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Abstract

Data complexityof reasoning in description logics
(DLs) estimates the performance of reasoning al-
gorithms measured in the size of the ABox only.
We show that, even for the very expressive DL
SHIQ, satisfiability checking is data complete for
NP. For applications with large ABoxes, this can
be a more accurate estimate than the usually con-
sideredcombined complexity, which is EXPTIME-
complete. Furthermore, we identify an expressive
fragment, Horn-SHIQ, which is data complete for
P, thus being very appealing for practical usage.

1 Introdcution
Description logics (DLs)[Baaderet al., 2003] are state-of-
the-art knowledge representation formalisms with applica-
tions in many areas of computer science. Very expressive DLs
such asSHIQ are interesting mainly due to their high ex-
pressivity combined with the clearly defined model-theoretic
semantics and known formal properties, such as the compu-
tational complexity of reasoning. In particular, thecombined
complexityof checking satisfiability of aSHIQ knowl-
edge baseKB is EXPTIME-complete in|KB | [Schild, 1991;
Tobies, 2001].

EXPTIME-completeness is a rather discouraging result
since|KB | can be large in practice. However, similar to a
database,KB consists of aschemapartT , called theTBox,
and a data or fact partA, called theABox. For applications
with a fixed schema but varying data part,data complexity,
measured in the size ofA only, provides a more precise per-
formance estimate.

Here, we assume that the ABox ofKB is extensionally
reduced, i.e. it involves only roles and (possibly negated)
atomic concepts. Thus, the terminological knowledge is
strictly separated from assertional knowledge, so|A| is the
measure of “raw” data. For such aKB , we show that check-
ing KB satisfiability is NP-complete in|A|, and that in-
stance checking is co-NP-complete in|A|. Since this might
still lead to intractability, we identify Horn-SHIQ, a frag-
ment ofSHIQ analogous to the Horn fragment of first-order
logic. Namely, Horn-SHIQ provides existential and univer-
sal quantifiers, but does not provide means to express disjunc-
tive information. We show that, for Horn-SHIQ, the basic

reasoning problems areP-complete in|A|. To develop an
intuition and to provide a more detailed account of these re-
sults, we compare them with similar results for (variants of)
datalog[Dantsinet al., 2001].

Our results are important since they provide a formal justi-
fication for hoping to provide tractable algorithms for veryex-
pressive description logics. Furthermore, Horn-SHIQ sub-
sumes DL-lite[Calvaneseet al., 2004], a logic aiming to
capture most constructs of ER and UML formalisms, while
providing polynomial algorithms for satisfiability checking
and conjunctive query answering (assuming an unbounded
knowledge base, but a bound on the query size). Horn-
SHIQ additionally allows qualified existential quantifica-
tion, conditional functionality and role inclusions, while al-
lowing for a reasoning algorithm that runs in time polynomial
in the size of data.

In [Schaerf, 1994], the complexity of concept subsump-
tion was contrasted with combined and data complexity of
instance checking for various fragments ofALC. This work
provides a lower bound for the data complexity of reasoning
in SHIQ.

2 Preliminaries
Description Logics. Given a set of role namesNR, a
SHIQ role is either someR ∈ NR or an inverse roleR−

for R ∈ NR. A SHIQ RBoxR is a finite set of role inclu-
sion axiomsR ⊑ S and transitivity axiomsTrans(R), for R
andS SHIQ roles. ForR ∈ NR, we setInv(R) = R− and
Inv(R−) = R, and assume thatR ⊑ S ∈ R (Trans(R) ∈ R)
implies Inv(R) ⊑ Inv(S) ∈ R (Trans(Inv(R)) ∈ R). A role
R is said to besimpleif Trans(S) /∈ R, for eachS ⊑∗ R,
where⊑∗ is the reflexive-transitive closure of⊑.

Given a set ofconcept namesNC , the set ofSHIQ con-
cepts is the minimal set such that eachA ∈ NC is aSHIQ
concept and, forC andD SHIQ concepts,R a role,S a sim-
ple role andn a positive integer, then¬C, C ⊓D, ∀R.C and
≥ nS.C are alsoSHIQ concepts. We use⊤, ⊥, C1 ⊔ C2,
∃R.C, and≤ nS.C as abbreviations forA ⊔ ¬A, A ⊓ ¬A,
¬(¬C1 ⊓ ¬C2), ¬∀R.¬C, and¬(≥ (n + 1)S.C), respec-
tively. Concepts that are not concept names are calledcom-
plex. A literal concept is a possibly negated concept name.

A TBox T is a finite set of concept inclusion axioms of the
form C ⊑ D. An ABox A is a finite set of axiomsC(a),
R(a, b), and (in)equalitiesa ≈ b anda 6≈ b. A knowledge



Table 1: Semantics ofSHIQ by Mapping to FOL

Translating Concepts to FOL
πy(A, X) = A(X)

πy(C ⊓ D, X) = πy(C, X) ∧ πy(D, X)
πy(¬C, X) = ¬πy(C, X)

πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y)
πy(≥ n S.C, X) =

∃y1, . . . , yn :
V

S(X, yi) ∧
V

πx(C, yi) ∧
V

yi 6≈ yj

Translating Axioms to FOL
π(C ⊑ D) = ∀x : πy(C, x) → πy(D, x)
π(R ⊑ S) = ∀x, y : R(x, y) → S(x, y)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
π(C(a)) = πy(C, a)

π(R(a, b)) = R(a, b)
π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}

TranslatingKB to FOL
π(R) = ∀x, y : R(x, y) ↔ R−(y, x)

π(KB) =
V

R∈NR
π(R) ∧

V
α∈T ∪R∪A

π(α)

X is a meta variable and is substituted by the actual variable.
πx is obtained fromπy by simultaneously substituting in the
definitionx(i) for all y(i), respectively, andπy for πx.

baseKB is a triple(R, T ,A). KB is extensionally reduced
if all ABox axioms ofKB contain only literal concepts.

The semantics ofKB is given by translating it into first-
order logic by the operatorπ from Table 1. The main infer-
ence problem is checkingKB satisfiability, i.e. determining
if a first-order model ofπ(KB) exists. An individuala is
an instanceof a conceptC w.r.t. KB if π(KB) |= πy(C, a),
which is the case iffKB ∪ {¬C(a)} is unsatisfiable.

The logicALCHIQ is obtained by disallowing transitivity
axioms inSHIQ RBoxes, andALC is obtained by disallow-
ing RBoxes, inverse roles and number restrictions. A logicL
is betweenlogicsL1 andL2 if it contains at least the primi-
tives fromL1 and at most the primitives fromL2.

We measure thesizeof concepts by their length, and as-
sumeunary coding of numbers, i.e.|≤ nR.C| = n+1+ |C|,
and use|R(a, b)| = |(¬)A(a)| = 3.

Disjunctive Datalog. A datalog term is a constant or a
variable, and adatalog atomhas the formA(t1, . . . , tn) or
t1 ≈ t2, whereti are datalog terms. Adisjunctive datalog
program with equalityP is a finite set of rules of the form
A1 ∨ ... ∨ An ← B1, ..., Bm whereAi andBj are datalog
atoms. Each rule is required to besafe, i.e. each variable oc-
curring in the rule must occur in at least one body atom. A
fact is a rule withm = 0. For the semantics, we take a rule to
be equivalent to a clauseA1∨ ...∨An∨¬B1∨ ...∨¬Bm. We
consider only Herbrand models, and say that a modelM of P
isminimalif there is no modelM ′ of P such thatM ′ ( M . A
ground literalA is acautious answerof P (writtenP |=c A)
if A is true in all minimal models ofP . First-order entailment
coincides with cautious entailment for positive ground atoms.

ReducingKB to Disjunctive Datalog. The results in this
paper are based on our algorithm from[Hustadtet al., 2004b].
For aSHIQ knowledge baseKB , this algorithm computes a

Table 2: Types ofALCHIQ-clauses

1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)

3 Pf (x) ∨ R(x, f(x))

4 Pf (x) ∨ R(f(x), x)
5 P1(x) ∨ P2(f(x)) ∨

W
fi(x)≈/ 6≈fj(x)

6 P1(x) ∨ P2(g(x)) ∨ P3(f(g(x))) ∨
W

ti≈/ 6≈tj

whereti andtj are of the formf(g(x)) or x

7 P1(x) ∨
W

¬R(x, yi) ∨ P2(y) ∨
W

yi ≈ yj

8 R(a,b) ∨ P(t) ∨
W

ti≈/ 6≈tj

wheret(i) are a constantb or a functional termfi(a)

positive disjunctive datalog program with equalityDD(KB)
which is equisatisfiable withKB .

A minor obstacle in computingDD(KB) are the transi-
tivity axioms which, in their clausal form, do not contain a
literal in which all variables of a clause occur. Such clauses
are known to be difficult to handle, soKB is preprocessed
into an equisatisfiableALCHIQ knowledge baseΩ(KB).
Roughly speaking, a transitivity axiomTrans(S) is replaced
with axioms of the form∀R.C ⊑ ∀S.(∀S.C), for eachR
with S ⊑∗ R andC a concept occurring inKB . This trans-
formation is polynomial, so in the rest of this paper w.l.o.g.
we assumeKB to be anALCHIQ knowledge base.

The next step is to translateΩ(KB) into clausal first-order
logic. Assumingπ is defined as in Table 1,π(Ω(KB)) is
transformed into a set of clausesΞ(KB) using structural
transformationto avoid an exponential blowup[Nonnengart
and Weidenbach, 2001]. Roughly speaking, the structural
transformation introduces a new name for each complex sub-
formula ofπ(Ω(KB)). A specialized version of the structural
transformation is presented in detail in Section 4.

A core property ofΞ(KB) is that it only contains clauses
of one of the forms given in Table 2; such clauses are called
ALCHIQ-clauses. For a termt, P(t) denotes a disjunction
of the form(¬)P1(t) ∨ . . . ∨ (¬)Pn(t), andP(f(x)) denotes
a disjunction of the formP1(f1(x)) ∨ . . . ∨Pn(fm(x)) (no-
tice that this allows eachPi(fi(x)) to contain positive and
negative literals).

Next, the RBox and TBox clauses ofΞ(KB) are saturated
by basic superposition[Bachmairet al., 1995; Nieuwenhuis
and Rubio, 1995]—a clausal equational theorem proving cal-
culus. Due to space limitations, we are unable to present the
rules of basic superposition; it can be considered to be an op-
timized version of the well-known paramodulation calculus.
Let Γ be the saturated set of clauses. In this key step, all
non-ground consequences ofKB are computed. In[Hustadt
et al., 2004b], we have shown the following key property:
(♠) an application of a basic superposition inference rule to
ALCHIQ-clauses produces anALCHIQ-clause. The proof
examines all inference rules and clause types.

Furthermore, by examining the types of clauses from Ta-
ble 2, one can show the following property: (♣) for a finite
KB , the number ofALCHIQ-clauses unique up to variable
renaming is exponential in|KB |. The proof is a straightfor-
ward counting exercise since the number of variables and the
depth of functional terms inALCHIQ-clauses are bounded.

Each inference step can be carried out in polynomial time,



so by (♠) and (♣), after at most exponentially many steps, all
ALCHIQ-clauses are derived, and saturation terminates.

Satisfiability of Ξ(KB) can be decided by further satu-
rating Γ ∪ Ξ(A) by basic superposition. SinceΓ contains
all non-ground consequences ofΞ(KB), all remaining infer-
ences will produce only ground clauses, and will not involve
clauses of type 4 and 6. These inferences can be simulated
in a disjunctive datalog program by transformingΓ into a
function-free clause set, and by introducing new constants
playing the role of ground functional terms, as described next.

We define an operatorλ transformingΓ as follows: (i) each
functional termf(a) is replaced with a new, globally unique
constantaf ; (ii ) each termf(x) is replaced with a new, glob-
ally unique variablexf ; (iii ) for each variable in a clause in-
troduced in step (ii ), λ appends a literal¬Sf (x, xf ), where
Sf is a new predicate unique for the function symbolf ; (iv) if
some variablex occurs in a positive, but not in a negative lit-
eral in a clause, then the literal¬HU (x) is appended to the
clause; (v) for each function symbolf and each constanta
from Ξ(KB), the factsSf (a, af ), HU (a) andHU (af ) are
added. The set of (function-free) clauses obtained by apply-
ing λ to Γ ∪ Ξ(A) is denoted withFF(KB). An example of
applyingλ to a clause of type 5 is shown below.

¬C(x) ∨D(f(x))⇒λ ¬Sf (x, xf ) ∨ ¬C(x) ∨D(xf )

Now each remaining ground inference by basic superposi-
tion inΓ∪Ξ(A) can be simulated by a sound inference step in
FF(KB), and vice versa[Hustadtet al., 2004b], soKB and
FF(KB) are equisatisfiable. SinceFF(KB) does not contain
functional terms and all its clauses are safe, each clause can
be rewritten into a positive disjunctive rule; letDD(KB) be
the resulting set of rules. The following theorem summarizes
the properties ofDD(KB):

Theorem 1([Hustadtet al., 2004b]). For KB anALCHIQ
knowledge base, the following claims hold: (i) KB is un-
satisfiable iffDD(KB) is unsatisfiable; (ii ) KB |= α iff
DD(KB) |=c α, for α of the formA(a) or S(a, b), A a
concept name, andS a simple role; (iii ) KB |= C(a) iff
DD(KB∪{C ⊑ Q}) |=c Q(a), for C a complex concept, and
Q a new concept name; (iv) the number of rules inDD(KB)
is at most exponential in|KB |, the number of literals in each
rule is at most polynomial in|KB |, andDD(KB) can be com-
puted in time exponential in|KB |.

3 Data Complexity of Reasoning inSHIQ
For an extensionally reducedSHIQ knowledge baseKB , an
upper bound for the data complexity follows from the reduc-
tion of KB to DD(KB). Before presenting the details, we
first discuss the intuition behind this result.

By Theorem 1,|DD(KB)| is exponential in|KB |. How-
ever, a closer inspection of the reduction algorithm reveals
that the exponential blowup is caused by the rules obtained
by saturatingALCHIQ-clauses of types 1 – 7, which corre-
spond to TBox and RBox, but not to ABox clauses. Hence,
the size of the rules ofDD(KB) is exponential in the size of
TBox and RBox; however, the size of the facts inDD(KB)
is linear in the size of the ABox. Therefore, data complex-
ity of checking satisfiability ofDD(KB) corresponds to data

complexity of checking satisfiability of a positive disjunctive
datalog program, and is thus inNP. Intuitively, this is due to
nice property ofSHIQ that TBox and RBox reasoning does
not “interfere” with ABox reasoning, i.e. all non-ground con-
sequences ofKB can be computed without taking the ABox
into account. Notice that this result holds even for binary
number coding.

Lemma 1 (Membership). For KB an extensionally reduced
SHIQ knowledge base, satisfiability ofKB can be decided
in non-deterministic polynomial time in|A|.

Proof. Let c be the number of constants,f the number of
function symbols in the signature ofΞ(KB), ands the num-
ber of facts inΞ(KB) (which is equal to the number of
facts inA). By definition ofλ, the number of constants in
DD(KB) is bounded byℓ1 = c + cf (cf accounts for con-
stants of the formaf ), and the number of facts inDD(KB)
is bounded byℓ2 = s + c + 2cf (c accounts for facts of the
formHU (a), onecf accounts for facts of the formSf (a, af ),
and the othercf accounts for facts of the formHU (af )). All
function symbols are introduced by skolemizing TBox con-
cepts∃R.C and≥ nR.C. Since|T | and|R| are constant,f
is also a constant, so bothℓ1 andℓ2 are linear in|A|.

Hence,|DD(KB)| can be exponential in|KB | only be-
cause the non-ground rules inDD(KB) are obtained from
exponentially many clauses of types 1 – 7. Since these clause
types do not contain ABox clauses, the number of clauses ob-
tained after saturation is obviously exponential in|T | + |R|
only. Since we assume that the latter is constant, both the
number of rules inDD(KB) and their length are bounded
by constants, so|DD(KB)| is polynomial in|A|, and can be
computed fromKB in time polynomial in|A|.

As KB and DD(KB) are equisatisfiable, the data com-
plexity of checking satisfiability ofKB follows from the
data complexity of checking satisfiability ofDD(KB), which
is NP-complete[Dantsinet al., 2001]: assumingDD(KB)
containsr rules and at mostv variables in a rule, the num-
ber of literals in a ground instantiationground(DD(KB))
is bounded byr · ℓv

1 + ℓ2 (in each rule, each variable can
be replaced inℓ1 possible ways). Assumingr and v are
constants,℘ = |ground(DD(KB))| is polynomial in |A|.
Satisfiability ofground(DD(KB)) can be checked by non-
deterministically generating an interpretation of size atmost
℘, and then checking whether it is a model. Both tasks can
be performed in polynomial time, so the overall algorithm is
obviously non-deterministically polynomial in|A|.

The hardness of the satisfiability checking problem follows
from [Schaerf, 1994, Lemma 4.2.7]. Actually, the lemma
shows co-NP-hardness of instance checking, by a reduction
of satisfiability of 2-2-CNF propositional formulae. The re-
duction produces an extensionally reduced ABox and a single
TBox axiom, so it applies in our case as well. Hence, we im-
mediately obtain the following result:

Theorem 2. LetKB be an extensionally reduced knowledge
base in any logic betweenALC and SHIQ. Then (i) de-
ciding KB satisfiability is data complete forNP and (ii ) de-
ciding whetherKB |= (¬)C(a) with |C| bounded is data
complete for co-NP.



4 A Horn Fragment of SHIQ
Horn logic is a well-known fragment of first-order logic
where formulae are restricted to clauses containing at most
one positive literal. The main limitation of Horn logic is its
inability to represent disjunctive information; however,its
main benefit is the existence of practical refutation proce-
dures. Furthermore, data complexity of query answering in
Horn logic without function symbols isP-complete[Dantsin
et al., 2001], which makes it appealing for practical usage.

Following this idea, in this section we identify a Horn frag-
ment ofSHIQ, where disjunction is traded forP-complete
data complexity. Roughly speaking, in Horn-SHIQ, only
axioms of the form

d
Ci ⊑ D are allowed, where eachCi has

the formA or ∃R.A, andD has the formA,⊥, ∃R.A, ∀R.A,
≥ nR.A or ≤ 1R. Whereas such a definition succinctly
demonstrates the expressivity of the fragment, in general it is
too restricting: e.g., the axiomA1⊔A2 ⊑ ¬B is not Horn, but
it is equivalent to Horn axiomsA1⊓B ⊑ ⊥ andA2⊓B ⊑ ⊥.
Similarly, a non-Horn axiomA ⊑ ∃R.(∃R.B) can be trans-
formed into Horn axiomsA ⊑ ∃R.Q andQ ⊑ ∃R.B by in-
troducing a new nameQ for the subconcept∃R.B. To avoid
dependency on such obvious syntactic transformations, we
give a rather technical definition of Horn-SHIQ.

We first adapt the notions of positions and polarity in first-
order formulae to DL. Aposition p is a finite sequence of
integers; the empty position is denoted withǫ. If a position
p1 is a proper prefix of a positionp2, then andp1 is abovep2,
andp2 is belowp1. For a conceptα, the subterm at a position
p, written α|p, is defined as follows:α|ǫ = α; (¬D)|1p =
D|p; (D1 ◦ D2)|ip = Di|p for ◦ ∈ {⊓,⊔} andi ∈ {1, 2};
α|1 = R andα|2p = D|p for α = ♦R.D and♦ ∈ {∃,∀}; and
α|1 = n, α|2 = R andα|3p = D|p for α = ⊲⊳ nR.D and
⊲⊳ ∈ {≤,≥}. A replacementof a subterm ofα at positionp
with a termβ is defined in the standard way and is denoted
asα[β]p. For a conceptα and a positionp such thatα|p is
a concept, thepolarity of α|p in α, denoted aspol(α, p), is
defined as follows:

pol(C, ǫ) = 1;
pol(C1 ◦ C2, ip) = pol(Ci, p) for ◦ ∈ {⊓,⊔}, i ∈ {1, 2};

pol(♦R.C, 2p) = pol(C, p) for ♦ ∈ {∃,∀};
pol(≥ nR.C, 3p) = pol(C, p);

pol(¬C, 1p) = −pol(C, p);
pol(≤ nR.C, 3p) = −pol(C, p).

Intuitively, pol(α, p) equals 1 ifα|p occurs inα under an even
number of explicit and implicit negations, and−1 otherwise.

Definition 1. In Table 3, we define two mutually recursive
functionspl+ andpl−, wheresgn(0) = 0 andsgn(n) = 1 for
n > 0. For a conceptC and a positionp of a subconcept inC,
let pl(C, p) = pl+(C|p) if pol(C, p) = 1, and letpl(C, p) =

pl−(C|p) if pol(C, p) = −1.
A conceptC is a Horn concept ifpl(C, p) ≤ 1 for each

positionp of a subconcept inC (including the empty position
ǫ). An extensionally reducedALCHIQ knowledge baseKB
is Horn if, for each axiomC ⊑ D ∈ KB , the concept¬C⊔D
is Horn. An extensionally reducedSHIQ knowledge base
KB is Horn if Ω(KB) is Horn.

Table 3: Definitions ofpl+ andpl−

D pl+(D) pl−(D)
⊤ 0 0
⊥ 0 0
A 1 0
¬C pl−(C) pl+(C)d

Ci maxi sgn(pl+(Ci))
P

i sgn(pl−(Ci))F
Ci

P
i sgn(pl+(Ci)) maxi sgn(pl−(Ci))

∃R.C 1 sgn(pl−(C))
∀R.C sgn(pl+(C)) 1

≥ n R.C 1
(n−1)n

2
+ n sgn(pl+(C))

≤ n R.C
n(n+1)

2
+ (n + 1)sgn(pl−(C)) 1

It is easy to see that, for a conceptC without complex sub-
concepts,pl+(C) yields the maximal number of positive lit-
erals in clauses obtained by clausifying∀x : πy(C, x). To
clausify a conceptC containing a complex subconcept at a
position p, one should consider ifC|p occurs inC under
positive or negative polarity. E.g., in¬(¬A ⊓ ¬B) the con-
ceptsA andB occur effectively positive, and⊓ is effectively
⊔. Hence,pl+(C|p) (pl−(C|p)) counts the number of pos-
itive literals used to clausifyC|p, provided thatC|p occurs
in C under positive (negative) polarity. The functionsgn(·)
takes into account thatC|p will be replaced inC by structural
transformation with only one concept name, even if clausifi-
cation ofC|p produces more than one positive literal. E.g.,
to clausifyC = ∀R.(D1 ⊔ D2), the structural transforma-
tion replacesD1 ⊔D2 with an new concept nameQ, yielding
C ′ = ∀R.Q; then clausifyingC ′ produces a clause with only
one positive literal. Now a conceptC is Horn if the maximal
number of positive literals obtained by clausifying subcon-
cepts ofC is at most one.

If a conceptC has a complex subconcept at positionp, spe-
cial care has to be taken in introducing a new nameα for C|p.
Consider the Horn conceptC = ∀R.D1 ⊔ ∀R.¬D2. To ap-
ply structural transformation toC, one might replace∀R.D1

and∀R.¬D2 with new concept namesQ1 andQ2, yielding
concepts¬Q1 ⊔ ∀R.D1, ¬Q2 ⊔ ∀R.¬D2 andQ1 ⊔Q2. The
problem with such a straight-forward application of structural
transformation is that a Horn conceptC was reduced to a non-
Horn conceptQ1 ⊔ Q2, so the structural transformation de-
stroyed Horn-ness. To remedy this, we modify the structural
transformation to replace eachC|p with a literal conceptα
such that clausifyingα and C|p requires the same number
of positive literals. In the above example, this would mean
that∀R.D1 should be replaced withQ1, but∀R.¬D2 should
be replaced with¬Q2, yielding concepts¬Q1 ⊔ ∀R.D1,
Q2 ⊔ ∀R.¬D2 andQ1 ⊔ ¬Q2, which are all Horn.

Although transitivity axioms are translated byπ into Horn
clauses, recall that the algorithm from Section 2 replaces
them with axioms of the form∀R.C ⊑ ∀S.(∀S.C). Now
pl+(∃R.¬C ⊔ ∀S.(∀S.C)) = 1 + pl+(C), so if pl+(C) > 0,
Ω(KB) is not a Horn knowledge base. Hence, the presence
of transitivity axioms can make a knowledge base non-Horn.

Definition 2. Let C be a concept andΛ a function mapping
C to the set of positionsp 6= ǫ of subconcepts ofC such that
C|p is not a literal concept and, for all positionsq belowp,



C|q is a literal concept. ThenDef(C) is defined recursively
as follows, whereα = Q if pl(C, p) > 0, andα = ¬Q if
pl(C, p) = 0, withQ a new atomic concept, and¬(¬Q) = Q:

• Def(C) = {C} if Λ(C) = ∅, or

• if Λ(C) 6= ∅, then choose somep ∈ Λ(C) and let

Def(C) =

�
{¬α ⊔ C|p} ∪ Def(C[α]p) if pol(C, p) = 1

{¬α ⊔ ¬C|p} ∪ Def(C[¬α]p) if pol(C, p) = −1

LetCls(ϕ) denote the set of clauses obtained by clausifying
a formulaϕ in the standard way and let

Cls(C) =
⋃

D∈Def(C) Cls(∀x : πy(D,x)).

For anALCHIQ knowledge baseKB , Ξ(KB) is the small-
est set of clauses such that: (i) for each role nameR ∈ NRa

,
Cls(π(R)) ⊆ Ξ(KB); (ii ) for each RBox or ABox axiomα in
KB , Cls(π(α)) ⊆ Ξ(KB); (iii ) for each TBox axiomC ⊑ D
in KB , Cls(¬C ⊔D) ⊆ Ξ(KB).

By [Nonnengart and Weidenbach, 2001], ∀x : πy(C, x)
and

∧
D∈Def(C) ∀x : πy(D,x) are equisatisfiable, soΞ(KB)

andπ(KB) are equisatisfiable as well.

Lemma 2. For a Horn-SHIQ knowledge baseKB , each
clause fromΞ(KB) contains at most one positive literal.

Proof. We first show the following property (*): for a Horn
conceptC, all concepts inDef(C) are Horn concepts. The
proof is by induction on the recursion depth inDef. The in-
duction base forΛ(C) = ∅ is obvious. Consider an applica-
tion of Def(C), whereC is a Horn concept andp a position
of a subconcept ofC, such thatC|p is not a literal concept
and, for each positionq below p, C|q is a literal concept.
Observe that in all cases, we havepl+(α) = pl(C, p) and
pl+(¬α) = 1 − pl(C, p). We now consider two cases, de-
pending onpol(C, p):

• pol(C, p) = 1. Now we havepl+(¬α ⊔ C|p) =

pl+(¬α) + pl+(C|p) = pl+(¬α) + pl(C, p) = 1. Fur-
thermore,pl(C, p) = pl(C[α]p, p), soC[α]p is Horn.

• pol(C, p) = −1. Now we havepl+(¬α ⊔ ¬C|p) =

pl+(¬α) + pl−(C|p) = pl+(¬α) + pl(C, p) = 1. Fur-
thermore,pl(C, p) = pl(C[¬α]p, p), soC[¬α]p is Horn.

Hence, each application of the operatorDef decomposes a
Horn conceptC into two simpler Horn concepts, so (*) holds.
Furthermore, for eachC|p or ¬C|p in the definition ofDef,
each immediate subconcept is a literal.

ForD ∈ Def(C), by definition ofπ from Table 1, it is easy
to see thatpl+(D) gives the maximal number of positive lit-
erals occurring in a clause fromCls(∀x : πy(D,x)). Thus, if
C is a Horn concept, all clauses fromCls(C) contain at most
one positive literal. Finally, clauses obtained by translating
RBox and ABox axioms ofΩ(KB) also contain at most one
positive literal.

As stated by the following lemma, a basic superposition
inference, when applied to Horn premises, produces a Horn
conclusion. The full proof of the lemma is given in[Hustadt
et al., 2004a].

Lemma 3. If all premises of an inference by basic super-
position contain at most one positive literal, then inference
conclusions also contain at most one positive literal.

Proof. (Sketch) Consider a resolution inference with clauses
A ∨ C and¬B ∨D, where all literals inC are negative and
at most one literal inD is positive. Obviously, the number
of positive literals in the conclusionCσ ∨ Dσ is equal to
the number of positive literals inD. Similarly, consider a
paramodulation inference from a clauses ≈ t ∨ C into a
clauseA ∨ D, where all literals inC and D are negative.
Obviously, the conclusionAσ[tσ]p ∨ Cσ ∨Dσ has only one
positive literal. Similar considerations hold for a paramodu-
lation into a negative literal.

By Lemma 2 and 3, ifKB is a Horn-SHIQ knowledge
base, thenDD(KB) is a non-disjunctive program. This is
enough for the following result:

Theorem 3. For KB an extensionally reduced Horn knowl-
edge base in any logic betweenALC andSHIQ, deciding
KB (un)satisfiability, and deciding whetherKB |= (¬)C(a)
with |C| bounded, isP-complete in|A|.

Proof. Membership inP is a consequence of the fact that
DD(KB) is a non-disjunctive program, whose satisfiability
can be checked in polynomial time[Dantsinet al., 2001].

For hardness, consider the well-knownP-complete prob-
lem of deciding whether a path from a nodea1 to a node
an in a graphG exists[Papadimitriou, 1993]. For a graph
G, let KBG be a knowledge base containing the assertions
edge(a, b) andedge(b, a) for each edge〈a, b〉 in G, the ax-
iomsC(a1) and¬C(an), and the TBox axiomC ⊑ ∀edge.C.
Obviously,a1 is reachable froman if and only if KBG is un-
satisfiable, thus implyingP-completeness of unsatisfiability
checking. The other inference problems can be reduced to
unsatisfiability as usual.

5 Discussion
To better understand the results from the previous two sec-
tions, we contrast them with well-known results for (disjunc-
tive) datalog[Dantsinet al., 2001]. Since datalog has been
successfully applied in practice, this analysis gives interest-
ing insights into the practical applicability of DLs.

Interestingly, the data complexity of datalog variants andof
correspondingSHIQ fragments coincide. Namely, without
disjunctions, aSHIQ knowledge base and a datalog program
always have at most one model, which can be computed in
polynomial time. With disjunctions, several models are pos-
sible, and this must be dealt with using reasoning-by-cases.
Intuitively, one needs to “guess” a model, which increases
data complexity toNP.

The key difference between datalog and DLs is revealed
by considering the effects that various parameters have on the
complexity. For a datalog programP and a ground atomα,
checking whetherP |= α can be performed in timeO(|P |v),
wherev is the maximal number of distinct variables in a rule
of P [Vardi, 1995]. Namely, the problem can be solved by
groundingP , i.e. by replacing, in each rule ofP , all variables
with individuals fromP in all possible ways. The size of the



grounding is bounded by|P |v, and propositional Horn logic
is P-complete, giving the above estimate. Now in general,v
is linear in |P |, so the size of the grounding is exponential;
thus, the combined complexity of datalog coincides with the
combined complexity ofSHIQ. However, in practical ap-
plicationsv is usually small, so it makes sense to assume it
is bounded. Under this assumption, datalog actually exhibits
polynomial behavior.

By an analogy, one might try to limit the length of con-
cepts in axioms or the number of variables. For the for-
mer, structural transformation can be used to polynomially
reduce “long” axioms with complex concepts to “short” ax-
ioms with just elementary concepts. For the latter, we note
that DLs are closely related to the two-variable fragment of
first-order logic: e.g.,ALC concepts correspond to first-order
formulae with only two variables regardless of nesting (see,
e.g.,[Baaderet al., 2003, ch. 4]). Therefore, the number of
variables in DL axioms is “intrinsically” bounded (assuming
a bound on the numbers occurring in number restrictions).
Hence, neither restriction actually reduces complexity.

We summarize our discussion as follows: assuming a
bound on the axiom length, but not on the number of axioms,
satisfiability checking in datalog is (non-deterministically)
polynomial, but in DLs it is exponential. The reason for thisis
that DLs such asALC provide existential and universal quan-
tification and general inclusion axioms, which can be used to
succinctly encode models with paths of exponential length.
The saturation step eliminates function symbols introduced
by existential quantification, but it also incurs an exponential
blowup in the program size to account for such paths. Hence,
although combined complexity of both datalog and DLs is
exponential, the reasons for this are different.

In [Baaderet al., 2003, ch. 5] two sources of complexity in
DLs have been identified: OR-branching caused by the exis-
tence of several possible models, and AND-branching caused
by the existence of paths within a model. Our results show
that OR-branching is not so “bad” as AND-branching: the
former incurs “only” an increase toNP, whereas the latter
incurs an increase in complexity to EXPTIME.

6 Conclusion
In many application of DLs, the TBox can be assumed to
be rather stable — like a database schema — whereas the
ABox is varying and possibly very large — like a database
extension. Hence, we study the complexity of reasoning in
expressive DLs measured in the size of the ABox. In partic-
ular, we show that checking satisfiability of aSHIQ knowl-
edge base isNP-complete, and that checking unsatisfiability
and instance checking are co-NP-complete in the size of the
ABox. Furthermore, we identify Horn-SHIQ, a fragment
of SHIQ which, analogously to Horn logic, does not allow
to represent disjunctive knowledge, and for which the basic
reasoning problems areP-complete in the size of theABox.

Our results indicate that reasoning with large ABoxes may
be feasible if the TBox is not “too” large and if we stay within
Horn-SHIQ. To verify these assumptions, we are currently
implementing our algorithms and plan to conduct a thorough
performance analysis.
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