
A Decomposition Rule for Decision Procedures

by Resolution-based Calculi

Ullrich Hustadt1, Boris Motik2, and Ulrike Sattler3

1 Department of Computer Science, University of Liverpool
Liverpool, UK

U.Hustadt@csc.liv.ac.uk

2 FZI Research Center for Information Technologies at the University of Karlsruhe
Karlsruhe, Germany

motik@fzi.de

3 Department of Computer Science, University of Manchester
Manchester, UK

sattler@cs.man.ac.uk

Abstract. Resolution-based calculi are among the most widely used
calculi for theorem proving in first-order logic. Numerous refinements of
resolution are nowadays available, such as e.g. basic superposition, a cal-
culus highly optimized for theorem proving with equality. However, even
such an advanced calculus does not restrict inferences enough to obtain
decision procedures for complex logics, such as SHIQ. In this paper,
we present a new decomposition inference rule, which can be combined
with any resolution-based calculus compatible with the standard notion
of redundancy. We combine decomposition with basic superposition to
obtain three new decision procedures: (i) for the description logic SHIQ,
(ii) for the description logic ALCHIQb, and (iii) for answering conjunc-
tive queries over SHIQ knowledge bases. The first two procedures are
worst-case optimal and, based on the vast experience in building efficient
theorem provers, we expect them to be suitable for practical usage.

1 Introduction

Resolution-based calculi are nowadays among the most widely used calculi for
theorem proving in first-order logic. The reasons for that are twofold. On the
theoretical side, the initial resolution calculus was significantly refined to obtain
various efficient calculi without losing soundness or completeness (e.g. [2, 15]).
On the practical side, implementation techniques for efficient theorem provers
have been devised and applied in practice (an overview is given in [21]).

Because of its popularity, resolution is often used as a framework for deciding
various fragments of first-order logic. The fundamental principles for deciding a
first-order fragment L by resolution are known from [12]. First, one selects a
sound and complete resolution calculus C. Next, one identifies the set of clauses
NL such that for a finite signature, NL is finite and each formula ϕ ∈ L, when
translated into clauses, produces clauses from NL. Finally, one demonstrates

2 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

closure of NL under C, namely, that applying an inference of C to clauses from
NL produces a clause in NL. This is sufficient to obtain a refutation decision
procedure for L since, in the worst case, C will derive all clauses of NL. An
overview of decision procedures derived by these principles is given in [8].

The calculus C should be chosen to restrict inferences as much as possible
without losing completeness. Namely, an unoptimized calculus usually performs
unnecessary inferences which hinder closure of NL under C. Consider the decision
procedure for SHIQ− description logic we presented in [11]. This logic provides
so-called number restrictions, which are translated into first-order logic using
counting quantifiers. We translate counting quantifiers into (in)equalities, and
decide SHIQ− by saturation under basic superposition [3, 14]. The prominent
feature of basic superposition is the basicness restriction, by which superposi-
tion into terms introduced by unification can be omitted without compromising
completeness. This restriction is crucial to obtain closure under inferences.

Interestingly, this approach does not yield a decision procedure for the slightly
more expressive DL SHIQ [9] (SHIQ− allows number restrictions only on roles
without subroles). Namely, basic superposition alone is not restrictive enough to
limit the term depth in conclusions. Therefore, we present decomposition, a new
inference rule which can be used to transform certain conclusions. We show that
decomposition is sound and complete when combined with basic superposition,
which is interesting because of a non-standard approach to lifting used in basic
superposition; however, the rule can be combined with any saturation calculus
compatible with the standard notion of redundancy [2].

Decomposition indeed solves the motivating problem since it allows us to
establish the closure under inferences for SHIQ, and even yields an optimal de-
cision procedure4. Furthermore, decomposition proves to be versatile and useful
for other decidable fragments of first-order logic: we extend the basic superposi-
tion algorithm to handle ALCHIQb, a description logic providing safe Boolean
role expressions. As for SHIQ, this algorithm is optimal. Finally, we derive a de-
cision procedure for answering conjunctive queries over SHIQ knowledge bases.
Based on the vast experience in building efficient theorem provers, we believe
that these algorithms are suitable for practice.

All results in this paper have been summarized in a technical report [10].

2 Preliminaries

Description Logics. Given a set of role names NR, a SHIQ role is either some
R ∈ NR or an inverse role R− for some R ∈ NR. A SHIQ RBox KBR is
a finite set of role inclusion axioms R ⊑ S and transitivity axioms Trans(R),
for R and S SHIQ roles. As usual, for R ∈ NR, we set Inv(R) = R− and
Inv(R−) = R, and we assume that, if R ⊑ S ∈ KBR (Trans(R) ∈ KBR), then
Inv(R) ⊑ Inv(S) ∈ KBR (Trans(Inv(R)) ∈ KBR) as well. A role R is simple if for
each role S ⊑∗ R, Trans(S) /∈ KBR (⊑∗ is the reflexive-transitive closure of ⊑).

4 Optimal under the assumption that numbers in number restrictions are coded in
unary.

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 3

Given a set of concept names NC , SHIQ concepts are inductively defined as
follows: each A ∈ NC is a SHIQ concept and, if C is a SHIQ concept, R a role,
S a simple role, and n an integer, then ¬C, C1⊓C2, ∀R.C, and ≤ nS.C are also
SHIQ concepts. As usual, we use C1 ⊔ C2, ∃R.C, ≥ nS.C as abbreviations for
¬(¬C1 ⊓ ¬C2), ¬∀R.¬C, and ¬(≤ (n − 1)S.C). A TBox KBT is a finite set of
concept inclusion axioms C ⊑ D. An ABox KBA is a finite set of axioms C(a),
R(a, b), and (in)equalities a ≈ b and a 6≈ b. A SHIQ knowledge base KB is a
triple (KBR,KBT ,KBA). The semantics of KB is given by translating it into
first-order logic by the operator π from Table 1. The main inference problem is
checking KB satisfiability, i.e. determining if a first-order model of π(KB) exists.

The logic SHIQ− is obtained from SHIQ by restricting roles in number
restrictions ≤ nS.C and ≥ nS.C to very simple roles; a role S is very simple in
KBR if there is no role S′ with S′ ⊑ S ∈ KBR. The restriction ALCHIQ of
SHIQ is obtained by disallowing transitivity axioms Trans(R) in RBoxes.

Considering complexity, we must decide how to measure the size of concepts
and knowledge bases. Here, we simply use their length, and assume unary coding
of numbers, i.e. |≤ nR.C| = n + 1 + |C|.

Basic Superposition. We assume the standard notions of first-order clauses with
equality: all existential quantifiers have been eliminated using Skolemization;
all remaining variables are universally quantified; we only consider the equality
predicate, i.e. all non-equational literals A are encoded as A ≈ ⊤ in a multi-
sorted setting; and we treat ≈ as having built-in symmetry. Moreover, we assume
the reader to be familiar with standard resolution [2].

Basic superposition [3, 14] is an optimized version of superposition which
prohibits superposition into terms introduced by unification in previously per-
formed inferences. Its inferences rules are formalized by distinguishing two parts
of a clause: (i) the skeleton clause C and (ii) the substitution σ representing
the cumulative effects of all unifications. Such a representation of a clause Cσ is
called a closure, and is written as C ·σ. A closure can conveniently be represented
by marking the terms in Cσ occurring at variable positions of C with []. Any
position at or beneath a marked position is called a substitution position.

The calculus requires two parameters. The first is an admissible ordering
on terms ≻, i.e. a reduction ordering total on ground terms. If ≻ is total on
non-ground terms (as is the case in this paper), it can be extended to literals
by associating, with each literal L = s ◦ t, ◦ ∈ {≈, 6≈}, a complexity measure
cL = (max(s, t), pL,min(s, t)), where pL is 1 if ◦ is ≈, and 0 otherwise. Now
L1 ≻ L2 iff cL1

≻ cL2
, where cLi

are compared lexicographically, with 1 ≻ 0.
The second parameter of the calculus is a selection function which selects an
arbitrary set of negative literals in each clause.

The basic superposition calculus is a refutation procedure. If a set of closures
N is saturated up to redundancy (meaning that all inferences from premises in N
are redundant in N), then N is unsatisfiable if and only if it contains the empty
closure. A literal L · σ is (strictly) maximal w.r.t. a closure C · σ if no L′ ∈ C
exists, such that L′σ ≻ Lσ (L′σ � Lσ). A literal L · σ is (strictly) eligible for
superposition in (C ∨L) ·σ if there are no selected literals in (C ∨L) ·σ and L ·σ

4 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

Table 1. Semantics of SHIQ by Mapping to FOL

Concepts to FOL: πy(A, X) = A(X) πy(C ⊓ D, X) = πy(C, X) ∧ πy(D, X)
πy(¬C, X) = ¬πy(C, X) πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y)

πy(≤ n S.C, X) = ∀y1, . . . , yn+1 :
V

S(X, yi) ∧
V

πx(C, yi) →
W

yi ≈ yj

Axioms to FOL: π(C ⊑ D) = ∀x : πy(C, x) → πy(D, x)
π(R ⊑ S) = ∀x, y : R(x, y) → S(x, y)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
KB to FOL: π(R) = ∀x, y : R(x, y) ↔ R−(y, x)

π(KBR) =
V

α∈KBR
π(α) ∧

V
R∈NR

π(R)

π(KBT) =
V

α∈KBT
π(α)

π(KBA) =
V

C(a)∈KBA
πy(C, a) ∧

V
R(a,b)∈KBA

R(a, b)∧V
a≈b∈KBA

a ≈ b ∧
V

a6≈b∈KBA
a 6≈ b

π(KB) = π(KBR) ∧ π(KBT) ∧ π(KBA)
X is a meta variable and is substituted by the actual variable.
πx is defined as πy by substituting x(i) for all y(i), respectively, and πy for πx.

Table 2. Inference Rules of the BS Calculus

Positive superposition:

(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ,
(ii) tθ � sθ and vθ � wθ,
(iii) (s ≈ t) · θ is strictly eligible for superposition,
(iv) (w ≈ v) · θ is strictly eligible for superposition,
(v) sθ ≈ tθ � wθ ≈ vθ,
(vi) w|p is not a variable.

Negative superposition:

(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ,
(ii) tθ � sθ and vθ � wθ,
(iii) (s ≈ t) · θ is strictly eligible for superposition,
(iv) (w 6≈ v) · θ is eligible for resolution,
(v) w|p is not a variable.

Reflexivity resolution:

(C ∨ s 6≈ t) · ρ

C · θ

(i) σ = MGU(sρ, tρ) and θ = ρσ,
(ii) (s 6≈ t) · θ is eligible for resolution.

Equality factoring:

(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

(i) σ = MGU(sρ, s′ρ) and θ = ρσ,
(ii) tθ � sθ and t′θ � s′θ,
(iii) (s ≈ t) · θ is eligible for superposition.

Ordered Hyperresolution:

E1 . . . En E

(C1 ∨ . . . ∨ Cn ∨ D) · θ

(i) Ei are of the form (Ci ∨ Ai) · ρ, for 1 ≤ i ≤ n,
(ii) E is of the form (D ∨ ¬B1 ∨ . . . ∨ ¬Bn) · ρ,
(iii) σ is the most general substitution such that

Aiθ = Biθ for 1 ≤ i ≤ n, and θ = ρσ,
(iv) Ai · θ is strictly eligible for superposition,
(v) ¬Bi ·θ are selected, or nothing is selected, i = 1

and ¬B1 · θ is maximal w.r.t. D · θ.

is (strictly) maximal w.r.t. C · σ; L ·σ is eligible for resolution in (C ∨L) ·σ if it
is selected in (C ∨ L) · σ or there are no selected literals in (C ∨ L) · σ and L · σ
is maximal w.r.t. C · σ. We denote basic superposition with BS and present its
inference rules in Table 2. The ordered hyperresolution rule is a macro inference,
combining negative superposition and reflexivity resolution. The closure E is
called the main premise, and the closures Ei are called the side premises. An
overview of the completeness proof and compatible redundancy elimination rules
are given in [10].

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 5

3 Motivation

To motivate the need for decomposition, we give an overview of our procedure for
deciding satisfiability of a SHIQ− knowledge base KB using BS from [11] and
highlight the problems related to deciding full SHIQ. We assume that KB has
an extensionally reduced ABox, where all concepts occurring in ABox assertions
are atomic. This is without loss of generality, since each axiom C(a), where C
is complex, can be replaced with axioms AC(a) and AC ⊑ C, for AC a new
concept; this transformation is obviously polynomial.

3.1 Deciding SHIQ− by BS

Eliminating Transitivity. A minor problem in deciding satisfiability of KB are
the transitivity axioms, which, in their clausal form, do not contain so-called
covering literals (i.e. literals containing all variables of a clause). Such clauses
are known to be difficult to handle, so we preprocess KB into an equisatisfiable
ALCHIQ− knowledge base Ω(KB). Roughly speaking, we replace each transi-
tivity axiom Trans(S) with axioms ∀R.C ⊑ ∀S.(∀S.C), for each R with S ⊑∗ R
and C a concept occurring in KB . This transformation is polynomial.

Preprocessing. We next translate Ω(KB) into a first-order formula π(KB) ac-
cording to Table 1. Assuming unary coding of numbers, π(KB) can be computed
in polynomial time. To transform π(KB) into a set of closures Ξ(KB), we apply
the well-known structural transformation [16]. Roughly speaking, the structural
transformation introduces a new name for each non-atomic subformula of π(KB).
It is well-known that π(KB) and Ξ(KB) are equisatisfiable, and that Ξ(KB)
can be computed in polynomial time.

For any KB , all closures from Ξ(KB) are of types from Table 3; we call them
ALCHIQ−-closures. We use the following notation: for a term t, with P(t) we
denote a disjunction of the form (¬)P1(t) ∨ . . . ∨ (¬)Pn(t), and with P(f(x))
we denote a disjunction of the form P1(f1(x)) ∨ . . . ∨ Pm(fm(x)) (notice that
this allows each Pi(fi(x)) to contain positive and negative literals). With 〈t〉 we
denote that the term t may, but need not be marked. In all closure types, some of
the disjuncts may be empty. Furthermore, for each function symbol f occurring
in Ξ(KB), there is exactly one closure of type 3 containing f(x) unmarked; this
closure is called the Rf -generator, the disjunction Pf (x) is called the f -support,
and R is called the designated role for f and is denoted as role(f).

Parameters for BS. We use BSDL to denote the BS calculus parameterized as
follows. We use a standard lexicographic path ordering [7, 1] (LPO) for comparing
terms. LPOs are based on a precedence >P over function, constant, and predicate
symbols. If the precedence is total, LPO is admissible for basic superposition.
To decide ALCHIQ−, we can use any precedence such that f >P c >P p >P ⊤,
for any function symbol f , constant c, and predicate symbol p. We select all
negative binary literals in a closure. On ALCHIQ−-closures BSDL compares
only terms with at most one variable, and LPOs are total for such terms. Hence,
literals in ALCHIQ−-closures can be compared as explained in Section 2.

6 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

Table 3. Types of ALCHIQ−-closures

1 ¬R(x, y) ∨ Inv(R)(y, x)

2 ¬R(x, y) ∨ S(x, y)

3 Pf (x) ∨ R(x, 〈f(x)〉)

4 Pf (x) ∨ R([f(x)] , x)

5 P1(x) ∨ P2(〈f(x)〉) ∨
W

〈fi(x)〉≈/6≈ 〈fj(x)〉

6 P1(x) ∨ P2([g(x)]) ∨ P3(〈f([g(x)])〉) ∨
W

〈ti〉≈/6≈ 〈tj〉
where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨
W

¬R(x, yi) ∨ P2(y) ∨
W

yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨ P(〈t〉) ∨
W

〈ti〉≈/6≈ 〈tj〉
where t, ti and tj are either some constant b or a functional term fi([a])

Conditions:

(i): In any term f(t), the inner term t occurs marked.
(ii): In all positive equality literals with at least one function symbol,

both sides are marked.

(iii): Any closure containing a term f(t) contains Pf (t) as well.
(iv): In a literal [fi(t)] ≈ [fj(t)], role(fi) = role(fj).
(v): In a literal [f(g(x))] ≈ x, role(f) = Inv(role(g)).
(vi): For each [fi(a)] ≈ [b] a witness closure of the form R(〈a〉 , 〈b〉) ∨ D exists,

with role(fi) = R, D does not contain functional terms or negative
binary literals, and is contained in this closure.

Closure of ALCHIQ−-closures under Inferences. The following lemma is central
to our work, since it implies, together with a bound on the number of ALCHIQ−-
closures, termination of BSDL. The proof is by examining all inferences of BSDL

for all possible types of ALCHIQ−-closures.

Lemma 1. Let Ξ(KB) = N0, . . . , Ni ∪ {C} be a BSDL-derivation, where C is
the conclusion derived from premises in Ni. Then C is either an ALCHIQ−-
closure or it is redundant in Ni.

Termination and Complexity Analysis. Let |KB | denote the size of KB with
numbers coded in unary. It is straightforward to see that, given a knowledge base
KB , the size of a set of non-redundant ALCHIQ−-closures over the vocabulary
from Ξ(KB) is exponentially bounded in |KB |: let r be the number of role
names, a the number of atomic concept names, c the number of constants, f
the number of Skolem function symbols occurring in Ξ(KB), and v the maximal
number of variables in a closure. Obviously, r, a, and c are linear in |KB | and,
for unary coding of numbers, f and v are also linear in |KB |. Thus we have at
most (f +1)2(v + c) terms of depth at most 2, which, together with the possible
marking, yields at most t = 2(f + 1)2(v + c) terms in a closure. This yields
at most at + rt2 atoms, which, together with the equality literals, and allowing
each atom to occur negatively, gives at most ℓ = 2(at + (r + 1)t2) literals in
a closure. Each closure can contain an arbitrary subset of these literals, so the
total number of closures is bounded by 2ℓ. Thus we obtain an exponential bound
on the size of the set of closures that BSDL can derive. Each inference step can

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 7

be carried out in exponential time, so, since BSDL is a sound and complete
refutation procedure [3], we have the following result:

Theorem 1 ([11]). For an ALCHIQ− knowledge base KB, saturating Ξ(KB)
by BSDL with eager application of redundancy elimination rules decides satisfia-
bility of KB and runs in time exponential in |KB |, for unary coding of numbers.

3.2 Removing the Restriction to Very Simple Roles

For a SHIQ knowledge base KB containing number restrictions on roles which
are not very simple, the saturation of Ξ(KB) may contain closures whose struc-
ture corresponds to Table 3, but for which conditions (iii) – (vi) do not hold; we
call such closures ALCHIQ-closures. Let KB be the knowledge base containing
axioms (1) – (9):

R ⊑ T ⇒ ¬R(x, y) ∨ T (x, y) (1)

S ⊑ T ⇒ ¬S(x, y) ∨ T (x, y) (2)

C ⊑ ∃R.⊤ ⇒ ¬C(x) ∨ R(x, f(x)) (3)

⊤ ⊑ ∃S−.⊤ ⇒ S−(x, g(x)) (4)

⊤ ⊑ ≤ 1 T ⇒ ¬T (x, y1) ∨ ¬T (x, y2) ∨ y1 ≈ y2 (5)

∃S.⊤ ⊑ D ⇒ ¬S(x, y) ∨ D(x) (6)

∃R.⊤ ⊑ ¬D ⇒ ¬R(x, y) ∨ ¬D(x) (7)

⊤ ⊑ C ⇒ C(x) (8)

¬S−(x, y) ∨ S(y, x) (9)

S([g(x)] , x) (10)

¬C(x) ∨ T (x, [f(x)]) (11)

T ([g(x)] , x) (12)

¬C([g(x)]) ∨ [f(g(x))] ≈ x (13)

¬C([g(x)]) ∨ R([g(x)] , x) (14)

D([g(x)]) (15)

¬D([g(x)]) ∨ ¬C([g(x)]) (16)

¬C([g(x)]) (17)

� (18)

Consider a saturation of Ξ(KB) by BSDL producing closures (10) – (13). For
(13), Condition (v) is not satisfied: role(f) = R 6= Inv(role(g)) = Inv(S−) = S.
This is because in (5), a number restriction was stated on a role that is not very
simple. Now (13) can be superposed into (3), resulting in (14), which is obviously
not an ALCHIQ-closure.

If KB were an ALCHIQ− knowledge base, Condition (v) would hold, so we
would be able to assume that a closure R([g(x)] , x) exists. This closure would
subsume (14), so we would simply throw (14) away and continue saturation.

Since Condition (v) does not hold, a subsuming closure does not exist, so
in order not to lose completeness, we must keep (14) and perform further in-
ferences with it. This might cause termination problems: in general, (14) might
be resolved with some closure of type 6 of the form C([g(h(x))]), producing a
closure of the form R([g(h(x))] , [h(x)]). The term depth in the binary literal is
now two, and it may be used to derive closures with ever deeper terms. Thus,
the set of derivable closures becomes infinite, and we cannot conclude that the
saturation necessarily terminates.

A careful analysis reveals that various refinements of the ordering and the
selection function will not help. Furthermore, the inference deriving (14) is nec-
essary. Namely, KB is unsatisfiable, and the empty closure is derived through
steps (15) – (18), which require (14).

8 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

4 Transformation by Decomposition

To solve the problems outlined in Subsection 3.2, we introduce decomposition, a
transformation that can be applied to the conclusions of some BS inferences. It
is a general technique not limited to description logics. In the following, for x a
vector of distinct variables x1, . . . , xn, and t a vector of (not necessarily distinct)
terms t1, . . . , tn, let {x 7→ t} denote the substitution {x1 7→ t1, . . . , xn 7→ tn},
and let Q([t]) denote Q([t1] , . . . , [tn]).

Definition 1. Let C · ρ be a closure and N a set of closures. A decomposition
of C · ρ w.r.t. N is a pair of closures C1 · ρ ∨ Q([t]) and C2 · θ ∨ ¬Q(x) where
t is a vector of n terms, x is a vector of n distinct variables, n ≥ 0, satisfying
these conditions: (i) C = C1 ∪ C2, (ii) ρ = θ{x 7→ t}, (iii) x is exactly the
set of free variables of C2θ, and (iv) if C2 · θ ∨ ¬Q′(x) ∈ N , then Q = Q′,
otherwise Q is a new predicate not occurring in N . The closure C2 · θ is called
the fixed part, the closure C1 ·ρ is called the variable part and the predicate Q is
called the definition predicate. An application of decomposition is often written
as C · ρ C1 · ρ ∨ Q([t]), C2 · θ ∨ ¬Q(x).

Let ξ be a BS inference with a most general unifier σ on a literal Lm ·η from
a main premise Dm · η and with a side premise Ds · η. The conclusion of ξ is
eligible for decomposition if, for each ground substitution τ such that ξτ satisfies
the constraints of BS, we have ¬Q(t)τ ≺ Lmηστ . With BS+ we denote the BS
calculus where decomposition can be applied to conclusions of eligible inferences.

The definition of eligibility is defined to cover the most general case. In the
following, we use a simpler test: ξ is eligible for decomposition if ¬Q(t) ≺ Lmησ,
or a literal L ∈ Ds exists such that ¬Q(t) ≺ Lησ. The latter is a sufficient
approximation, since Lηστ ≺ Lmηστ for each τ as in Definition 1.

E.g., consider superposition from [f(g(x))] ≈ [h(g(x))] into C(x)∨R(x, f(x))
resulting in D = C([g(x)]) ∨ R([g(x)] , [h(g(x))]). The conclusion is not an
ALCHIQ-closure, so keeping it might lead to non-termination. D can be de-
composed into C([g(x)]) ∨ QR,f ([g(x)]) and ¬QR,f (x) ∨ R(x, [h(x)]), which are
both ALCHIQ-closures. The inference is eligible for decomposition if we ensure
that ¬QR,f (g(x)) ≺ R(g(x), h(g(x))) (e.g. by using R >P QR,f in LPO).

The soundness and completeness proofs for BS+ are given in [10]; here we
present the intuition behind these results. As shown by Lemma 2, decomposition
is sound: it merely introduces a new name for C2 · θ. Any model of C · ρ can
be extended to a model of C1 · ρ ∨ Q([t]) and C2 · θ ∨ ¬Q(x) by adjusting the
interpretation of Q.

Lemma 2. Let N0, . . . , Ni be a BS+-derivation, and let I0 be a model of N0.
Then for i > 1, Ni has a model Ii such that, if the inference deriving Ni from
Ni−1 involves a decomposition step as specified in Definition 1 introducing a
new predicate Q, then Ii = Ii−1 ∪{Q(s) | s is a vector of ground terms such that
C2θ{x 7→ s} is true in Ii−1}; otherwise Ii = Ii−1.

The notion of variable irreducibility is a central concept in the completeness
proof of basic superposition. Roughly speaking, a closure C · ρτ is a variable

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 9

irreducible ground instance of C ·ρ w.r.t. a ground and convergent rewrite system
R if substitution positions in C ·ρτ are not reducible by rewrite rules in R. We use
this to prove completeness, by showing that decomposition is compatible with
the usual notion of redundancy for BS [3, 14], as shown by Lemma 3. We do so
in two steps. First, the eligibility criterion ensures that (*) ground instances of
C1 · ρ ∨ Q([t]) and C2 · θ ∨ ¬Q(x) are smaller than the corresponding ground
instances of Dm · η. Second, (**) for each variable irreducible ground instance
C · ρτ of C · ρ, there are variable irreducible ground instances E1 and E2 of
C1 · ρ ∨ Q([t]) and C2 · θ ∨ ¬Q(x), respectively, such that {E1, E2} |= C · ρτ .
Property (**) holds since the terms t are extracted from the substitution part of
C ·ρ. Effectively, (**) means that decomposition does not lose “relevant” variable
irreducible ground instances of C ·ρ which are used in the proof. Actually, closures
C1 ·ρ∨Q([t]) and C2 ·θ∨¬Q(x) can have “excessive” variable irreducible ground
instances without a counterpart ground instance of C · ρ. However, this is not a
problem, since decomposition is sound.

Lemma 3. Let ξ be a BS inference applied to premises from a closure set N
resulting in a closure C ·ρ. If C ·ρ can be decomposed into closures C1 ·ρ∨Q([t])
and C2 · θ ∨ ¬Q(x) which are both redundant in N , then the inference ξ is
redundant in N .

Soundness and compatibility with the notion of redundancy imply that BS+

is a sound and complete calculus, as shown by Theorem 2. Note that, to obtain
the saturated set N , we can use any fair saturation strategy [2]. Furthermore, the
decomposition rule can be applied an infinite number of times in a saturation,
and it is even allowed to introduce an infinite number of definition predicates.
In the latter case, we just need to ensure that the term ordering is well-founded.

Theorem 2. For N0 a set of closures of the form C ·{}, let N be a set of closures
obtained by saturating N0 under BS+. Then N0 is satisfiable if and only if N
does not contain the empty closure.

For a resolution calculus C other than BS, Lemma 2 applies as well. Further-
more, if C is compatible with the standard notion of redundancy [2], Lemma 3
holds as well: (*) holds for C identically, and (**) is needed only for BS, due to a
non-standard lifting strategy. Hence, decomposition can be combined with any
such calculus.

Related Work. In [17] and [6] a similar rule for splitting without backtracking
was considered, and in [18] a similar separation rule was introduced to decide
fluted logic. Decomposition allows replacing complex terms with simpler ones,
so it is different from splitting (which does not allow component clauses to con-
tain common variables) or separation (which links component clauses only by
literals without functional terms). Furthermore, by the eligibility criterion we
make decomposition compatible with the standard notion of redundancy. Thus,
decomposition becomes a full-fledged inference rule and can be applied an in-
finite number of times in a saturation. Finally, combining decomposition with
basic superposition is not trivial, due to a non-standard approach to lifting.

10 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

5 Applications of Decomposition

To show the usefulness of decomposition, in this section, we use it to extend the
algorithm from Section 3 to obtain three new decision procedures.

5.1 Deciding ALCHIQ

Definition 2. BS+
DL is the modification of the BSDL calculus where conclusions

are decomposed, whenever possible, as follows, for an arbitrary term t:

D · ρ ∨ R([t] , [f(t)]) D · ρ ∨ QR,f ([t])
¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨ R([f(t)] , [t]) D · ρ ∨ QInv(R),f ([t])
¬QInv(R),f (x) ∨ R([f(x)] , x)

and where the precedence of the LPO is f >P c >P p >P QS,f >P ⊤, for any
function symbol f , constant symbol c, non-definition predicate p and definition
predicate QS,f .

For a (possibly inverse) role S and a function symbol f , the predicate QS,f

is unique. Since R([f(x)] , x) and Inv(R)(x, [f(x)]) are logically equivalent by the
operator π, it is safe to use QInv(R),f as the definition predicate for R([f(x)] , x).

Inferences of BSDL, when applied to ALCHIQ-closures, derive an ALCHIQ-
closure even if conditions (iii) – (vi) are not enforced. The only exception is the
superposition from a closure of type 5 or 6 into a closure of type 3, but such
closures are decomposed by BS+

DL into two ALCHIQ-closures; the inference
is eligible for decomposition since ¬QR,f (t) ≺ R(t, g(t)) (which is the maximal
literal of the closure of type 3 after unification). Furthermore, QS,f is unique for a
pair of S and f , so the number of definition predicates is polynomially bounded.
This allows us to derive an exponential bound on the number of ALCHIQ-
closures as in Theorem 1 and thus to obtain a decision procedure.

Theorem 3. For an ALCHIQ knowledge base KB, saturation of Ξ(KB) by
BS+

DL decides satisfiability of KB, and runs in time exponential in |KB |.

5.2 Safe Role Expressions

A prominent limitation of ALCHIQ is the rather restricted form of role expres-
sions that may occur in a knowledge base. This can be overcome by allowing for
safe Boolean role expressions in TBox and ABox axioms. The resulting logic is
called ALCHIQb, and can be viewed as the “union” of ALCHIQ and ALCIQb
[20]. Using safe expressions, it is possible to state negative or disjunctive knowl-
edge regarding roles. Roughly speaking, safe role expressions are built using
union, disjunction, and relativized negation of roles. This allows for statements
such as ∀x, y : isParentOf (x, y) → isMotherOf (x, y)∨isFatherOf (x, y), but does
not allow for “fully negated” statements such as: ∀x, y : ¬isMotherOf (x, y) →
isFatherOf (x, y). The safety restriction is needed for the algorithm to remain in
ExpTime; namely, it is known that reasoning with non-safe role expressions is
NExpTime-complete [13].

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 11

Definition 3. A role expression is a finite expression built over the set of roles
using the connectives ⊔, ⊓ and ¬ in the usual way. A role expression E is safe if
each conjunction of the disjunctive normal form of E contains at least one non-
negated atom. The description logic ALCHIQb is obtained from ALCHIQ by
allowing concepts ∃E.C, ∀E.C, ≥ nE.C and ≤ nE.C, inclusion axioms E ⊑ F
and ABox axioms E(a, b), where E is a safe role expression, and F is any role
expression. The semantics of ALCHIQb is obtained by extending the operator
π from Table 1 in the obvious way.

We assume w.l.o.g. that all concepts in KB contain only atomic roles, since
one can always replace a role expression with a new atomic role and add a
corresponding role inclusion axiom. Hence, the only difference to the case of
ALCHIQ logic is that KB contains axioms of the form E ⊑ F , where E is
a safe role expression. Such an axiom is equivalent to the first-order formula
ϕ = ∀x, y : π(¬E ⊔ F). Assume that E is in disjunctive normal form; since it is
safe, ¬E is equivalent to a conjunction of disjuncts, where each disjunct contains
at least one negated atom. Hence, translation of ϕ into first-order logic produces
closures of the form Γ = ¬R1(x, y) ∨ . . . ∨ ¬Rn(x, y) ∨ S1(x, y) ∨ . . . ∨ Sm(x, y),
where n ≥ 1,m ≥ 0. Computing the disjunctive normal form might introduce an
exponential blow-up, so to compute Ξ(KB) we use structural transformation,
which runs in polynomial time, but also produces only closures of type Γ .

Next, we consider saturation of Ξ(KB) using BS+
DL, and define ALCHIQb-

closures to be of the form as specified in Table 3 where closures of type 2 are
replaced with closures of the form Γ above. Since in BS+

DL all negative binary
literals are selected and a closure of type 3 always contains at least one negative
binary literal, it can participate only in a hyperresolution inference with closures
of type 3 or 4. Due to the occurs-check in unification, side premises are either
all of type 3 or all of type 4. Hyperresolvents can have two forms, which are
decomposed, whenever possible, as follows, for S(s, t) = S1(s, t) ∨ . . . ∨ Sm(s, t):

P(x) ∨ S(x, [f(x)])
¬QSi,f (x) ∨ Si(x, [f(x)]) for 1 ≤ i ≤ m

P(x) ∨ QS1,f (x) ∨ . . . ∨ QSm,f (x)

P(x) ∨ S([f(x)] , x)
¬QInv(Si),f (x) ∨ Si([f(x)] , x) for 1 ≤ i ≤ m
P(x) ∨ QInv(S1),f (x) ∨ . . . ∨ QInv(Sm),f (x)

Again, we decompose a non-ALCHIQb-closure into several ALCHIQb-closures.
Hence, we may establish the bound on the size of the closure set as in Subsec-
tion 5.1, to obtain the following result:

Theorem 4. For an ALCHIQb knowledge base KB, saturation of Ξ(KB) by
BS+

DL decides satisfiability of KB in time exponential in |KB |.

5.3 Conjunctive Queries over SHIQ Knowledge Bases

Conjunctive queries [5] are a standard formalism for relational queries. Here, we
present an algorithm for answering conjunctive queries over a SHIQ knowledge
base KB . To eliminate transitivity axioms, we encode KB into an equisatisfiable

12 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

ALCHIQ knowledge base Ω(KB) [11]. Unfortunately, this transformation does
not preserve entailment of ground non-simple roles. Hence, in the following we
prohibit the use of non-simple roles in conjunctive queries (such roles can still
be used in KB), and focus on ALCHIQ.

Definition 4. Let KB be an ALCHIQ knowledge base, and let x1, . . . , xn and
y1, . . . , ym be sets of distinguished and non-distinguished variables, written as
x and y, respectively. A conjunctive query over KB, denoted as Q(x,y), is
a conjunction of DL-atoms of the form (¬)A(s) or R(s, t), where s and t are
individuals from KB or distinguished or non-distinguished variables. The basic
inferences for conjunctive queries are:

– Query answering. An answer of a query Q(x,y) w.r.t. KB is an assignment
θ of individuals to distinguished variables, such that π(KB) |= ∃y : Q(xθ,y).

– Query containment. A query Q2(x,y2) is contained in a query Q1(x,y1)
w.r.t. KB if π(KB) |= ∀x : [∃y2 : Q2(x,y2) → ∃y1 : Q1(x,y1)].

Query containment is reducible to query answering by well-known transfor-
mations of first-order formulae: Q2(x,y1) is contained in Q1(x,y2) w.r.t. KB
if and only if a is an answer to Q1(x,y1) over KB ∪ {Q2(a,b)}, where a and
b are vectors of new distinct individuals, not occurring in Q1(x,y1), Q2(x,y2)
and KB . Therefore, in the rest we only consider query answering.

Let KB be an ALCHIQ knowledge base. Obviously, for a conjunctive query
Q(x,y), the assignment θ such that θx = a, is an answer of the query w.r.t. KB
if and only if the set of closures Γ ′ = Ξ(KB)∪{¬Q(a,y)} is unsatisfiable, where
¬Q(a,y) is the closure obtained by negating each conjunct of Q(a,y).

A conjunctive query Q(a,y) is weakly connected if its literals cannot be de-
composed into two subsets not sharing common variables. W.l.o.g. we assume
that Q(a,y) is weakly connected: if Q(a,y) can be split into n weakly con-
nected mutually variable-disjoint subqueries Q1(a1,y1), . . . , Qn(an,yn), then
π(KB) |=

∧
1≤i≤n ∃yi : Qi(ai,yi) if and only if π(KB) |= ∃yi : Qi(ai,yi) for

all 1 ≤ i ≤ n. The subqueries Qi(ai,yi) can be computed in polynomial time, so
this assumption does not increase the complexity of reasoning.

A slight problem arises if ¬Q(a,y) contains unmarked constants: assuming
that ai ∈ ai and a′

i ∈ a′
i
for i ∈ {1, 2}, a superposition of a1 ≈ a′

1 ∨ a2 ≈ a′
2 into

¬Q1(a1,y1) and ¬Q2(a2,y2) may produce a closure ¬Q1(a
′
1
,y1)∨¬Q2(a

′
2
,y2).

Such an inference produces a conclusion with more variables than each of its
premises, thus leading to non-termination. To prevent this, we apply the struc-
tural transformation to ¬Q(a,y) and replace Γ ′ with Γ , where for each a ∈ a,
Oa is a new predicate unique for a, xa is a new variable unique for a, and xa is
the vector of variables obtained from a by replacing each a ∈ a with xa:

Γ = Ξ(KB) ∪ {¬Q(xa,y) ∨
∨

a∈a

¬Oa(xa)} ∪
⋃

a∈a

{Oa(a)}

The sets Γ ′ and Γ are obviously equisatisfiable. In the rest we write ¬Oa(xa)
for

∨
a∈a

¬Oa(xa). We now define the calculus for deciding satisfiability of Γ :

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 13

Definition 5. BS+
CQ is the extension of the BS+

DL calculus, where the selection
function is as follows: if a closure C contains a literal ¬Oa(xa), then all such
literals are selected; otherwise, all negative binary literals are selected. The prece-
dence for LPO is f >P c >P p >P Oa >P QR,f >P pa,b >P ⊤. In addition
to decomposition inferences from Definition 2, the following decompositions are
performed whenever possible, where the ti are of the form fi,1(. . . fi,m(x) . . .):

(¬)A1([t1]) ∨ . . . ∨ (¬)An([tn])
Q(¬)A1,t1(x) ∨ . . . ∨ Q(¬)An,tn

(x)
¬Q(¬)Ai,ti

(x) ∨ (¬)Ai([ti]), 1 ≤ i ≤ n

C · ρ ∨ Oa(〈b〉)

C · ρ ∨ pa,b

¬pa,b ∨ Oa(b)

Definition 6. The class of CQ-closures w.r.t. a conjunctive query Q(a,y) over
an ALCHIQ knowledge base KB is the generalization of closures from Table 3
obtained as follows:

– Conditions (iii) – (vi) are dropped.
– Closure types 5 and 6 are replaced with a new type 5′, which contains all

closures C satisfying each of the following conditions:

1. C contains only equality, unary or propositional literals.
2. C contains only one variable x.
3. The depth of a term in C is bounded by the number of literals of Q(a,y).
4. If C contains a term of the form f(t), then all terms of the same depth in

C are of the form g(t), and all terms of smaller depth are (not necessarily
proper) subterms of t.

5. Only the outmost position of a term in C can be unmarked, i.e. each
functional term is either of the form [f(t)] or of the form f([t]).

6. Equality and inequality literals in C can have the form [f(t)] ◦ [g(t)] or
[f(g(t))] ◦ [t] for ◦ ∈ {≈, 6≈}.

– Closure type 8 is modified to allow unary and (in)equality literals to contain
unary terms whose depth is bounded by the number of literals in Q(a,y); only
outermost positions in a term can be unmarked; all (in)equality literals are
of the form [f(a)]◦ [b], [f(t)]◦ [g(t)], [f(g(t))]◦ [t] or 〈a〉 ◦ 〈b〉, for ◦ ∈ {≈, 6≈}
and t a ground term; and a closure can contain propositional literals (¬)pa,b.

– A new query closure type contains closures of the form ¬Q([a] ,y)∨p, where
Q([a] ,y) is weakly connected, it contains at least one binary literal and p is
a possibly empty disjunction of propositional literals p =

∨
(¬)pa,b.

– A new initial closure type contains closures of the form ¬Oa(xa)∨¬Q(xa,y).

We show the closure of CQ-closures under BS+
CQ in [10]. Roughly speaking,

since all literals ¬Oa(xa) are selected, the only possible inference for an initial
closure is hyperresolution with ¬pa,b∨Oa(b) or Oa(a), generating a query closure
with marked terms. Propositional symbols pa,b are used to decompose closures
resulting from superposition into Oa(b); since such literals are smallest in any
closure, they cannot participate in inferences with a closure of type 5′.

Consider an inference with a closure ¬Q([a] ,y) ∨ p such that Q([a] ,y) is
weakly connected. Since all constants are marked, superposition into such a

14 Ullrich Hustadt, Boris Motik, and Ulrike Sattler

closure is not possible. The only possible inference is hyperresolution with side
premises of type 3, 4 and 8 with a unifier σ. If Q([a] ,y) contains a constant
or if some side premise is ground, then Q([a] ,y)σ is ground because Q([a] ,y)
is weakly connected. Otherwise, since the query closure is weakly connected,
the hyperresolution produces a closure of the form

∨
(¬)Ai([ti]) with ti of the

form fi,1(. . . fi,m(x) . . .). This closure does not satisfy condition 4 of CQ-closures,
so it is decomposed into several closures of type 5′; eligibility is ensured since
¬Q(¬)Ai,ti

(x) ≺ (¬)Ai(ti), and (¬)Ai(ti) originates from some side premise Ejσ.
All side premises contain at most one functional term of depth one, so the depth
of functional terms in the conclusion is bounded by the length of the maximal
path in Q([a] ,y), which is bounded by |Q(a,y)|.

To build a term of the form f1(. . . fm(x) . . .), one selects a subset of at most
|Q(a,y)| function symbols; the number of such subsets is exponential in |Q(a,y)|.
This gives an exponential bound on the closure length, and a doubly exponential
bound on the number of CQ-closures, leading to the following result:

Theorem 5. For a conjunctive query Q(a,y) over an ALCHIQ knowledge base
KB, saturation of Γ by BS+

CQ decides satisfiability of Γ in time doubly exponen-
tial in |KB | + |Q(a,y)|.

Related Work. Answering conjunctive queries over the related description logic
SHf was considered in [19]. In this approach, transitive roles can be used in
the queries, but SHf does not provide inverse roles. Conjunctive queries were
also considered in [4]. To the best of our knowledge, this is the first work that
considers answering conjunctive queries over description logic knowledge bases
in the framework of resolution.

6 Conclusion

We have proposed decomposition, a general inference rule applicable to any res-
olution calculus compatible with the standard notion of redundancy. This rule
transforms certain conclusions of the calculus at hand, and thus can be used to
turn a resolution calculus into a decision procedure.

For three decidable fragments of first-order logic, we present three decision
procedures obtained by combining basic superposition with decomposition, and
by choosing an appropriate term ordering and selection function. More precisely,
we obtain two new decision procedures for checking satisfiability of SHIQ and
ALCHIQb knowledge bases, and a procedure for answering conjunctive queries
over SHIQ knowledge bases. The first two procedures are worst-case optimal,
and we expect them to be suitable for implementation due to the vast experience
in building saturation theorem provers. An implementation of these algorithms
is under way, and we hope to soon be able to confirm our expectations.

In addition, we plan to extend the algorithm for ALCHIQb to support ar-
bitrary role expressions, and to find a way to handle transitivity directly within
our calculus, to avoid the reduction and to allow transitive roles in queries.

A Decomposition Rule for Decision Procedures by Resolution-based Calculi 15

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pages 19–99. Elsevier
Science, 2001.

3. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability of Query
Containment under Constraints. In Proc. PODS 1998, pages 149–158. ACM Press,
1998.

5. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proc. STOC 1977, pages 77–90. ACM Press, 1977.

6. H. de Nivelle. Splitting through new proposition symbols. In Proc. LPAR 2001,
volume 2250 of LNAI, pages 172–185. Springer, 2001.

7. N. Dershowitz and D.A. Plaisted. Rewriting. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 535–610. Elsevier Science, 2001.

8. C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution Decision Pro-
cedures. In A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-

soning, pages 1791–1849. Elsevier Science, 2001.
9. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive

Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.
10. U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics around

SHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI, Germany,
2004. http://www.fzi.de/wim/publikationen.php?id=1172.

11. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In Proc. KR 2004, pages 152–162. AAAI Press,
2004.

12. W. H. Joyner Jr. Resolution Strategies as Decision Procedures. J. ACM, 23(3):398–
417, 1976.

13. C. Lutz and U. Sattler. The Complexity of Reasoning with Boolean Modal Logics.
In Advances in Modal Logics, volume 3. CSLI Publications, Stanford, 2001.

14. R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality
Constrained Clauses. J. Logic and Computation, 19(4):312–351, 1995.

15. R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, pages
371–443. Elsevier Science, 2001.

16. D. A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Transfor-
mation. J. Symbolic Logic and Computation, 2(3):293–304, 1986.

17. A. Riazanov and A. Voronkov. Splitting Without Backtracking. In Proc. IJCAI

2001, pages 611–617. Morgan Kaufmann, 2001.
18. R. A. Schmidt and U. Hustadt. A Resolution Decision Procedure for Fluted Logic.

In D. McAllester, editor, Proc. CADE 2000, pages 433–448. Springer, 2000.
19. S. Tessaris. Questions and answers: reasoning and querying in Description Logic.

PhD thesis, University of Manchester, UK, 2001.
20. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. PhD thesis, RWTH Aachen, Germany, 2001.
21. C. Weidenbach. Combining Superposition, Sorts and Splitting. In A. Robinson

and A. Voronkov, editors, Handbook of Automated Reasoning, pages 1965–2013.
Elsevier Science, 2001.

