
A Novel Approach to Ontology ClassificationI

Birte Glimma, Ian Horrocksb, Boris Motikb, Rob Shearerb, Giorgos Stoilosb,∗

a Ulm University, Institute of Artificial Intelligence,
89069 Ulm, DE

b University of Oxford, Department of Computer Science,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract

Ontology classification—the computation of the subsumption hierarchies for classes and properties—is a core reasoning service
provided by all OWL reasoners known to us. A popular algorithm for computing the class hierarchy is the so-called Enhanced
Traversal (ET) algorithm. In this paper we present a new classification algorithm that attempts to address certain shortcomings
of ET and improve its performance. Apart from classification of classes, we also consider object and data property classification.
Using several simple examples, we show that the algorithms commonly used to implement these tasks are incomplete even for
relatively weak ontology languages. Furthermore, we show that property classification can be reduced to class classification, which
allows us to classify properties using our optimised algorithm. We implemented all our algorithms in the OWL reasoner HermiT.
The results of our performance evaluation show significant performance improvements on several well-known ontologies.

Keywords: Ontologies, OWL, Class Classification, Property Classification, Optimisations

1. Introduction

Ontologies expressed using the Web Ontology Language
(OWL) and its revision OWL 2 [24, 23] play a central role in
the development of the Semantic Web. They are also widely
used in biomedical information systems [28, 10, 26], as well as
an increasing range of application domains such as agriculture
[31], astronomy [4], defence [20], and geography [11]. Ontol-
ogy classification—the computation of the subsumption hier-
archies for classes and properties—is a core reasoning service
provided by all OWL reasoners known to us. The resulting class
and property hierarchies are used by ontology engineers to nav-
igate the ontology and identify modelling errors, as well as for
inference, explanation, and query answering.

Most OWL reasoners, such as Pellet [30], FaCT++ [33], and
RacerPro [13], solve the classification problem using an En-
hanced Traversal (ET) classification algorithm similar to the
one used in early description logic reasoners [3]. To construct
a class hierarchy, this algorithm starts with the empty hierar-
chy and then iteratively inserts each class from the ontology
into the hierarchy. Each insertion step typically requires one or
more subsumption tests—checks whether a subsumption rela-
tionship holds between two classes—in order to determine the
proper position of a class in the hierarchy constructed thus far.
Significant attention has been devoted to the optimisation of

IThis is a revised and extended version of the work presented in [27, 9].
∗Corresonding Author
Email addresses: birte.glimm@uni-ulm.de (Birte Glimm),

ian.horrocks@cs.ox.ac.uk (Ian Horrocks),
boris.motik@cs.ox.ac.uk (Boris Motik), rob.shearer@cs.ox.ac.uk
(Rob Shearer), giorgos.stoilos@cs.ox.ac.uk (Giorgos Stoilos)

individual subsumption tests [18, 16, 32, 5, 29, 8]. Neverthe-
less, the ET algorithm can be inefficient on ontologies with a
large number of classes: even if each subsumption test is very
efficient, the large number of tests required to construct a hi-
erarchy can make classification an expensive operation. Fur-
thermore, repeatedly traversing a large class hierarchy during
each insertion step can be costly; this is particularly acute on
the relatively flat (i.e., broad and shallow) tree-shaped hierar-
chies often found in manually constructed ontologies. In order
to overcome these deficiencies, algorithms for efficient classifi-
cation of OWL 2 EL [2] and OWL 2 QL ontologies [21] have
been proposed; however, it is currently not known how to apply
these algorithms to OWL 2 DL ontologies.

Motivated by the desire to improve the performance of class
classification, in this paper we present a novel classification al-
gorithm that can greatly reduce the number of required sub-
sumption tests. Unlike ET, our algorithm does not construct
the hierarchy directly; instead, it maintains the sets of known
(K) and remaining possible (P) subsumer pairs, and it performs
subsumption tests to augment K and reduce P until K contains
all the relevant subsumptions and P becomes empty. Such a
representation of the hierarchy allows one to manipulate K and
P using highly-tuned algorithms, such as the ones for comput-
ing the transitive closure and the transitive reduction of a rela-
tion. Furthermore, the relatively small subset of P that contains
the remaining possible subsumers of a single class can be ef-
ficiently extracted using simple operations, which can greatly
reduce the cost of hierarchy traversal. To further reduce the
number of subsumption tests, we exploit the transitivity of the
subclass relation to propagate (non-)subsumption information
and thus speed up the process of augmenting K and reducing P.

Preprint submitted to Journal of Web Semantics December 20, 2011

The practicability of such an algorithm critically depends on
several factors. The first question is how to initialise K and
P. We have developed an initialisation approach that exploits
information from reasoning tests in order to eagerly identify
subsumption relations and unsatisfiable classes and thus reduce
the overall amount of work. The second question is how to
propagate (non-)subsumptions in K and P efficiently: a naı̈ve
strategy, such as the one from [27], can be very inefficient in
practice. We have addressed this problem by again exploiting
information gathered during reasoning tests.

Apart from the classification of classes, we also consider the
classification of object and data properties. To the best of our
knowledge, all state of the art OWL reasoners construct prop-
erty hierarchies by simply computing the reflexive–transitive
closure of the subproperty axioms in the ontology. Such a pro-
cedure is incomplete, as can be demonstrated by a simple exam-
ple that uses existential restrictions (ObjectSomeValuesFrom),
functional properties, and property hierarchies (i.e., the exam-
ple can be expressed in OWL Lite), or an example that uses
existential restrictions, property chains (ObjectPropertyChain),
and inverse properties. Surprisingly, however, the problem of
efficiently and correctly constructing property hierarchies has
received almost no attention in the literature, even though this
is a standard reasoning task extensively used by ontology ed-
itors such as Protégé. Property classification can in theory be
solved using an algorithm such as ET; however, as we discuss
in more detail, such an approach is unlikely to be efficient. As a
remedy, we present a novel encoding of the property classifica-
tion problems into class classification problems, which allows
us to exploit our new class classification algorithm to correctly
and efficiently compute property hierarchies.

We have implemented our techniques in the HermiT rea-
soner. To the best of our knowledge, this makes HermiT the
only OWL 2 DL reasoner that correctly classifies object and
data properties. Moreover, we have conducted an extensive ex-
perimental evaluation, which shows that our algorithms consis-
tently outperform ET, sometimes by a factor of ten or more.

2. Preliminaries

In this section we briefly introduce OWL [24, 23]—the ontol-
ogy language developed by the W3C; we present an overview
of the Enhanced Traversal (ET) algorithm [3]; and we present
an overview of the model-building calculi, such as tableau and
hypertableau, that provide the algorithmic foundation for sub-
sumption checking in most state of the art OWL reasoners.

2.1. OWL Ontologies
In this paper we focus on OWL 2 ontologies interpreted un-

der the Direct Semantics; however, our techniques are also ap-
plicable to OWL, as well as any propositionally closed ontology
language. For a full definition of OWL 2, please refer to the
OWL 2 Structural Specification and Direct Semantics [24, 23];
here we just recapitulate the relevant terminology. A domain
of interest can be modelled in OWL 2 by means of individu-
als (which denote objects from the domain of discourse), lit-
erals (which denote data values, such as strings or integers),

classes (which denote sets of individuals), datatypes (which de-
note sets of data values), object properties (which relate pairs of
individuals), and data properties (which relate individuals with
concrete values). Individuals, classes, datatypes, and object
properties can be used to form class expressions, data ranges,
and object property expressions, respectively; these are com-
plex descriptions of sets of individuals, sets of literals, and rela-
tionships between individuals. Finally, class expressions, data
ranges, object property expressions, data properties, individu-
als, and literals can be used to form axioms—statements that
describe the domain being modelled. Axioms describing indi-
viduals are commonly called assertions. An OWL 2 ontology
O is a finite set of axioms.

For example, consider axioms (1)–(4) below.1 Axiom (1)
states that the class Human is a subclass of the class Animal
(i.e., all humans are animals). Axiom (2) states that the in-
dividual Alex is an instance of the class Human, while ax-
iom (3) states that the individual Alex is related to literal
“27”ˆˆxsd:integer by the data property hasAge (i.e., the age of
Alex is 27). Finally, axiom (4) states that the value of the object
property hasColour must be an instance of the class Colour.

SubClassOf(Human Animal) (1)
ClassAssertion(Human Alex) (2)

DataPropertyAssertion(hasAge Alex “27”ˆˆxsd:integer) (3)
ObjectPropertyRange(hasColour Colour) (4)

The semantics of axioms in an OWL ontology O is given
by means of two-sorted interpretations over the object domain
and the data domain, where the latter contains well-known data
values such as integers and strings. An interpretation I maps in-
dividuals to elements of the object domain, literals to elements
of the data domain, classes to subsets of the object domain,
datatypes to subsets of the data domain, object properties to
sets of pairs of object domain elements, and data properties to
sets of pairs whose first component is from the object domain
and whose second component is from the data domain. OWL
2 contains two classes, one datatype, two object properties, and
two data properties which are all interpreted in every interpre-
tation in a predetermined way. In particular, class owl:Thing is
mapped to the set of all objects in the object domain, and class
owl:Nothing is mapped to the empty set. Similarly, datatype
rdfs:Literal is mapped to the set of all data values in the data do-
main. Furthermore, object property owl:topObjectProperty is
mapped to the set of all pairs of objects from the object domain,
and object property owl:bottomObjectProperty is mapped to
the empty set. Finally, data property owl:topDataProperty is
mapped to all pairs consisting of an object from the object do-
main and an object from the data domain, and data property
owl:bottomDataProperty is mapped to the empty set. An indi-
vidual i is an instance of a class C in an interpretation I if the
image of C contains the image of i. For an object property op,
an individual i is an op-successor of an individual j in an inter-

1All elements in OWL are identified using IRIs, but for brevity we do not
use IRIs and prefix names in this paper.

2

pretation I if the image of op contains 〈α, β〉, where α and β are
the images of i and j, respectively.

An interpretation I is a model of an ontology O if I satisfies
all conditions listed in [23]. For example, if O contains axiom
(5), then the conditions from [23] require each instance of C in
I to be an instance of D in I. As another example, if O contains
axiom (6), then i must have an op-successor j in I that is an
instance of C in I.

SubClassOf(C D) (5)
ClassAssertion(ObjectSomeValuesFrom(op C) i) (6)

If the axioms of O cannot be satisfied in any interpretation
(i.e., if O has no model), then O is unsatisfiable; otherwise, O is
satisfiable. If the interpretation of a class C is contained in the
interpretation of a class D in all models of O, then C is a sub-
class of D (or, equivalently, D subsumes C) in O and we write
O |= C v D. If the interpretations of C and D necessarily coin-
cide in all models of O, then C and D are equivalent in O and
we write O |= C ≡ D. A class C is satisfiable if a model of O
exists in which the interpretation of C is not empty; otherwise,
C is unsatisfiable. If O 6|= C v D, then a model I of O exists in
which C has an instance that is not an instance of D. We use
analogous notation for object and data properties.

We use the following notation for sets of entities occurring in
an ontology O:

• C′
O

is the set of all classes that occur in O different from
owl:Thing and owl:Nothing;

• OPE′
O

contains op and ObjectInverseOf(op) for each ob-
ject property op that occurs in O and that is different from
owl:topObjectProperty and owl:bottomObjectProperty;

• DP′
O

contains each data property that occurs in O different
from owl:topDataProperty and owl:bottomDataProperty.

Furthermore, we use the following abbreviations as well:

CO = C′
O

∪ {owl:Thing, owl:Nothing}
OPEO = OPE′

O
∪ {owl:topObjectProperty,

owl:bottomObjectProperty}
DPO = DP′

O
∪ {owl:topDataProperty,

owl:bottomDataProperty}

We next illustrate these definitions by means of an exam-
ple. Let O be the ontology containing axioms (7) and (8); then,
O |= C v E even though this is not stated explicitly. This is be-
cause axiom (7) ensures that, in each model of O, each instance
i of C is related to an instance of D using the object property
op. Each i thus has an op-successor, so the property domain ax-
iom (8) ensures that i is also an instance of E. Since this holds
for an arbitrary i, we can conclude that C is a subclass of E.

SubClassOf(C ObjectSomeValuesFrom(op D)) (7)
ObjectPropertyDomain(op E) (8)

2.2. Enhanced Traversal Algorithm
Classification of an ontology O is the computation of all

pairs of classes 〈C,D〉 such that {C,D} ⊆ CO and O |= C v D;
similarly, object (resp. data) property classification of O is
the computation of all pairs of object property expressions
(resp. data properties) 〈R, S 〉 such that {R, S } ⊆ OPEO (resp.
{R, S } ⊆ DPO) and O |= R v S . Roughly speaking, for a rela-
tion U containing all the resulting pairs, the corresponding hier-
archy is the reflexively and transitively reduced relation H that
‘implies’ all pairs in U.2 For example, from an ontology that
contains (7) and (8), a classification algorithm should compute
the following hierarchy:

{ 〈owl:Nothing,C〉, 〈owl:Nothing,D〉,
〈C, E〉, 〈E, owl:Thing〉, 〈D, owl:Thing〉 }

A naı̈ve way to classify O is to check whether O |= C v D
holds for all possible pairs of C and D in O. Given n classes,
such an algorithm requires n2 tests, which is inefficient even
on medium-sized ontologies. To obtain a practical classifica-
tion algorithm, numerous optimisations have been developed
with the goal of reducing the number of tests performed. A
prominent such technique is the Enhanced Traversal (ET) al-
gorithm [3]. The algorithm starts with the trivial hierarchy
H = {〈owl:Nothing, owl:Thing〉} and it progressively adds new
classes to H using a two-phase procedure. In the first phase, the
most specific superclasses of a class C are determined using a
top-down breadth-first traversal of H; in the second-phase, the
most general subclasses of C are determined using a bottom-up
traversal of H.

A sample run of the ET algorithm on an ontology O contain-
ing axioms (7) and (8) is shown in Figure 1. The algorithm
starts by setting H = {〈owl:Nothing, owl:Thing〉}. Next, the al-
gorithm inserts C into H using the following two steps:

• In the top-down phase, the algorithm checks whether sub-
sumption O |= C v owl:Thing holds. This is trivially the
case, so the algorithm proceeds with the ‘children’ of
owl:Thing; so far, this includes only owl:Nothing, so the
algorithm checks O |= C v owl:Nothing, which does not
hold. Consequently, C must be inserted into H somewhere
between owl:Thing and owl:Nothing.

• In the bottom-up phase, the algorithm checks whether sub-
sumption O |= owl:Nothing v C holds. This is trivially the
case, so the algorithm next checks O |= owl:Thing v C.
The latter subsumption does not hold, so C is inserted into
H exactly between owl:Nothing and owl:Thing.

In an analogous way, D is next inserted into H exactly between
owl:Nothing and owl:Thing, but in a separate branch from C
since O 6|= C v D and O 6|= D v C. Finally, since O |= C v E,
O 6|= E v C, and O 6|= D v E, class E is inserted into H below
owl:Thing and above C.

2The reflexive–transitive reduction of a binary relation R is the minimal
relation R′ such that the reflexive–transitive closure of R′ is the same as the
reflexive–transitive closure of R.

3

owl:Thing

owl:Nothing

owl:Thing

C

owl:Nothing

owl:Thing

C D

owl:Nothing

owl:Thing

E

C
D

owl:Nothing

Figure 1: A run of ET over O containing axioms (7) and (8)

The ET algorithm significantly reduces the number of sub-
sumption tests from the theoretical upper bound of n2. For
example, in the top-down phase, if O 6|= C v D, then the al-
gorithm does not need to check C against the children of D.
Nevertheless, classifying large ontologies might still require a
large number of subsumption tests. This is because most real-
world ontologies usually have relatively flat (i.e., broad and
shallow) hierarchies with only a few ‘top-level’ classes (i.e.,
classes located immediately below owl:Thing in the hierarchy).
In such cases, most classes have owl:Nothing as a child, so in
the bottom-up phase one must check the subsumption of a class
against a (possibly) large number of such ‘leaf’ classes. Fur-
thermore, as H becomes larger in size, repeated traversal of H
in both the top-down and bottom-up phases can be costly.

In order to further reduce the number of subsumption tests
required to compute the hierarchy, additional optimisation tech-
niques have been proposed. Most of these try to identify obvi-
ous (non-)subsumptions by propagating information from pre-
vious tests [3] or via cheap syntactic checks, such as told sub-
sumers [3], told non-subsumers [12], and completely defined
classes [34]. While such optimisations can significantly im-
prove the performance of the ET algorithm, they do not over-
come all the problems outlined above.

2.3. Model Construction using (Hyper)Tableau Calculi

It is well known that checking subsumption between classes
C and D w.r.t. an ontology O (i.e., checking if O |= C v D) is
equivalent to checking whether the class

A = ObjectIntersectionOf(C ObjectComplementOf(D))

is unsatisfiable w.r.t.O, which is equivalent to checking whether

O ∪ {ClassAssertion(A s0)}

is unsatisfiable for s0 a ‘fresh’ individual (i.e., an individual
not occurring in O). To decide the latter problem, most OWL
reasoners use a model construction calculus, such as tableau or
hypertableau. Please refer to [25] for a detailed introduction to
the hypertableau calculus for OWL 2, and to [17] for the tableau
calculus; here, we just present an overview of the aspects of
these calculi that are relevant to our classification algorithm.

Although (hyper)tableau calculi have been formalised in a
variety of ways, all of them can be seen as constructing a gen-
eralised set of assertions that represents (an abstraction of) a
model of O. Each such calculus consists of one or more deriva-
tion rules that can be applied to a set of assertionsA to produce
a set of assertionsA′, where the latter set makes a certain piece

of information from O explicit. Derivation rules usually add
new class or property assertions, and they may introduce new
individuals; the latter may be necessary to satisfy, for example,
existential restrictions (ObjectSomeValuesFrom). Moreover, in
addition to standard assertions, derivation rules can add a spe-
cial assertion unsatisfiable if an obvious contradiction is de-
tected. Finally, derivation rules can be nondeterministic—that
is, a derivation rule can be allowed to choose between several
alternative assertions to add. To show that A is satisfiable, (hy-
per)tableau calculi construct a derivation for O and A—a se-
quence of sets of assertionsA0, . . . ,An where

• A0 contains all assertions in O as well as the assertion
ClassAssertion(A s0), where s0 is a fresh individual called
the root,

• Ai+1 is a possible result of applying a derivation rule toAi

for each 0 < i ≤ n, and

• no derivation rule is applicable toAn.

If a derivation for O and A exists such thatAn does not contain
unsatisfiable, then A is satisfiable andAn is called a pre-model
for A. If no such derivation exists, then A is unsatisfiable (i.e.,
it is equivalent to owl:Nothing).

Each assertion occurring in a derivation A0, . . . ,An is de-
rived either deterministically or nondeterministically, which is
determined inductively as follows: all assertions in A0 are de-
rived deterministically; furthermore, an assertion occurring in
some Ai is derived deterministically if and only if it is derived
using a deterministic derivation rule from assertions that were
all derived deterministically. In the rest of this paper we assume
that we can determine for each assertion α occurring in some
Ai how α was derived. This is straightforward in practice since
all state of the art (hyper)tableau reasoners employ dependency
directed backtracking [16]. In order to optimise backtracking,
these reasoners associate with each assertion α a dependency
set—a data structure that indicates the nondeterministic choices
that α depends on. Then, α is derived deterministically if and
only if the dependency set of α is empty. Discussing the de-
tails of dependency directed backtracking is out of scope of this
paper; please refer to [16] for further details.

For a set of assertions A and individuals s and t that appear
inA, we define the label LA(s) of s inA as follows:

LA(s) := {A | ClassAssertion(A s) ∈ A and A is a class}

The classification algorithm presented in this paper can be
used with any (hyper)tableau calculus for which each pre-
model An for O and A with root individual s0 produced by the
calculus satisfies the following property:

4

(P1) if C ∈ LAn (s0) and the assertion ClassAssertion(C s0) was
derived deterministically, then O |= A v C.

All (hyper)tableau calculi used in practice that we are aware of
satisfy this property and so they can be used with our classifi-
cation algorithm.

In addition, for each ontology O and each pre-modelAn gen-
erated by the hypertableau calculus used in the HermiT reasoner
[25], the following property holds:

(P2) for an arbitrary individual s inAn and arbitrary classes D
and E, if D ∈ LAn (s) and E < LAn (s), then O 6|= D v E.

Pre-models produced by tableau algorithms as presented in
the literature also satisfy property (P2); however, commonly
used optimisations, such as lazy unfolding [3], can compro-
mise property (P2). Nevertheless, most (if not all) implemented
calculi produce pre-models that satisfy at least the following
weaker property:

(P3) for an arbitrary individual s in An and arbitrary classes
D and E where E is primitive in O,3 if D ∈ LAn (s) and
E < LAn (s), then O 6|= D v E.

As the following example shows, properties (P2) and (P3) can
be used to extract (non-)subsumptions from pre-models.

Example 1. Let O be an ontology that contains the following
axioms:

SubClassOf(A B) (9)
SubClassOf(B C) (10)
SubClassOf(E F) (11)

To check whether A is satisfiable, a (hyper)tableau calcu-
lus constructs a pre-model that satisfies properties (P1) and
(P3). In particular, the calculus starts with the set of as-
sertions A0 = { ClassAssertion(A s0) }. To satisfy the axioms
in O, the calculus extends A0 with ClassAssertion(B s0) and
ClassAssertion(C s0); let An be the resulting pre-model. All
practical (hyper)tableau calculi we are aware of are sufficiently
optimised so as to produce An deterministically. We can now
use the label LAn (s0) to identify (non-)subsumers of A as fol-
lows. Since E and F are primitive in O, from E < LAn (s0) and
F < LAn (s0) we can conclude that neither E nor F is a sub-
sumer of A; this is because An is an abstraction of a model of
O that witnesses the non-subsumption. Furthermore, from the
fact that all assertions inAn were derived deterministically, we
can conclude that B and C are subsumers of A. ♦

3. Optimised Class Classification

In this section we introduce our classification algorithm. We
discuss the main ideas and present an overview of the algorithm
in Section 3.1, after which we present the algorithm in full de-
tail in Sections 3.2 and 3.3.

3A class E is said to be primitive in O if O is unfoldable [34] and it does not
contain an axiom of the form EquivalentClasses(E C).

C D E F

only if

Figure 2: Eliminating impossible relationships: nodes represent
classes, solid edges represent pairs in K, and the grey edge rep-
resents a pair that can be in P only if the pair represented by the
dashed edge is in P ∪ K.

3.1. An Overview

In order to reuse the (non-)subsumption information from
satisfiability and subsumption tests, our algorithm maintains
two binary relations on CO × CO which we denote with K
and P. Relation K represents the known subsumptions—that
is, 〈C,D〉 ∈ K implies that O |= C v D is known for certain.
One might be tempted to use a dual relation that represents
the known non-subsumptions; however, such a relation is typi-
cally quite large, so maintaining it explicitly would be imprac-
tical. Our algorithm therefore manages the non-subsumption
information indirectly using a relation P of possible subsump-
tions. More precisely, 〈C,D〉 ∈ P and 〈C,D〉 < K implies that
O |= C v D is possible (i.e., no evidence to the contrary has
been encountered thus far); thus, 〈C,D〉 < P and 〈C,D〉 < K
imply that O 6|= C v D is known. Apart from initialisation and
during certain intermediate steps, relations K and P are disjoint;
thus, P reflects the ‘remaining work’ needed to classify O.

Given a class C for which another class D exists such that
〈C,D〉 ∈ P, our algorithm extracts from K and P a partial hi-
erarchy HC of all unknown, but possible subsumers of C, and
it then inserts C into HC using a variant of the ET algorithm.
Class C will typically have many known subsumers but few un-
known and possible subsumers, so HC will usually be small.
During the insertion of C into HC , our algorithm expands K
and prunes P using the information obtained in subsumption
tests, thus potentially reducing the work needed to classify the
remaining classes. This process is repeated until P becomes
empty, at which point the transitive closure of K precisely cap-
tures the subsumption relation between classes in O.

Our algorithm systematically exploits the transitivity of v to
extend K and prune P without actual reasoning. For example,
if {〈C,D〉, 〈E, F〉} ⊆ K and a subsumption test requires adding
〈D, E〉 to K, then 〈C, F〉 can be added to K as well due to the
transitivity of v. Ideally, our algorithm would maintain the tran-
sitive closure of K as new subsumptions are discovered. Effi-
cient algorithms for the maintenance of transitive closures un-
der updates are available in the literature; however, we found
them to be memory inefficient, which causes problems on large
ontologies with many classes, such as FMA and SNOMED.
Therefore, instead of computing the transitive closure of K ex-
plicitly, our algorithm uses a graph reachability algorithm to
identify whether a pair of the form 〈C,D〉 belongs to the transi-
tive closure of K.

The transitivity of the subsumption relation can also be used
to remove obvious non-subsumptions from P. For example, if
{〈C,D〉, 〈E, F〉} ⊆ K and {〈D, E〉, 〈C, F〉} ⊆ P, and we discover

5

that 〈C, F〉 should be removed from P (because C is not sub-
sumed by F), then we can remove 〈D, E〉 from P as well: if
〈D, E〉 were later added to K, then 〈C, F〉 would need to be
added to K as well due to the transitivity of the subsumption
relation, which contradicts our evidence that C is not subsumed
by F. Analogously, if {〈C,D〉, 〈D, E〉} ⊆ P, 〈E, F〉 ∈ K, and
〈C, F〉 < P ∪ K, and we discover that 〈C,D〉 should be added
to K, then we can remove 〈D, E〉 from P. Such situations are
shown schematically in Figure 2.

Note, however, that checking conditions from the previous
paragraph requires several nested loops over potentially very
large relations K and P; thus, a direct implementation of such
a scheme, as originally suggested in [27], is unlikely to be effi-
cient in practice. Our algorithm therefore uses a different prun-
ing strategy. Assume that a subsumption or a class satisfiability
test produces a pre-modelA satisfying property (P2) from Sec-
tion 2.3. For each individual s in a pre-modelA and each class
D ∈ LA(s), if 〈D, E〉 ∈ P but E < LA(s), then we can remove
〈D, E〉 from P: if E were a subsumer of D, then s would be an
instance of E in every pre-model, including A. We present a
variant of this scheme that is applicable if A satisfies only the
weaker property (P3). Although such approaches only partially
capture the pruning scheme from [27], they seem to exhibit a
good balance between efficiency of pruning and reduction of
the number of subsumption tests.

Before presenting our algorithm, we next introduce several
definitions. For example, we define precisely what a hierarchy
is, and we define certain shortcuts for manipulating K and P. In
order to use the same definitions for class and property hierar-
chies, we present the definitions for a general set U containing
elements E> and E⊥, and a subset S of U. To apply these defi-
nitions to class classification, one should take U to be the set of
all classes in an ontology, E> and E⊥ should be owl:Thing and
owl:Nothing, respectively, and S should be the set of classes
that we want to classify.

Definition 2. Let U be a set containing special elements E⊥
and E>, let S be a subset of U, and let R ⊆ U × U be a binary
relation on U.

• For C ∈ U, let R|C = {D | 〈C,D〉 ∈ R}.

• For C,D ∈ U, element D is reachable in R from element
C, written C R D, if elements E0, . . . , En ∈ U with n ≥ 0
exist such that E0 = C, En = D and 〈Ei, Ei+1〉 ∈ R for each
0 ≤ i < n.4 The opposite of reachable is written C 6 R D.

• A hierarchy of S w.r.t. R, E⊥, and E> is a triple (V,H, ρ)
whose components satisfy the conditions listed below, for
T defined as

T = {〈E⊥,C〉, 〈C, E>〉 | C ∈ S } ∪ {〈E⊥, E>〉} ∪
{〈C,D〉 ∈ S × S | C R D}.

– V is a set that contains, for each D ∈ S ∪ {E⊥, E>},
precisely one C ∈ S ∪ {E⊥, E>} such that C T D
and D T C.

4Note that, according to this definition, each C ∈ U is reachable from itself.

– H is the reflexive–transitive reduction of the relation
{〈C,D〉 ∈ V × V | C T D}.

– ρ : V → 2S ∪ {E⊥,E>} is the function on V such that
D ∈ ρ(C) if and only if C T D and D T C.

• Function hierarchy(S ,R, E⊥, E>) returns one arbitrarily
chosen but fixed hierarchy of S w.r.t. R, E⊥, and E>.

Intuitively, hierarchy(S ,R, E⊥, E>) arranges the elements of
S into a hierarchy where E⊥ and E> are bottom and top ele-
ments, respectively, and which ‘preserves’ the order of R; if S
contains a subset of the elements of R, the result can be un-
derstood as a ‘projection’ of R to S . The set V contains a sin-
gle ‘representative’ C for each strongly connected component
of T , and ρ(C) contains precisely the vertices of the strongly
connected component of T that contains C. Note that the re-
sult of hierarchy(S ,R, E⊥, E>) is unique up to the choice of
the representative for each strongly connected component of
T ; furthermore, relation T contains the reflexive–transitive clo-
sure of R, but one does not necessarily need to materialise the
closure in order to determine hierarchy(S ,R, E⊥, E>); finally,
if S ∪ {E⊥, E>} = U (as is often the case in practice), then the
definition of T can be simplified to

T = {〈E⊥,C〉, 〈C, E>〉 | C ∈ S } ∪ {〈E⊥, E>〉} ∪ R.

Our classification algorithm uses functions buildPreModel,
explicitSubsumptions, and possibleSubsumers, which we de-
scribe next. These functions should be understood as parame-
ters to our algorithm: one can use arbitrary functions, provided
that they satisfy properties specified in Definitions 3–5.

Definition 3. Let O be an ontology, and let D and N be sets
of assertions. Function buildPreModel(D,N ,O) should return
a set of assertions that is either a pre-model of D∪N ∪ O,
or that contains unsatisfiable if D∪N ∪ O is unsatisfiable.
The result should satisfy property (P1) from Section 2.3, and
it should be constructed by treating the assertions in D and N
as having been derived deterministically and nondeterministi-
cally, respectively.

Function buildPreModel is used to test the satisfiability of a
class and subsumption between classes using the (hyper)tableau
calculus. In particular, to check the satisfiability of C, our algo-
rithm will call the function with D and N defined as follows,
where s0 is a ‘fresh’ individual:

D = { ClassAssertion(C s0) } N = ∅

If C is satisfiable, the function should return a pre-model of C
with root s0. Furthermore, to check whether O |= C v D holds,
our algorithm will call the function withD and N as follows:

D = { ClassAssertion(C s0) }
N = { ClassAssertion(ObjectComplementOf(D s0)) }

If the subsumption does not hold, the function should return a
pre-model. To understand why buildPreModel accepts as in-
put two distinct sets of assertions D and N , remember that, as

6

discussed in Section 2.3, known subsumers for a class A can
be identified by performing a satisfiability test for A and then
checking which assertions involving the root individual were
derived deterministically. We extend this approach in a way
that allows us to identify known subsumers during subsumption
tests as well. To facilitate this, buildPreModel accepts two sets
of assertions. When constructing a pre-model for D∪N ∪ O,
the assertions in D are treated as having been derived deter-
ministically, but the assertions in N are treated as having been
derived nondeterministically (in practice, one can achieve this
by associating each assertion inN with a dummy nonempty de-
pendency set). Let A be the result of applying buildPreModel
to D, N , and O; if an assertion α ∈ A was derived determin-
istically, then we know that α was deterministically derived
fromD and O only. Thus, when performing a subsumption test
C v D, if an assertion ClassAssertion(E s0) in A was derived
deterministically, then we know for certain that E is a subsumer
of C. This is possible even if C is subsumed by D, soA is not a
pre-model. Such a technique extends the approaches in [27, 9]
and, as we discuss in Section 6, it significantly improves the
performance of classifying the GALEN ontology [26].

Definition 4. Let S be a set of classes and let O be an ontology.
Function explicitSubsumptions(S ,O) should return a (possibly
empty) set of pairs of classes 〈C,D〉 such that C,D ∈ S and
O |= C v D.

Function explicitSubsumptions(S ,O) is used to extract from
the ontology O the ‘explicit’ class subsumptions—that is, sub-
sumptions that can be extracted from O using a lightweight,
typically syntactic analysis. The result of this function does
not need to be transitively closed; in fact, transitively closing
the result might adversely affect the performance of the clas-
sification algorithm. In the HermiT system, this function re-
turns all pairs of classes 〈C,D〉 such that C,D ∈ S and O con-
tains an axiom of the form SubClassOf(C D) or of the form
SubClassOf(C ObjectIntersectionOf(D1 . . . Dn)) in which we
have D = Di for some 1 ≤ i ≤ n.

Definition 5. Let S be a set of classes, let O be an ontology,
let C be a class, let s be an individual, let A be a pre-model,
and let K be a set of pairs of classes satisfying the following
conditions:

• O |= F1 v F2 for each 〈F1, F2〉 ∈ K, and

• a class E exists such that E ∈ LA(s) and E K C.

Function possibleSubsumers(S ,O,C, s,A,K) should return a
(not necessarily minimal) subset of S that contains at least each
class D ∈ S such that O |= C v D.

Function possibleSubsumers(S ,O,C, s,A,K) should return
a subset of S that contains all candidate subsumers of C; note
that this must include C itself. Set K will contain pairs of known
subsumers in O—that is, if F1 K F2 for some F1, F2 ∈ S ,
then O |= F1 v F2. Moreover, the function is called for a class
C only if some s and E exists such that E ∈ LA(s) and E K C.
This condition implies that s should be an instance of C in a

model constructed fromA, even if C < LA(s) holds due to var-
ious optimisations of the calculus used to construct A. Hence,
the function can be called to determine the possible subsumers
for classes that do not explicitly appear inA.

In the simplest case, the function can return S ; however, one
can exploit LA(s) and K to return a smaller set of possible sub-
sumers. For example, ifA satisfies property (P2) from Section
2.3, as it is the case in the HermiT system, then we can define
possibleSubsumers as

possibleSubsumers(S ,O,C, s,A,K) = LA(s) ∩ S .

Set K is not useful in this case: if F < LA(s) and D K F, then
by property (P2) we have D < LA(s). In contrast, K is useful
if A satisfies only the weaker property (P3) from Section 2.3:
then we can define possibleSubsumers as

possibleSubsumers(S ,O,C, s,A,K) =

{D ∈ S | for each primitive class F in O
such that D K F, we have F ∈ LA(s)}.

The above definition can be intuitively understood as follows.
By the conditions on the arguments of possibleSubsumers, we
know that E ∈ L(s) for some class E such that E K C; thus,
as explained before, s should be an instance of C in a model
constructed fromA. Consider now an arbitrary class D ∈ S . If
a primitive class F in O exists such that F < LA(s), by prop-
erty (P3) we know that O 6|= C v F; but then, if D K F holds
as well, we clearly have O 6|= C v D. Such D need not be in-
cluded in possibleSubsumers(S ,O,C, s,A,K), and so Defini-
tion 5 simply excludes all D that satisfy this condition.

Example 6. Let O contain axioms (12)–(13).

SubClassOf(A ObjectSomeValuesFrom(op
ObjectIntersectionOf(X Y))) (12)

EquivalentClasses(B ObjectSomeValuesFrom(op X)) (13)

Clearly, we have O |= SubClassOf(A B). Furthermore, assume
that K = {〈A, A〉, 〈B, B〉}, and that we need to test the satisfiabil-
ity of A by producing a pre-modelA for A with root s0.

If A is produced by a calculus that satisfies property (P2),
thenA contains assertion ClassAssertion(B s0), so we have

possibleSubsumers(S ,O, A, s0,A,K) = LA(s0) ∩ S = {A, B}.

Assume now that A is produced by a calculus that satisfies
only property (P3). Then, A need not contain the assertion
ClassAssertion(B s0) since B is not a primitive class; however,
we still have possibleSubsumers(S ,O, A, s0,A,K) = {A, B}.
This is because no primitive class is reachable from B in
K, so B vacuously satisfies the condition in the definition of
possibleSubsumers. Moreover, X and Y are not included into
the result of possibleSubsumers(S ,O, A, s0,A,K) since both
are primitive classes that do not occur in LA(s0). ♦

In addition to the above mentioned three ‘parametric’ func-
tions, our algorithm uses two fully specified functions called
knownSubsumers and prune, which are introduced in Defini-
tions 7 and 8, respectively.

7

Definition 7. Let S be a set of classes, let s0 be an indi-
vidual, and let A be a set of assertions. Then, function
knownSubsumers(S , s0,A) returns the set containing each
D ∈ S for which A contains a deterministically derived asser-
tion ClassAssertion(D s0).

Function knownSubsumers(S , s0,A) is called in our algo-
rithm with A a pre-model with root s0 for a class C. Since A
satisfies property (P1) from Section 2.3, from each determinis-
tically derived assertion ClassAssertion(D s0) inAwe can con-
clude that O |= C v D.

Definition 8. Let P and K be sets of pairs of classes, let
O be an ontology, and let A be a set of assertions. Func-
tion prune(P,O,A,K) returns the relation obtained from P
by removing each pair 〈C,D〉 for which an individual s in
A and a class E exist such that E ∈ LA(s), E K C, and
D < possibleSubsumers(CO,O,C, s,A,K).

Function prune(P,O,A,K) removes from P certain pairs of
classes 〈C,D〉 for which we have O 6|= C v D. Since P can
be very large, this function requires careful implementation
in order to obtain an efficient implementation. Assuming that
possibleSubsumers(S ,O,C, s,A,K) is defined as outlined af-
ter Definition 5, prune(P,O,A,K) can be efficiently imple-
mented by iteratively considering each individual s in A, each
class E ∈ LA(s), each class C such that E K C, and each class
D ∈ P|C; if D does not satisfy the conditions for membership in
possibleSubsumers(S ,O,C, s,A,K), then 〈C,D〉 is removed
from P.

Our algorithm for classifying classes is shown in Algorithm
1. The algorithm first checks whether the given ontology is sat-
isfiable; if not, a trivial hierarchy in which all classes are sub-
sumed by owl:Nothing is returned. If the ontology is satisfiable,
then the algorithm proceeds with the classification. The goal is
to compute a relation K such that, for each class A ∈ CO dif-
ferent from owl:Nothing and each class B ∈ CO different from
owl:Thing, we have O |= A v B if and only if A K B.5 This
is achieved by initialising relations K and P as described Sec-
tion 3.2, and then processing possible subsumptions in P using
a modified version of the ET algorithm as described in Section
3.3. Finally, the algorithm returns a hierarchy derived from K.

3.2. The Initialisation Phase

In [27], relations K and P are initialised by performing a sat-
isfiability test for each class to be added to the hierarchy and
then extracting known and possible subsumers from pre-models
as discussed in Section 2.3. Although modern reasoners can
check satisfiability of classes quite efficiently, the time required
to test satisfiability of all the classes can become large if the on-
tology contains many classes. Moreover, it is likely that many
of these satisfiability tests will be redundant and could thus be
omitted. For example, if O |= C v D and C is satisfiable, then a

5Note that the excluded cases of owl:Nothing and owl:Thing are all tau-
tologies, whose management during classification can only add unnecessary
overhead.

Algorithm 1 Classify(O)
Input: an ontology O whose set of classes CO should be classified

1: A := buildPreModel(∅, ∅,O)
2: if unsatisfiable ∈ A then
3: return the trivial hierarchy in which each class C ∈ CO

is subsumed by owl:Nothing
4: end if
5: (K, P) := initialiseRelations(O,CO)
6: processRemainingClasses(K, P,O,CO)
7: return hierarchy(CO,K, owl:Nothing, owl:Thing)

pre-modelA for C also witnesses the satisfiability of D, as well
as of any other class occurring inA. We can thus avoid check-
ing the satisfiability of each such D, and we can useA to extract
its possible subsumers. In order to maximise the effect of this
optimisation, we start by checking the satisfiability of classes
likely to be classified near the bottom of the hierarchy: such
classes are likely to produce larger pre-models that are richer
in (non-)subsumption information and that thus witness the sat-
isfiability of numerous other classes. The drawback of testing
only classes near the bottom of the hierarchy is that we do not
determine any known subsumers for classes that are higher in
the hierarchy and whose satisfiability can be demonstrated only
indirectly. Our approach, however, seems to be quite effective
in practice because a substantial number of classes in an ontol-
ogy end up near the bottom of the hierarchy; furthermore, our
strategies for updating K often infer the known subsumptions
that are missed in the initialisation phase.

These ideas are captured in Algorithm 2. The algorithm takes
as input an ontology O and a set of classes S ⊆ CO to be clas-
sified. This generality will allow us to reuse the algorithm for
the classification of object and data properties with only minor
changes (see Sections 4 and 5).

First, K is initialised to all pairs of classes 〈C,D〉 for which
the subsumption is either explicitly stated in O, or whose sub-
sumption can be derived by lightweight transformations of the
axioms in O (line 1). Relation K is next used to extract a hierar-
chy H (line 2), which in many practical cases provides a good
approximation of the final hierarchy; this approximate hierar-
chy H is used next to optimise the order in which the algorithm
processes classes.6 Note also that the algorithm will only pro-
cess the selected ‘representative’ classes, but this will indirectly
classify all classes that are equivalent to the representative. For
efficiency reasons, P is initialised in line 3 to ∅ rather than all
possible pairs of classes in S ; thus, during the initialisation,
P|D = ∅ means ‘the possible subsumers of D have not been de-
termined yet’ rather than ‘there are no possible subsumers of
D’. Then, set ToTest is initialised (line 4) to contain the leaves
of H (i.e., the classes directly above owl:Nothing). A class C is
then iteratively removed from ToTest (lines 5–28) and the satis-
fiability of C is checked (line 8), unless the possible subsumers
of C were already determined, or C was determined to be un-
satisfiable (line 7). If C is unsatisfiable (lines 10–16), then each
D that reaches C in H is unsatisfiable as well (recall that C is

6Note that V and ρ are not used in the rest of the initialisation algorithm.

8

Algorithm 2 initialiseRelations(O, S)
Input: an ontology O and a set S of classes to be classified

1: K := explicitSubsumptions(S ,O)
2: (V,H, ρ) := hierarchy(S ,K, owl:Nothing, owl:Thing)
3: P := ∅
4: ToTest := {C | 〈owl:Nothing,C〉 ∈ H}
5: while ToTest , ∅ do
6: choose and remove C from ToTest
7: if P|C = ∅ and 〈C, owl:Nothing〉 < K then
8: A := buildPreModel({ClassAssertion(C s0)}, ∅,O) // s0 is fresh
9: if unsatisfiable ∈ A then // C is unsatisfiable

10: for all D such that D H C and 〈D, owl:Nothing〉 < K do
11: add 〈D, owl:Nothing〉 to K
12: remove D from ToTest
13: for all 〈D, E〉 ∈ H with 〈E, owl:Nothing〉 < K do
14: add E to ToTest
15: end for
16: end for
17: else
18: add 〈C,D〉 to K for each D ∈ knownSubsumers(S , s0,A)
19: for all s inA, all D ∈ LA(s), and all E such that D H E do
20: if P|E = ∅ then
21: add 〈E, F〉 to P for each F ∈ possibleSubsumers(S ,O, E, s,A,K)
22: else
23: remove each 〈E, F〉 from P such that F < possibleSubsumers(S ,O, E, s,A,K)
24: end if
25: end for
26: end if
27: end if
28: end while
29: remove each 〈E1, E2〉 from P such that E1 K E2

30: return (K, P)

reachable from itself); hence, this is recorded in K (line 11), D
is removed from ToTest (line 12), and each parent E of D that
is not known to be unsatisfiable is added to ToTest (lines 13–
15). In contrast, if C is satisfiable in a pre-model A with root
s0 (lines 18–25), then the pre-model A is used to identify the
known subsumers of C (line 18). Furthermore, for each class
E for which class D and individual s exist such that D ∈ LA(s)
and D H E, set P is updated with the possible subsumers of
E (lines 19–25). If P|E = ∅, this means that the possible sub-
sumers of E have not been initialised; therefore, P is modified
to ensure that P|E contains each class F that is a possible sub-
sumer of E (line 21). If P|E , ∅, then P is modified by removing
those pairs 〈E, F〉 such that F is not a possible subsumer of E
(line 23). Finally, after all possible subsumers of each class in S
have been determined, each subsumption that holds according
to the information in K can be removed from P (line 29). This
now leaves P to reflect the remaining work needed to classify
the elements in S .

Note that, if the pre-model A constructed in line 8 satisfies
property (P2) from Section 2.3, then the condition in line 19
can be simplified to consider each s inA and each class E such
that E ∈ LA(s). This is because, if D ∈ LA(s) and D H E
for some class D, by the definition of H we have O |= D v E,
and so by property (P2) we have E ∈ LA(s). Consequently, if
the simplified loop considers some class D ∈ LA(s), it will also

consider each class E for which D H E.
Also note that, if a class C is unsatisfiable (lines 10–16),

then our algorithm propagates the unsatisfiability of C to each
class D that reaches C in K. This allows our algorithm to iden-
tify unsatisfiable classes without performing actual satisfiabil-
ity tests, which significantly reduces the number of satisfiabil-
ity tests needed to classify ontologies with many unsatisfiable
classes; for example, as we discuss in Section 6 in more detail,
this significantly improves the performance of classifying the
FMA ontology [10]. Note, however, that such classes are re-
moved from ToTest and are never considered again after line 7
since 〈D, owl:Nothing〉 ∈ K. Hence, the algorithm might miss
the opportunity to create a pre-model for a satisfiable parent
class E of one of these classes; this, in turn, might render the
algorithm incomplete since P|E might not contain all possible
subsumers of E. This issue is solved by adding all parents E of
an unsatisfiable class D to ToTest in lines 13–15.

Example 9. Let O contain axioms (14)–(17).

SubClassOf(C ObjectSomeValuesFrom(op D)) (14)
ObjectPropertyDomain(op E) (15)

SubClassOf(D ObjectUnionOf(E F)) (16)
SubClassOf(G ObjectSomeValuesFrom(op2 D)) (17)

9

Assume that we want to classify the classes of the ontology us-
ing Algorithm 1. Since O is satisfiable, the algorithm proceeds
by calling Algorithm 2 with arguments O and CO.

Algorithm 2 determines that O contains no explicit subsump-
tions, so it initialises K to the empty relation. Thus, in the
extracted hierarchy all classes different from owl:Thing are
above owl:Nothing, so ToTest initially contains C, D, E, F,
and G. Let us assume that the algorithm next checks the sat-
isfiability of C by producing a pre-model A for C with root
s0 that satisfies property (P2). Due to axiom (14), s0 must
have an op-successor, say s1, that is an instance of D. Since
D ∈ LA(s1), the pre-model A also witnesses the satisfiability
of D. Due to axiom (16), A contains ClassAssertion(E s1) or
ClassAssertion(F s1); let us assume that the former is the case.
Using the information from P, our algorithm modifies P to en-
sure P|C = {C} and P|E = P|D = {D, E}. Let us assume that D is
selected next; now P|D , ∅, which means that a pre-model for
D has already been encountered, so no test is performed for D.
The algorithm then continues processing classes in ToTest, and
at some point it selects G and constructs a pre-model A for G
with root s0 that satisfies property (P2). Due to axiom (17), s0
has an op2 successor, say s1, that is an instance of D; that is,
D ∈ LA(s1). Let us assume, however, that axiom (16) is satis-
fied inA by ClassAssertion(F s1). Now, P|D , ∅, so the classes
inLA(s1) are used to prune P|D: since E < LA(s1), relation P is
modified to ensure E < P|D; thus, P|D is left to contain only D.
Consequently, P|D = ∅ after the final cleanup—that is, all sub-
sumers of D are known despite the fact that the satisfiability of
D has never been tested explicitly by Algorithm 2 in line 8, thus
illustrating the benefit of exploiting the information generated
by satisfiability tests. ♦

Next, we prove the correctness of Algorithm 2.

Lemma 10. When applied to a satisfiable ontology O and a set
of classes S ⊆ CO, Algorithm 2 terminates. Let K and P be
the relations produced by the algorithm; then, for all classes
A, B ∈ S , the following properties hold:

1. A K B implies O |= A v B.
2. If A is unsatisfiable, then A K owl:Nothing.
3. If A is satisfiable and O |= A v B, then either A K B

or a class A′ exists such that A K A′, 〈A′, B〉 ∈ P, and
O |= A′ v B.

Proof. We show that the algorithm terminates after a finite
number of steps. Note that function buildPreModel terminates
for each set of assertions and each OWL 2 ontology [25]. More-
over, for each class C removed from ToTest, the algorithm adds
〈C, owl:Nothing〉 to K if C is unsatisfiable, or in line 21 it ex-
tends P with pairs of the form 〈C, E〉 which makes P|C not
empty; note that in this case the algorithm also adds 〈C,C〉 to
P. Furthermore, 〈C,C〉 is never removed from P in line 23, so
P|C never becomes empty in future iterations of the while-loop.
Thus, in the worst case, the algorithm considers each class in S
once and then terminates.

(Claim 1) Pair 〈D, owl:Nothing〉 can be added to K in line
11, but then D is unsatisfiable. Alternatively, pair 〈C,D〉 can

be added to K in line 18, but then O |= C v D by property (P1)
from Section 2.3. Since these are the only places where pairs
are added to K, Claim 1 clearly holds.

In order to prove Claims 2 and 3, we first prove two useful
properties. Let H be as specified in line 2 and let A be an arbi-
trary class occurring in H; then, the following properties hold
at the beginning of each iteration of the while-loop.

(�): If A is satisfiable and P|A , ∅, then, for each
class B ∈ S such that O |= A v B, we have B ∈ P|A.

(♣): If P|A = ∅ and A 6 K owl:Nothing, then there ex-
ists a class F ∈ ToTest such that F 6 K owl:Nothing,
F H A, and P|G = ∅ for each class G such that
F H G and G H A.

For property (�), consider an arbitrary class A occurring
in H. Set P|A can become nonempty in line 21; but then,
P|A = possibleSubsumers(S ,D, s,A,K) after the change, so
P|A clearly satisfies property (�) after the change. Alternatively,
set P|A can be reduced in line 23 due to the removal of 〈A, B〉;
but then, we have O 6|= A v B, so set P|A clearly satisfies (�)
after the change.

We next show by induction on the iterations of the while-loop
that an arbitrary class A occurring in H satisfies property (♣).

Base Case: At the the beginning of the first iteration, ToTest
contains all classes of H ‘above’ owl:Nothing; hence, for an ar-
bitrary class F ∈ ToTest, we have F 6 H owl:Nothing. There-
fore, if P|A = ∅ and A 6 H owl:Nothing, then property (♣) is
satisfied for F = A.

Induction Step: Assume that property (♣) holds for A at the
beginning of iteration i. We show that property (♣) also holds
for A at the end of the iteration—that is, the property holds at
the beginning of iteration i + 1. The claim is nontrivial only
if P|A = ∅ and A 6 K owl:Nothing. Since A satisfies the in-
duction hypothesis, there exists a class F ∈ ToTest such that
F 6 K owl:Nothing, F H A, and P|G = ∅ for each class G
such that F H G and G H A. Let C be an arbitrary class
chosen in line 6. If C does not satisfy the condition in line 7,
then P|C , ∅ or C K owl:Nothing, so C , F, and thus F sat-
isfies property (♣) for A at the end of the iteration. If C satisfies
the condition in line 7, we have two possibilities.

First, assume that C is satisfiable, and letA be the pre-model
obtained in line 8. For an arbitrary class D, if P|D = ∅ at the
beginning, but not at the end of the loop, then by the condition
in line 19 we have P|E , ∅ at the end of the loop for each class
E such that D H E. Consequently, if P|G , ∅ at the end of
the loop for some class G such that F H G and G H A, then
P|A , ∅ at the end of the loop as well, so property (♣) is satisfied
for A in line 26. Otherwise, since lines 17–26 never add a pair
of the form 〈F, owl:Nothing〉 to K, class F satisfies property (♣)
for A in line 26.

Second, assume that C is unsatisfiable; then, property (♣) can
be affected only if F H C. To summarise, we have F H C
and F H A, where H is a directed acyclic relation; but then,
a ‘highest’ class D in H exists that occurs on the path from F
to C and on the path from F to A. More formally, there exists
class D such that

10

• F H D,

• D H A,

• D H C, and

• for each class D′ different from D such that D H D′ and
D′ H A, we have D′ 6 H C.

Furthermore, since we have F 6 H owl:Nothing, we also have
D 6 K owl:Nothing. Class D will clearly eventually be consid-
ered in line 10. If D = A, then 〈A, owl:Nothing〉 is added to K
in line 11, so A trivially satisfies property (♣) at the end of the
iteration. If D , A, a class E exists such that 〈D, E〉 ∈ H and
E H A; since A 6 K owl:Nothing, for each such E we have
E 6 K owl:Nothing; furthermore, by property (♣), we have
P|G = ∅ for each class G such that E H G and G H A. At
least one such E is considered in lines 13–15 and is added to
ToTest in line 14, so E satisfies property (♣) for A at the end of
the iteration.

This completes the proof of property (♣) and we next prove
Claims 2 and 3.

(Claim 2) Consider an arbitrary unsatisfiable class A ∈ S . By
the definition of the hierarchy function, a class A′ occurring
in H exists such that A ∈ ρ(A′). If A occurs in K, then we
clearly have A K A′ and A′ K A. Assume that A does not
occur in K. Then, since A is unsatisfiable (i.e., A , owl:Thing)
and owl:Thing and owl:Nothing are the only classes that can
occur in H but not in K, we have A = owl:Nothing; but then
A′ = A, and so we have A K A′ and A′ K A (remember that
each class is reachable from itself). Class A′ satisfies property
(♣); furthermore, we have ToTest = ∅ upon termination, so by
the contrapositive of property (♣) either A′ K owl:Nothing or
P|A′ , ∅. Note, however, that unsatisfiable classes never appear
in pre-models, so the algorithm never adds a pair of the form
〈A′,C〉 to P. Thus, P|A′ = ∅, so we have A′ K owl:Nothing,
and consequently A K owl:Nothing as well.

(Claim 3) Consider an arbitrary satisfiable class A ∈ S and an
arbitrary class B ∈ S such that O |= A v B. By the definition of
the hierarchy function, a class A′ occurring in H exists such that
A ∈ ρ(A′). If A occurs in K, then we clearly have A K A′ and
A′ K A. Assume that A does not occur in K; since A is satis-
fiable (i.e., A , owl:Nothing) and owl:Thing and owl:Nothing
are the only classes that can occur in H but not in K, we have
A = owl:Thing; but then A′ = A, and so we have A K A′ and
A′ K A (remember that each class is reachable from itself).
Class A′ satisfies property (♣); furthermore, we have ToTest = ∅

upon termination, so by the contrapositive of property (♣) we
have that either A′ K owl:Nothing or P|A′ , ∅. By Claim 1
and the fact that A is satisfiable the former cannot be the case,
so we have P|A′ , ∅. But then, by property (�) we have B ∈ P|A′
after line 28, so Claim 3 holds at this point. Pair 〈A′, B〉 can be
removed from P in line 29, but then A′ K B, and so we have
A K B; thus, Claim 3 holds after line 29 as well.

3.3. The Classification Phase
In the classification phase, our algorithm determines which

of the possible subsumptions in P actually hold. This is done

as shown in Algorithm 3. Each class C for which there are pos-
sible subsumptions is processed iteratively (lines 1–34). Since
K is initialised with explicit subsumptions in O, it is often the
case that no class in P|C is a subsumer of C, so identifying such
situations quickly can significantly reduce the total number of
subsumption tests. This is done by trying to construct a pre-
model that satisfies C and no Di ∈ P|C (lines 2 and 3); if a pre-
model A can be constructed, then no Di is a subsumer of C,
so all pairs 〈C,Di〉 are removed from P (line 5) and P is fur-
ther pruned using the information from A (line 6). If at least
one Di ∈ P|C is a subsumer of C, the algorithm first reads the
known subsumers of C off the returned set of assertionsA (line
8), and it prunes P by removing the known subsumers of C (line
9). As explained earlier, treating assertion ClassAssertion(F s0)
as being derived nondeterministically allows us to identify the
known subsumers of C during a subsumption test. If C still has
possible subsumers, then C is inserted into the hierarchy con-
structed thus far (lines 11–30). In order to reduce the number
of subsumption tests, the classes in P|C are arranged into a hi-
erarchy HC that is compatible with K (line 11); then, HC is tra-
versed using a variant of the ET algorithm (lines 12–30). To this
end, a queue Q is initialised to contain all children of owl:Thing
in HC (line 12); this prevents the algorithm from checking the
trivial subsumption between C and owl:Thing. As long as Q is
not empty (lines 13–30), the head D of Q is popped off Q (line
14) with the intention to check whether D subsumes C. The
algorithm does not process the class D if this subsumption was
discovered to be known (line 15) or if D was removed from P|C
since HC was constructed; this can happen if D is added to Q
more than once due to the presence of several paths from D to
owl:Thing in HC or if D was discovered to be a subsumer of
C in a previously constructed pre-model. Otherwise, the sub-
sumption between C and D is tested by trying to construct a
pre-model satisfying C but not D (line 19). If such a pre-model
A can be constructed, then 〈C,D〉 together with all known sub-
classes of D are removed from P (line 21), and P is further
pruned using the information from A (line 22). In contrast, if
the subsumption holds, this is recorded in K (line 24), and each
child E of D in HC is added to Q (line 25) in order to con-
tinue the traversal of HC . In either case, known subsumers of C
are read off A and P is pruned accordingly (lines 27 and 28).
Finally, P is pruned as discussed in Section 3.1 for all newly
discovered known subsumptions (line 32).

Please note that, if the pre-models constructed in lines 3 and
19 satisfy property (P2) from Section 2.3, then lines 5 and 21
are subsumed by lines 6 and 22, respectively. In particular,
for each class Di removed in line 5, by property (P2) we have
Di < LA(s0), so 〈C,Di〉 is removed from P in line 6. Similarly,
for each class E removed in line 21, by property (P2) we have
E < LA(s0), so 〈C, E〉 is removed from P in line 22.

In contrast to the ET algorithm, our algorithm does not in-
clude a bottom-up phase. This considerably simplifies the im-
plementation, as one does not need data structures that allow
retrieval of the predecessors of a class C in K and P: the algo-
rithm can be efficiently implemented by explicitly keeping track
only of successor links. Furthermore, unlike in the bottom-up
phase of the ET algorithm, our algorithm never iterates over the

11

Algorithm 3 processRemainingClasses(K, P,O, S)
Input: binary relations K and P, an ontology O and a set of classes S

1: while some C ∈ S exists such that P|C , ∅ do
2: F := ObjectComplementOf(ObjectUnionOf(D1 . . .Dn)) where {D1, . . . ,Dn} = P|C
3: A := buildPreModel({ClassAssertion(C s0)}, {ClassAssertion(F s0)},O)
4: if unsatisfiable < A then //no Di ∈ P|C subsumes C
5: remove each 〈C,Di〉 from P such that Di ∈ P|C
6: P := prune(P,O,A,K)
7: else
8: K := K ∪ {〈C,D〉 | D ∈ knownSubsumers(S , s0,A)}
9: remove each 〈C, E〉 from P such that C K E

10: if P|C , ∅ then
11: (VC ,HC , ρC) := hierarchy(P|C ,K, owl:Nothing, owl:Thing)
12: initialise a queue Q to contain all D with 〈D, owl:Thing〉 ∈ HC

13: while Q , ∅ do
14: remove the head D from Q
15: if C K D then
16: add to the end of Q each E such that 〈E,D〉 ∈ HC

17: else if D ∈ P|C then
18: F := ObjectComplementOf(D)
19: A := buildPreModel({ClassAssertion(C s0)}, {ClassAssertion(F s0)},O)
20: if unsatisfiable < A then // O 6|= C v D
21: remove each 〈C, E〉 from P such that E K D
22: P := prune(P,O,A,K)
23: else
24: add 〈C,D〉 to K
25: add to the end of Q each E such that 〈E,D〉 ∈ HC

26: end if
27: add 〈C,D〉 to K for each D ∈ knownSubsumers(S , s0,A)
28: remove each 〈C, E〉 from P such that C K E
29: end if
30: end while
31: end if
32: remove each 〈E1, E2〉 from P such that E1 K E2

33: end if
34: end while

direct superclasses of owl:Nothing, which significantly reduces
the cost of data structure traversal.

Lemma 11. Let O be a satisfiable ontology, and let K and P be
the relations obtained by applying Algorithm 2 to O and a set
of classes S ⊆ CO. Then, applying Algorithm 3 to K, P, O, and
S terminates. Let K be the relation produced by the algorithm;
then, for all classes A, B ∈ S , the following properties hold:

1. A K B implies O |= A v B.
2. If A is unsatisfiable, then A K owl:Nothing.
3. If A is satisfiable and O |= A v B, then A K B.

Proof. First, we prove that the algorithm terminates. Consider
an arbitrary class C selected in line 1. We show that P|C = ∅

at the end of the outer while-loop; since the algorithm never
adds pairs to P, this clearly implies termination. Let A be the
pre-model obtained in line 3. If A satisfies the condition in
line 4, then each pair 〈C,Di〉 is removed from P in line 5 thus
making P|C empty. We next assume that the condition in line
4 is not satisfied, so the algorithm proceeds with lines 8–30. If
P|C , ∅ after line 9, the algorithm proceeds with lines 11–30.

In particular, the algorithm constructs a hierarchy HC contain-
ing each D ∈ P|C , and then it traverses HC using breadth-first
search. Since HC is acyclic, the while loop in lines 13–30 ter-
minates: each class D occurring in HC can be added to Q only
as many times as there are paths from owl:Thing to D in HC .
We next show that P|C = ∅ in line 34 of the outer while loop.
Since tuples are never added to P, this clearly implies that the
algorithm terminates.

To show that P|C = ∅ in line 34, we first prove that the fol-
lowing three properties hold at the end of each iteration of the
inner while loop—that is, after line 29.

(]): For each class E such that C K E, we have
E < P|C .

(?): For each class D selected in line 14, we have
D < P|C .

(♠): For each class F ∈ P|C , a class G ∈ Q exists with
F K G.

For property (]), note that the property holds before the while
loop (i.e., after line 12) due to pruning in line 9; furthermore, K

12

can be extended in an iteration only in line 24, but then line 28
ensures that property (]) holds at the end of the iteration.

For property (?), let D be an arbitrary class selected in line
14. If the condition in line 15 holds, then D < P|C due to prop-
erty (]). If the condition in line 15 does not hold, then either
〈C,D〉 is removed from P in line 21, or 〈C,D〉 is added to K in
line 24 and so 〈C,D〉 is removed from P in line 28; either way,
D < P|C at the end of the iteration.

For property (♠), note that the property clearly holds after Q
is initialised in line 12. Consider now an arbitrary class F such
that F ∈ P|C at the beginning of the iteration, and let G be the
class that satisfies property (♠) for F. Furthermore, let D be the
class selected in line 14. If D , G, then property (♠) clearly
holds for F at the end of the iteration. If D = G, then we have
the following possibilities: some E such that F K E is added
to Q in line 16 or line 25, or 〈C, F〉 is removed from P in line 21.
In all cases, property (♠) holds for F at the end of the iteration.

We now complete the proof that P|C = ∅ in line 34. In par-
ticular, since Q = ∅ after line 30, no F ∈ P|C can exist without
violating property (♠). Thus, the algorithm terminates, and we
have P = ∅ upon termination.

To complete the proof of this lemma, we next show that rela-
tions K and P satisfy at all times during the algorithm’s execu-
tion the following properties for all classes A, B ∈ S .

1. A K B implies O |= A v B.
2. If A is unsatisfiable, then A K owl:Nothing.
3. If A is satisfiable and O |= A v B, then either A K B

or a class A′ exists such that A K A′, 〈A′, B〉 ∈ P, and
O |= A′ v B.

Initially, these properties are satisfied as a consequence of
Lemma 10.

(Property 1) A pair 〈A, B〉 can be added to K in lines 8 and
27, but then O |= A v B holds since A satisfies property (P1)
from Section 2.3. Alternatively, a pair 〈A, B〉 can be added to
K in line 24, but then O |= A v B holds as a consequence of the
subsumption check in line 19. Thus, property 1 holds at any
point during the algorithm’s execution.

(Property 2) Pairs are never removed from K, so Property 2
never ceases to hold for an arbitrary unsatisfiable class A ∈ S .

(Property 3) Consider arbitrary classes A, B ∈ S such that A
is satisfiable and O |= A v B. If A K B holds at some point,
then A K B never ceases to hold because pairs are never re-
moved from K. Furthermore, assume that a class A′ exists such
that A K A′, 〈A′, B〉 ∈ P, and O |= A′ v B. Property 3 might
cease to hold for A and B only after a modification of P, so we
next consider all possible ways in which that could happen.

• If 〈A′, B〉 is removed from P in line 9, 28, or 32, then we
have A′ K B; thus, we have A K B, so Property 3 holds
after the removal.

• If 〈C,Di〉 is removed from P in line 5, then O 6|= C v Di;
thus, we have 〈C,Di〉 , 〈A′, B〉, so Property 3 holds after
the removal.

• If 〈C, E〉 is removed from P in line 21, by O 6|= C v D and
E K D we have O 6|= C v E; thus, 〈C, E〉 , 〈A′, B〉, so
Property 3 holds after the removal.

• If 〈F1, F2〉 is removed from P in lines 6 and 22, by the
definition of prune we have O 6|= F1 v F2. Thus, we have
〈F1, F2〉 , 〈A′, B〉, so Property 3 holds after the removal.

Upon termination we have P = ∅, which together with Prop-
erties 1–3 clearly implies the claim of this lemma.

Theorem 12. For each ontologyO, Algorithm 1 terminates and
it correctly computes the class hierarchy of O.

Proof. The claim holds trivially if O is unsatisfiable, so let us
assume thatO is satisfiable. Termination is an immediate conse-
quence of the fact that Algorithms 2 and 3 terminate on O. Fi-
nally, correctness also follows straightforwardly from Lemma
11 and the fact that Algorithm 1 produces a hierarchy of CO
w.r.t. K, owl:Nothing, and owl:Thing.

4. Object Property Classification

To the best of our knowledge, classification of object prop-
erties has not been discussed in the literature, and all ontol-
ogy reasoners we are aware of construct the object property
hierarchy simply by computing the reflexive–transitive closure
of the asserted object property hierarchy. Such an algorithm
requires no complex reasoning and it can be easily imple-
mented; however, it is incomplete even for very simple sub-
languages of OWL. We demonstrate this by means of an exam-
ple that uses existential restrictions (ObjectSomeValuesFrom),
functional properties, and property hierarchies. In the rest of
this section, we use op(i) to denote an object property and ope(i)
to denote an object property expression.

Example 13. Consider axioms (18)–(21).

SubClassOf(
ObjectSomeValuesFrom(op1 owl:Thing)
ObjectSomeValuesFrom(op2 owl:Thing)

)

(18)

SubObjectPropertyOf(op1 op3) (19)
SubObjectPropertyOf(op2 op3) (20)
FunctionalObjectProperty(op3) (21)

These axioms entail op1 v op2: if i2 is an op1-successor of
i1 in an interpretation I, then axiom (18) requires the existence
of an op2-successor i3 of i1 in I; since both op1 and op2 are
subproperties of op3 and op3 is functional, then i3 is equal to i2,
so i2 is also an op2-successor of i1. This is shown graphically
in the left part of Figure 3. ♦

Furthermore, the following example demonstrates that sub-
sumption relationships between object properties can also be
derived due to an interaction between object property chains
and inverse properties (ObjectInverseOf).

13

i1 i2

i3

‖

op1

op2

op3

op3

(a) Example 13

i1 i2

i3

op1

opop−

op2

(b) Example 14

Figure 3: Graphical illustration of the models created in Exam-
ples 13 and 14. Dashed arrows indicate inferred relations, and
op− is the inverse of the object property op.

Example 14. Consider axioms (22)–(23).

SubClassOf(owl:Thing
ObjectSomeValuesFrom(op owl:Thing)

)
(22)

SubObjectPropertyOf(
ObjectPropertyChain(op1 op ObjectInverseOf(op))
op2

)

(23)

If i1 has an op1-successor i2 in a model I, axiom (22) ensures
that i2 has an op-successor i3; hence, 〈i1, i2〉 is in the interpre-
tation of op1, 〈i2, i3〉 is in the interpretation of op, and 〈i3, i2〉
is in the interpretation of ObjectInverseOf(op). By axiom (23),
then 〈i1, i2〉 is in the interpretation of op2 so, consequently, the
ontology entails op1 v op2. This is shown graphically in the
right part of Figure 3. ♦

One might assume that object properties can be classified
correctly and efficiently by modifying the classification algo-
rithm from Section 3 in the obvious way: to check whether
an object property op1 subsumes an object property op2, one
should construct a model satisfying assertions (24) and (25)
where a and b are fresh individuals; furthermore, to update re-
lations P and K, one should consider labels of individual pairs
instead of single individuals.

ObjectPropertyAssertion(op1 a b) (24)
NegativeObjectPropertyAssertion(op2 a b) (25)

Somewhat surprisingly, such an algorithm is incomplete due
to a problem with complex properties—that is, properties that
are transitive or are defined using a complex property inclu-
sion axiom. In all (hyper)tableau calculi known to us, axioms
defining complex properties are not handled directly, but via an
equi-satisfiable encoding [15, 17, 19]. For example, consider
an ontology that contains the following axioms:

TransitiveObjectProperty(op) (26)
ObjectPropertyAssertion(op a b) (27)
ObjectPropertyAssertion(op b c) (28)

NegativeObjectPropertyAssertion(op a c) (29)

This ontology is clearly unsatisfiable. To determine this, one
might expect a (hyper)tableau algorithm to derive

ObjectPropertyAssertion(op a c) (30)

from (26)–(28), and then to derive a contradiction from (29) and
(30). To the best of our knowledge, however, no (hyper)tableau
calculus works in such a way. The addition of transitively im-
plied object property assertions such as (30) is not compatible
with blocking [25]—a technique used to ensure termination of
pre-model construction. Instead, all calculi known to us use an
encoding that simulates the effects of axioms such as (26). In
particular, each negative object property assertion such as (29)
is replaced with an equivalent axiom (31).

ClassAssertion(
ObjectAllValuesFrom(op

ObjectComplementOf(ObjectOneOf(c))
)
a

)

(31)

Next, all axioms containing ObjectAllValuesFrom classes are
transformed in a certain way; for example, axiom (31) is re-
placed with the following axioms, where Q is a fresh class:

ClassAssertion(ObjectAllValuesFrom(op Q) a) (32)
SubClassOf(Q ObjectComplementOf(ObjectOneOf(c))) (33)

SubClassOf(Q ObjectAllValuesFrom(op Q)) (34)

Intuitively, axioms (32)–(34) ensure that each individual in a
pre-model reachable via op from a is an instance of

ObjectComplementOf(ObjectOneOf(c)),

which captures the effect of axioms (26) and (31). Thus, axioms
(26), (27), and (32)–(34) imply a contradiction, as required;
however, note that no axiom forces a (hyper)tableau calculus
to derive (30). Thus, a pre-model is not guaranteed to con-
tain all implied object property assertions for complex proper-
ties, which adversely affects the completeness of our classifica-
tion algorithm from Section 3: due to missing property asser-
tions, the set of possible subsumers P might not be correctly
initialised, or certain subsumptions might be incorrectly pruned
from P. To summarise, the modified classification algorithm
will correctly classify object properties that are not complex,
but it might fail to discover certain subsumptions involving at
least one complex object property.

In order to overcome these issues, we developed a new prop-
erty classification technique that reduces object property clas-
sification to standard class classification. Any complete class
classification algorithm (such as the one described in Section 3)
can be used to classify the resulting ontology.

Definition 15. Let O be an OWL 2 ontology, let C f be a fresh
class not occurring in O, let a be a fresh individual not occur-
ring in O, and let τ be an injective function that maps each
object property expression ope ∈ OPEO into a class τ(ope) as
follows:

14

• τ(owl:topObjectProperty) = owl:Thing,

• τ(owl:bottomObjectProperty) = owl:Nothing, and

• τ(ope) is a fresh distinct class not occurring in CO ∪ {C f }

for each ope ∈ OPE′
O

.

Then, Oτ is the ontology obtained by extendingO with assertion
(35) and an instance of axiom (36) for each ope ∈ OPE′

O
.

ClassAssertion(C f a) (35)

EquivalentClasses(τ(ope)
ObjectSomeValuesFrom(ope C f))

(36)

As we show in Theorem 16, the encoding from Definition 15
allows us to check O |= ope1 v ope2 by equivalently checking
Oτ |= τ(ope1) v τ(ope2).

Thus, for O, op1 and op2 defined as in Example 13, we
can check whether O |= op1 v op2 holds by checking whether
Oτ |= τ(op1) v τ(op2) holds, whereOτ is obtained by extending
O with axioms (37)–(38).

EquivalentClasses(τ(op1)
ObjectSomeValuesFrom(op1 C f))

(37)

EquivalentClasses(τ(op2)
ObjectSomeValuesFrom(op2 C f))

(38)

The latter can be checked as usual, by trying to construct a pre-
model for assertions (39)–(40), where s0 is a fresh individual.

ClassAssertion(τ(op1) s0) (39)
ClassAssertion(ObjectComplementOf(τ(op2)) s0) (40)

Since Oτ contains axiom (37), assertion (39) implies that s0
must have an op1-successor s1 that is an instance of C f ; now,
if the axioms in O imply that s1 is necessarily an op2-successor
of s0 as well, then axiom (38) from Oτ implies that s0 is an
instance of τ(op2), which contradicts assertion (40).

Note that the axioms for complex properties in Oτ are sub-
ject to the encoding of complex properties described above.
The additional axioms in Oτ might not look as if they contain
an ObjectAllValuesFrom class, but this becomes obvious if the
axioms are normalised. Any (hyper)tableau reasoner will pre-
process these axioms before applying the actual reasoning cal-
culus. For example, axiom (37) is split into the following two
axioms:

SubClassOf(τ(op1) ObjectSomeValuesFrom(op1 C f)) (41)
SubClassOf(ObjectSomeValuesFrom(op1 C f) τ(op1)) (42)

These are subsequently reformulated as follows:

SubClassOf(owl:Thing
ObjectUnionOf(

ObjectComplementOf(τ(op1))
ObjectSomeValuesFrom(op1 C f)

)
)

(43)

SubClassOf(owl:Thing
ObjectUnionOf(

ObjectComplementOf(
ObjectSomeValuesFrom(op1 C f)

)
τ(op1)

)
)

(44)

The latter axiom in finally brought into negation-normal form
as follows:

SubClassOf(owl:Thing
ObjectUnionOf(

ObjectAllValuesFrom(op1
ObjectComplementOf(C f)

)
τ(op1)

)
)

(45)

These transformations make it clear that axiom (37) contains
an ObjectAllValuesFrom class expression, which triggers the
encoding if op1 is a complex property.

Furthermore, note that, by Definition 15, Oτ does not con-
tain axioms of the form (36) for owl:topObjectProperty and
owl:bottomObjectProperty. From a theoretical point of view,
one could map these two properties via τ to fresh classes and
then include the corresponding axioms of the form (36) in Oτ.
The drawback of such an approach, however, is that Oτ then
contains owl:topObjectProperty and owl:bottomObjectProperty
even if O does not, and reasoning with these two proper-
ties can be difficult. By mapping owl:topObjectProperty and
owl:bottomObjectProperty to owl:Thing and owl:Nothing, re-
spectively, and not including in Oτ the corresponding axioms
of the form (36), we ensure that reasoning with Oτ is usually
not more difficult than reasoning with O.

Theorem 16. Let O, τ, and Oτ be as in Definition 15, and
let ope1 and ope2 be arbitrary object property expressions in
OPEO. Then, O |= ope1 v ope2 iff Oτ |= τ(ope1) v τ(ope2).

Proof. (⇐) We prove the contrapositive: if O 6|= ope1 v ope2,
then Oτ 6|= τ(ope1) v τ(ope2). Assume that O 6|= ope1 v ope2;
then there exists a model I of O such that I 6|= ope1 v ope2.
Clearly, we have

ope1 , owl:bottomObjectProperty and
ope2 , owl:topObjectProperty.

Let 〈i1, i2〉 be a tuple of objects that is contained in the interpre-
tation of ope1 in I, but not in the interpretation of ope2 in I. We
conservatively extend I to I′ by interpreting the symbols in Oτ
that do not occur in O as follows:

• the interpretation of individual a in I′ is i2,

• the interpretation of C f in I′ contains only i2, and

• for each ope ∈ OPE′
O

, the interpretation of τ(ope) in I′

contains each i such that 〈i, i2〉 is contained in the interpre-
tation of ope in I.

15

Interpretation I′ clearly satisfies O, assertion (35), and all ax-
ioms of the form (36) in Oτ; thus, I′ is a model of Oτ. If
ope1 = owl:topObjectProperty, then τ(ope1) = owl:Thing, so
i1 is clearly in the interpretation of τ(ope1); otherwise, since
〈i1, i2〉 is in the interpretation of ope1 and i2 is in the interpreta-
tion of C f , then i1 is in the interpretation of τ(ope1) by the con-
struction of I′. Similarly, if ope2 = owl:bottomObjectProperty,
then τ(ope2) = owl:Nothing, so i2 is clearly not in the interpre-
tation of τ(ope2); otherwise, since 〈i1, i2〉 is not in the interpre-
tation of ope2, then i1 is not in the interpretation of τ(ope2) by
the construction of I′. Consequently, I′ 6|= τ(ope1) v τ(ope2),
so Oτ 6|= τ(ope1) v τ(ope2), as required.

(⇒) We prove the contrapositive: if Oτ 6|= τ(ope1) v τ(ope2),
then O 6|= ope1 v ope2. Assume that Oτ 6|= τ(ope1) v τ(ope2);
then a model I of Oτ exists where some i1 is an instance of
τ(ope1) but not of τ(ope2); furthermore, Oτ contains all axioms
of O, so I is a model of O; finally, we clearly have

ope1 , owl:bottomObjectProperty and
ope2 , owl:topObjectProperty.

Now, if ope1 = owl:topObjectProperty, due to axiom (35),
i2 exists that is an instance i2 of C f in I, and, due to the
semantics of owl:topObjectProperty, i2 is an ope1-successor
of i1 in I; otherwise, due to axiom (36) for ope1, i2 ex-
ists that is an ope1-successor of i1 and that is an instance
of C f in I. But then, subsumption O 6|= ope1 v ope2 holds
trivially for ope2 = owl:bottomObjectProperty. Assume now
that ope2 , owl:bottomObjectProperty and that i2 is an ope2-
successor of i1 in I. Axiom (36) for ope2 implies that i1 is an
instance of τ(ope2), so i1 is an instance of τ(ope2) in I, which
is a contradiction. Consequently, i2 is not an ope2-successor
of i1—that is, I 6|= ope1 v ope2—so O 6|= ope1 v ope2, as re-
quired.

Our procedure for classifying object properties is shown in
Algorithm 4. As in the case of classification of classes, the
algorithm first checks whether the given ontology is satisfi-
able. If not, a trivial hierarchy in which all object property
expressions in O are subsumed by owl:bottomObjectProperty
is returned; otherwise, the algorithm proceeds with the clas-
sification. The algorithm constructs a mapping τ from object
properties to classes as in Definition 15 (line 5). Algorithm 4
next calls the procedure initialiseOPRelations, which is defined
analogously to procedure initialiseRelations (Algorithm 2), but
with the following differences:

1. Instead of calling explicitSubsumptions (line 1 in Algo-
rithm 2), initialiseOPRelations extracts from O the ex-
plicit object property subsumptions and then initialises K
with a tuple 〈τ(ope1), τ(ope2)〉 for all object property ex-
pressions ope1 and ope2 such that ope1 is explicitly sub-
sumed by ope2.

2. All remaining steps in initialiseOPRelations are as in Al-
gorithm 2, but Oτ is used instead of O.

Once K has been computed by processRemainingClasses, Al-
gorithm 4 uses τ to map the classes in K back to a relation K′

over object property expressions (line 9). Finally, the algorithm

constructs the object property hierarchy based on the subsump-
tions between object property expressions in K′ (line 10).

5. Data Property Classification

By a straightforward modification of Example 13, we can
show that data properties cannot be classified by computing the
reflexive–transitive closure of the explicitly stated data property
inclusions; essentially, we just need to replace owl:Thing with
rdfs:Literal. Thus, reasoning is needed in order to correctly
classify data properties.

Interestingly, data property subsumption cannot be easily re-
duced to satisfiability. To test O |= dp1 v dp2 with dp1 and dp2
data properties, we would need to construct a pre-model satis-
fying assertions

DataPropertyAssertion(dp1 i n) (46)
NegativeDataPropertyAssertion(dp2 i n) (47)

for i a fresh individual and n a literal representing an arbitrary
element of the data domain. In OWL 2, however, there is no
such thing as a literal with an arbitrary data value: all liter-
als are given a fixed interpretation as specified by the OWL 2
datatype map. Note that we cannot select n as some fixed lit-
eral not occurring in the ontology; for example, if we selected
n to be an integer not occurring in the ontology, we might get a
contradiction if the ontology axioms state that the range of dp1
is xsd:string.

We can solve this problem by introducing a special datatype
D that is interpreted as an arbitrary subset of rdfs:Literal. More
precisely, we define an ontologyO containing D to be satisfiable
if and only if D can be assigned an interpretation such that all
axioms of O are satisfied. Then, we can reduce the problem of
checking O |= dp1 v dp2 to the problem of checking whether
O extended with the following assertions is satisfiable, for i a
fresh individual:

ClassAssertion(DataSomeValuesFrom(dp1 D) i) (48)

ClassAssertion(DataAllValuesFrom(dp2
DataComplementOf(D)) i) (49)

Datatype reasoning is commonly implemented using a pro-
cedure such as the one by Motik and Horrocks [22]. This pro-
cedure represents datatype constraints using assertions of the
form dt(s), ¬dt(s) and s1 0 s2, where dt is a datatype, and s, s1
and s2 are concrete nodes—placeholders for data values. Given
a set of assertions A, the procedure checks whether the con-
crete nodes occurring in A can be assigned data values that
respect all constraints. Roughly speaking, for every set of con-
crete nodes s1, . . . , sn such that A contains si 0 si+1 for each
1 ≤ i < n, the procedure tries to identify distinct data values
v1, . . . , vn such that the value vi is contained in the interpreta-
tion of each datatype dt j that occurs inA in an assertion dt j(si),
and is not contained in the interpretation of any datatype dtk
that occurs inA in an assertion ¬dtk(si). This procedure can be
extended to handle the datatype D as follows:

16

Algorithm 4 ClassifyObjectProperties(O)
Input: an ontology O whose set of object property expressions OPEO should be classified

1: A := buildPreModel(∅, ∅,O)
2: if unsatisfiable ∈ A then
3: return the trivial hierarchy in which each object property expression ope ∈ OPEO is subsumed by owl:bottomObjectProperty
4: end if
5: construct a mapping τ and the ontology Oτ as in Definition 15
6: initialise S to the range of τ
7: (K, P) := initialiseOPRelations(O, S , τ)
8: processRemainingClasses(K, P,Oτ, S)
9: K′ := mapClassesToProperties(K, τ)

10: return hierarchy(OPEO,K′, owl:bottomObjectProperty, owl:topObjectProperty)

1. If A contains assertions D(s1) and ¬D(s2), but not the as-
sertion s1 0 s2, thenA is extended with s1 0 s2.

2. Assertions of the form D(s1) and ¬D(s2) are ignored when
trying to assign data values to concrete nodes.

The first item ensures that concrete nodes s1 and s2 are not ac-
cidentally assigned the same value, and the second item ensures
that D places no additional constraints on the values assigned to
concrete nodes inA.

Even if a concrete node s is assigned a value from D, the
procedure from [22] does not necessarily insert an assertion
D(s) into each pre-model. We therefore cannot read non-
subsumptions off pre-models, which prevents us from directly
applying the classification algorithm from Section 3. We can,
however, reduce data property classification to class classifica-
tion similarly as in Section 4.

Note that, in OWL 2 DL ontologies, owl:topDataProperty
can occur only in axioms SubDataPropertyOf, in which they
can only play the role of a super-property [24, Section 11.2].
This ensures that owl:topDataProperty occurs only in tautolo-
gies, so an axiom of the form

EquivalentClasses(Q DataSomeValuesFrom(
owl:topDataProperty D)) (50)

where Q is the class to which owl:topDataProperty is mapped
is not allowed in OWL 2 DL. Therefore, unlike in the case
of object properties, we have no choice but to ensure that
owl:topDataProperty is mapped to owl:Thing. The OWL 2 DL
specification restricts the usage of owl:topDataProperty in order
to ensure that consequences of an OWL 2 DL ontology do not
depend on the choice of a datatype map, as long as the datatype
map chosen contains all the datatypes occurring in the ontol-
ogy [23, Theorem DS1]. Due to this restriction, however, no
data property different from owl:topDataProperty can subsume
owl:topDataProperty, unless the ontology is unsatisfiable. This,
in turn, ensures that our encoding does not need to include an
axiom analogous to (35): we need not ensure that the interpre-
tation of D is not empty, which simplifies reasoning with D.

Definition 17. LetO be an OWL 2 ontology, let D be the special
datatype as discussed above, and let σ be an injective function
that maps each data property dp ∈ DPO into a class σ(dp) as
follows:

• σ(owl:topDataProperty) = owl:Thing,

• σ(owl:bottomDataProperty) = owl:Nothing, and

• σ(dp) is a fresh distinct class not occurring in CO for each
dp ∈ DP′

O
.

Then, Oσ is the ontology obtained by extending O with an in-
stance of axiom (51) for each dp ∈ DP′

O
.

EquivalentClasses(σ(dp) DataSomeValuesFrom(dp D)) (51)

The following theorem shows that the reduction is indeed
correct.

Theorem 18. Let O, σ, and Oσ be as in Definition 17, and
let dp1 and dp2 be arbitrary data properties in DPO. Then,
O |= dp1 v dp2 if and only if Oσ |= σ(dp1) v σ(dp2).

Proof. (⇐) We prove the contrapositive: if O 6|= dp1 v dp2,
then Oσ 6|= σ(dp1) v σ(dp2). Assume that O 6|= dp1 v dp2;
then a model I of O exists such that I 6|= dp1 v dp2. Clearly,
we have

dp1 , owl:bottomDataProperty and
dp2 , owl:topDataProperty.

Let 〈i, c〉 be a pair of an individual and a data value contained
in the interpretation of dp1 in I, but not in the interpretation of
dp2 in I. We conservatively extend I to I′ by interpreting the
symbols in Oσ that do not occur in O as follows:

• the interpretation of D in I′ contains only c, and

• for each dp ∈ DP′
O

, the interpretation of σ(dp) in I′ con-
tains each i′ such that 〈i′, c〉 is contained in the interpreta-
tion of dp in I.

The interpretation I′ clearly satisfies O and all axioms of the
form (51) in Oσ; thus, I′ is a model of Oσ. If we have
dp1 = owl:topDataProperty, then i is clearly in the interpreta-
tion of σ(dp1); otherwise, since 〈i, c〉 is in the interpretation of
dp1 and c is in the interpretation of D, then i is in the inter-
pretation of σ(dp1) by the construction of I′. Similarly, if we
have dp2 = owl:bottomDataProperty, then i is clearly not in the
interpretation of σ(dp2); otherwise, since 〈i, c〉 is not in the in-
terpretation of dp2, then i is not in the interpretation of σ(dp2)

17

by the construction of I′. Consequently, I′ 6|= σ(dp1) v σ(dp2),
so Oσ 6|= σ(dp1) v σ(dp2), as required.

(⇒) We consider the following cases, depending on whether
dp1 and/or dp2 are equal to owl:topDataProperty.

1. Assume that dp2 = owl:topDataProperty. Then we have
σ(dp2) = owl:Thing, so Oσ |= σ(dp1) v owl:Thing, and
Oσ |= σ(dp1) v σ(dp2), as required.

2. Assume that dp1 = owl:topDataProperty and dp2 , dp1.
If O is unsatisfiable, then Oσ is unsatisfiable as well, so
the claim clearly holds. Assume that O is satisfiable in a
model I. Let I′ be an interpretation that coincides with I
on all symbols and the object domain, and whose data do-
main is obtained by extending the data domain of I with
an arbitrary constant α. The proof of [23, Theorem DS1]
shows that I′ is a model of O; however, since all sym-
bols are interpreted in I′ as in I, and the interpretation
of dp1 = owl:topDataProperty contains the new constant
α, it is not the case that the interpretation of dp1 is con-
tained in the interpretation of dp2 in I′. Consequently,
O 6|= dp1 v dp2, and our claim holds vacuously.

3. In all other cases, we show the contrapositive claim: if
Oσ 6|= σ(dp1) v σ(dp2), then O 6|= dp1 v dp2. Assume
that Oσ 6|= σ(dp1) v σ(dp2); then a model I of Oσ exists
where some i is an instance of σ(dp1) but not of σ(dp2);
since Oσ contains all axioms of O, I is a model of O. Fur-
thermore, we clearly have

dp1 , owl:bottomDataProperty and
dp2 , owl:topDataProperty,

and the case dp1 = owl:topDataProperty is covered in
Point 2, so we assume dp1 , owl:topDataProperty. Since
we assume i to be an instance of σ(dp1), due to axiom (51)
for dp1 then c exists that is a dp1-successor of i and that
is an instance of D in I. But then, O 6|= dp1 v dp2 holds
trivially for dp2 = owl:bottomDataProperty. Assume now
that dp2 , owl:bottomDataProperty and that c is a dp2-
successor of i in I. Axiom (51) for dp2 implies that i is an
instance ofσ(dp2), so i is an instance ofσ(dp2) in I, which
is a contradiction. Consequently, c is not a dp2-successor
of i—that is, I 6|= dp1 v dp2—so O 6|= dp1 v dp2, as re-
quired.

An algorithm for the classification of data properties of an
ontology can now be obtained by a straightforward modifica-
tion of Algorithm 4.

6. Evaluation

We implemented Algorithms 1 and 4 and the adaptation of
Algorithm 4 for data properties in version 1.3.5 of our HermiT
reasoner. To evaluate the effectiveness of our techniques and
to contrast them with the ET strategy, we compared the perfor-
mance of HermiT 1.3.5 with that of HermiT 1.2.2a—an earlier
version of HermiT that uses the ET algorithm for classifying
both classes and properties. Both HermiT versions implement

the hypertableau calculus and satisfy properties (P1) and (P2)
from Section 2.3. We have not compared HermiT with other
reasoners, as the source of any difference in performance would
be difficult or impossible to determine, and so such tests would
tell us very little about the effectiveness of our new classifica-
tion technique. Moreover, other systems could (and we believe
should) easily adopt our new technique. We conducted our eval-
uation using 70 well-known and widely-used ontologies. All
test ontologies, both HermiT versions, the Java programs that
were used to produce the results, and the test results are avail-
able online.7

Due to lack of space, we next present the results for 20 repre-
sentative ontologies on which we obtained ‘interesting’ results.
These include two versions of the GALEN medical ontology
[26],8 several ontologies from the Open Biological Ontologies
(OBO) Foundry,9 the Food and Wine ontology from the OWL
Guide, three versions of the Foundational Model of Anatomy
(FMA) [10], and ontologies from the Gardiner ontology corpus
[7]. For each of these ontologies, Table 1 shows the numbers
of classes, properties, and assertions, as well as the fragment of
OWL 2 DL that the ontology is expressed in.10

Each test involved classifying the classes and properties of
the respective test ontology. We measured the overall classifi-
cation times as well as the number of reasoning (i.e., subsump-
tion and satisfiability) tests performed. Each classification task
was performed three times and the results were averaged over
the three runs. All experiments were run on an HS21 XM Blade
server with two quad core Intel Xeon processors running at 2.83
GHz under 64bit Linux. We used Java 1.6, which was allowed
4GB of heap memory per test. Each test was allowed at most
six hours to complete.

The results for the representative ontologies are summarised
in Table 2. The upper part of the table shows the results for the
deterministic ontologies (i.e., the ontologies that do not use dis-
junctive constructors), while the lower part shows the results for
the nondeterministic ontologies. The ‘data properties’ columns
contain ‘-’ for ontologies without data properties, while (t/o)
indicates a timeout.

As Table 2 shows, the new classification strategy of HermiT
1.3.5 is in all cases significantly faster than the ET strategy
of HermiT 1.2.2a, sometimes by one or even two orders of a
magnitude. This is particularly true for property classification
where, as explained in Sections 4 and 5, none of HermiT’s stan-
dard optimisations can be applied, and where one must entirely
rely on the insertion strategy of ET to reduce the number of
subsumption tests. In contrast, our reductions of property to
class classification allow one to exploit all optimisations avail-
able for the classification of classes, which ensures a very good
and robust performance. Note, however, that in some ontolo-

7http://www.hermit-reasoner.com/2011/clss/Evaluation.zip
8We used the so-called ‘doctored’ (GALEN-d) and ‘undoctored’ (GALEN-

un) versions of GALEN. Both were derived from an original GRAIL ontology,
and the former is a simplified version of the latter; this simplification was nec-
essary to allow early tableau reasoners to classify the ontology [16].

9http://www.obofoundry.org/
10We use the standard description logic nomenclature for fragments of OWL

2 DL [1].

18

Table 1: Numbers of classes, properties, and assertions, as well as the DL fragment of test ontologies

classes object data assertions DL
prop. prop. fragment

GALEN-d 2 748 413 0 0 ELHIF R+

GALEN-un 2 748 413 0 0 ELHIF R+

BTO 4 978 5 0 12 300 Horn-ALE
CL-EMAPA 5 952 16 0 391 Horn-ALE

MP 8 246 2 0 39 426 Horn-ALR+

DOID 8 694 41 0 76 418 Horn-ALHR+

IMR 9 164 3 0 139 447 Horn-ALER+

chebi 20 979 10 0 243 972 Horn-ALER+

NCI 27 652 70 0 0 Horn-ALE
GO XP 27 883 5 0 163 136 Horn-SH

biopax-level2 42 33 37 0 ALCHN(D)
biopax-level3 70 57 41 0 SHIN(D)

Food-Wine 139 17 1 482 SHOIN(D)
ProPreO 482 30 0 0 SHIN

CL 1 498 2 0 5 908 ALC

substance 1 721 112 33 340 SHOIN(D)
UBERON 4 764 69 0 55 360 SRI

FBbt XP 7 225 21 0 12 580 SHI

PRO 26 017 8 0 138 902 SH

FMA 2.0-CNS 41 648 148 20 86 ALCOIF (D)
FMA 3.0-noCNS 85 005 142 13 98 ALCOIF (D)
FMA 3.0-noMTC 85 005 140 13 98 SROIQ(D)

gies (e.g., NCI and biopax-level2) HermiT 1.3.5 might need
roughly the same number of tests as HermiT 1.2.2a to classify
the object properties. This is because in these ontologies the
property hierarchy is relatively flat—that is, there are very few
asserted subsumption relations between any of the object prop-
erties, so our classification algorithm performs a satisfiability
test for almost all the classes that the properties are mapped to.
Nonetheless, our results clearly demonstrate that correct clas-
sification of properties is practically feasible and preferable to
simple but incomplete transitive closure algorithms. Finally,
note that, although the Food-Wine ontology contains only one
data property, the algorithms still needs to check this property
with respect to the top and bottom data property in order to in-
sert it correctly into the hierarchy.

The results for classification of classes are similar: the new
algorithm has significantly reduced the classification times in
most cases. The significant performance gain in the classifica-
tion of FMA is due in part to the heuristic implemented in lines
10–16 of Algorithm 2, which prevents HermiT from repeatedly
testing the satisfiability of unsatisfiable classes.

Compared to the initial version of our algorithm presented
in [9], our revised algorithm requires far fewer reasoning tests
to classify the GALEN-d and GALEN-un ontologies. This is a
consequence of identifying known subsumptions in lines 8 and
27 of Algorithm 3 even after the initialisation phase.

7. Related Work

A strategy for the construction of hierarchies that performs
well for tree-like relations was described by Ellis [6]: ele-
ments are inserted into the hierarchy one at a time; further-

more, for each element, the subsumers are identified using top-
down breadth-first search, and the subsumees are identified us-
ing bottom-up breadth-first search. Baader et al. [3] further re-
fined this technique to avoid redundant subsumption tests in
the top-down phase: a test O |= A v B is performed only if
O |= A v C holds for each subsumer C of B [3]. Haarslev and
Möller [12] further improved the traversal of flat hierarchies
using a clustering technique, in which a single subsumption
test can sometimes eliminate several potential subsumers. This
technique provided us with inspiration for the efficient pruning
of possible subsumers in line 6 of Algorithm 3.

Baader et al. [3] also described techniques for identifying
subsumption relations between classes by analysing the syntax
of ontology axioms and without running expensive subsump-
tion tests; for example, from an axiom of the form

SubClassOf(A ObjectIntersectionOf(B C)) (52)

where A, B and C are classes, one can deduce that B and C
are ‘told subsumers’ of A. The various simplification and ab-
sorption techniques described by Horrocks [16] can increase
the likelihood of identifying ‘told subsumers’ syntactically.
Haarslev et al. [14] further extended these ideas to detect ob-
vious non-subsumptions; for example, from axiom

SubClassOf(A
ObjectIntersectionOf(ObjectComplementOf(B) C)) (53)

one can deduce that A and B are disjoint, so neither class sub-
sumes the other (unless both are unsatisfiable). Tsarkov et al.
[34] described a technique for precisely determining the sub-
sumption relationships between ‘completely defined classes’—
classes whose definitions contain only conjunctions of other

19

Table 2: Evaluation results for class and property classification (time in seconds)

Ontology Classes Object Properties Data Properties
1.2.2a 1.3.5 1.2.2a 1.3.5 1.2.2a 1.3.5

Tests Time Tests Time Tests Time Tests Time Tests Time Tests Time
GALEN-d 2 743 3.2 2 548 1.9 5 983 358.0 196 0.2 - - - -

GALEN-un 2 743 21.5 2 570 5.6 5 985 376.9 197 0.2 - - - -
BTO 4 535 5.9 3 852 0.5 5 < 0.1 6 < 0.1 - - - -

CL-EMAPA 5 949 15.5 3 413 0.7 16 < 0.1 17 < 0.1 - - - -
MP 8 244 3.5 6 263 1.1 4 0.6 3 < 0.1 - - - -

DOID 8 692 5.0 6 904 1.4 116 25.2 39 0.1 - - - -
IMR 9 058 42.5 7 179 1.7 8 6.0 4 0.3 - - - -
chebi 20 695 58.4 13 468 8.4 29 29.2 11 0.8 - - - -
NCI 27 651 56.2 21 377 5.1 70 < 0.1 71 < 0.1 - - - -

GO XP 27 879 92.3 19 972 9.1 10 7.1 5 0.4 - - - -
biopax-level2 57 < 0.1 28 < 0.1 27 0.1 33 < 0.1 1 297 2.9 45 < 0.1
biopax-level3 71 < 0.1 60 < 0.1 836 3.3 56 0.1 1 511 3.8 49 < 0.1
Food-Wine 459 17.9 191 10.2 60 10.0 11 1.3 3 0.6 2 0.2

ProPreO 1 393 5.6 1 045 5.7 341 1.6 33 < 0.1 - - - -
CL 7 235 0.9 963 0.2 2 < 0.1 3 < 0.1 - - - -

substance 4 725 15.6 2 918 9.8 959 19.4 108 0.3 967 18.5 38 0.1
UBERON 13 361 69.7 3 594 11.8 2 869 808.1 72 0.1 - - - -
FBbt XP 7 150 16.7 5 742 5.4 238 28.8 18 < 0.1 - - - -

PRO 33 820 553.0 23 705 6.2 45 51.2 8 0.3 - - - -
FMA 2.0-CNS 49 851 6 785.6 11 001 659.3 9 065 12 154.1 168 6.1 277 319.2 28 0.6

FMA 3.0-noCNS 107 280 10 200.0 23 653 2 243.5 6 291 25 400.0 116 7.1 89 345.7 22 1.2
FMA 3.0-noMTC 118 133 11 673.6 23 078 2 366.6 t/o t/o 115 8.0 88 379.5 21 1.4

completely defined classes [34]. All these optimisations can be
exploited in the initialisation phase of our algorithm, by suit-
ably modifying line 1 of Algorithm 2.

8. Conclusions

In this paper, we studied the problem of efficiently classify-
ing OWL ontologies. Unlike in earlier approaches, we consider
all classification tasks, including class, object property, and data
property classification. To the best of our knowledge, property
classification has not previously been discussed in the literature.

We presented a new classification algorithm that significantly
improves the performance of the existing class classification al-
gorithms. The algorithm is based on the idea of maintaining
two sets of known and possible subsumptions, which are up-
dated appropriately as classification progresses. An advanced
pruning strategy exploits the transitivity inherent in the sub-
sumption hierarchy to prune these two relations and thus reduce
the number of required subsumption tests.

In addition, by means of several examples, we demon-
strated that commonly used algorithms for property classifica-
tion based on computing the reflexive–transitive closure of the
asserted property hierarchy are incomplete even for very weak
fragments of OWL. Furthermore, we discussed the difficulties
of applying our classification approach directly to property clas-
sification. Finally, we showed how to reduce the problems of
classifying object and data properties to the problem of clas-
sifying classes. These reductions can be used to classify the
property hierarchies while reusing all available optimisations.

We implemented all our algorithms in version 1.3.5 of the
HermiT reasoner, and we compared the performance of HermiT
1.3.5 with an earlier version of HermiT that uses the standard
enhanced traversal classification algorithm. Our results are very

encouraging, showing significant improvements in classifica-
tion times and reductions in the number of subsumption tests.
Our experiments also show that both correct and efficient clas-
sification of object and data properties is possible in practice.

We are currently working on extending our algorithm to in-
dividual realisation—the tasks of computing, for each individ-
ual i in an ontology, the most specific classes C such that i is
an instance of C. Our preliminary results suggest that the per-
formance of realisation can also be significantly improved by
exploiting the ideas outlined in this paper.

Acknowledgements
The research presented in this paper was funded by the EP-

SRC project HermiT: Reasoning with Large Ontologies. The
evaluation has been performed on computers of the Baden-
Württemberg Grid (the bwGRiD project11), member of the Ger-
man D-Grid initiative, funded by the Ministry of Education and
Research (Bundesministerium fuer Bildung und Forschung)
and the Ministry of Science, Research and the Arts Baden-
Wuerttemberg (Ministerium für Wissenschaft, Forschung und
Kunst Baden-Württemberg). Birte Glimm acknowledges the
support of the Transregional Collaborative Research Center
SFB/TRR 62 “Companion-Technology for Cognitive Technical
Systems” funded by the German Research Foundation (DFG).

References

[1] F. Baader, D. McGuinness, D. Nardi, and P.F. Patel-Schneider. The De-
scription Logic Handbook: Theory, implementation and applications.
Cambridge University Press, 2002.

11http://www.bw-grid.de

20

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-
velope. In Proc. of the 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), pages 364–369. Morgan Kaufmann Publishers
Inc., 2005.

[3] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Prof-
itlich, and Enrico Franconi. An empirical analysis of optimization tech-
niques for terminological representation systems. Applied Intelligence,
4(2):109–132, 1994.

[4] S. Derriere, A. Richard, and A. Preite-Martinez. An ontology of astro-
nomical object types for the virtual observatory. In Proc. of the 26th
meeting of the IAU: Virtual Observatory in Action: New Science, New
Technology, and Next Generation Facilities, pages 17–18, Prague, Czech
Republic, 2006.

[5] Yu Ding and Volker Haarslev. Tableau caching for description logics with
inverse and transitive roles. In Proc. of the 2006 Description Logic Work-
shop, volume 189 of CEUR Workshop Proceedings, 2006.

[6] Gerard Ellis. Compiled hierarchical retrieval. In T. Nagle, J. Nagle,
L. Gerholz, and P. Eklund, editors, Conceptual Structures: Current Re-
search and Practice, pages 271–294. Ellis Horwood, 1992.

[7] Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. Framework for an
automated comparison of description logic reasoners. In Proc. of the 5th
International Semantic Web Conference (ISWC 2006), volume 4273 of
Lecture Notes in Computer Science, pages 654–667. Springer, 2006.

[8] Birte Glimm, Ian Horrocks, and Boris Motik. Optimized description logic
reasoning via core blocking. In Proc. of the 5th International Joint Con-
ference on Automated Reasoning (IJCAR 2010), volume 6173 of Lecture
Notes in Computer Science, pages 457–471. Springer, 2010.

[9] Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos. Optimising
ontology classification. In Proc. of the 9th International Semantic Web
Conference (ISWC 2010), volume 6496 of Lecture Notes in Computer
Science, pages 225–240. Springer, 2010.

[10] C. Golbreich, S. Zhang, and O. Bodenreider. The foundational model of
anatomy in OWL: Experience and perspectives. Journal of Web Seman-
tics, 4(3):181–195, 2006.

[11] J. Goodwin. Experiences of using OWL at the ordnance survey. In
Proc. of the OWL: Experiences and Directions Workshop (OWLED 2005),
volume 188 of CEUR Workshop Proceedings, Galway, Ireland, 2005.
Springer.

[12] Volker Haarslev and Ralf Möller. High performance reasoning with very
large knowledge bases: A practical case study. In Proc. of the 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-01), pages
161–168. Morgan Kaufmann, 2001.

[13] Volker Haarslev and Ralf Möller. Racer system description. In Proc. of
the 1st International Joint Conference on Automated Reasoning (IJCAR
01), volume 2083 of Lecture Notes in Computer Science, pages 701–706.
Springer, 2001.

[14] Volker Haarslev, Ralf Möller, and Anni-Yasmin Turhan. Exploiting
pseudo models for TBox and ABox reasoning in expressive description
logics. In Proc. of the 1st International Joint Conference on Automated
Reasoning (IJCAR 01), volume 2083 of Lecture Notes in Computer Sci-
ence, pages 61–75. Springer, 2001.

[15] Joseph Y. Halpern and Yoram Moses. A guide to completeness and com-
plexity for model logics of knowledge and belief. Artificial Intelligence,
54(3):319–379, 1992.

[16] Ian Horrocks. Optimising Tableaux Decision Procedures for Description
Logics. PhD thesis, University of Manchester, 1997.

[17] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Proc. of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2006), pages 57–67. The
AAAI Press, 2006.

[18] Ian Horrocks and Peter F. Patel-Schneider. Optimising description logic
subsumption. Journal of Logic and Computation, 9:9–3, 1999.

[19] Yevgeny Kazakov and Boris Motik. A resolution-based decision proce-
dure for SHOIQ. Journal of Automated Reasoning, 40(2–3):89–116,
2008.

[20] L. Lacy, G. Aviles, K. Fraser, W. Gerber, A. Mulvehill, and R. Gaskill.
Experiences using OWL in military applications. In Proc. of the OWL:
Experiences and Directions Workshop (OWLED 2005), volume 188 of
CEUR Workshop Proceedings, Galway, Ireland, 2005.

[21] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fok-
oue, and Carsten Lutz. OWL 2 Web Ontology Language Profiles. W3C

Recommendation, 27 October 2009.
[22] Boris Motik and Ian Horrocks. OWL datatypes: Design and implemen-

tation. In Proc. of the 7th International Semantic Web Conference (ISWC
2008), volume 5318 of Lecture Notes in Computer Science, pages 307–
322. Springer, 2008.

[23] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau. OWL
2 Web Ontology Language Direct Semantics. W3C Recommendation, 27
October 2009.

[24] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web
Ontology Language Structural Specification and Functional-style Syntax.
W3C Recommendation, 27 October 2009 2009.

[25] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for
description logics. Journal of Artificial Intelligence Research, 36:165–
228, 2009.

[26] A.L. Rector and J. Rogers. Ontological and practical issues in using a
description logic to represent medical concept systems: Experience from
GALEN. In Reasoning Web, volume 4126 of Lecture Notes in Computer
Science, pages 197–231. Springer, 2006.

[27] Rob Shearer and Ian Horrocks. Exploiting partial information in taxon-
omy construction. In Proc. of the 8th International Semantic Web Confer-
ence (ISWC 2009), volume 5823 of Lecture Notes in Computer Science,
pages 569–584. Springer, 2009.

[28] A. Sidhu, T. Dillon, E. Chang, and B. Singh Sidhu. Protein ontology de-
velopment using OWL. In Proc. of the OWL: Experiences and Directions
Workshop (OWLED 2005), volume 188 of CEUR Workshop Proceedings,
Galway, Ireland, 2005.

[29] Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to wa-
ter: Optimizing description logic reasoning for nominals. In Proc. of the
10th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2006), pages 90–99. The AAAI Press, 2006.

[30] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL DL reasoner. Journal of Web
Semantics, 5(2):51–53, 2007.

[31] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz.
Reengineering thesauri for new applications: The agrovoc example. Jour-
nal of Digital Information, 4(4), 2004.

[32] Dmitry Tsarkov and Ian Horrocks. Ordering heuristics for description
logic reasoning. In Proc. of the 19th International Joint Conference on Ar-
tificial Intelligence (IJCAI-05), pages 609–614. Morgan Kaufmann, 2005.

[33] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner:
System description. In Proc. of the 3rd International Joint Conference
on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes in
Computer Science, pages 292–297. Springer, 2006.

[34] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing
terminological reasoning for expressive description logics. Journal of
Automated Reasoning, 39:277–316, 2007.

21

