
MFPS 2010

Full abstraction without synchronization

primitives

Andrzej S. Murawski1

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

Using game semantics, we prove a full abstraction result (with respect to the may-testing preorder)
for Idealized Algol augmented with parallel composition (IA||). Although it is common knowledge
that semaphores can be implemented using shared memory, we find that semaphores do not extend
IA|| conservatively. We explain the reasons for the mismatch.

Keywords: Shared-Variable Concurrency, Mutual Exclusion, Full Abstraction, Game Semantics

1 Introduction

The mutual exclusion problem asks one to find sections of code that will allow
two threads to share a single-use resource without conflict. It turns out that
shared memory (with atomic reads and writes) can be used to solve it without
any additional synchronization primitives. A typical solution consists of two
sections of code (called entry and exit protocols respectively) that each of
the two processes can use to enter and exit their designated criticial sections
respectively.

Quite a collection of trial solutions have been shown to be incorrect and
at some moment people that had played with the problem started to doubt
whether it could be solved at all.

So writes Dijkstra [3] about early attempts to attack the problem. He credits
Dekker with the first correct solution, which was later simplified by several

1 Supported by an EPSRC Advanced Research Fellowship (EP/C539753/1).
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Murawski

other authors. Peterson’s tie-breaker algorithm [10], reproduced below, was
particularly elegant.

/* Entry Code 1 */

Q [1] := 1;
turn := 1;
while (Q [2] and (turn = 1)) do skip;

/* Exit Code 1 */

Q [1] := 0;

/* Entry Code 2 */

Q [2] := 1;
turn := 2;
while (Q [1] and (turn = 2)) do skip;

/* Exit Code 2 */

Q [2] := 0;

Solutions to the two-process case were subsequently generalized to n pro-
cesses (Lamport’s bakery algorithm [7] is one of the simplest). Although the
results demonstrated that, from a theoretical point of view, the sharing of
memory was sufficient to enforce mutual exclusion, they were considered un-
satisfactory from the conceptual and implementation-oriented points of view.
The intricacy of interactions generated by the code was judged to obscure
the purpose it was supposed to serve and the “busy-waiting” involved looked
wasteful. This motivated the introduction of semaphores [3], a synchronization
construct on a higher level than memory reads and writes.

In this paper we would like to focus on the expressive power of semaphores
in the setting of shared-variable higher-order concurrency and contextual test-
ing. We consider a variant IA of Reynolds’ Idealized Algol [11] augmented
with parallel composition, referred to as IA||, and prove an inequational full
abstraction result for the induced notion of contextual may-testing. The re-
sult is obtained using game semantics by uncovering a preorder on strategies,
founded on a notion reminiscent of racing computations.

Contrary to what the various mutual-exclusion algorithms might suggest,
we find that there are strategies corresponding to programs with semaphores,
which do not correspond to any IA||-terms. What is more, we can identify a
game-semantic closure property enjoyed by all strategies corresponding to IA||-
terms, which may fail in the presence of semaphores. This makes it possible
to apply our model to the semantic detection of the “need for semaphores”.
As for contextual may-approximation and may-equivalence, we show that IA||

extended with semaphores does not constitute a conservative extension of IA||.
We conclude by relating the apparent mismatch to non-uniformity of mutual-
exclusion algorithms based on shared memory alone.

From the game-semantic perspective, our results demonstrate that a lan-
guage without semaphores is considerably more difficult to handle than one
incorporating them. So, the addition of communication primitives to a lan-
guage can lead to cleaner mathematical structure.

2

Murawski

Types

β ::= com | exp | var θ ::= β | θ → θ

Terms

Γ ` skip : com
i ∈ N

Γ ` i : exp Γ, x : θ ` x : θ

Γ `M1 : com Γ `M2 : β
Γ `M1;M2 : β

Γ `M1 : exp Γ `M2 : exp
Γ `M1 ⊕M2 : exp

Γ `M : exp Γ ` N0 : θ Γ ` N1 : θ
Γ ` if M thenN1 elseN0 : θ

Γ `M : var
Γ ` !M : exp

Γ `M : var Γ ` N : exp
Γ `M :=N : com

Γ, x : var `M : β
Γ ` newvar x inM : β

Γ `M : exp→ com Γ ` N : exp
Γ `mkvar(M,N) : var

Γ `M : θ → θ′ Γ ` N : θ
Γ `MN : θ′

Γ, x : θ `M : θ′

Γ ` λxθ.M : θ → θ′
Γ, x : θ `M : θ
Γ ` µxθ.M : θ

Fig. 1. Syntax of IA

2 Idealized Algols

We shall be concerned with parallel extensions of Reynolds’ Idealized Al-
gol [11], which has become the canonical blueprint for synthesizing imperative
and functional programming. The particular variant of Idealized Algol, pre-
sented in Figure 1 and henceforth referrred to as IA, is known in the literature
as Idealized Algol with active expressions [1]. This paper is primarily devoted
to IA extended with the parallel composition operator ||. It enters the syntax
through the following typing rule.

Γ `M1 : com Γ `M2 : com

Γ `M1 ||M2 : com

We shall write IA|| to denote the extended language. Our main goal will be to
arrive at a fully abstract model for contextual approximation and equivalence
induced by IA||. In particular, we would like to understand how the addition
of semaphores to IA|| affects the two. To that end, we consider yet another
prototypical language, called PA, which is IA|| extended with semaphores. We
give the syntax of PA in Figure 2. We assume that semaphores and variables
are initialized to “available” and 0 respectively.

3

Murawski

Types

β ::= com | exp | var | sem θ ::= β | θ → θ

Terms

All rules defining IA|| plus the following ones

Γ `M : sem
Γ ` grab(M) : com

Γ `M : sem
Γ ` release(M) : com

Γ, x : sem `M : β
Γ ` newsemx inM : β

Γ `M : com Γ ` N : com
Γ `mksem(M,N) : sem

Fig. 2. Syntax of PA

Remark 2.1 PA was introduced in [4]. It is closely related to Brookes’ Paral-
lel Algol [2], which, in contrast to PA, represents the coarse-grained approach
to enforcing atomicity. Parallel Algol contains the awaitM thenN construct
which executes the guard M as an atomic action and, if the guard is true, N is
run immediately afterwards, also as an indivisible operation. PA and Parallel
Algol appear equi-expressive. Clearly, semaphores can be implemented using
await - then - and ordinary variables. A translation in the other direction is
also possible, for example, in the style of the encoding of Parallel Algol into the
π-calculus [12]. We use PA because the game semantics we rely on is better
suited to modelling fine-grained concurrency and await would have had to be
interpreted indirectly by translation.

For a closed IA-, IA||-, PA-term ` M : com we shall write M ⇓ iff there
exists a terminating run of M (the reduction rules are routine and can be
found, for example, in [4]). Note that our notion of termination is angelic.
Accordingly, the notions of contextual approximation and equivalence consid-
ered here will be consistent with may-testing and will not take the possibility
of deadlock/divergence into account.

Definition 2.2 Let Γ ` M1,M2 : θ be IA||-terms. Γ ` M1 : θ is said to con-
textually approximate Γ ` M2 : θ (written Γ ` M1 vIA|| M2 : θ), if, and
only if, for any IA||-context C[−] such that ` C[Mi] : com (i = 1, 2), C[M1] ⇓
implies C[M2] ⇓. Further, Γ ` M1 : θ and Γ ` M2 : θ are contextually
equivalent (written Γ ` M1

∼=IA|| M2) if each contextually approximates the
other.

Analogously, one can define contextual approximation (resp. equivalence)
using terms and contexts of IA or PA. We shall write vIA (respectively ∼=IA) or
vPA (resp. ∼=PA when referring to them). For example, it can be readily seen

4

Murawski

that vIA|| is not a conservative extension of IA.

Example 2.3 The two IA-terms

λfexp→com→com.newvarx in f(!x)(x := !x+ 2)
λfexp→com→com.newvarx in f(!x)(x := !x+ 1;x := !x+ 1)

are IA-equivalent, but are not PA-equivalent.

The main result of our paper is an explicit characterization of vIA|| (The-
orem 4.5) in terms of a preorder on strategies. It will allow us to demonstrate
that PA is not a conservative extension of IA||.

Example 2.4 In view of the results given below, the simplest example illus-
trating the non-conservativity of PA with respect to IA|| (as far as contextual
approximation is concerned) are the terms x and x||x, where x is a free iden-
tifier of type com. We shall have x vIA|| x||x and x 6vPA x||x.

Informally, x approximates x||x in IA||, because any successful run of C[x]
can be closely followed by that of C[x||x] in which each atomic action of the
second x takes place right after the corresponding action of the first x (one
keeps on racing the other). In contrast, in PA, x might be instantiated with
code that will try to acquire a semaphore, in which case x||x will not terminate
(take, for example, C[] ≡ newsemS in ((λxcom.[]) grab(S))).

Similar terms demonstrate that contextual equivalence is not preserved
either. We have (xor (x||x)) ∼=IA|| (x||x), but (xor (x||x)) 6∼=PA (x||x), where
M orN stands for

newvarX in ((X := 0 ||X := 1); if !X thenM elseN).

3 Game semantics

IA and PA have already been studied using game semantics, in [1] and [4]
respectively. The full abstraction results presented therein are particularly
elegant, as they characterize vIA and vPA via (complete-)play containment.
Next we shall review the game model of PA (originally presented in [4]), as
our full abstraction result for IA|| will be phrased in terms of strategies from
that model. More precisely, we are going to exhibit a preorder, different from
inclusion, that will turn out to capture contextual approximation in IA||. The
induced equivalence relation, characterizing ∼=IA|| , is also different from play
equivalence.

Game semantics uses arenas to interpret types.

Definition 3.1 An arena A is a triple 〈MA, λA,`A〉, where

• MA is a set of moves;

5

Murawski

• λA : MA → {O,P } × {Q,A } is a function determining whether m ∈ MA

is an Opponent or a Proponent move, a question or an answer; we
write λOPA , λQAA for the composite of λA with respectively the first and second
projections;

• `A is a binary relation on MA, called enabling, such that m `A n implies
λQAA (m) = Q and λOPA (m) 6= λOPA (n). Moreover, if n ∈ MA is such that
m 6`A n for any m ∈MA then λA(n) = (O,Q).

If m `A n we say that m enables n. We shall write IA for the set of all moves
of A which have no enabler; such moves are called initial. Note that an initial
move must be an Opponent question.

In arenas used to interpret base types all questions are initial and all P-
moves are answers enabled by initial moves as detailed in the table below,
where m ∈ N.

Arena O-question P-answers Arena O-question P-answers

JcomK run done JexpK q m

JvarK read m JsemK grab ok g

write(m) ok release ok r

Contexts and function types are modelled with the help of additional con-
structions on arenas:

MA×B = MA +MB

λA×B = [λA, λB]
`A×B = `A + `B

MA⇒B = MA +MB

λA⇒B = [〈λPOA , λQAA 〉, λB]
`A⇒B = `A + `B +{ (b, a) | b ∈ IB and a ∈ IA }

The function λPOA : MA → {O,P } is defined by λPOA (m) = O iff λOPA (m) = P .

Arenas provide all the details necessary to specify the allowable exchanges
of moves. Formally, they will be justified sequences satisfying some extra
properties. A justified sequence in arena A is a finite sequence of moves of
A equipped with pointers. The first move is initial and has no pointer, but
each subsequent move n must have a unique pointer to an earlier occurrence
of a move m such that m `A n. We say that n is (explicitly) justified by
m or, when n is an answer, that n answers m. If a question does not have
an answer in a justified sequence, we say that it is pending (or open) in that
sequence. In what follows we use the letters q and a to refer to question- and
answer-moves respectively, o and p to stand for O- and P-moves, and m to
denote arbitrary moves.

Not all justified sequences will be regarded as valid. In order to constitute
a legal play, a justified sequence must satisfy a well-formedness condition,
which reflects the “static” style of concurrency in PA: any process starting
sub-processes must wait for the children to terminate in order to continue.
In game terms: if a question is answered then all questions justified by it

6

Murawski

must have been answered earlier (exactly once). This is made precise in the
following definition.

Definition 3.2 The set PA of plays over A consists of justified sequences s
over A satisfying the two conditions below.

FORK In any prefix s′ = · · · q · · · m||
of s, the question q must be pending

before m is played.

WAIT In any prefix s′ = · · · q · · · a||
of s, all questions justified by q must

be answered.

Note that interleavings of justified sequences are not justified sequences; in-
stead we shall call them shuffled sequences. For two shuffled sequences s1 and
s2, s1 q s2 denotes the set of all interleavings of s1 and s2. For two sets of
shuffled sequences S1 and S2, S1 q S2 =

⋃
s1∈S1,s2∈S2

s1 q s2. Given a set X

of shuffled sequences, we define X0 = X, X i+1 = X i q X. Then X~, called
iterated shuffle of X, is defined to be

⋃
i∈NX

i.

We say that a subset σ of PA is O-complete if s ∈ σ and so ∈ PA entail
so ∈ σ.

Definition 3.3 A strategy σ on A (written σ : A) is a prefix-closed and
O-complete subset of PA.

Strategies σ : A ⇒ B and τ : B ⇒ C are composed in the standard way, by
considering all possible interactions of plays from τ with shuffled sequences of
σ~ in the shared arena B, and then hiding the B moves.

For modelling concurrent programs, one considers a special class of so-
called saturated strategies, which contain all possible (sequential) observa-
tions of the relevant (parallel) interactions. Consequently, actions of the en-
vironment (O-moves) can always be observed earlier (as soon as they have
been enabled), actions of the program can always be observed later (but
not later than moves that they justify). To formalize this, for any arena
A, one defines a preorder � on PA as the least reflexive and transitive relation
satisfying s0s1os2 � s0os1s2 and s0ps1s2 � s0s1ps2 for all s0, s1, s2. In the
above-mentioned pairs of plays, moves on the left-hand side of � are meant
to have the same justifiers as on the right-hand side. The two saturation
conditions, in various formulations, have a long history in the semantics of
concurrency [13,5,6].

Definition 3.4 A strategy σ is saturated iff s ∈ σ and s � s′ imply s′ ∈ σ.

Arenas and saturated strategies form a Cartesian closed category Gsat, in which
Gsat(A,B) consists of saturated strategies on A⇒ B. The identity strategy is
defined by “saturating” the alternating plays s ∈ PA1⇒A2 in which P “copies”
O-moves to the other A-component (formally, for any even-length prefix t of
s we have t � A1 = t � A2). We used A1 and A2 to distinguish the two copies

7

Murawski

of A in the arena A⇒ A).

PA-terms x1 : θ1, · · · , xn : θn `M : θ can be interpreted in Gsat as strategies
in the arena Jθ1K×· · ·×JθnK⇒ JθK. The identity strategies are used to interpret
free identifiers. Other elements of the syntax are interpreted by composition
with designated strategies. Below we give plays defining some of them (as the
least saturated strategies containing the plays). We use subscripts to indicate
the subarena a move comes from.

Arena Generators

; JcomK0 × JβK1 ⇒ JβK2 q2 run0 done0 q1 a1 a2

|| JcomK0 × JcomK1 ⇒ JcomK2 run2 run0 run1 done0 done1 done2

:= JvarK0 × JexpK1 ⇒ JcomK2 run2 q1m1 write(m)0 ok 0 done2

! JvarK0 ⇒ JexpK1 q1 read0m0m1

grab JsemK0 ⇒ JcomK1 run1 grab0 ok g
0 done1

release JsemK0 ⇒ JcomK1 run1 release0 ok r
0 done1

newvar q2 q1 (read0 00)∗ (
∑

i∈N(write(i)0 ok 0 (read0 i0)∗))∗ a1 a2

newsem q2 q1 (grab0 ok g
0 release0 ok r

0)∗ (grab0 ok g
0 + ε) a1 a2

The strategies for variable- and semaphore-binding are for playing in arenas
(JvarK0 ⇒ JβK1)⇒ JβK2 and (JsemK0 ⇒ JβK1)⇒ JβK2 respectively.

As shown in [4], the interpretation of PA sketched above yields a fully
abstract model as detailed in Theorem 3.5. A play is called complete if it
does not contain unanswered questions. We write comp(σ) to denote the set
of non-empty complete plays of the strategy σ.

Theorem 3.5 [4] For any PA-terms Γ `M1 : θ and Γ `M2 : θ, Γ `M1 vPA

M2 if, and only if, comp(JΓ ` M1K) ⊆ comp(JΓ ` M2K). Hence, Γ ` M1
∼=PA

M2 if, and only if, comp(JΓ `M1K) = comp(JΓ `M2K).

We are going to prove an analogous result for IA||, though the preorder involved
will be much more complicated.

4 Cloning

A shuffled sequence which is an interleaving of plays will be called a shuffled
play. A shuffled play will be called complete if it is an interleaving of complete
plays. In order to capture contextual approximation in IA||, it turns out useful
to introduce an auxiliary operation on complete shuffled plays. The operation
will clone part of the sequence, namely, a selected question along with all the
moves that it justifies.

Formally, let s be a complete shuffled play and let q be an occurrence of a

8

Murawski

question in s. Suppose m1, · · · ,mk are all the moves hereditarily justified by
q in s and, in particular, that mk is the answer justified by q. For convenience
we write m0 for q, so that s = s0m0s1m1 · · · skmksk+1, where each si (0 ≤
i ≤ k + 1) is a possibly empty sequence of moves. Let us now define another
sequence sq to be s in which each mi (0 ≤ i ≤ k) is followed by its fresh copy
m′i, i.e.

sq = s0m0m
′
0s1m1m

′
1 · · · skmkm

′
ksk+1,

m0 and m′0 are justified by the same move (from s0, if any) and m′i justifies m′j
(i < j) if, and only if, mi justifies mj. We shall call m′0 and m′k the anchor
points . Intuitively, sq can be thought of as s in which part of the play is
being “shadowed”, as in a racing computation. Note that if s is a complete
play and q is chosen to be the initial question, then the whole of s will be
cloned and sq will become a complete shuffled play.

Definition 4.1 Given two complete shuffled plays s, t ∈ PA, we shall write
s � t provided s contains an occurrence of a question q such that t = sq. If
we want to stress that q is an X-question (X ∈ {O,P }), we write s �X t.
In what follows, we shall often consider the transitive closure of the above
relations, which will be denoted by �∗, �∗O and �∗P respectively.

Example 4.2 (i) Consider the following two plays in ((JcomK3 ⇒
JcomK2)× JexpK1)⇒ JcomK0.

s1 = r0 r2 r3 q1 01 d3 d2 d0

O P O P O P O P

s2 = r0 r2 r3 r3 q1 01 d3 d3 d2 d0

O P O O P O P P O P

We have omitted some pointers for the sake of clarity: in both plays r0

justifies r2, q1, d0; r2 justifies d2; r0 justifies d0, and q1 justifies 01. Then
s1 �O s2.

(ii) Consider the following two plays in JcomK1 ⇒ JcomK0.

s1 = r0 r1 d1 d0 s2 = r0 r1 r1 d1 d1 d0

Note that s1 �P s2.

Definition 4.3 Let σ1, σ2 : A. We define σ1 6 σ2 to hold when for any
s1 ∈ comp(σ1) there exists s2 ∈ comp(σ2) such that s1 �∗P s2.

Example 4.4 Jx : com ` x : comK 6 Jx : com ` x||x : comK

6 underpins our full abstraction result. The remainder of the paper will be
devoted to its proof.

Theorem 4.5 (Full Abstraction) Let Γ ` M1,M2 : θ be IA||-terms. Then
Γ `M1 vIA|| M2 if, and only if, JΓ `M1K 6 JΓ `M2K.

9

Murawski

5 Definability

First we proceed to establish the left-to-right implication of Theorem 4.5, for
which we need to prove a definability result. Recall from [4] that, for any com-
plete play s, it is possible to construct a PA-term such that the corresponding
strategy is the least saturated strategy containing s. This property no longer
holds for IA||-terms (this will follow from the next section in which we identify
a closure property of strategies corresponding to IA||-terms). Instead we shall
prove a weakened result for IA|| (Lemma 5.2).

Example 5.1 Let us write [cond] for if cond then skip else Ωcom. Consider
the play s = r0r1r2d2d1d0 from J(com2 → com1)→ com0K and the term

λfcom→com.newvarX in newsemS in f(grab(S);X := 1); [!X = 1],

which is actually interpreted by the least saturated strategy containing s.
When semaphores are no longer available, the“best” one can do to make sure
that the assignment X := 1 is executed once is to protect it with the guard
[!X = 0] instead of grab(S). However, this will not prevent multiple assign-
ments from taking place if f runs several copies of its argument in parallel (so
that each can pass the test !X = 0 before X is set to 1). Accordingly, the
strategy corresponding to

λfcom→com.newvarX in f([!X = 0];X := 1); [!X = 1],

will contain, among others, the complete play r0r1r2r2d2d2d1d0. In fact, the
strategy contains all complete plays t such that s �∗O t. This observation
admits the following generalization.

Lemma 5.2 Suppose Θ is an IA||-type and s ∈ comp(PJΘK). There there exists
an IA||-term `Ms : Θ such that

comp(J `MsK) = {u | ∃t ∈ PJΘK. (s�∗O t and t � u) }.

The technical details behind the construction of Ms are presented in Ap-
pendix A. Here we describe some of the underlying ideas. First of all, it is
worth noting that, since saturated strategies are involved, s determines depen-
dencies of P-moves on preceding O-moves. To enforce that order, we arrange
for O-moves to generate global side-effects (Gi := 1) so that P-moves can only
take place if the side-effects corresponding to preceding O-moves occurred.

The example above shows that with shared memory alone we are unable to
control the exact number of O-moves in complete plays. However, we can make
sure that whenever copies of O-moves from the original play are played, they
are globally synchronized. To this end, before the corresponding flag variable
Gi is set to 1, we arrange for a test [!Gi = 0]. This creates a “window of
opportunity” for the racing O-moves, into which they have to fit if a complete
play is to be reached (late arrivals will fail the test and cause divergence).

10

Murawski

Having synchronized racing on O-moves, we also need to make sure that
the “races” are consistent with s. The global side effects are not enough for
that purpose as they only signal that in one of the races the requisite moves
have been made. To ensure consistency with s in cloned subplays (i.e. to
ensure that all relevant moves from s are cloned) we introduce local flags
Li, each of which is set at the same time as Gi, except that there is a local
test whether Li has indeed been set. It suffices to use this mechanism for
O-questions only, as the presence of O-answers follows from the fact that a
complete play is to be reached in the end.

Example 5.3 Consider θ ≡ (((com4 → com3)→ com2)→ com1)→ com0

and the following play s ∈ PJθK, in which we suppressed pointers from questions
to answers.

r0 r1 r2 r3 r4 d4 d3 d2 d1 d0

O P O P O P O P O P

The term Ms below satisfies Lemma 5.2. Note how the presence of L4 ensures
that in any complete play from J ` MsK containing two occurrences of r2 we
must also have at least one occurrence of r4 hereditarily justified by r2. G4

alone would not suffice for this purpose. Ms is an optimized version of the
term derived from our proof, which is shown in Appendix B. The optimizations
were possible because of the particular shape of s.

λf. newvarG2, G4 in

f(λg. [!G2 = 0];G2 := 1;

newvarL4 in

g([!G4 = 0];G4 := 1;L4 := 1);

[!L4 = 1]);

[
∧
j∈{ 2,4 }(!Gj = 1)]

With the definability result in place, we obtain the following corollary (its
proof is available in Appendix 5.4).

Corollary 5.4 For any IA||-terms ` M1,M2 : θ, if ` M1 vIA|| M2 : θ then
J `M1 : θK 6 J `M2 : θK.

6 Soundness

In this section we identify a technical property satisfied by strategies corre-
sponding to IA||-terms. In addition to helping us complete the proof of our
full abstraction result, it provides us with a tool for checking whether a given
strategy might originate from an IA||-term.

11

Murawski

Lemma 6.1 Let Γ ` M be an IA||-term, σ = JΓ ` MK and s ∈ comp(σ).
Then, for any play t such that s �∗O t, there exists u ∈ comp(σ) such that
t�∗P u.

Intuitively, the Lemma asserts that, for each successful interaction between
the environment and the system, the environment can always trigger others,
which closely follow (race) the original blueprint. Its logical structure resem-
bles the conditions used to characterize mkvar-free computation in the game
semantics literature [8,9].

Before discussing the proof, let us consider a number of examples.

Example 6.2 (i) Lemma 6.1 fails for the strategy σ used to interpret
semaphore-binding, generated by plays of the form

q2 q1 (grab0 ok g
0 release0 ok r

0)∗ (grab0 ok g
0 + ε) a1 a2.

Observe that s = q2 q1 grab0 ok g
0 a1 a2 ∈ σ and consider t =

q2 q1 grab0 grab0 ok g
0 ok g

0 a1 a2. Clearly s �O t. However, note that
t�∗P u, where u ∈ comp(σ), must imply t = u (the only P-move that can
possibly be taken to support t�+

P u is q1, but plays in σ can only contain
one occurrence of q1). t = u ∈ comp(σ) is impossible, though, because
any play from σ that contains two occurrences of ok g

0 must contain at
least one occurrence of release0. Consequently, the “semaphore strategy”
does not satisfy Lemma 6.1.

(ii) The reasoning above does not apply to the strategy τ responsible for
memory management. For instance, for s = q2 q1 write(3) ok a1 a2, t =
q2 q1 write(3) write(3) ok ok a1 a2 we do have t ∈ comp(τ), because one of
the defining plays is q2 q1 write(3) ok write(3) ok a1 a2.

(iii) The identity strategy is easily seen to satisfy Lemma 6.1.

(iv) All the other strategies corresponding to the syntax of IA|| satisfy the
Lemma vacuously, because s ∈ comp(σ) and s �∗O t, where t is a play,
imply s = t.

To prove the Lemma it suffices to show that the property involved is pre-
served by composition. The natural approach would be to try to apply the
property to the two strategies alternately with the hope of deriving it for the
composite. However, given the current formulation, this alternation might
seemingly have no end! To recover, we shall make the property more precise
by relating the operations witnessing t�∗P u to those fulfulling the same task
for s �∗O t. Intuitively, we want to express the fact that each of the clonings
underlying t�∗P u is embedded into a cloning underpinning s�∗O t. To make
the intuition precise, let us assign a fresh colour to the two anchor points
involved in each step of s �∗O t (the colours are to stay with the moves as
additional moves are being added). Then we shall say that t �∗P u occurs

12

Murawski

within s�∗O t iff for each pair of anchor points generated during the passage
from t to u (according to t�∗P u), both are between moves of the same colour.

An immediate consequence of the new requirement will be that the max-
imum distance (calculated in a way to be introduced) between anchor points
involved in s�∗O t will be strictly larger than the maximum distance between
anchor points generated by t�∗P u 2 . This is not necessarily the case for the
obvious notion of distance (number of moves in-between), because �-steps
add moves to plays.

Definition 6.3 Given a sequence of moves s, we define the alternating
length of s to be the number of times the ownership of moves changes as
we scan the sequence from left to right. The empty sequence is assumed to
have alternating length 0.

For instance, o1o2o3 is of (alternating) length 0, o1o2p2p3 has length 1 and
o1p1o2p3 is of length 3. From now on, the distance between anchor points will
be defined to be the alternating length of the segment between them (without
the points). Given s1 �∗X s2 we shall say that the associated weight is the
largest of the distances between anchor points involved in the transitions from
s1 to s2. Note that if s � t then s and t have the same alternating length.
Because of that, if t �∗P u occurs within s �∗O t, the weight of t �∗P u must
be strictly smaller than that of s�∗O t.

Another consequence of “occurring within”, crucial for establishing com-
positionality, is the fact that during composition of σ with τ , due to the em-
beddings, local decreases in weight effected by σ imply that the corresponding
weight calculated for σ~ also decreases. Moreover, the decreases caused by
σ and τ can be meaningfully combined. As a consequence, we can show a
strengthened version of Lemma 6.1 (details in Appendix D).

Lemma 6.4 Let Γ ` M be an IA||-term, σ = JΓ ` MK and s ∈ comp(σ).
Then, for any play t such that s �∗O t, there exists u ∈ comp(σ) such that
t�∗P u, and t�∗P u occurs within s�∗O t.

Example 6.5 The closure property spelt out in Lemma 6.4 shows that the
problems identified in Example 5.1 are unavoidable: there can be no IA||-term
`M : ((com2 → com1)→ com0 such that comp(J `MK) = { r0r1r2d2d1d0 }.

In contrast, the PA-term

λfcom→com.newvarX in newsemS in f(grab(S);X := 1); [!X = 1]

does satisfy the equation. Consequently, in PA, semaphores (in fact, even
a single occurrence of grab) cannot be replaced with shared memory up to
observational equivalence.

2 Abusing the notation somewhat, here we regard s �∗
O t as shorthand for a concrete

sequence demonstrating that s�∗
O t.

13

Murawski

Example 6.6 The test-and-set instruction (test-set(X)) sets the value of
the given variable to 1 and returns the old value as a single atomic (non-
interruptible) operation. Observe that, if we added test-set(X) to IA||, we
could replace

λfcom→com.newvarX in newsemS in f(grab(S);X := 1); [!X = 1]

with

λfcom→com.newvarX in f([test-set(X) = 0]); [!X = 1].

Since the definability argument for PA [4] only relies on “grabs” of this kind,
it carries over to IA|| + test-set. Consequently, IA|| + test-set has the same
discriminating power as PA.

Using Lemma 6.4 we can eventually complete the proof of Theorem 4.5
(details in Appendix E) by showing :

Corollary 6.7 For any IA||-terms ` M1 : θ and ` M2 : θ, if J ` M1 : θK 6
J `M2 : θK then `M1 vIA|| M2 : θ.

7 Conclusion

We have constructed an inequationally fully abstract model of IA|| inside an
existing model of PA and given an explicit characterization of contextual ap-
proximation in PA in terms of a preorder on complete plays. We have also
identified a closure property that all IA||-terms satisfy and some PA-terms do
not. Consequently, we can conclude that semaphores cannot be programmed
in IA|| if the translation is to preserve observational equivalence (of PA-terms).
So, why do the solutions to the mutual exclusion problem not apply?

The reason is that semaphores offer a uniform solution to the mutual ex-
clusion problem. Whenever different processes intend to use a critical section,
they can run identical entry and exit protocols (grab(S) and release(s) re-
spectively). In contrast, existing solutions based on shared memory are not
uniform, even though they are often “symmetric”, in that the code run by each
process depends only on its identifier. For instance, in Peterson’s algorithm
the codes for the two processes are the same up to the permutation that swaps
1 and 2. Such solutions will not help us to mimic the effect of grab(S) in, say,
f(grab(S)), because f can also make its argument run in parallel with itself,
a scenario which does not arise in the framework of cooperating sequential
processes.

Furthermore, our results demonstrate that PA is not a conservative exten-
sion of IA|| with respect to observational equivalence (and hence also obser-
vational approximation). Here are the simplest instances of that failure, now
easily verifiable, thanks to Theorems 3.5 and 4.5.

14

Murawski

(i)
x : com ` x vIA|| (x||x) : com

x : com ` x 6vPA (x||x) : com

(ii)
x : com ` (xor (x||x)) ∼=IA|| (x||x) : com

x : com ` (xor (x||x)) 6∼=PA (x||x) : com

Acknowledgement

I am grateful to Samson Abramsky for discussions on the topic of this paper.

References

[1] Abramsky, S. and G. McCusker, Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions, in: P. W. O’Hearn and R. D. Tennent, editors,
Algol-like languages, Birkhaüser, 1997 pp. 297–329.

[2] Brookes, S. D., The essence of Parallel Algol, Information and Computation 179 (2002),
pp. 118–149.

[3] Dijkstra, E. W., Cooperating sequential processes, in: F. Genuys, editor, Programming
Languages: NATO Advanced Study Institute, Academic Press, 1968 pp. 43–112.

[4] Ghica, D. R. and A. S. Murawski, Angelic semantics of fine-grained concurrency, Annals of
Pure and Applied Logic 151(2-3) (2008), pp. 89–114.

[5] Jifeng, H., M. B. Josephs and C. A. R. Hoare, A theory of synchrony and asynchrony, in:
Programming Concepts and Methods, Elsevier, 1990 pp. 459–473.

[6] Laird, J., A game semantics of Idealized CSP, in: Proceedings of MFPS’01, Elsevier, 2001 pp.
1–26, ENTCS, Vol. 45.

[7] Lamport, L., A new solution of Dijkstra’s concurrent programming problem, Communications
of the ACM 17 (1974), pp. 453–455.

[8] McCusker, G., On the semantics of Idealized Algol without the bad-variable constructor., in:
Proceedings of MFPS, Electronic Notes in Theoretical Computer Science 83 (2003).

[9] Murawski, A. S., Bad variables under control, in: Proceedings of CSL, Lecture Notes in
Computer Science 4646, Springer, 2007 pp. 558–572.

[10] Peterson, G. L., Myths about the mutual exclusion problem, Information Processing Letters 12
(1981), pp. 115–116.

[11] Reynolds, J. C., The essence of Algol, in: J. W. de Bakker and J. van Vliet, editors, Algorithmic
Languages, North Holland, 1981 pp. 345–372.

[12] Röckl, C. and D. Sangiorgi, A pi-calculus process semantics of Concurrent Idealised Algol, in:
Proceedings of FoSSaCS, Lecture Notes in Computer Science 1578 (1999), pp. 306–321.

[13] Udding, J. T., A formal model for defining and classifying delay-insensitive circuits and
systems, Distributed Computing 1(4) (1986), pp. 197–204.

15

Murawski

• β = com: λp1 · · · ph. SYN q
i ; (P1|| · · · ||Pji); WAIT i′

• β = exp: λp1 · · · ph. SYN q
i ; (P1|| · · · ||Pji); WAIT i′ ;mi′

• β = var:
· mi = read : mkvar(λxexp.Ωcom, SYN q

i ; (P1 || · · · ||Pm); WAIT i′ ;mi′)
· mi = write(v):

mkvar(λxexp.[x = v]; SYN q
i ; (P1 || · · · ||Pm); WAIT i′ , Ωexp)

Fig. A.1. Stage 1

Appendix

A Proof of Lemma 5.2

Let Θ be an IA||-type and s = m0 · · ·mn ∈ comp(PJΘK). If mi is an O-question,
we shall write s � mi for the justified sequence obtained from s by erasing
all moves not justified by mi. Note that, since mi is an O-question and
s is complete, s � mi is also a complete play. Next we define a procedure
Term(i, θ), where the arguments (i, θ) are such that mi is an O-question and
s � mi ∈ comp(PJθK). Term(i, θ) returns a IA||-term. Whenever it is called, θ
will be a syntactic subtype of Θ occurring positively.

Suppose θ ≡ θ1 → . . .→ θh → β. Let mi1 , · · · ,miji
and mi′ by respectively

the P-questions and P-answer justified by mi in s. Then Term(i, θ) returns
one of the terms specified in Figure A.1, depending on β, where

• SYN q
i is shorthand for [Gi = 0];Gi := 1;Li := 1,

• WAIT j stands for [
∧
x∈Oj

(Gx = 1)], where Oj is the set of indices of O-moves
in s strictly smaller than j.

The role of SYN q
i is to synchronize multiple occurrences of mi by providing a

time slot (before Gi is set to 1) after which clones of mi will trigger divergence.
At the same time the flag Gi is set to 1 to signal that mi (and potential clones)
has been played. Assuming mj is a P-move, WAIT j is to be viewed as a guard
that checks whether the flags corresponding to O-moves preceding mj have
been set. Terms P1, · · · , Pji (all of type com) will be specified in the next
step. (P1|| · · · ||Pji) is meant to collapse to skip for ji = 0.

Let 1 ≤ k ≤ ji. Suppose that mik is an initial move of θx for some
1 ≤ x ≤ h, and that θx ≡ θ′1 → . . . → θ′h → β′. For any 1 ≤ y ≤ h′, let
iyk,1, · · · , i

y
k,jy

k
be all the indices of O-moves justified by mik that come from θ′y.

Let

P y
k ≡ Term(iyk,1, θ

′
y) or · · · or Term(iy

k,jy
k
, θ′y).

P y
k is meant to collapse to Ωθ′y for jyk = 0.

16

Murawski

• β′ = com:

WAIT ik ; (newvar {Lj }j∈Lik
in (pxP

1
k · · ·P h′

k); [
∧
j∈Lik

(Lj = 1)]); SYN a
ik

• β′ = exp:

WAIT ik ;

(newvar z, {Lj }j∈Lik
in (z := pxP

1
k · · ·P h′

k); [!z = si′k]; [
∧
j∈Lik

(Lj = 1)]);

SYN a
ik

• β′ = var:
· sik = read :

WAIT ik ;

(newvar z, ~LLik
in (z := !(pxP

1
k · · ·P h′

k)); [!z = si′k]; [
∧
j∈Lik

(Lj = 1)]);

SYN a
ik

· sik = write(v):

WAIT ik ; (newvar ~LLik
in (pxP

1
k · · ·P h′

k) := v; [
∧
j∈Lik

(Lj = 1)]); SYN a
ik

Fig. A.2. Stage 2

Pk is then defined to be one of the terms listed in Figure A.2, chosen
according to the shape of β′, where

• SYN a
ik

is shorthand for [Gi′k
= 0];Gi′k

:= 1 and i′k is the index of mik ’s answer
in s,

• Lik =
⋃

1≤y≤h′{ i
y
k,1, · · · , i

y
k,jy

k
}.

As before, the role of SYN a
ik

is to create a window of opportunity for mi′k
(and

copies thereof) before signalling that the event has already taken place. Lik
groups indices of all the O-questions justified by mik . It is used to range over
local variables that make sure exhaustive exploration of s in any race initiated
by O.

To satisfy Lemma 5.2, it now suffices to call Term(0,Θ) and bind the
free global and local variables. Suppose Term(0,Θ) ≡ λpθ11 · · · p

θh
h .M .

Observe that {Gj : var }j∈On , L0 : var ` Term(0,Θ) : Θ. The term
λpθ11 · · · p

θh
h .newvar {Gj }j∈On , L0 inM then satisfies Lemma 5.2.

This is a consequence of the following invariant maintained throughout the
construction.

Suppose Term(i, θ) is called during the execution of Term(0,Θ) and
{Gj }j∈X , Li ` Term(i, θ) : θ for some X ⊆ { 0, · · · , n }. Then

comp(J ` λf θ→com.newvar {Gj }j∈X , Li in ((f Term(i, θ)); [!Li = 1]) : comK)

17

Murawski

equals { run0 run1 u done1 done0 | ∃t ∈ P~
JθK.(s � mi �∗O t and t �∗ u) }.

B Term generated for Example 5.3

λf. newvarG0, G2, G4, G6, G8, L0 in

[!G0 = 0];G0 := 1;L0 := 1; [!G0 = 1];

newvarL2 in

f(λg. [!G2 = 0];G2 := 1;L2 := 1; [
∧
j∈{ 0,2 }(!Gj = 1)];

newvarL4 in

g([!G4 = 0];G4 := 1;L4 := 1; [
∧
j∈{ 0,2,4 }(!Gj = 1)]);

[!L4 = 1];

[!G6 = 0];G6 := 1; [
∧
j∈{ 0,2,4,6 }(!Gj = 1)]);

[!L2 = 1];

[!G8 = 0];G8 := 1; [
∧
j∈{ 0,2,4,6,8 }(!Gj = 1)]

C Proof of Corollary 5.4

Proof. Let s ∈ comp(JΓ ` M1 : θK). Consider t = run s done ∈ PJθ→comK.
By Lemma 5.2, there exists a IA||-term ` Mt : θ → com such that comp(J `
Mt : θ → comK) = { t′′ | ∃t′ ∈ PJθ→comK.(t�∗O t′, t′ � t′′) }.

Since t ∈ comp(J `Mt : θ → comK), J `MtM1K 6= { ε }. By the Soundness
result from [4], MtM1 ⇓. Because ` M1 vIA|| M2 : θ, this implies MtM2 ⇓.
By the Adequacy result from [4], J `MtM2K 6= { ε } follows.

Recall that comp(J ` Mt : θ → comK) = { t′′ | ∃t′ ∈ PJθ→comK.(t �∗O
t′, t′ � t′′) }. Since each t′ above is of the form run s′ done for some s′ ∈ PJθK,
we obtain comp(J ` Mt : θ → comK) = { run s′′ done | ∃s′ ∈ PJθK.(s �∗P
s′, s′′ � s′) } (in particular note that t′ � t′′ translates into s′′ � s′). Since
J ` MtM2K 6= { ε }, we can conclude that there exist s′, s′′ such that s �∗P s′,
s′′ � s′ and s′′ ∈ comp(J ` M2K). Finally, because J ` M2K is a strategy, we
also have s′ ∈ comp(J `M2K), so J `M1 : θK 6 J `M2 : θK. 2

D Proof of Lemma 6.4

It is easy to see that all the strategies corresponding to various parts of IA||

syntax satisfy the Lemma, as do identity strategies. So, it suffices to show that
the property in question, referred to as (?) and restated below, is preserved
by composition.

Let s ∈ comp(σ). For any play t such that s�∗O t, there exists u ∈ comp(σ)
such that t�∗P u and t�∗P u occurs within s�∗O t.

18

Murawski

We first prove a one-step variant of what we aim to establish.

Lemma D.1 Suppose σ : A ⇒ B and τ : B ⇒ C satisfy (?). Let s ∈
comp(σ; τ). Then, for any play t such that s�O t, there exists u ∈ comp(σ; τ)
such that t�∗P u and t�∗P u occurs within s�O t.

Proof. Suppose that s�O t results from cloning in C (the alternative case of
A can be dealt with in a similar way). We shall construct a (possibly infinite)
sequence u0, u1, u2, · · · of interaction sequences of σ and τ with the following
properties, where we write uLi , u

R
i for ui � (A,B), ui � (B,C) respectively and

k ranges over N.

• uL0 ∈ σ~, uR0 ∈ τ
• uL1 ∈ σ~, uR0 �O u

R
1 , u0 � A = u1 � A

• uR2k+2 ∈ τ , uL2k+1 �∗O uL2k+2, uR2k+1 �∗P uR2k+2, u2k+1 � A = u2k+2 � A
• uL2k+3 ∈ σ~, uL2k+2 �∗P uL2k+3, uR2k+2 �∗O uR2k+3, u2k+2 � C = u2k+3 � C
• uk � A,C �∗P uk+1 � (A,C) (k > 0)

We take u0 to be the witness for s. u1 is generated from u0 by applying the
same changes as those required to pass from s to t (i.e. u1 � (A,C) = t). Note
that the conditions listed above for u0 and u1 will be met.

• Given u2k, u2k+1 we construct u2k+2 as follows. Since uR2k ∈ τ , uR2k �∗O uR2k+1

and τ satisfies (?) there exists v ∈ τ such that uR2k+1 �∗P v. We then modify
u2k+1 in the same way as uR2k+1 turns into v to obtain u2k+2. Note that A-
moves in u2k+1 will be unaffected. If the passage from u2k+1 to u2k+2 does
not involve copying any moves from B we stop the construction at u2k+2.
Note that then we will also have uL2k+1 = uL2k+2.

• Given u2k+1, u2k+2 we construct u2k+3 as follows. Since uL2k+1 ∈ σ~,
uL2k+1 �∗O uL2k+2 and σ satisfies (?), by applying (?) for each copy of σ
involved in uL2k+1 we obtain v ∈ σ~ such that uL2k+2 �∗P v. We then modify
u2k+2 in the same way as uL2k+2 turns into v to obtain u2k+3. Note that C-
moves in u2k+2 will be unaffected. If the passage from u2k+2 to u2k+3 does
not involve copying any moves from B we stop the construction at u2k+3.
Note that then we will also have uR2k+2 = uR2k+2.

If the construction terminates, i.e. uL2k+1 = uL2k+2 or uR2k+2 = uR2k+3, the
conditions above imply that uy, where y = 2k + 2 or y = 2k + 3 respectively,
is an interaction sequence of σ and τ . Consequently, u = uy � (A,C) ∈ σ; τ
and t = u1 � (A,C) �∗P u, as required. The fact that t �∗P u occurs within
s�O t follows by applying (?) alternately to τ and σ.

It suffices now to eliminate the possibility that the construction lasts for-
ever. To that end we shall argue that the weight of uR2k+1 �∗P uR2k+2 is always
greater than that of uR2k+3 �∗P uR2k+4.

19

Murawski

By (?) for σ we have that the weight of uL2k+1 �∗O uL2k+2 is strictly greater
than that of uL2k+2 �∗P uL2k+3. To conclude this we need to apply (?) separately
to each thread of σ in uL2k+1. Because of “occurring within” the fact that
weights decrease in each thread by (?) indeed implies that that of uL2k+1 �∗O
uL2k+2 is greater than that of uL2k+2 �∗P uL2k+3.

Since the clonings supporting uL2k+1 �∗O uL2k+2 originate from some of those
behind uR2k+1 �∗P uR2k+2 and some of those behind uL2k+2 �∗P uL2k+3 give rise
to uR2k+2 �∗O uR2k+3, we can conclude, thanks to ”occurring within”, that the
weight of uR2k+1 �∗P uR2k+2 must be greater than that of uR2k+2 �∗O uR2k+3.
Finally, (?) applied to τ implies that the weight of uR2k+2 �∗O uR2k+3 exceeds
that of uR2k+3 �∗P uR2k+4. By transitivity, the weight of uR2k+1 �∗P uR2k+2 must
then exceed that of uR2k+3 �∗P uR2k+4. 2

To lift the result to many �O steps it turns out useful to examine the
interaction of�O and�P steps. In particular, we will be interested in possible
completions of diagrams of the form

s1
�O //

�P

��

s2

s3

Three cases arise, as shown below, which depend on whether the cloning in-
volves disjoint parts of s1 (left diagram) or not (the latter two).

s1
�O //

�P

��

s2

�P

���
�
�

s3 �O

//___ v

s1
�O //

�P

��

s2

�P

���
�
�

s3 �O

//___ • �O

//___ v

s1
�O //

�P

��

s2
�P���

�

•
�P���

�

s3 �O

//_____ v

In the first case the two clonings simply commute. The second and third
diagrams illustrate the case when �O and �P interfere. The second one
applies if the weight of �O is strictly smaller than that of �P , the third
one applies if the opposite is the case (the weights cannot be the same for
interfering clonings). It is worth observing that the weight of s1 �O s2 (resp.
s2 �P s3) is the same as that of s3 �∗O v (resp. s2 �∗P v) in each case. We
shall write s�X,k t if s�X t and the associated weight is exactly k.

Next we extend Lemma D.1 somewhat as an auxiliary step towards proving
Lemma 6.4.

Lemma D.2 Suppose σ satisfies Lemma D.1. Let s ∈ comp(σ). Any play t
such that s�∗O,k t satisfies Lemma 6.4.

Proof. Suppose s�n
O,k t. We reason by induction on n. For n = 1 the result

follows from Lemma D.1.

Suppose s�n
O,k s

′ �O,k t
′. Then we obtain the diagram below as follows.

u′ is obtained from the inductive hypothesis. v′ is obtained by applying re-

20

Murawski

peatedly the third diagram from above (the third diagram applies because the
weight of s′ �∗P u′ must be smaller than the weight of s�n

O,k s
′, which is the

same as that of s′ �O,k t
′). w′ is then obtained by applying Lemma D.1 to u′

and v′.

s
�n

O,k // s′
�O,k //

�∗P
���
�
�
� t′

�∗P
���
�
�
�

u′ �O,k

//____ v′

�∗P
���
�
�
�

w′

That t′ �∗P w′ occurs within s �n+1
O t follows from the inductive hypothesis

and the way the third diagram preserves nesting. 2

Finally we are ready to prove Lemma 6.4 by induction.

Proof. Suppose s�n
O t. If n = 1, Lemma 6.4 follows from Lemma D.1.

Suppose s �n
O t �O,k t

′. Then we can form the diagram below in the
following way. u is obtained from the inductive hypothesis. u′ is obtained
by repeated applications of possibly all three diagrams discussed earlier. v′ is
delivered by Lemma D.2.

s
�n

O // s′
�O,k //

�∗P

���
�
�
� t′

�∗P
���
�
�
�

u �∗O,k

//____ u′

�∗P
���
�
�
�

v′

That t′ �∗P v′ occurs within s �n+1
O t′ follows from the inductive hypothesis

and preservation of nesting by the three diagrams. 2

E Proof of Corollary 6.7

Let σ1 = J ` M1 : θK, σ2 = J ` M2 : θK and suppose σ1 6 σ2. Take C[−] such
that ` C[M1] : com and C[M1] ⇓. We need to show that C[M2] ⇓.

Let τ = Jx : θ ` C[x] : comK. By Soundness [4] σ1; τ 6= { ε }. Let
run s0 done ∈ σ~

1 ||τ be the corresponding witness.

We shall construct a sequence (potentially infinite) s1, s2, · · · of complete
shuffled plays such that, for any k ≥ 0,

• s2k+1 ∈ σ~
2 , run s2k done �∗O run s2k+1 done;

21

Murawski

• run s2k+2 done ∈ τ , s2k+1 �∗O s2k+2.

Here is how the sequence is constructed.

• Because σ1 6 σ2, there exists s1 ∈ σ~
2 such that s0 �~

P s1. Hence,
run s0 done �∗O run s1 done

• Given s2k, s2k+1 such that run s2k done ∈ τ and run s2k done �∗O
run s2k+1 done, by Lemma 6.4 for τ , there exists s2k+2 such that
run s2k+2 done ∈ τ and run s2k+1 done �∗P run s2k+2 done. Hence,
s2k+1 �∗O s2k+2, as required. If s2k+1 = s2k+2 we terminate the construction
(s2k+2 is the last element of the sequence).

• Given s2k+1, s2k+2 such that s2k+1 ∈ σ~
2 and s2k+1 �∗O s2k+2, by Lemma 6.4

for each thread of σ2 in s2k+1, one can obtain s2k+3 ∈ σ~
2 such that s2k+2 �∗P

s2k+3, i.e. run s2k+2 done �∗O s2k+3. If s2k+2 = s2k+3 we terminate the
construction at s2k+3.

Note that if the construction stabilizes we have s2k+1 = s2k+2 or s2k+2 = s2k+3.
By the properties of the sequence mentioned above, in both cases we then
have run s2k+2 done ∈ σ~

2 ||τ , i.e. σ2; τ 6= { ε }. By Adequacy [4], it follows
that C[M2] ⇓.

To wrap up the proof we show that the construction always stabilizes.
Suppose we end up with an infinite sequence s0, s1, s2 · · ·. Let ti = run si done.
Then we have an infinite sequence of the form

t0 �∗P t1 �∗O t2 �∗P t3 �∗O t4 �∗P · · · .
Let us write wk for the weight of tk �∗X tk+1. We shall argue that wk always
decreases and, hence, cannot be infinite. By Lemma 6.4 for τ and the con-
struction we clearly have wk > wk+1 when k is even. For k odd, the same
Lemma applied to σ2 only tells us that the weight decreases locally (in each
thread of σ2). However, because of nesting (“occurs within”), this also implies
a global decrease (calculated within the shuffled sequences s2k and s2k+1).

22

	Introduction
	Idealized Algols
	Game semantics
	Cloning
	Definability
	Soundness
	Conclusion
	Acknowledgement
	References
	Proof of Lemma 5.2
	Term generated for Example 5.3
	Proof of Corollary 5.4
	Proof of Lemma 6.4
	Proof of Corollary 6.7

