On Semantic and Type-Theoretic
Aspects of Polynomial-Time
Computability

ANDRZEJ S. MURAWSKI

St Hugh’s College, Oxford

Submitted for the degree of Doctor of Philosophy
Trinity Term 2001

Oxford University Computing Laboratory
Programming Research Group

Abstract

This thesis strives to combine two traditions in theoretical computer science: com-
plexity theory and denotational semantics. The recently proposed setting of game
semantics, which provided first syntax-independent fully abstract models of many
programming languages, is used to characterize the polynomial-time computable
functions as those definable by a certain kind of strategies in two-player games.
In particular, players must comply with a network protocol that structures the
exchange of moves between players and restricts the way games can be modified
by them during play.

The tight correspondence is achieved through a faithful characterization of the
space of proofs in light affine logic, which itself captures polynomial-time com-
putation by the process of cut-elimination. A representation theory of proofs,
extending essential nets for intuitionistic linear logic, is developed for light affine
logic and serves as a link between proofs and strategies. The nets corresponding
to proofs distinguish themselves by satisfying such graph-theoretic properties as
acyclicity, domination and well-bracketing. Proofs in normal form are then identi-
fied as canonical nets and related to strategies by a full and faithful completeness
result.

We also investigate the algorithmic content of light affine logic in the form of a
simple programming language incorporating a form of safe recursion. The language
is demonstrated to express all polynomial-time computable functions and to be
compositionally interpretable in the logic which guarantees that it can be executed
in polynomial-time using the cut-elimination procedure and also interpreted in the
game model.

The results of the thesis constitute a first successful attempt to construct an ab-
stract denotational semantics capturing a complexity-theoretic concept. It is hoped
that they will initiate an alternative approach to complexity based on the analysis
of the semantic content of complexity classes.

Acknowledgements

First and foremost, I would like to thank my supervisor, Luke Ong, for inspiring
supervision and invaluable advice on research and life in academia in general. I
am grateful to all other members of the Foundations of Computer Science group at
Oxford for a stimulating atmosphere over the three years. The EU TMR Network
on Linear Logic in Computer Science was also an excellent forum for discussion
about the topics related to this thesis; [have benefited a great deal from interactions
with the network’s members. For help at various stages of writing I am indebted
to Patrick Baillot, Keye Martin, Jeff Sarnat and Ben Worrell. The diagrams were
prepared using Paul Taylor’s macro package.

My studies would have been impossible without the University of Oxford Scatcherd
European Scholarship and the Overseas Research Students Award. In my third year
I was also supported by the Searle Graduate Scholarship of St Hugh’s College.

I owe an incalculable debt of gratitude to my family, especially to my Mother,
who has been helping me during the studies in every conceivable way; to my Aunt
Barbara, who has always been there for me, offering timely words of support; and
to my cousin Justyna, who has been doing her best to keep in touch. Finally, I
want to thank my fiancée, Aleksandra, for thousands of e-mails, a hundred letters
and, much more importanly, for her understanding and love.

i

To my Mother

Contents

4.1

Abstract
Acknowledgments
1 Introduction
2 The many facets of PTIME
2.1 Machine-dependent definitions
2.2 Logical characterizations
2.3 Programming language characterizations
2.4 Lambdacalculi
2.5 Light Affine Logic
2.5.1 Term calculus
2.5.2 Commuting conversions
2.5.3 Reduction
26 ELLandSLL
3 Programming with IMLAL?2
3.1 Tteration
3.2 Safe and normal variables in IMLAL2
3.3 Linear safe recursion
3.4 Completing BC™
3.4.1 perm-rec: recursion on safe arguments
3.4.2 Terms of type BIN —o BIN.
3.5 BC* characterizes FP
3.5.1 BC*isFPeclosed
3.5.2 Any FP function is representable in BC*
3.6 Another FP completion of BC—
3.7 Further directions
4 Essential nets

IMLL ...,
4.1.1 Polarization

10
13
17
18
20
23
24
28

30
30
32
33
37
38
39
40
40
44
47
52

vi

CONTENTS

4.1.2 Nets for polarized sequents o7
4.1.3 Interpretation of proofs L. 60
4.1.4 Sequentializabilityo 61
4.1.5 Dominator trees 62
4.1.6 A sequentialization algorithm 65
4.2 IMLLL 69
4.2.1 Correctness it e e 71
4.2.2 Soundness and sequentialization 74
4.3 IMLLL2 7
4.3.1 IMLLL2nets 78
4.3.2 Protonets 84
4.4 IMLAL2 87
4.4.1 Correctness v v it e e 88
4.4.2 Sequentialization 91
4.4.3 Collected and canonical nets 92
4.5 Extensions 96
4.6 Termsandnets 97
Some category theory 98
5.1 Autonomous categories 98
5.2 Symmetric monoidal functors L. 104
5.3 Weakening and garbage collection 108
5.4 Commutative comonoid 110
5.5 Terminal object oo 111
5.6 Light affine categories. 112
5.7 Type variables and universal quantification 112
5.8 Light affine hyperdoctrines L. 114
Game models 116
6.1 Games and strategies Lo 117
6.2 IMAL e 121
6.2.1 IMAL games 121
6.2.2 IMAL strategies Lo 122
6.2.3 Affine nets defined by strategies 126
6.3 IMLAL 130
6.3.1 land §games L 131
6.3.2 IMLAL games 132
6.3.3 Network protocol 133
6.3.4 Networked strategies 139
6.3.5 Equivalence of positions 144
6.3.6 Themodel o 149

6.3.7 Full Completeness 151

CONTENTS

6.4 IMLAL2 e
6.4.1 Staticgames.o
6.4.2 Symbolic and expanded strategies
6.4.3 Local strategies L.
6.4.4 Bounded strategies oL
6.4.5 Consistent strategies
6.4.6 Winning strategies oL
6.4.7 Uniformity
6.4.8 A light affine hyperdoctrine
6.4.9 Full completeness oL

7 Future work
7.1 Semantics,
T2 Syntax

Bibliography

Index

vil

155
155
163
166
168
174
175
175
176
179

183
183
184

185

194

Chapter 1

Introduction

Complexity theory and denotational semantics have tended to evolve without much
interaction. Semantics has traditionally been concerned with a sound mathematical
interpretation of computational phenomena. Complexity theory has dealt with
quantitative aspects of computation and seemed to favour more concrete analysis.
This thesis is an attempt to bridge the gap.

Complexity classes were originally defined using machine models. These low-level
descriptions might have led to the suspicion that complexity theory would be con-
fined to combinatorial manipulations with Turing machines and would escape ab-
stract analysis. However, it turned out that many of the definitions are robust
and coincide for various machine models. For a large number of complexity classes
even machine-independent characterizations have been found, revealing challenges
for other theories.

A potential area for application of semantic methods stems from the Curry-Howard
correspondence—the idea of considering proofs as programs, types as formulas and
modelling computation by the process of cut-elimination in logic. In order to
exploit this paradigm in complexity theory, an appropriate logical system taking
into account the consumption of resources must be considered, for only then can
one hope to be in control of conditions relevant to complexity. Indeed, Light Linear
Logic proposed by Girard [42] and its simplification by Asperti [11] called Light
Affine Logic (LAL) both build upon the sensitivity of Girard’s Linear Logic [39] to
the use of premises. By ensuring that duplicable entities have at most one input,
they rule out the possibility of exponential explosion. Natural numbers in these
logics can be represented by proofs of the formula

BIN = Va.!(a —o a) —o ({(a —o) —o §(ax —0) ,

which correspond to binary strings. Crucially, any proof of BIN —o §° BIN for some
k defines a polynomial-time computable function (soundness) and, conversely, any

2 CHAPTER 1. INTRODUCTION

such function can be expressed by a proof of BIN — §' BIN for some [(com-
pleteness). Besides, LAL is not only a machine-independent characterization of a
complexity class, but also an intrinsic one: the process that produces the polyno-
mial bounds is the logical counterpart of computation: cut-elimination.

Light Affine Logic opens up the possibility of constructing an abstract model of
polynomial-time computability. Its formal structure facilitates the specification of
requirements needed to interpret its syntax and thus polynomial-time algorithms.
Nevertheless, to be of value to complexity theory, the model should not only inter-
pret the syntax, but also do so in an undistorted way, as specified by the notions of
full and faithful completeness [3]. It ought to be free from undefinable elements and,
ideally, different proofs of the same formula ought to have different denotations. It
has turned out very difficult to discover syntax-independent constructions of such
models and only the recent advances in game semantics seem to have provided a
methodology allowing one to try to address the issue.

A variety of game models for fragments of linear logic [3, 63, 1, 14, 15, 10, 95, 100]
and intuitionistic logic [62, 60, 102, 61] have been proposed, a large majority of
which are fully and faithfully complete. These early developments have stimulated
progress in other areas and some models based on domain theory [84, 85] and Chu-
spaces [36] emerged shortly afterwards. However, the full completeness problem
for full linear logic still remains open. Game semantics also gained recognition for
solving the long-standing full abstraction problem for the paradigmatic functional
programming language PCF [6, 64, 101]. Since then the observational behaviour of
many languages with more advanced features has been accounted for in [7, 8, 59,
93, 8, 2, 78, 79]. Lately game semantics has found its first applications in program
analysis [88, 89], security [90] and verification of program equivalence [38].

The main result of this thesis is a fully and faithfully complete model for Light
Affine Logic (more precisely, for its second-order intuitionistic multiplicative frag-
ment (¥, §,!,®, —o) called IMLAL2). Hence, the model captures polynomial-time
computability in a semantic fashion and is a machine-independent framework whose
elements denote polynomial-time computable functions. No such model has been
constructed thus far, although the semantics of LAL has been studied in the setting
of phase [71] and coherence [13] spaces. The former provide a strong completeness
result, i.e. provability in LAL is characterized faithfully rather than the space of
proofs. The latter do interpret proofs, but the model is not fully complete, does
not interpret polymorphism and the type of natural numbers is introduced as a
base type. Therefore, it is not clear what functions are really definable. Seman-
tic methods based on realizability have also been used extensively in Hofmann’s
work [55, 56, 57] to study the relationships between complexity classes and pro-
gramming languages. However, their use consisted in structuring the machine-
dependent universe rather than replacing it with more abstract notions.

Overview

In Chapter 2 we survey the many ways in which polynomial-time computability is
present in computer science and logic. We begin with the standard definitions of
the complexity class P [27], the associated functional class FP and the widely ac-
cepted claims as to their suitability for formal definitions of feasible and inherently
sequential computation. But P also arises in other contexts in complexity theory
even though the polynomial bounds are not specified explicitly: in connection with
special kinds of automata [29] or alternating Turing machines [26]. Further char-
acterizations come from finite model theory and can be formulated in first-order
logic [114, 66, 111, 48, 49], second-order logic [46], their bounded versions [21] (this
result uses a single infinite model for a change) and the simply typed lambda calcu-
lus of order 4 [53]. Analogous results have also been obtained by taking advantage
of a properly calibrated functional programming language (e.g. without cons) ei-
ther with first-order unlimited recursion [48, 45, 69, 70], or second-order primitive
recursion [45, 70]. A subset of PROLOG without functional constants will do as
well [103, 67]. However, to compute FP functions the availability of cons ought
to be reinstated, which calls for new methods of reducing complexity. Cobham’s
paper [27] on bounded recursion was the first contribution to this goal. The idea
has been further developed in a logical context in [30, 24, 82], the last of which has
in turn suggested the stratification (tiering) technique [81, 16]. The method has
inspired many researchers [25, 92, 23], was shown to equivalent to a modal typing
system [54] and extended to higher order functions [55]. Moreover, the stratifi-
cation regime turned out unnecessary in frameworks that prevent functions from
increasing the size of input [56].

Another series of results that take advantage of reduction in lambda calculi
was started in [83] (in which the spirit of tiering is still perceptible) and resulted
in subsequent improvements motivated by linear logic in the form of bounded
linear logic [44] and light linear logic [42]. Chapter 2 culminates in a thorough
introduction to light affine logic [11], its syntax, the rewrite system and detailed
explanations of its properties. At the very end, we shortly discuss Soft Linear
Logic [77]—the latest development in the area capturing P rather than FP.

Chapter 3 investigates the scope for programming in Light Affine Logic. In par-
ticular, we seek connections with the Bellantoni-Cook algebra BC' [16, 81] of FP
functions, in which input arguments are divided into normal and safe ones. Having
identified a related concept of normal and safe in the logic, we show that a sub-
system of BC', called BC'~, can be translated into LAL so that normal and safe
arguments correspond to normal and safe variables. In BC'~ safe arguments are
not duplicable, and many FP functions become undefinable. For that reason we
try to extend BC'~ with new constructs aiming for FP-complete systems that still
admit a compositional translation into LAL. We propose two such by strengthening
the power of safe variables. The first one, named BC*, is BC~ enriched with a

4 CHAPTER 1. INTRODUCTION

case construct casey that replaces a fixed number of bits at both ends of a safe
argument (depending on a fixed number of least significant bits) and a recursion
scheme perm-rec over safe variables (in contrast to BC) in which at each step
a new bit can be added and a fixed number of the least significant bits of the
intermediate result permuted. The latter functionality is no longer necessary to
capture FP if one replaces perm-rec with the base function e-shift that shifts
all the even-numbered bits to the left. We also show that safe variables are not
contractible in LAL, because they could then be used to define superpolynomial
computations. The results of this chapter have been presented in [96].

In Chapter 4 we introduce graph-theoretic representations of LAL proofs, which
will provide a link between the sequent calculus and strategies in our game models,
and simplify proofs of full and faithful completeness. The most important results
of the chapter are the correctness criteria for various kinds of nets that characterize
precisely the nets that arise from proofs by referring to properties of the underlying
directed graphs. Our work builds upon Lamarche’s essential nets [80]: we adopt
the original definitions for IMLL (®, —) and independently reprove the adequacy
of his correctness criterion. For IMLL it boils down to acyclicity and a domination
property for ®*-nodes: all paths from the root to the left premise of a ®"-node
must pass through the '®*-node in question. Then we extend the framework to
handle § and ! by requiring the existence of a global matching between the negative
nodes §,?~ and §,!" such that the matching nodes induce well-formed sequences
of ‘brackets’ in any path of the net starting from the root. !"-nodes can be matched
only by single ?"-nodes (if any) and all paths between the premises of ®®*-nodes
must be well-bracketed in the above sense as well as paths connecting the root
of the net with any of conclusions of the net. For second-order quantification
another domination condition is necessary, this time for V*-nodes: any path from
the root to a 37-node whose eigentype has a free occurrence of X visits the V-
node if such a node exists, and all such paths must be well-formed. Finally, when
weakening is taken into account, a correct net is one that can be transformed to
a standard correct net with the aid of additional links. We also define canonical
forms of such nets for which the criterion about extra links collapses to the old
form. Canonical nets represent terms with collected garbage, which ensures that
the canonical proofs of BIN correspond exactly to binary strings. These nets will
be shown to correspond to strategies of our game models in Chapter 6.

Chapter 5 is an interlude on category theory in which a categorical semantics for
Light Affine Logic is derived. The categorical structures needed to model the
quantifier-free part of Light Affine Logic are called light affine categories, their
second-order counterparts are light affine hyperdoctrines. In addition, we examine
briefly the special case of the tensor unit being a terminal object with which we
have to deal in our game semantics.

Chapter 6 presents a series of game models for increasing fragments of light affine
logic. They follow the AJM-style of play [1, 6] and involve two players O and P
who play games defined by logical formulas by making moves alternately. The first
model is fully and faithfully complete for the (®, —)-fragment and is based on
total, injective history-free, token-reflecting strategies. For ! and § we introduce
a special protocol of conduct which is obeyed by the players. The occurrences of
I'and § are regarded as opening threads of play, which are then organized into
networks:

e A network comprises an O-thread (which can only be created by O) and
finitely many P-threads (which can only be created by P).

e A network whose O-thread arises from a !-game can have at most one P-
thread which must also arise from a !-game.

e No thread can belong to more than one network.

e Only O can switch between networks, and only P can switch between threads
within the same network.

A description of the game model for (®, —o) arising from our work (accompanied
by an accurate account of the theory of the tensor unit) has appeared as [95]. An
extended abstract presenting the model for § and ! was presented in [97]. Our first
attempt to introduce quantification into the (®, —o)-framework was also reported
in [100]. Its basic idea follows the evolving game paradigm [60, 102] which assumes
that players can change the game when making moves. These special evolutionary
moves are called evolution arguments. Our framework incorporates them into ordi-
nary moves in contrast to previous game models that isolated evolution arguments
from moves. All the game models are the first fully and faithfully complete models
for the respective fragments.

To capture full Light Affine Logic, two further developments turned out to be
necessary. Firstly, it is much more difficult to describe the evolution of the game
when it can concern just some single threads of the !-game so a generalized !-game
(written !y ¢, ier1G) had to be introduced. For the same reason it becomes harder
to pin down the finitely representable strategies as it is too strict to require that
the history-free function be finite and it is insufficient to stipulate that all networks
have a finite number of threads. Instead, more parameters have to be uniformly
bounded: the maximal size of the game that can be developed, the size of games
that players can use as evolution arguments and the number of threads occurring in
networks as specified in the definition of bounded strategies. Only then, assuming
that the strategy behaves consistently, can we extract its finite representation and
hope to relate it with proofs. Secondly, the evolution of a game must be compatible
with the network structure: evolution arguments provided by O in a network, can
only be used by P locally, i.e. inside the same network, though possibly at a different

6 CHAPTER 1. INTRODUCTION

level. The faithful and full completeness results are then established by relating a
special kind of positions (short-sighted and symbolic) with paths in the associated
net. Thus we have succeeded in characterizing polynomial-time computability by
a class of strategies.

Finally, we discuss the potential applications of our work in Chapter 7 as well as
some future directions for research.

Chapter 2

The many facets of PTIME

PTIME is one of the most intensively studied complexity classes. It was introduced
in the 1960s by Alan Cobham, under the name L£*, as the smallest class containing
natural decision problems which could be characterized in terms of time-bounded
computers. Since then PTIME has been the subject of numerous open problems
in complexity theory, many of which still remain unsolved. It is also regarded as
a sensible formalization of feasibility (Cook’s Thesis). The hardest among PTIME
problems (the P-complete problems) are considered inherently sequential and com-
monly thought to set the limits for efficient parallel computing (with (logn)°™)
time complexity on n°() processors) [47]. In this chapter we give a survey of non-
standard definitions of the class PTIME (P) of decision problems and the associated
class FPTIME (FP) of numeric functions.

2.1 Machine-dependent definitions
Cobham’s original definition of £* [27] read:

A set A of strings is in the class £* if and only if A is accepted by a
computer within time p(n), for some polynomial p.

It was purposely stated without reference to a specific model of ‘machine’ as it
had already been observed that £* was independent of that choice. Any class of
computational models known at that time (e.g. random-access machines, Turing
machines, Shepherdson-Sturgis machines, iterative arrays of finite-state machines),
when substituted for the word ‘computer’ in the above definition, would give rise
to the same class of decision problems. This has remained true until now, though
many other classes of machine models have emerged in the meantime. In fact, a
more general principle, justifying this stability, is believed to hold—a quantitative
form of Church’s Thesis [104]—stating that any model of computer algorithms can
be simulated by a Turing machine with a polynomial loss in time complexity [22].

7

8 CHAPTER 2. THE MANY FACETS OF PTIME

Let us recall one of the simplest standard definitions of P and FP based on a
single-tape (deterministic) Turing machine with a binary alphabet. A single-tape
Turing machine is a triple (STATES, 1, si,), Sy,)» Where:

e STATES is a finite set,

e 11 :STATES X {0,1,0} — sTATES X {0,1,00} x { L, R, S } is the transition
function,

e s € S are the start and finish states respectively.

in> *fin
(] is the blank symbol and S, L, R describe the movements of the head of the
machine. The actions of the machine are specified with respect to a tape repre-
sented by a triple t = (L, h,R), where L = O, R = r[O0>, I,r € {0,1,0}%,
h € {0,1,00} and 0% is the countably infinite string of (I’s signifying the fact
that only a finite part of the tape will ever be overwritten by the computation and
the rest will always be blank. The character h is to denote the symbol which is
being scanned by the machine at a given point in time.

The configuration of a machine consists of a state and the contents of the tape.
The transition function can be used to modify a configuration (s, (Lcr, h,cpR))
(for ¢, crp € {0,1,03}) as follows: if u(s,h) = (', h',d), the new configuration is

(s',(Lep,h',cgRY) ifd=S,
(s",(Lycp,WegR)Y) ifd=1L,
(s',(Leph cp, R)) ifd=R.

The initial configuration is (s, (0°°,0,40°)), where 7 is a binary string—an
instance of the decision problem we would like to solve or an encoding of the
input. Afterwards, the computation proceeds as indicated above, and as soon as
the machine reaches a configuration with the final state sg,, the computation is
deemed to terminate. If we are interested in solving decision problems, the result is
the symbol scanned once the machine has reached its final state. For this purpose
we interpret 1 as YES and 0 as NO. In order to compute numeric functions we
require the output—a string of 0’s and 1’s—to be placed to the right of the head.
These conventions are immaterial to a large extent, but are indispensable in a
precise definition.

Definition 2.1. Under the view that a decision problem is a set of binary strings,
PTIME (P) is the class of decision problems which can be solved within a number
of steps polynomial in the length of the (binary) input. FPTIME (FP) is the
class of numeric functions that, interpreted as functions on binary strings, can be
computed within the same bounds.

2.1. MACHINE-DEPENDENT DEFINITIONS 9

Many parameters in the above definition can be changed and it will still give rise to
the same class of problems or functions. For example, even if the machine makes
use of a richer alphabet throughout the computation, no new problems will be
solved or functions computed in poly-time. We could also try to add more tapes
and designate one of them to hold the input and another the output, but only a
quadratic speed-up can then be expected and no quantitative advances are gained.
Moreover, when the number of heads increases and at each step the transition de-
pends on all the symbols scanned by the heads, we can simulate the new conditions
by the simple single-head machines with a polynomial loss in complexity.

Only a non-deterministic variation on the machines is believed to lead beyond
P (FP respectively). Then, at each step the computation is allowed to branch into
several configurations, and once a single branch reaches an answer, it is treated
as an answer to the whole computation. In addition, only the time used for
that particular branch is counted. The problems solvable in polynomial time by
non-deterministic Turing machines form the class (NPTIME (NP)). The question
whether P is a proper subset of NP is still unanswered, but in what follows we will
be able to see how it can reappear in various theories under different guises.

A number of characterizations of P based on space complexity are also available.
By definition, for multi-tape Turing machines, the space occupied by the input and
output tapes does not count towards the overall complexity and the two tapes are
respectively read- and write-only. What is monitored is the number of cells of the
other tapes (called work tapes) that are being used in computations. For example,
LOGSPACE is the class of problems solvable in space bounded by ¢-log(|i|), where
¢ is a constant that does not depend on the input i. In the presence of non-
determinism, the class of solvable problems is called NLOGSPACE. It is known that
LOGSPACE C NLOGSPACE C PTIME and it is conjectured that the inclusions
are all strict.

Logarithmic space can be related to PTIME by considering the notion of al-
ternating computation—a generalization of non-determinism. A non-deterministic
Turing machine in configuration ¢ accepts a string if there is a next configuration
leading to acceptance. A dual definition would say that all next configurations must
be successful and that there is a next configuration. An alternating Turing machine
combines the two standards of acceptance by dividing the set of states into the ez-
istential and the universal. A machine in an existential state accepts according to
the ‘non-deterministic’ canon, but for universal states the stronger, universal prop-
erty is needed. For such hybrid machines, we can also measure space complexity
as before. The class of problems that take logarithmic space to solve in this setting
is called ALOGSPACE. Chandra, Kozen and Stockmeyer [26] have proved that
ALOGSPACE = PTIME. (They have also shown that APTIME = PSPACE,
APSPACE = EXPTIME and AEXPTIME = EXPSPACE.)

The potential gap between LOGSPACE, NLOGSPACE and PTIME can also
be accounted for by the addition of a special work tape to Turing machines. The

10 CHAPTER 2. THE MANY FACETS OF PTIME

new tape, called the pushdown tape, does not contribute to the monitored space
consumption, but can be used only in a rather restrictive way:

e it is bounded at one end (e.g. on the left),

e initially its head (called the pushdown head) is positioned above the leftmost
cell,

e at each step, as the other heads move, read and write (if possible) in the
standard way, the pushdown head can only move to the right if it overwrites
the previously scanned cell with a non-blank symbol, and if the head is to
move to the left while scanning a cell with a non-blank symbol, it must erase
the symbol (overwrite it with the blank symbol) before doing so.

Of course, the head cannot move left if its current position is the end of the tape.
As shown by Cook [29], Turing machines running in LOGSPACE or NLOGSPACE
enriched with such a new tape (and head) can solve exactly the PTIME problems.

The ability to make use of an additional unlimited pushdown tape allows a class
of automata, known as the multi-head two-way automata [52], to capture PTIME.
An automaton like this comprises a single input tape with one marker at each end
of the input string. The n-heads (for n > 1) scan the input starting from the left
end, then move left or right independently, entering only a finite number of states.
The automaton has no writing facility and the computation terminates when one
of the heads leaves the tape. The input string is accepted (i.e. it is a YES-instance
of the problem) if the state at termination is some distinguished state called final.
By adding a pushdown tape operating as before, we get a class of multi-head
two-way pushdown automata. Cook [29] has shown that they solve precisely the
problems in PTIME. Here, unlike for Turing machines, the number of heads does
matter: the more heads there are, the more problems become solvable. Note that
no resource bounds have been specified here, though this characterization is still
based on machine models.

2.2 Logical characterizations

It is not obvious at all that complexity theory can be expressed in a machine-
independent, resource-free way. The very existence of alternative definitions of com-
plexity classes lends credence to their importance and suggests novel approaches to
the whole theory. Implicit characterizations of complexity classes can potentially
provide novel insights and serve to relate problems in complexity to issues relevant
to other theories.

Decision problems are amenable to logical treatment. Intuitively, it seems plau-
sible that properties that are harder to check will be harder to express. Indeed,
this intuition is validated in a precise way in that restrictions placed on various

2.2. LOGICAL CHARACTERIZATIONS 11

syntactic parameters, e.g. the quantifier pattern, can be shown to correspond to
standard complexity classes. For example, the well-known NP-complete problem
3-COLOURABILITY is expressible in second-order logic:

JRIGABNaYy. [(E(z,y) = —(R(z) A R(y)) A ~(G(z) A G(y))
A=(B(z) A B(y))) A (R(z) V G(z) vV B(z))]

The first clause states that no two adjacent vertices have the same colour, and the
second says that every vertex has some colour. In this way, messy codings can be
avoided. Here graphs are represented by pairs (V, E, <), where E C V x V, and
< is a linear order on the vertices. In fact, any problem in NP can be defined by
a formula of existential second-order logic (SO3):

IR, ---3R,.¢

where ¢ is a first-order formula. The converse is also true: any SOd formula de-
fines a property which can be verified in non-deterministic polynomial time. Con-
sequently, it can be said that existential second-order logic characterizes precisely
the problems in NP. This result by Fagin [37] initiated a new discipline, now called
descriptive complexity theory [67].

In order to account for decision problems phrased in terms of strings, we should
represent binary strings as finite models:

(S={0,1,---,max }, BIT C S,0,<).

BIT (i) holds iff the ith bit is to be set, and < is the significance ordering on
bits. For example, the numbers 2" — 1 (n > 0) can be specified by the formula
Va.BIT(x).

What then is the logical characterization of polynomial-time computability and
how is it different from that of NP? Surprisingly, it suffices to restrict the shape of
¢ to a (universally quantified) conjunction of Horn clauses (a result by Gridel [46]).
Note that the formula used for 3-COLOURABILITY does not consist of Horn clauses.
Otherwise, the results mentioned so far would imply a positive answer to the P=NP
problem. The formula below is Horn and specifies the unreachability of a vertex y
from x in a graph, a problem known to be in P:

dRVaVYbVe.[R(a,a) A (E(a,b) = R(a,b)) A (R(a,b) ANR(b,c) = R(a,c)) N—=R(z,y)].

If we do not insist on having only existential second-order quantifiers at the front,
we will still get yet another PTIME logic—SO-Horn.

Second-order definitions resemble inductive definitions formalized via least fixed
points (LFP). However, the former are much weaker in that they only contain the
fixed point: the clause above says that R contains the reachability relation of the

12 CHAPTER 2. THE MANY FACETS OF PTIME

graph and could not be used to define reachability itself. Anyway, the reachability
of y from x is expressed by

R(z,y) = E(z,y) vV 3z.(R(z,2) A R(z,y)).

It turns out that the properties expressible in first-order logic (FO) with least
fixed point (FO+LFP) are exactly the problems in P [111, 114, 66]. To ensure
that the least fixed points exist, one should stipulate that the inductively defined
relational symbol occurs in positive positions inside definitions. This guarantees
that the corresponding operator on relations will be monotone and the least fixed
point can be computed by iteration. One can relax the monotonicity condition and
use another kind of fixed point, called inflationary (IFP), which are calculated by
taking the least fixed point of the monotone operator ®(R) = R U ¢(R), where ¢
is the not necessarily monotone operator. As Gurevich and Shelah showed [49],
FO+IFP=P.

There exist equally satisfying descriptions of decision problems and graph-
theoretic properties in LOGSPACE, NLOGSPACE, PSPACE and many other com-
plexity classes. Hence, they can be characterized by basic logical notions without
any mention of computation. A notable feature of all these descriptions is the
presence of an explicit ordering on the carrier of the model. This is considered
undesirable and a great deal of research has been devoted to finding logics in which
this element could be left out.

Analogous characterizations not only exist for finite models representing in-
stances of problems, but they can also be carried over to a single infinite model—the
set of all binary strings:

<{O71}*7807817§>

equipped with two successor functions S;(x) = zi and the prefix order <. For
this model, it is necessary to consider bounded versions of the previously men-
tioned logics, in which each quantification and fixed-point operation is guarded
and consequently finitary. By a guard we mean a quantifier-free formula G(Z, 7))
such that for any tuple ¢ of carrier elements the set {# | G(#,¥)} is finite.
It is required that each occurrence of a quantifier () € {V,3} be of the form
(QzZe{Z | G(&7)}).F for some guard G. Additionally, the least fixed point
computations may only involve formulas of the form F' A G, where G is a guard.
These bounded versions of FO+LFP, SO-Horn and SO3-Horn have been proved to
capture exactly PTIME [21].

Decision problems can be seen as database queries, which are modelled formally
using finite model theory. Queries are then regarded as functions from finite mod-
els to finite models. In that context, the queries computable in polynomial time
define the class QPTIME. The logical characterizations of PTIME extend easily to
QPTIME, but the problem of specifying QPTIME queries can also be revisited in
the typed lambda calculus.

2.3. PROGRAMMING LANGUAGE CHARACTERIZATIONS 13

Given a countable set of atomic constants representing the universe of the
database, relations are encoded as lists of tuples using standard methods of repre-
sentation. Queries correspond then to A-terms that, when applied to encodings of
input relations, reduce to the encoding of the output relation. Provided that there
is a built-in equality test for the constants, it is possible to translate all QPTIME
queries into the fragment of order 4. It turns out that all queries expressible in
this restricted fragment can be handled in PTIME, so we obtain yet another way
of describing polynomial-time computability [53].

2.3 Programming language characterizations

A related strand of research concerns recursive programs interpreted in finite mod-
els. Tts results can be expressed in the setting of modern programming languages
and used to associate complexity classes with various fragments of such languages.
The first result of this kind by Gurevich [48] linked LOGSPACE with first-order
primitive recursion.

Let us consider a typed functional programming language with the following
type system:

T :=DBool | [Bool] | TxT | T—=T.

The order of a type is defined by

order(Bool) = order([Bool]) =0,
order(T) x Ty) = max(order(Ty),order(Ts)),
order(Ty — T3) = max(1l + order(11), order(Ty)).

Programs consist simply of n function definitions:
P = def;; - --; def,

where def; : [Bool] — Bool is the main function (representing a decision problem).
Each function definition is of the form:

fri...x, = expr

where expr is generated from typed variables, constants (True, False) and the
empty list [] by function application, A-abstraction, if-then-else, head, tail, pairing
and projections. A notable feature is the lack of cons. expr can also contain
occurrences of f to implement various kinds of recursion. f is said to be of order
k, if its type is of that order. Programs have order k£ iff all functions defined inside
them have order at most k.

Gurevich’s result says that first-order cons-free programs with primitive recur-
sion constructed according to the above rules will solve precisely the LOGSPACE

14 CHAPTER 2. THE MANY FACETS OF PTIME

problems. Unsurprisingly, an increase of the order of arguments leads to larger com-
plexity classes. Second-order primitive recursive programs characterize PTIME as
well as first-order general recursive programs [45, 70]. In the latter case, because
general recursion is involved, we need to consider the programs that terminate
for all inputs. The above results can also be formulated for imperative families
of languages —the crucial element is again the absence of cons [69]. A suitable
subset of PROLOG without function symbols (called DATALOG [67])) will do as
well [103]: if P is to be captured, one is not allowed to negate the relations defined
in a program, though negation of the built-in relation representing the input is in
order.

It does not suffice to consider cons-free programs if we want to characterize
FPTIME, because values of functions need to be constructed in some way. cons
must therefore be added to the language, but this makes even primitive recursion
too powerful. This brings us back to the original paper of Cobham [27]. Because
primitive recursive functions need not be in P, one considers a bounded recursion
scheme on the binary representation of a number.

Starting with the constant e, successors Sy, S1, projections and the smash func-
tion # (w#y = 21*1'W) let us generate new functions by composition and bounded
recurston with bound h:

fleq) = ¢(@),
f(sz(x)7?j) = hi(x,?j, f(af,?j)) fori=0,1,
where g, h, hg, by must have already been defined independently of f (using the
same rules) and f(z,¥) <y h(z,) for all arguments z, . Cobham [27] proved that
exactly the functions in FP are definable this way. The rather mysterious smash
function is provided to give enough expressibility to initial definitions.

Cook [30] used Cobham’s work to construct an equational theory PV (Polyno-
mially Verifiable) in which the set of provably definable functions coincides with FP.
A novelty of the logic is the proviso that the adequacy of a bound must be provable
in PV itself. Later Buss came up with a system Si of [24] which was an extension
of PV but still characterized FP. The induction scheme therein was restricted to
formulas (32 < t)A, where only sharply bounded quantifiers (32 < |¢]) (i.e. on size
rather than value) can occur in A. By counting alternations of bounded quantifiers
(ignoring sharply bounded ones) it is also possible to obtain characterizations of
other complexity classes from the Polynomial Time Hierarchy.

A related result by Leivant gives ‘a foundational delineation’ of FP [82]. He
uses second-order logic instead in which the algebra of binary words can be de-
fined from first principles. The equational programs computing FP functions are
those whose convergence can be verified in constructive second-order logic with the
comprehension (set-existence) scheme restricted to positive (without negation or
implication) quantifier-free (or existential) formulas.

Finally, we mention a result due to Muchnik [94], who proves that bounded
recursion is dispensable at the cost of a finite number of base functions i.e. FP has

2.3. PROGRAMMING LANGUAGE CHARACTERIZATIONS 15

a finite basis with respect to composition. Unfortunately, this interesting fact does
not give any clues as to how poly-time functions can be programmed.

The following example suggests some modifications to primitive recursion which do
not force the programmer to look for explicit bounds. First we define a function
double such that double(x) =1---1:

2|z

double([]) =[],
double(i : x) = 1:1:double(x).

Next we use double as a step function in

A =1,
fli:z) = double(f(x))

to get a function f satisfying |f(z)| = 2/*/. Thus, step functions cannot be allowed
to process recursive calls via recursive arguments.

An abstract presentation of that idea relies on stratification (tiering) of inputs
and outputs [81]. One introduces a countable number of levels, each of them
containing a copy N; of the set of natural numbers (binary strings) along with the
successors SP,S1 : Ny — N, and empty strings €, : Ny for & > 0. There are global
projections for all combinations of levels, e.g.

TQ:NZIXNGXNQ_)NG.

Composition must respect the level labels and primitive recursion on binary nota-
tion follows the scheme:

f(Si(), ¥

where f : Ny x N = N, h: Ny x Nx N, = N, and k¥ > . The final condition
applies only if the recursive call is actually used in computation. For example,
double : N; — Ny can be defined by taking g = €y, h = S{oSjom : Ny x Ny — Np.
Clearly, it cannot be used further in recursion because of the stratifying conventions.
In return, each function f : N,, — N, is polynomial-time computable and any
FPTIME function can be defined as f : Ny — Ny or indeed f : Ny — N, for any
k,l such that k > I.

A similar idea has independently appeared in Bellantoni and Cook’s work [16]
(motivated by a proof in [82]). They distinguish two kinds of arguments, called
normal and safe respectively, and define functions f(7; §) in which the arguments
are grouped in two zones. The safe ones can then be used to handle recursive

16 CHAPTER 2. THE MANY FACETS OF PTIME

calls, but recursive arguments must be normal. This results in the following safe
recursion scheme:
fle,n;8) = ¢(i,5),
f(sz(x)a n; 5) = hz(xa n;s, f(xa n; 8))

resembling the previously considered stratified scheme. Composition prevents con-
fusion between the two kinds of variables: safe variables cannot appear in normal
positions. To begin, we decree that only normal variables can be substituted in
normal slots:

f(i1;8) = h(ngy, ..., n,; [, (75 8), ..., £;,(7; 5)).
The functions f(ii;) generated using these schemes and some basic functions (to

be mentioned later) are polynomial-time computable. Moreover, they can be trans-
lated into the stratified system as functions

NP NET — N

Conversely, any FPTIME function is expressible inside this system [50] as a function
of a normal argument. One might wonder what flexibility is added by the higher
levels of the stratification. The addition of the rest of levels allows for a more liberal
composition scheme in which functions of normal arguments can be substituted in
normal positions rather than just plain variables:

f(758) = gy (735), . 93, (75;); £5,(735.8), .., f3, (75 5)).

This is the original safe composition scheme of the Bellantoni and Cook’s for-
malism BC, which consists of the safe composition and recursion schemes and the
following base functions: €(;), successors Sy(;), S1(;n) and the case construct:

a n=c«,
cond(;n,a,b,c) =<¢ b n ends in 0,
c n ends in 1.

BC' definitions can be stratified as N;, x --- xN;, — N;, where the safe arguments
correspond to indices 74 that are equal to i.

The distinction between safe and normal inputs has inspired many researchers.
Caseiro [25] investigated equational definitions on arbitrary data structures and
generalized the notion of safe arguments to what she calls critical arguments.
When constructors of arity greater than one are used, the right-hand side of each
definition must be linear in the critical arguments from the left-hand side. This
prevents doubling of critical arguments and her system is called DDC (Don’t Double
Criticals) accordingly.

Hofmann [55] extended BC to a higher-order programming language SLR using
a type system with a modality to forbid unsafe recursion by typability. Linear safe
recursion for values of type

N—...—+N—=N,

2.4. LAMBDA CALCULI 17

is also allowed in SLR and it turned out not to lead beyond FP. In another paper [56]
Hofmann proposes a language in which one can write only non-size-increasing func-
tions. The distinction between safe and normal input can be relaxed in such a
framework and all definable functions are nonetheless poly-time computable. Al-
though it is clear that most FP functions cannot be programmed in a non-size-
increasing framework, it has been shown by the same author [58] that all those
representing problems in P can be.

Returning to stratification, Marion [92] applied the methodology to termination
proofs using multiset path orderings [35]. Programs that can be proved to termi-
nate by his light ordering compute exactly the FP functions. Before that FP was
also characterized as a class of first-order programs admitting termination proofs
by an appropriate assignment of polynomials with positive coefficients to function
symbols [23] (to be of any use for termination analysis, the polynomial interpreta-
tion must generate a assignment of polynomials to terms, which is monotone with
respect to the reduction rules). The condition corresponding to poly-time com-
putability stipulates that successors be interpreted by linear polynomials X + ¢ (by
taking aX + b instead one gets all functions in EXPTIME).

2.4 Lambda calculi

We have mentioned the simply typed lambda calculus as a tool to encode and
examine database queries. However, there is a more traditional approach to ex-
pressibility in the lambda-calculus setting. Typically, one associates appropriate
types Tp and T with respectively the domain and co-domain of the functions to be
represented, and investigates all terms of type T, — T. For instance, for numeric
functions, the natural choice is

Tp=Tc = (a = a) = (@ = «a),

the type of the Church numerals. Unfortunately, typed terms with type Tp —
T define only the extended polynomials (functions generated by 0 and 1 using
addition, multiplication and conditional). Clearly, this is insufficient to capture all
FPTIME functions and there are still many basic functions that are not computable
by the typed terms, e.g. the predecessor.

A first step towards closing this gap is to change the representation of values
and consider numbers in binary notation encoded as binary lists of type

L=(ad—a)—=(a—=a) = (a—a).

Leivant and Marion added the free algebra of words { 0,1 }* to the calculus (as
the constant € : o, constructors 0,1 : o — o, the destructor and discriminator
functions). Under more liberal input-output conventions (i.e. we no longer require
the terms to be of type L — L but consider L[o*/a] — o or L[o*/a] — L[o'/q]

18 CHAPTER 2. THE MANY FACETS OF PTIME

instead), they were able to show that the set of expressible functions is precisely
FP [83]. Many researchers took up the challenge of purifying this result and finding
an intrinsically poly-time system in which reduction for all types would be of poly-
nomial complexity. A perfect formalism of this kind ought not to involve external
elements like superimposed words.

According to the proposition-as-types paradigm, standard lambda terms can be
regarded as proof-terms for intuitionistic logic. Therefore, the programme of finding
a calculus for P (or FP) can be restated equivalently as a quest for a suitable logic.
Indeed, this direction has been most fruitful and resulted in two logics: bounded
linear logic and light linear logic. Both are inspired by linear logic, which is itself a
refinement of classical logic. Linear Logic makes it possible to control duplication
of premises and so the sharing of data throughout computation. The duplicable
objects always have type !A for some A and are managed (in the intuitionistic
fragment) through the four rules:

T+A T,AAFB T,AFB I~ B
T - 1A TJAF B T'"AFB T,)AF B

The first rule (called promotion) says that the inputs of an object to be certified
as copiable must be duplicable too. The second (contraction rule) introduces the
duplication itself, whereas the remaining two (dereliction and weakening) take ac-
count of the two special cases of copying zero times and annihilating the object.
So, !A really means an arbitrary number of copies of A including 0.

Bounded linear logic (BLL) [44] achieves the desired complexity by introducing
explicit bounds on the use of inputs. They are special kinds of polynomials (called
resource polynomials) added to the duplicable formulas (!,.,A) or to type vari-
ables (a(p1,---,pn)). Although related to space complexity of the computation,
they restrict the input-output behaviour in such a way that only polynomial-time
computations become legal. The rules defining BLL are presented in Figure 2.1.

Binary lists of length at most n can be encoded as BLL proofs of

N =Valycn(aly) — aly +1)) —ly<n(a(y) — aly +1)) — (@(0) — a(n)).

Proofs of N, —o N,(;) (where p ranges over resource polynomials) represent exactly
the FP functions. The computational mechanism that is used for poly-time evalu-
ation is based on intuitions from the process of cut-elimination, but the irreducible
forms are not necessarily cut-free (only certain cuts are eliminated). Therefore,
there is still scope for improvement and light linear logic addresses this issue.

2.5 Light Affine Logic

Light linear logic (LLL) [42] does away with explicit bounds and is based on the
simple observation that duplicable entities may not depend on more than one input.

2.5. LIGHT AFFINE LOGIC 19

I'NA,B,A + C
! |: !)))
(var) A F A'for AC A (exch) T BAAFC
@1 ABLEC o A AbD
A® B,I' - C A +F A®B
(o) T'-A BAFC (or) IA+ B
" A -B,AF C " TFEALB
['VAB/o] F C - A
-1 - — FV(D
(1) TVa.A - C 1) T rvea PV
Az =0] - B
(!_1)) [37 0]
D lciiwA H B
(l-r) g Aily = qi(0) + -+ iz = 1) + 2],- -+ + Bla]
T !y<qi(0)+---+qi(p71)+w A; [?J]a e !:v<pB
Loy A g Al =p+y| H C x does not occur in p
(contr) Fa !x<p+q+w AF O
I - B Ir-A AAFB
(weak) 1 A+ B (cut) A F B

FV(T) is the set of free type variables in elements of I'. A C A’ if A and A’ differ
only in their choice of polynomials and for any polynomial p occurring positively
(respectively negatively) in A, the corresponding p' in A’ is such that p < p'
(respectively p' < p).

Figure 2.1: The rules defining valid BLL sequents

Otherwise, their nesting could lead to exponential explosion. Let us look at the
following untyped term

(Az3. (Az2.(Az1.2121) (Toma)) (T323)) (42 4)

and its f-normal form. Because at each step the number of occurrences of some
variable doubles, the normal form (reachable in 3 steps) contains 2*™' = 16 occur-
rences of x;. The same problem can be recast in the typed framework (application
associates to the left by convention, so tzy means (tz)y):

(Azg.(Az2. (Az t1x121) (T2 2x2)) (t32323)) (T4 42 4).

In linear logic we have control over the types of copiable items: for each i (1 < i < 4)
x; :IT; for some Tj, hence t; :IT; — (IT; —o!T; 1) (for some type Tj) and then
tixix; » T;_;. Cut-elimination in linear logic proceeds by waiting for ¢;z;x; to reach
its canonical form (a box in the proof-net terminology) before duplication. Thus,

20 CHAPTER 2. THE MANY FACETS OF PTIME

if we are certain that the canonical form depends on one input, there is still a
chance of avoiding an exponential blow-up. Fortunately, such a condition can be
enforced syntactically via the (!) rule in Figure 2.2. Now, if ¢;z;z; is typable in the
new framework, one of the variables will disappear during reduction (e.g. when ¢;
is a projection Azy.x). Afterwards, when a box depending on a single variable is
copied k times, there will be k£ more occurrences of the variable rather than 2k.
Consequently, the size will grow polynomially, but not exponentially.

Nevertheless, this restriction on the use of ! is rather severe in absence of other
opportunities for sharing. It is impossible to type the Church numerals uniformly
in the (®, —o,!)-fragment with the (!) rule and each formula will only have a finite
number of proofs. A new connective § is introduced to strengthen the logic. Binary
lists are then encoded as proofs of

BIN = Va.!(a —o a) —ol(a —o a) —o §(ax —o).

The inference rules for § and all the other connectives are shown in Figure 2.2 to-
gether with associated proof-terms. Note that the weakening rule (weak) applies
to all formulas, not only to those of shape ! A unlike in linear logic proper. The syn-
tax extends the work of Koh and Ong [76] in which IMLL and MLL with units were
handled. The logic we are concerned with is the intuitionistic fragment of Light
Affine Logic (LAL) [11], which in turn is a significant simplification of light linear
logic. By convention, the logic will be referred to as Second-Order Intuitionistic
Multiplicative Light Affine Logic (IMLAL2)). Its sublogics have names dependent
on the connectives they include and the presence of weakening. We show them in
Figure 2.3. For instance, IMLLL stands for intuitionistic multiplicative light linear
logic. When writing formulas we assume the standard precedence: V,§,! ®, —o.

There have already been quite a few attempts to design syntax for LAL [108,
110, 12]. Some constructs of those languages are simpler than ours, but they were
to provide a simple programming notation rather than a tool to analyze the space
of proofs. For instance, the presence of notational ambiguities in [110, 12] makes
it possible to define the reduction procedure with just three rules!

2.5.1 Term calculus

The convention for the term language is that variables which appear in the denom-
inator position (i.e. on the right of “-/-”) are binders. Our aim here is simply to
use the term language as a compact notation to express IMLAL2 derivations. We
introduce some shorthand notation to interpret some familiar operations from the
A-calculus.

Remark 2.2. The conventional application of two suitably typed terms can be
defined by
s:A—oBt:AF ((z2°F t/2P)a){s/2*P} . B

2.5. LIGHT AFFINE LOGIC 21

(ax)
(exch)
(®-1)
(®-r)
(—-1)
(—o-r)
©)

(%)

(8)
(8)
(V-1)
(V-r)
(contr)
(weak)

(cut)

r:AF A A

Me:Ay:B,AF s:C

Ly:B,x:AAF s:C
e Ay:BF s:C

I2:A®B F ("8 /2" @y®)s: C
' s:A AFt:B

A F s®t: AR B
' Fs: A Ay:B Ft:C

I2:A—oBAF P s/yB\t:.C
x:AF s:B

' Axts:A—B
¥:AF s:B
z: 1A F Kax/z")(s): !B
Fs:B
F I(s): !B
xy Ay, xp A B s B 0,=58! 1<i<k
oy Ay o s O A B o§(a /oy, 2 /oy) (s) : §B
Fs:B
- §(s): 8B
Iy:AB/a] F t:C
T,2:Va.A b ("4 B/y)t:C
- s: A
' - Aa.s:Va.A
xy 1A g AT F st B
xy VAT F os[ey/ag): B
' s: A
y:BF s: A
e:AF s:B AFt:A

a g FV(I)

LA+ s{t/z*}:B

N.B. s[x1 /3] denotes meta-substitution.

Figure 2.2: Rules that define valid IMLAL2 sequents.

22 CHAPTER 2. THE MANY FACETS OF PTIME

WEAKENING
NAME CONNECTIVES FOR ARBITRARY
FORMULAS
IMLAL2 | ®,—,§, 1|V Yes
IMLLL2 ditto No
IMAL2 ®,—o,V Yes
IMLL2 ditto No
IMLAL ®, —o, §,! Yes
IMLLL ditto No
IMAL ®, —o Yes
IMLL ditto No

Figure 2.3: IMLAL2 and its sublogics.

and we write st to mean the right-hand side of the sequent. Often we do not
differentiate between various parsings of the tensor and feel free to use

(z/7 @ @z)(t)

for any possible way of disambiguating 2’s type and extracting its components.
Besides, (s /21 ® -+ ® 2,)(t) will serve as an abbreviation of

((2/21@--- @z)(t){s/2}-

We replace ((z¥%4, B/z)z){t/z} with the standard type application ¢[B] and
write A(2; ® z9).t for Az.(z /21 ® 25)t. Further, !{z'/z)(s){t /2'} is abbreviated to
I(t/xz)(s) and similarly for §(2’/z)(s){t /2'}. For instance, §(z|/z1,t/z, 25/ 23)(5)
stands for §(2 /21, 2,/ 22, 25/ 23) (s){t / 2}

In 1(-/-)(-) and §(-)(-) terms, the (-) part is called the interface of the
term and is intended to represent a set of variable pairs i.e. §(a'/a,b'/b)(-) =
§(b'/b,a’'/a)(-). We omit the brackets for empty interfaces.

Binary strings (and so natural numbers via their binary representation) are repre-
sented in LAL as closed terms of type
BIN = Va.!l(a — a) —o (a0 —o o) —o §(ax —o).

For instance, the empty string e is represented by Aa.Afo f1.§(Az.x) (also called ¢)
and 100 by

A AfH O flom) g0 gL F2Y A fO(FL(f22))).

2.5. LIGHT AFFINE LOGIC 23

Note that the characters (bits) are stored in reverse order. Thanks to this, recursion
and iteration are easier to encode, as it suffices to activate the pattern of the term.
The two successors S; (i = 0, 1) are defined as

ne BN E Aafofi5(nlalfofi /! fif £ YAefl(n'z)) : BIN.

Remark 2.3. Our definition of Sy signifies that we focus on implementing the
algebra of binary strings instead of ‘true’ natural numbers. (For the latter we
would have to make sure that Sy(e) = € and not Sp(€) = 0. This additional trouble
has been taken in [96].) The difference is that binary strings provide ambiguous
representations of natural numbers, when the standard binary encoding is used.
For instance, 00100 and 0100 represent the same number but, as binary strings,
they induce different courses of iteration. The shortest encoding of a number can
always be obtained by erasing all leading zeros and may be regarded as canonical for
the purpose of various encodings. The normalization, which would have to follow
each operation then, is rather cumbersome and we prefer to omit it. It should be
stressed though that this does not affect the class of representable functions, but
rather the way they are defined.

2.5.2 Commuting conversions

The sequent calculus conserves the order in which various rules are applied. Some-
times it is possible to apply two rules and any order of their application will result
in the derivation of the same sequent. Besides, the preservation of the order pre-
vents the calculus from acquiring good mathematical properties and complicates
proofs of cut-elimination. A solution to this problem, in the form of proof-nets,
has already been proposed at the very start of linear logic [39], but it fulfils its
role ideally only for the multiplicative fragment of linear logic (the treatment of
exponentials, let alone the units, is still problematic). We revisit the problems and
try alleviate them to some extent in one of the chapters to come, where we focus
on extending essential nets [80] to handle IMLAL2.

All the deficiencies of sequent calculus are unfortunately ‘inherited’ by the term
calculus and we have to impose equivalences between proofs explicitly.

Let 7 range over the let-constructs, namely

(O fry)(), (7F,s/y)() and (274, Bly)(),

and o over the explicit substitution constructs

(){t /="}

24 CHAPTER 2. THE MANY FACETS OF PTIME

(so that 7 is viewed as a prefix and o a postfix operator). We let C' range over
one-holed contexts, or simply contezts, defined by recursion as follows:

C == []]| s{C/a2} | C{s/a} | s®@C | C®s | Azt.C | Aa.C |
(197 [r@y)C | (470, ClyP)s | ("0, s/y”)C | (74, B/y)C,

where s is an arbitrary term. We write C[t] to mean ‘the capture-permitting
substitution of ¢ for the hole in C°.

Now, the congruence ~ characterizing terms that are the same up to commuting
conversions is the reflexive, symmetric, transitive and contextual closure of:

(m-cong) ' + wC[t] ~ C[nt]: A,
(0-cong) I + C[tlo ~ Clto] : A.

Each congruence axiom above is required to satisfy a side condition, called strong
typability, which ensures that the expressions on both sides of ~ must be well-typed
terms of the same declared type. The effect of the axioms is simply that the let-
construct m- or the explicit substitution construct -o, viewed as a variable binder,
may ‘float across the term’ and is free to occupy any position in the term provided
that typability is maintained.

For example, the binder (-){s /z"} in (Ay®.z ® y){s /z"} is permitted to park
itself adjacent to z, as in AyP.(z{s /z4} ® y) (as the two terms are both well-
typed, they are congruent to each other by (o-cong), but not adjacent to y, as in
AyB.(z ® (y{s /z*})) which is not well-typed.

In the rewriting system, defined in Figure 2.4, the reduction will concern mwo-
equivalence classes of terms rather than terms. The rules simply implement the
process of cut-elimination in the sequent calculus [42] like the systems presented
in [11, 110, 12, 113]*.

2.5.3 Reduction

Observe that replication will usually have to take place before the execution of the
first two exponential rules. Thus it makes sense to introduce a stratified reduction
strategy that will perform replication before its results are needed.

By the depth of a formula (type), we mean the maximum nesting depth of !
and § that occur in it; e.g.

§(a—1b), a—ob, §(Va.(a—ol§a))

INote that the contexts in which reduction can take place are not the same as these for
mo-congruence and in contrast reduction inside boxes is allowed.

2.5. LIGHT AFFINE LOGIC 25

f-redexes

(rename-/3) s{y” [z} — sly/a]

(var-f) Ms /24— s

(®-5) (498 Jr@y)s){u®v/2} — (s{u/z*}){v /y"}

(—o-0) (470, s/yP Y At u f2} — t{uls [21} [yP}

(V-5) ({74, B/y)s){Aa.t [z} — s{t[B/a] [y}
Exponential redexes

() /w0) ($){1(y/yo) (1) [} — Wy /yo)(s{t /x0})

(81 8¢ x/zo, YN w/yo)(O) [z} — 8- y/yo, -+) (s{t /z0})

(8-8) §C- - /a0,) (S){8(w/vo)(O) [} = 8-+ y/yo, -~) (s{t [w0})

Replication redexes

Suppose there are n > 2 free occurrences of z in s.

s{!{w/wo)(t) /2} = ${{w/wo)(t) [0} - {H(w/20) (1) [0}

where s’ is obtained from s by distinguishing the n occurrences of z as zy, - -, z,
respectively.

Garbage collection (provided z,y do not occur in s)

9B [r@y)s — s

(var-y) s{t/y"} — s (®-7)

(—-y) (2B t/yP)s —s (V)

() W' fz)(s) =1(s) &) 8C-- 9y)(8) = §(--, -)(s)

Figure 2.4: Rewriting rules for IMLAL2 proofs.

26 CHAPTER 2. THE MANY FACETS OF PTIME

have depths 2,0 and 3 respectively. We will say that a redex is at depth 7, if it
is inside i boxes (by a box we mean terms of the shape (-)(-) for O = §,!).
Then in round i (¢ > 0) one reduces all exponential redexes at depth i — 1 and all
non-exponential redexes at depth i. In this way, round ¢ enables round ¢ + 1 to be
implemented eagerly. Another nice feature is that round 7 can only contribute new
redexes at depth i. These facts facilitate the estimation of changes in the size of
terms (without type annotations) during reduction and lead to the following result:

Theorem 2.4 (Girard, Asperti). The stratified reduction strategy applied to a
term ¢ : T terminates after O([t[*""") steps, where d is the depth of T.

which was recently strengthened in [113] to:
Theorem 2.5 (Terui). Any reduction path of a term ¢ : T has O([¢|*"") steps.

Hence, locally (for types of fixed depth), cut-elimination is a poly-step proce-
dure. We should mention that Girard’s result [42] concerns classical light linear
logic (with additives). He proves that if 7" does not contain any occurrences of
additive connectives, then any proof of T' (possibly using the additive rules) can
be brought to a cut-free form by a lazy procedure with the above bound on the
number of steps.

The Theorems above rely on the fact that the size of terms during reduction will be
bounded by a polynomial, but ‘size’ refers to the underlying untyped terms. When
type annotations are present, they may still become exponentially large! This is
because all the restrictions concern duplication and sharing of term variables and
not that of type variables. In type applications one might still copy type variables
and, for example, substitute o — « for a.

Example 2.6. 2 Let Ty = o and T, = T}, — T, for n > 0. Clearly, the size of
T; is exponential in 7.

We are going to construct a term ¢ : BIN —o §7" such that, for v : BIN, tu is
the identity term for 7}, (here |u| is the length of the string corresponding to u),
and therefore represents a function that is not in FP, if our rewriting system with
type annotations is to be used.

Let T be the existential type for encoding terms with types of form 3 — [[43]:

T =VYa.(V3.((8 — B) — 7)) —o 7).
Then the identity term for 7,, (n > 0) is represented by

id, = Aa. Ao (B0 [T, | (AT .2).
2The possibility of constructing this example in IMLAL2 was suggested by Kazushige Terui.

2.5. LIGHT AFFINE LOGIC 27

It is possible to convert this representation of the identity on 7;, to one for T},
using
next = At’ . Aa.tfa —a]: T —o T.

Then
As BIN ¢ (4[T]1(next) !(next)/s')(s' idy) : BIN —o §T°

applied to some u : BIN reduces to §(idz,).

This example shows that cut-elimination in IMLAL2 (or even IMAL2) is not exactly
a (locally) polynomial-time algorithm. It is, however, in its untyped form, because
it is then both poly-step and poly-space: the potentially exponential space to store
type labels is no longer needed. In many cases, untyped cut-elimination suffices to
reveal the full (typed) cut-free form, namely, when there is no need for existential
quantification in the final cut-free term i.e. provided the V quantifier never occurs
in the negative position of the result type (like in BIN, but not 7'). The above
example also demonstrates that if n-expansion was admitted into the system (like
in the original proposal [76]), the poly-space bounds would be violated. To make up
for the exclusion and preserve the property of cut-elimination, the rule (rename-/3)
has to be added as well as (var-3) (for all types rather than just base types like
in [76]). The two rules handle the case of an axiom link being ‘cut’ with a node that
need not be an axiom link (or the other way round). If we had n-expansion (see
Figure 2.5), the axiom link in question could be decomposed into another axiom
link (or links) between smaller formulas, and at the end only axiom-links for base
types would interact:

(atom-(3) {s/2"} = s (bisa base type (atom or variable)).

When this ‘decompression’ is not available, one can still eliminate the cut as de-
tailed in the (var-3) and (rename-/3) rules. It is worth stressing that even if n-rules
are allowed, the set of definable functions remains the same.

Theorem 2.7. Terms of type BIN —o §" BIN (n € N) correspond exactly to FP
functions.

The first complete account of how poly-time Turing machines can be encoded in
LAL was given in [109]. Our Chapter 3 provides an alternative.

In conclusion, LLL and IMLAL2 characterize FP not only extensionally, but also
dynamically, provided we do not insist on n-expansion and introduce the lazy rules
((rename-3) and (var-3)).

28 CHAPTER 2. THE MANY FACETS OF PTIME

(®-n) 24P = (z/z"®@y")rey
(—om) 248 = Azt (z, 24y y
(1-n) M = 2/ 2) (20)
(§-1) 34— §(2/20)(20)

(V-n) 27" = Aa(z, afyt)y

Figure 2.5: n-redexes.

2.6 ELL and SLL

By allowing contexts with multiple formulas on the left-hand side of the (!) rule, we
obtain yet another logical system capturing Kalmar elementary complexity [107].
In our terminology it should be called IMEAL2 (without additives), because we
then get the intuitionistic affine variant of Elementary Linear Logic (ELL).

The principles underlying ELL were first sketched in the paper introducing
LLL [42] and developed in more detail in [105]. A different formulation based
on characterizing the elementary derivations among the intuitionistic ones was
presented in [33]. The latter also addresses a problem with the combination of the
additives and the units in the previous framework.

It is not difficult to modify our syntax so that it handles cut-elimination in ELL.
Similarly, the game model for IMLAL2 that we present in one of the following
chapters cuts down to a model of ELL, when the notion of suitably networked
strategies is tuned to the ELL (!) rules.

The latest development, also succeeding in capturing polynomial-time computabil-
ity is Lafont’s Soft Linear Logic (SLL) [77]. Recall the four intuitionistic rules
regarding formulas of the shape !A. They can be replaced with an alternative
(countably infinite) set of rules:

—_—
T A T'MA+-B T,4,---,AF B
T 14 T,AF B TJA - B

n=>0

SLL2 is then obtained by excluding the middle rule (called digging). Several ob-
servations are already apparent. In ILL, !!A and !A are provably equivalent and
therefore the nesting of occurrences of ! is inessential. By striking the digging rule
out we can make this information meaningful. In ILL A —!A®!A is provable and

2.6. ELL AND SLL 29

witnesses the duplicable nature of ! A. However, a duplicated copy of ! A retains this

character and can be cloned again. Having made a copy once, we do not have any

control over the number of future copies. In SLL2, !A —!A®!A cannot be proved,

though we have !4 —o A®---® A (n > 0) instead. Consequently, the nesting of
—_—

s in a formula like |-+l A a?llows one for k-fold nested duplication, which yields

k
an elementary proof of poly-time cut-elimination (where the degree of nesting is

fixed). The representability of polynomial-time computations is very subtle in this
system and the original proof only accounts for P. The natural ‘soft’ variant of our
type for binary lists

Val(a —o a) —ol(a —o a) — (a0 —o),

cannot be used to encode numeric functions, because even the successor functions
would not be definable. However, there are still proofs interpreting binary strings,
which are used to represent the input.

Chapter 3

Programming with IMLAL?2

Although it has been proved that any FP function is represented in IMLAL2 by
a term with appropriate type [109], it is not clear what algorithmic capabilities
IMLAL2 offers. The type used to encode Turing machines is far from anything
one would use in modern programming. In this chapter we take a more systematic
approach and try to identify programming constructs which are both interpretable
in IMLAL2 and expressible enough to enable us to represent poly-time Turing
machines. Our analysis reveals some connexions with safe recursion [16, 81] on the
one hand and with non-size-increasing computation [56] on the other.

3.1 Iteration

Many numeric functions can be translated into IMLAL2 with the help of an #ter-
ation principle. Suppose we have

[f": Al F b:1,
[fo: Aol F go:I—I,
fi:A4] B g T—1,

and O € {!,8} (-] denotes an optional part). The iterative application of the
step functions gy and g; to the seed b, following the pattern of the term s: BIN, is
represented by
S : BIN, [f : DA], fg : !AO; f1 : 'Al F
Y Lo/ £ (00) W LA/ 220 (9) /s O LF/£1)(B)) () - 51

Note that each time the iteration principle is invoked, the result type is ‘lifted’ by
a g.

Example 3.1. We can apply the iteration principle to show that BIN is embed-
dable in §(1F BIN, where [I* is any combination of ! and § with length & (k > 0). To

30

3.1. ITERATION 31

that end we use F [OFe: OF BIN as the seed and and F OOFS, : OF BIN —o [OF BIN
as the step functions (the terms are constructed analogously to €,Sq,S; : BIN). By
an appeal to the iteration principle for I = (0¥ BIN we get a closed term:

coerceg, : BIN —o §00% BIN.

Such terms are called coercions in [42].

As a more complicated illustration of the principle we define a term strip : BIN —o
BIN whose effect on a string is iterated erasure of the leftmost symbol as long as
it is 0:
strip(0000) = e,
strip(00100) = 100.

The term plays an important role if one cares about working with natural numbers
instead of binary strings: it can be used to convert binary representations of natural
numbers to the canonical form: the empty string or a string beginning with 1 [96].

Lemma 3.2. strip: BIN —o BIN is definable in IMLAL2.

Proof. Let us use iteration for [= P ® (a —o «), where P = Va.a ® a — a. Let
i = A A\(x] @ x3).x; : P fori =0, 1. The first component of the iterated pair will
be 7y as long as the iteration should proceed according to the offending zeros. Once
the first 1 is encountered, it will be set to ;. From then on the binary symbols may
be appended to the result. Depending on the projection, different actions will be
taken. When processing 0’s, the projection from the previous stage will be copied
and the current bit ignored. In contrast, 1’s will fix the projection at 7; and add
the current bit to the aggregate. Moreover, the projections will always be used to
select the prescribed actions. Note that this means that we have to duplicate the
projection when processing 0’s. With this aim we exploit their polymorphic type
and set dup p = p[P ® P|((my ® mp) @ (m ® m1)). The step functions are then:

fo:(a—a) = Ap®c).(dupp /p1 @ p2)(p1 @ (p2[G](90 @ 91))(fo @)
and
fit(a—a) F Alp®@c)m @ ((p[G](90 @ 91))(f1 @),

where ¢g; : G (i = 0,1) are functions that manipulate f; and ¢ so that the bit f;
is appended to ¢ when the current projection is m; and ignored in the other case.
Hence G = (o —o a)” —o (v —o @),

do = A(f@—0) g claa)y ¢

32 CHAPTER 3. PROGRAMMING WITH IMLAL2

and
g1 = A(f @Y @ @™ Xa® f(cx).

The iteration principle with b = 7y ® I, gives a proof of:
BIN, (o — a),!(a — a) F §(a —o)

after we project the result onto (o —o «). By lambda and universal abstractions
we arrive at the term strip. O

3.2 Safe and normal variables in IMLAL2

The first step in understanding safe recursion in IMLAL?2 is to type safe and normal
arguments. We have already seen that the type constructor § is a mark of iteration.
Since safe arguments are the (only) places where recursive calls may occur, they
should have the same result type as that of the recursive function being defined.

Definition 3.3. Suppose the sequent
Z1: BIN, -+, %y BIN,y; : §F BIN,---,y, : §F BIN F t:§" BIN

is provable. If k > 1, we say that the variables x; (1 < i < m) are normal and
y; (1 < j < n) are safein t; if £ = 0 we say that all variables are safe. To save
writing, we shall write ¢(z1,- -, %y @ Y1, -+, Yn | k) as shorthand for the sequent.
In an obvious manner, the sequent represents an m + n-unary function on binary
strings.

Safe variables can always be made normal: if ¢(Z : @, y, ¢'| k) is provable then there
exists some ¢ such that t'(Z,y : @, ¥ | k) is provable and ¢’ represents the same
numeric function (it suffices to use the cut rule with coerce§k for the appropriate

formula on the left). We state two further useful principles:

Proposition 3.4. (i) (Lifting Principle) If ¢(Z : i | k) is provable, then for
each [> k there exists ¢’ such that ¢'(Z : ¢/ |[) is provable and represents the
same numeric function.

(ii) (Normal contractibility) If t(zq, -+, 2; 1, %, Tiv1, Tivo, -, Tm : Y| k) TEP-
resents f : N x N* — N then there exists t'(xq,- -+, Z; 1, %i, Tizo, -+, Ty
7 | k + 2) representing f': N*~1 x N* — N such that

f’($1,"',ﬂﬁi—l,xiaxiw"',ﬂﬂm3??) = f(351,"';$i—1,$i;$i;$i+2,"';$m3??)-

That is to say, normal variables in IMLAL2 may be contracted.

3.3. LINEAR SAFE RECURSION 33

Proof. For (i), by assumption, we have a derivation of
(BIN)™, (8% BIN)" + §* BIN,
to which we apply the §-rule (I — k) times to get a derivation of
(5 Bovy™, (548 B F §EGE BN,
Finally, we invoke the cut rule with (coerce§z_k)m ® (I§z)" to end up with the

expected proof of (BIN)™, (§' BIN)” §' BIN.

For (ii), we start from the given proof of (BIN)™, (§* BIN)" + §* BIN and use
the §-rule with I’s for normal arguments to get (! BIN)™, (§6" BIN)* F §§" BIN.
Next we perform contraction for appropriate copies of ! BIN, which results in

(! BIN)™ L, (88% BIN)™ F §8% BIN,
and apply the §-rule, this time using only §’s, to obtain
(§! BIN)™!, (682 BIN)" F &2 BIN.

Finally, a cut with (coerce§!)m*1 gives

(BIN)™ 1, (8572 BIN)" F §2 BIN.

O

In the following section we show that safe variables in IMLAL2 cannot be simi-
larly contracted. However, it is possible to normalize safe variables first and then
contract them as normal variables.

3.3 Linear safe recursion

We introduce the function algebra BC'~ as the fragment of BC' defined by all
of BC"s rules, except that safe variables that occur in safe recursion and safe
composition must do so in a linear fashion. Consequently, the two schemes have
to be weakened respectively to (henceforth we write f(Z : %) to mean functions
definable in the function algebra BC'~):

and
f(f:yla"'ayk) -
h(gl(x :)7 T 7904(3j :) : hl(aj “Ys(1) '7y(7(n1))7 o '7hb(aj : yg(z’;;}nj+1)7 e '7y(7(k:)))7

where o is a permutation of {1,...,k} and n; (1 < i < b) is the arity of h; with
respect to safe arguments (so 22:1 nj =k).

34 CHAPTER 3. PROGRAMMING WITH IMLAL2

Example 3.5. Concatenation of binary strings (concat(x,y) = y -) is definable
in BC~ (and hence also in BC' with one normal and one safe argument) by

concat(e : y) ™z y),
concat(S;(z) :y) = S;(my'(z : concat(z : y))).

Our first result is that BC'™ can be interpreted in IMLAL?2 in the following sense:

Theorem 3.6. For each f(Z : §) in BC~ there exist k& > 0 and ¢,(Z : ¥ | k)
representing f in the sense of Definition 3.3.

Proof. The successors have already been dealt with in the previous chapter, so here
we show the derivation for the predecessor. It uses iteration for I = (o — o) ®
(v —o @), in which the first component holds the rightmost symbol and the second
component holds all preceding characters. Finally, all we need to do is to use the
second projection. The whole term is

n: BIN F

Aa A fofi-§Cnll I fo/ fo) (ho) Y f1/ f1) (ha)/n") (0 (Ia ® 1a) /12 @ ng)12)

where for ¢ = 0, 1:

hi = A(z1 ® 22).(f] @ Aw.z1(221)) : T — L.

For the conditional we use iteration for
[=(ad—oa)®(0d—a)®(ad—oa) —(ad—oa)

and b = Az, ® 1y ® x1).x : I with the value meaning the appropriate projection
that should be applied to the three potential results. The step functions p; are
constant and return the respective projections:

pi =A% (A (2. @ro @ 1).1;) : [—o I

for i = 0,1. At the end only the one corresponding to the least significant bit (or
its absence) should be used:

n, Ne, N, Ny : BIN

Aa A fofi8(n[I]!(po)!(p1)/n, nelalfofi/nl, nola]fofi/ng, nilalfofi/n)
(n'b(n; ® ng @ ny)) .

Projections for safe arguments are simply the canonical projections, whereas for
normal arguments they have to be ‘cut’ with a suitable coercion.

3.3. LINEAR SAFE RECURSION 35

The restricted version of safe composition is interpreted in the following way. By
the Lifting Principle it is possible to find terms h,g; (1 < i < a) and h; (1 < j < D)
representing the functions to be composed and typable as follows (we omit the
names of variables in the contexts):

BIN?, (8% BIN)® F h:§F BIN,
BIN™ F g¢;:§' BIN,
BIN™, (§¥ BIN)™ F h;: 6" BIN

for some k,l € N. After applying the (®-r) rule several times to get (Q)]_, ;) ®

((82:1 h;) we use the (exch) rule as specified by the permutation o to reach a

derivation of
(BIN™)?, (BIN™)™M+me (ghH gry)mt-tne (8l giN)e @ (65T BIN)?
which we ‘cut’ with
(6" BIN)?, (§°* BIN)® - §'h: §*F BIN
and arrive at
(BIN™), (BINTYPttns (ghHl gryymutetns gkt gy

Now contractions on appropriate normal variables (performed in order to identify
the occurrences of 7 in g; and h;) produce a proof of

BIN™, (§FT0F2 giN)mttne | ghHH2 gy

which corresponds to the composite function.

For safe recursion with linear safe variables we can assume (by the Lifting Principle)
that g, hg, by are interpreted by

BIN™, (8% BIN)" F ¢:§F BIN

and
BIN, BIN™, §¥ BIN F h; : §* BIN

respectively. Then we apply the (§) rule to both:
(! BIN)™, (6" BIN)" F ¢ : §"*! BIN,

! BIN, (! BIN)™, §F"! BIN F A : 8" BIN.

In what follows, we also write ¢', h! for the curried versions of these proofs. Next
we use iteration for I = (! BIN)™ @ (§*™ BIN)" — ! BIN® §*' BIN. The value is

36 CHAPTER 3. PROGRAMMING WITH IMLAL2

—

to represent A(7 ® ¥).(z ® f(z,#; 7)) during the iteration according to z. The step
functions are:

9 =A@ 9 (f(F@Y) [z0r)(((z/')(5:7)) ® hizir) : T— 1
with the initial value b = A(Z ® 7).((l€) ® gZ%) . The iteration principle defines a
derivation of
BIN F SI.

Observe that
§(A"®@B" - A®B) F (§A4)" ® (§B)" — §B

is provable and apply the (cut) rule to its obvious proof and the previous derivation
to obtain
BIN F (§! BIN)™ ® (§"™ BIN)" —o §*2 BIN.

Finally, uncurry and apply coerceg, to prove

BINm+1, (§k+2 BIN)n - §k:+2 BIN,

which interprets the safe recursion scheme of BC~. O

In light of the theorem, we say that a numeric function f(Z;%) (whose arguments
are partitioned into those that are normal # and those that are safe ¢/ in a certain
putative sense) is interpretable in IMLALZ2 just in case there are k > 0 and a
sequent t7(Z : if| k) representing f in the sense of Definition 3.3. That is to say, the
safe and normal arguments of f must be compatible with safe and normal variables
in IMLAL2.

Remark 3.7. There are numeric functions, representable as terms of solely safe
variables in IMLAL2, which cannot be defined as BC-functions with solely safe
arguments. For instance, concat (Example 3.5) is an example of such a function.
The following, which we shall refer to as concat(: 2,y | 0) , represents concat:

ni: BIN, no: BIN F
AaXfofi.8(nm[a]fofi/n], nala] fofi/nh) (Az.n)(nhx)) : BIN .

That concat is not definable in BC' with two safe arguments is a consequence of
the following invariance of BC' (see [16]): for each f(Z;%) in BC there exists a
polynomial p; such that

—

f(@&)] < pr(lz], - [om]) +max{ |y;] 1 1< 5 <n}.

3.4. COMPLETING BC~ 37

A natural question to ask is whether BC'™ is the largest subalgebra of BC that
is interpretable in IMLAL2. The central issue in determining this is whether safe
variables in IMLAL2 are contractible (i.e. whether the analogous version of Propo-
sition 3.4(ii) is valid for safe variables). The answer is no, for if they were, the nu-
meric function dup(s) = concat(s, s) would be representable by a term dup(: z |0)
with a safe variable. It then follows that the following function would also be
representable in IMLAL2:

f‘f) = 17
fSix)) = dup(f(z)),

but it is easy to check that f(s)=1---1.

——

2lsl

We highlight another difference between BC and BC™: the step functions of the
safe recursion scheme in BC™ are restricted to those that have at most one safe
argument. It turns out that this restriction is also necessary. Indeed, were the full
safe recursion scheme interpretable in IMLAL2 (in a way that is consistent with
our definition of safe and normal variables in the logic), then we could define a
function g(z,y) that produces a string of length |y[l*! as follows. First, set f to

f(‘f:y) = Y,
f(Si(x),y) = concat(y, f(z,y)),

which keeps y safe in IMLALZ2, and then define g by

g(e,y) - 17
9(Si(x),y) = fly,g9(z,y)).

We can interpret concat as concat(: z,y | 0) in Remark 3.7, so both definition are
translatable into IMLAL2. f(z,y) has the effect of copying y in binary |z| times
and g produces a string of |y[1*l 1’s.

We can infer from the preceding that if BC' is augmented by a version of concat
that has two safe arguments (which we know is not BC-definable), we violate the
property of FP closure. By contrast, there are functions which must be recursively
defined in BC' (and so have at least one normal argument), but which can be added
to BC'~ as functions with solely safe arguments (provided they are interpretable
in IMLAL2) without violating its FP closure. We explore this possibility in the
sections to follow.

3.4 Completing BC™

In this section we enrich BC'~™ with new constructs that are not definable in it,
though they are interpretable in IMLAL2.

38 CHAPTER 3. PROGRAMMING WITH IMLAL2

A definition-by-cases construct

As safe variables are not contractible in BC ™, it is impossible to define branching
constructs of solely safe arguments such that the selector expression (z say) can
still be manipulated after the choice has been made, like in

cond(: z,So(x), z, P(x)),

which is definable in BC'. Fortunately, it turns out that some such functions are
interpretable in IMLAL2, though the range of actions that may be defined on the
selector expression is rather limited.

We introduce a pattern-matching case construct: for K,m > 0, and for strings
P15y Pm SllCh that |pl| < K

fi(u) if the least sig. K bits

casex (: u)[pr: fil - |pm : fmlelse: fi1] = of u match p; ,
fm+1(u) otherwise.

We stipulate that any pattern p; shorter than K can only be matched by itself (this
also applies to the empty string). Moreover, the actions f; (1 < j < m + 1) are
required to be of a certain form:

fi(n) = concat(s], concat (P (n), 7)),
where k; > 0 and sj, s are binary strings. That is, each f; may delete a fixed
number of the least significant bits and then append some bits in their place (3]1)
and also some bits at the other end (s7).

A construct related to our caser (based on remainders modulo 2%) is definable
in BC (see [50]); in that case construct any BC-definable function may be chosen
as the action after the selection. This does not seem possible in IMLAL2 under
our regime of safe and normal variables. For this reason, we believe that functions

definable in the function algebra BC™ + casey are a proper subalgebra of BC'.

3.4.1 perm-rec: recursion on safe arguments

Surprisingly, BC™ can be extended by a form of definition-by-recursion scheme on
safe arguments which is interpretable in IMLAL2, and so the extension preserves
FP closure. Certainly not all functions can be used as the corresponding step

functions of the recursion scheme. Here we extract the first such scheme from
IMLAL?2.

The functions that will be permissible as step functions are instances of a branching
construct perm; (: u) that permutes the last L bits of the input u: for k > 0, L > 0,
strings py, - - -, px (all of length L):

fi(: w) if the L least sig. bits of u are p;,
u otherwise.

permy (:u)[pi: fi|---[pr: fil = {

3.4. COMPLETING BC~ 39

Each action f; (1 < i < k) permutes the L least significant bits of the argument
i.e. f; =S, oPL where r; is a permutation of p; and S,(z) = concat(s,z) for any
string s. The construct returns u, if |u| < L, or if the L least significant bits of u
do not match any of the patterns. For example, let p(: u) be

permy(: u)[101 : Sg;; 0o P [001 : Sypp 0 P? | 010 : Sgo; o P?].

For v = 1010, 1001, 10 we have p(: u) = 1001, 1100 and 10 respectively. Note that
the above construct is non-size-increasing in the sense of Hofmann [56].

The new definition-by-recursion scheme over safe arguments, called perm-rec, has

the form:
f@ed) = h(@:),
f(@:Si(2),9) = step;(: f(7': 2,7)),
where the step functions step,(: v) = p;(: Sj;,(u)) for ¢,j; € {0,1}, and p;(: z) is
some fixed instance of the perm construct. Note the special case of step; = S,
and step, = S;.

Example 3.8. We define

fle) = e,
f(:Si(2)) = step;(: f(: 2))

using the perm construct in the preceding example as p;(: n) and taking i as j;.
Let us compute f(: 110101). Since f(: 110) = 110, we have f(: 1101) = p1(: S1 f(:
110)) = p1(: 1101) = 1011. And so f(: 11010) = po(: Spf(1101)) = po(: 10110) =
10110. Finally f(: 110101) = py(: Sy f(: 11010)) = py(: 101101) = 101011.

3.4.2 Terms of type bin — bin.

An interesting class of functions can be defined using terms of type BIN —o BIN.
They will turn out not to change the size of the input by more than constant.

The argument n : BIN in such terms can be instantiated at some type n[T] and
then applied to two terms of type (T —o T'). n-expanded terms of this type are
always of the form !(-/-)(-), so each term of type BIN —o BIN has the shape

AnAa\fy o) o),
§(n[T1ICfif £) Y/ F V) /!, Lo/ fo s A/ A3)Y (ER {fH 1),

where {f/f;} denotes some finite number of imports of fy or f; via the interface
of §(-)(-). We can glean several useful facts from the shape:

e The step functions !{ f/f}.) (F;f}.) use single copies of f. Therefore at each
step the size can increase by at most 1. This resembles Hofmann’s [56].

40 CHAPTER 3. PROGRAMMING WITH IMLAL2

e It follows from the previous remark that |f(z)| < ¢+ |z].

e The kind of contribution of each step function is fixed (they always contribute
only 0’s or only 1’s, if at all).

e Any fixed number of f;’s can be accessed through the interface, so the initial
value can be arbitrary. These bits can also be concatenated to the result of
iteration.

3.5 BC* characterizes FP

Definition 3.9 (BC%). The function algebra BC* is defined by augmenting BC~
by case and perm-rec.

Observe that concat(: x,y) (with the obvious semantics of concat) becomes defin-
able in BC* thanks to perm-rec:

) = T (),

) = Si(: concat(: z,y)).

concat(: €,

Y
concat(: S;(z),y

Theorem 3.10. BC* is FP sound and complete: BC*-functions f(z :) are ex-
actly the FP computable functions.

First we shall show that the two new constructs case and perm-rec are inter-
pretable in IMLAL2. Thus, we can infer that BC*-definable functions are in FP.
The rest of the section is devoted to a proof of the completeness direction.

3.5.1 BC% is FP closed
Interpreting caseg,, in IMLAL2

Recall that

fitin) = concat(s}, concat (P (n), 5?))

Let k = max(ky,- -, km, kmi1). Hence, k denotes how many characters have to be
erased from the input in the worst case. Our method is to erase those k characters
and later, if necessary, attach an appropriate number of them back. We are forced
to do this, because in our representation it is easy to add characters, but diffi-
cult to delete them (just compare the definitions of the successor and predecessor
functions!).

3.5. BC* CHARACTERIZES FP 41

We shall use the iteration principle for
I=(P)X®(a—oa) @ (a— a)

where P; = Va.a ® a ® a —o «, and the three associated projections are called
o, T, 9. Lhe first K-tuple is used to store K projections corresponding to the K
least significant bits (my or 7y is stored then) or their absence (signalled by 73). The
following k-tuple will contain variables representing the k least significant bits of
the selector value. In the last component we store P¥(n). To preserve the meaning
of the tuple, the step functions are defined by

fii(a—a) F
AM(®15 pi) ® (R bi) @ p).
(m ® @1y’ 1) @ (fi @ Qg b) ® (Ax.by—1(p)))

with the initial value of (m2)® ® (I,)¥ ® I,. The iteration principle yields then a
derivation of
BIN, (o —), (o —) F §L.

To complete the translation, we define a proof of
oo —o a), (e — a), 81 + §(a—),

whose role is to select the appropriate functions to be applied to P¥(n) and the k
least significant bits. The derivation will be of the shape

SC{fo/fob, {fi/fitix/a Y2 J(po @+ @ pr_1) @ (by @ -+ @ br_1) @ p) handle),

where handle : (o —o «) and {f;/f/} (i = 0,1) denotes f;/f},,---, fi/ fi;, for ji = 0.
For simplicity, each f/, will be referred to as f;. It will become clear soon that jy, j;
should be chosen as sufficiently large numbers after examination of all s} and s?
(j=1,...,m+1). Our next aim is the definition of handle.

Suppose f(: n) = concat(s', concat(P"(n), s?)) is to be implemented. f can be
realized by applying

act =A(by® - - @b 1 ®p).
AT o S (On - (b1 (P(Sfy g2 (- - (f20%) -+ 2)))))) = ACTION

to the (representations of the) k least significant bits of n and P*(n) as implied
by the names of variables. We have ACTION = (o —o a)*"" —o (& —o). Besides,
each variable f;; for i = 1,2 and j = 1,..., |s*| should be identical to some f} if
s; = 0, or some fj if s; = 1. Therefore, the numbers j; for ¢ = 0,1 must be large
enough to accommodate all possibilities for s} and s3. In addition, the term for

the default case of s}, s2,,, will be used several times as will be explained below.

42 CHAPTER 3. PROGRAMMING WITH IMLAL2

Note that act works correctly even if P'(n) = e for some [< h (then we have
by = I, for m > 1).

For each 7 =1,...,m + 1 we prepare a version of act depending on s;, S? and
hj. Such terms are then arranged in a table table : ROWg, where:

ROW; = ACTION?,
ROW;;; = (ROW;)3 fori=1,---,K —1.

As many as 3% such pairs of terms can be stored inside the table, which covers all
patterns built from 0,1 and ‘lack of bit’ (obviously some combinations will never be
needed). Copies of the term act corresponding to f,,11 (from the case construct)
must be cloned with separation of variables to account for the default case. This
is the final factor on which jy, j; depend. As there are 3% entries, the choice of
appropriate jo, j; is always possible.

Once table is constructed, the K projections (stored as the first component of
the tuple used for iteration) are employed to select the appropriate action:

handle =
Po[ACTION](- - - (P —2[ROWK 3] (pr—1[ROWK _1] table)))(by @ - - - @ by_1 ® b) .

We have handle : (& — «). To find a term representing the case construct as a

proof of BIN F BIN it remains to combine the two derivations of
BIN, (o — a), (0 —) F §I

and
(o —), (o —o a), §I - §(a— a)

with a cut and to perform two contractions for !(a — «) followed by two lambda
abstractions and universal quantification.

Interpreting perm-rec in IMLAL2

Recall that the perm construct involved in perm-rec makes use of L — 1 bits of
the interim result—the Lth bit is provided by the step function. Hence, we only
need to store L — 1 bits to make the next step.

Accordingly, we take advantage of iteration for

I=(P)"'®(a—o a)Lil ® (@ —o).

The first L — 1 elements of the tuple are projections py,---,pr 1 : P3 (as in the
previous encoding), which correspond to the L—1 least significant bits of the interim
result. The projections 7y, m; correspond to 0 and 1 respectively and 7, means that
the corresponding bit is not available. The next L —1 elements by, ---,b;_; are the
actual last L —1 bits of the interim result in the form of imported f, or f; ‘filtered’

3.5. BC* CHARACTERIZES FP 43

through the interface (as in the previous example). The last component p contains
PL~L of the current iteration result as a term of type (o —o).

The step functions will add f;, and 7; to the current tuple as by and p, respec-
tively. Then the L projections will be used to select the right action to be taken
with respect to bg,---,br 1, Po,---,pr_1 and p: the bits and projections should be
permuted and the most significant bit of the result appended to p. Projections are
therefore needed twice and we duplicate them as follows:

copy p = p[Ps ® P3]((m ® m) ® (m1 @ m1) ® (M2 ®@ m2)) -
The actions will have type:

L—-1

AcTION = (P)F @ (0 —)" @ (@ —) — (P)' 7' @ (0 —)" ' @ (0 —o «).

For instance, if 100 is to be converted into 010, the term:
A(po ® p1 @ p2) @ (bo ® by ® by) ® p).(po @ p2) @ (b @ ba) @ Az.by(px) : ACTION

effects the required transformation.
Terms of this sort for all necessary permutations (as specified by the perm
construct) will be arranged in table : ROW[, where:

ROW; = ACTION?,
ROW;,; = (ROW;)? fori=1,---,L—1.
Assuming the current projections are py, - - -, p} _; the corresponding action can be

chosen by
select = py[AcTION](p|[ROW](- - - p}_;[ROW ;]| table)) : ACTION.

The step functions for ¢ = 0,1 can then be defined as

1 f:/00) (A((@pk) ® (@b1) ® p).
(®(copy pr) /@(p) @ py)) select ((m; @ (®p)) © (bo @ (@h1)) ® p))

of type I —o I. The iteration principle for [J = § and the initial value z : I + = : 1
returns a derivation of

BIN, §I, (v —o), (v — @) + §I.
To complete the definition, we still need to extract the result from I using
A(@pr) @ (b1 ® - @b 1) @p).Ax*by (- (by_1(px)) -+) : T —o (a0 —o0 @)
to get a proof of

BIN, §I, (v —o), (0 —) F §(av —o @) .

44 CHAPTER 3. PROGRAMMING WITH IMLAL2

After applying three abstraction rules, a derivation of
BIN, §I + BIN.

will be reached. Then we have to ‘initialize’ the value of type §I and for this purpose
we define a proof of BIN F §I by iteration for I with the seed (m3)f '@ (I,) @1,
and step functions:

fi:(a—a)
A1 ® Qi b ®p)-(m ® ®7 7 pi) ® (fi © Ry bj) ® (Aw.by_(px)) -

After a cut with the previously obtained proof of BIN,§I = BIN we get a deriva-
tion of

BIN, BIN F BIN.

As the initial value of the recursion is ¢(Z : ¥/), we consider its IMLAL2 interpreta-
tion:

BIN™, (§* BIN)" F t,:§" BIN.

We §F-lift the proof of BIN, BIN F BIN to one of
§* BIN, §* BIN F §* BIN

and use the cut rule for the right copy of §¥ BIN on the left and for ty to get the
final derivation of

(BIN)™, (8% BIN)"™! |- §F BIN,

which interprets the perm-rec construct.

We have shown that all BC* definitions are interpretable in IMLALZ2, which
completes our proof that functions definable in BC* are in FP.

3.5.2 Any FP function is representable in BC*

Roversi’s completeness proof [109] for IMLAL2 cannot be repeated in our setting,
because it uses a carefully selected type for coding machine configurations which is
related to but different from BIN. Handley’s proof [50] for BC does use N to encode
configurations, but it relies critically on the contractibility of safe arguments. So
does Bellantoni and Cook’s which demonstrates how Cobham-style definitions can
be translated into BC'. Here we propose a new way of encoding poly-time Turing
machines using the constructs of BO*.

3.5. BC* CHARACTERIZES FP 45

Polynomials

First we need a way of representing polynomials for defining the polynomial clock.
For each polynomial p with positive integer coefficients we define

fp(n:)=1---1

S—
p(|n])

by induction on (representations of) polynomials with one indeterminate x:

fl(1) = 1,
forip.(n 1) = concat(f,, (n:): f,,(n1)),
fop(n:) = f'(n,n:),

where f'(ny,ny:) = 1---1 is defined as follows:

3

in1|-p(|n2l)

flle,z:) = €,
f'(Si(2),z:) = concat(f,(z:): f'(z,2:)).

Configurations

Let us fix a Turing machine with the initial state go. Suppose its alphabet includes
0,1 and the blank symbol Li.. We require the input to be placed to the right of the
head with the most significant bit below the head. The same convention applies
to the output. Furthermore, the rest of the tape should be blank at the end of the
computation.

Let us choose an even number L which is sufficiently large to allow for an
encoding of the alphabet and the set of states as binary strings of L bits, half of
which are zeros. Clearly, the code of each symbol can be converted into that of
another by permutation and the same applies to the states. We write "6 for the
code of # where # ranges over alphabet-symbols and states, and we require the
function "—"7 to be injective.

The configuration of the machine is coded by the code of the current state
followed by L zeros and L ones between (codes for) the left and right part of the
tape. The L zeros and ones will later enable us to distinguish the position of the
head. Hence, if the current state has code sy---s;_1 and the symbol under the
head has code ry---r 1, the configuration is coded by the string

..l...lis...sio...ol...lﬁfr e Por e
0 L—1°0 L—1\ N .10 L—1"L 2L—1
L L

where ---[y---l; 1 refers to the string that codes the part of the tape which is to
the left of the head. The string consisting of the overlined bits codes the symbol
under the head.

46 CHAPTER 3. PROGRAMMING WITH IMLAL2

Transition

To make it clear that each possible transition corresponds to a permutation of the
above 6L bits, we show the code of the new configuration if the next state is coded
by s -8t _q, 1o -- 7, is written to the tape and the head moves to the right:

..lo...lL_lr()...T’L_ISB...S’L_l()...()l...lm...
L L
or to the left:

"56"'5,1,710"'01"'1l0"'lLflrf)'"7011,717“L"'7"2L71"'
L L
To mark the fact that the transition has taken place, we change the 2L bits
0---01---1tol---10---0. Therefore, each transition with the change of 2L bits
D e R

L L L L
can be implemented using perm-rec with permg;. Next we can use perm-rec

with perm,; just to change 1---10---0 back to 0---01---1 to enable the next
S~ S~

L L L L
step (we stipulate "7 # 1---10---0 to avoid matching of the special segment by

L L

2 2
some symbol). Thus, a complete step can be performed by a function

transition(: n) .
Suppose the initial configuration (assuming the input is n) is given by init(n :).
Then the configuration after p(|n|) steps is iterate(f,(n :) : init(n :)), where:
iterate(c :y) = 1y,
iterate(S;(z) : y) = transition(: iterate(z: y)).

Initial configuration

Because perm cannot increase the size of the tape, the initial tape has to be
long enough for the whole computation, whose duration is controlled by a fixed
polynomial clock. For this purpose, we simply supply p(|n|) blank cells on both
sides of the input. For |z| blank cells we call bl(x :):
bl(e:) = e,
bl(S;(z) :) = Sr_a(: bl(z).

rep should be used to encode the input string:

rep(e:) = e,
rep(S;(x):) = Sr(rep(x:)).

Finally, the whole initial configuration for input n is given by:

init(n :) =
concat(bl(f,(n :) :) : concat(concat(rep(n :) : Sori("qo ")) : bI(fp(n :) :))) .

3.6. ANOTHER FP COMPLETION OF BC~ 47

Extraction

To convert the final configuration to an output string, we have to erase the left-
hand side of the tape, the state and the auxiliary 2L bits, decode the non-blank
string on the right and erase the rest of the representation of the right tape. We
will process these bits in groups of L using L — 1 extra bits for counting. The L —1
bits will be used to recognize with which bit we deal: the ith bit (i =1,---,L) is
represented by

i=0---01---1.

Then result(n :) extracts the output string accompanied by the L — 1 auxiliary
bits:

result(e:) = 1,
result(S;(z) :) = casey _i(: S;(: result(z:))) Q,

where

tjb : Sy;zioPY <K L-1,0=0,1,1<j<L |

O | bt SaePt fl=L-1be=01th="c1 |

| tLb : SyoPF lt|]=L—1, b,c=0,1, th£"c" |
else : PO,

The output can now be obtained as follows:

final(n :) = PL " !(result(n :)).

The whole computation

It follows that every numeric function g(n) computable by a Turing machine run-
ning in time p(|n|) can be simulated by:

final(iterate(f,(n :) : init(n :)) :)

which wraps up our proof of BC*’s FP completeness. Note that this also consti-
tutes a new proof of the FP completeness of IMLAL2.

3.6 Another FP completion of BC'™

We have seen that BC* is FP complete. There are also other ways to complete
BC~.

Another function which we can add to BC~ without breaking polynomial-time
computability is e-shift(: n), which “shifts even bits to the left”:

e-Shlft(I Son+1 8180) = SonSon+1 " 8485828380810,
e-shift(: Sop 8180) = SQnOSQn_QSQn_l s 828380810 .

48 CHAPTER 3. PROGRAMMING WITH IMLAL2

For instance, e-shift : 11 s 110, 111 + 10110 and 10111 — 1010110 (we un-
derlined the even bits to indicate their movements). Note that e-shift(: n) does
not violate the invariance in Remark 3.7, but despite that it fails to satisfy its
strengthened version proposed by Handley (Claim 3 in [50]):

Proposition 3.11. Each f(Z :) is computable in time p;(Z) for some polynomial
ps on multi-tape Turing machines that can copy the entire content of one tape to
another in one step.

Were e-shift(; n) definable in BC, one could compute it in constant time (with
copying), which is impossible. This highlights yet another difference between safe
variables of IMLAL2 and BC, since we are going to demonstrate that e-shift(: n)
is interpretable in IMLAL2 (with safe input!).

In the rest of this section we show that the function algebra BC'~ 4 case + e-shift
is also FP complete.

Representation of e-shift in IMLAL?2

Here we focus on the construction of an IMLAL2 term e-shift : BIN — BIN
representing e-shift(: n). We begin with a function that reverses a binary list.

The function arises by iteration for I = o — « starting from I, with step
functions:

fit (= a) F XY X f(fix)) : (@ — @) —o (a —o) .

The resultant derivation of BIN,!(a —o a),!(a —) F §(av —o) defines rev :
BIN —o BIN in three steps.

Shift

The function to be defined in this section takes a list and shifts every other element
to the left beginning with the last:

b2kb2k71b2k72 e blbO = b2k0b2k72b2k71 e bObIO)
b2k+1b2kb2k71b2k72 e blbO = bZkb2k+lb2k72b2k71 e b()blo .

We take advantage of the iteration principle for I = P, ® (o —o o) @ (¢ —o). The
intended meaning of interim values throughout the iteration will be:

To ® Io @ Aw.bgg (D1 (- - bo (b1 (fox))))

after processing an even number of step functions (i.e. for by, - - -, byxy1) and

1 @ o, @ Ax.bog—2(bog—1(- - bo (b1 (fox))))

3.6. ANOTHER FP COMPLETION OF BC~ 49

if the pattern processed so far has odd length (i.e. by, - - -, by, have been processed).
The first component of the triple is a projection indicating the case we deal with.
Thus, the initial value must be 7y ® I, ® I, : I, because the first step is the odd-
length case. In this case the current bit f needs to be kept for future use by the
other case, so the triple should be modified by

FiF=Apob®c).(m® f®c) :I—I.
For the even-length case we use
F,=Apob®@c)m®I,@Ar.b(f(cx)) : I — L.

Note that f occurs in both, but we are allowed to use it at most once. For this
reason, we shall consider

AfF: (@ —oa) —o (I —T)

for + = 1,2 and we write 7" to mean their type. f will be fed to one of these
terms, after it has been decided which applies. The right one will be selected by
the projection from the triple as follows (i = 0, 1):

fit(a—oa) F Axx /p@bc) (p[TI(Af.Fo @ Af.F1))fi(p@b®¢c):T—1.

With these step functions we invoke the iteration principle to obtain a derivation
of:
BIN, (o —), (¢ —) + §I.

To complete the definition, the output must be synthesized from the triple. If the
input was of even length, all we need is the third component, so

H =Apb®c).c: H=1— (e —o «)

applied to the triple yields the correct result. Otherwise, the following transforma-
tion does the trick:

Hy =A(p®@b® c).Ax.b(fo(cx)) - H.

The first component—an appropriate projection—tells us which is the case. To
finish the definition we cut the previous derivation with:

fo:la—oa),z:81 F
§(So/ fo,x/p®@b@ c)((p[H](Hy ® Hy))(p@b®c)) : §(x — @),

contract the two copies corresponding to f; and use lambda and universal abstrac-
tions to construct the final term shift : BIN — BIN.

20 CHAPTER 3. PROGRAMMING WITH IMLAL2

Even-bits-shift

The term shift shifts the bits starting from the most significant one, but to find
a translation for e-shift(: n) we would like the procedure to begin with the least
significant bit. To this end, we simply reverse the representation first, apply shift
and reverse it again:

n: BIN - e-shift = rev(shift(revn)): BIN.

Encoding poly-time Turing Machines
Turing Machines

W.l.o.g. we assume that both states and elements of the alphabet are represented
by binary strings of even length L. Besides, we want the code of each state to end
in 1 for a technical reason.

Tape and input

The contents of the tape as well as the state will be encoded as a single binary
string whose L least significant correspond to the code of the state.

Suppose, the left and right parts of the tape (after the binary encoding of sym-
bols) are ...lyl 1y and rorirs ... respectively and the head is positioned above the
symbol rq...7; 1. We shall represent the tape by a string which is an interleaving
of (representations of) the left and right tapes e.g.

l50l4T4l3T3[2T2[1T1[0T0

corresponds to

l5l4l3l2[1[07"07“17“27"37“4 .

If one part of the tape is longer than the other, 0’s can be used to make up for the
shortfall. This is consistent with the fact that the tape is potentially infinite and
that is why we insisted on representing the blank symbol with a string of zeros.
When the state is appended at the front we get:

l50l4T4l3T3l27"2l17"1l()?"gSL,1 s S50 .

In addition, we stipulate that the input and output strings always be placed to the
right of the head and that the rest of the tape be left blank before the computation
begins and after it terminates. Clearly, these conventions do not affect polynomial-
time computability.

3.6. ANOTHER FP COMPLETION OF BC~ 51

Transition

In order to make a step, the state and the head symbol (represented by rp 1 ---7¢)
will have to be accessed i.e. the 3L least significant bits of our representation suffice
to determine the next configuration.

First we are going to use casesy, to replace the bits corresponding to the current
state with the bits representing the new state s} _,---sj. If the head is to be
moved to the right, we append one additional 0 to the representation. After this
preprocessing we get either

tempL = l5OZ4T4l3’I“3l2’I“2l1Tllorole_l Ce 56

or
tempR = l50[47“4l37“3l27“2l17“1l()?"gSlLil T 860 .

What other modifications must be made to the tape will become clear soon, when
we look at how the representation of the tape should change once the head moves
to the left or right. We consider shifts by one bit; note however that to simulate
what the original Turing machine does, we will have to repeat such a step L times
so that the head scans the first bit of the representation of the new ‘true’ cell. The
table below shows how the representation ought to be modified, if the head changes
its position.

tape representation + state
left Islalslalylororimarsry T4lsrslyrolsrilarolilost 1 -+ - sy
I'lght l5l4lgl2l1[07"07"_17"27"37"4 l50[40l30l2T4llT310T27"07"1SIL_I te 860

Observe that the changes to the tape resemble the effect of e-shift*:

e-shift’(: tempL) 0074lsr3larelsrloroly st olost 48y |-+ s4550s10
e-shift2(: tempR) l50[40[30l27"4l1TglOTQSILilT18L_37"0811175SL_2 s 81182108,20860

For the right shift this is due to the addition of the extra 0 bit (otherwise, the
effect would be similar to ‘odd-shift’). We would still like to be able to read the
direction, in which the representation ‘moved’, from the representation and that is
why it was assumed at the beginning that sj must be 1. Now we can simply look
at the fifth bit from the right.

The results of e-shift? differ from what should be modelled in the last L + 5
bits. Hence, the correction can be made using case;, 5. Let us call this correcting
term correct(: u). The move of the head is then mimicked by L-fold application
of correct(: e-shift?(: u)) to tempL or tempR. Afterwards, we must not forget
to erase the extra bit added for the move to the right. That case can be recognized
by looking at the first bit. If it is 0, we should remove it (a single use of case;
does that). What results is a term transition(: u) which can be iterated |n| times
from some initial value init(: n) by iterate(n : init(n :)) (we can use iterate from
the previous section on BC*, because it was definable in BC™).

52 CHAPTER 3. PROGRAMMING WITH IMLAL2

Input conversion

But what is the value of init(n :)? The function bint2tape(n :) is defined by safe

recursion:
bint2tape(e:) = e,
bint2tape(S;(z) :) = Sy, (: bint2tape(z :)),

where w; (i = 0,1) is an interleaving of the representation of ¢ with 0---0. Assum-

L
ing sy, 1 ---5so represents the initial state, we set

init(: n) = concat(sy 1 --- sy : bint2tape(n :)).

Extraction of the result

To strip the first L bits describing the state we use P”. After that, the bits corre-
sponding to the right tape should be extracted i.e. every other bit must be ignored.
The following function performs that by attaching a flag-bit to the intermediate
result. When the flag is 1 we append the currently processed bit and change the
flag to 0. Otherwise, we only replace it with 1 thus ignoring the corresponding bit.
Because L is even, the base case is consistent with the case of 0.

pick-right(e:) = 0,
pick-right(S;(z) :) = case(: pick-right(z :))[0:S;0P|1:S;00P].

To sum up, the following term provides the representation of the right tape, given
the representation u of the whole tape:

extract-right(u :) = P(: pick-right(P"(u :) :)).

Note that P(u :) must be used in the composition instead of the canonical P(: u)
(P(u :) can be defined by composition with P(: u)). It remains to use a similar
trick to that from the definition of result(u :) (of the previous section) to convert
the representation into a binary output string.

3.7 Further directions

A different approach to completing BC~ is to embed it in a type theory and
add suitable higher-type operators. Hofmann [55] has shown how BC' can be
embedded in the typed system SLR. The subsystem of SLR that corresponds to
(and extends) BC'~ is what we call SLR~, which is SLR less the axiom (S-AX)
(Remark 3.2.1, [55]), so that N is non-duplicable. It has been shown [99] that
SLR™ is FP complete: closed SLR™-terms of type LIN — N define exactly the FP

3.7. FURTHER DIRECTIONS 23

functions N — N.

BC SLR- BC*

N

BC™

In exploring FP completions of BC'~ we have gone to IMLAL2 in search of con-
structs interpretable by IMLAL2 terms of safe arguments, which can then be used
as step functions. The supply of such functions seems unlimited, and as the encod-
ing of perm-rec and of e-shift shows, there are many IMLAL2 coding tricks one
can exploit. For future work, we would like to understand how our notion of safe
and normal variables in IMLAL2 may be extended to higher types. If successful,
we can then investigate higher-order extensions of BC'~, using the methodology of
interpretability in IMLAL2 to obtain FP-sound systems.

Chapter 4

Essential nets

Essential nets are directed graphs representing sequent-calculus proofs. They suc-
ceed at identifying proofs that are equal up to the commuting conversions defined
by m- and o-congruence. The treatment of those involving weakening is not en-
tirely satisfactory and, to define the canonical forms, a procedure akin to garbage
collection needs to be introduced even in the absence of cuts. Nevertheless, the sole
ability to accommodate the multiplicative commutation rules allows the net-based
syntax to factor out some of the redundant sequentiality present in the sequent
calculus.

The idea underlying the construction of essential nets is the treatment of infer-
ence rules as building blocks for directed graphs. The identity axiom contributes
an oriented link and other rules add nodes corresponding to the connectives they
introduce. The orientation of new edges depends on what connective is being in-
troduced and on which side of the sequent. In that way each derivation defines
a directed graph. The properties that single out exactly the graphs arising from
proofs will be the subject of this chapter.

Essential nets have been introduced by Francois Lamarche [80] as an intuition-
istic variant of proof nets [39]. Lamarche’s original paper concerned intuitionistic
linear logic. Here we revisit the original nets for IMLL, give a new algorithmic proof
of the correctness criterion. Our approach takes advantage of dominator trees and
results in a sequentialization algorithm which has linear-time complexity; it can
also be adapted to sequentialize classical MLL proofs with the same linear-time
complexity [98]. Subsequently, we propose essential nets and correctness criteria
for IMLLL, IMLLL2 and finally IMLALZ2, but in fact our methods and definitions
are immediately applicable to all vertices of the cube shown on the next page.
There are three conceptual stages in our development: extensions to the second
order (marked by vertical arrows), the addition of the light connectives (horizontal
arrows) and ‘weakenings’ to the corresponding affine fragments (diagonal arrows).
The path we decided to take is mapped out with dashed arrows.

54

4.1. IMLL 25

IMAL? - IMLAL?
IMLL? . IML%LL/2/ :

IMAL - IMLAL
IMLL, = <<= oo e . IMI:,LL

To our knowledge, this is the first attempt to extend essential nets to these frag-
ments. Proof nets for first-order MLL which extend the Danos-Régnier (DR) crite-
rion [34] have already been proposed in [40], from which it is an easy step to derive a
correctness criterion for MLL2 (i.e. second-order classical MLL). Although IMLL2
is a sublogic of MLL2, essential nets are quite a different kind of structure from
proof nets; knowing the corresponding DR-criterion is not much of a help in find-
ing a correctness criterion for essential nets. Besides, in the intuitionistic case,
one would like to find a criterion which is easier to verify, does not use boxes, ’&-
switches or the notion of jump for V-links. In the affine case, we propose a notion
of canonical nets with respect to which the full and faithful completeness results
for our game models will be established in Chapter 6. For that reason, we will
focus on cut-free nets representing n-expanded proofs (i.e. the identity axiom can
be applied to atoms only). However, the framework can be extended to handle
proofs of any kind along with cut-elimination as we explain at the end.

4.1 IMLL

IMLL can be regarded as a polarized fragment of multiplicative linear logic (MLL),
in which the two MLL connectives ® and *@ are allowed to occur with either positive
or negative annotations and can be applied only if their arguments are appropriately
polarized. This view originates from the Danos-Régnier system of polarities [91]
and Bellin and van de Wiele’s work [17, 18].

4.1.1 Polarization

For a start, we show how to transform an IMLL formula A to a positive polarized
form " A7 and a negative polarized form _A.. The polarized forms are con-
structed from polarized atoms (a™,a,b",b™,---) and polarized connectives

26 CHAPTER 4. ESSENTIAL NETS

(®",®,9",®7) by mutual recursion:

Tab7 = at Lays = a”
TA—o B = LAt TB7 LA—o B, = TAT® LB
TAQ B? = TA'@T™B™ LA®BL = LAL® LB

Note that ® translates to ® " in a positive context and to %~ otherwise. % and
®~ respectively correspond to —o. For example,

"b@(c—c)@a? = (0T (¢ %)@ a",
Lf®e—o(d—oa®b)y = (ffeTe’)® (dT® (a9 b)).
For any unpolarized IMLL formula A, the polarized formulas "A™ and _A. are

dual to one another: "A7 = LAt and LAL = TAT where the A — A duality,
corresponding to negation in classical linear logic, is defined by:

(a+)J_ = q (af)J_ = qat
(A >g)+ B)J_ — AJ_ Q" BL (A o~ B)J_ — AJ_ ®+ BL
(At Bt = Alw- Bt (A~ B)t = Alw»t Bt

It is easy to verify that (A+)L = A for an arbitrary polarized formula A.

Analogously, one can translate IMLL sequents C},---,C,, - A into one-sided
polarized form +~_C'4,---,.C,1," A, The polarized counterparts always contain
one positively polarized formula. For instance,

e R (d e f7), (ffetet) e (dre (o w b)),
(bt @t (c ot ch)) @t a®

is a polarized version of
e®(d®f),f®e—o(d—oa®b) F (b® (c —¢)) ® a.

Following this pattern, one can also polarize all inference rules. We show them in
Figure 4.1. We say that a formula is positive, if it is a positive atom a™ or its
outermost connective is ® or ’®*; we shall write A™ for such formulas. Similarly,
negative formulas can be defined, which we write as A~

In the polarized logic formulas that are being connected must have suitable
polarizations. For example, a new 271 can only be introduced if its left argument is
negative and the right one positive. The following table illustrates the relationship
between the polarized rules and the standard IMLL rules:

IMLL rule | polarized rule

®-1 @t
—0 -] (S
—0 -T ’?"'

®-1 cl

4.1. IMLL o7

I, A", B, A", C™
I, B, A", A", C*
AT AT wBTT.CF

(atom) +~a ,a" (exch)

AT, AT [, BT

+ —
©) Txrraesr ©) Ty aTenr.o
A", A, B" N A, B ,A7,CT
(®7) — (®7) —
FA A 5 B A 5 B .A.C

I'~, A~ are sets of negative formulas.

Figure 4.1: Polarized IMLL rules.

At first it may seem surprising that (®-r) and (—o -1) are related, but linear logic
provides an explanation: they are just polarized versions of the same rule, namely,
the classical tensor rule:

FIT,A + AB

FT,AA®B

Indeed, in both two disjoint sequents are necessary. Similarly, the rules (®-1) and
(—o -1) are instances of the %@ rule:

- T,A B
FT,A® B’

but now two formulas from the same sequent are being combined. By an easy
induction on the structure of derivations, we can obtain the following result:

Proposition 4.1. For any IMLL formulas C4,---,C,, and A, we have C4,---,C), F
A is IMLL-provable if and only if ~_C;4,---,.C,,1," A7 is provable using the po-
larized rules.

4.1.2 Nets for polarized sequents

Essential nets are best explained in the polarized context. This is not a limitation:
by Proposition 4.1 any fact about the polarized IMLL rules can easily be translated
into the standard setting.

Definition 4.2. Essential nets for IMLL are directed graphs constructed from:

e horizontal links between negatively and positively polarized copies of atoms
(called atomic nodes) by orienting them from a* to a™:

a at

o8 CHAPTER 4. ESSENTIAL NETS

eRARf),fRe—-o(d—oa®b) F (b®(c—c)®a

c” ct
o /
- b b+)?‘F

T NS N/

d f= fr etd" Py Ry at
NS NSNS L
e S5 X3 @y ®7
NS N / 1

Figure 4.2: An IMLL essential net.

e links consisting of polarized nodes @1, ®7,92%, 9~ with directed edges
drawn in according to the following rules:

+ + + - - + - -
L3 Ty UG L) UG L)

NS NS / NS

®F ® cal ca
The links will be referred to as ®*-, ® -, ®1-, "~ -links respectively.

Note that the polarized nodes reflect the constraints present in the polarized IMLL
rules. The nodes n{ and nf (z,y € {+,—}) are called premises of the links;
the ®-,® -, -9 -nodes are their conclusions—the conclusion of an z-link is
always an x-node. By convention, atomic nodes are regarded as conclusions of the
axiom link that connects them.

We require that each node be the premise of at most one link. Nodes which
are not premises of any links will be called conclusions of the met. Links
whose conclusions are conclusions of the net are terminal. Any node must be
the conclusion of exactly one link, which we call its canonical link (or simply
its link). We stipulate that exactly one conclusion—the root of the net —be
annotated positively. Note that in a ’®*-link there is no edge between the "2*-node
and the negative left premise, which we call the sink of that "®"-node. If p is a
wT-node, we shall write s, to denote its sink.

A node n is a hereditary premise of a link whose premises are n{ and nj if
and only if:

4.1. IMLL 29

3
SURR
L

\/P bt ¢ d*
' \/ \/ /

e~ el +

b ®y
S \ / g +/'?
?1 ®1

Figure 4.3: A correct IMLL essential net

e cither n = n} or n = nd,

e or n is a hereditary premise of nf’s or ny’s canonical link.

Each node n of an essential net defines a polarized IMLL formula ¢(n) whose syn-
tactic tree is simply the tree consisting of n and the hereditary premises of n’s
link: for atomic nodes ¢(n) = n and for any other node [0 we have ¢(0) =
o(n7)O¢(ny) where nf,ny (r,y € {+,—}) are the respective premises of [I's
(canonical) link. The conclusions of an essential net naturally define a polarized
sequent: the unique positive conclusion corresponds to the unique positive for-
mula of the sequent, whereas the other conclusions represent the negative formu-
las. Thus, an essential net with conclusions ny,---,n,,n" represents the sequent
—o(ny), -+, ¢(ng), ¢(n™). Two nets along with associated sequents (in unpolar-
ized form) are shown in Figures 4.2 and 4.3.

While each essential net defines a sequent via its conclusions, not all sequents can
be represented in that way. In any case, in order to construct an essential net
representing a sequent, it suffices to find a matching between the same atoms of
opposite polarities. As we shall see later, this is possible for all provable sequents.
The lack of a matching like this is a simple necessary condition for provability.
For instance, we immediately see that neither —a~,a~,a* (equivalently a,a F a)
nor —a ,a” ®"a" (¢ F a®a) is provable. Nor is a variant of Peirce’s law
(a —b) —oa + a. Nevertheless, sequents which have corresponding essential
nets can be unprovable. Figure 4.4 shows two such examples. Our aim will be
to characterize the nets that do arise from proofs. Obviously the two nets just
mentioned should then be classified as incorrect.

Definition 4.3. An essential net is eorrect if and only if:

60 CHAPTER 4. ESSENTIAL NETS

a—obb—oa®ct c a—ob®ckF (a—oc)®b

a” c - b~ c a®
M. NS N S /
a b= b* S ct S bt e
NSNS NS N/
® ® ct ® ®

Figure 4.4: Incorrect IMLL essential nets.

(i) it is acyclic,

(ii) for any *®"-node p, each path from the root to s, visits p.

Returning to our examples, the net on the left in Figure 4.4 does not satisfy Con-
dition (i) and the right one breaks Condition (ii). The two nets in Figures 4.2,4.3
are correct.

Remark 4.4. In all acyclic essential nets, each node is reachable from the root.
This is a consequence of the fact that backtracking from any node must end in the
root, as it is the only node without an incoming edge. In particular, this is must
be true of all correct nets (cf. Figures 4.2, 4.3).

4.1.3 Interpretation of proofs

Here we focus on how each sequent calculus proof in polarized form defines a
correct essential net. The atomic axiom rule a ,a™ is interpreted by an axiom
link between a™ and @~ and the introduction of a polarized connective is modelled
by the addition of a link with the same name. The new node always links the two
conclusions of the net(s) that represent the two arguments of the new connective.

For the (®*) rule, the new link will connect the roots of the two essential
nets corresponding to the sequents that are premises of that rule. For (®7), we
link the root of one net with the appropriate negative conclusion of the other.
For the remaining two rules, the associated link will simply be added to the net
representing the premise of the rule. As we do not assume any particular order on
negative terminal links, sequents which are equivalent modulo the (exch) rule are
represented by the same net.

Theorem 4.5 (Soundness). Each (polarized) IMLL sequent-calculus proof gives
rise to a correct essential net.

4.1. IMLL 61

Proof. We prove the theorem by induction on the structure of sequent-calculus
derivations following the rules from Figure 4.1. Obviously, the identity axiom gives
rise a correct essential net—a single axiom link. The exchange rule has no effect
on the net.

The addition of a %2~ -link clearly preserves (i) and (ii). A new ’®"-node cannot
create a cycle in a correct net, but we need to check (ii) for the new node. This is
rather straightforward, as the condition then states that each path from the root
to the sink of the root must visit the root.

Recall that the (®%) rule is interpreted by linking the roots of two disjoint
(correct) nets with a ®*-node, which becomes the new root. By induction hypoth-
esis, (i) and (ii) hold for the two initial graphs and this ensures that the composite
graph will also satisfy them.

Finally, if there were any cycles after the (®)-rule is applied, there would have
to be an edge between the two graphs that are being connected. However, the rule
assumes that they are disjoint. (ii) will also hold in the new net, because all paths
from the root are either paths in one of the nets (then we can appeal to (ii) for
that net) or they pass through the root of the other net and never leave it (then
we use (ii) for the other net). O

4.1.4 Sequentializability

Our next aim is to show the converse of the Soundness Theorem, namely, that
correct essential nets can be sequentialized i.e. deconstructed in steps corresponding
to IMLL inference rules. Accordingly, we define the notion of eliminability of nodes.

Definition 4.6 (Eliminable nodes). A link of an (IMLL) essential net is elim-
tnable if and only if:
e it is terminal, and

e if it is a ®-link, its removal will result in two disjoint essential nets.

Definition 4.7 (Sequentializability).
e An essential net, which is an axiom link, is sequentializable.

e [f the removal of an eliminable link from a net yields sequentializable essential
nets (by eliminability, one for a "-link and two for a ®-link), then the net is
sequentializable.

Sequentializable nets can thus be reduced to axiom links by iterated removal of
terminal links. A concrete order of decomposition leading to a set of axiom links for

62 CHAPTER 4. ESSENTIAL NETS

R R
I N
?3 ®2 at)?1)?2 ®2 ?+
| RN | | 7N |
®; b+)9+ a~ ®1* a-i- b-l— d+
—7 N~ | | | | | |
)91)92 ®1 d+ - C+ €+ a b~ d-
| | | N
®s d- c e ®5
f+/ \e+ |+
| | |
f~ e~ c”

Figure 4.5: The dominator trees of essential nets in Figures 4.2, 4.3.

a given net will be called its sequentialization. Because of the way eliminability
of links is defined, it is easy to see that each sequentialization of an essential net
corresponds to a sequent-calculus proof of the sequent represented by the net. The
Soundness Theorem simply states that sequentializable essential nets are correct.
Therefore, there can be no way of sequentializing the nets in Figure 4.4 as the
corresponding sequents are not provable. In general, guessing an order in which
a net could be sequentialized is not easy. The source of the difficulties are the
®-links, which are eliminable only if they split the net in two.

In the next section we present an algorithm which, given a correct essential net,
produces its sequentialization. A prominent role in our analysis is played by the
notion of the dominator tree of a graph. Its importance has already been observed
by Lamarche, though his use of the ordering is different from ours.

4.1.5 Dominator trees

The nodes of an acyclic essential net A/ can be ordered as follows: we say that
node v domanates w if and only if every path from the root to w passes through
v. In view of Remark 4.4, this condition is never vacuous i.e. if v # w there will
always be a path to check. The ordering has a tree structure, which is called the
dominator tree of N and will be denoted by T). Note that Ty is induced by
the edges (idom(v),v), where v ranges over the non-root nodes of N' and where
idom(v) is the immediate dominator of v i.e. idom(v) dominates v and every other
node that dominates v also dominates idom(v). Hence, the root of the tree is the
root of A" and the parent of any other node in T), is its immediate dominator.

Condition (ii) from the correctness criterion states that each ®"-node dominates
its sink. This is indeed the case for the nets in Figures 4.2 and 4.3, whose dominator
trees are shown in Figure 4.5. Dominator trees of acyclic essential nets exhibit the
following structure:

4.1. IMLL 63

e cach positive occurrence of an atom is the immediate dominator of the cor-
responding negative one,

e a ®T-node has exactly two positive successors (which are the premises of its
canonical link) and a finite number of negative successors, each of which is a
¥~ -node,

e a ® -node has exactly one positive successor (the left premise of its canonical
link) and a finite number of negative ones, only at most one of which can
be a ® -node; besides, its immediate dominator is the right premise of its
canonical link,

e a ®T-node always has one successor, which is the positive right premise of
its canonical link,

e a9 -node can have at most one successor, which must be a ® -node.

All these possibilities can be observed in Figure 4.5. The only nodes with
multiple successors are the ®-nodes. Moreover, the parent of a *®-node in T is
the nearest common ancestor of the premises of that *9~-node. This is because the
immediate dominator of a *® -node will dominate both premises of the ¢~ -link.
The following result generalizes this observation.

Lemma 4.8. In a correct essential net, if # dominates y (if y is negative we also
require x # y), then 2 dominates both premises of y’s canonical link.

Proof. If y is a "2 "-node, we appeal to the second correctness condition stating that
each sink of a "®"-node is dominated by that '®*-node. For the rest of cases it suf-
fices to take advantage of the above remarks concerning the structure of dominator
trees. U

Remark 4.9. For positive x Lemma 4.8 implies that all nodes dominated by =z
form a subnet of /. That subnet is traditionally called the empire of = [39, 80].

The last lemma helps to specify the conditions under which ®-links become elimi-
nable.

Proposition 4.10. A terminal ®"-link with premises p;,p> and conclusion p—
which is then the root—is eliminable if and only if p has no negative children in
Ty (equivalently, for i = 1,2 any node reachable from p; is dominated by p;).

64 CHAPTER 4. ESSENTIAL NETS

Proof. Surely eliminable ®"-links meet the property. To prove the converse, we
need to show that the net will be split, if we remove the ®*-link. Consider the
empires of p; and p;. By Remark 4.4 and the assumption, each node of the net
different from the root will be in one of the empires. Besides, the empires must be
disjoint as p; is not dominated by p, or vice versa. This shows that the ® "-link is
eliminable. O

For instance, in Figure 4.2 the ®j -link becomes eliminable, if the links %, ,’®, and
®] are erased. In Figure 4.3 the ®; -link would be eliminable if 27, ®7,e™ and
e~ were removed. A kind of dual property to that from Lemma 4.8 will help to
characterize eliminable ® ~-links.

Lemma 4.11. In a correct essential net, if x dominates y, x # y and y is a premise
of [, then x also dominates [’s conclusion, provided:

(i) « dominates each node reachable from z,
(ii) for each sink s, reachable from z, + dominates p.

Proof. The condition # y is all we need for positive y. (i) ensures that the
lemma holds if ¥ is a premise of a ’2-link. No assumptions are necessary if y is
the negative premise of a ® -node. (ii) is vital, if y is the sink of a '®T-node. [

It turns out that Lemma 4.11 specifies exactly the conditions under which ® ~-nodes
can be eliminated.

Proposition 4.12. In a correct essential net, a terminal ® -link is eliminable, if
its conclusion satisfies the two conditions of Lemma 4.11.

Proof. Let v, w be the left and right premise of the ® ~-link (call it [) in question.
Clearly, if the link is eliminable, v is the root of a correct essential net, so both (i)
and (ii) hold.

Suppose [satisfies (i), (ii) and consider v’s empire. By Lemma 4.11 whenever
the empire contains a hereditary premise of a terminal link, the conclusion of that
terminal link will also be part of the empire. Consequently, no hereditary premise
of the root’s canonical link or w’s canonical link can be present in v’s empire.
Therefore, the ® -node is eliminable. O

For example, in the first net from Figure 4.3 the ®; -link becomes eliminable if
%, and ¥, are erased. In the second net, ®, will be eliminable, provided &, is
deleted. The ® -link in Figure 4.6 is not eliminable, because (ii) does not hold.

4.1. IMLL 65

a—obt a—ob

at b~ a bt
NP

)94-

Figure 4.6: An uneliminable ® ~-link.

Remark 4.13. The removal of an eliminable link from a correct net results in one
or two correct essential nets. Their dominator trees are subtrees of the dominator
tree of the initial net. This means that even after successive eliminable links have
been removed and the original net has been split into smaller correct nets, for two
vertices vy, vy belonging to one of the nets we have v; is the immediate dominator
of vy if and only if the same holds in the original net.

4.1.6 A sequentialization algorithm

From now on, we shall focus on an ordered form of dominator trees. We require that
the children of each node be linearly ordered subject to the following conditions:

e the negative children of a node are ordered topologically with respect to the
essential net N i.e. ¢; < ¢; if ¢; is reachable from ¢; in NV,

e if ¢ is a negative node, then ¢ < d for any positive node d.

By remarks about the structure of dominator trees, these requirements are non-
trivial only if the parent-node is a ®-node. A dominator tree satisfying the above
properties will be called an ordered dominator tree. For acyclic essential nets,
each dominator tree can be converted into an ordered one, but there may be many
ways of doing this. In particular, no order on positive children is assumed. In
figures, if ¢; and ¢; are children of the same node, we shall draw ¢; to the left of ¢;
we indicate that ¢; < ¢;. We have already followed this convention in Figure 4.5.

The goal of the rest of this section is to prove:
Theorem 4.14 (Lamarche). Correct essential nets are sequentializable.

We give a proof based on depth-first search of an ordered dominator tree of a
correct essential net. The traversal will be guided by the order on the children of
nodes: first all negative children of a node are visited in topological order, then
the node is eliminated, and finally the procedure visits its positive children. The

66 CHAPTER 4. ESSENTIAL NETS

Sequentialization Algorithm

Input: an ordered dominator tree T of a correct essential net N
Output: a sequentialization of N given by a sequence of nodes

e Run wvisit(rt), where r* is A/’s root:
visit(v : Vertex)

1. call wisit(n) for each negative Tyr-child of v according to the linear
order between them

2. ELIMINATE v

3. run wisit(p) for each positive T child of v

Figure 4.7:

algorithm is presented in Figure 4.7. To start off, we call visit(r™) for the root r*
of the net. The order in which ELIMINATE ‘signals’ are given will be the order
in which links can be removed from the net. Observe that ELIMINATE o~ will
always be followed by ELIMINATE a*. This is to be treated as a cue to remove
the axiom link.

Example 4.15. For the net in Figure 4.2 with the ordered dominator tree in
Figure 4.5 the algorithm suggests elimination of links in the following order:

BT R, B ®F fTfTe et ®; dTdT e @7 @5 b b et cTctaat.
For that in Figure 4.3 ELIMINATE will be called successively for:

ST R e e, @ ®F a”at b bt et @y ¢ cTddT.

We shall prove the algorithm correct and show that by following the ELIMINATE
instructions one obtains a sequentialization of the initial essential net. Thus we
need to show that whenever FLIMINATE is called for some node n, all links of
which n is a hereditary premise have already been eliminated. In addition, each
link must be eliminable at the time of removal i.e. with respect to suitable nets.
Let us begin by showing that the Algorithm processes nodes in topological order.

Lemma 4.16. If w is reachable from v in A, then wisit(w) terminates before
visit(v) does.

4.1. IMLL 67

Proof. 1t suffices to show that if (v,w) is an edge in A, the lemma holds. If v
dominates w, then obviously wisit(w) will be completed before wisit(v), because
the algorithm performs a depth-first search of T). If v does not dominate w, then
w must be the conclusion of a ’®~-link (call it [). Let ¢" be the other premise of
[and suppose a is the least common ancestor of v and v' in T,. Then we have
a # v (because v does not dominate w) so v is a’s successor in T and w is a’s
child (by previous remarks about the structure of dominator trees) Consider the
child ¢ of @ which dominates v (in some cases we may have ¢ = v). If ¢ is positive,
then wisit(w) will be finished before visit(c) is called, because w is negative. If ¢
is negative, then w is reachable from ¢, so w < ¢ (recall that < denotes the order
on a’s children in T)r). Consequently, visit(w) will terminate even before visit(c)
is called. As wisit(v) is called no earlier than wisit(c), the lemma holds. O

The Lemma also demonstrates that:

Proposition 4.17. If w is reachable from v, then
e cither v dominates w,

e or visit(w) is completed before visit(v) is called.

As the algorithm is running, ELIMINATE is signalled once for each node, which is
to be regarded as a cue to eliminate that node. The next result will help us show
that indeed the nodes are then eliminable.

Lemma 4.18. When ELIMINATE v is called and v is a premise of a link [in N,
then ELIMINATE has already been called for [’s conclusion w.

Proof. The lemma holds for positive v, because idom(v) = w holds then and ELIM-
INATE w will therefore be signalled before wisit(v) is called.

If v is the sink of a ®"-node p, we obviously have p = w. Because the net is
correct, w dominates v. Since the dominator tree is searched depth-first, w will
have been visited and immediately eliminated before wisit(v) is called (remember
that w is a '®"-node and has no negative children).

Otherwise, there is an edge from v to its conclusion w (which must be a negative
node then). If v dominates w, then v = idom(w). Hence visit(w) will be complete
before ELIMINATE v is called, because the Algorithm calls vezstt for negative chil-
dren of a node before eliminating it. If v does not dominate w, by Proposition 4.17
visit(w) is complete before wisit(v) is finished, so the desired condition is also
met. 0

68 CHAPTER 4. ESSENTIAL NETS

Repeated applications of the previous lemma allow us to deduce:

Proposition 4.19. If ELIMINATE v is signalled and v is a hereditary premise of
[, then FLIMINATE must have been called for I’s conclusion before.

At any given moment during runtime we can consider all the nodes of N” which have
not been eliminated yet. The nodes will be part of possibly several disconnected
graphs. Suppose v has not been eliminated yet. Let us call the graph containing v
its interim net.

Theorem 4.20 (Correctness). The interim nets are all correct essential nets and
when ELIMINATE v is called, v’s link is eliminable with respect to v’s interim net.

Proof. We give an inductive argument. By Proposition 4.19, when ELIMINATE v
is called, v will be a conclusion of its interim net. At the beginning, the interim
net is simply the initial correct net. Later, as we show that v’s link is eliminable
in its interim net, Remark 4.13 is all one needs for the inductive step. Hence we
turn to eliminability.

If v is a "®-node, v is eliminable as a conclusion.

If v is a ® -node and ELIMINATE v is called, v is the root of its interim net.
By Remark 4.13 and the fact that the Algorithm visits negative children before
signalling ELIMINATE v, v has no negative children in the dominator tree of its
interim net and so, by Lemma 4.10, v is eliminable with respect to it.

If v is a ® -node and FLIMINATE v is called, by Proposition 4.17 all nodes of
v’s interim net reachable from v must be dominated by v, because otherwise visit
would have terminated for them and they could not have been present in the net.
Therefore, the first condition of Lemma 4.12 is satisfied. To see that the second
condition also holds, suppose there is a sink s, reachable from v. We have just
proved that v dominates s,. Because v’s interim net is correct, p dominates s,
too. Because of the tree structure of the domination relation, either v dominates
p which is what is required, or p dominates v. However, in the latter case, p will
have been eliminated before wisit(v) is called, so p would not be present in the
interim net of v. Thus, by Proposition 4.12, v is eliminable. U

Theorem 4.14 is now an easy corollary of the above result.

Our algorithm can be used for automatic synthesis of the sequent-calculus proof
implied by the order in which the links are eliminated. To do that, one should
simply run it backwards.

The extraction of the proof is trivial as long as *®-links are being taken out.
However, the way in which ®-links are processed also proves convenient:

4.2. IMLLL 69

AT A", B"
B o A N

At) F?AT AT AL OF
) =4 () 7 A AL CT
) A - A By, B, O k+1>0

l_?iAlif"7?7A];7§7B;7'"7§7Bl7§+0+

Figure 4.8: Polarized IMLLL rules (in addition to those in Figure 4.1).

e after a ®"-link whose premises are p; and p, has been eliminated, the algo-
rithm visits all nodes dominated by p; before going to those dominated by
po (or the other way round),

e after a ® -link whose positive premise is p has been eliminated, the algorithm
proceeds to the nodes dominated by p first.

Therefore, for the ® T-rule, when the algorithm is run backwards, it will first pro-
duce a complete proof of —A~, A", before it even starts to construct that of
I, B". Then the ®"-link connecting A and B will be introduced. For @ -
links, —=B~,I"",C" will be ‘proved’ first and only then will a proof of ~I", A* be
constructed. For an alternative account of this approach and an extension to MLL
the reader is invited to consult [98].

4.2 IMLLL

Like for IMLL one can consider polarized IMLLL inference rules (see Figure 4.8).
The standard sequents C1,---,C), = A have been translated into

—.Ca, e, O, TAT

where!
MAT = ItrAD LIAL = 77LAL
T§AT = §TrAT L8AL = § LA
We also extend the definition of negation:
At = §7AL (574t = §rA+
(ITA)t = 774t (7-A)L = 1tAd

'We follow the standard notation from (light) linear logic: ? is dual to ! and § is self-dual

70 CHAPTER 4. ESSENTIAL NETS

Definition 4.21. In addition to the rules defining IMLL nets, five new links can
be used to construct IMLLL essential nets:

e the first four are links with single premises, called the !"-,?7- "= and § -links

respectively:
nt n- nt n-
I+ 7 g+ 8~

e the fifth is a contraction link:

no

NS

As before, ¢ assigns a corresponding IMLLL formula to each vertex of the net:
we define ¢(00%) = O%¢(n®) for 0% € {!7,77,§",§ }. For each c™-node ¢(n;) =
¢(ny) =77 A~ must hold for some formula A~. Then we define ¢(c™) =77A".

It will be convenient to think of the conclusions of the first four links as brackets
and we shall often refer to them as bracketing nodes and links respectively. The
positive nodes !*, §7 will be regarded as opening brackets which can be closed by
the negative ones (§ ,77). Bracketing links will be used to interpret introduction
rules for the IMLLL connectives ! and §. Given an essential net, we write BT
(respectively B™) to denote the set of its positive (respectively negative) bracketing
nodes. As before, an essential net with conclusions ny,---,n, ,n" represents the
sequent

We are going to take advantage of the similarity of ¢™-links to ’®~-links and assign
to an IMLLL essential net A" a corresponding IMLL net A y,1,- This can be done
by replacing all ¢c™-nodes with *®7-nodes, and then treating bracketing nodes as
‘transparent’ i.e. for brackets which are not conclusions of the net, we perform the
erasures below:

! T

1 i

and delete all bracketing nodes which are conclusions of the net afterwards:

= |~

Ot H

4.2. IMLLL 71

?- ?- e ?- ?- ot
R A
I L o L
! - C -
cal ca

Figure 4.9: Two correct IMLLL essential nets of the same sequent.

The order in which the bracketing nodes are being removed is immaterial to the
shape of the final net, so Ny 1, is defined correctly.

A path p from the net (not necessarily starting from the root) is well-formed, if
all its initial subpaths contain at least as many as opening brackets as closing ones.
Equivalently, this means that it is almost well-bracketed, but may still contain some
unclosed opening brackets. Like in well-bracketed sequences, each closing bracket
‘matches’ the last opening bracket which has not yet been closed. Therefore each
well-formed path defines a partial function ¢, : B~ — BT, which assigns opening
brackets to closing ones. Observe that each initial segment of a well-bracketed
sequence is well-formed and in each final segment thereof the number of opening
brackets cannot exceed that of closing ones. Well-bracketing plays a crucial role in
our correctness criterion for IMLLL nets.

4.2.1 Correctness

Definition 4.22. An IMLLL essential net is correct if and only if:
(i-ii) hold (see Definition 4.3),

(iii) all paths from the root to a conclusion of the net and from '®*-nodes to their
sinks are well-bracketed,

(iv) all paths from the root are well-formed and there exists a function 6 : B~ —»
B* such that for each such path p, we have 6, = § [dom 9,

72 CHAPTER 4. ESSENTIAL NETS
F 1(§a —ola) —o §(la —o §a) le,§b —ol(c — a) F §b — 8a
r
a’ pcﬁ a” ct a”
T | | NS
gt 7= gt 7" a” at bt ®~ b~ at
AN NS T T | oo
® ® 7= g+ ¢ §t ?- § g+
| | / N /
? ? cal ? ® cal
S i
c §
/
>g)+
Figure 4.10: Correct IMLLL essential nets with associated sequents.
(v) if nT is a !"-node and d(ny) = d(ny) = n', then nT = n; and ny is a

77 -node.

Figures 4.9 and 4.10 show several correct nets. Some incorrect essential nets break-
ing (iii),(iii)&(iv),(v) (first row) and (iii),(iv) (second row) are presented in Fig-
ure 4.11. Note that if an IMLLL essential net N is correct, Ny, is a correct
IMLL net.

Remark 4.23. By (i) each node of a correct net is reachable from the root (by the
same reasoning as in Remark 4.4). By (iv) each node is thus reachable via a well-
formed path. Because this will also be true of each closing bracket, the function ¢
is unique for a given correct net.

It is possible to weaken (iv) by stipulating (iv’) instead:
(iv’) there exists a partial function § : B~ — B* such that whenever (iii) requires
that a path p be well-bracketed, we have 6, = d [dom 9,.

To show the equivalence, we need the following fact.

Proposition 4.24. In an essential net satisfying (i-iii),(iv’),(v) each path p from
the root is well-formed and §, =0 [dom ¢ i.e. all of the conditions imply (iv).

4.2. IMLLL 73

1, r a\ /aa\ /a a” + a
l T 3 H
@ " : a* |L 117 |T+
! \C_/.
§a —olc §(a —o) la®Db) F §a®'b
at ¢ a” ct a” b~ a* bt
Lo N2
§ ! cal S § I
N/ 1 RN
® § ! QT

Figure 4.11: Incorrect IMLLL essential nets with associated sequents.

Proof. Suppose there exists a malformed path from the root. Consider the shortest
such p i.e. p = p'0", where 00 € {?,§} and p' is well-formed. Then p' must be
well-bracketed.

Observe that each path whose final node is negative can be extended (uniquely)
with only negative nodes to a path ending in a conclusion of the net or the sink of
a '®"-node (it suffices to follow the downward edges). Consider such an extension
to p.

If a conclusion has been reached that way, by (iii) the extended path must
be well-bracketed. This is impossible, as all initial subpaths of a well-bracketed
path must be well-formed and p is not. If the extended path reaches the sink of
a '®T-node, by (iii) its final fragment starting from the "®*-node is well-bracketed.
However, the fragment consists of a final segment of p, the node (I~ and a number
of negative nodes. p' is well-bracketed, so each of its final segments contains at
least as many closing brackets as opening ones. Therefore, because of 17, the
supposedly well-bracketed sequence from the ®*-node to its sink will contain more
closing brackets than opening ones at some point, which contradicts (iii).

In fact, we have just shown that each path ending with a closing bracket is
part of a well-bracketed sequence of the kind mentioned in (iii). Therefore, we can
indeed deduce (iv). O

74 CHAPTER 4. ESSENTIAL NETS

4.2.2 Soundness and sequentialization

First we prove that the interpretation of logical rules consisting in adding links
related to the connectives being introduced gives rise to correct nets.

Theorem 4.25 (Soundness). Each IMLLL cut-free derivation (based on rules in
Figures 4.1 and 4.8) defines a correct essential net.

Proof. We use structural induction with respect to IMLLL proofs. For (i) and (ii)
and the IMLL rules, we reason in the same way as in Theorem 4.5. It is clear that
the additional IMLLL rules preserve (i) and (ii).

(iii) always follows by a straightforward appeal to (iii) for the nets corresponding
to the premises of the logical rules.

To prove (iv) we note that for the ®-rules the function ¢ of the resultant net is
a superposition of the ¢ functions characterizing the old nets. This is obvious for
the ® -rule, but for the ® -rule we need to appeal to (iii) for justification. When
the !, §-rules are interpreted, the new negative bracketing nodes (if any) become
associated with the positive one by (iii) for the old net, so (iv) will be satisfied by
the new net and the new 0 must be extended to take the new bracketing nodes into
account.

(v) holds because it reflects the shape of the (!) rule and cannot be changed
by any of the other rules (the same argument as for (iv)). O

Finally, we prove the converse of the Soundness Theorem. In order to define se-
quentializability for IMLLL nets, we only need to clarify when bracketing and
contraction nodes are eliminable.

Definition 4.26 (Eliminability). A O%t-link is eliminable if and only if:
e it is terminal,
e all other conclusions of the net are of the shape 1™,
e if [1=!, there is at most one other conclusion, which is then a ? -node.

When eliminating a [0"-node, one must also remove all the other conclusions. A
¢~ -link is eliminable iff it is terminal.

Given that extension, we can adopt the standard definition of sequentializability
(Definition 4.7). Finding a sequentialization of a net will then be equivalent to
finding a proof of the associated sequent. It is easy to check that the removal of
an eliminable link (for O in conjunction with the other links) from a correct net
yields a correct net (for ’®"- and ® -links (iii) will be essential).

4.2. IMLLL 75

Theorem 4.27 (Sequentialization). Each correct essential net for IMLLL is se-
quentializable.

Proof. We use induction on the number of nodes in the net. Obviously, an axiom
link is sequentializable. For the rest of cases, we show how to find an eliminable
link.

Consider the kind of node the root can be. It must be one of the following:

1) =,

2) @,

3) OF for O e {1,§},

a® for an atom a.

(
(
(
(4

)
)
)
)

Case (1) is the easiest as the ’*-link is then eliminable. For (2) we perform
transformations to ensure that when we appeal to the sequentialization theorem
for IMLL, the existence of an eliminable link there will imply the same in our case.
Finally, we will show how to reduce (3) and (4) to (2).

In Case (2) we transform the net by adding links between fresh atoms o™ and
a~ for each conclusion which is a 0~ -node ([0 € {§,7 }): we replace the conclusion
with

at O
NS
.
and in place of 6(C07) we add
a” §(0O7)
/
ot

with a link from a™* to a™.

The modified net, which we shall call M, is correct: the only conditions that
do need verification are (ii) and (iii) for the new " -nodes. However, all paths
from the root to = must pass through a* and hence through the associated ® -
and [0 -nodes. If any of them violated (ii) or (iii), (iv) or (iii) respectively would
be violated in the original net for a path ending in [J~. Thus, M is correct.

Let us now focus on the correct IMLL net Mpyrr,. By Theorem 4.14 one of
its terminal links is eliminable. This eliminable link cannot be any of the '®*- or
® -links we introduced: for ®*-links this follows from the fact that the root of
the net is a ®*-node, whereas if the ® -links were eliminable, a~ would have to

76 CHAPTER 4. ESSENTIAL NETS

be a conclusion, which it is not. Consequently, the eliminable link provided by the
sequentialization theorem for IMLL will be eliminable in our case as well.

For (3) suppose ¢~ ({O% }) = {O7,---,0; }. If elements of this set are pre-
cisely the conclusions of the net, then (17 is eliminable. If not, there exists [I;
which is not a conclusion. In order to take advantage of (2), we replace Ot with

and L1, with

NS
o

adding a link from a™ to a~. Let us prove that the modified net is still correct.
Certainly, it is acyclic as the new axiom links do not change the reachability relation
between the vertices of the original net. By (iii),(iv) and (v) for the initial net,
(iii),(iv) and (v) are still satisfied, because all paths from O to each [J; must be
well-bracketed. Suppose (ii) does not hold. Since the original net was correct, the
incorrect path ¢ must involve the added link:

t=% ata” BT Sy

By Remark 4.23 there exists a path from 0% to 07 . Let us replace a*a™ in ¢ with
that path O -- -0 to get

t,:®+|:|+-..|:|i_>?_...sp

t' satisfies (ii) as it is a path from the original net (to be precise, ® ™ and 2~ should
be erased). Now, if p is not present in ¢, it must occur in t' between O and OJ; .
This contradicts (iii) and (iv) for the original net as the path p---00; - - - s, would
not be well-bracketed (there is no opening bracket for OJ7).

Note that the ' -link introduced above cannot be eliminable, because LI;” was
not a conclusion of the original net. Neither is the ®*-link, because a~ is not
a conclusion of the net. Therefore, when we appeal to (2), the eliminable link
obtained from (2) will be present (and eliminable) in the original net.

In Case (4), if a~ is a conclusion, we have to do with an axiom link. Otherwise
let us replace at with

4.3. IMLLL2 7

and ¢~ with
a” b~
NS
o

where b and b~ are connected by a new axiom link. Note that the 9~ -link will
not be a conclusion of the net and hence it is not eliminable. Nor is the ®*-link
we introduced. Therefore, when we appeal to (2), the eliminable link provided by
(2) will also be eliminable in our case and it will be a node of the original net. [

Remark 4.28. The Soundness and Sequentialization theorems show that the no-
tion of correct essential nets captures provability in IMLLL. However, a careful
scrutiny of the preceding proof reveals that we have never used the assumption
that the two premises of a contraction link must represent the same formulas.
That is, we could consider essential nets without this condition, then their correct
variants and still prove a sequentialization result! After all, ¢™-links are identical
to *®~-links when the restriction is relaxed. The significant difference between such
a result and Theorem 4.27 is that sequentializations of the ‘liberal’ nets no longer
correspond to proofs in IMLLL. Nevertheless, the possibility of sequentializing the
correct not necessarily essential nets will prove useful in our future considerations.

4.3 IMLLL2

In this section we extend our framework to handle second-order quantification. We
begin by giving the expected polarizations of connectives

"WVX.A7 = VIXrA? WX AL = I X.LA,
and rules for negating polarized sequences

(X~ = X~ (X))t = x+
(VXA = 3-Xx.AL (F-X.A)F = vrx.Al

For any formula A, FV(A) denotes the set of its free variables. The new polarized
IMLLL?2 rules are shown in Figure 4.12. and we hasten to explain how the substi-
tution A-[T"/X] is defined. Firstly, positive formulas will be used as substitutes
(it does no harm to choose otherwise, but one has to be consistent). Then we
set XT[TT/X] =T and X [T"/X] = (TT)*. In all other cases, substitution
is simply propagated in the standard way. Moreover, to have an exact correspon-
dence between terms and nets, we stipulate that in the (37) rule, T" should be
mentioned explicitly. If X occurs in A~ we can recover it from A~ [T"/X]| anyway,
but for the sake of uniformity we will always specify it.

78 CHAPTER 4. ESSENTIAL NETS

. N
D, VEXLAT

I, A [T*/X],B*
[,3 X.A,B"

(V) X ¢ FV(T) @)

Figure 4.12: Polarized IMLLL2 rules (in addition to those in Figures 4.1, 4.8)

4.3.1 IMLLL2 nets

Definition 4.29. IMLLL2 essential nets are constructed from IMLLL links with
the addition of

e axiom links for second-order variables:

«
X~ Xt
e V- and 3 -links:
nt n-
| |+
v 3 XA

X is called the eigenwvariable of the V'-link, and T is the eigentype of
the d7-link. Note that the conclusion of a 3~ -link is labelled with a formula.

The set of eigenvariables occurring in a net will be denoted by £. Like for other
kinds of essential nets, we define the formulas corresponding to nodes extending
the previous definition with ¢(Vi) =V X.¢(n*) and ¢(3"X. A7) =3I X.A~. We
require ¢p(n~) = A~[T*/X] to hold (as well as the conditions on ¢ concerning
contraction links, now up to a-equivalence). In addition:

(a) for any X € £ there must be exactly one Vi -node,

(b) if n is a conclusion, no eigenvariable may occur freely in ¢(n), i.e. FV(¢p(n))N

E=0.
As usual, a net with conclusions {ny,---,n,,n" } is to represent a proof of the
sequent

Condition (a) is introduced to remedy the usual problems with quantification:
because identically named variables are used to represent binding, some mechanism

is necessary to prevent variable capture. In the sequent calculus, one renames the
conflicting variables as the need arises. In our nets we simply assume that different

4.3. IMLLL2 79

§(VVIV),VVVZI(V — Z) F VX.§(VY.§Y)

X~ Xt Y- v+
ANV
? ® §
e e

) LL

§ g
I 1
? v
J X

I-VITT (VT ZVTR-Z7)

Figure 4.13: A correct IMLLL2 essential net.

variables are used in different instances of quantification. Condition (b) is also
desirable, because its violation indicates an illegal use of the (V1) rule. Therefore,
the very notion of an essential net already allows one to detect simple incorrect
essential nets, e.g. for X + VX.X. However, the definition still fails to catch
many a forbidden application of the (V') rule, after that has been obscured by
subsequent uses of the 3~ -rule: we give the obvious essential net for the (invalid)
sequent F VZ.(a® Z) —o (a ® VX.X) in Figure 4.15. Although it is an essential
net, our correctness criterion will have to invalidate it.

Definition 4.30. An IMLLL?2 essential net is correct if
(i-v) are satisfied (see Definition 4.22),

(vi) any path from the root to the conclusion of a 3~ -link whose eigentype con-
tains a free eigenvariable X must pass through the V}-node and the segment
between the V§-node and the conclusion must be well-formed.

Two correct nets are shown in Figures 4.13 and 4.14. The essential nets in Fig-
ure 4.15 do not satisfy the first and the second part of (vi) respectively. On the
left, the 3= Z.(a™ '®~ Z~)-node does not meet condition (vi): it is reachable from
the root via a path does not go through the V3-node.

Next we show the two expected results about the nets. The soundness result is
shown relative to proofs that satisfy some conventions on the choice of names for
second-order variables:

80 CHAPTER 4. ESSENTIAL NETS

VZ.Z F YX.(VY.Y — X)

{ f))

X- X+ X-

ITy N S
IWX X+ ®

X- FVYy" X*

N S /
®

/ 1
o+

)?+
|75 T
I-2.2- v

where) = X 9" Xt T =XT@" Xt and T3 = (VIWXT @ X)ot XT.

Figure 4.14: A correct IM(L)LL2 essential net.

e Whenever two proofs are being combined (®-rules) and a variable X has a
bound occurrence in one of them (i.e. it was bound by an application of the
(V™) rule), it does not occur in the other.

e The (37) rule must use a fresh variable for binding and 7" may not contain
free variables that have bound occurrences (this condition is important for
vacuous uses of the rule, when 7" has no connection with the previous proof).

It is not difficult to verify that each proof can be transformed into the required
form by renaming (a-conversion) of variables if necessary.

Theorem 4.31 (Soundness). Each IMLLL2 cut-free derivation (subject to the
above-mentioned constraints) defines a correct essential net.

Proof. It should be clear that the resultant net will always be an essential net,
thanks to the additional requirements concerning proofs and the side condition of
the (V1) rule.

For IMLLL rules and the preservation of the corresponding correctness criteria
one can reason like in previous soundness proofs. To see that the IMLLL rules
preserve (vi), it suffices to appeal to the convention on proofs and use the same
arguments as previously for (ii).

The (V') and (37) rules are easily seen to preserve conditions (i)-(v). The
(V") rule also respects (vi), because the new V*-node will be the root and (iv)
held for the previous net. After the (37)-rule has been applied, there will be no
additional variables for which to check (vi), so (vi) will be satisfied vacuously for
the new eigentype. O

4.3. IMLLL2 81

- VZ.(a® Z) — a®VYX.X VZ.Z F §YX.X
R
X~ X+
! f
Vx
1§xr
3z.7 gt

Figure 4.15: Incorrect essential nets violating (vi).

Sequentializability in the next theorem is determined by a new notion of eliminabil-
ity of links in the standard way.

Definition 4.32 (Eliminability). A terminal V*-link is eliminable. An 3~ -link
is eliminable if it is terminal and its eigentype does not contain any eigenvariables.

We say that an eigenvariable X is reachable from a link, if there exists a path from
the conclusion of that link to an 37-link whose eigentype contains X. A terminal
®~-link [is eliminable, if and only if:

e its removal splits the net in two,

e whenever I’s conclusion is reachable from some Vi-node, X is not reachable
from [.

For other nodes, we adopt the previous definitions.

The definition of eliminable ® ~-links had to be extended to prevent second-order
bindings from being broken (consider eliminating the terminal ® -link in Fig-
ure 4.16). To make sure the definition is adequate, i.e. enables inductive reasoning
with respect to the size of correct nets, we need the following result.

Proposition 4.33. The removal of an eliminable link from an IMLLL2 essential
net always yields correct essential nets.

Proof. This is largely self-evident except for ® - and d7-links. For the former,
we appeal to the additional eliminability condition. In the case of 37 -links all we
need to show is that the new conclusion will have no eigenvariables. By defini-
tion, if a 37-link is eliminable, no eigenvariables occur in its eigentype 7" and,
because it is also terminal, none occurs in its conclusion 3~ X.A~ either. Hence,
ENFV(AT[TT/X]) = @ as required. O

82 CHAPTER 4. ESSENTIAL NETS

VWY, b—oa - VX.a

S

jX+®+X otit) \ /

YY~ V+
Figure 4.16: A correct net with an uneliminable terminal ®~-link.

In the next proof, we take advantage of the Sequentialization Theorem for IMLLL.
This will be possible, because if V- and 3~ -links are ignored in a correct IMLLL2
essential net N, and contraction links replaced with * -links?, we obtain a correct
IMLLL essential net NMrLL-

Theorem 4.34 (Sequentialization). Correct IMLLL2 essential nets are sequen-
tializable.

Proof. As before we show that any correct protonet A is either an axiom link or
it contains an eliminable link.

Suppose N is not an axiom link, no terminal 3 -links are eliminable (so their
eigentypes contain eigenvariables) and the root is not a Vi-node. We transform N
into another correct IMLLL2 net in two stages:

e For each 37 Z. A -node which is a conclusion of the net, let us choose an

eigenvariable X occurring in the associated eigentype. Then we replace the
4= Z.A7-node with

at I Z A"
NS
o
and plug
a Vi
/
)?+

in place of Y} connecting a™ and a~ with a new axiom link. The procedure
is to be performed once for each such conclusion, though it may happen that

2When 3~ -links are treated as transparent, the condition requiring that premises of contraction
links be the same formulas may be broken.

4.3. IMLLL2 83

the same V{-node will be used several times. Of course, the result of the
transformation is not unique and depends on the order in which the negative
conclusions are processed and the choice of Vi-nodes. For our purpose, it suf-
fices to consider any net that might result from the transformation. Clearly,
none of its conclusions is a V- or an 3~ Z. A -node.

e In the second stage, we process the terminal ® ~-links which are not eliminable
for IMLLL2, but which would appear as such according to the definition of
eliminability for IMLLL. Let us consider any conclusive ® "-node n~, which is
reachable from some V-node and from which X can be reached. We modify
it in the same way as the 47 -links above by inserting a ® - node below n~, a
2 *-node below the Vi-node in question and introducing the new axiom link.

Let us call the resultant net A”. To prove A7 correct, it suffices to check (ii)
and (iii) for the new "®*-nodes and appeal to the correctness of N to confirm the
other criteria.

If (ii) was violated in N, the first part of (vi) would be false in N, so (ii)
still holds. For (iii), let us fix one of the *®"-nodes, let ¢ be the conclusion of
N added in the same step, and let X be the associated variable. By the second
half of (vi), any path from V1 to ¢ is well-formed (either because it is of the kind
mentioned in (vi) or because it can be extended to such a path). By (iii), the path
is a final segment of a well-bracketed path, so it must well-bracketed as well, since
it is already well-formed. Thus, N is correct.

Observe that the fresh ® -nodes are not eliminable in A, as their removal
would not split the net. The new ®"-nodes will not be conclusions of the net
(since the positive conclusion of A/ was not a Vi-node), so they are not eliminable
either. Consider the correct net N'1yriL. By Theorem 4.27, ./\/I’MLLL contains an
eliminable link (for IMLLL). The corresponding link in A" will then be eliminable
(for IMLLL2). O

Condition (vi) stipulates domination of 3~ Z~.A -nodes by certain V§-nodes. This
dependency is generalized in the next theorem.

Theorem 4.35. In correct IMLLL2 essential nets each Vi-node dominates all
nodes n such that X € FV(¢(n)).

Proof. Suppose X € FV(¢(n)). Because conclusions cannot contain eigenvariables,
n must be a hereditary premise of the V*-link or of some 3—-link such that X &

FV(3=Z.A7) and X € FV(T*). By (vi), such an 3-Z.A -node is dominated by
the Vi -node. Therefore, by an analogue of Lemma 4.8, Vi dominates n as well. [

84 CHAPTER 4. ESSENTIAL NETS

4.3.2 Protonets

Protonets are an abstraction of essential nets. They do not model provability in any
of the logics we are interested in, but contain just enough information to make the
correctness criteria expressible and meaningful. Our motivation for introducing
protonets is of technical nature: affine essential nets can be analyzed smoothly,
once the facts presented here are brought to light.

All sequentialization theorems for essential nets stated that some kind of directed
graph can be deconstructed by successive eliminations of eliminable links. However,
some features of the nets have not been used in the proofs, which merely showed
that decomposition was possible with regard to some notion of eliminability. For
instance, for IMLLL, we have not taken advantage of the requirement that the
premises of a ¢ -link must represent identical formulas of the shape 7~ A~ (see Re-
mark 4.28). A ¢~ -link was deemed eliminable as soon as it became a conclusion of
the net so, as far as eliminability is concerned, it was treated in the same way as a ’g-
node. A similar comment applies to 37 -links. To achieve a precise correspondence
with proofs, we had to label the conclusion with an existential formula 3~ X. A",
specify the eigentype T such that the premise represented A~[T"/X]. But later
that constraint did not play any role in the sequentialization proof, although it was
crucial to the correspondence between sequentializable nets and proofs. Finally,
the very formulas occurring as conclusions of 37 -links could be dispensed with as
well, because the correctness criteria only refer to their free variables. Hence, we
could well consider the following <&~ -link instead:

n

I

oy

where V' and W are sets of variables. The &7 link is to describe a rather general
form of manipulation on the set of second-order variables of formulas, in particular
hiding through existential quantification. The set V' represents the variables of the
resultant formula (which we could write as ¢;(A7)). W contains the variables
that may have been hidden by using <j,. Therefore, the free variables associated
with n~ should be contained in V U W. J7-links can be translated into the new
framework in the following way:

n n
T+ VEV(T)
4 XA O]?‘V(H*X.A*)

The additional condition relating the variable content of n~ and V U W simply
generalizes

FV(A~[T*/X]) C FV(TT) UFV(VTX.A).

4.3. IMLLL2 85

(X} A
fxy X7 ®"
{x}

o X~ > X+
N S /
® &{*

{x}
<l>g Vi

Figure 4.17: A correct protonet.

Definition 4.36. Protonets are constructed from IMLLL2 links with the excep-
tion of d7-links, but with the addition of &~ -links:

where V, W are sets of second-order variables. W is called the etgentype of the
&7-link. The set of eigenvariables of a protonet will be denoted by £ as before.
For each node n of the net, we define the set of variables v(n) associated with a
given node n as follows:

viat) = vie) =0 v(Xt) = v(X7)={X}
v(vy) = v(n")\{X} v(Oy) =V

For other links with conclusion n, we set v(n) = v(n1) U v(ng) or v(n) = v(n)
depending on the number of premises (n; and possibly ny are the premises). Pro-
tonets must satisfy the following healthiness conditions:

e the eigenvariables of V*-links must be distinct,
e if n is a conclusion, then v(n)NE = @,

e for each O -link v(n™) CVUW.

Correct protonets are defined by analogy with the correctness of essential nets:

86 CHAPTER 4. ESSENTIAL NETS

a- X X+ X~ X+
NS ! I T
® at Vi § v
ey N/ lxy
j%) ®+ %) §
)8)+

Figure 4.18: Incorrect protonets violating (vi).

Definition 4.37. A protonet is said to be correct just in case:

(i-v) from Definition 4.22 hold,

(vi) any path to from the root to the conclusion of a & -link whose eigentype
contains a free eigenvariable X passes through the Vi-node and the path
between the V§-node and the conclusion must be well-formed.

A correct protonet is shown in Figure 4.17. Two incorrect ones appear in Fig-
ure 4.18. All of them are translations of essential nets. Eliminability of &~ -links
is defined to make them compatible with 3~ -links.

Definition 4.38 (Eliminability). A terminal &~ -link is eliminable just in case
W nNE = @. We adopt previous definitions for other nodes.

The healthiness conditions ensure that protonets are a proper generalization of
essential nets: an essential net is sequentializable if and only if the corresponding
protonet, arising by the translation of 37 -links into &~ -links, is sequentializable.
Similarly, removals of eliminable links do not break the correctness of protonets,
which enables inductive arguments on the size of a net. We only check that this
assertion is true for the new links, because the reasoning is the same as before
for the rest of links, and we will see the healthiness conditions at work. When a
&7 -link is eliminable, in addition to W NE = @, we also have V NE = @, because
it is terminal. Thus, (V UW)NE = @. Now, by the third healthiness condition,
v(n~)NE = @ holds, so n~ will be a ‘healthy’ conclusion of the net, once the
eliminable link is thrown away.

Remark 4.39. We could go on and define a ‘logic’ that underlies protonets. The
polarized rule for &y, would be:
—A-,I'",B*

) Y

(A), 0 LBt

4.4. IMLAL2 87

Figure 4.19: A correct affine net.

where FV(O(A)) =V by definition and FV(A) C V UW. Instead of contraction,
we would then consider a new connective ¢~ with a rule identical to the *®~-rule.
Then both soundness and sequentializability could be proved and sequentializability
would correspond to being a proof in the calculus. Of course, we make no claim
that the logic is meaningful at all. What matters to us is that correct protonets
are sequentializable, because the proof for IMLLL2 can be repeated for protonets
only with some cosmetic changes.

4.4 IMLAL2

This is the last stage of our programme to develop essential nets for IMLAL2. We
are going to tackle the polarized version of the weakening rule:

0 AT

(veal) = a7

Definition 4.40. Essential nets for IMLAL2 (affine nets) are built from IMLLL2
links with the addition of weakening links:

W
Weakening links have no premises—there is just one conclusion, called a weakening

node. We set ¢(W~) = W~. The nets are subject to all constraints concerning ¢
(for contraction and 3~ -links).

Obviously, the affine extension applies not only to IMLLL2, but also to its sublogics
IMLL, IMLL2 and IMLLL.

88 CHAPTER 4. ESSENTIAL NETS

(VX.X) b VX.§X

| | ! -

§ ? g+ X X+

L / . / T+
P ® §
poo ST
XX I-X.X vi
L ’
_

where 77 = (IT§T Xt @ XH@F M (X9t X)), T, =§ (Xt X))ot X

Figure 4.20: A correct affine net.

4.4.1 Correctness

The correctness criteria we have considered so far use graph-theoretic properties
that could also be verified if new edges were added to the net (not necessarily
following the construction rules of essential nets). We will say that a directed
edge strengthens a weakening node, if it leads from some positive node to this
node. We decree that whenever a path uses the strengthening edge, the positive
node which is the source of that edge is not counted as visited, as if there were
two options: to visit the node, or to circumvent it using the strengthening. For
instance, in Figure 4.19 the §"-node will be ignored.

Definition 4.41. An affine net is correct if it is possible to strengthen each weak-
ening node once so that the resultant graph satisfies all the correctness criteria for
IMLLL?2 essential nets.

Two correct affine net is shown in Figures 4.19 and 4.20. To relate affine nets with
protonets and put them on a more formal basis, we observe that:

Proposition 4.42. An affine essential net is correct if and only if it can be trans-
formed to a correct protonet by the following modifications:

4.4. IMLAL2 89

fre F (a—oe)®(a—ob) —f (a®@b—ob)—oct a
b i_l |
a b
N
/

Figure 4.21: Incorrect IMAL nets.

e cach weakening node W™ is replaced with

a
|

OFV(W*)

where a~ is part of a new axiom link leading from a* attached to some

positive node n™ as shown below

at nt
&t
e cach d7-link is replaced with the corresponding <~ -link.

The correct protonet that witnesses the correctness of an affine net will be called
its extension. Observe that for each node n of an affine net FV(¢4(n)) is the

same as v(n'), where n' is the corresponding node in its extension (e.g. OEV(W)

corresponds to W). Therefore, an extension of an affine net has the same variable
content as the original net.

Incorrect nets, like those shown in Figure 4.21, will not have any extensions.
In Figures, instead of adding the dummy ®'-nodes, we have simply drawn the
additional links directly from n* with dotted lines. Note that it may be necessary
to have several links from a single node n™. As the proof of the next theorem
shows, the strengthening edges indicate the moment when the weakening nodes
could be introduced.

Theorem 4.43. Each cut-free derivation in IMLAL?2 gives rise to a correct affine
net.

90 CHAPTER 4. ESSENTIAL NETS

Proof. To each sequent calculus derivation we assign a pair (A, P) where A is an
affine net and P is its extension:

e all rules apart from (weak) and (37) are interpreted as for IMLLL2 both for
A and P,

e (37) is interpreted by a new 3~ -link in .4 and the corresponding <&~ -link in
P,

e (weak) is interpreted by an addition of the weakening node W~ to A. The
associated extension arises from P by modelling:

—a ,a" +[",B"

a7 at ®F BT
|—<>FV(W)a_, ', @t BT

instead of the weakening rule. Here we need to assume that no variable
from FV(W ™) has been used for universal quantification in ~I'", B* (this is
enforceable by a-conversion).

By Remark 4.39, P is always a correct protonet. O

To optimize the verification of correctness in affine nets, it is worth understanding
that some strengthening edges are more ‘canonical’ than others. The weakening
rule commutes with any non-axiom IMAL2 rule, which makes it possible to ‘push’
its applications upwards in proofs. In IMAL2 this results in all weakenings being
performed immediately after the identity rule i.e. a strengthening edge from the
positive end of an axiom link can always be found. Unfortunately, this is no longer
true for IMLALZ2, because in general weakening cannot be permuted with the rules
for § and !. However, this means that one can always find a strengthening edge
from either an atomic node a*, a §"-node or a !*-node. Later we propose a notion
of normal form for affine nets, which is based on a dual procedure that delays
weakening i.e. pushes it downwards. The significant difference between the two is
that the latter is a deterministic operation.

A necessary correctness condition

Correct protonets satisfy the correctness condition (ii). As an easy consequence,
we show that correct affine nets must meet this property too.

Proposition 4.44. In correct affine nets each path from the root to the sink of a
2+-node passes through the 2 -node.

4.4. IMLAL2 91

Proof. We reason by contradiction. Suppose there is a path from the root to the
sink of a "®"-node that fails to visit the ®*-node. Consider any extension of the
affine net. By definition, it must satisfy condition (ii). Yet, the path still exists in
the extension, so the initial affine net could not be correct. O

By Proposition 4.44, the right affine net in Figure 4.21 is obviously incorrect.

4.4.2 Sequentialization

Before stating the theorem, we need to extend our definition of sequentializability
by specifying when weakening links can be eliminated. This must be done to
ensure that sequentializability corresponds to the existence of an IMLAL2 proof
generating the net. The case of weakening links is rather simple.

Definition 4.45 (Eliminability). A terminal weakening link is eliminable. Def-
inition 4.32 applies to the rest of links.

Theorem 4.46. Correct affine nets are sequentializable.

Proof. As before, when an eliminable link is taken out from a correct affine net,
correct affine nets arise. Hence, we can prove the theorem by showing that any
correct net is either an axiom link or one of its terminal links is eliminable.

Consider an extension of a correct affine net. By Remark 4.39, the extension is
an axiom link (then the affine net must have been the same axiom link) or it has
an eliminable link (with respect to the eliminability of links for protonets).

e If the eliminable link is a &~ -link corresponding to some 37-link in the orig-
inal affine net, then that 3 -link is eliminable in the affine net (recall that
the v-values for both are the same and the same variables occur in their
eigentypes).

e If the eliminable link is a &~ -link corresponding to a weakening node W~ in
the original net, the weakening node will then be eliminable in the original
net.

e If a ®-node that has been added in connection with some weakening node
is eliminable, we first consider the correct protonet whose root is a™.

(Wf)—node
corresponding to the weakening node in question. Therefore, when we
subject the net to the same kind of case analysis, an eliminable link will

be found in the next round.

— If it is not an axiom link, it will at least contain the <>1}V

92 CHAPTER 4. ESSENTIAL NETS

— If it is an axiom link, we ignore it and consider the other protonet result-
ing from the split (with root n*). By identical reasoning an eliminable
link will be identified in a finite number of steps.

e [f the eliminable link is none of the above, it will have a corresponding copy
in the original net, which will also be eliminable (if the removal of a node
splits the extension, it will surely split the original affine net).

O

4.4.3 Collected and canonical nets

In essential nets for linear logics (without weakening) each node was reachable from
the root. The (weak) rule no longer preserves this condition and introduces nodes
that are unreachable. If a weakening link participates in other rules, new nodes—
not necessarily weakening nodes—will become detached from the root. This is
a manifestation of the fact that affine nets do not provide ‘spontaneous’ garbage
collection. In what follows we aim to identify a notion of affine nets in which only
weakening nodes are unreachable from the root. Nets like these come from proofs
in which the use of weakening is delayed for ‘as long as possible’.

Definition 4.47. An affine net is collected if its unreachable nodes are the weak-
ening nodes.

Hence, in collected nets all axiom links are reachable from the root and each weak-
ening node is

e cither a conclusion,

e or a premise of a ’®-link or a contraction link, which is reachable from the
root.

The last possibility is rather unwelcome, as we argue later at more length. Each
correct affine net can be transformed to a collected form by contraction of its
unreachable nodes to weakening nodes (we describe a subtler reduction in the next
section). For such an eager procedure to generate another correct net the following
lemma should be true.

Lemma 4.48. If the conclusion of a link in a correct affine net is not reachable
from the root, neither are its premises.

Proof. The only unobvious case is that of a "®*-node and its sink. We need to
show that if the sink of a '®*-node is not reachable, nor is its sink. Fortunately,
this follows directly from Proposition 4.44. O

4.4. IMLAL2 93

(VX.X) F VX.§X

X- X+

e
§1+ X- X+
~. T+.*'
® §
; 2
XX~ VT+
A\l * X
TTIX. X -
\C/

Figure 4.22: A correct collected affine net.

The collected counterpart of the net from Figure 4.20 is presented in Figure 4.22.
For collected nets the correctness criterion collapses to the standard conditions for
IMLLL2 without the need for a correct protonet as a witness. But, of course, to
prove the result we need to show that an extension always exists in such cases.

Theorem 4.49. Collected affine essential nets satisfying (i) - (vi) are correct and,
hence, sequentializable.

Proof. Given a collected affine net satisfying (i)-(vi), we show how to find the
strengthening edges for each weakening node making sure that the conditions are
preserved.

e We strengthen each weakening node which is a conclusion of the net using
the root of the net. It is easy to see all the required conditions still hold.

e Weakening nodes that are sinks of ®*-nodes are strengthened from the posi-
tive premises of the corresponding ®*-nodes. Again, it is easy to verify that
the correctness criteria are preserved.

e If a weakening node is a premise of a " -link, the conclusion of the link
(call it ¢) must be reachable from the root. Consider an arbitrary path from
the root to ¢ and especially its final segment ¢ starting at the last negative
atomic node that c visits:

d=av - ve.

Nodes v; (1 < i < k) can be of the following kind: a ® -9 -,§7-, ?"-node
or a 3 Z.A -node.

94 CHAPTER 4. ESSENTIAL NETS

— If no v; is a bracketing node, we strengthen the weakening node using a™.
The reachability relation on nodes stays the same and the strengthening
edge does not circumvent any bracketing nodes, any V*-nodes or 97 -
nodes (indeed, any positive nodes). Therefore, all correctness criteria
will be preserved.

— If there exists i for which v; is a (negative) bracketing node, we pick the
largest such ¢ and use 0(v;) as the source of the strengthening edge.

Because there exists at least one path from d(v;) to v; (remember that
the net is collected!), the graph remains acyclic as it was. As each such
path is well-bracketed (by (iv)), all conditions referring to bracketing
((iii),(iv),(v) and the second half of (vi)) are preserved.

Suppose (ii) does not hold and there exists a ®"-node p and a path s
from the root to s, that does not visit p. It will contain the strengthening
edge then. Consider another path s’, which is otherwise the same as s,
but in which the strengthened link is replaced with a path from §(v;) to
v;. That path comes from a correct collected net, so p occurs in between
d(v;) and v;. But the path between p and s, cannot be well-bracketed
(v; has no matching bracket) contradicting (iii) for the original net.

Finally, suppose the strengthening edge bypasses some Vi-node, yet
leads to a 37 -link whose eigentype contains X. Again, let us consider
the path that results when the strengthening edge is replaced with a
path from d6(v;) to v;, which must contain the Vi-node. But then the
second half of (vi) would be violated in the original collected net, as we
would have a malformed path from V} to some 3~-node with eigentype
containing X.

e The last case is when a weakening node is a premise of a contraction link;
then we proceed as for a *®~-node.

We have already remarked that the weakening rule commutes with any IMLL2
rule. One source of unreachable nodes is the lack of such commutation between
weakening and rules concerning ! and §. This would involve pushing a formula
through the interface of a box, which can be done only in a few cases. For (§) and
(§,) the weakening formula must have the shape 7~ A~ or § A~. In the case of (!y),
only one application of weakening (for 7~ A~) can be permuted upwards and for
(!) commutation is out of question. However, by delegating weakening to earlier
stages of a proof we would create unreachable nodes, contrary to our intentions.

4.4. IMLAL2 95

la F (la®la)®'la

ar* a{jﬁ jz
! It !

2— 1+ I+ gt

TN
C ®t

'\C_/ A

Figure 4.23: Conservation of the order of contractions.

The normalization should proceed in the opposite direction:

-

|~ Ow- Oe{§!}

0
Note that now there is no limit on how many formulas can be pushed out of a box.
An analogous problem arises in the term calculus, where it is handled by removing
dummy variables from interfaces of boxes (Section 2.5.1). Yet another imperfection
in the affine net setting is the interpretation of weakening followed by contraction

(for the first time the term language has the edge!). The following reduction then
applies:
W~ n-
NS ~ n
o
A related deficiency is the conservation of the order in which contraction is per-
formed on identical formulas (see Figure 4.23)—the term calculus gets around these
difficulties and so will our game models. To fix the representation of normal forms
we allow contraction links with a variable (greater than two) number of unordered
premises. Additionally, in order to avoid the problems with weakening, we can
stipulate that their premises be 77 -nodes. The derivation represented by the net
in Figure 4.23 would generate the net in Figure 4.24.
It is possible to relate such nets with sequent-calculus in a precise way. A solu-
tion using discharged premises has been presented in [41], where weakening is a
treated as a special case of contraction. This is no longer possible for affine logics,
nevertheless the basic ideas are still applicable.

Finally, we examine the remaining case of weakening nodes being used as principal
formulas in other (negative) rules. If two formulas are introduced by weakening

96 CHAPTER 4. ESSENTIAL NETS

A
NN
N

Figure 4.24: A net with a contraction link of arity 3.

and subsequently combined using the (%®~) rule, we can replace them with one
application of weakening:

Wy W

N S e ey
N

The (®7) rule is the most complicated one, as we will contract the whole empire
of AT in one step (cf. the corresponding garbage collection rule for terms, where a
whole term needs to be erased) in addition to the ® -node:

AT w-
\ / ~ong e o, AT WO
.

Definition 4.50. Collected affine nets with contraction links of changing arity are
canonical if no premise of a contraction link is a weakening or a contraction node.

It is with respect to canonical nets that our full and faithful completeness results
will hold.

4.5 Extensions

We briefly mention some features that were not included in our presentation, which
was aimed at the introduction of normal forms of proofs.

First of all, our nets represent n-expanded proofs, but the sequentialization
results easily apply to nets in which there exist axiom links between complex for-
mulas. It is not so obvious though how the cut rule could be interpreted. This

4.6. TERMS AND NETS 97

would raise two problems: the need for a new sequentialization result and a cut-
elimination algorithm. The solution has already been proposed in [80]: a cut-link
should resemble a ® -link in terms of orientation and polarity, but, of course, its
conclusion cannot be regarded as a premise of other links. Therefore, once intro-
duced it remains a ‘conclusion’, although on the other hand it cannot be treated
as such in strict terms: paths from the root to conclusions are required to be well-
bracketed, but this well-bracketing will often be broken for a cut-link, because it
will not participate in subsequent (§) and (!) rules (‘boxed’ cuts). Nevertheless,
due to (iv), for each cut-link there exists a sequence of negative bracketing nodes
such that in any path from the root to the cut-node the unclosed positive brackets
correspond to the negative ones. Hence, a cut-link could in principle be treated as
a ® -link with several negative ! -links placed below it. Besides, we should require
that ¢(n]) = ¢(n;)+ hold for its premises nj, n, .

A cut-elimination algorithm for the nets with cut-links can be implemented
along the lines of the reduction rules for the sequent calculus as given in Chapter 2
(which in turn follow the original cut-elimination procedure for LLL proof nets
with boxes [42]). When one is interested in n-expanded and canonical forms (as we
are), extra normalization and n-expansion should follow the usual cut-elimination.
Our motivation is compatibility with the categorical framework (to be presented
in the next chapter) and representability in the lambda calculus (for example, the
binary ‘Church numerals’ should be the only canonical proofs of BIN).

4.6 Terms and nets

Both proof-terms and essential nets are representations of sequent-calculus proofs.
Essential nets have the advantage of implementing various commuting conversions
for free: (after we add contraction links with variable arity) mo-equivalent terms
induce identical nets. The converse statement would amount to a coherence theorem
for the class of light affine categories of the next chapter and we leave it for future
research conjecturing that it is also true.

Chapter 5

Some category theory

In this chapter we outline the categorical structure that is needed to model various
fragments of Light Affine Logic and derive categorical semantics of IMLAL and
IMLAL2, which we call light affine categories and hyperdoctrines respectively. The
presentation is aligned to the game models of the next chapter, which will be
instances of the framework presented here. The results build upon research into
categorical semantics of Intuitionistic Linear Logic [19, 86, 20, 76] and second-order
polymorphism [112, 106, 65, 68, 31].

5.1 Autonomous categories

We begin with IMLL whose proofs can be interpreted as morphisms in symmet-
ric monoidal closed categories (also called autonomous or closed) [87]. In fact,
IMLL cut-free proofs (up to m-congruence) represent morphisms in free such cate-
gories [86, 76].

Definition 5.1. A symmetric monoidal category C is a category equipped
with a bifunctor ® : C x C — C, an object [called the tensor unit and four
isomorphisms

aspc @ A®(B®(C) — (A®B)®C associativity
Cap A®B — B®A symmetry
[4 : I®A — A left unit
ra Al — A right unit

defined for and natural in all objects A, B and C' such that the diagrams in Fig-
ure 5.1 commute. Moreover, Iy and r; : I® I — I are required to coincide. We say
that C is symmetric monoidal closed (SMCC) or autonomous just in case
for each object A € C, the functor (—) ® A has a specific right adjoint A —o (—).

98

5.1. AUTONOMOUS CATEGORIES 99

A® (B® (C® D)) (A®B)®C)® D
idA®aB,07D aA,B,c®idD
A® (B®C)® D) (A®(B®C))®D
A4,BeC,D
A (BeC) 2P (49 B)oc —22PC, 0w (A B)
idy ® Cp,C 4C,A,B
A® (C® B) (A®C)® B — (C®A) @B
AA,C,B Cac ®idp

id
A® I®B. A®B—1%8 | A9 B AR
/
N N
(AR) ® B® A A<—I®A
rA®|dB

Figure 5.1: Commuting diagrams of autonomous categories.

Throughout the chapter the composition of two morphisms f : A — B and
g : B — C will be denoted by f;9 : A — C. idy : A — A will be the
identity morphism on A. Bifunctoriality of ® means that id4 ® idg = idsgp and
(f1®f2); (1 ®92) = (f1;91) ® (f2; g2), where the morphisms involved have suitable
types (such that the left-hand side makes sense). The existence of an adjunction
between (—) ® A and A — (—) is equivalent to the specification of a natural
transformation

evy: (A —o(—)®A— Idc (where Idc : C — C is the identity functor)

for each A € C such that given f: C ® A — B there exists a unique morphism
f C — A —o B satisfying (f® ids);evap = f.

Before we show how to interpret IMLL proofs in autonomous categories let us recall
the term calculus in Figure 5.2. It includes new rules for the tensor unit, which

100 CHAPTER 5. SOME CATEGORY THEORY

(id) r:AF 24 A
Mr:Ay:BAF s:C
My:B,x: AAAF s:C
x:AF s:B AFt:A
VA s{t/z*}: B
' - s:A
Dox:l F (x/+)s: A

(exch)

(cut)

(1-1)

(I-r) Fox: T

r:Ay:B Il F s:C

2: A B,T F (2B /24 @ yP)s: C
' -s:A AFt:B

A F s®t:A®B

' - s: A y:B,AFt:C
z:A— B T,AF (228 s/yBt:.C

r:AF s:B
' - Az?s:A—B

(1)

Figure 5.2: Rules defining the valid typing judgements of IMLL.

were irrelevant to the complexity considerations of Chapter 2. Yet they become
important in categorical type correspondences: the tensor unit is used to represent
empty variable contexts so that closed terms induce elements of categorical objects.

Remark 5.2. The IMLL syntax is the same as in [76] but we mention in passing
that the explicit let-construct (z /*)— interpreting the left introduction rule of
the unit could be omitted (at least for IMLL). A change like this would simplify
the syntax without modifying the equational theory of proofs, because (x /*)—
commutes with any IMLL rule anyway. Therefore, by leaving it out we could
accommodate more IMLL commuting conversions in an implicit manner. However,
the presence of (x /«)— allows one to make subtle distinctions in the theory of
proofs after weakening is added, namely between (I-1) and weakening for /.

The commuting conversions in IMLL are either factored out by the syntax (all com-

5.1. AUTONOMOUS CATEGORIES 101

mutations with (exch)) or accounted for by notions of 7- and o-congruence [76].
The congruence is defined to be the contextual closure (in addition to reflexivity,
symmetry and transitivity) of the axioms:

(m-cong) nCt] ~ C[nt]
(0-cong) Cltlo ~ C|to]

where 7 ranges over the let-constructs

(A frey)—, (70 sly)—, (w/x)-

and o over the explicit substitution constructs —{t /z*}. The congruence axioms
can be invoked on the condition that both sides of the respective judgments are
typable and have the same type. Contexts are defined by:

C == [-] | s{C/2} | Cls/z?} | s@C | C®s | Aax?.C |
(198 Jz@y)C | (470, Cly")s | (2470, s/y?)C | (z/%)C

Reduction in the calculus (Figure 5.3) implements a cut-elimination algorithm and
concerns equivalence classes of terms (modulo mo-congruence) rather than sole
terms. This is slightly different from the reduction given in Chapter 2 as we explain
in a moment (for example, n-expansion is allowed). Rules for the unit are also
new. The associated equational theory of proofs is defined by mo-congruence and
(the contextual closure of) the rewrite system, which is strongly normalizing and
confluent [76]. Observe that there are no critical pairs in the system thanks to the
side-condition for (atom-/3).

The (atom-(3) rule is a restriction of (var-3) (Figure 2.4) to atomic types differ-
ent from I—and so a different cut-elimination algorithm (from the locally poly-time
procedure of Chapter 2) is in action. In proof-net terminology, only cuts involving
atomic axiom links are now eliminated (in other cases they are only propagated);
non-atomic axiom links will be expanded as long as atomic ones emerge. Before a
cut is processed the substituted term must reach a canonical form dependent on
its type. For linear arrow types this is a lambda abstraction, for tensor types s ®1,
for I the term . We can delay the elimination of the cuts as in (var-{), because
n-expansion rules ensure that the cut can be eliminated using other -rules. Analo-
gously, the (rename-(3) rule is no longer needed, because n-expansion and the other
0 rules subsume it. Consequently, cut-elimination is no longer lazy and rewriting
(even in untyped form) need not be a polynomial-time operation. Nevertheless,
only FP functions will be computed: after all, the only essential difference between
this system and that from Figure 2.4 is the presence of n-expansion. The formu-
lation considered in this chapter has a clear categorical description which can be
modelled faithfully with games.

102 CHAPTER 5. SOME CATEGORY THEORY

(atom-3) 2%{s/x*} — s:a (ais anon-I atomic type)
(I-8) ((x /x)s){* [a'} = s
(I-n) a' = (@ /x)x
(@-8) ("7 [zt @ y")s){u@v /2"9"} = (s{u/zt}){v /y"}
(@n) 2497 = (4P /11 @yP) (z @ y)
(—o-B) (7, s/y" Y {Aetu 2498} — t{ufs /x1} [y"}

(—o-n) 248 = Azt (21w /yP)y

Figure 5.3: Rules defining reduction of IMLL proofs.

Remark 5.3. If the (z /%)— construct was to be left out, the reduction rules for
I would have to be replaced with

(I-B) s{* [a'} s

(I-n)" 2" — x

Next we show how IMLL typing judgments are interpreted in an arbitrary au-
tonomous category C. Suppose an object [A] of C is assigned to each base type
A. The assignment is then extended to all types generated from base types with
® and —o by:

(=1 [AeB]=[A]@[B] [A—B]=[A]—[B]
Derivations of z1 : Ay,---, 2 : Ay F t: B will define morphisms in C, denoted by
[x1: Ay g s Agy oo 1t Ap 1,0 0 A F t: B],

between
[y Ay, g s Ay ey apr Apoyy e 0 A = (([AL] @ [A2]) -+) @ [Ap—1]) © [Ak]

and [B]. If the context is empty, the domain is simply [@] = I. Observe that
by composing a,a !, c,id with the use of the functorial operation ® on morphisms

5.1. AUTONOMOUS CATEGORIES 103

one can permute the objects in the representation of contexts as well as changing
the bracketing. It turns out that all possible permuting isomorphisms with a given
domain and codomain are the same thanks to the defining diagrams of autonomous
categories. This property is an instance of the Coherence Theorem for symmetric
monoidal (not necessarily closed) categories [72]. It also holds, if we add the families
I,I7', r,r~! to the generating set (the inverses of |, r are especially useful when two
contexts are merged and one of them is empty). The unique isomorphisms are
called bookkeeping maps.

The denotations of terms (in context) are defined by induction on the structure of
derivations [86, 76]:

o z: Azt A=idyy: [A] — [A4],

[T,y:B,x: A A F s:C)|=r;[[x:Ay:B,A F s:C], where & is the
bookkeeping map that swaps the places of [A] and [B],

[I0,A F s{t/z4}: B] = k; (idprp @ [A + ¢: A]);[D,2: A F s: B] where
k: [, A] — [I] ® [A] is the appropriate bookkeeping map,

[Cx:1 F (x/x)s: Al =rpp; [I' F s : A] (rprp is redundant for I' = @),

[F*:1]=id;:] —>1,

[: A® B,T F (298 JzA @ yB)s] =[x : A,y: B,T + s],

[T, A F s®t:A®B] = k([F s: Al ®[A + t:B]), where & :
[T, A] — [I'] ® [A] is the bookkeeping map,

[A— B, T,A (2478 s/yP)t : C] closes the diagram below (stands for
suitable bookkeeping maps)

[A—o B,T,A] -------Eo 222 D P [C]
p ly: B,AFt:C]
([A — B] @ [I']) ® [A] [B,A]
(idiaop @ [T F 51 A]) @idpag K
([4 — Bl @ [A]) ® [A] - [Bl ® [A]

evial[p] ® id[a]

o [- Az?.s: A—o B]isthemateof [,z : A I s: B] across the adjunction
() ®A-HA—(—).

104 CHAPTER 5. SOME CATEGORY THEORY

Because the interpreted objects are terms, one needs to show that the above defi-
nition does not depend on the choice of a derivation. Fortunately, two derivations
of the same term can only differ by the order of applications of (exch) and (I-1).
Thus the problem reduces to the already mentioned Coherence Theorem.

The semantics is sound with respect to the congruence and reduction rules. For
detailed proofs we refer the reader to [76]. Conversely, the classifying syntactic
category build around the syntax is autonomous, i.e. autonomous categories are
the categorical counterpart of IMLL. In the sections to follow we derive a categorical
semantics for the rest of IMLAL2 connectives starting from §.

5.2 Symmetric monoidal functors

By the rule

xlAl,,xkAkl—sB Dzzg,' 1<Z<k

) oyt OhAy, g Op Ay B §(2 /2, 2 /oy) (s) < §B

we have §A F §B whenever A F B. Besides, (§-n) implies §(id4) = id§A and the
reduction rule (§-§) specializes to

§Ca /2")(){8(u/y")(®) [} — §Cy/y) (s{t /2"})

which means that § is a functor. In addition, §4 ® §B + §(A ® B) is provable, i.e.
we will need a family of morphisms my g : §4®§B — §(A® B) that is natural in
A and B (as expressed in the (§-§) rule). Also, F §I is provable, which calls for a
special morphism m; : I — §I. Furthermore, because the order of variables in the
interface of a §-box is irrelevant (i.e. (§) commutes with (exch)), § is symmetric
monoidal.

Definition 5.4. A functor § : C — C is symmetric monoidal if there exists a
natural transformation

mup:§AREB — §(A® B)

and a map my : I — §I making the diagrams in Figure 5.4 commute.

For a start, this additional structure enables us to interpret the rule

Fs:B
A OH T

5.2. SYMMETRIC MONOIDAL FUNCTORS 105

81 54 — 14 (1 @ A) 4@ 81 —2L g4 @)

m; @ idg , §(l4) idg , @ my §(ra)

I®§A §A A® I

§a 64

§A

my B ® idc MAwB,C
_ >

(8A®8B) ®§C

§(A® B) ® §C §(A® B)®C)

A A.8B,8C §(aa,B,0)

§A® (§B ® §C) §A®§(B®C)

. §(A® (B® ()
|d§A ® mp,c MA,BoC

54058 M 54 @ B)

C§A65 §(ca,n)

§B®§A —— §(B® A)

mpg A

Figure 5.4: Commuting diagrams of a symmetric monoidal functor §.

by

[= §(s):§B] =mp§([= s:B]).
The diagrams associated with a symmetric monoidal functor allow for an extension
of the Coherence Theorem: there is a unique natural transformation

My, (841 @ 84z)) @ 84k — §(((A1 ®@ As) - ++) @ Ay)

constructed from id,m,a,a ", c, |17, r,r ! using composition and the functorial op-

erations ® and §. The following restriction of (§)
(57) 1A, .., A s B 1 <<k
oy §AL w8 A F §(a oy, 2 Jag) (s) 1 §B

now admits an interpretation. Given a context I' = xy : Ay, -+, xp : Ag let §I" be
the context x : §4,,---, 2} : §4,. Then we can define

[T F §(a) /o, - 2l /o)(s) : §B] = ma,..a,; §([T F s: B]).

106 CHAPTER 5. SOME CATEGORY THEORY

Exponential redexes

(1) (/20) (){(y/yo) (t) [2} = Ky /yo) (s{t /mo})
(8D §C- a/zo, Y)Wy yo) () Jx} = §(- - y/yo, -+) (s{t [zo})
(8-8) §(---,a/mo, - Y(){§(y/uo)(t) /x} = §(-- -, y/yo, -)(s{t [zo})

n-redexes

(bp) 24 = Y2/ 20) (20)
(§m) 284 = §(2/20)(2)

Figure 5.5: Reduction rules for ! and §

The (§-§) rule (for a !-free syntax) is modelled soundly, because of functoriality of
§ and naturality of m:

de , ®
§A®§CI§A §A @ 58
ma.c ma B
A A
e e Y

To cover its full version we have to able to interpret ! first.

Analogously to the case of §, it is easy to see that ! should be a functor and that
there should exist a map sy : [—!1.

Fs:B
! P
(t) = 1(s):!B
is then denoted by
[Fs):'Bl=s;([+ s:B]),
while the rule
0 ¥:AF s:B
’ z:!AF Wa/z")(s): !B

5.3. WEAKENING AND GARBAGE COLLECTION 107

gives rise to

[z :1A F Ka/z"Ys)|=([x: A + s:B]).

In order to assign denotations to the remaining instances of (§), let us observe that
'A F §A is provable, so we should have a family of maps z4 :!A — §A at our
disposal. Actually, z :! — § must be a natural transformation such that

1
N
7 - §1

I

commutes (as we shall see, this is due to the (!-§) rule). That is to say, z is as
much (or, rather, as little) of a symmetric monoidal transformation as possible
given that ! is not symmetric monoidal. The full (§) rule can now be interpreted
through the weaker instance (§7) by composition with appropriate maps from z.
The semantics validates (!-§) since m and z are natural, and § is functorial:

id§A®!(f)
§AR!C - §AQ!B
id§A®ZC id§A®ZB
idg , @ §(f)
A ®8C tA®SB
ma,c Ma,B
A A ;
A4S C) oo HA@B)

For the special case of a !-box with an empty interface s;;z; = m; is a necessary
condition:

O TS €D N
Zr ZB
my
§1 §B

§(f)

108 CHAPTER 5. SOME CATEGORY THEORY

t{s /yt} —t

(2498 [z @ yB)s — s

(248 t/yB)s — s

1Cy'y)(s) =1(s)
G0y, (5) = 8(-,)(9)
(oA ByAlBlalyg

provided z,y do not occur in s

Figure 5.6: Garbage collection rules

5.3 Weakening and garbage collection

In our game categories the tensor unit is a terminal object, but in general such a
requirement would be too strong. Therefore, we first derive a more economical set
of properties which turn out to be precisely what one needs to model all reduction
rules soundly.

Let I : C — C be the constant functor assigning I to any object and id; to any
morphism. A natural transformation w : I'dc — I is needed to model the logical
rule (weak) and the reduction rule (var-v), i.e. for each f : A — B we have

fiwp = wy.

' s: A
y:BF s: A

(weak)

is then interpreted by
[Cz:B F s:A] = (idpy @wg);rpep; [I s A]

This time two derivations of the same term may differ by the order of exchanges
performed before and after the weakening, but because all bookkeeping maps are
natural our definition remains correct.

Let us turn to the garbage collection rules. (—o-7) and (®-7) are modelled soundly

5.3. WEAKENING AND GARBAGE COLLECTION 109

because of naturality of w. The latter requires the commutativity of

A®BWA®WB

Il

which easily follows from naturality of w and r. If both the reductum and the
reduct are to be denoted by the same morphism in (!-y) then

Wig

1A 1

Sr
Hwa)
"7
should commute for any A. By naturality, this is equivalent to commutativity for
A =T only:

7
Because w;wr = wy, we also have !(wy4);!(wy) =!(wy). Therefore, all we need to
model (I-v) is wir; sy =!(wy).

Similarly, for a sound interpretation of the instance of (§-v) in which variables of
type §A are erased, we only need wgimp = §(wy). The remaining case is that of
A-typed variables in interfaces of §-boxes, which requires

P

§A

Wig §(WA)

[— 8]

my

110 CHAPTER 5. SOME CATEGORY THEORY

€A

1A TAR!A
70
J @ CialA
7
- IRIA TAR!A
Wiy ® idig
1A e 1A®!IA
ea eqs ®idiy
|AGIA - 14 ® (140!4) (148!4)2!4
ids ® eiq AIAIAA

Figure 5.7: Diagrams of a commutative comonoid.

to commute. This condition turns out to follow from earlier requirements derived
for (I-v) and (!-§) (namely s;;z; = my) and naturality of z:

14— LA
Wia H(wa) §(wa)
I 1T .81
Sr Zr

5.4 Commutative comonoid

To handle contraction we shall require the existence of a natural transformation
eq A —!A®!A such that (A,e4,w,4) is a commutative comonoid, i.e. the
equalities in Figure 5.7 are satisfied. The diagrams simply accommodate the com-
muting conversions generated by the contraction rule with (weak),(exch) and
itself. The rule

xy 1A g AT F s B

x1 AT B s[xy/xo] - B

(contr)

can then be modelled by

[o1 1A T+ s[zy/xs] : B] = k15 (ea @ idpry); ko [21 0 1A, 29 1A T F 50 B]

5.5. TERMINAL OBJECT 111

Suppose there are n > 2 free occurrences of z in s.

s{w/wo)(t) [z} = ${{w/wo)(t) [21} - {H(w/20)(1) 2}

where s’ is obtained from s by distinguishing the n occurrences of z as
21, +, 2p Tespectively.

Figure 5.8: The replication rule.

where k1, ko are bookkeeping maps. Naturality of e amounts to a sound interpre-
tation of replication (Figure 5.8).

5.5 Terminal object

We have already mentioned that the game models we consider in the next chapter
have a terminal object, which is at the same time the tensor unit. The terminality
of the unit can be characterized using w : Idec — [in a very simple way:

Lemma 5.5. [is terminal if and only if w; = id;.

In other words, I becomes terminal if the (I-1) rule is regarded as an instance of
weakening. This corresponds to replacing the rules (/-3) and (I-n) with (/-3)" and
(I-n)" respectively. (I-3)" is in fact an instance of (var-y). Note that for terminal
I there is a unique w : I'dc — I. Besides, it turns out that in a model of IMLAL
in which I is terminal, §7 and !I are also terminal, i.e. isomorphic to I.

Proposition 5.6. If I is terminal in a category satisfying the conditions that make
our interpretation of (!-y) and (§-v) sound, then §I and !I are isomorphic to I.

Proof. Take §1 for example. We have W my = §(wy). Because w; = idy, W, my =

id§1 holds. As I is terminal, mp; W, = id; holds too, so §/ is isomorphic to I. [

Indeed, in our game models §,!7, I are all interpreted by the same object, the
empty game, which is terminal. Observe that if 1,87, !] are terminal, we have:

W§1; mr; = §(WI) Wir; St :!(WI) SryZr = myg

for free.

112 CHAPTER 5. SOME CATEGORY THEORY

5.6 Light affine categories

We summarize our findings in a single definition for ease of reference.

Definition 5.7. A light affine category C is an autonomous category equipped
with

1. a symmetric monoidal functor § : C — C,
2. a functor ! : C — C with a map sy : [—!1,

3. a natural transformation w : Idec — [satisfying
wirs sy =!(wy) WMy = §(wr)
where m; : I — §1 is the canonical map of §,

4. a natural transformation z :! — § such that

Sr;Zy = my,

5. a natural transformation e :! —!®! defining a commutative commonoid
('A,eq,wy) for any A € C.

Definition 5.8. Write LACat for the category of all (small) light affine categories
and functors preserving (all elements of) their structure in a strict way (not only
up to isomorphism).

5.7 Type variables and universal quantification

The interpretation of second-order variables necessitates the availability of still
more complicated categorical objects as outlined, e.g. in [31] for System F. We
sketch the desired structure adapting it to our case as appropriate.

First we show how to interpret types possibly containing (free) type variables.
The basic idea is that each second-order type with n distinct free variables is a
description of an n-ary operation on some universe U. Thus each type will induce
a morphism

Ux:---xU—U

n

in a category C whose objects are U°, U, U?,..., i.e. C has finite products and
is generated from some object U. In particular, it contains a terminal object

5.7. TYPE VARIABLES AND UNIVERSAL QUANTIFICATION 113

to represent the empty (type variable) context. Types with n variables define
morphisms in C(U",U) using operations

@, —on: C(U,U) x C(U™,U) —s C(U™, V)

and
8,1, C(U",U) — C(U",U).

A type variable simply corresponds to a suitable projection. Additionally, for
quantification, we will need

Y, : C(U" x U,U) —s C(U™,U),

which is no longer an endooperation. Before we turn to the conditions on V,,,
let us complete the definition of the structure that will enable us to interpret the
non-polymorphic features.

Since types with at most n free variables are interpreted as morphisms in
C(U™,U), C(U™,U) itself should be a light affine category (whose objects are C
morphisms with codomain U). Other C morphisms, say from C(U™,U™"), represent
n-tuples of types with at most m-variables and substitution for type variables is
modelled by composition in C. Since it is a functorial operation, the hom-functor
C(_,U) : CP — Set lifts to a functor C? — LACat™, i.e. an indexed cate-
gory (LACat™ is the category of all small light affine categories and all functors
between them). Moreover, as substitution distributes over all syntactic constructs,
for any f € C(U™,U") the functor C(f,U) : C(U",U) — C(U™,U), called a
reindexing functor, must preserve the structure of a light affine category. Hence,
C(-,U):C? — LACat should be a strict C-indexed light affine category.

We turn to quantification now. As already indicated an operation
v, : C(U" x U, U) — C(U",U)

is needed for any n € N. Quantification and (capture-avoiding) substitution com-
mute, so V, ought to be natural in U™:

95 Vu(h) =Y ((g x idy); h)

for g € C(U™,U),h € C(U" x U,U). Just as for System F [31], the V,, operation
must lift to a functor which is right adjoint to C(my,U), where my : U" x U — U™
is the first projection. By definition the specification of the adjunction is equivalent
to providing a bijection

(=) : CU™ x U, U)(w1(f),9) = CU™, U)(f,Yu(9))(—),

natural in f and g, where 77 = C(7y,U) : C(U",U) — C(U™ x U,U). The (V-1)
and (V-r) rules can then be interpreted as follows. Given

[T F s:A] e C(U" x U,U)(x; ([T]), [A])

114 CHAPTER 5. SOME CATEGORY THEORY

i.e. ais free in I as stipulated in the side-condition for (V-r), we set

——

[T F Aa.s:Va.A] =T F s: 4]

and

I,z :Va.A = (274 B/yAlB/el) . O -
(idpry ® C((idon, [B]), U)(idy,(ap)); [T,y - A[B/a] = ¢:CT .

Note that (V-7) is validated given w : Idc — I because of w’s naturality.

Let us now consider V,,; C(f,U) and C(f xidy, U); V,,, both functors from C(U™ x
U,U) to C(U™,U). We have already argued that they should be identical on
objects. In fact much more should be required. Firstly, they should also act
the same on morphisms. Secondly, consider the canonical natural transformation
between them given at h € C(U™ x U,U) by

C(f % idy, U)(idv,).

In order for our semantics to be sound one should require the Beck-Chevalley
condition [31] to hold: the canonical transformation must be the identity. The
role of this condition is to accommodate the commutativity of substitution and
universal quantification not only for types but also terms, and validate n-expansion.

5.8 Light affine hyperdoctrines

To wrap up this chapter, we list all the required properties below. We call the
categorical semantics of IMLAL2 light affine hyperdoctrines.

Definition 5.9. A light affine hyperdoctrine is specified by the following data:

e A category C with finite products, which consists of a distinguished object U
that generates all other objects using the operation of forming finite products.
C is called the base category of the hyperdoctrine.

e A strict C-indexed light affine category

C(.,U): C? — LACAt.

e For each object U™ (n € N) of C we are given a functor V,, : C(U" xU,U) —
C(U™,U), which is right adjoint to the functor C(m,U) : C(U",U) —
C(U™ x U,U), where m; : U™ x U — U™ is the first projection. Moreover,
the Beck-Chevalley condition holds: for any f € C(U™,U™)

5.8. LIGHT AFFINE HYPERDOCTRINES 115

— the diagram of functors

C(U™ x U,U) Vn, c(U™,U) U™
C(f xidy,U) C(f,U) f
CU™ x U,U) o CU™, V) U"

commutes,

— the canonical natural transformation between
V; C(f,U) and C(f xidy,U); Vi,

is an identity.

Since all our definitions have been motivated by the reductions in the corresponding
rewriting theory, it is rather simple to prove a soundness result for the categorical
semantics. As usual the completeness part would require the construction of a
classifying syntactic category, but due to the auxiliary nature of this chapter we
omit this issue here and proceed to the main subject of the thesis, game models.

Chapter 6

(Game models

Traditional model theory is concerned with finding models of provability. Each
formula of the logic in question can then be related with some property of the
model. A model is sound if all conditions corresponding to provable formulas
are fulfilled. Most sound models will also satisfy a number of properties which
cannot be proved in the logic yet can be expressed using its language. Such models
are called incomplete. Complete models do exist though and their construction is
typically based on the syntax of the logic. This does not seem to contribute more
information about the logic than the specification of the logic itself.

Denotational semantics strives to interpret proofs rather than study their mere
existence i.e. provability. Denotational models are categories of an appropriate
type whose objects are used to interpret formulas and whose morphisms denote
proofs. A sound denotational model provides a morphism for each proof in such
a way that proofs deemed equal are assigned the same ones. Most sound mod-
els also contain undefinable elements—morphisms that are not denotations of any
proofs. Denotational models containing only definable elements are called fully
complete and are also complete in the traditional sense if we identify truth inside
the model with the existence of a morphism. In general the notion of full com-
pleteness is much stronger: not only should there be no morphisms associated with
unprovable formulas, but also those corresponding to provable formulas must all
be interpretations of proofs. Given a fully complete model, we are guaranteed that
its elements represent proofs, but there may be fully complete models, where a
single element denotes two different ones. This is not desirable for our purposes as
we are going to represent various datatypes using proofs. We will be interested in
finding models whose morphisms are in one-to-one correspondence with the space
of all proofs. Such models are called fully and faithfully complete. They ex-
ist, but only until recently could be constructed only by recourse to syntax. This
has changed with the onset of game semantics. The terms full completeness and
full and faithful completeness originate from categorical type theory, which views
models as structure-preserving functors from the corresponding syntactic category.

116

6.1. GAMES AND STRATEGIES 117

A model is fully (respectively faithfully) complete just in case the induced functor
is full (respectively faithful).

Game semantics has provided the first fully and faithfully complete models of var-
ious fragments of linear logic, notably multiplicative linear logic (MLL) with the
MIX rule [3](the first such result), without the MIX rule [63] and multiplicative
additive linear logic (MALL) [10]. The full completeness problem for full linear
logic is still open, but there exist game models modelling MELL in a less satis-
factory fashion [14, 15]. The methodology has also proved successful with regard
to intuitionistic logic [102] and second-order polymorphism [60, 102]. Its most cel-
ebrated achievements are the advances in research on full abstraction, where the
results include syntax-independent characterizations of observational equivalence
for programming languages with a variety of features (purely functional call-by-
name PCF [6, 64], PCF with control [78], call-by-value languages [8, 59], Idealized
Algol with active [7] and passive expressions [9], finite non-determinism [51], prob-
abilistic languages [32], languages with local exceptions [79]). The first of these
results solved a long-standing open problem of finding a fully abstract semantics
for PCF.

In this chapter we apply game-semantic techniques to light affine logic. The models
possess the categorical structure described in Chapter 5 and will be proved fully
and faithfully complete with respect to the notion of canonical nets from Chap-
ter 4. Because IMLAL2 corresponds to polynomial-time computability, fully and
faithfully complete models for IMLAL?2 give a semantic characterization of P and
FP.

6.1 Games and strategies

We consider two-player games between P (Proponent) and O (Opponent) in the
AJM style [3, 6, 1]. Every play is started by O and thereafter it alternates between
P and O.

Definition 6.1. A game G is a triple (Mg, g, Pg) where
e Mg is a set of moves,

e \¢ : Mg — {O,P} partitions moves into those that O can make or O-
mowves, and those that P can make or P-moves (we will write M&, M} for
the set of O-moves and P-moves of G respectively),

e Py is a prefix-closed subset of M (the set of finite alternating sequences
of moves from Mg, each beginning with an O-move); we call elements of Pg
positions or plays.

118 CHAPTER 6. GAME MODELS

For example, @ = (&, &, {e}) (where € is the empty sequence) is a game called
the empty game. Given a fixed set 7 of tokens, there is a family of single-move
games (G4 in which it is only possible to play the token d € T

Go=({d},{(d,0)},{ed}).
We call the games atomzic. A slightly more interesting game is:
G'=({a,b,c},{(a,0),(b,P),(c,P)},{¢,a,ab,aba,abac}).
In general, Mg and Py need not be finite.

Games can be combined to produce more complex ones. We take advantage of two
standard constructions called the tensor game and the linear function space
game corresponding to the two IMAL connectives. The tensor game is defined by

Maigp = My+ Mp
AMeB = [Aa,AB]
Pigp = {seM{ly|s| A€ Py, s Be Py}

where M4 + Mp is a disjoint sum of the two sets, Aygp is the canonical map
A, Agl : Mo+ Mp — {O,P} and s [A (respectively s | B) means the sub-
sequence of s consisting of moves which come from A (respectively B). It is a
consequence of this definition that every s € Pjgp satisfies the O-Switching
Condition: for each pair of consecutive moves mm' in s, if m and m' are from
different components (i.e. one is from A, the other from B), then m’ is an O-move.
Plays of the tensor game may start either in A or in B. For example:

MG¢®G’ = {a, b, C,d}
)‘Gd®G’ = { (av O)v (ba P)a (Ca P)a (dv O) }
Po,ocr = {e€a,d,ab,aba,abd, abac, abacd }.

The linear function space game (or linear arrow game) is constructed as follows:

MA—oB - MA+MB
)\AwB = [)\Aa)\B]
Piog = {seM¥ ,|s| A€ Py s|Be Py}
Ag : Mg — {O,P} reverses the ownership of moves in G (A(m) = O if and
only if A(m) = P). The game satisfies an analogous P-Switching Condition.
The initial moves of A —o B are the (copies of) initial moves in B. Here are two
examples:
MdeGv = {a,b,c,d}
AGoar = {(a,0),(b,P),(c,P),(d,P) }
Pe,.cv = {€ a,ad,ab,aba,abad, abac }

6.1. GAMES AND STRATEGIES 119

MG’—OGd = {CL, b, C,d}
)\G’de - { (aa P)a (ba 0)7 (Ca 0)7 (d7 O) }
Po o, = {e€d, da,dab,daba,dabac }.

Observe the small difference between ((G. — G,) — Gp) — G, and G'. The
former has three moves, the latter has four, but otherwise they are the same.

Games of some kind will always be objects in our models. Their morphisms will be
strategies. Informally, strategies advise the Proponent what move to make next,
but they are not required to provide the information all the time. If P adopts a
strategy and it does not offer any moves, P cannot proceed further and the play is
over. Informally, we say that P loses then.

Definition 6.2. A deterministic P-strategy, or simply strategy, for a game
GG is a non-empty, prefix-closed subset o of P satisfying:

(i) for any even-length s, if s € o and sm € Py then sm € o,
(ii) (determinacy) if even-length sm and sm' are both in o, then m = m'.

We write o : G then.

Example 6.3. There are three strategies for G'. The strategy { ¢, a } provides no
instructions at all; the next one { ¢, a,ac, aca } tells P how to respond to the first
O-move, but does not offer any advice after the next O-move; finally, P can always
rely on { ¢, a, ac,aca,acab} for help.

Now we are ready to construct a category of games and strategies. As its objects
we take the collection of all games. The morphisms between two games GG; and G4
will be strategies for the game (G; — G5, hence we have to show how to compose
0 : Gy —o Gy with 7 : G5 —o Gi3. The idea is to allow the two strategies to interact
in order to produce a strategy for G; —o Gf.

Moves of G5 can provide common ground for interaction as each of them has a
double identity: if a move from G5 is an O-move in G; — G5, then it is a P-move
in G9 —o (I3 and vice versa. The new positions of G; — G5 can be developed by
playing the two strategies against each other and hiding moves from G5. If a move
is played in G5, we will try to engage one of the strategies to prolong the sequence
by letting it see just the moves from two components including G,. If the strategy,
say o, responds in G5, the move will be seen as an O-move in GGy —o (3 and so 7
may be asked to react to it when shown the state of the game in G5 and GG3. That
interaction may remain in (G, forever, in which case the response of the composite
strategy will be undefined. However, once the interaction produces a move in G
or (3, it is considered to be the reaction of the composite strategy.

120 CHAPTER 6. GAME MODELS

Formally, for any games G, Gy and G5 we define £(G1, G, G3) to be the set
of finite sequences s of moves from Mg, + Mg, + Mg, such that for any pair of
consecutive moves mm/' in s, if m € Mg, and m' € Mg, then [i — j| < 1. We
call L(G1, Gy, G3) the set of interaction sequences over (G, Gy, G3). Note that
there will always be intervening moves from G5 between a move from G; and
another from Gj.

Let 0 and 7 be strategies for the games Gy — G5 and Gy — ('3 respectively.
We define the composite o ; 7 of 0 and 7 for G; — G3 as

o;7={s(G1,G3)|s e L(G1,G2,Gs), s | (G1,G2) €0, 5| (Ga,G3) €T}

Example 6.4. Consider the following games:

G = ({a7b}7{(a7P)7(b70)}7{eababa})7

Gy = ({c,d,e,f},{(c,P),(d,O),(e,P),(f,O)},
{ed,de, f, fe,dcf,dcfe, fed, fedc}),

Gz = ({g.h},{(9,P),(h,O)},{€ h, hg});

and strategies 0 : G; —o G, 7 : G5 —o Gi3:

o = {e f, fg,d,db,dba,dbac, fed, fedb, fedba, fedbac }
T = {eh,hf hfe hfed, hfede, hfedcg}

The only maximal interaction sequence over (G1,Gs, G3) is hfedbacg:

Gy Gy e
h
f
€
d
b
a
&
g

Hence, we have ;7 = {¢, h, hb, hba, hbag}.

Let id; : G —o G be the strategy that just copies moves between the right and
the left instance of G starting from the right. id; is called the tdentity strategy.
Indeed, we have idg,;0 = 0 and o;idg, = o for any o : G; —o G5. Composition of
strategies is associative [1], so games and strategies form a category.

6.2. IMAL 121

6.2 IMAL

A fully and faithfully complete model of IMAL is the first in the series of game
models to be presented and serves as a basis for future extensions. The canonical
nets for IMAL—which will be proved to correspond exactly to the elements of the
model—were characterized uniquely by matchings between atomic nodes, each of
which was reachable from the root. However, not all matchings define correct nets,
so it is interesting to characterize those that do. In the setting of games, the good
matchings will provide P with a strategy that always enables him to make a legal
move after O has made one. This can be regarded as a crude notion of ‘winning’,
which we will refine in the future and require that the ‘victory’ be also achieved in
style. Typically, this will consist in introducing some extra constraints on the way
P can play.

6.2.1 IMAL games

IMAL formulas are generated from atoms and the connectives ® and —o. Similarly,
assuming the set of tokens coincides with the set of atoms, IM AL games will be
constructed from atomic games using the tensor and linear arrow game construc-
tions. We also include the empty game to interpret the unit. Using switching
conditions one can define the games independently of the syntax through regular
expressions that capture plays.

First we make the two game constructions introduced earlier less abstract, by
using tags to implement the disjoint sum: X +Y = {l}- XU{r}-Y for tensor and
X+Y={L} -XU{R} Y for linear function space (‘-’ stands for concatenation
of sets). This concretization is not so important for IMAL as it will be for its
extensions: the letters give a rough idea of the size of the game, which becomes
crucial once the games are allowed to evolve. For example, the game (G, —o
Gy) ® G. — G4 corresponding to the formula (a —o b) ® ¢ —o d is

Mg = {LlLa,LIRb, Lrc, Rd },
Ao = {(LiLa,O),(LIRb,P), (Lre,P),(Rd,0)},
Ps = {¢,(Rd),(Rd)(LIRD), (Rd)(Lrc), (Rd)(LIRb)(LILa),
(Rd)(LIRb)(LILa)(Lre)}.

We shall often just write ¢ when G, is meant. In general, any move of an IMAL
game has the form m = sa, where s € {[,r, L, R}* and a € T. That shape enables
us to define \g directly from moves:

m is a P-move if and only if s contains an odd number of L’s.

From now on, we are going to separate the token from the rest of the move and
refer to s as a move and to a as its token.

122 CHAPTER 6. GAME MODELS

Definition 6.5. Games over token set 7 and alphabet X are triples
G = (Mg, pa, Pa)

where Mg C X*, ug: Mg — T, Po C (Mg)* and X = {l,r,L,R}.

The atomic games are represented in this convention as

Ga:<{6}7{(67a)}7{67‘€,}>'

The first element of Py, is the empty string, the second is a non-empty string whose
only character is the empty string. The p function in the game (G, — G}) @ G, —o
Gd is

{(LIL,a),(LIR,D),(Lr,c), (R,d) }.

6.2.2 IMAL strategies

We also adopt a more concrete definition of strategies in which Mg C X* as in
the new definition of games. Recall that strategies tell P how to prolong the game
in a given position, though in general a strategy will not cover all cases. IMAL
proofs will turn out to be denoted by strategies which are always reliable. Let us
introduce several properties that will help to characterize them.

If, for every odd-length s € o, there is some m such that sm € o, we say that o
is total. If for any even-length smomp € o, the tokens of mp and mp are identical
(i.e. pg(mo) = pa(mp)), then o is said to be token-reflecting. We say that o is
history-free if there is a partial function f : Mg — M} such that for any odd-
length sm € o, we have smm' € o if and only if f(m) is defined, f(m) = m' and
smm' € Pg. We write 0 = oy just in case f is the least such function'. Further, o
is said to be injective history-free if the least such f is injective.

Proposition 6.6. For IMAL games the following families of strategies compose:
e total strategies,
e token-reflecting strategies,

e history-free strategies,

e injective history-free strategies.

!This definition follows [3] rather than [5], where a stronger property was required to hold: if
P followed a history-free strategy o¢, whenever f suggested a move, it would be correct. In the
current definition f may sometimes err, although it must give a playable move for at least one
position.

6.2. IMAL 123

All these properties except token-reflection are also meaningful in the broader set-
ting of games and give rise to lluf subcategories (same objects) of the general
category of games and strategies. Let G be the category whose objects are IMAL
games and morphisms are strategies satisfying all of the above properties. We call
the latter winning (IMAL) strategies.

Example 6.7. The strategy o for

(b@e)®(e—(c—od)®a) —(a®b)® (c—d)

generated by
Rll — LrRr Rlr — Ll
f: LrRIL — RrlL RrR — LrRIR

LrL — Llr
is an IMAL winning strategy. Its maximal positions are
(RIr)(LII) bb
(RIL)(LrRr)(LrL)(Lir) aaee
(RrR)(LrRIR)(LrL)(Llr) ddee
(RrR)(LrRIR)(LrRIL)(RrL)(RIr)(LlI) ddccbb

(RrR)(LrRIR)(LrRIL)(RrL)(RI)(LrRr)(LrL)(Llr) ddccaaee

In the right column we have listed the corresponding sequences of tokens.

Theorem 6.8. G is a model of IMAL.

Proof. As set out in Chapter 5, all we need to show is that G is an autonomous
category equipped with a natural transformation w : Idg — I.

The action of ® on objects is simply the tensor game construction. For strategies
01: A — Byand 0y : Ay — By, 01 ® 09 : A ® Ay — By ® By is the strategy
that plays according to o; or g, in a ‘non-communicating way’:

01 ® 0y = {5 € Paypayomon, | s (A1, B1) €01, s (A, By) € 0o},

It is worth noticing that the strategy which is being followed can only be changed
by O when he switches between B; and B on the right. It easily follows that
(01;711) ® (02;72) = (01 ® 09); (11 ® T2) and idgp = id4 ® idp.

Observe that the games C ® A — B and C' — (A —o B) are ‘identical’ modulo
a renaming of moves across the bijection (M¢ + Ma) + Mp = Mc + (Ma + Mp).
Therefore, the desired adjunction takes on a trivial form. The tensor unit / in our
context is the empty game. Hence, G — I = [for any G and in consequence [
is a terminal object. The unique morphisms into I are simply empty strategies,
which are all part of the (unique) natural transformation w. The canonical maps
id, a, c, |, r copy moves from one side to another and are obviously isomorphic win-
ning strategies. Because of their copy-cat nature, the transformations they induce
are natural and the defining diagrams commute. O

124 CHAPTER 6. GAME MODELS

G will be proved fully and faithfully complete. The proof consists in exhibiting a
correspondence between positions of a special kind and paths in canonical affine
essential nets. In this way we will also show that to check whether a token-reflecting
injective history-free strategy is total, it suffices to test its responses assuming that
O plays in a very restricted way.

Let us begin with the definition of the enabling (or justification) relation [64, 101]
between moves of an IMAL game. The set in(G) C Mg of initial moves of an
IMAL game G is defined by

in(G) ={m|ms € Pg}.

Definition 6.9. For z,y € Mg, where GG is an IMAL game, we say that y enables
(or justifies) x if G has the form C[X —o Y] for some one-holed context C?, IMAL
games X and Y such that x € in(X) and y € in(Y').

Note that if = is enabled by y, the occurrence of —o mentioned in the definition is
unique. We call it the enabler. In ((a ® b) —oy ¢) —og d the move R enables LR,
and LLl, LLr are enabled by LR. The enablers are —oy and —o; respectively. In
IMAL games each move is either initial or it is enabled some other move(s). By
definition of the —o game when a non-initial move is made in a play, some move
enabling it must have already been made.

Definition 6.10. In a given play an O-move is short-sighted if it is enabled
by the P-move that precedes it. By convention, the first O-move in any position
is considered short-sighted. A position (play) is short-sighted if every O-move
therein is short-sighted.

For a ® (b — ¢) — (d — e) ® f the plays ed, ecbd, fa are short-sighted, but
edf, ecbdf a are not. The notion of a short-sighted move has been considered in [102]
for HO/N-games [64, 101], where it plays an important role: short-sighted positions
are simply P-views. It turns out that this notion is also useful in our case, although
different methods must be used to analyze it. For example, a result analogous to the
next lemma holds trivially in the innocent framework, though it is not so obvious
in ours.

Our first claim that for any short-sighted position sp (of an IMAL game) ending in
a P-move p: if p enables an O-move o then spo is a position. From the definition
of the linear arrow game we know that o can be played at sp unless it has already
been used in s. The lemma below rules out such a possibility.

2
Ci= C—oH | H—-C | Ce®H | HeC | []

6.2. IMAL 125

Lemma 6.11. Let G be a IMAL game. Suppose py, ps are P-moves such that an
O-move o is enabled by both p; and ps;. G has no short-sighted position of the
following shape: ---pjo---pgy---.

Proof. W.lo.g. assume G = C] [0 — C, [P, @ P]]?, where o,p;,py are initial
moves of O, Py, P, respectively. Note that between p; and p, an O-move from P;
must be made. Consider the earliest such move o’ in s i.e. there are not any
moves from P; between p; and o'. However, in a short-sighted position o’ has to be
preceded by an enabling P-move. A move enabling o' must come from P;, which
is a contradiction. O

Hence, if a short-sighted move is available to O and O has always played short-
sightedly, O will be able to use his short-sighted move to extend the interim posi-
tion. This determines a short-sighted ‘strategy’ for O. As it happens, such strategies
will be shown representative of O’s potential: we are going to show that if O cannot
beat P by playing short-sighted moves, O will not be able to do so in any other way.
Our next step is to define strategies for P that take only short-sighted O-moves
into account.

Definition 6.12. A short-sighted strategy o for GG is a non-empty, prefix-closed
subset P such that for any even-length s € o, if sm € P then

sm € o if and only if m is short-sighted.

A weakly winning (IMAL) strategy is a short-sighted strategy which is injec-
tive history-free, token-reflecting and total (clearly the properties make sense for
short-sighted strategies too).

We write o/ for the weak IMAL strategy generated by f : Mo — Mp. Note that
if f generates a winning strategy oy, its restriction to positions in which O plays
short-sightedly will generate a weakly winning strategy. In fact, as we next show,
it will be equal to o/.

Lemma 6.13. If sop € o7 and p is a P-move, there exists s’ € o/ such that
s'op € o

Proof. Let s'o be the ‘P-view’ of so. s'o is then a (short-sighted) position: O-moves
therein are legal because of their short-sightedness and so are P-moves by totality

OfO'f.]
3
C = Ct—-H | H—-C | C®H | HC"
Ctu= C —-H | H—-CT | CteH | HC" |]

126 CHAPTER 6. GAME MODELS

Example 6.14. ¢/ for the function f from Example 6.7 contains the following
maximal positions (we have only used tokens this time)

aaee bb ddee ddce.

6.2.3 Affine nets defined by strategies

Short-sighted O-moves have a nice interpretation in essential nets. Suppose G is an
IMAL game and consider the syntactic tree of the corresponding polarized formula
"G in which branches have been oriented according to the directional rules for
IMAL nets (branches from '®*-nodes to their sinks must be deleted as well). We
call this ‘oriented’ tree 7rg~. Analogously, we can consider 7 ¢,. When referring to
nodes of such trees we use the same terminology as for the nets, i.e. their leaves are
polarized atomic nodes and the internal nodes are polarized connectives that have
premises rather than children. By analogy to games we distinguish initial atomic
nodes for each node of Trg:

in(a™) = {a*} in(a”) = {a}

in(®T) = in(n)Uin(ng) n(®@") = in(n,)
in(et) = in(ng) in(®~) = in(ny)Uin(ny)
where nf,ny (z,y = +,—) correspond to the premises of the respective links.

Suppose o, p are an O-move and a P-move in G. Let o™ and p~ be the corresponding
atomic nodes in 7rg-. Now we have m € in(G) if and only if m™ € in(root of Trgn)
(or equivalently m~ € in(root of 7 ¢,)). Initial nodes are neatly characterized by
paths in the tree:

Lemma 6.15. Call a path monotone if the nodes it visits have the same polarity.
(i) o™ €in(n) if and only if there exists a monotone path from n to o™.
(ii) p~ € in(n) if and only if there exists a monotone path from p~ to n.

Moreover, the respective paths are unique once they exist.

Proof. The proof is a simple case-by-case analysis and we omit it. We encourage
the reader to check the claims for the trees arising from essential nets in Figures 4.2,
4.3 (after removing their axiom links). O

The Lemma implies an appealing characterization of short-sighted O-moves:

Theorem 6.16. A P-move p enables an O-move o in G if and only if there exists
a Trgo-path from p~ to ot.

6.2. IMAL 127

Proof. Suppose p enables 0 i.e. G = C7[X — Y], o € in(X) and p € in(Y).
Consider the ® -node n corresponding to the enabler —o. Let nj and n; be its
premises. By (i) from the previous Lemma there exists a path from n; to o',
by (ii) there exists a path from p~ to n,. Hence p~ and o* are connected by a
Tr-path.

Conversely, suppose there is a path from p~ to o™. Note that if an edge leads
from @ to b, then both nodes have the same polarity unless a is a @ -node (b is
then positive). Hence the path from p~ to o™ must pass through a ® -node n
which is entered from some negative node n,. Let n; be the positive premise of
n. By (i) and (ii), o™ € in(ny) and p~ € in(ny), hence p enables 0. Moreover, the
named paths are unique. O

Given a weakly winning strategy o/ for G' we define the corresponding net Ay from
Tran in two steps.

(1) For each pair of moves o, p such that f(0) = p we connect the corresponding
atomic nodes p* and o~ with an axiom link. The resultant graph will be
called ;.

T; is not always an essential net, because there might be atomic nodes not con-
nected by axiom links. Thanks to the links one can interpret each position from
ol as a Tr-path from the root to the atomic node corresponding to the final move
of the position:

e initial O-moves are interpreted by paths that exist by (i) of Lemma 6.15,
e cach P-move corresponds to crossing an axiom link,

e non-initial (short-sighted) O-moves are represented by paths as described in
Theorem 6.16.

It follows that each link added in (1) is reachable (otherwise o/ would not be
generated by f). Conversely, any path from the root to an atomic node which
visits each atomic node at most once corresponds to some position from o/. We
prove that the reachability relation in 7y already satisfies one of the correctness
properties for essential nets:

Lemma 6.17. Each 7;-path from the root to the sink of a *®"-node visits the
T -node first.

Proof. Consider a path from the root to the sink of a 9 "-node with any cycles
removed. Clearly, it must have crossed an axiom link. Let p~ be the last atomic
node (it is necessarily negative so we write p~) visited by the path before it reached

128 CHAPTER 6. GAME MODELS

the sink. Consider the position in o/ that ends in p. By Lemma 6.15 we have
G =CtX — Y] and p € in(X) for some X and Y. Because the position includes
a move from X, by the definition of the —o game, it must contain an initial move
from Y. Therefore, the original path must have passed through an initial atomic
node of "Y . However, each path that visits an initial node of ¥ would have to
visit the »»T-node in question too. O

Next we show what to do with the atomic nodes of 7; that are not connected by
axiom links. In the following ‘unreachable’ means ‘unreachable from the root of

7.

(2) For each unreachable node n, which is a premise of a reachable link, prune
the tree rooted at n and insert a weakening node ¢(n) in its place. Let A
be the resultant net.

The procedure leads to an affine net, provided n is a negative node and no axiom
links are broken when the trees are being erased. The first condition holds, because
a positive premise is always linked with the conclusion of the link of which it
is a premise. Therefore, if the conclusion is reachable, so is the premise. The
second condition follows by the same reasoning as in Lemma 4.48 (this time using
Lemma 6.17 instead of Proposition 4.44), because all axiom links in 7; are reachable
from the root. This completes the definition of an affine net Ny from a weakly
winning strategy. Next we verify that Ny is correct.

Proposition 6.18. N} is a correct canonical affine net.

Proof. We check conditions (i) and (ii) from Definition 4.3 (see Theorem 4.49). N}
is canonical by construction: the only nodes that are not reachable from the root
are the weakening nodes.

(ii) has already been proved as Lemma 6.17 for Ay and step (2) does not affect
it. It remains to prove that N} is acyclic.

Suppose there is a cycle in M. It must involve atomic nodes, as cycles cannot
be formed solely by connective-nodes. Because all atomic nodes are reachable
from the root, there exists an infinite path s from the root containing repeated
occurrences of atomic nodes. Consider its longest initial subpath s’ that ends in a
negative atomic node p~ and does not visit any nodes twice. Let ot be the next
atomic node s would visit. Note that this means that p enables o in G. Consider
the position that corresponds to s’: o already occurs in it, it ends in p and p enables
o—precisely the configuration ruled out by Lemma 6.11. O

6.2. IMAL 129

Example 6.19. The essential net N; corresponding to oy from Example 6.7 (via
o/ from Example 6.14) is almost exactly the one in Figure 4.3. It suffices to add a
new ’®-link (call it 95) below %®] and ®; and a ®"-link (let it be 2]) below the
new ’®~-link and ®;. The maximal short-sighted positions listed in Example 6.14
are then interpreted by the following paths:

aaee Pl @7 @yata v, @ete

bb Py @F @307

ddee 25 f wtdtd ®; 9, @7 efe
ddcc Pl @7 eTdTdT ®, ctem

We have thus shown that o, defines a correct canonical net Ny via of/. As the
function f corresponds exactly to the axiom links of Ay we have:

Theorem 6.20. G is a fully and faithfully complete model of IMAL with respect
to affine IMAL nets.

As already mentioned, we have demonstrated that in order to check whether o
is total, it suffices to verify that the moves suggested by f lead P to a win over
short-sighted Opponent. We will take advantage of that fact when illustrating the
schematic nature of winning strategies next.

Suppose oy : G'is winning. We are going to show that it defines ‘natural’ winning
strategies for games of the shape G[G' /7, -, G}, /], where 7; € T and G, is an
IMAL game (1 < i < n). The way these strategies will be defined and the shape
of IMAL games allow us to reduce the problem to the simple case of n = 1 and
G) =1 ®m or G =1 — 7y; in these two cases we refer to G[G /] as G' and
G" respectively. The strategies oy : G' and oy : G" are defined as follows:

1.

f(@) pe(z) #m
f'(x) =% flo)r pe(xr)=m and x = or
flo)l pe(x) =7 and x = ol

f(@) per(@) #
f"(z) =X f(o)R pgr(x) =1 and x = oR
oL per(x) =1 and z = f(o)L

It is easy to see that f': MG — ML and f": M3, — ML, because o is injective
history-free and token-reflecting.

130 CHAPTER 6. GAME MODELS

Proposition 6.21. o4 : G' and oy : G" are winning strategies.

Proof. The case of oy is easy, so we only tackle op. The only short-sighted
positions to check (which are not already in o) are those containing moves made
according to the last two cases of the definition of f”. Observe that P-moves in
the third case always end a short-sighted position, because they do not enable any
O-moves. Therefore, it suffices to check that the strategy ‘wins’ in the following
two cases.

e Consider s(oR) for some s € oys. Then all moves in s must have been made
as in the first or the second case of the definition of f”, so s can be seen as a
position of o, (after all the trailing R’s are erased). Thus s(oR)(f(0o)R) is a
position in G", because sof (o) is a position in G.

e Consider s(oR)(f(o)R)(f(0)L) for s € o. Then s(oR)(f(0)R) is a position
of the first kind, i.e. it is a position in GG in which some moves are adorned
with R’s. Hence, s(oR)(f(0)R)(f(o)L)(oL) is a play in G" by switching

conditions.

O

Proposition 6.21 shows that winning strategies provide a pattern which can be ex-
tended to generate winning strategies when the tokens unfold. The construction of
f"and f” could also be repeated for strategies that are injective history-free but
not necessarily token-reflecting. Then the resultant strategies would not be total,
because we could substitute a game for the P-token involved (leaving the corre-
sponding O-token as it is) making it impossible for P to respond to the expanded
O-moves, because of a shortage of moves. Therefore, token-reflection and injec-
tive history-freeness are equivalent to the ability of strategies to expand. In other
words, our game model could be presented as consisting of expandable total and
history-free strategies as was the case for the first fully-complete game model [3].
The extension relies on simply copying of moves back and forth and will be used
to construct models of second-order linear logic and also to analyze equivalence of
positions in IMLAL.

6.3 IMLAL

In IMAL games both the set of moves and the set of positions are finite. This is
because each move represents an atomic formula and the game constructions do
not allow repetitions of moves during play. Consequently, there is a bound on the
length of positions—the number of available moves. This observation reflects the
fact that the process of cut-elimination in MLL has linear time complexity. To
express more complex computations, a restricted form of copying is admitted in

IMLAL through the use of shriek games.

6.3. IMLAL 131

6.3.1 ! and § games

The () and (!) rules require that in the course of the game !G we should be able
to replay whatever was possible in G. Because of the contraction rule, we must
also be prepared to contain two copies of !G in a single game !G. Nevertheless, no
communication is allowed between G and !G. This suggests modelling !G' as an
interleaving of plays from G, where moves of |G are ‘promoted’ copies of moves of
(. The higher rank will enable us to distinguish moves of GG from those of |G and
impose appropriate restrictions. Besides, the structure of the interleaving ought
to be unambiguous: we must be able to assess when new (copies of) plays of G
start in !GG, when control is switched to an old strand of play and which old play it
is. All of the postulates are vital, because even a slight departure from the regime
jeopardizes our aim to achieve full completeness. Also, the ability to represent
numeric functions crucially depends on the number of plays inside !G' games. A
solution based on pointers in the style of HO/N-games [64] is possible, if G has only
one initial move, but then !G will already have more, so the construction will not
work properly for !!G. Nor could we handle the ® connective then. For a detailed
discussion of related problems see [93]. The exponential of the AJM framework [5]
satisfies all of our needs and we adopt the definition here. The equivalence of
positions will have to be modified to suit our setting, though.

The construction of a ! game relies on tagging moves of G with natural numbers.
Moves with the same tag should be viewed as belonging to the same copy of G
inside !G.

My, = N-M;g
pg(im) = pa(m)
P, = {SEM!“ét|Vi€N.s[iEPg}.

The numeric labels reflect the promotion of moves from G (e.g. moves of |G are
literally longer than the corresponding moves in G). Positions of |G consist of a
potentially infinite interleaving of plays of G in which the switching from one play
to another can be performed only by O. The tags serve to distinguish different
strands of play, so if O wishes to start a new round of G rather than continue some
old play of GG, he will choose a fresh label. This highlights the built-in O-switching
condition: whenever two consecutive moves in a play of !G' come from different
copies of GG, the second must be an O-move. From this perspective !G is like an
infinite tensor product of copies of G.

132 CHAPTER 6. GAME MODELS

Example 6.22. The players play out just one copy of the original game,
(e — b © (¢ — d)

1UR
1L
1rR

DO v

1rL
whereas the third move, shown below, opens a new instance of G.
(@ — b © (c — d)

1R
1L
2rR
2rL

v QOO

Note that without the labels it would be impossible to tell whether the third move
is an opening move in another copy of G.

The (§) and (§,) rules suggest that playing the game §G is similar to engaging in
GG. However, contrary to the previous case, there is no need for duplication, since
contraction is forbidden for formulas of the shape §A. Nevertheless, moves of §G
should be distinguished from those of G as, e.g., §G —o G is not provable. We use
* to that end and define §G by:

M§G = {*} . MG
pgm) = pglm)
Pgg, = {SGM§Z|8[*€Pg}.

6.3.2 IMLAL games

IMLAL games are generated by combining atomic and empty games using the
four game constructions. They are games over X = {l,r, L, R,x} UN in the sense
of Definition 6.5. As before, Ag(m) = O if and only if the number of L’s in m is
even.

A move of an IMLAL game has the form ¢4y -- -4, where each ¢; ranges over
{l,r,L,R,x} UN. Let i,, ---i,, be the subsequence of i, - - -3, consisting only of
numbers and x’s. We define the depth of the move to be d, the index at depth j
or j-index to be the sequence iyis - - 1y The sequence %115 - - o1 will be
called a j-base. For example, the 1-, 2- and 3-indices of the move 2r x LI33R are

6.3. IMLAL 133

2, 2rx and 2r x L3 respectively. The corresponding bases are €, 2r and 2r x Ll. A
game is said to have depth k just in case k is the maximum depth of its moves.
As before, each move m has its token iz (m).

Example 6.23. Consider the provable formula !(la ® 1) —o !8a.
(R3%)(L512) and (R3x)(L4r5)

are positions of the associated IMLAL game.

6.3.3 Network protocol

Fix an IMLAL game G of depth k. By an i-index of G, we mean the i-index of
some move of G (so i < k). Threads of depth i, or simply i-threads, of G are
named by i-indices of G. A thread named by 6 is the set of moves of G whose
i-index is 6 (in particular they are prefixed by). An i-thread named by @ is said
to be a P-thread if there are an odd number of occurrences of L in 6, otherwise it
is said to be an O-thread. 0 is then called a P-index and an O-index respectively.
If the rightmost symbol of the index 6 is a number we say the i-thread is of I-type,
otherwise the thread is of §-type.

For any game G, we write T/ ; (respectively T¢;) for the set of P-threads (respec-
tively O-threads) of G' at depth i. We shall omit the subscript ¢ whenever we can
get away with it. For any IMLAL games G; and G5 it is easy to see that

Tgl + ng TGol®G2 Tgl + TGO2 T' 1 N- TGI
T8 + T¢, T¢ e, TE +TE, T§ Te,

O
TGl—OGz

rae

11
Q

11

P
TGl—OGz

We shall often analyze a play s by considering its subsequence consisting of moves
belonging to a given i-thread. We call that subsequence the i-thread of the play
s. (Thus the i-thread of a game is a set of moves, and the i-thread of a play is a
sequence of moves.) It is straightforward to prove that any O-thread (respectively
P-thread) of a play must begin with an O-move (respectively P-move).

Example 6.24. Consider the game !!(a — a) —o !!(a — a) and the play
(R14R) (L23R) (L23L) (L29R) (L29L) (R14R)

which we refer to as my - --mg in the picture (where only the respective numeric
subsequences of the six occurrences are shown)

Na — a) — e — a
mq 14
mo 23
ms 23
my 29
ms 29

Mg 14

134 CHAPTER 6. GAME MODELS

The two 1-threads of the play are m;mg (named by R1) and maomsmyms (named
by L2); and the three 2-threads are m;mg (named by R14), myms (named by L23)
and myms (named by L29).

If a move has depth d, it will belong to threads at depths from 1 up to d. Note
that they may be both O-threads and P-threads and that the fact that a move is
in an O-thread at depth [does not mean that it will belong to O-threads at other
depths. In particular a P-move may not be part of any P-threads (take mg for
example).

The key idea leading to a good model of IMLAL is to organize threads at each
depth into networks in accord with a global protocol. We will be interested in
plays that obey the protocol at every depth (up to the depth of G of course). The
protocol will be introduced step by step with each condition accompanied by a
motivating example—a strategy satisfying all the properties introduced so far yet
not representing any proofs.

Definition 6.25. A network AT DEPTH d CONSISTS OF THREADS AT DEPTH
d, ONLY ONE OF WHICH IS AN O-THREAD. EACH THREAD AT DEPTH d MUST
BE ASSIGNED TO SOME NETWORK AT DEPTH d. NETWORKS ARE DISJOINT,
I.LE. DIFFERENT NETWORKS CANNOT HAVE COMMON THREADS. AT EACH DEPTH
EACH P-MOVE MUST BE IN THE SAME NETWORK AS THE PRECEDING O-MOVE.

e Consider the obvious strategy for a —ola whose maximal positions are (Rn)L
for n € N. The formula is unprovable, so we cannot afford to admit any
strategies for the corresponding game to our framework. Indeed, the protocol
as defined so far rules them out: the P-move (L) does not belong to any
threads at depth 1, so it cannot be part of a network at that depth, but on
the other hand, it should be in the same network as the first move.

Similar reasoning applies to the unprovable formulas *a —o!'a for [> k. The
second move will never be part of O’s network at depth k£ + 1. If [< k, the
P-move will belong to a thread at depth [4+ 1 and so it should be part of a
network at that depth. But the initial O-move cannot belong to a thread at
depth [+ 1: its depth is only [!

The argument shows that each P-move must have the same depth as the
preceding O-move. Observe that there is nothing wrong with !a —ola, where
we have networks consisting of Rn and Lm for n,m € N.

e Consider the respective token-reflecting strategies for the games denoting the
unprovable formulas ([J3a — [yb) —o [0y (a —o b) where each occurrence of

6.3. IMLAL 135

[; can be replaced with ! or §. The sequence of the first four moves will
always have the shape:

(R?1R) (LR?3) (LL?3) (R?1L)

with 7; = x (if 0; = §) or 7; € N. The fourth move is supposed to be in the
same network as the third one, so the threads LL73; and R?; should be in the
same network. The problem is they are both O-threads and thus come from
different networks. Note that the network structure of the obvious strategy

for
§(a —o b) —o (§a —o §b)

is perfectly in order.

e Take the game §(a ® b) —o §a ® §b and the two positions (Rl*)(L *[) and
(Rrx)(Lxr). Again we show that the candidate token-reflecting strategy does
not observe the protocol. The moves come from the three threads: O-threads
Rilx and Rrx and the P-thread Lx. The plays violate the protocol, because
the first would force Lx to be in a network with Rlx and the second would
place it together with Rrx. Therefore, all the threads would have to be in
the same network, but since two of them are O-threads, this is illegal. The
obvious strategy for §a ®8§b — §(a®0) is in order and gives rise to a correctly
formed network consisting of the O-thread R* and two P-threads Llx and
Lr*. There is a protocol-compliant strategy for !(a ® b) —ola®!b, but the
threads Ln for n € N must form networks with only one of Rin, and Rrns.
In other words, for any n € N strategies observing the protocol may use only
one move with 1-index Ln, like the history-free strategy defined by:

Rin w— L(2n)l Rrn — L(2n+ 1)r

EACH NETWORK COMPRISES ONLY A FINITE NUMBER OF THREADS.
e This is a necessary restriction indeed. Consider the strategy for
l(a — a) — §(a — a)
generated by:
RxR — LIR InL — L(n+1)R

for n > 0, which corresponds to the “infinite” Church numeral and is therefore
undefinable. The strategy would require a network consisting of Rx and Ln
for all n.

A NETWORK WHOSE O-THREAD IS OF !-TYPE (CALL IT A !-NETWORK) CAN
HAVE AT MOST ONE P-THREAD WHICH MUST ALSO BE OF !-TYPE.

136 CHAPTER 6. GAME MODELS

e This requirement must be imposed in order to interpret the (!) rule properly.
Consider the game !!(a —o a) —o!!(a —o a) and the play from Example 6.24.
Obviously the two 1-threads therein form a correct network at depth 1, but
at depth 2, there would have to be a network consisting of R14, L23 and L29,
which violates the proposed rule. At first this may seem too strong, because
the formula is provable. Its proof will not be denoted by the strategy in
question but by one that does comply with the protocol and produces plays
of the shape:

(R14R) (L23R) (L23L) (R14L).

We also require some consistency in the structure of l-networks. Call two threads
related if their indices i1, 19 are in; and ing respectively for some nq,n, € N, i.e.
they have the same d-base at some depth d.

IF TWO O-THREADS OF A |-NETWORK AT d ARE RELATED, THE CORRESPONDING
P-THREADS (IF THEY EXIST) SHOULD ALSO BE RELATED.

This is because of the way !-networks are encapsulated in other networks by
the (§) and (!) rules: each of the threads engaged in a l-network at depth d+ 1 is
embedded into a unique thread at d. Besides, the optional P-threads must exist in
both cases or do not exist in any.

e The condition rules out the strategy o :!la —o §la, where f(R*2) = Lmn
and f(R*1) = Lm'n' for m' # m, which would not represent any proofs.

The protocol and the shape of IMLAL games imply switching conditions for net-
works and for threads. They also reveal that networks at d 4+ 1 are embedded
in networks at depth d. We sum up all the properties of the protocol in a more
descriptive form in Figure 6.1. Because most of the examples we have considered
were negative, we show several ‘healthy strategies’ for which the network structure
is outlined pictorially. Threads belonging to the same network are marked with
the same kind of pattern.

Example 6.26. In the first case, we have one network at depth 1 and three net-
works at depth 2.

6.3. IMLAL 137

(pl) A network (at depth d) comprises an O-thread and finitely
many P-threads (all at depth d).

(p2) Network and Thread Creation: Only O can open a new
network, and he does so whenever he starts a new O-thread;
whenever P opens a new thread in response to an O-move
from a network, a new P-thread is added to that network.

(p3) !-Network: A network whose O-thread is of -type (call the
network a /-network) has at most one P-thread which must
also be of !-type. If O-threads of two !-networks are related,
then, if the networks have P-threads, the P-threads are also
related.

(p4) No thread can belong to more than one network.

(pb) Switching Condition: Only O can switch network, i.e. re-
visit one opened earlier or enter the threadless universe®.
Only P can switch from one thread to another existing thread
within the same network.

®At depth d, the threadless universe of G consists of moves of depth < d.

Figure 6.1: The Network Protocol

P'(8a —o la) —o §(la — 8a)
o _ _ _ N\
\R*R*}
e ,,,,,\\ 777777
L1R1 |
L1Lx
T i J
O A
L2R1 :
L1Lx e \
. - 'R+ L1 |
T - J

The next two strategies are for the same game, but correspond to different proofs.

138 CHAPTER 6. GAME MODELS

'"(a —a) — §§(a — a)
(e . - ___ \\
— ~ | R**R!
| L21R! !
2L | i |
. L23R | |
| L23L | | |
- - -~ ----°-~ J | !
« Rx L)
Nl J

The difference is reflected by the network at depth 1: it consists of two threads for
the first strategy and three threads for the other.

'(a —a) — §§(a — a)

(- 1 M
J— - :' R%xR E
| L21R! | !
' L21L : : :
_~— -~ ~~-~-=-=-=--7~ J | 1
e 8 | |
f L23R; | :
| L23L) | :
\ -~ -~ ----=--~ J 1 1

' Rx %L |

.~~~ - -~ J/

Next we give a formal definition of strategies that comply with the network protocol
and finally prove that indeed they are a model of IMLAL.

Let us denote the set of threads of a game G by Ty, which partitions into T
(the set of O-threads) and T (the set of P-threads), we write Ty ; for the set of
i-threads. The formalization of the network protocol uses two (kinds of) functions.

Definition 6.27. A thread function (at depth ¢) is a partial function tg; :
Mg — Tg,; that maps a move to the i-thread in which it occurs (i.e. to its i-
index). Whenever the game G and depth i are clear from the context, we will
abbreviate tg;(m) to t,,. We say that a partial function

. TP o
ne,i: Te;, = 1¢,

networks a position s € Pg at depth ¢ (with respect to tg;) just in case for
each odd j < |s], tg,i(s;) is defined if and only if t¢;(s;11) is defined, and if both

6.3. IMLAL 139

are defined, one of the following holds (we drop the subscripts from 7, and t¢;
whenever we safely can):

(@) n(t(s;) = tls;) (@) ts;) = n(t(sj1))
(@) n(t(s;)) = n(t(sj+1)) () ts) = tsjn)

(This is just to say that at depth ¢ the P-move s, is in the same network as the
O-move s;: there are four cases depending on whether s; and s;;; are in P-threads
or O-threads.)

Lemma 6.28. Let s be a position networked at depth i by ;. Suppose there is
an O-thread t© and a P-thread ¢p that form a network in s. If s contains an odd
number of moves from tp, then also an odd number of moves from t° have been
made in s.

Proof. By switching conventions. O

6.3.4 Networked strategies

Definition 6.29 (Networked strategies). We say that a strategy o on G is
networked at depth 1 if there exists a function 7g; that networks every s € o at
depth i. A strategy is networked if and only if it is networked at any depth.

Networked strategies compose

Consider the games A, B and C' and suppose u is an interaction sequence of two
positions p; € P4_.p and py € Pp_,c which are networked by n4_.p,; and np_c,
respectively at a given depth i. We would like to show that u [(A,C) can be
networked and that all positions of the composite strategy are networked by the
same network function 74 .c.

Let us fix a network function ng. We shall write t' < ¢ to mean ng(t) = t/, so
for each P-thread t there can be at most one O-thread t' such that ¢ < t. Our
argument below is with respect to a fixed depth i. For ease of writing, we shall
drop all references to the depth and omit the subscript 7 from na_.c, ta—oc; etc.

We will say that threads ti,to, - - -, t; from an nteraction sequence of threads
if

b1 <1 lg <oty <3+ <p_1 tg—1 <k lg
where <; € {<4 B, <Boc} (1 <i<k)and <; # <11 (1< <k).

Let us define another network function 14 .¢: for any t© € T ., and t© € TY .,
we decree that na .c(t") = t9 (ie. t9 <4 .c tF') just in case there exists an

140 CHAPTER 6. GAME MODELS

interaction sequence of threads between t© and t¥ i.e. there exist by,---,b; € T
such that
t9 <1 by <o by <3+ =<1 bpo1 =g b <1t (6.1)

subject to the above-mentioned conditions. (Each b; in (6.1) is actually the em-
bedding image of the B-thread in Ty g or T _.c as appropriate, but we stick to
b; by abuse of notation.) Note that if t© and ¢¥ are both A-threads (respectively
C-threads) and t© <, _,p tF (respectively t© <p_,c tF), then t© <, . t¥ which
is the case of £k = 0. Because ns_.p and ng_,¢ are partial functions, we first note
that n4_.c is a partial function from T4 . to T ...

Proposition 6.30. Consider any contiguous segment mgmy - --mypmp of u such
that mp € MY ., mp € MY ., and m; € Mp for i = 1,---, k. If mg is part of a
thread then mo and mp are in the same network with respect to 74_.¢, i.e. writing
t9 as the O-thread of mo’s network, we have either t© = tmp OF t9 < s e bonp-

Proof. We induct on the length of ' = u | (A, C). Let t” be the O-thread of the
network to which meo belongs. If ¢,,, is an O-thread, then 0 = tmo- Otherwise
tme 18 @ P-thread and mo cannot be the first move made in it. From the induction
hypothesis for the initial P-move (in ') in that thread we get ¢ <4 _oc tpm, for
some t € T . i.e. there exist by, -+, b such that ¢ <" b <" by <" -+ <" by <t
Thus t© = t. (We write <’ for either <4_.p or <p_.c. It should be clear from the
context which is meant.)

Let us introduce an auxiliary relation <gC T{ .~ x Tg. We decree d <p b just in
case there exists an interaction sequence of threads from starting with ¢ and ending
in b. <p is also a partial function from Tg to T{ .. Then we have:

Lemma 6.31. Writing t,,, simply as ;, for each i, t9 <p t;.

Proof. We prove the Lemma by induction on ¢. Consider m,. It must belong to
the same network as mg in one of the two components (A — B or B —o (') so:

e If ¢,,, is an O-thread, then ¢,,, <'t;.
o If#,, is a P-thread then:

— If ¢; is an O-thread then t; = by,
— If t; is a P-thread then b; <’ t;.

In all cases tY <p t; holds. If t;;; = t;, the induction hypothesis says what is
required, so suppose t;.1 # t;. Recall that the induction hypothesis says there
exist by, - - -, b such that

tO <1 b1 <9 bz <3 <k bk <k+1 t;.

mj+1 is a P-move in one of the components (A — B or B — ('), so it is in the
same network as m; inside that component. We argue by case analysis.

6.3. IMLAL 141

e If ¢; is an O-thread (in the above-mentioned component), ¢;.; must be a
P-thread of the same network, so ¢; <’ ¢;;1. By the induction hypothesis
t9 <p t;, so tY <p tiy1 holds as well.

e If ¢; is a P-thread then:
— If t;41 is an O-thread, we have ¢;;1 <’ t;. But then by = ¢;,; (because

<41 is a partial function), so t <p ;| as required.

— If t;, is a P-thread, we have b, <’ t;.1, so t9 < t;,1.

O

Now consider the final move mp. It is in the same network as my, (in one of the
two components). Thus:

e If t; is an O-thread then ?,,, must be a P-thread and ¢, <’ t,,, must hold.
By Lemma 6.31, we have t© <p t;, 80 t” <4 _oc tym, as required.

e If ¢, is a P-thread then:

— Suppose t,,, is an O-thread. We have t,,, <’ t;; also by Lemma 6.31, we
have t© <p t;. Therefore tmp = 0 (because t,,, is an A- or C-thread
and the ¢;’s are B-threads).

— Suppose t,,, is a P-thread. By Lemma 6.31, there exist b, - -, b, such
that

to <1 b1 <g o <k bk <k+1 tg.

Then either by <j11 tym, or (if k =0) t9 <y t,.

Hence t© <4_.c tmp 10 all cases. O

Thus if strategies o and 7 are networked at depth 7 by n4_.p and ng_.c respectively,
o ; 7 is networked by n4_.c at depth 7. As the argument is independent of ¢ we
have just proved that networked strategies compose.

Our next step is a technical result which identifies a bounding factor in the inter-
action between threads.

Lemma 6.32. Suppose s is an interaction sequence of two strategies o : A — B
and 7 : B —o . The length of any interaction sequence of threads of s at depth i
is smaller than the number of i-bases (of moves) in s.

142 CHAPTER 6. GAME MODELS

Proof. For a contradiction, suppose there exists an interaction sequence longer than
the number of i-bases in s. Hence, there exists an interaction sequence between
two threads with the same base, say t; and t,. Consider the moment when t,
was opened in s. By Lemma 6.28, the number of moves in all threads from the
interaction sequence of threads between ¢; and ¢, must have been odd. Therefore
the number of moves in ¢; was also odd. But ¢; and ¢, have the same base, so they
come from the same !-subgame and this state would violate the switching condition
for !. O

It is easy to see that for any O-thread ¢, the set consisting of threads ¢’ such that
there exists an interaction sequence of threads between ¢ and ' has a tree structure.
We will be interested only in the branches of the tree that actually take part in
the interaction between the strategies (i.e. moves from the threads occur in some
interaction sequences). We call this tree the interactive tree of t. The last
lemma provides a way of estimating the depth of the tree.

Nesting of networks

It follows from our definition of networks that networks at depth d+1 are embedded
in networks at depth d: if threads ¢, and ¢, belong to the same network at d+1 and
t,t, are the d-threads to which they belong respectively, then ¢| and ¢}, are from
the same network at depth d. This dependency manifests itself during composition.
Observe that for any j-thread ¢ occurring in an interaction sequence, there exists a
unique O-thread f(also at depth i) in A or C such that ¢ belongs to the interactive
tree of . Now suppose that t;,.; is a thread at depth d + 1. Let ¢; and iy be
the d-indices of ¢4, and ?d“ respectively. Then at depth d we have z: = z; i.e.
interaction sequences of threads at d 4+ 1 are embedded into interaction sequences
of threads at d.

Compactly networked strategies

Definition 6.33. We say that a networked strategy (by 7) is compactly net-
worked if n~1({t°}) is finite for every O-thread t°.

Lemma 6.34. Suppose 0,7 are compactly networked strategies and t© is an O-
thread, which is in A or C'. The interactive tree of ¢t© is finite.

Proof. We use induction on the depth of t©. Suppose t© is a thread at depth 1. By
Lemma 6.32 the depth of t9’s interactive tree is bounded (since the shape of the
game is). As o and 7 are compactly networked, by Konig’s lemma, t9’s interactive
tree must be finite.

6.3. IMLAL 143

Suppose t© is at depth i+1. Let t; be the i-index of t©. By induction hypothesis,
t,’s interactive tree is finite. From the remarks about nesting we see that each
thread from ¢©’s interactive tree has an i-index that belongs to 1,’s interactive tree.
Hence, because we play an IMLAL game, the ¢ 4+ 1-bases that could be used by
threads in ¢o’s interactive tree form a finite set. Now we repeat the same reasoning
as in the base case: by Lemma 6.32 the depth of the interactive tree of t“ must
have bounded depth and, because it is finitely branching, it must be finite as
required.]

An immediate consequence is:

Proposition 6.35. Compactly networked strategies compose.

and
Proposition 6.36. Total compactly networked strategies compose.

Proof. Suppose infinite chattering occurs i.e. there exists an infinite interaction
sequence with a finite set of moves in A and C. Let d be the depth of the moves
involved. By Proposition 6.34 the number of threads (at depths 1,2,---,d) inside
the infinite sequence can only be finite. So is the length of moves, because it is
bounded by the shape of the IMLAL game we play. Therefore, the sequence cannot
be infinite, because no move may be repeated. O

Suitably networked strategies

Definition 6.37. A networked strategy is suitably networked when for any O-
thread t©, if t© is of I-type and n(t") = n(t}) = 9, then t¥ = ¥ and tI" is of
I-type.

The condition formalizes the first part of (p3) from Figure 6.1.

Proposition 6.38. Suitably networked strategies compose.
Proof. 1f o and 7 satisfy (p3), so does o ; 7, because if
9 <1 by =2 by <3 -+ =gt b1 <k by <1 0

and t is a !-thread, then by (p3) applied alternately to o and 7 we deduce that
bi,---, b, and t© are unique and are all !-threads. O

144 CHAPTER 6. GAME MODELS

6.3.5 Equivalence of positions

When introducing shriek games we emphasized that their definition is intended
to provide a mechanism for distinguishing between different plays of G inside !G.
Numeric labelling has been used for that purpose, but on reflection we see that this
introduces too much distinction. All we wanted was an unambiguous decomposition
of plays in |G, whereas by adding labels we have differentiated between plays with
the same structure which should be deemed equivalent. To make up for this overly
concrete representation, we define a notion of equivalence between positions ~;C
Pg x Pg. For m € Mg we write core(m) for m in which each numeric tag has been
replaced with O, so e.g. core(R(56)I3L) = ROIOL.

Definition 6.39. Given an IMAL game G, s,t € Pg, s ~¢ t is defined to hold if
and only if:

e core*(s) = core*(t) (in particular |s| = |t|)

o if 5; = ws] and s; = ws, then there exists v such that [v| = [w|, ¢; = vt] and
t]' = Ut;-,

o if #; = vt} and #; = vt}, then there exists w such that |w| = |v[, s; = ws] and
85 = ws}.

For instance, the two positions from the game G =!((a — b) ® (¢ — d)) mentioned
in Example 6.22 are not equivalent, but

(3IR) (31L) (17rR) (17rL) ~¢ (T1IR) (T1IL) (16rR) (16rL).

The equivalence coincides with the following inductively defined relation which
extends the one from [5]:

(]

e for single-move games GG, we have € ¢, € and ‘€’ =g, ‘€,

S Xapp tjustincase s [t [, s|rapt|rand hd*(s) = hd*(t) (ie. s;
and t; begin with the same letter for any i),

s~g.ptjustincase s [Laat | L, s Rapt| R and hd*(s) = hd*(t).

° sz§Atifsf*%At[*,

and, most importantly, s ~y , t if
doe S(N).Vi € Ns [irat | ali) A a*(hd"(s)) = hd*(t),

where S(N) is the collection of permutations of N.

6.3. IMLAL 145

Given f: X —= Y, f*: X* = Y* is the pointwise application of f to words over
alphabet X producing words over Y. hd : X* — X returns the first letter of a non-
empty string over alphabet X. s [¢ where ¢ € {l,r,L, R} UN is the subsequence
of s consisting of moves that begin with the ‘letter’ c.

The equivalence relation ~5 on positions extends to a partial equivalence relation
over strategies for G [5]. Two strategies are deemed equivalent if they can simulate
each other up to the equivalence of positions: ¢ =~ 7 holds just in case for all s € o,
terT,sa € Pg,tc € Pg, if sa =q tc then the following bisimulation-style properties
hold:

e sabe o = dd € Mg.ted € 7 A\ sab ~¢ ted,

o fcde T = dbée€ Mg.sab € o N sab ~¢ ted.

Example 6.40. The (!) rule indicates that in a fully and faithfully complete game
model there should be a bijective correspondence between strategies for G' and !G.
It is easy to convert a strategy o : G into one for |G (call it lo). After all, plays of
IG are just interleavings of plays of GG. Therefore, it suffices to allow !o to ‘imitate’
o in all opened instances of G. Then we have !0 ~!o because !0 mimics ¢ in each
instance of GG opened in !G. However, the retrieval of a unique strategy for G from
one for !G is not possible yet. Consider the game !(a ® a —o a) and the strategy
defined by the function

Iy { ((@n)R) = ((2n)L])
"\ (@n+1)R) — ((2n+1)Lr)

This strategy mimics two different strategies for a ® a — a depending on the
number of the instance which is opened by O, and each of them can legitimately
claim to be the associated strategy for a ® a — a. To eliminate this undesirable
ambiguity, one requires strategies to be ~-reflexive (i.e. 0 ~ o should hold) [5].
The intuition is that ~-reflexive strategies ‘behave equivalently at equivalent po-
sitions’. o is not ~-reflexive: its response at even-numbered instances is different
from that at equivalent but odd-numbered ones): we have ((2n)R) ~ ((2n + 1)R),
but ((2n)R)((2n)Ll) % ((2n + 1)R)((2n + 1)Lr).

Although ~-reflexivity helps us to force an exact correspondence between strategies
in G and !G, it is still too weak to be used in our context. Because networks are
to model applications of the (§) and (!) rules, equivalence should be based on the
preservation of the network structure rather than mere equivalence of positions.
We illustrate the subtle difference with an example.

146 CHAPTER 6. GAME MODELS

Example 6.41. Consider the two strategies oy,, 0y, :!/(a ® a) — §(a ® a) where

F(R*1) = L1 fo(R*1) = L2
filR*r)=Llr fo(R*r)= L3r

We have oy, =~ o0y,, but that is not what we would like to see. The network in oy,
has two threads, whereas oy, has three. In the latter case the P-threads come from
the same occurrence of ! which indicates the use of contraction. In contrast, the
former strategy imitates the simple proof in which after a ® @ = a ® a is derived,
one applies the (§) rule.

This problem has yet another guise.

Example 6.42. ~-reflexive strategies need not satisfy the condition concerning
related !-threads, while one might expect to impose it through an appropriate
notion of equivalence between positions. Consider the strategy oy, :!la —o §la, such
that f3(R*2) = Lmn and f3(R*1) = Lm/n’ for m’ # m. Plainly, o4, ~ oy,.

The shortcomings of the ~ relation are due to the fact that the network structure
is determined globally and sometimes the players will not be able to play out all
the threads of a network in a single position. For that reason, it will be generally
impossible to test copies of !-networks in the same play. If the ~ relation is to
be of use to capture the second part of (p3), we need to allow O to reveal any
interaction between threads. We allow that by introducing new moves into the
game. They will enable players to backtrack in the “game tree” so that they can
explore new positions, even though in the current framework the play would have
to end because of lack of available moves.

Technically, each token a will be modelled by a two-move game a —o a. Given
an IMLAL game G, we write G for the IMLAL game that arises by replacing each
token a of G with a —o a (cf. Proposition 6.21).

Definition 6.43. Let oy : G be an injective history-free total strategy. o : G is
the strategy oF generated by f such that

-~ -~

f(xR) = f(x)R and f(f(z)L) = xzL.

By Proposition 6.21 o7 is total. Obviously, it is also injective history-free. More-
over, if o is networked, so is oy and they are networked by the same network
function.

The Proposition below shows that o : G is already able to explore any arbitrary
finite amount of information provided by the underlying history-free function. In
particular, when the strategy is compactly networked, players can open all threads
of a network in a single position!

6.3. IMLAL 147

Proposition 6.44. Suppose of : G is total injective history-free. Then for each
finite subset f’ of f, there exists a position s € oy such that for all z € dom f, s
contains xR and f(z)R.

Proof. Let us construct a directed graph whose vertices are pairs of moves © =
zf(x) for x € domf. There is an edge from 7 to 7 if f(z) enables y (Definition 6.9).
Additionally, there is a vertex ® which is connected to all Z such that x is an initial
move of G (which are essentially the initial moves of G).

By Lemma 6.11 the graph is acyclic and by Lemma 6.13 each vertex is reachable
from ®. Besides, any finite path from ® to another vertex corresponds to some
short-sighted position by totality of the strategy and the fact that short-sighted
moves by O always extend a short-sighted position.

Clearly, all vertices T for x € dom f’ can be visited by a depth-first-like sweep
of the graph in which one is not required visit all children of the interim vertex.
Besides, this can be done in a finite number of steps. The procedure (with back-
tracking) can be emulated with the additional moves of G (used to ‘retreat’ from
a node that has been visited but whose children do not have to be) so that the
traversal corresponds to a position in 7. O

Remark 6.45. The technical idea of considering two-move games instead of sin-
gleton games to allow players to make more moves underpins the fully complete
fair games model of MLL without MIX [63]. In contrast to the first fully complete
model of MLL+MIX [3], players in fair games are required to reach any move of
the current game in a single play. It was shown that strategies which fail to take
up this chance arise from proofs using MIX.

Because ~ turned out unsatisfactory, we propose a new relation =, based on the
expansion just considered.

Definition 6.46. For two injective history-free and total strategies o, 7:
OR, T < ORT.

or will be called consistent if and only if o is ~,-reflexive.

~, is a partial equivalence relation, because &~ was. Besides, o ~,, 7 implies 0 ~ 7.

Let us revisit the previous examples. The following position is now to be found in
os, (Example 6.41):

s1 = (R*IR) (L1IR) (L1IL) (R*IL) (R rR) (L1rR).

148 CHAPTER 6. GAME MODELS

o, contains
sy = (R*1R) (L2IR) (L2IL) (R L) (Rx rR) (L3rR).

We have s; % s9, but all their prefixes are ~-equivalent. Hence oy % 0j,, i.e.
Of #n 0f,-

What about the strategy oy, (Example 6.42)7 Is it consistent? To our satisfac-
tion, the answer is no, but we need to assume additionally that o, is compactly
networked. This ensures that the network of Rx consists of a finite number of
threads with indices iy, - -, i for & > 1. Therefore, if 7, is ~-reflexive, threads
with indices of the form R % n must form networks with threads indexed by Li;n
(1 < j < k). Thus there must exist threads R *m; and R % my (m; # msy) whose
companion threads are ijn; and i;ny for some [(1 <1 < k). Then we have the two
following positions in o',:

s1 = (Rx1R) (LmnR) (LmnL) (Rx1L) (R % 2R) (Lm'n'R)

sy = (RxmyR) (Liyn R) (Liyn1 L) (R *my1L) (R*myR) (Lijny R)

Clearly, s; % s9, but all prefixes of the two positions of the same length are ~-
equivalent. Consequently, oy, %, 0y,, i.e. 0y, is inconsistent. Analogously, one can
prove the following result:

Proposition 6.47. If o; is a total injective history-free compactly networked
strategy which is consistent, all related !-threads in the associated networks have
related counterparts (if any).

Consistency makes it possible to represent total compactly-networked strategies by
finite means. Because their network structure is identical up to renumbering of
I-threads, we can extract full information about networks by opening O-threads
with indices ending in 0 or % only.

Definition 6.48. Given a strategy o : GG, a ‘substrategy’ 0y C P by induction as
follows:
e if s € 0g, |s| is even, sa € o and all O-indices in a are 0 or %, then sa € oy;
e if s € 0g, |s| is odd, sa € o,then sa € oy.

Note that oy C o, but 0y is not a strategy in the standard sense.

Proposition 6.49. If ¢ is compactly networked, oy is finite. O

6.3. IMLAL 149

Remark 6.50. If o is an injective history-free compactly networked strategy which
is total and consistent, oy can be regarded as its finite representation in that oy
uniquely defines a =,-equivalence class of strategies with the same properties.

Finally, we would like to construct a compositional framework incorporating =,,-
equivalence. For that we need a class of strategies that compose. o was defined for
total strategies which do not compose in general. Total compactly networked do.
For them once can easily prove:

Lemma 6.51. 1. 5;7 =0, 7.
2. If 01 =, 09 and 171 =, 79, then o1; 7 &, 09; .

0

The Lemma guarantees that one can indeed build a quotient category using con-
sistent strategies and =,.

6.3.6 The model

Definition 6.52. G, is the category of IMLAL games whose morphisms between
A and B are ~,-equivalence classes of token-reflecting injective history-free total
strategies for A —o B which are

e suitably and compactly networked,

e and consistent.

The definition is correct: G, is a category by Proposition 6.35, Proposition 6.38 and
Lemma 6.51. For brevity, we shall call strategies with all these properties winning
(IMLAL) strategies. If o is a winning strategy, oy is referred to as 0-winning.
Next we show that G,, satisfies all the category-theoretic requirements for a model
of IMLAL i.e. it is a light affine category (Definition 5.7).

Theorem 6.53. G,, is a model of IMLAL.

Proof. By the same reasoning as in the proof of Theorem 6.8 we can prove that G,
is an autonomous category. Recall that the empty game & is the tensor unit.

In order to define the two endofunctors !,§ : G, — G, we begin with some
operations on strategies. Given a strategy o : G; —o G, let §o : §G; —o §G5 be
the strategy

§o={(my)---(my) | mi---mpco}

150 CHAPTER 6. GAME MODELS

where Rm = R+m and Lm = Lxm. It is easy to see that if o = o, §o0 is generated
by the following ¢:

gldixm) =doxm' iff f(dym) = dym’

for dy,dy € { L, R}. Our definition of a similar operation for ! must be necessarily
more complicated as o may be called to act several times:

lo={s€ Pg, g, | Ynens|ne€o}

where s [n is the subsequence of s consisting of moves having the shape dnm for
de {L,R}. Le. lo imitates o in identically numbered threads of G; and G5 and
it is only O (in the subgame !G5) who can change the number and the network. If
o = oy, we have lo = 0,4, where:

g(dinm) = dynm' it f(dym) = dym/
for all dy,dy € { L, R}. Tt is straightforward to check that if o =, 7, both lo =, !7

and §o =, §7 hold. Therefore, the following definition is correct.

G) = G §(G) = 8@
l(lolxn) = [lolw, §(olx,) = [§0]n
Because §(o;7) = §0;87, (o;7) = lo;!r, §(idg) = idg, and l(idg) = idy, it is
obvious that ! and § are functors. Besides, both § and ! leave the empty game
unchanged, so §1 and !I will be interpreted as terminal objects. Hence, there are
unique maps (empty strategies)
m]I[—>§[, S]i[—>![, Z]l![—>§f.

The definition of w is also trivial and all conditions regarding the special maps for
units (namely wiz; sy =!(wy), W5 my = §(wy), s;;z; = my) are satisfied.

The canonical maps

MaG,,G, : §G1 X §G2 — §(G1 X GQ)
zg: |G — §G
eq: |G —IGRIG
are given by =s,-equivalence classes of the following strategies, which we denote
with the same symbols.

® Mg, : 8G1 ® 8Gy — §(Gh @ Gy)

Rxlm — Llxm me Mg
Lixm +— Rxlm me M}
Rxrm +— Lrxm mEMg2
Lrxm — Rxrm me M,

6.3. IMLAL 151

o 75 :!G — §G

Rxm +— LOm m e MY
LOm — Rxm mEMg

o e; |G —!IGRIG

Rinm +— L(2n)m m € Mg
Rrnm + L(2n+1)m m € Mg
even n — [n P

Lnm R(odd n r)LEJm m € M,

m consists of ‘copycat’ strategies, so it is natural and makes all diagrams of a
symmetric monoidal functor commute. Hence, § is symmetric monoidal. Similarly,
because of its schematic nature, z and e are natural transformations, and e defines
a commutative commonoid as specified in Chapter 5. O

It is straightforward to see that the interpretation of proofs induced by the cate-
gorical structure identifies axiom links with history-free functions and the function
0 with network functions.

6.3.7 Full Completeness

Let 0 = oy be a strategy satisfying all properties of Definition 6.52. Consider its
0-winning subset oy (which by abuse of notation we also write as o, where f; is a
finite subset of f). oy, is finite. We are going to zero in on ¢/°, the subset of o, in
which O must play short-sightedly (using the terminology from Definition 6.12 o/°
could be called weakly 0-winning). By Lemma 6.13 it is right to use the annotation
fo, because P will have to use each element of f; at least once. Obviously, o/ is
then also finite.

Using o/° we construct a tree Ty, in d stages where d is the depth of G. We
start with 7}?) defined to be the syntactic tree of "G in which branches are ori-
ented according to the directional rules defining the essential nets for IMLAL. It is
convenient to think of the branches as labelled with elements of { [,r, L, R,x } and
natural numbers to make the connection between branches and moves clear (cf.
Figure 6.3). We will also feel free to use expressions like ‘the i-index of a node’.

For i = 0,---,d — 1 we generate 7;};)“ from T¢ as follows (Example 6.58 demon-
strates the whole procedure on a concrete example).

e Consider any occurrence of 7~ at depth i + 1 i.e. one that is a hereditary
premise of exactly ¢ other ! or §-nodes. Let i be its i-base (determined by the
labels assigned in the previous steps; during construction of 7';;“1 they will
be assigned at level i + 1).

152 CHAPTER 6. GAME MODELS

e Suppose there are n threads with base i that occur in o/ (i.e. there is some
play in o/ in which such a thread is opened). If n < 2 we take no action.
Otherwise, we replace the occurrence of 7~ in 7}’0 with a ¢"-node and attach n
copies of the 7 -subtree rooted at that occurrence of I~ under the contraction
node. We label the respective edges between the ¢™-node and the !"-nodes
with the numbers that extend ¢ to the n indices of threads at depth 7 + 1.

At the end we set Ty, = 7}d0 Subsequently, as for IMAL, we convert 7y to a
canonical affine net Ny, in two steps:

(1) we connect all atomic nodes o™ and p~ for which fy(0) = p with an axiom
link (if fo(0o) = p, we are guaranteed to find the corresponding nodes in 7,
as we have grown branches for all threads that are used by the strategy),

(2) subtrees rooted at nodes which are not reachable from the root, but which
are premises of links that are reachable are all contracted to weakening nodes
(we can argue that the node must be negative as for IMAL, so it makes sense
to introduce a weakening node; the nodes will not be premises of contraction
links, because we have not introduced them for unused threads during the
construction of 7y,).

(1) enables us to interpret all positions from ¢/° as unique paths from the root to
the atomic node representing the final move (in the same way as for IMAL). When
the weakening nodes are introduced, no axiom links will be broken either. Hence,
N, is a canonical affine net. Moreover, each ?7- or § -node in it corresponds to a
thread that is opened in /0.

The correspondence between paths and positions has a nice feature: the dangling
(unclosed) brackets (i.e. !*,87 7?7 § -nodes) in paths from the root turn out to
indicate the current network of play.

Lemma 6.54. Suppose sm € o/ and m has depth d. Then there are exactly d
unclosed (hence positive) brackets in the corresponding path in Ny, and the ith
open bracket (1 < ¢ < d) has the i-index of the O-thread of the network to which m
belongs at depth 7. Besides, if a negative bracket closes a positive one, it represents
a P-thread from the network whose O-thread is represented by the positive bracket.

Proof. We give a proof by induction on the length of |sm| € o/°.
If s = ¢, then m is an initial move. Thus it can be part of O-threads only and
the opening brackets will indeed correspond to the O-threads that m initializes.
If m is a P-move, we apply the inductive hypothesis to s and because of (p5) (P
must play in the networks of the preceding O-move), the Lemma is true for sm as
well. In this case, the path corresponding to sm is that for s extended by crossing
an axiom link.

6.3. IMLAL 153

If m is a non-initial O-move, then m is short-sighted and enabled by the pre-
ceding P-move p. Let
pfq; ...q]; ®7 frf...rl‘}’m+
be the unique path from p~ to m™ in ANy, (Theorem 6.16). Suppose the depth
of p is d. By the induction hypothesis the path corresponding to s (ending in p)

has d open brackets by, -+, b} representing the O-threads of networks to which
p belongs at levels 1,2,---,d respectively. Let g¢; ,---,q;, and r} 7} .- 7} be

the subsequences of ¢ ---¢; and ry ---r;" respectively, consisting of all negative
and respectively positive brackets. Thus the bracket q;, represents the P-thread to
which p belongs at depth d —j+1. Note that it will be ¢;; that closes b ;11 and at
the ® -node only by, - - -, bs_, will be open. As m™* does not belong to the threads
represented by ¢;; this is desirable: by playing m and O leaves the P threads at
depths d —v +1,---,d and also changes the networks at these depths. Therefore,
the old membership at these depths should be revoked.

However, m will belong to the same threads as p at depths 1,---,d — v, so
by,---,b,_, should be left open as is the case. By playing m O may additionally
open new O-threads at depths greater than d—wv and thereby start new networks at
these depths. The potentially new O-threads are then (represented by) 75, -, 7}
(r;, at depth d — v + k) and they will be open in the path corresponding so sm as
required.]

Example 6.55. We consider a maximal position of a winning strategy for
(50 —ola) —o §(la — §a)

that defines the essential net on the left in Figure 4.10. Below we show the position,
the corresponding path and the unclosed brackets after each move. Note that §
is open all the time, because all moves are part of the same network at depth 1. In
contrast, §; is closed when the third move is played, because the third move does
not belong to the same network at depth 2 as the first two moves.

(R * Rx) (L3R4) (L3Lx) (L8R9) (L8L%) (R«LT7)
et et et o 7@ 85at am 7T §a’ a”

§ 6 §162 § 83 § 83 § 64 §160

Proposition 6.56. N} is a correct IMLAL net.

Proof. Because N} is canonical, it suffices to verify (i)-(v) from Definition 4.22 (see
Theorem 4.49). For (i) and (ii) we reason like for IMAL. Thanks to the preceding

154 CHAPTER 6. GAME MODELS

(iv) holds too, because § was shown to correspond to the function that networks
ofo. Therefore, because of (p3), we have (v), so it remains to prove (iii).

Consider a path from the root that passes through a ’®*-node p and ends in
its sink s,. Let a® be the first atomic node visited after the ’"-node and let b~
be the last node visited before reaching the sink (the polarities are implied by the
structure of the net). Then the path is of the following form:

Spqi'_ .. .q{}i—a—i— . .b_f,'-l_ . .r;sp
Suppose there are k opening (positive) brackets in s. Hence, a and b are in the
same threads at depths 1,2, - - - k because of the shape of the game (the underlying

formula). By the preceding Lemma the k open brackets in s cannot be closed in

spat - -qrat b
Let bgi1,---,bqs be the remaining (if any) unclosed brackets in the above sequence
(hence b’s depth will be d and it will belong to some threads at depths k+1,-- -, d).
All these nodes must have corresponding closing nodes in r{ - -7, then, because
the ""-node is the premise of exactly & bracketing nodes. Therefore, the brackets
open in
n

+ + - -
Spql...qrua/ ...b rl...rwsp

are exactly those that were open in s. Hence:

+ + o+ — -
pql-.-qva .-.b rln-.rwsp

must be well-bracketed. O

We have just proved that each strategy o determines a correct canonical affine net
Nj,. In conjunction with Theorem 6.53 (and the remark following it) this implies

Theorem 6.57. G, is a fully and faithfully complete model of IMLAL with respect
to canonical affine nets.

By remarks following Proposition 6.21 and the definition of consistent strategies G,
could be presented equivalently as consisting of ~-reflexive compactly networked
history-free total strategies that are expandable (in the sense of Proposition 6.21) to
strategies with the same properties when arbitrary IMLAL games are substituted
for tokens.

We end this section by showing an example of a net derived from a winning IMLAL
strategy.

6.4. IMLAL2 155

Example 6.58. Consider the winning IMLAL strategy for
§8a®!(8a —o a®la) — §a®!(la —o §a®!a)

defined (among other mappings) by:

RrORr0 — Rr0L1 RrORlx ~ LrlRr8
Lrlilx — Rr0L2 Rlx — Lr2RI
Lr2Lx — Lr3Rr0 Lr3Lx — Ll%x

There are 3 stages in the extraction of the associate affine net. We show the
intermediate trees in Figure 6.2 and the final net in Figure 6.3.

6.4 IMLAL2

Recall that IMAL and IMLAL games have been defined over a countable set of
tokens 7. For the purpose of modelling second-order quantification we shall allow
new tokens in addition to the elements of the fixed set 7. Let 7' be the smallest
set satisfying the following properties:

LTCT,

2. if e € T and G is an IMLAL game constructed using tokens from 7", then
Ve.G| € T.

Tokens of the form [Ve.G] are called second-order tokens. The rest are ground
tokens. As we shall see shortly, a second-order token [Va.G] is a description of the
game operation: A — G[A/a]. ‘a-equivalent’ second-order tokens are considered
identical.

6.4.1 Static games

Static games will be the objects that model second-order formulas.
Definition 6.59. Static games are IMLAL games built over the token set 7.

We write S for the set of all static games. For instance,
8a ® (b —o [Ve.c® §(le — 0)]) € S;

the three tokens from left to right are referenced by Ix, rL and rR respectively.

CHAPTER 6. GAME MODELS

156
at a” j: a” gi ij
RN 3 /
a % 7 F
N yd
§ ® at e
§l‘ 71* §T+ 'L
N4 ~.
D /®+
>8>+
at a” j at a” j at a” j a® a®
LN LN LN St
NS A4 A4 N
a ® ® ® ? t
b 74_ 74_ . e
g T L !
\? — \® +/
5?+/
at a” j‘ at a” j‘ at a” j‘ a” a” at a’
LN LN NS
§ ® § P § P ? 77§ I+
N/ N/ N/ NSNS
a ® ® ® C ®*
[I I . <
e L }
ot —

Figure 6.2: 79, T, T7 = Ty, developed from the strategy in Example 6.58

6.4. IMLAL2 157

[- R -
o B
g a
at a” f}* ata” ?"a at a f}p aE a at gﬁ
*§T+ l\\)?,_/r *§T+ l\\)?_r *§T+ l\\)?,_/r ?1_1 ?1_2 §T+* !TJFO
CINJROINSROINJR NSON
a0 ®, 3N c ®
L L
‘kl \ (1)7/ §T+* '1+0

Figure 6.3: The essential net defined by the strategy from Example 6.58.

Static games already come equipped with a notion of move and position, but they
do not make provision for interpreting the additional second-order rules. Neverthe-
less, we are going to take advantage of the existing structure to develop a suitable
‘dynamic’ framework. The key modification consists in allowing the game to change
(evolve) during play. To track the progress of the evolution, we introduce a notion
of generalized static games, which are generated from 7" in a similar way to static
games except that we use a more general version of the ! constructor. l¢q;), , G
is a game in which plays indexed by elements of I must come from the associated
game G;, whereas those with indices from N\ I originate from G:

M!{Gi}ieIG - Uie]{i}'MGiU(N\I)'MG
’u'{g 1 G(Zm) = if4 ¢ I then //LG(m) else Ha; (m)
G rier
P!{Gi}ieIG = {SEM!a{ltGi}iE[G | Viel. s rZEPGi;VZQI.S TZGPG}

Definition 6.60. The set S, of generalized static games is the smallest set
satisfying:

1. G, €S, for 7 € T' (i.e. singleton games with tokens from 77);
2. if Gl,GQ & Sg, then G1 X Gg, G1 —0 G2 € Sg,
3. if G € S, then §G € S;

158 CHAPTER 6. GAME MODELS
4. if, given I CN, G; € Sy for all i € I and G € S, then l{¢,),.,G € S,.

Recall that we usually write just 7 instead of G; and note that in general [Ve.H]| ¢
S, for H € §;, e.g. [Veli,ce®e] ¢ S,. However, if the generalized ! constructor
does not occur in H, i.e. if [Ve.H| € T, we do have [Ve.H] € S,. The ! construction
used for IMLAL corresponds to taking / = @. If for some j € I, G; = G, then

!{Gi }ieIG :!{Gi }iel\{j}G)

Each generalized static game has two kinds of tokens: ground (7") and second-order
(7"\T). In our new setting moves with ground tokens will be playable in the same
way as for IMLAL. Moves with second-order tokens will be treated differently—as
descriptions of game evolutions. They cannot be played right away on their own.
If a move with a second-order token 6 is to be played, the player making it will
be required to import a static game as an argument for the evolution operator 6,
thus causing the current game to grow locally, with the game §(A) grafted in the
place previously occupied by 6. As the evolution may sometimes take place in a
single thread of a !-subgame, the result of evolution from a static game need not
be a static game, but it will always be a generalized static game. Furthermore,
the evolution is closed with respect to generalized static games. After inducing
an evolutionary step, the same player must proceed: he may play a move with a
ground token from the new game and so complete the second-order move or he
may continue the evolution process by playing a move with a second-order token
and importing another (static) game, and so on. However, after finitely many such
steps the player is required to play a move with a ground token from the evolved
game, thus finally completing the second-order move.

Remark 6.61. An evolving game model first appeared in a LICS’97 paper [60]
by Hughes, where he shows how a fully complete model for System F can be
constructed. The pace of the evolution was slower therein: each move caused a
single change to the game.

A more abstract version (for the V, =-fragment) that merged some of the evolu-
tionary steps has been considered in [102]. It extended the innocent framework [64]
and was based on prenex forms, which allowed for a separation of evolution ar-
guments from the rest of a move. Players were required to provide evolution
arguments before specifying the actual moves and games had to be continually
transformed to prenex form after each move to maintain simplicity.

In our framework evolution arguments become integrated parts of moves and
are intertwined with other parts of moves. The concept of prenex forms cannot
be applied because of ® and thus our definitions of moves and positions seem
necessarily more involved.

6.4. IMLAL2 159

It is worth comparing the framework of evolving games with the first game
model of affine polymorphism (IMAL2) [1] in which evolution occurs implicitly.
The board evolves in the minds of the players, but they never know what evolution
arguments cause the changes. The only source of information about the growth
of the game is the set of locations used in a position. Similarly to our framework,
the game rules treat the two players in an asymmetric way: O can imagine he
can effect any possible evolutionary step and thus he is allowed to play any move
that evolution could make available, whereas P must play conservatively in that his
move must be correct regardless of the argument O may have meant. For instance,
after O begins in the game corresponding to VX.X, P is not able to respond,
because O may have just imported a singleton game which gives P no room to
play. Analogously, no P-moves can be made in VX.X ® X, but there is a simple
strategy for (the unprovable sequent) VX. X ®X —o VX.X®VX.X based on copying
moves from left to right. There will also be one for VX.(A[X]®B) — VX.A[X]|®B,
which is not provable either. The complete absence of evolution arguments means
that proofs that are different up to formulas hidden by existential quantification
may have the same denotations.

Informally, IMLAL2 games are going to be static games that evolve into generalized
ones during play. Starting from G € S, the interim (generalized static) game (which
we can think of as the ‘current game board’) grows as the play unfolds, so that over
the lifetime of a play, many more moves than are specified in the initial game G
become available. We make the first step towards defining these generalized moves
by introducing the playable strings.

Definition 6.62. A string s € ({l,r, L, R,x} UNUGS)* is a playable string of a
generalized static game G if:

e cither s € {[,r,L,R,x}* s € Mg and ug(s) € T—then we say that G' does
not evolve (as a consequence of playing s) and call ug(s) the token of s;

e or there exist A; € S (called evolution argument) and s, € {l,r, L, R, *}*
such that s = 514159, 51 € Mg, pa(s1) = [Ve.H| and s, is a playable string
of the game H[A,/e]. The token of s is defined to be the same as that of sy
(although playability is defined with respect to a different game). If s, causes
H[A,/e] to evolve into H', then s turns G into G[H'/[Ve.H]|;

e Or s = s51nSy, where s; € {[,r, L, R, }* points at a subgame of the shape
't#;),c,H and sy is playable for the game

H, nel
K_{H ngl

160 CHAPTER 6. GAME MODELS

Then if sy causes K to evolve into K’, sinsy, makes G evolve into
G[!{Kj }jEJH/!{Hi }ie[H])

where

I nel
J:{Iu{n} negl

and K; =H; forallj € J\ {n}, but K,, = K"

Iftse ({l,r,L,R,x} UNUGS)*, we call s | {I,r, L, R,x} UN the location of s and
write it as |s]. A string from ({l,r, L, R,*} UN)* is an O-location if s contains
an even number of L’s. Otherwise it is a P-location. The sets containing them
are called Lo and Lp respectively. Intuitively, an O-location is the occurrence of
an O-move in a game.

Note that in general it may take several evolution arguments to form a complete
playable string and that they may need to be played consecutively. Suppose s is a
playable move such that s = m;E;ms, where m; does not end with an element of
S (although it might contain such elements). We shall write evolution arguments
as superscripts (e.g. ---1-.- above). From the moment such an F) is played we
say that the location |m| is being defined. It may turn out that ms begins with
a contiguous segment of evolution arguments in which case all of them form part
of the definition. If my = Ey- - E,mg for E; € S (2 < i < n) and m3 begins with
a character from {[,r, L, R,x } UN we write [(|m],i)] = E; (1 <i < n). Observe
that in general [—| : (Lo U Lp) x N = S§. A pair (I,n) € (Lo U Lp) x N will
be called a complete location. Complete O- and P-locations are defined in the
obvious way. Thus the definition of a location is a specification of the content of
several associated complete locations. If (I,n) has been defined by some move, so
has (I,m) for any 1 < m < n. A playable string s can be seen as defining a set
{li,--+,l,, } C Lo U Lp of locations. If [; (1 < i < ng) contains d occurrences of
natural numbers, we say that the associated evolution arguments were provided,
used or inserted at depth d.

Definition 6.63. A playable string s for a generalized static game G is an O-
playable string if the strings ly,---,[,,, |s] are all O-locations. P-strings are
defined by analogy.

In other words, playable strings acquire owners if the locations they define belong
to the player who owns the location of the string.

6.4. IMLAL2 161

Example 6.64. (i) The O-playable string

Ve.e|-- - [Ve.€] a,
k

which consists of just k£ + 1 evolution arguments, causes the singleton game
[Vb.b] to evolve into a. There are k intermediate steps—all equal to [Vb.b]—
and a is the move’s token. The move defines each [(e,7)] (1 < i < k) to be
[Ve.e], but [(e,k +1)] = a.

(i) R1Velre—flgRla—8®88c~dRR ig an O-playable string in a —o![¥b.1(b —o b)]
whose token is d. It makes the game evolve into
a —O'{ 1

. o1V F.e—o fll—olVelv f.o—o f11 [VD1 (D —0 b
P o ety ooy YT e ol oo [V0-U()]

The playable string R14LRx® develops it further into

a —o!{ [Ve.[Vf.e—Of]]—O[Ve.[Vf.e—of]]}[Vb'!(b - b)]

1'_)!{ 4»—»(!a—O§b)—0(§c—0d)}
) Vobleapa=eb[ig a playable string for [Ve.e], which transforms the game to
(a —o b) —o a, but it is neither O- nor P-playable: it defines L (a P-location),
while the move’s location is an O-location.

(iii

Definition 6.65 (Moves). For a static game G the set M of moves is defined
by

e if m is an O- or P-playable string for G' (construed as a generalized static
game), then m € Mg;

e if there exist my,---,my; € Mg and Gy,---,Giy1 € Sy such that m; turns
G; into Gi41 (0 < i < k, Gy = G) and m is a playable string for Gy, then
m € Mg.

Definition 6.66 (Positions). The empty sequence is a position. If a finite se-
quence s of moves is a position and G’ is the evolved game at that point, then sm
is a position provided

(i) m is a playable string of G’ (let G" be the resultant game);

(ii) sm is alternating, i.e. if |s| is even, m is O-playable, otherwise it must be
P-playable;

162 CHAPTER 6. GAME MODELS

(iii) the sequence consisting of the respective locations of the elements in sm is a
position of G (in the sense of IMLAL games over 7).

Definition 6.67. IMLALZ2 games are (static) games with moves and positions
defined as above.

Example 6.68. We examine the maximal position

(R* Rlox80) (L1R'®2927) (L1L'9%8¢12) (L2RV®'915) (L2LM9061) (R x L89%rx)
G, Go Gs Gy Gs G

for the game

(Vo] —o [Vr.a]) — §([Vy. Vo2 @ y]] —o [Va.§[Vy.[V2.y]]])

where the sequence GGy — G represents the evolution of the initial game:
Gy ([Vz.x] —o [Va.z]) —o §([Vy.[Vr.2 ® y]| —o §a)
Gy Yo vaa)—lpee}([Vo.2] —o [Vr.z]) — §([Vy.[Vo.2z ® y]] —o §a)

G)}([Vx.x] —o [Vz.z]) —o §([Vy.[Vz.z ® y]] —o §a)

|
'{1}—>!d®§ew!(b®c

Ga !{ 1 defe—ol(beo) }([Vx-fv] —o [Va.z]) — §([Vy.[Vo.x @ y]] — §a)

2 — [Vz.z]—-o!f®!g

G ! {11 ufeatteo }([Vfr-fr] —o [Va.2]) —o §([Vy.[Va.2z © y]] — §a)
2 (h®i)—o!f®'g

G !{ 1o el }([Vxx] —o [Vz.z]) — §(k @ §j —o §a)
2 (hei)—o! fR!g

After the first move we have [(Rx R,1)] =la, [(R* R*,1)] = aand [(R* Rx,2)] =
§a. After the second one [(L1R,1)] =!(b® c¢). The third move defines [(L1L,1)]
to be !d ® §e, the next one makes [(L2R,1)] equal to !f®!g. The fifth one sets
[(L2L,1)] to !(h ® i) and finally [(R« L,1)] and [(R % L,2)] are defined to be §j
and !k respectively.

In our next example the original game is [Vc.¢]. Let V = [Ve.c] —o a. For each i,
the following sequence is a position
YR LYR LLYR -~ L---L'R
H.,—/
and the game after 7 steps is G;, where Gy = [Ve.c] and G111 = G; — a for i > 0.
Besides, [(L---L,1)] =V for any 0 < i < i.
W

)

6.4. IMLAL2 163

Of course, it makes sense to consider strategies in the new evolving framework as
well as token-reflection and totality. Strategies can also be composed using the
standard mechanism. For instance, networked and suitably networked strategies
form a class closed under composition as do token-reflecting strategies. Next we
focus on several new properties with the aim of characterizing the proof space of
IMLAL2.

6.4.2 Symbolic and expanded strategies

First we consider the simple scenario in which the evolution arguments provided
by O are guaranteed to be ground tokens (regarded as singleton games). Formally
we say that O plays symbolically (or makes symbolic moves in a position, if for
each complete O-location (I,n) defined therein we have [(I,n)| € T. For the rest
of the section we assume that O plays symbolically. We say that a P-strategy o is
symbolic, just in case for every even-length s € ¢ if sm is a position then sm € o,
if and only if the O-move m is symbolic.

The purpose of the next definition is to introduce strategies that are parametric in
the sense that the evolution arguments given by P are determined by those given
by O in a schematic fashion. First we set S(Lo x N) to be the collection of formal
objects defined by the following rules:

e every ground token and every complete O-location are in S(Lo x N) i.e.
T,LO x N C S(LO X N),

e if G; and G5 are in S(Lp x N) then G; ® Gy, Gi — G, §G, |Gy are in
S(Lo X N),

e if G € S(Lo x N) then for each e € T, [Ve.G] is in §(Lo x N).

For example, we have ¢ —o (R3rx, 1998)® [Va.((L2Lr,2001) — a®b)] € S(Lo xN).
Informally, S(Lo xN) is the collection of static games in which complete O-locations
are treated as extra ground tokens.

Definition 6.69. The pair f: Lo — Lp and F': Lp x N = §(Lp x N), where f
is injective, defines a symbolic strategy o if for all even-length smomp € o (mg is
necessarily symbolic):

o [mp] = f(lmo)),

e for all u,v € ({l,r,L, R,x} UNU S)* such that u does not end and v does
not begin with an evolution argument, and for A;,---, A, € S such that
mp = vy we have A; = F'(|u],i) (1 < i < n), where F'(|u],i) is
obtained from F'(|u],) by replacing each complete O-location (I, m) therein
with [(I,m)] (as defined in smg). Each such [(I, m)] must already be defined
in smo.

164 CHAPTER 6. GAME MODELS

We write o = oy 5 if f, F' are the least such functions.

By definition, it is easy to see that

1. f and F are related: each P-location in dom(F') is a prefix of some element
in cod(f).

2. By leastness of f and F and injectivity of the former, elements of dom(f) U
cod(f) are incomparable with respect to the prefix order <. Hence, given
se€ ({l,r,L, R,x } UN)*, there exists at most one s" € dom(f)U cod(f) such
that s = s'x.

Note that a symbolic strategy is location-wise history-free, in the sense that the lo-
cation of P’s response at any position depends only on the location of the preceding
O-move.
Example 6.70. e The identity (symbolic) strategy for
V. Vy.z ® y]| —o [Vz.[Vy.z @ y]]
is generated by the following pair of maps:

f(R) = LI F(L11) = (R1)
f(Rr) = Lr F(L,2) = (R,2).

In general, of is an identity strategy if and only if it is total and
— for all Rx, Ly € dom f
f(Rz) =Lz f(Ly) =Ry
— for all (Rx,n), (Ly,m) € dom F'
f(Rz,n) = (Lz,n) f(Ly,m) = (Ry,m).
e The symbolic strategy 7 for
[Vz.2] — [Va.[Vy.§(z — y)]]

defined by
f(R*R) = L3Rr F(L,1) = [Vy!((R,1) — [Vv.v ®y])]
f(L3L) = LARI F(L,2) = (R,2)
f(IAL) = R*L F(L3R,1) = (R,2)
F(LAR,1) = (R,1)

contains the following maximal position:

(R % R) (LIvvHa—lvovullb3Rby) (L3L) (LAR") (LAL) (Rx L).

6.4. IMLAL2 165

Symbolic strategies cannot be composed because of the lack of symmetry in the
way evolution arguments are used by the two players. During interaction, in the
middle component, the roles of O and P are united and the asymmetry prevents any
meaningful interaction from taking place. To solve the problem, we define how P
equipped with a symbolic strategy could respond to not necessarily symbolic moves
of O. The idea is that he should use F' to import an appropriate game even though
O may have imported a non-singleton game. P will also have to point at some
move of that new game. Fortunately, O must have done the same when playing
his argument, so P will be able to ‘borrow’ the pointer from the preceding P-move
in addition to using the location suggested by f. Such ‘copy-cat’ extensions are a
semantic form of n-expansion [60, 74].

Definition 6.71. Consider a symbolic strategy o = o7 r. The expanded strat-
egy o is defined by the following algorithm.

Suppose the odd-length position sm € @ is such that |m| = ¢t. Find v < t
such that u € cod(f) U dom(f) (by previous remarks if such a u exists it will be
unique). This decomposes the O-move m into m,m, such that ¢ = uv, m, ends in
an element of {{,r, L, R,x } UN and |m, | = u. There are two cases.

(i) If u € dom(f), play f(u)m,, i.e. sm(f(u)m,) € & (provided it is a position).
(ii) If u € cod(f), play f~'(u)my,, i.e. sm(f~"(u)m,) € & (if it is a position).

Tn case (i) if u is encountered in the play for the first time, f(u) is obtained
from f(u) by inserting appropriate evolution arguments using (as specified in
Definition 6.69); otherwise f(u) = f(u).

Example 6.72. We come back to 7 from Example 6.70 and show a position from
T in a top-down fashion:

RVa [Vb.b®al] [Ve.c] *Rd®e)

1y 1([Va.[vb.b@a]]—[Vv.v@y])] [Vc.c]3R[Vc.c}ld®er)
L3LY §hz*)

(
(
(
(L4RVa [Vb.b®al] 'f§hl*)

Remark 6.73. In any play the evolution argument for each complete location is
given explicitly only once. Thus in case (i) f(u) = f(u) if the u in question has
already been met in the history of play. In case (ii) all locations that are prefixes
of f~'(u) have already been defined, since the corresponding instance of case (i)

must have been encountered first. This explains the apparent asymmetry in the
two cases.

166 CHAPTER 6. GAME MODELS

Remark 6.74. If o4 is networked, then the same networks exist in @, but in
addition we may have networks created by the m, moves—they will always have
exactly two threads of the same kind.

Lemma 6.75 (Zigzag). In any position of an expanded strategy generated by f
and F', applications of (i) and (ii) for any u € dom f alternate and f will be applied
in case (i) first, if at all.

Proof. Otherwise, in the generalized static subgame rooted at u, we would have two
consecutive moves by the same player or a position beginning with a P-move. [

It is straightforward to see that, like symbolic strategies, expanded strategies are
(location-wise) history-free. We also have:

Proposition 6.76. Expanded strategies are closed under composition.

Proof. The underlying symbolic strategy of the composite strategy is defined by
interaction sequences in which O-moves in A and C are symbolic. The extraction
of the two conditions poses no problems—the reasoning is actually the same as in
the proof that history-free strategies compose [5]. O

Many properties of expanded strategies are inherited from the underlying symbolic
strategies:

Proposition 6.77. 7 is (compactly, suitably) networked if and only if o satisfies
the respective property. If o is token-reflecting, then @ is total if and only if o is.

Proof. For (compactly, suitably) networked strategies, see Remark 6.74. For to-
tality, we appeal to Proposition 6.21. Were & not total, we would be able to find
an IMAL game for which the expansion of a total strategy is not total, which
contradicts the Proposition. O

6.4.3 Local strategies

For networked expanded strategies we consider yet another constraint concerning
the manner in which evolution arguments supplied by O can be used by P. We
shall require that after O has used an argument at depth i, it can only be used by
P inside the associated i-network. In particular, evolution arguments played by P
and referring (via F') to arguments provided by O cannot be inserted by P at any
depth lower than that at which they were introduced by O.

6.4. IMLAL2 167

Definition 6.78. A networked symbolic strategy is local if for all (u,m) € dom F
whenever (I,n) € Lo X N occurs in F(u, m) and [has depth d, then u has depth
greater than or equal to d and the threads represented by the d-indices of [and u
belong to the same network.

In expanded strategies evolution arguments proposed by O are used in two ways:
with the help of F' and by copying. We already know that if the underlying sym-
bolic strategy is networked copying takes place between two threads of the same
network. Therefore, if the symbolic strategy is in addition local, the induced ex-
panded strategy also follows the spirit of locality. Accordingly, we call it a local
expanded strategy.

Example 6.79. Consider the symbolic strategy for the game Va.a —o §[Vb.b] de-
fined by (f, F') such that
f(R%x) = LRI, f(LLR3) = LLILA,
and
F(L,1) = (I[Vd.d] —o!(Rx, 1)) —o!(Rx,1), F(LLLA,1) = (Rx,1).
It contains the following position
(Rx¢) (LUVd-d=to—~lc R1) (LLR3) (LLLAC).

The strategy is not local for two reasons:

e Rx occurs in F'(L,1) and the depth of L is smaller than that of Rx,

e LLL4 and R are from different networks.

However, if we change the game to Va.a —o [V0.§b], Rx to R in the definition of F’
(keeping the same f), we will get a local strategy with the play

(R°x) (LUNVdd=to=lcp1) (LLR3) (LLLA®) .

Proposition 6.80. Local expanded strategies compose.

Proof. Follows easily from the way the network function of the composite strategy
is defined. O

168 CHAPTER 6. GAME MODELS

6.4.4 Bounded strategies

Now we would like to introduce totality into our framework. The first problem we
need to face is the fact that total expanded strategies do not compose in general.
For IMLAL we resorted to the notion of compactly networked strategies to ensure
that—in conjunction with this additional property—totality is compositional. In
the present framework this is no longer sufficient, as there is a new source of infinite
behaviour—unbounded evolution.

Example 6.81. Consider the strategy for [Vz.z] —o [Vy.y| in which P replies
replies to the first O-move R® with L{I"#l—lvsh—eR = This puts O in the same
position as at the beginning of the game and the play could continue indefinitely.

As strategies corresponding to IMLAL2 proofs are in general infinite, we cannot
simply require that f and F' be finite (this would work for IMAL2 though). Instead,
we are going to impose three conditions that prevent the game from growing too
large during play, i.e there must exist a bound on the size of the developing game
4. However, this condition is not preserved by composition! This is due to the
existence of two other factors that can induce unbounded growth during interaction.
We identify them in the following examples.

Example 6.82. Consider a symbolic strategy o for the game
l([Va.a] —o [Va.a]) —o!([Va.a] —o [Va.al)

such that when O opens the thread indexed by Rn, P will open n threads with
indices prefixed by L and copy the argument used by O. Roughly, O’s choice of an
index will determine which ‘numeral’ is played out by P. Here is the maximal play
of the strategy in which 2 is played

(R2R") (L1R") (L1L") (L2R") (L2L°) (R2L").
In general when O plays (RiR®), P can use threads numbered

i(i—1) i(i — 1) i(i — 1)
> 2 ThUT

(i 4 1)
TR

1.

+(—1)=
Let 7 be another symbolic strategy, this time for

@ —ol([Va.a] —o [Va.al)

4By the size of a game we mean the depth of the underlying syntactic tree in which second-
order tokens (but not quantifiers) are unfolded, so, e.g. the size of [Va.a — a] — b is 3.

6.4. IMLAL2 169

in which P duplicates the argument provided by O:
(RiR") (RiL*®"r).

In 7;7 the size of the game can get arbitrarily large. This effect is caused by the
unbounded number of threads in networks from o: in 7 P plays a ® a, which o
copies, and 7, ¢ then duplicates so that (e ® a) ® (a ® a) is eventually played. The
longer the exchange takes, the larger the size of the game.

The strategy in question is not suitably networked, which might seem to be the
source of problems. This is not true: the same problem recurs, when the above
strategy is modified to one for

([Va.a] —o [Va.a]) —o!§([Va.a] — [Va.a]).

In order to exclude this kind of behaviour we will be interested in strategies for
which there exists a bound on the number of threads in networks.

Example 6.83. Let o :![Va.[Vb.a]] —o![Va.a] be the symbolic strategy in which
P imitates O, but in addition, if O opens Rn, P will substitute n copies of the

argument | Rn, 1] for b
o ((a®a)®-)Ba
(Rn®) (Ln n).
The other strategy 7 : [Va.[Vb.(b —o b) —o a]] —o [Va.[Vb.a]] is basically an expansion
of the obvious IMAL strategy for ((b —o b) — a) — a. P simply copies the

arguments given by O:
(R*) (L*R) (LLR) (LLL).

As before, composition leads to unlimited development of the game, though in the
underlying symbolic strategies the size of the game is bounded. This time the size
of arguments used in oy p is to blame. Arbitrarily large arguments are played, but
they do not contribute to the size of the game in o . Nevertheless, their presence
can be detected and exploited during composition to produce games of arbitrary
size.

Motivated by the three examples, we define a class of strategies that satisfy all of the
proposed conditions and show that their conjunction is preserved by composition.
Definition 6.84. A local expanded strategy 7 is bounded if and only if

1. oy is networked and there is a (uniform) bound N7 on the number of
threads in its networks (in particular o is compactly networked),

170 CHAPTER 6. GAME MODELS

2. there is a bound H A on the size of evolution arguments provided by F,

3. the size of the evolving game in any play from o never exceeds HG.

Example 6.85. Boundedness does not rule out infinite behaviour. Rather, it re-
stricts the pattern which can be used to generate infinite plays. Consider the
identity strategy for the game [Vz.z] —o [Vy.y] which is defined by f(R) = L and
F(L,1) = (R,1). Suppose O plays RI¥#2l=aR P plays copy-cat and so responds
with L¥®#1=¢R From this point onwards, both players can behave analogously,
engaging in an infinite exchange that can make the game grow in every step.

Lemma 6.86. Bounded strategies compose.

Proof. Suppose 0y, i, and 7, g, are bounded strategies and NT', HA, HG are the
larger of the respective bounds associated with them. Let G, ¢ = oy, m; 05,5 (by
Proposition 6.76 expanded strategies compose). We shall focus on o, and show
that the requisite bounds exist. Hence, we consider interaction sequences in which
O moves in A and C' are symbolic—these are the sequences that define o, . Note
that in such sequences O-moves in A or C' do not increase the size of the evolving
game. We shall show that for any 7 € N there exist bounds N7T; and HA; such
that

(a) for any i the number of threads interacting in an interactive tree of threads
at depth i is bounded by NT; (hence, the number of threads in any network
of the composite strategy is also bounded),

(b) the size of evolution arguments used at depth 7 is bounded by H A;.

Finally, given any interaction sequence, we shall show that after all evolution ar-
guments that can possibly be used at depths 0,1, ---,7 are taken into account:

(c) the size of the resultant game remains smaller than some HG;.

We reason by induction on depth i. At depth 0 (a) holds vacuously and N7, = 1 by
convention. The length of locations at which evolution arguments can be supplied
by Fi or F, is restricted by HG. Thus there can be only a finite number of
them, say, Ny. Once provided (case (i) of Definition 6.71), they can be copied in
subsequent moves (m, in case (i) or (ii)) and sometimes used in other arguments
following Fy or F, (case (i) again). Since F} and F, will be used only Nj times,
the size of the largest argument that can occur in an interaction sequence of the
kind under consideration can reach HAy, = N, - HA (this is because arguments
that are used earlier can be used to amplify subsequent ones). Thus after taking
into account all the arguments played at depth 0 according to case (i) the size of

6.4. IMLAL2 171

the game can grow to HG + H Ay. The copying of arguments by m, can affect the
size too. Suppose an evolution argument is used as part of some move m as in case
(i) and this occurs at location [. Let mq,---,my be the moves that follow m in
which the argument has been copied at locations [y, - - -, [, respectively. Note that
this copying can only take place if each move m; (1 < ¢ < k) has been made using
f1 or fo for arguments of depth 0. Because of the bound HG, there can be only a
finite number of such arguments, say, they form a finite subset f’. Suppose each
m; has been made using z; € dom f’ i.e. |m;] is prefixed by either z; or f(x;). Let
0 = |f'(x;)| — |xi| for i =1,--- k. Then |l;11] — |l;| = |mi1| — |mi| = (=1)%6; for
¢ €{0,1}andi=1,---,k— 1. Thus:

k
Ul = 11+) (=1)“5:.
i=1

Let 5= 3", caomp |f'(x)|—|z]| (the sum is finite!). By Lemma 6.75 S (—1)48; <
S, so
k] < S+ 1.

Because |[| < HG and the size of arguments is bounded by H Ay, the size of the
game after all possible modifications caused by arguments used at depth 0 will not
exceed HGo = HG + HAy + S.

Next we make the inductive step which generalizes the previous reasoning.

(a) Consider a thread at depth i + 1. Its i-index determines a thread at depth i,
which belongs to some interactive tree of threads with at most N7T; threads
by induction hypothesis (a). By (¢) the number of i + 1-bases that extend
the 7-indices from the above-mentioned interactive tree is finite and bounded,
because only evolution arguments played at depths 0,1, -,z can contribute
them. Therefore, the depth of any interactive tree of threads at ¢ + 1 is also
bounded by Proposition 6.32. Because the number of threads in a network in
G and 0y, g, is bounded (by NT'), the number of threads in an interactive
tree of threads at ¢ + 1 is bounded by some NT; ;.

(b) Consider evolution arguments used at depth i+ 1. Their primary sources are
F) and F, (case (i) in Definition 6.71). The alternative source is copying (via
my), which does not change the size of arguments. For this reason, it suffices
to consider the former case only.

Because the strategies we consider are local, an evolution argument provided
by O can be used by P (in the sense of case (i)) only within the same network.
However, during interaction, arguments introduced by P are seen as provided
by O by the other strategy. Therefore, in any interaction sequence, once an
argument is introduced by O, the argument itself or its copy might be used
in any thread of the associated interactive tree of threads. Because

172

CHAPTER 6. GAME MODELS

e the length of the location at which arguments are introduced by case (i)
is bounded by HG, and

e the number of threads in an interactive tree of threads is smaller than
Nj—;'+l by (a)a

the number of arguments introduced at depth 7+ 1 using F} and F, inside an
interactive tree of threads at depth 7+ 1 is uniformly bounded by some N, ;.
After being introduced in this way, they can be copied and possibly used
later as parts of other arguments as specified F; or F5,. Besides, arguments
introduced at depths 0,1,---,7 can be used in arguments provided at ¢ + 1.
Let HA" = max(H Ao, HA,, - - -, HA;). Then the size of arguments that occur
at depth 7 + 1 will be bounded by HA;;; = N;;, - HA+ HA'.

Recall that for (¢) we consider the size of the game taking into account only
the arguments used at depths 1,2, ---,7+ 1. By induction hypothesis the size
is bounded by HG; at depth . When evolution arguments are used at depth
i+ 1 as in case (i) from Definition 6.71, this takes place at some location [
whose length is less than HG. By (b) the size of the argument does not exceed
HA;; then, so such arguments alone will not make the game larger than
max(HG;, HA; 1 + HG). Further increases can be effected through copying
from the above locations (m, in Definition 6.71), but note that everything
must occur in threads from some interactive tree of threads. The copying
moves are then made using f; or fy for strings which are either prefixes of
the indices of the 7 + 1-threads involved or their extensions with depth ¢ + 1.
Their number is bounded, since the size of moves in f; and f; is bounded (by
HG) and NT,,; bounds the number of relevant threads. Therefore, only a
bounded number of elements from f; and f, can be involved, say, from some
f" € fiU fy. The copying may continue for a number of moves. Suppose
the original argument is introduced at location [(hence |l| < HG) where [is
part of some move m, Let mq, - - -, m; be the subsequent moves that copy the
argument to locations [y, - - -, [y respectively such that each m; (1 < i < k) is
made using z; € dom f'Ucod f'. Let §; = | f(x;)| — |x;| for i =1,--- k. Then
|li+1| — |lz| = (—1)6151, where € € {0, 1 } Thus

k
Ul = 11+) (=1)5:.
i=1

Let S = > coomp IIf ()] — |2]| (as the number of elements from f; and
fo involved is bounded and ||f(z)| — |z|| < HG, we can choose a uniform
bound S). By Lemma 6.75 S_F (=1)%6; < S, so |lx] < |I| + S. Hence,
copying via m, might increase the size of the game by S, in relation to the
effect of arguments introduced by case (i). Therefore, the overall height of
the game (after arguments at depth 0,1,---,7 + 1 are considered in each

6.4. IMLAL2 173

interaction sequence with O playing symbolically in A and C') is bounded by
HGi—l—l = max(HGi, HAH_1 + HG + S)

Because the length of strings in f; and f, is bounded (by HG), so is their depth. Let
dy and dy be the respective bounds. Hence, F} or F; provide evolution arguments
only at depths that do not exceed d = maz(dy,d,). Thus for i > d case (i) never
occurs and all arguments at these depths are copies of those provided by O in A or
C, i.e. they are ground tokens. Clearly, this will not change the size of the game.
Also recall that any network at these depths will have two threads, so the same
will be true of each network from the composite strategy.

To sum up, all the anticipated bounds exist:

e the composite strategy is compactly networked and the number of threads in
any network is smaller than NT" = max(2, NTy,---, NT,),

e the size of evolution arguments in the composite strategy is bounded by
HA'"=HA,y

e the size of the game during play from o, does not exceed HG|.

0

As expected, the notion of boundedness guarantees that totality of strategies is
preserved during composition.

Theorem 6.87. Total bounded strategies compose.

Proof. By Proposition 6.76 it suffices to prove that no infinite chattering can occur
if O plays symbolically in A and C. From the proof of the preceding Lemma
we know that the size of the evolving game remains bounded throughout such
an infinite play. Suppose all the moves inside the infinite sequence in the middle
component have depth d. All of them originate then from threads belonging to
the same interactive tree of threads at depths 1,2,---,d, which—Dby the proof of
the last Lemma—have bounded numbers of threads. Hence, the size of the game
during the infinite play is bounded and so is the number of indices of threads that
the moves represent. Clearly, only a finite number of moves can be played under
these conditions. 0

The last two of the three examples motivating the introduction of boundedness
were strategies that were not behaving ‘consistently’ with respect to !-threads.
This suggests that once a suitable notion of consistency is incorporated into our
framework, it should be possible to weaken the definition of bounded strategies
(Definition 6.84). Indeed, Proposition 6.96 will show that consistent strategies
which are compactly networked and satisfy

174 CHAPTER 6. GAME MODELS

3. the size of the evolving game in any play from o never exceeds HG

can be finitely represented and, therefore, 1. and 2. of Definition 6.84 hold then.
Hence, boundedness reduces to compact networking and 3. for consistent strategies.

6.4.5 Consistent strategies

We have used numeric indices to indicate that fresh or old threads are used in plays,
so, as for IMLAL, we need to impose a notion of equivalence that will make up for
this overly concrete representation. Fortunately, the previous formulation is general
enough to be used in the current setting, but we need to take evolution arguments
into account as well: in equivalent positions players must employ the same evolution
arguments. Given a position s = sy - -5, we define |s| as |s1] - |s)q]-

Definition 6.88. Given s',s? € Py, where G is a static game, s' ~, s? holds if
and only if

1. |s'] =~ |s?] (Definition 6.39),

2. fori=1,2

i Ayi 3-i _ A 43
if sj=cy---qt), then 7" =dy---dj; -4,

where ¢;,d; € X (1 <1< k), tht?€ X*and X = {I,r,[,R,x} UNUS.

> 7907

~. extends to a partial equivalence relation ~, on strategies in the same way as ~
did for IMLAL. Similarly, we have:

Lemma 6.89. if 0y =, 0y and 7 &, 7, then o1; 7 &, 09; 7.

For IMLAL games the basic relation & on strategies was unsatisfactory because it
could not account for the global nature of networks. This was a serious defect, as
networks are used to model the structure of proofs. For this reason we considered
auxiliary extensions o of strategies, which extracted more information about o
during play so that ~-equivalence could become sufficient to characterize strategies
with equivalent network structures. Our definition of & was an instance of copy-cat
expansion and it will be superseded by the notion of a uniform family of strategies.

Definition 6.90. A total expanded strategy is called consistent just in case it is
~-reflexive.

6.4. IMLAL2 175

6.4.6 Winning strategies

Definition 6.91. Winning IMLALZ2 strategies are expanded symbolic strate-
gies that are:

1. total,

2. token-reflecting,
3. local,

4. consistent,

5. bounded.

By Theorem 6.87 and Lemma 6.89

Theorem 6.92. Winning IMLAL?2 strategies compose.

6.4.7 Uniformity

Static games are representations of IMLAL2 formulas (it suffices to erase the ad-
ditional square brackets delimiting second-order tokens to reveal the underlying
formula). On this understanding we can distinguish between free and bound oc-
currences of a ground token in a static game. We can also substitute static games
for (any) tokens (it is straightforward to see that this operation is well-defined and
produces static games). Therefore, each static game with at most n free ground
tokens defines an n-ary operation on S by substitution. Note that the names of
tokens are irrelevant for this purpose, so to avoid ambiguities we order the tokens
using indices, e.g. let T = {t;,ts,t3,---}. To describe the n-ary operations we
shall only use games in which the first n ground tokens may occur. We will write
G(ty,---,t,) to indicate that.

Definition 6.93. A family of winning IMLAL2 strategies

UGl,---,Gn . G(Gl, Tty Gn)

for (Gy,---,G,) € 8", which we denote by { o} : G, is uniform if it satisfies the
following uniformity condition: suppose oy, .., = 0sr and 0g, ...q, = 0q,G:

e for any x € dom g\ dom f:

() = fley if x =2'y for 2’ € dom f
e = fHa"y ifx =2y for 2’ € cod f

176 CHAPTER 6. GAME MODELS

e for any (z,n) € dom G \ dom F":

G(z) = (f(z"y,n) it z= 2"y for 2’ € dom f
I (f7'(z)y,n) if z =2y for 2’ € cod f.

As already discussed after Proposition 6.21 the condition of injective history-
freeness and token reflection are implied by uniformity, so they could be omitted
from the definition of IMLAL2 winning strategies.

0G, .G, 1S thus uniquely developed from oy, .., in the same sense as expanded
strategies are extensions of symbolic strategies Therefore, there exists a one-
to-one correspondence between uniform families of strategies for G and winning
IMLAL?2 strategies for the game

n

5

[\V/tl-[Vt2-[' o [th'G(tla T atn)] o]]],

which will give rise to the adjunction that is necessary to interpret quantification.

Proposition 6.94. Suppose o is a total expanded strategy for G(ti,---,t,),
and so the pair (f, F') also defines a total symbolic strategy, say, o’ p for

G = Vty.[Vto [[V4,.G] -]

such that @ is an expanded strategy for G'. Then o generates a uniform family
of winning IMLAL?2 strategies for G if and only if @ is a winning IMLAL2 strategy
for G'.

Uniform families of winning IMLAL2 strategies can be composed by pointwise
composition of the component strategies. Analogously, we can define their ~,-
equivalence classes and the associated quotient category.

6.4.8 A light affine hyperdoctrine

Let us see now how a light affine hyperdoctrine (see Definition 5.9 for reference)
emerges from the framework of evolving games.

°It is wrong to think that any winning IMLAL2 strategy oy, ...+, defines a uniform family of
winning IMLAL?2 strategies. As we have already observed when analyzing IMLAL, the expansions
need not be consistent!

6.4. IMLAL2 177

Base category

C is defined as follows.

e Let U be the set S of static games. The objects of C are of the shape U™ for
n € N (the products are calculated in the category of sets and we write 1 for
the terminal object U°).

e Morphisms between U™ and U™ are n-tuples

(Gl(tla T tm)a T Gn(tla o 7tm))
of static games with free tokens from {¢1,--- ¢, }.
e Composition works by component-wise substitution for the free tokens.

e The identity morphism on U™ is (t1,- -, t,).

Indexed light affine category
The hom-functor C(_, U) lifts to a functor from C” to LACat:

e C(U",U) is a category whose objects are static games with free ground to-
kens from { t1,---,t, }, so C(1,U) consists of games without any free ground
tokens. Given an object H(ty,---,t,) we will also write H for the induced
n-ary endooperator on S.

e A morphism between two objects H; and H, is a =.-equivalence class of
uniform families of strategies for H; — Hj.

By Theorem 6.53 C(U™,U) is a light affine category (the IMLAL game construc-
tions do not introduce new tokens).

For f = (Ky, -+, K,;,) : U" — U™ the functor C(f,U) : C(U™,U) — C(U™,U)
is defined by

o C(fLU)H(t1, - tm)) = H(K (tr, - tn), -+, Kn(ts, --,t,)) (further we
write H; (K1, ---, K,,) for the rhs),

e Given {0} : Hy —o H, we set
Clf, U o Hre) = {7 Hae « His (K, -+ Kip) —o Hos (K, -+ Ko,

where TWh, s Wn = OK15(Wi, 3 Wa)oK s (W, Wi) »

{7} is a uniform family, because of { o }'s uniformity. Besides, C(f,U) is based on
composition, so it (strictly) preserves the structure of light affine categories, and
indeed we have C(_,U) : C? — LACAat.

178 CHAPTER 6. GAME MODELS

Quantification

First we define the functor V,, : C(U™ x U,U) — C(U™,U):
o vn(H(th o '7tn7tn+1)) = [th+1'H(t17 ARTEZY tn+1)]7

e suppose {0} : Hy —o Hy and 0y, ..t 4,., = OfF»

Vo([{o Hxe) = {7 e Wlna Hi] —o [Vin g1 Ha),

where 7, .., =T for F' = FU{(L,1) — (R,1) } °.

The anticipated correspondence

(=) : CU™ x U, U)(Hi(t1, tn,tyns1), Ho(tr, - tn, trs))

—

—

(C(Un, U)(Hl (tl, ey tn), [vtn+1.H2(t1, Tty tn, tn+1)]) : (—) s
is described below.

e Given [{ 0 }]r, : Hi —o Hy such that oy, ..p. 1., = 0pr, let

—_

Hots =0}

for {5} : H1 —0 [th+1.H2] such that &tl,"',tn = Ef,F[(R,l)/tn+1]- F[(R,]-)/tn—l—l]
is essentially the same as F except that if ¢, 1 occurs in F'(u) for some u, we
replace it with (R, 1).

o Given [{7 }|x. : Hi —o [Vtn41.Hy] such that 7, ..., =04, let

o ——

{7 Hee = {7 Hxe

for {7} : Hy — Hy such that 7y, ..;, = Tgap./r1))- Gltne/(R,1)] is
defined dually to F[(R,1)/ty+1]-

The definition is correct as the correspondence almost amounts to an identity (see
previous footnote). Hence, it is bijective and suitably natural. It also satisfies the
Beck-Chevalley condition, because:

e the functorial diagram commutes for objects: we have
Vtn11.Gl; (Gry - -+, G) = [VEni1.G5 (G, -+, G

in C, for composition in C is substitution,

6Here we barely modify the original strategy, so ‘definition by 7, ..., is correct: we are
guaranteed that a family {7} of IMLAL2 winning strategies will arise.

6.4. IMLAL2 179

e the diagram also commutes for morphisms, since for f = (Gy,---,G,) both

(C(f, U); V) ([{ 0 }xe) and (Vin; C(f Xtn11, U))([{ 0},) are defined by copy-
cat expansions of { o } for the same games,

e the strategy

——

C(f X tus1, U)(licwr ()

is an identity, since idy, () is a family of identity strategies which (/—\) modifies
only symbolically (recall [t,,1/(R,1)]) and C(f X t,41,U) then converts to
another family of ‘almost’ identity strategies (up to the slight change caused

by (/—\)) in which (—) reverses the cosmetic changes effected by the initial

(=)-

Theorem 6.95. The framework specified above is a model IMLAL2. C(1,U) con-
sists of static games without free tokens and winning IMLAL2 strategies.

6.4.9 Full completeness

For any strategy IMLAL2 winning strategy p, let p, be the ‘substrategy’ in which
O can only open threads with indices ending in 0 or x. The definition of uniform
families of strategies (which must be az.-reflexive) ensures that oy contains complete
information about the networks in p i.e. !-networks whose O-threads have an
index that does not end with 0 are simply ‘clones’ of the networks where 0 was
used. Besides, families in the same equivalence class have networks with identical
structure. Next we show that p, can be specified using a finite amount of data
under a certain condition.

Proposition 6.96. If 0 = oy satisfies 3. of Definition 6.84 and is compactly
networked, then oy is finitely generated. In particular, if o is bounded, then oq is
finitely generated.

Proof. 1t suffices to consider positions of oy in which O plays symbolically and
show that only a finite number of positions from o will be explored.

By 3. there is a bound on the size of the game during play. Hence, the depth
of moves is also bounded. Let d be the bound.

Since the size of the game is bounded and each network has a finite number
of threads, there will be a finite number of O-threads that can be opened at each
depth (recall that their indices must end in 0 or x!). Because the deepest network
is at d, the network function of the symbolic substrategy of oy must be finite. As
the size of the game is bounded, only a finite number of moves can be made, so
(abusing notation) we can write oy = 7, g, where fo, Fyy are finite. O

180 CHAPTER 6. GAME MODELS

From now on we assume that o is a winning IMLAL2 strategy for a static game G
and consider a subset of oy in which O must also play short-sightedly. Following
the notation for IMLAL we denote it by /0. We are going to use o/0f to
define a canonical essential net. Let us assume that £ is an injective assignment of
second-order variables to elements of Ly x N. First we construct a tree 7p, which
will to converted to the net Ny, s, in the next step.

e We start from the syntactic tree of "G (second-order tokens are treated like
ordinary tokens, so they will be leaves e.g. [Va.a]™, [Vb.b®a] ™). Let us orient
its branches according to the directional rules for essential nets: premises of
nodes in essential nets become children of nodes in the tree. Then we apply
the same procedure as for IMLAL to introduce contraction nodes at each
level, trying to make the two steps below for tokens [Va.G]* at the respective
depths as soon as possible.

— Tokens of the shape [Va.G]|t—as soon as they appear as leaves—should
be replaced with the oriented syntactic tree of "VE(I,n).G[E(L,n)/a]™.
(I,n) is the complete O-location at which the token occurs, which we
can read off the tree, once labels [, 7, L, R are associated with @ *"-,® -
79T 2~ -nodes, numeric labels with incoming edges of ?~-nodes, 0’s with
I*-nodes and x’s with §-nodes. The node corresponding to the quantifier
is to be labelled with Vg’(l’n) and we give an auxiliary label n (which will
not be part of the final net) to the outgoing edge to keep track of the
numerical components of complete locations: if the token occurs at the
end of a branch then

* if it is the premise of a VT-node whose outgoing edge is labelled with
n, its auxiliary label will be n + 1,

* otherwise it is 0.

— Tokens of the shape [Va.G]~, provided their complete location (calcu-
lated as in the previous case) is (I,n) € dom F,, should be tackled
in the following way (otherwise they remain as they are). Suppose
Fy(l,n) = H. Let H' be H in which every complete O-location (I',n’)
is replaced with £(I',n’). The token should be replaced with an 3~ -link
whose conclusion is labelled with 37&(1, n).L.G 1 and whose eigentype is
I_H/—I.

Because Fj is finite, the construction terminates. Nfo,Fo is obtained by adding
axiom links as specified by fy. Finally, the unreachable nodes which are premises
of reachable ones are contracted to weakening nodes as before. Note that this will
eliminate the [Va.G]~ tokens that were not unfolded. The net corresponding to 7
from Example 6.70 is presented in Figure 6.4.

Theorem 6.97. Ny, 5, is a correct canonical affine net.

6.4. IMLAL2 181

ITWL2(XtTR- 3 Z.(Z79" W) VJYr
| !
V.V~ \4"

T+ = VHWIH(X~ et v+ Z.2+ @F WH)
T- = Z- % Y~

Figure 6.4: Ny, g, developed from the strategy in Example 6.70.

Proof. Like for the other logics our proof relies on a correspondence between short-
sighted positions and paths from the root ending in atomic nodes. The relationship
is established in the same way as before, though there are new complications due
to second-order tokens. For the quantifier-free fragments a move with a ground
token consisted of letters indicating a branch of the syntactic tree ending with the
suitable atom. This main idea remains the same, but when the branch pointing at
an atom involves a V1-node, some ground token will have to played for the first time
the node is involved. Later the token is unnecessary, as the corresponding game
evolution has already taken place. The same applies to the V™ Z.A™-nodes, but the
evolution argument that is played will correspond to the associated eigentype.

Conditions (i)-(v) can then be verified by the same reasoning as for IMLAL. To
check (vi), suppose there exists a V~Z.A -node with eigentype T such that some
X € FV(T) is an eigenvariable and there is a path from the root to the V-Z.A"-
node that does not visit the V-node. Consider the last atomic/variable node which
is visited by the path and the corresponding short-sighted position. As the path
does not pass through the Vi-node, P will be required to use an argument that
should have been provided by O! Hence, the strategy is not total, which contradicts
our assumption.

Next suppose there exists a malformed path from some V{-node to a V= Z.A -

182 CHAPTER 6. GAME MODELS

node whose eigentype contains X. By (iv) all paths in the net are well-formed,
so the malformed path consists of a well-bracketed sequence followed by a path in
which the next bracketing node is a closing one. This implies that in the associated
position an argument introduced by O in some network will not be used inside it,
so the strategy is not local, contrarily to our assumption. O

Theorem 6.98. The light affine hyperdoctrine of static games and ~.-equivalence
classes of uniform families of winning IMLAL?2 strategies is a fully and faithfully
complete model of IMLAL2 with respect to canonical affine nets.

By Theorem 2.7 we obtain the main result of the thesis—a game model that cap-
tures polynomial-time computability.
Theorem 6.99. Winning IMLAL2 strategies for the games

[Vb.!(b —o b) —o (I(b — b) —o §(b —o b))] —o
§" [Vb.!(b — b) —o (!(b —o b) —o §(b —o b))]

where n ranges over natural numbers define precisely the FP functions.

Chapter 7

Future work

7.1 Semantics

Fully and faithfully complete models of Light Affine Logic inherit its polynomial-
time character and enable polynomial-time computability to be investigated se-
mantically. Hence, they constitute an ideal setting in which original abstract prop-
erties related to computational complexity could be uncovered. In the long run
such an approach should bring about novel criteria for expressibility, permitting
one to certify that certain algorithms are not programmable in a given program-
ming language interpretable in the model (in the spirit of [28]) or, possibly even
more strongly, that certain functions are not representable and thus do not belong
to the associated complexity class. Our model should also be employed to give
another proof of the fact that (untyped) reduction in IMLALZ2 can be implemented
in polynomial time. This will become possible, if various bounds in our proofs are
estimated more accurately. Another obstacle towards this goal is the validation of
n-conversion in the current framework coupled with the way strategies are repre-
sented: the history-free function corresponds to the n-expanded form and therefore
one may need exponential time to convert the representations of two strategies
into that of the composite strategy. Hence, a more economical representation of
strategies is necessary to overcome the problems. The findings reported in [75, 73]
are of relevance to this direction, which would essentially entail a construction of
a game model for the underlying untyped calculus of light affine logic. If various
complexities could be read off strategies in such a model it would be a first step
towards semantic-based complexity inference.

There are also some syntactic issues that could be resolved by game semantics. For
example, it is not known whether the poly-time complexity is preserved once the §
functor becomes strictly monoidal. This strictness creates additional opportunities
for duplication [4] and facilitates more flexible coding, but it is not clear how the
corresponding syntax should look like. It seems that the relaxation of the global

183

184 CHAPTER 7. FUTURE WORK

matching requirement in essential nets could produce an adequate proof-net syntax.

7.2 Syntax

Our work has unveiled the largest sublanguage BC~ of BC' that admits a transla-
tion into LAL. This poses the question whether BC™ itself can be used to define all
FP functions (probably not) and if not what complexity class it actually represents.
There are two dual directions related to that point that should be pursued. Firstly,
it is important that programming languages capturing complexity classes allow as
many natural definitions as possible. Typically, many natural constructions will be
instances of techniques that otherwise lead to superpolynomial runtime. A degree
of flexibility could be attained by introducing higher-order functions as first-class
values [55]. For instance, BC* enriched with higher-order recursion schemes would
make a relatively convenient FP programming language. The appropriate method-
ology preventing us from admitting too generous a construction is vital for that
purpose and representability in LAL (or its FP-sound extensions) could be adopted
as such. The major advantage of such an approach is the promise of automatic
complexity inference, as the two fundamental theorems on LAL relate the type of
a program with the degree of the polynomial that bounds the complexity. Since
we can translate various programming constructions into LAL, we should find our-
selves in a good position to estimate their effect on complexity. Secondly, it is
worth investigating whether LAL can be simplified in a way that preserves its two
essential properties. For instance, it may be the case that full polymorphism is
redundant and it may be replaced with a weaker form (e.g. ML type schemes).

A long-term objective is to obtain a hierarchy of logics and game models for other
complexity classes, especially LOGSPACE, NP and PSPACE, and to conduct a
comparative study. This could serve as a starting point to develop experimental
programming languages for resource-bounded computation tailored to the expected
time or space complexity.

Bibliography

1]

[10]

S. Abramsky. Semantics of interaction. In A. Pitts and P. Dybjer, editors,
Semantics and Logics of Computation, pages 1-32. Cambridge University
Press, Cambridge, 1997.

S. Abramsky, K. Honda, and G. McCusker. Fully abstract game semantics for
general reference. In Proceedings of IEEE Symposium on Logic in Computer
Science, 1998. Computer Society Press, 1998.

S. Abramsky and R. Jagadeesan. Games and full completeness for multi-
plicative linear logic. Journal of Symbolic Logic, 59:543-574, 1994.

S. Abramsky, R. Jagadeesan, and M. Hofmann. Safe variables in light logics.
private communication, 2000.

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF
(extended abstract). In Theoretical Aspects of Computer Software: TACS 94,
Sendai, Japan, pages 1-15. Springer-Verlag, 1994. LNCS Vol. 789.

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF.
Information and Computation, 163:409-470, 2000.

S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In P. W. O’Hearn
and R. D. Tennent, editors, Algol-like languages. Birkhatiser, 1997.

S. Abramsky and G. McCusker. Call-by-value games. In M. Nielsen and
W. Thomas, editors, Proceedings of Computer Science Logic ’97. Springer-
Verlag, 1998. Lecture Notes in Computer Science.

S. Abramsky and G. McCusker. Full abstraction for Idealized Algol with
passive expressions. Theoretical Computer Science, 227:3—42, 1999.

S. Abramsky and P.-A. Mellies. Concurrent games and full completeness.
In Proceedings, Fourteenth IEEE Symposium on Logic in Computer Science,
pages 431-442. IEEE Computer Society Press, 1999.

185

186

[11]

[12]

[13]

[14]

[15]

[20]

[21]

[22]

BIBLIOGRAPHY

A. Asperti. Light affine logic. In Proceedings of 13th IEEE Annual Symposium
on Logic in Computer Science 1998. IEEE Computer Society, 1998.

A. Asperti and L. Roversi. Intuitionistic light affine logic (proof-nets, nor-
malization complexity, expressive power). To appear in ACM Transactions
on Computational Logic, 2001.

P. Baillot. Stratified coherent spaces: a denotational semantics for light
linear logic (extended abstract). In (LICS affiliated) Second International
Workshop on Implicit Computational Complexity, 2000.

P. Baillot, V. Danos, T. Erhard, and L. Regnier. AJM’s games model is a
model of classical linear logic. In Proceedings of 12th IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 1997.

P. Baillot, V. Danos, T. Erhard, and L. Regnier. Timeless games. In Pro-
ceedings of CSL’97, 11th Annual Conference of the Furopean Association of
Computer Science Logic, volume 1414 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

S. Bellantoni and S. A. Cook. A new recursion-theoretic characterization of
the poly-time functions. Computational Complexity, 2:97-110, 1992.

G. Bellin. Proof nets for multiplicative and additive linear logic. Technical Re-
port LFCS-91-161, LFCS, Division of Informatics, University of Edinburgh,
1991.

G. Bellin. Proof nets for classical MLL and linear lambda terms. A March
1992 posting to the LINEAR mailing list, 1992.

P. N. Benton, G. M. Bierman, V. C. V. de Paiva, and J. M. E. Hyland. Term
assignment for intuitionistic linear logic. Technical Report Technical Report
262, Computer Laboratory, University of Cambridge, 1992.

G. M. Bierman. What is a categorical model of intuitionistic linear logic. In
Proc. International Conference on Typed Lambda Calculi and Applications,
volume 902 of Lecture Notes in Computer Science, 1995.

A. Blumensath. Bounded arithmetic and descriptive complexity. In Proceed-
ings of CSL’00, volume 1862 of Lecture Notes in Computer Science, pages
232-246. Springer-Verlag, 2000.

P. van Emde Boas. Machine models and simulations. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Vol. A. Elsevier, 1990.

BIBLIOGRAPHY 187

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Complexity classes and
rewrite systems with polynomial interpretation. In Proceedings of the Twelfth
Annual Conference of the European Association for Computer Science Logic,
CSL’98, volume 1584 of Lecture Notes in Computer Science. Springer-Verlag,
1998.

S. Buss. Bounded Arithmetic. Bibliopolis, 1986.

V.-H. Caseiro. Equations for defining poly-time functions. PhD thesis, Uni-
versity of Oslo, Department of Informatics, 1997.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the Association for Computing Machinery, 28(1):114-133, 1981.

A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-
Hillel, editor, Proc. of the 1964 International Congress for Logic, Methodol-
0gy, and the Philosophy of Sciences, pages 24-30. North-Holland, 1964.

Loic Colson. About primitive recursive algorithms. Theoretical Computer
Science, 83:57-69, 1991.

S. A. Cook. Characterizations of pushdown machines in terms of time-

bounded computers. Journal of the Association for Computing Machinery,
18(1):4-18, 1971.

S. A. Cook. Feasibly constructive proofs and the propositional calculus. In
Proceedings of the Seventh Annual ACM Symposium on Theory of Comput-
g, pages 83-97, 1975.

R. L. Crole. Categories for Types. Cambridge University Press, 1993.

V. Danos and R. Harmer. Probabilistic game semantics. In Proc. IEEE
Symposium on Logic in Computer Science. Computer Science Society, 2000.

V. Danos and J.-B. Joinet. Linear logic and elementary time. Information
and Computation, 2001. to appear, presented at ICC’99.

V. Danos and L. Regnier. The structures of multiplicatives. Archive for
Mathematical Logic, 28:181-203, 1989.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer
Science, 17(3):279-301, 1987.

H. Devarajan, D. J. D. Hughes, G. D. Plotkin, and V. R. Pratt. Full com-
pleteness of the multiplicative linear logic of Chu spaces. In Proceedings of
LICS’99, pages 234-242. IEEE Computer Society Press, 1999.

188

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

BIBLIOGRAPHY

R. Fagin. Generalized first-order spectra and polynomial-time recognizable
sets. In R. M. Karp, editor, Complexity of Computation, pages 43-73. STAM-
ACM Press, 1974.

Dan R. Ghica and Guy McCusker. Reasoning about idealized algol using
regular expressions. In Proceedings of ICALP 2000, volume 1853 of Lecture
Notes in Computer Science, pages 103—-115. Springer-Verlag, 2000.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

J.-Y. Girard. Quantifiers in linear logic II. Preprint, Equipe de Logique de
Paris VII, 1991.

J.-Y. Girard. Proof-nets : the parallel syntax for proof-theory. In Logic and
Algebra. Marcel Dekker, New York, 1996.

J.-Y. Girard. Light linear logic. Information and Computation, 143:175-204,
1998.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Uni-
versity Press, 1989. Cambridge Tracts in Theoretical Computer Science 7.

J.-Y. Girard, A. Scedrov, and P. J. Scott. Bounded linear logic. Theoretical
Computer Science, 97:1-66, 1992.

A. Goerdt. Characterizing complexity classes by higher type primitive recur-
sive definitions. Theoretical Computer Science, 100:45-66, 1992.

E. Gradel. The expressive power of second order Horn logic. In Proceedings
of the 8th Symposium on Theoretical Aspects of Computer Science STACS
91, volume 480 of LNCS, pages 466—477. Springer-Verlag, 1991.

R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford University Press, 1995.

Y. Gurevich. Algebras of feasible functions. In Proceedings of thr 2/th Annual
Symposium on Foundations of Computer Science FOCS’93, pages 210-214,
1983.

Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals
of Pure and Applied Logic, 32:265-280, 1986.

W. G. Handley. Bellantoni and Cook’s characterization of polynomial time
with some related results. In S. Wainer’s Marktoberdorf’97 Lecture Notes,
1997.

BIBLIOGRAPHY 189

[51]

[52]

[53]

[54]

[57]

[58]

[59]

[60]

R. Harmer and G. McCusker. A fully abstract game semantics for finite
nondeterminism. In Proceedings of Fourteenth Annual IEEE Symposium on
Logic in Computer Science. IEEE Computer Society Press, 1999.

M. A. Harrison and O. H. Ibarra. Multi-tape and multi-head pushdown
automata. Information and Control, 13:433-470, 1968.

G. G. Hillebrand, P. C. Kanellakis, and H. G. Mairson. Database query
languages embedded in the typed lambda calculus. Information and Compu-
tation, 127(2):117-144, 1996.

M. Hofmann. A mixed modal/linear lambda calculus with applications to
Bellantoni-Cook safe recursion. A talk presented at CSL’97, Aarhus, Den-
mark, 1997.

M. Hofmann. Type systems for polynomial-time computation. Habilitation-
sschrift, Technische Universitiat Darmstadt, 1998.

M. Hofmann. Linear types and non-size-increasing polynomial time computa-
tion. In Proceedings of 14th IEEE Annual Symposium on Logic in Computer
Science. IEEE Computer Society, 1999.

M. Hofmann. Safe recursion with higher types and BC K-algebra. Annals
of Pure and Applied Logic, 2000. To appear. Ftp-able from Hofmann’s home

page.

M. Hofmann. The strength of non-size increasing computation. Available
from the author’s webpage, 2001.

K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computa-
tion (extended abstract). In Proc. of ICALP’97, Borogna, Italy, July, 1997.
Springer-Verlag, 1997. LNCS.

D. H. D. Hughes. Games and definability for System F. In Proceedings
of 12th IEEE Symposium on Logic in Computer Science. IEEE Computer
Science Society, 1997.

D. H. D. Hughes. Games and full completeness for System F. PhD thesis,
University of Oxford, 2000.

J. M. E. Hyland. Game semantics. In A. Pitts and P. Dybjer, editors, Se-
mantics and Logics of Computation, pages 131-182. Cambridge Univ. Press,
1997.

J. M. E. Hyland and C.-H. L. Ong. Fair games and full completeness for
multiplicative linear logic without the MIX-rule. preprint, 1993.

190

[64]

[75]

[76]

BIBLIOGRAPHY

J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models,
observables and the full abstraction problem, II. Dialogue games and innocent
strategies, III. A fully abstract and universal game model. Information and
Computation, 163(2):285-408, 2000.

J. M. E. Hyland and A. M. Pitts. The theory of constructions: Categorical
semantics and topos-theoretic models. Contemporary Mathematics, 92:137—
199, 1989.

N. Immerman. Relational queries computable in polynomial time. Informa-
tion and Control, 68:86-104, 1986.

N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science.
Springer-Verlag, 1998.

B.P.F. Jacobs. Categorical Type Theory. PhD thesis, Nijmegen University,
1991.

N. D. Jones. LOGSPACE and PTIME characterized by programming lan-
guages. Theoretical Computer Science, 228:151-174, 1999.

N. D. Jones. The expressive power of higher-order types, or life without
CONS. Journal of Functional Programming, 2000. submitted for publication.

M. I. Kanovich, M. Okada, and A. Scedrov. Phase semantics for light linear
logic. FElectronic Notes in Theoretical Computer Science, 6, 1997. Proceed-
ings of the 13th Annual Conference on Mathematical Foundations of Pro-
gramming Semantics, Pittsburgh, Pennsylvania, March 1997.

G. M. Kelly and S. MacLane. Coherence in closed categories. Journal of
Pure and Applied Algebra, 1:97-140, 1971.

A. D. Ker. Innocent game models of untyped lambda calculus. PhD thesis,
University of Oxford, 2001.

A. D. Ker, H. Nickau, and C.-H. .. Ong. A universal innocent game model
for the Bohm tree lambda theory. In Proceedings of CSL’99, volume 1683 of
Lecture Notes in Computer Science, pages 405-419. Springer-Verlag, 1999.

A. D. Ker, H. Nickau, and C.-H. L. Ong. Innocent game models of untyped
A-calculus. Theoretical Computer Science, 2000. 44 pages. To appear.

T. W. Koh and C.-H. L. Ong. Explicit substitution internal languages for
autonomous and x-autonomous categories. FElectronic Notes in Theoretical
Computer Science, 29, 1999. Proceedings of the 8th Conf. on Category The-
ory and Computer Science 1999, 30 pp.

BIBLIOGRAPHY 191

[77]

78]

[79]

[80]

[81]

[82]

[83]

Y. Lafont. Soft linear logic and polynomial time. Available from the author’s
homepage at http://iml.univ-mrs.fr/, 2001.

J. Laird. A semantic analysis of control. PhD thesis, University of Edinburgh,
1998.

J. Laird. A fully abstract games semantics of local exceptions. In Proceedings
of 16th IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, 2001.

F. Lamarche. Proof nets for intuitionistic linear logic 1: Essential nets.
Preprint ftp-able from Hypatia, 1994.

D. Leivant. Stratified functional programs and computational complexity. In
Proc. 20th ACM POPL, pages 325-333. ACM Press, 1993.

D. Leivant. A foundational delineation of poly-time. Information and Com-
putation, 110:391-420, 1994.

D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time.
Fundamenta Informaticae, 19:167-184, 1993.

R. Loader. Linear logic, totality and full completeness. In Proceedings of 9th
IEEE Symoposium on Logic in Computer Science, Paris, July 1994, pages
292-298. IEEE Computer Science Society Press, 1994.

R. Loader. Models of Lambda Calculi and Linear Logic: structural, equational
and proof-theoretic characterisations. PhD thesis, University of Oxford, 1994.

I. Mackie, L. Roman, and S. Abramsky. An internal language for autonomous
categories. Journal of Applied Categorical Structures, 1(3):311-343, 1993.

S. MacLane. Categories for the Working Mathematician. Spinger-Verlag,
1971. Graduate Text in Mathematics 5.

P. Malacaria and C. Hankin. Generalized flowcharts and games (extended
abstract). In Proceedings of ICALP 1998, volume 1443 of Lecture Notes in
Computer Science, pages 363-374. Springer-Verlag, 1998.

P. Malacaria and C. Hankin. A new approach to control flow analysis. In
Proceedings of CC 1998, volume 1383 of Lecture Notes in Computer Science,
pages 95-108. Springer-Verlag, 1998.

P. Malacaria and C. Hankin. Non-deterministic games and program analysis:
an application to security. In Proceedings, Fourteenth IEEE Symposium on
Logic in Computer Science, pages 443-452. IEEE Computer Society Press,
1999.

192

[91]

[92]

[93]

[94]

[97]

98]

[99]

100]

[101]

102]
[103]

BIBLIOGRAPHY

P. Malacaria and L. Régnier. Some results on the interpretation of the A-
calculus in operator algebras. In Proceedings of LICS’91. IEEE Computer
Society Press, 1991.

J.-Y. Marion. Analysing the implicit complexity of programs. Information
and Computation, 2001. to appear, presented at ICC’99.

G. McCusker. Games for recursive types. BCS Distinguished Dissertation.
Cambridge University Press, 1998.

A. A. Muchnik. On two approaches to the classification of recursive functions.
In V. A. Kozmidiadi and A. A. Muchnik, editors, Problems in Mathematical
Logic, Complezxity of Algorithms and Classes of Computable Functions, pages
123-128. Mir, Moscow, 1970.

A. S. Murawski and C.-H. L. Ong. Exhausting Strategies, Joker Games and
Full Completeness for IMLL with Unit. Electronic Notes in Theoretical Com-
puter Science, 29, 1999. Proceedings of the 8th Conf. on Category Theory
and Computer Science 1999, 31 pp.

A. S. Murawski and C.-H. L. Ong. Can safe recursion be interpreted in
light logic? In (LICS affiliated) Second International Workshop on Implicit
Computational Complexity, 2000. 20 pages.

A. S. Murawski and C.-H. L. Ong. Discreet Games, Light Affine Logic and
PTIME Computation. In Proceedings of CSL’00, volume 1862 of LNCS,
pages 427-441. Springer-Verlag, 2000.

A. S. Murawski and C.-H. L. Ong. Dominator trees and fast verification of
proof nets. In Proceedings of 15th IEEE Symposium on Logic in Computer
Science, pages 181-191. IEEE Computer Society Press, 2000.

A. S. Murawski and C.-H. L. Ong. SLR™~ is PTIME complete. Unpublished
note. Ftp-able from Ong’s home page, 2000.

A. S. Murawski and C.-H. L. Ong. Evolving games and affine polymorphism.
In Proceedings of TLCA 2001, volume 2044 of Lecture Notes in Computer
Science, pages 360-375. Springer-Verlag, 2001.

H. Nickau. Hereditarily sequential functionals. In Proceedings of the Sym-

posium of Logical Foundations of Computer Science. Springer-Verlag, 1994.
LNCS.

H. Nickau and C.-H. L. Ong. Games for System F. Working paper, 1999.

C. H. Papadimitriou. A note on the expressive power of PROLOG. FATCS
Bulletin, 26:21-23, 1985.

BIBLIOGRAPHY 193

[104]
[105]

[106]

107]

[108]

109

[110]

[111]

[112]

[113]

[114]

C. H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

M. Pedicini. Remarks on elementary linear logic. Electronic Notes in Theo-
retical Computer Science, 3, 1996.

A. M. Pitts. Polymorphism is set-theoretical, constructively. In D. H. Pitt et
al., editor, Proc. Conf. Category Theory and Computer Science, Edinburgh,
Berlin, 1987. Springer-Verlag. LNCS. Vol. 287.

H. E. Rose. Sub-recursion: functions and hierarchy. Clarendon Press, Oxford,
1984.

L. Roversi. A polymorphic language which is typable and poly-step. In Pro-
ceedings of the Asian Computing Science Conference (ASIAN’98), Lecture
Notes in Computer Science. Springer-Verlag, 1998.

L. Roversi. A PTIME completeness proof for light logics. In Proceedings of
CSL’99, volume 1683 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

L. Roversi. Light affine logic as a programming language: a first contribution.
International Journal of Foundations of Computer Science, 11(1):113 — 152,
March 2000.

V. Y. Sazonov. Polynomial computability and recursivity in finite domains.
Elektronische Informationsverarbeitung and Kybernetik, 16:319-323, 1980.

R. A. G. Seely. Categorical semantics for higher order polymorphic lambda
calculus. Journal of Symbolic Logic, 52:969-989, 1987.

K. Terui. Light affine lambda calculus and poly-time strong normalization
(extended abstract). In Proceedings of 16th IEEE Symposium on Logic in
Computer Science. IEEE Computer Society Press, 2001.

M. Y. Vardi. The complexity of relational query languages. In Proceedings of
the 14th ACM Symposium on Theory of Computing STOCS2, pages 137-146,
1982.

Index

LACat, 112
Ly, 160

Lp, 160

Sa, 14

B~, 70

B*, 70

E, 78
NMmLL, 70
9, 71

dp, 71

L7

v(n), 85
o(n), 59
ofr, 164
~q, 144
oy, 147
R, 174
LA, 55
TAT 55
3-COLOURABILITY, 11

affine nets, 87

collected, 92

correctness, 88
ALOGSPACE, 9
alternating computation, 9
alternating Turing machine, 9
atomic nodes, 57

base, 114

base of a move, 132

BC, 16, 33

BC~, 33-37

BC™ + case + e-shift, 48-52
BC#, 40-47

Beck-Chevalley condition, 114

194

bookkeeping maps, 103
bounded

arithmetic, 14
logics, 12
recursion, 14

canonical link of a node, 58
casex(: u), 38
category

autonomous, 98

light affine, 112

symmetric monoidal, 98
symmetric monoidal closed, 98

coercions, 31

commutative comonoid, 110
commuting conversions, 23
completeness

full, 116
full and faithful, 116

composite, 120
comprehension scheme, 14
concatenation

concat(x,y), 34
concat(z : y), 34
concat(: x,y|0), 36
concat(: z,y), 40

conclusion

of a link, 58
of a net, 58

m-congruence, 24
o-congruence, 24
cons-free programs, 13
contraction, 18

link, 70

Cook’s Thesis, 7

INDEX

critical arguments, 16

database queries, 12
depth

of a formula, 24

of a game, 133

of a move, 132
dereliction rule, 18
descriptive complexity, 11
domination ordering, 62
dominator tree of a graph, 62
duplicable objects, 18

e-shift(: n), 47
eigentype
of a &~ -link, 85
of a 37-link, 78
eigenvariable
of a V*-link, 78
reachable from a link, 81
eliminable link
IMLL, 61
empire of a node, 63
enabling relation, 124
equivalence
of positions, 144
of strategies, 145, 147
essential nets, 54-97
correctness
IMLL, 59
IMLLL, 71
IMLLL2, 79
for IMLL, 57
for IMLLL, 70
for IMLLL2, 78
evolution argument, 159
existential second-order logic (SO3),
11
existential states, 9
expanded strategy, 165
extension of an affine net, 89

first-order logic (FO), 12

195

FO+IFP, 12

FO+LFP, 12

FPTIME (FP), 7-29

function interpretable in IMLALZ2, 36
functor

symmetric monoidal, 104
FV(D), 19

game, 117
atomic, 118
empty, 118
generalized static, 157
IMAL, 121
IMLAL, 132
IMLAL2, 162
linear arrow, 118
linear function space, 118
over token set, 122
static, 155
tensor, 118

hereditary premise of a link, 58

IMAL2, 22
IMLAL, 22
IMLAL2, 20, 87-97
IMLL, 55-69
IMLL2, 22
IMLLL, 22, 69-77
IMLLL2, 22, 77-87
index of a move, 132
infinite chattering, 143
inflationary fixed points (IFP), 12
injective history-free, 122
interaction sequence, 120

of threads, 139
interactive tree of a thread, 142
interface, 22
interim net of a node, 68
iteration principle, 30

justification relation, 124

least fixed points (LFP), 11

196

lifting principle, 32
light affine hyperdoctrine, 114
light affine logic (LAL), 18-27
linear logic, 18

soft (SLL), 28

bounded (BLL), 18

elementary (ELL), 28

light (LLL), 18
linear safe recursion, 33
links

77,70

O, 84

37, 78

vt 78

s, 98

2+, 58

It 70

®, 58

®*, 58

6%, 70

§7, 70

contraction, 70

weakening, 87
location, 160

complete, 160

O-, 160

P-, 160
LOGSPACE, 10, 13

model
fully and faithfully complete, 116
fully complete, 116
move
in static games, 161
O-, 117
P-, 117
short-sighted, 124
symbolic, 163
multi-head two-way automata, 10

negative formula, 56
negative polarized form, 55
network, 134, 137

INDEX

I-, 137

creation, 137
network protocol, 137
networking of a position, 138
NLOGSPACE, 9, 10
nodes

77,70

Oy, 84

7 X. A", 78

VL, 78

®7, 58

2T, 58

It 70

®7, 58

®*, 58

§%, 70

§7, 70

contraction, 70

weakening, 87
non-deterministic Turing machines, 9
non-size-increasing computation, 39
normal

arguments, 15

contractibility, 32

variables, 32
NPTIME (NP), 9, 11

order of a type, 13
ordered dominator tree, 65

P-completeness, 7
P=NP problem, 11
perm, (: u), 38
perme-rec, 38
play (position), 117
playable string, 159
O-, 160
P-, 160
polarized
atoms, 95
connectives, 55
nodes, 58
position

INDEX

in static games, 161
short-sighted, 124
position (play), 117
positive formula, 56
positive polarized form, 55
premise of a link, 58
PROLOG, 14
promotion rule, 18
protonets, 85
correctness, 86
healthiness conditions, 85
PTIME (P), 7-29
pushdown tape, 10
PV, 14

QPTIME, 12

recursion on safe arguments, 38
redex, 25
at depth 7, 26
3, 25
exponential, 25
garbage collection, 25
replication, 25
reindexing functor, 113
related !-threads, 136
root of a net, 58

safe
arguments, 15
composition, 16
recursion, 16
variables, 32
second-order logic (SO), 11
sequentializability, 61
sequentializable essential net, 61
sequentialization of an essential net,
62
sink of a ’®*-node, 58
size of a game, 168
SO4-Horn, 11
SO-Horn, 11
space complexity, 9

197

strategy, 119
~-reflexive, 145
~,-reflexive, 147
0-winning, 149
bounded, 169
compactly networked, 142
consistent, 147, 174
deterministic, 119
history-free, 122
identity, 120
local, 167
local expanded, 167
networked, 139
short-sighted, 125
suitably networked, 143
symbolic, 163
token-reflecting, 122
total, 122
weakly winning (IMAL), 125
winning (IMAL), 123
winning (IMLAL), 149
winning (IMLAL2), 174
stratification, 15
strengthening of a weakening link, 88
strip, 31
switching condition
for threads, 137
0, 118
P, 118
symbolic play, 163

tensor unit, 98
terminal link, 58
thread

I-, 133

§-, 133

at depth 7, 133

O-, 133

P-, 133
thread function, 138
tiering, 15
token

ground, 155

198 INDEX

of a move, 121
Turing machine, 8

uniform family of strategies, 175
uniformity condition, 175
universal states, 9

weakening rule, 18
well-formed path, 71

