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Abstract. Semantic Web Services were developed with the goal of au-
tomating the integration of business processes on the Web. The main
idea is to express the functionality of the services explicitly, using seman-
tic annotations. Such annotations can, for example, be used for service
discovery—the task of locating a service capable of fulfilling a business
request. In this paper, we present a framework for annotating Web Ser-
vices using description logics (DLs), a family of knowledge representation
formalisms widely used in the Semantic Web. We show how to realise ser-
vice discovery by matching semantic service descriptions, applying DL
inferencing. Building on our previous work, we identify problems that oc-
cur in the matchmaking process due to the open-world assumption when
handling incomplete service descriptions. We propose to use autoepis-
temic extensions to DLs (ADLs) to overcome these problems. ADLs al-
low for non-monotonic reasoning and for querying DL knowledge bases
under local closed-world assumption. We investigate the use of epistemic
operators of ADLs in service descriptions, and show how they affect DL
inferences in the context of semantic matchmaking.

1 Introduction

Semantic Web Services have been recently proposed as a technology for the
automated integration of business processes. The key idea is to represent the
functionality of a Web Service explicitly, using so-called semantic annotations.
These are useful for numerous purposes, such as, for example, service discovery—
the process of locating Web Services capable of fulfilling a business request.

In the Semantic Web, annotation is a piece of machine-interpretable meta
data based on ontological vocabularies formulated by means of an ontology lan-
guage. The Web Ontology Language (OWL) [20] is a W3C recommendation lan-
guage for building ontologies in the Semantic Web. As part of the Web Service
Modelling Ontology initiative (WSMO), the Web Service Modelling Language
(WSML) [4] was recently proposed as an ontology language specifically tuned to
annotating Web Services. Certain variants of both languages, namely OWL-DL
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and WSML-DL, are based on description logics (DL), a family of knowledge
representation formalisms with a clearly defined semantics and well-understood
computational properties [3].

Several approaches to service discovery based on description logics have al-
ready been proposed in [26, 18, 17]. Along these lines, in this paper we extend
our work from [10] and present a DL-based approach for modelling semantics of
Web Services. We build on establishing a clear correspondence between the DL
modelling primitives and the modeller’s intention. In this way, we explain the in-
tuition behind the DL constructs in the service context and thus give guidelines
for their application.

Furthermore, we identify problems that occur when DL inferencing is ap-
plied to matching semantic service annotations. Namely, DLs are monotonic
logics with open-world semantics: the inability to prove a fact does not imply
its contrary ‘by default’. This often requires a modeller to overspecify a situa-
tion and to include information that humans take for granted by common-sense.
Sometimes, it is not even possible to completely specify semantic service anno-
tations without making some default assumptions. Our analysis shows that the
lack of common-sense information in the domain model or in service annotations
leads to false matches, thus significantly degrading the quality of the discovery
platform.

To address these deficiencies in a systematic way, we propose to base service
discovery on a non-monotonic logical formalism that allows for local closed-world
reasoning by referring to facts which are explicitly known. This compensates for
imprecision in domain ontologies and service annotations.

Numerous non-monotonic formalisms have already been developed, such as
default logic, circumscription or various extensions of logic programming with
negation-as-failure [2]. However, we base our service discovery framework on an
autoepistemic extension to description logic (ADL) from [5], namely the logic
ALCK. ADLs are proper extensions of description logics, so the same principles
can be applied to obtain autoepistemic extensions of OWL-DL or WSML-DL.
Moreover, the reasoning algorithm from [5] extends the well-known tableau al-
gorithm implemented in DL reasoning systems, such as RACER [11], FaCT [13]
or Pellet [25]. Therefore, we believe that ADLs are a good fit with the existing
technological Semantic Web infrastructure. To verify the practicability of our ap-
proach for matching semantic descriptions, we have implemented a simple ADL
reasoner, as a testing environment to verify our examples for service discovery.

2 The Service Discovery Problem

We introduce the problem of service discovery by means of an example taken
from the travelling domain. Let us assume that a company needs to frequently
book business trips for its employees. To stay competitive, for any single booking
this company wants to contact several travel agencies and pick the one providing
the best offer. In such a business transaction, the company plays the role of the
requester and the travel agencies play the role of providers of a travelling service.
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In order to allow this process to be automated, the electronically available travel
agencies provide access to their booking services via Web Service interfaces.
Furthermore, both the requester company and the travel agencies need to specify
the functionality of the services they request or provide in a declarative way,
using semantic annotations.

In [21] the notion of a concrete service has been introduced, which represents
a particular business transaction. An example of a concrete service, offered by
some travel agency A, is ‘selling a flight ticket from Frankfurt to London at a
particular date and time for 50 Euro’. However, A also provides other concrete
services, which vary depending on the cities, date or price. The set of all concrete
services is approximated as an abstract service [21]. For example, A might ad-
vertise “selling flight tickets between cities in Europe”. Similarly, another travel
agency B advertises an abstract service for ‘selling flight tickets from Europe
to the US’, which includes concrete services such as ‘selling a flight ticket from
Frankfurt to New York’.

In the same way, the business needs of the requester company correspond to
concrete services, such as ‘selling a ticket from Frankfurt to London for November
5th’. Similar to the agencies, the company summarises all intended concrete
services in an abstract service, such as ‘selling a ticket from Germany to the
UK’.

We introduce the notion of capability description as a formal specification,
used by requesters and providers, to represent an abstract service. In their ca-
pability descriptions the requester company and the travel agencies intend to
capture the set of all concrete services they are willing to accept. Here, capa-
bility descriptions are expressed informally, however, in Section 4 we show how
to express them in a formal language to make them machine-processable. Our
capability descriptions are similar in functionality to WSMO Web Service ca-
pabilities [16] or OWL-S service profiles [1]. However, they are different in that
they base on an abstract ontological description of service functionality rather
than on a state transition model with pre- and postconditions.

In [21], the process of selecting a service to fulfil a request is split into two
consecutive phases. The service discovery phase is concerned with the identifi-
cation of abstract services relevant for the request. This is done by matching the
capability description of the requester to the capability descriptions of providers,
to determine whether they are compatible. In Section 4 we show how description
logic inferences can be used for this purpose. In this sense, service discovery is
based on the capability descriptions of requesters and providers, and does not
involve information that is obtained by invoking any Web Service.

The service discovery phase is followed by the service definition phase, where
the set of potential providers is further narrowed, and the concrete service to be
performed is specified in detail. As discussed in [14], this process often includes
negotiation and requires information which is not captured in the capability de-
scriptions for abstract services (such as preferences or additional business con-
straints that are not publicly available). In this paper we focus on the service
discovery phase, and leave the service definition phase to our future work.
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3 Description Logics and their Autoepistemic Extension

In this section we describe an autoepistemic extension to the description logic
(DL) formalism that we will use throughout the paper. We start with an intuitive
view on the basic DL ALC and its autoepistemic extension ALCK. Then we
revisit the formal syntax and semantics of ALCK and introduce epistemic queries
and the satisfiability of an ALCK concept w.r.t. an ALC knowledge base.

Description Logics

DLs [3] are a family of knowledge representation formalisms that provide the
formal underpinning of certain ontology languages for the Semantic Web, such
as WSML-DL [4] or OWL-DL [20]. The basic syntax elements of DLs are con-
cepts, such as City or Airplane, roles, such as transportationMeans or from, and
individuals, such as Frankfurt or Airbus380. Primitive concepts can be combined
into complex concepts using concept constructors. In this paper, we consider
the basic DL ALC, which provides the propositional connectives and restricted
existential and universal role quantification. For example, a complex concept
Journey ⊓ ∃ from .UKCity ⊓ ∀ transpMeans .¬Airplane intuitively represents a
journey from somewhere in the UK by a transportation means different from an
airplane.

A DL knowledge base consists of axioms and is split into a TBox and an
ABox. Concept inclusion axioms in the TBox state subset relationship between
concepts; for example, Airplane ⊑ Vehicle states that airplanes are kinds
of vehicles. Assertion axioms in the ABox describe the state of the world;
for example, UKCity(London) states that London is a city in the UK, and
train(Berlin,Hamburg) states that Berlin is connected by train to Hamburg.

Autoepistemic Description Logics

Autoepistemic logic is a formalism concerned with the notion of ‘knowledge’
and allows introspection of knowledge bases—that is, asking what a knowledge
base knows. In [5], the basic DL ALC has been extended by the autoepistemic
knowledge operator K, yielding the autoepistemic description logic ALCK. The
K-operator can be applied as a constructor to both concepts and roles, and can
intuitively be paraphrased as ‘known to be’.

To understand the intuition behind the K-operator, consider the knowl-
edge base KB = {City(Frankfurt), train(Frankfurt,Paris)}, and the concept D =
City ⊓ ∃ train .¬GermanCity, which can be paraphrased as ‘cities which are con-
nected by train to some city outside Germany’. Since KB does not say whether
Paris is a German city or not, Frankfurt is not in the extension of D. On the con-
trary, consider the autoepistemic concept D′ = City ⊓ ∃Ktrain .¬KGermanCity,
which can be intuitively paraphrased as ‘cities which are known to be connected
by train to something which is not known to be a German city’. Based on the
facts in KB , we cannot derive that Paris is a German city. Therefore, Paris is
not known to be a German city, and thus Frankfurt is in the extension of D′.
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These autoepistemic extensions allow for local closed-world reasoning [7] and
a logical reconstruction of non-monotonic features of frame-based knowledge
representation systems, such as concept and role closure, defaults, integrity con-
straints and procedural rules [23]. In Section 5 we apply local closed-world rea-
soning to the matching of service capability descriptions.

The Language ALCK

We now formally introduce the syntax and semantics of ALCK [5]. The following
rules define the syntax of this language, where C,D denote concepts, A denotes
a primitive concept, r denotes a role and p denotes a primitive role:

C,D −→ A | ⊤ | ⊥ | C ⊓ D | C ⊔ D | ¬C | ∀ r.C | ∃ r.C | KC

r −→ p | Kp

An epistemic interpretation is a pair (I,W) where I = (∆I , ·I) is a first-
order interpretation with interpretation domain ∆I and interpretation function
·I , and W is a set of first-order interpretations, seen as possible worlds. The
following equations define how the syntax elements of ALCK are epistemically
interpreted.

⊤I,W = ∆I , ⊥I,W = ∅
AI,W = AI ⊆ ∆I , pI,W = pI ⊆ ∆I × ∆I

(C ⊓ D)I,W = CI,W ∩ DI,W

(C ⊔ D)I,W = CI,W ∪ DI,W

(¬C)I,W = ∆I \ CI,W

(∀ r.C)I,W = {a ∈ ∆I | ∀b.(a, b) ∈ rI,W → b ∈ CI,W}
(∃ r.C)I,W = {a ∈ ∆I | ∃b.(a, b) ∈ rI,W ∧ b ∈ CI,W}
(KC)I,W =

⋂
J∈W

CJ ,W

(Kr)I,W =
⋂

J∈W
pJ ,W

Primitive concepts are interpreted as subsets of ∆I , and primitive roles are
interpreted as subsets of ∆I×∆I . The boolean connectives and existential and
universal role quantification are interpreted in terms of set operations on ∆I , as
in ALC [3]. An epistemic concept KC is interpreted as the set of all individuals
which belong to the concept C in all first-order interpretations in W, i.e. in all
possible worlds. Thus, applying K to concept C produces the set of objects that
are members of C in all possible worlds; in other words, these objects are defi-
nitely known to be members of C. Similarly, an epistemic role Kp is interpreted
as the pairs of individuals that belong to the role p in all possible worlds.

An epistemic interpretation satisfies an inclusion axiom C ⊑ D if CI,W ⊆
DI,W , and it satisfies an assertion axiom C(a) or r(a, b) if aI ∈ CI,W or
(aI , bI) ∈ rI,W , respectively. An epistemic model for an ALCK knowledge base
KB is a maximal non-empty set W of first-order interpretations such that, for
each I ∈ W, the epistemic interpretation (I,W) satisfies all axioms in KB . The
maximality condition for W ensures that there is no other first-order interpreta-
tion I 6∈ W which also satisfies all the axioms in KB . In this way, the K-operator
allows to refer to definitely known facts by intersecting all possible worlds of KB .
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Epistemic Queries and Concept Satisfiability

In this paper we assume that KB does not contain occurrences of the K-operator;
that is, KB is an ALC knowledge base. Then, KB has at most one epistemic model
M(KB), comprising all its first-order models. An epistemic query [5] over an ALC
knowledge base KB is an ALCK concept assertion of the form C(a). We say that
KB entails C(a), written KB |= C(a), if, for every first-order interpretation
I ∈ M(KB), the epistemic interpretation (I,M(KB)) satisfies C(a).

A tableaux calculus for answering epistemic queries has been presented in
[5]. However, in Section 5 we require checking satisfiability of epistemic concepts
with respect to a knowledge base KB , which we define next. This inference can
be performed by a straightforward extension of the calculus from [5].

Definition 1 (Concept Satisfiability). For a satisfiable ALC knowledge base
KB, an ALCK concept C is satisfiable w.r.t. KB if there is a first-order inter-
pretation I ∈ M(KB) such that C(I,M(KB)) 6= ∅ .

4 Modelling Service Capabilities in Description Logics

We now show how to use description logics to model capability descriptions for
services. In particular, we focus on mapping the notions introduced in Section
2 into the description logic framework, based on our previous work in [10]. Fur-
thermore, we identify incomplete capability descriptions as a key problem for
service discovery.

4.1 From Concrete Services to Capability Descriptions

We map a concrete service, representing a specific business transaction, to the re-
lational structure in a first-order interpretation I. Such an interpretation can be
understood as a directed labelled graph, which represents various properties of
services. For example, the bottom left part of Figure 1 shows a relational struc-
ture which corresponds to a concrete service for travelling between Frankfurt
and London on an Airbus 380.

We express a capability description using a DL concept. Under a first-order
interpretation, such a concept is mapped to a set of individuals. Thus, concepts
provide a natural way of modelling sets of concrete services. For example, at the
top of Figure 1 we show a capability description S, which describes ‘travelling
between EU cities’. In I, this concept is interpreted as a set SI of individuals,
representing the concrete services accepted by S. Since the service description
does not specify the actual cities, SI contains concrete services for different pairs
of cities, such as Frankfurt and London, or Berlin and Hamburg.

Capability descriptions usually refer to commonly used domain ontologies.
These ontologies define the background knowledge in a certain domain of interest
in form of DL axioms. For example, in the travelling domain, they define terms
such as ‘City’, ‘Journey’ or ‘Airplane’.
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S I

Journey1

LondonFrankfurt

from to

AirplaneX
vehicle

“Airbus380”

type

. . .

Journey2

HamburgBerlin

from to

TrainY
vehicle

“ICE”

type

S = Journey ⊓ ∀from.EUCity ⊓ ∀ to.EUCity

Fig. 1. A Capability Description Specifying Several Concrete Services

4.2 Variance and Incompleteness in Capability Descriptions

Recall from Section 2 that the main purpose of a capability description is to
describe a set of concrete services which vary on several parameters. Hence, we
say that capability descriptions introduce variance due to intended diversity [10],
which manifests itself by allowing the capability description to specify several
concrete services, each having different parameter values. The fact that the ca-
pability description S allows concrete services for travelling between Frankfurt
and London, and Hamburg and Berlin, is an example of variance due to intended
diversity. Using DL concept expressions as a description technique allows us to
express this variance in a compact form, without listing all possible pairs of cities
explicitly.

Moreover, we also identify variance due to incomplete knowledge [10], which
is caused by the fact that capability descriptions do not completely specify all
parameters. For example, a travel agency might not explicitly specify the types
of payment it is willing to accept. This detail may be off-loaded from the service
discovery to the service definition phase. However, this does not mean that a
concrete service would not have any payment information; it simply means that
the type of payment has not been specified. Each concrete service will still contain
a certain type of payment. Variance due to incomplete knowledge is captured by
assuming different possible worlds. In each of these possible worlds unspecified
information is resolved in a particular way. In DL, variance due to incomplete
knowledge is reflected by the fact that a knowledge base can have several different
first-order interpretations, each corresponding to a particular possible world.
Notice that this actually coheres to open-world semantics in description logics.

In Section 5 we show how epistemic operators can be incorporated into capa-
bility descriptions in order to close off parts of the domain model and to control
and reduce variance due to incomplete knowledge by ruling out some of the
possible worlds.
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4.3 Matching Capability Descriptions

We now define a matching function match(KB , Sr, Sp), which returns true if the
capability descriptions Sr and Sp match, false otherwise. The basic idea behind
matching is to check if two capability descriptions, issued by a requester and a
provider, respectively, specify any common concrete service [26]. Such concrete
services might then be taken as a basis to enter into the service definition phase.

Technically, matching is reduced to checking the non-emptiness of the inter-
section of both capability descriptions. However, when performing this check,
there are two ways to resolve variance due to incomplete knowledge, as shown in
[10]. The first one is to check if the intersection is non-empty in some possible
world, as presented in the upper part of Table 1. In other words, we check if
there is a way to resolve incompleteness in the capability descriptions such that
they specify a common concrete service.

Another possibility is to check if the intersection of concept extensions is
non-empty in each possible world, as shown in the lower part of Table 1. This
is a stronger check: regardless of how we resolve incompleteness in capability
descriptions, we need a concrete service that is common to both descriptions.

Related approaches to service discovery use similar matching techniques.
‘Satisfiability of concept conjunction’ was first proposed in [8, 26] and [24], and
was subsequently considered in [19, 18, 17, 14, 10]. Furthermore, many of these
works use ‘entailment of concept subsumption’, which checks if one of the sets of
accepted concrete services is a subset of the other in each possible world. How-

Table 1. Using DL Inferences for Matching Service Capabilities

Inference: Satisfiability of Concept Conjunction
Function: matchint(KB , Sr, Sp)
Formula: Sr ⊓ Sp is satisfiable w.r.t. KB

Situation:
(Sr)

I
1

(Sp)
I
1

.  .  .

(Sr)
I
2

(Sp)
I
2

(Sr)
I
1

(Sp)
I
1

(Sr)
I
1

(Sp)
I
1

.  .  .

(Sr)
I
2

(Sp)
I
2

(Sr)
I
2

(Sp)
I
2

Intuition: Is there a way to resolve unspecified details such that Sr and Sp

specify some common concrete service?

Inference: Entailment of Concept Non-Disjointness
Function: matchndj(KB , Sr, Sp)
Formula: KB ∪ {Sr ⊓ Sp ⊑ ⊥} is unsatisfiable

Situation:

(Sp)
I
1

(Sr)
I
1

.  .  .

(Sp)
I
2

(Sr)
I
2

(Sp)
I
1

(Sr)
I
1

.  .  .

(Sp)
I
2

(Sr)
I
2

(Sp)
I
2

(Sr)
I
2

Intuition: Do Sr and Sp specify some common concrete service, regardless of
how unspecified details are resolved?
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ever, as discussed in [10], this inference has not shown to be beneficial for our
notion of compatibility between two descriptions Sr and Sp: we treat concrete
services as alternative specifications of service parameters, and thus, having a
single concrete service in the extension of the sets is already sufficient for our ca-
pability descriptions to be compatible. Subsumption and equivalence matching
applied to pairs (Sr, Sp) of descriptions has been used for establishing a ranking
among service providers in [19, 17, 14]. However, in our setting the partial sub-
sumption check between two provider descriptions SpA

and SpB
, defined in [10],

provides a more fine-grained ranking based on the options the requester has later
on in the service definition phase. In this work, we do not consider ranking but
focus on the characteristics of the matching inferences in a local closed-world
setting.

In [15], and also partly in [14], the authors consider a different description
approach based on specifying services in terms of state transitions. They base
matching on transaction logic, a formalism capable of explicitly representing
changes in the world. In this way, they do not only consider the discovery phase,
but also address partly the service definition phase.

4.4 Problems in Matching Capability Descriptions

Both ways of matching, matchint and matchndj , cause problems in certain cases
[10], which we illustrate next on our running example. Let us assume that the
requester company asks for a flight from a city in the UK, and that two providers
A and B offer flights from cities in the EU and the US, respectively.

Example 1 (Problems with Matching Service Descriptions).

KB = { UKCity ⊑ EUCity, Flight ⊑ ∃ from .⊤ }

Sr = Flight ⊓ ∀ from .UKCity
SpA

= Flight ⊓ ∀ from .EUCity
SpB

= Flight ⊓ ∀ from .USCity

First, consider matching capability description Sr against SpA
. Since the re-

quester asks for a flight from a UK city, and A offers flights from an EU city, we
intuitively expect the two descriptions to match. However, by applying the DL in-
ferences, we get that matchint(KB , Sr, SpA

) = true, but matchndj(KB , Sr, SpA
) =

false. In the second case, the unintuitive result is due to the fact that we never
specified that A actually offers any services. Hence, there is a way to resolve this
incompleteness in the specification by choosing a possible world in which the
extension of SpA

is empty. Therefore, matching fails, since it is not the case that
the intersection of Sr and SpA

is non-empty in each possible world.
Second, consider matching capability description Sr against SpB

. Since the
requester asks for flights from UK cities, but B offers flights from US cities, we
would expect matching to fail. However, by applying the DL inferences, we get
that matchint(KB , Sr, SpB

) = true, but matchndj(KB , Sr, SpB
) = false. In the

first case, the unintuitive result is due to the fact that we never said that UK
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and US cities are disjoint. Therefore, matching succeeds, since there is a possible
world in which some city is in the extension of both UKCity and USCity.

Both of these problems principally arise from the existence of unwanted pos-
sible worlds. To reduce the number of unintuitive matches, it would be desirable
to reduce the variance due to incomplete knowledge, and to rule out those pos-
sible worlds which are ‘obviously’ wrong.

In the first case, this could be achieved by adding the assertion Flight(a),
for some new individual a, to the knowledge base before matching is performed,
ruling out possible worlds in which Flight is empty.

In the second case, the false positive match with matchint could be ‘repaired’
by adding the disjointness axiom EUCity ⊓ USCity ⊑ ⊥ to the knowledge base,
eliminating possible worlds in which a city can be in both the EU and the US.

In any case, we would have to include additional facts, such as disjointness
constraints, which in practice often has the drawback of overloading the specifi-
cation with ‘obvious’ information. In general, domain ontologies in the Semantic
Web cannot be expected to contain such additional information, since they are
reusable domain vocabularies and different ontologies might have been developed
for different purposes.

As we shall see in the following section, non-monotonic features and local
closed-world reasoning allow us to address this important problem of overspec-
ification by dealing with incompleteness in an alternative way. A pure closed-
world system, on the other hand, would not equally support the desired variance.
Since in [10] we identified other problems with successfully using matchndj when
several restrictions on roles are combined, we will focus on matchint, which has
already been applied in an industrial logistics scenario in [22] on service descrip-
tions in OWL-DL.

5 Epistemic Operators in Capability Descriptions

The autoepistemic extension to DL provides a means to exclude unwanted first-
order interpretations in a controlled way. In this section, we show how the prob-
lems described in Section 4.4 can be overcome by realising local closed-world
reasoning using the K-operator in capability descriptions.

5.1 Locally Closing Worlds in Capability Descriptions

Description logics employ the open-world semantics, under which, if a fact is not
derivable from the knowledge base, its contrary cannot be assumed ‘by default’.
This is considered appropriate for the Semantic Web, due to its open nature.
However, in a controlled scenario such as service discovery, it is sometimes ben-
eficial to assume that all relevant facts about a subset of the domain are known;
this is known in the literature as local closed-world assumption [7, 12]. The local
closed-world assumption can be applied to DL knowledge bases in form of con-
cept closure and role closure [23], which enable us to assume that all individuals
of a concept, or all pairs of individuals of a role are known.



Matching Semantic Service Descriptions with Local Closed-World Reasoning 11

Concept Closure
The K-operator can be used to restrict the extension of a concept to those indi-
viduals that belong to this concept in each possible world, which is denoted by
concept closure. Recall from the definition of the semantics of ALCK in Section
3 that an expression KC is interpreted as the intersection of extensions over
all first-order interpretations. Intuitively, this can be paraphrased by ‘the set
of individuals that are known to belong to C’. The following example extends
Example 1 by applying the pattern of concept closure to city concepts.

Example 2 (concept closure).

KB = { UKCity ⊑ EUCity, Flight ⊑ ∃ from .⊤, UKCity(London) }

Sr = Flight ⊓ ∀ from .KUKCity
SpA

= Flight ⊓ ∀ from .KEUCity
SpB

= Flight ⊓ ∀ from .KUSCity

The ALC knowledge base KB states that every UK city is also an EU city,
that any flight must specify the property from and that the individual London
is an explicitly asserted UK city. The ALCK concepts Sr, SpA

and SpB
are the

service capability descriptions issued by a requester and providers A and B. The
requester requires a flight from somewhere in the UK, whereas the providers
advertise flights from EU and US locations, respectively. In contrast to Exam-
ple 1, in this example all parties use the pattern of concept closure to restrict
the property from to only those individuals that are known to be cities in the
UK, the US or Europe, respectively.

We use the extended notion of concept satisfiability from Definition 1 in
Section 3 to check satisfiability of the ALCK concept Sr ⊓ Sp w.r.t. the ALC
knowledge base KB in matchint. As we show next, the application of matchint

in Example 2 yields the intuitively desired matching behaviour.
First, consider matching the capability description Sr against SpA

using
matchint. The satisfiability of Sr ⊓ SpA

requires the existence of an individual
which is both known to be a UKCity and known to be a EUCity. The individual
London is explicitly stated to be a UKCity in KB , so it is known to be a UKCity.
This individual is also known to be a EUCity because of the inclusion axiom in
KB . Hence, Sr ⊓ SpA

is satisfiable w.r.t. KB and thus matchint(KB , Sr, SpA
) =

true. Notice that without the explicitly introduced individual London3 this sat-
isfiability would not hold because there would be no individual which meets the
above mentioned conditions in each possible world.

Second, consider matching the capability description Sr against SpB
using

matchint. The satisfiability of Sr ⊓ SpB
requires the existence of an individual

which is both known to be a UKCity and known to be a USCity. However, there
is no such individual and therefore matchint(KB , Sr, SpB

) = false. Of course
there are first-order interpretations in which UKCity and USCity have common

3 The individual London here can be seen as a representative for all explicitly modelled
cities in some domain ontology with a geographic context.
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individuals, namely, some in which London is both a UKCity and a USCity, but
for such individuals this is not the case in each possible world.

Role Closure
The K-operator can also be used to restrict the extension of a role to those pairs
of individuals that are connected by this role in each possible world, which is
denoted as role closure. Recall from the definition of the semantics of ALCK
in Section 3 that an expression Kr is interpreted as the intersection of role
extensions over all first-order interpretations. Intuitively, this can be paraphrased
by ‘all pairs of individuals that are known to be connected by r’. The following
example applies the pattern of role closure to a role train that denotes the
connection of two cities via the continental train network.

Example 3 (role closure).

KB = { GermanCity ⊑ EUCity, UKCity ⊑ EUCity, Flight ⊑ ∃ from .⊤,

UKCity(London) ,GermanCity(Berlin) ,GermanCity(Hamburg) ,

train(Berlin,Hamburg) , train(Hamburg,Berlin) }

Sr = Flight ⊓ ∀ from .(KEUCity ⊓ ∃Ktrain .⊤)
SpA

= Flight ⊓ ∀ from .KGermanCity
SpB

= Flight ⊓ ∀ from .KUKCity

The ALC knowledge base KB states that both German cities and UK cities
are cities in the EU and that the individuals London, Berlin and Hamburg are
explicitly stated to be such cities. Furthermore, KB states that the individuals
Berlin and Hamburg are connected via the train network. In the ALCK concept
Sr the requester requires a flight from a known EU city which is known to be
connected to the train network. This is achieved by applying concept closure to
the concept EUCity and role closure to the role train. The providers advertise
travelling from locations in Germany and in the UK, respectively. Also Example
3 shows the intuitively expected matching behaviour.

First, consider matching the capability description Sr against SpA
using

matchint. There are two known German cities, Berlin and Hamburg, which
are both known to have connection to the train network. Furthermore, they
both are also known to be EU cities due to the inclusion axiom. Therefore,
matchint(KB , Sr, SpA

) = true and provider A matches the request.
Second, consider matching the capability description Sr against SpB

using
matchint. The only known UK city is London but it is not known to be connected
to the train network. Therefore, matchint(KB , Sr, SpB

) = false and provider B
fails to match the request, although London is known to be a EU city. Due to
the local closure of worlds, only the known train connections explicitly modelled
in the domain knowledge are taken into account.

Without the K-operator applied to the role train in Sr, provider B would also
match the request because, due to the open-world assumption, London would
have train connection in some possible world. Alternatively to the usage of K, one
would have to complete the specification by listing all the cities which have no
connection to the continental train network, by axioms like ∀ train .⊥(London) .
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5.2 Benefits of Locally Closing Worlds

By using the K-operator in capability descriptions to locally close off worlds, we
have excluded unwanted first-order interpretations (that is, possible worlds), re-
ducing variance due to incomplete knowledge. In this way, we have avoided over-
specifying the domain, but have succeeded in removing false positive matches.

In Example 2, there is no need to explicitly state disjointness between non-
related city concepts, since by the use of K we restrict their extensions to known
cities only, for which EU and US do not overlap. In general, adding disjointness
constraints is no real solution to the problem, since not all imaginable cities can
be covered in the specification. A requester or provider might introduce a new
city concept which is not explicitly related to the existing city concepts in any
ontology. Intuitively, we would not want this unrelated city concept to match
against any other. Hence, we avoid such additional constraints by locally closing
off city concepts, assuming full knowledge about this part of the world.

In Example 3, we avoid to list all the cities that are not connected to the
train network in addition to those that are. Here the use of K allows us to handle
a partial and incomplete description of the state of the world by closing off the
role train, assuming full knowledge about all train connections between cities.

Since the use of K makes matching dependent on the state of the world,
it should only be applied to concepts or roles for which there is some ABox
information present. For example, when requesting a flight carried out by a
Star Alliance partner, K would most likely be applied as follows: S = Flight ⊓
∀ carriedOutBy .KStarAlliancePartner. For the discovery system, assertions of
air carriers to the Star Alliance, such as StarAlliancePartner(Lufthansa), is static
ABox information present in some domain ontology. In combination with other
such information about the state of the world, like GermanCarrier(Lufthansa),
this request would match a provider that offers flights carried out by German
carriers. Thus, K can safely be applied to StarAlliancePartner in S, preventing
the specification from being overloaded with information about which airlines
are no such partners. On the contrary, in settings similar to those from our
Examples, no information about concrete flights and their carriers occurs in the
domain knowledge. Domain ontologies rather speak of flights in more general
terms, using TBox information such as Flight ⊑ ¬ShipCruise to distinguish
them from other forms of travelling. Therefore, K is not applied to Flight or to
carriedOutBy in S. The discovery system benefits from leaving this part of the
world open, not requiring travel agencies to list all the concrete flights they offer.

5.3 An Implementation of the Matchmaking Framework

We have verified these examples with our prototypical implementation of a rea-
soner for ALCK according to the calculus presented in [5]. Based on this calculus,
we implemented a decision procedure for satisfiability of ALCK concepts w.r.t
ALC knowledge bases as well as for epistemic query answering. It can be used
as a testing environment for small examples4.

4 The implementation is available at http://www.fzi.de/downloads/wim/KToy.zip
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6 Summary and Outlook

In this paper, we have described a DL-based framework for discovery of services
in the Semantic Web. We have presented an intuitive way to map the business
needs of requesters and providers to the formal DL constructs. Thus, we have
provided a basis for modelling guidelines which meet well the modeller’s intu-
ition. We have identified problems of DL-based matching related to open world
semantics. We have shown how an autoepistemic extension to DL can be used
to overcome those problems. In particular, we have shown how the application
of epistemic operators in service capability descriptions can be used to realise
local closed-world reasoning in a controlled way, preventing overspecification of
capability descriptions and domain ontologies. We also implemented a testing
environment for reasoning with ALCK concepts together with ALC knowledge
bases, in order to verify our examples.

We plan to investigate the extension of ALCK with features of expressive
description logics, such as number restrictions, nominals or inverse roles, which
proofed to be useful in the context of describing service semantics [17, 10]. We
also intend to investigate reasoning with arbitrary ALCK knowledge bases and
to explore the formalism presented in [6, 23], which introduces an additional epis-
temic operator A, capturing the notion of ‘assumption’. This formalism allows
for the whole range of non-monotonic features, such as default rules and integrity
constraints, which we have applied in a Semantic Web context in [9]. We intend
to incorporate these features into our discovery framework to further improve
the matching of capability descriptions. Moreover, we plan to systematise the
use of epistemic operators in service capability descriptions to obtain intuitive
modelling constructs that abstract from the underlying logical formalism.
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