MA of moves,
– a nominal subset IA ⊆ MA of initial moves,
– a nominal justification relation `A⊆ MA × (MA \ IA),
– a nominal labelling function λA : MA → {O, P} × {Q,A} ;

satisfying, for each m,m′ ∈ MA, the conditions:

– m ∈ IA =⇒ λA(m) = (P, A) ,
– m `A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q ,

– m `A m′ =⇒ λOP
A (m) 6= λOP

A (m′) .

The role of λA is to label moves as Opponent or Proponent moves and as Ques-
tions or Answers. The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat” arenas are
1, Z and A, defined by M1 = I1 = {∗}, MZ = IZ = Z, MA = IA = A.

We take advantage of the following constructions on arenas. By ĪA we denote
MA \ IA, by λ̄A the OP -complement of λA; iA and iB range over initial moves
in the respective arenas.

MA⊗B = (IA × IB)] IA] IB

IA⊗B = IA × IB

λA⊗B = [((iA, iB), PA), λA ¹ IA, λB ¹ IB]
`A⊗B = {((iA, iB),m) | iA `A m or iB `B m} ∪ (`A¹ IA

2
) ∪ (`B¹ IB

2
)

MA⇒B = {∗}] IA] IA]MB

IA⇒B = {∗}
λA⇒B = [(∗, PA), (iA, OQ), λ̄A ¹ IA, λB]
`A⇒B = {(∗, iA), (iA, iB)} ∪ `A ∪ `B

The types of Reduced ML will be interpreted by arenas in the following way:
JunitK = 1, JintK = Z, Jint refK = A and Jθ1 → θ2K = Jθ1K⇒ Jθ2K. Although types
are interpreted by arenas, the actual games will be played in prearenas, which
are defined in the same way as arenas with the exception that initial moves are
O-questions. For given arenas A,B we can construct a prearena A → B by

MA→B = MA]MB λA→B = [(iA, OQ) ∪ (λ̄A ¹ IA) , λB]
IA→B = IA `A→B = {(iA, iB)}∪ `A ∪ `B .

Typing judgements Γ ` θ, where Γ = {x1 : θ1, · · · , xn : θn}, will eventually be
interpreted by strategies for the prearena Jθ1K ⊗ · · · ⊗ JθnK → JθK (if n = 0 we
take the left-hand side to be 1), which we shall denote by JΓ ` θK.

3.2 Plays

Analogously to the definition of store in Section 2, in this section a store will be
a partial function S : A ⇀ Z such that dom S is finite.

A basic justified sequence in a prearena A is a finite sequence s of moves of
A satisfying the following conditions: the first move must be initial, but all other

moves m must be equipped with a pointer to an earlier occurrence of another
move m′ such that m′ `A m (we then say that m′ justifies m; if m is an answer,
we might also say that m answers m′). A justified sequence in A is a basic
justified sequence s in which each move is, in addition, decorated with a store to
yield a move-with-store, typically denoted by mS . Given a justified sequence s,
we write s for the underlying basic justified sequence. It should be clear that,
similarly to the set of finite sequences of moves, the set of justified sequences can
be viewed as a (not necessarily linear) nominal set with permutations preserving
the pointer structure, but acting on moves as in A and on stores by permuting
the domain.

Below we define the notions of O-view xsy and P-view psq of a justified
sequence, using o and p to range over O-moves and P-moves respectively. We
write s′ v s if s′ is a prefix of s and use veven if s′ is of even length.

xεy = ε pεq = ε
xs oSy = xsy oS ps pSq = psq pS

xs oS t pS′ y = xsy oSpS′ xs pS t oS′ y = xsy pSoS′

A name in s is said to be introduced by player X (X ∈ {O, P}) iff its first
occurrence in s is in (the support of) an X-move. Names introduced by X in s
will be referred to as X-names in s and denoted with X(s). We define the set
AvX(s) of X-available names after s by:

AvO(s) = O(s) ∪ ν(xsy) AvP(s) = P(s) ∪ ν(psq) .

Definition 4. A justified sequence is legal iff it satisfies the following condi-
tions.

Alternation No two adjacent moves belong to the same player.
Bracketing The justifier of each answer is the most recent unanswered ques-

tion.
Visibility For any tmS v s, the justifier of m is in xtmSy if m is an O-move

and in ptmSq otherwise.
Frugality For any tmS v s, dom S ⊆ ν(tmS).

The set of legal justified sequences will be denoted by LA.

Note that legal sequences contain those of [11]. Because of frugality, the support
of a legal sequence is that of its underlying basic sequence, and therefore LA is
a linear nominal set. Our model will be based on still more restrictive plays.

Definition 5. A legal sequence s is a play iff it satisfies the following two
conditions.

P-availability For each s′pS veven s and any a ∈ A, if a ∈ ν(p) ∩ ν(s′) then
a ∈ AvP(s′).

P-storage For any s′mS v s, dom S = AvP(s′mS).

The set of plays over prearena A will be denoted by PA.

Note that the two conditions are biased towards P. Equivalently, P-availability
can be restated as: for any s′pS veven s and any a ∈ ν(p), if a ∈ O(s′) then
a ∈ ν(ps′q). It is worth observing that, given s ∈ PA, we have AvP(s) = ν(psq).

3.3 Strategies

Definition 6. A strategy σ on a prearena A, written σ : A, is a set of equiv-
alence classes [s] of even-length plays of A satisfying

Even-prefix closure If [soSpS′] ∈ σ then [s] ∈ σ ,
Determinacy If [spS1

1], [s′pS2
2] ∈ σ and [s] = [s′] then [spS1

1] = [s′pS2
2] .

Next we show how strategies can be composed. First, following [11], let us define
an endofunction γ on justified sequences that restricts a given justified sequence
to a frugal one by removing from the stores the atoms violating it. Now, let
γ′ be an analogous partial function enforcing P-storage, i.e. γ′ will remove O-
names violating P-storage (it is undefined when the domain of any of the stores
involved contains an insufficient supply of atoms, i.e. some of the P-available
names required are missing).

Now we turn to defining a suitable notion of interaction between plays. Given
arenas A, B, C, let u be a sequence mS1

1 · · ·mSk

k of moves from MA + MB +
MC with store, equipped with pointers such that no C-move has a pointer to
an A-move and vice versa. We define u ¹ A,B to be u in which all C-moves
are suppressed along with associated pointers. u ¹ B, C is defined analogously.
u ¹ A,C is defined similarly with the caveat that, if there was a pointer from
a C-move to a B-move which in turn had a pointer to an A-move, we add a
pointer from the C-move to the A-move. By u≤mi we mean the initial segment
of u ending in mSi

i .

Definition 7. u is an interaction sequence of A, B, C iff γ′(u ¹ A,B) ∈ PA→B,
γ′(u ¹ B,C) ∈ PB→C and the following conditions hold:

– P(u ¹ A,B) ∩ P(u ¹ B, C) = ∅;
– O(u ¹ A,C) ∩ (P(u ¹ A,B) ∪ P(u ¹ B, C)) = ∅;
– for each u′ v u ending in a move-with-store mS,

dom S = (O(u′ ¹ A,C) ∩ ν(pu′ ¹ A,Cq)) ∪ P(u′ ¹ A,B) ∪ P(u′ ¹ B,C);
– for each u′ v u ending in mSm′S′ , if m′ is:

• a P -move in A → B then S′(a) = S(a) for all a ∈ dom S′\AvP(u′ ¹ A,B);
• a P -move in B → C then S′(a) = S(a) for all a ∈ dom S′\AvP(u′ ¹ B, C);
• an O-move in A → C then S′(a) = S(a) for all a ∈ dom S′\AvP(u′ ¹ A,C).

The set of all interaction sequences of A,B,C will be denoted by Int(A,B,C).

The first two conditions ensure that name-privacy is not broken under composi-
tion; the third one imposes an extended notion of P -availability for sequences;
and the fourth set of conditions ensures that participants do not change parts
of the store inaccessible to them. It can be shown that, if u ∈ Int(A,B,C) then
γ(u ¹ A,C) ∈ PA→C . Two strategies σ : A → B and τ : B → C can now be
composed as follows

σ;τ = {[γ(u ¹ A,C)] | u ∈ Int(A, B,C), [γ′(u ¹ A,B)] ∈ σ, [γ′(u ¹ B, C)] ∈ τ}.
Associativity of composition can be established using similar arguments to those

in [11]6. Using the standard definition of the identity strategy one can then
obtain a category of arenas and games. Next we shall define its lluf subcategory
that will be used to prove the full abstraction result.

Given a non-empty justified sequence s, let us write s− for s without its last
element. The following definition aims to capture plays that differ by renamings
of names that O introduces in the P-view.

Definition 8. – Given a prearena A, s ∈ PA, a ∈ O(s) and an O-move o in
s, we say that a is P-new at o in s iff a ∈ ν(o) and a /∈ ν(ps≤oq−).

– Given A, s, a, o as above and b ∈ A, we say that a is renameable for b
at o in s provided b /∈ P(s) and, for any s′ v s, if o occurs in ps′q then
b /∈ ν(ps′q).

– Under the assumptions above, we define the renaming (a b)o · s of s by
induction on the subsequences of s7:

(a b)o · ε = ε (a b)o · (tmS) =

{
((a b)o · t) ((a b) ·mS) o ∈ ptmSq
((a b)o · t) mS o /∈ ptmSq

where (a b) is the permutation swapping a with b. We write s
r∼ s′ iff s can

be obtained from s′ through a sequence of renamings.

Observe that, if a is P-new at m in s, a need not be fresh for s<m (the converse
holds, though, as long as a ∈ ν(m)). A play s in which every a that is P-new at
m in s is also fresh at s<m will be called strict.

Example 9. Let A = A→ (A⇒ 1),

s1 = n
(n1,0)
1 ∗(n1,1) n

(n1,2),(n2,3)
2 ∗(n1,4),(n2,5) n

(n1,6),(n3,7)
3 ∗(n1,8),(n3,9)

and

s2 = n
(n1,0)
1 ∗(n1,1) n

(n1,2),(n3,3)
3 ∗(n1,4),(n3,5) n

(n1,6),(n3,7)
3 ∗(n1,8),(n3,9) .

Then n2 is P-new at the third move (also n2) in s1, n2 is renameable for n3 at
that move and (n2 n3)n2 · s1 = s2. Note also that (n3 n2)n3 · s2 = s1, where the
subscript n3 stands for the third move of s2, and that s1 is strict, whereas s2 is
not.

In general it can be shown that renamings are reversible, so r∼ is an equivalence
relation. Observe that, for any play s, there exists a strict play s′ (determined
uniquely up to atom-abstraction) such that s

r∼ s′. We write s̃ for [s′].

Definition 10. A strategy σ : A is blind iff [s] ∈ σ and s
r∼ s′ imply [s′] ∈ σ.

Since the identity strategy is blind and blind strategies compose we obtain a cat-
egory G of arenas and blind strategies. Observe that blind strategies are uniquely
determined by the underlying strict positions (via renamings).
6 In fact, strategies in our framework can be regarded as compact representations of

a class of strategies from [11], namely those independent of P-unavailable names.
7 We write o ∈ s to mean that the distinguished occurrence of o is present in s.

4 Properties of G
Henceforth, when writing σ : A we shall mean a blind strategy on A. Following [2]
and [11], G can be shown equivalent to the Klesli category of another category
G′ equipped with a strong monad T . More precisely, G′ is a lluf subcategory
of G consisting of total single-threaded strategies [11] such that store values
introduced in the first move cannot be modified in the next two moves. The
strong monad T takes an arena A to A⊥ given by

MA⊥ = {∗1, ∗2}+ MA IA⊥ = {∗1}
λA⊥ = [{(∗1, PA), (∗2, OQ)}, λA] `A⊥ = {(∗1, ∗2), (∗2, iA)}∪ `A .

Moreover, one can show that G′ has finite products and T -exponentials, i.e., for
any arena A, there is a natural bijection between G′(A⊗B, TC) and G′(A,B⇒C).
That is to say, G′ is λc-model [16], which gives a canonical interpretation of the
call-by-value λ-calculus in the associated Kleisli category, i.e., equivalently, the
category G. To interpret the remaining constructs of Reduced ML in G, we follow
Stark by showing the existence of special morphisms, as described in Chapter 5
of [22]. We list those related to reference manipulation below (as morphisms in
G rather than in G′T).

get = {[ε], [n(n,i)i(n,i)]} : A→ Z set = {[ε], [(n, i)(n,i′)∗(n,i)]} : A⊗ Z→ 1

Memory allocation is interpreted using the strategies new i = {[ε], [∗n(n,i)]} : 1 →
A. As a consequence, we conclude that G is a model of Reduced ML in the sense
of Stark8. This lets us interpret any term-in-context Γ ` M : θ with a strategy
JΓ ` M : θK : JΓ ` θK.
Example 11. The two terms from the introduction are interpreted (in G) by the
strategies given respectively (through even-prefix closure) by the plays below.

∗ n
(n1,0)
1 ∗(n1,k) n

(n1,k),(n2,k)
2

∗ n(n,0) ∗(n,k) n(n,k)

Conformance to Stark’s framework guarantees Computational Soundness and
Adequacy [22].

Definition 12. – σ : A is finitary iff it is finite.
– σ : A is strongly deterministic iff, for any s ∈ PA such that [s] ∈ σ, we

have P(s) = ∅.
– A strategy σ : A is innocent iff, [sp], [t] ∈ σ, to ∈ PA, psq = ptoq im-

plies the existence of [top′] ∈ σ such that [pspq] = [ptop′q] (note that inno-
cence implies blindness). An innocent strategy σ : A is finitarily innocent iff
vf(σ) = {[psq] | s ∈ PA, [s] ∈ σ} : A is finite.

Using two factorizations we can show that any finitary blind strategy in a
denotable9 prearena is definable. The first one eliminates violations of strong
determinism with the help of new0 (corresponding to ref 0). The second one
8 Strictly speaking, the cartesian closure requirement from [22] is not satisfied, but it

turns out too strong: T -exponentials suffice for the author’s subsequent results [2].
9 1 → JθK, where θ is a Reduced ML type.

factors out non-innocence (also using new0). Finally, we prove a direct defin-
ability result for finitarily innocent strongly deterministic strategies. We discuss
the innocent factorization in more detail below, as it involves the key novelties
of our framework.

Lemma 13. Let σ : 1 → A be a finitary strongly deterministic blind strategy.
There exists a finitarily innocent strongly deterministic strategy σ̇ : A→ A such
that new0; σ̇ = σ.

The standard way [5] of proving such results is to store the history of play
using the additional A component. This is impossible in our case, because atoms
cannot be stored. However, given a play s, we can try to store a numerical
representation of [s] instead. Recall that the set of moves of an arena is a linear
nominal set, i.e. there is a canonical ordering of atoms in any move. Hence, in any
legal sequence, atoms can also be ordered in a canonical way according to their
order of appearance and, if they were introduced in the same move, using the
canonical ordering associated with that move. Consequently, we can represent
[s] as an integer by representing atoms in s with integers that correspond to
their position in the associated canonical order and by encoding such a sequence
as an integer. Let us write #(s) for such an encoding. In particular we have
#(s1) = #(s2) iff [s1] = [s2].

Unfortunately, this is not yet sufficient for a successful factorization through
an innocent strategy because, given psoSq and #(s), it will in general be im-
possible to extract soS (or [soS]) due to the fact that o might contain O-names
occurring in s, but not in psoSq. As a result, given #(s) and psoSq, we may
then be unable to relate some names in o with those of s, which will prevent us
from reconstructing [soS]. Note, however, that given #(s) and psoSq we can still
determine s̃oS in absence of P-names. Furthermore, since σ is blind and strongly
deterministic (in particular plays satisfy P-availability), we can uniquely iden-
tify pS′ such that soSpS′ ∈ σ (though not necessarily the whole of soSpS′), by

referring10 to s̃oS and σ. Analogously, we can also deduce s̃oSpS′ . Thus, the
familiar factorization technique can be employed provided that, instead of #(s),
the argument will rely on #(s̃), where #(s̃) stands for #(s′) and s′ is a strict
play such that s′ r∼ s (by previous remarks the code is independent of the exact
choice of s′).

Thanks to the definability result for finitary blind strategies, we can define
a fully abstract model of Reduced ML in the usual way by quotienting G by the
induced intrinsic preorder defined below.

Definition 14. Suppose σ1, σ2 : 1 → A. We define σ1 ≤ σ2 to hold iff, for any
ρ : A → 1, σ1; ρ 6= {[ε]} implies σ2; ρ 6= {[ε]}.
It is common to refer to the above preorder as testing σi with ρ, where σi; ρ 6=
{[ε]} is regarded as a successful outcome.

Theorem 15. Given Reduced ML terms ` M1 : θ, ` M2 : θ, we have `
M1

@∼ M2 iff J ` M1K ≤ J ` M2K.
10 Recall that blind strategies are generated by their strict plays.

5 Program equivalence explicitly

Let σ1, σ2, ρ be as in the definition of ≤. Note that during composition of σi with
ρ there is a full symmetry between O-names and P-names, i.e. names which are
O-names in σi are viewed as P-names in ρ, and vice versa. This can be contrasted
with the general case of composition, where both strategies may regard a name
as an O-name during composition, though not a P-name. This symmetry of roles
means that, because plays of ρ satisfy P-availability, a successful outcome can
only be reached by interaction with a play of σi that satisfies the dual condition
of O-availability : for each s′oS vodd s and any a ∈ A, if a ∈ ν(o) ∩ ν(s′) then
a ∈ AvO(s′).

Similarly, whenever the play s engages with ρ successfully, the O-passivity
condition holds: for each s′pSoS′ v s and any a ∈ A, if a ∈ P(s′pS) \ AvO(s′pS)
then S(a) = S′(a). This time this is due to the definition of composition, which
stipulates that the part of store irrelevant to one of the strategies must be copied.
This means that the plays of σi that “matter” must necessarily meet the above
condition. Finally, whenever σi; ρ 6= {[ε]}, the play witnessing this is complete,
i.e. all of its questions are answered.

Definition 16. A play is relevant iff it is complete, satisfies O-availability and
O-passivity. We write rel(σ) for the set of relevant plays of σ.

We can represent relevant plays more succinctly by restricting the associated
stores to mutually available names (both O- and P-available). The outcome is
not a play any more, though it remains a legal justified sequence. We call such
sequences protoplays and let γ′′ be the obvious operation on justified sequences
that simply erases the O-unavailable names in stores. Although some information
about σ is seemingly lost by applying γ′′ to rel(σ), the missing values turn out
inessential for testing. By O-passivity, the lost values of O-unavailable names
can be uniquely retrieved in O-moves, by copying values from the preceding P-
moves. However, more surprisingly, it does not matter what values such names
have in P-moves either. This is because the names are then P-unavailable for
ρ and, during composition, are dealt with uniformly by propagation as long as
they remain unavailable.

Finally, we take advantage of the fact that the test ρ is a blind strategy.
Recall that blind strategies are uniquely determined by their strict plays, i.e.
plays in which O-names fresh in the P-view must be genuinely fresh at the point
of introduction. Consequently, if one wants to check if σi passes the ρ test, we
can take advantage of the fact that any contribution from ρ will originate from
a strict play. Let s′′ = γ′′(s′) (s′ ∈ rel(σ)) be a protoplay generated by σi.
To test whether s′′ represents a renaming of a strict play from ρ, it suffices to
“refresh” P-names in s′′ and try to match it with that the strict play. The desired
refreshing operation (for P-names using O-views) is entirely dual to renamings
introduced in Definition 8, though it needs to be defined on protoplays to be
correct. For two protoplays s, s′, we write s ∼

r
s′ iff s can be obtained from s′ by

a series of dual renamings. A protoplay is dually strict iff any P-name fresh
in the O-view is fresh at the point of introduction. Given σ : A, let σ̂ be the

following set of equivalence classes of protoplays σ̂ = {[s] | s is dually strict, s′ ∈
rel(σ), s ∼

r
γ′′(s′)}. We can then show the following result.

Lemma 17. Given σ1, σ2 : 1 → A, σ1 ≤ σ2 iff σ̂1 ⊆ σ̂2.

Observe that σ̂, like σ, is saturated under renamings (extended to act on pro-
toplays). This makes it possible to simplify the above result along the following
lines. We call a protoplay mutually strict iff it is both strict and dually strict.
Note that by using r∼ and ∼

r
(in any order) we can convert a protoplay to a

mutually strict protoplay, unique up to atom-abstraction. Given σ : A, let ̂̂σ be
{[s] | s is mutually strict, s′ ∈ rel(σ), s (r∼;∼

r
) γ′′(s′)}.

Theorem 18. Given σ1, σ2 : 1 → A, σ1 ≤ σ2 iff ̂̂σ1 ⊆ ̂̂σ2.

It follows that terms of Reduced ML are equivalent iff they induce the same
mutually strict protoplays.

Thus we have shown that program equivalence and approximation in Reduced
ML can be captured explicitly, which is the first result of this kind for Reduced
ML. The characterization immediately implies that equivalence is decidable for
finitary strategies and that the fully abstract model of Reduced ML is effectively
presentable.

Our results identify mutually strict protoplays as an appealing object for
future study and, indeed, our fully abstract model can be presented in a more
direct way by founding the games on them. It has to be said, though, that
composition of such plays is quite intricate, because they cannot be combined by
parallel composition with hiding: although this kind of interaction is sufficient to
test plays, composition in general lacks the convenient duality between O-names
and P-names. Consequently, in order to compose mutually strict protoplays, one
has to allow for renamings before synchronization and follow with dual renamings
afterwards. We intend to present an account of this procedure in the full version
of the paper.

In this submission however we have chosen to present the model gradually:
starting from the intuitive framework in which full information about the store
is available we successively imposed a series of restrictions. We believe this leads
to a more informative presentation and decomposes the difficulties involved in
dealing with mutually strict protoplays into smaller arguments. For instance,
the correctness proof of compositionality of mutually strict protoplays (for the
algorithm sketched above) draws on insights obtained from all of our compo-
sitionality proofs (P-availability, P-storage, blindness) as well as the argument
behind the explicit characterization.

We hope to bring our results to bear on the on-going research into algorithmic
aspects of game models [1] and to contribute new methods of reasoning about
program equivalence in Reduced ML. This direction has been pursued using
logical relations in [20]. However, there are limits to what can be achieved, as
program equivalence of finitary Reduced ML (finite types) is already undecidable
at second order, due to a similar result for Reduced ML with mkvar in [17].

References

1. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L.: Applying game semantics
to compositional software modelling and verification. Proc. of TACAS. Vol. 2988 of
LNCS (2004) 421–435

2. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nominal
games and full abstraction for the nu-calculus. Proc. of LICS (2004) 150–159

3. Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general
references. Proc. of LICS (1998) 334–344

4. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163 (2000) 409–470

5. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In: Algol-like languages,
Birkhaüser (1997) 297–329

6. Abramsky, S., McCusker, G.: Call-by-value games. Proc. of CSL. Vol. 1414 of LNCS
(1997) 1–17

7. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13 (2002) 341–363

8. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. Proc.
of ICALP. Vol. 1256 of LNCS (1997) 225–236

9. Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF. Information and
Computation 163(2) (2000) 285–408

10. Laird, J.: A game semantics of local names and good variables. Proc. of FOSSACS.
Vol. 2987 of LNCS (2004) 289–303

11. Laird, J.: A game semantics of names and pointers. Annals of Pure and Applied
Logic 151 (2008) 151–169

12. McCusker, G.: Games for recursive types. BCS Distinguished Dissertation. Cam-
bridge University Press (1998)

13. McCusker, G.: Games and full abstraction for FPC. Information and Computation
160 (1-2) (2000) 1–61

14. McCusker, G.: On the semantics of Idealized Algol without the bad-variable con-
structor. Proc. of MFPS. Vol. 83 of ENTCS (2003)

15. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. The MIT Press,
Cambridge, Massachussetts (1990)

16. Moggi, E.: Notions of computation and monads. Information and Computation
93 (1991) 55–92

17. Murawski, A.S.: Functions with local state: regularity and undecidability. Theo-
retical Computer Science 338(1/3) (2005) 315–349

18. Murawski, A.S.: Bad variables under control. Proc. of CSL. Vol. 4646 of LNCS
(2007) 558–572

19. Nickau, H.: Hereditarily sequential functionals. Proc. of LFCS. Vol. 813 of LNCS
(1994) 253–264

20. Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state.
In: Higher-Order Operational Techniques in Semantics. CUP (1998) 227–273

21. Reynolds, J.C.: The essence of Algol. In de Bakker, J.W., van Vliet, J., eds.:
Algorithmic Languages. North Holland (1978) 345–372

22. Stark, I.D.B.: Names and Higher-Order Functions. PhD thesis, University of
Cambridge (1995)

23. Tzevelekos, N.: Full abstraction for nominal general references. Proc. of LICS
(2007) 399–410

24. Tzevelekos, N.: Nominal game semantics. D.Phil. thesis, University of Oxford
(2008)

