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Abstract

State-of-the-art ontology languages are often not sufficiently
expressive to accurately represent domains consisting of ob-
jects connected in a complex way. As a possible remedy, in
our previous work we have proposed an extension of ontology
languages withdescription graphs. In this paper, we extend
this formalism by allowing for multiple graphs that can be
combined in complex ways, thus obtaining a powerful lan-
guage for modeling structured objects. By imposing a par-
ticular acyclicity restriction on the relationships between the
graphs, we ensure that checking satisfiability of knowledge
bases expressed in our language is decidable. We also present
a practical reasoning algorithm.

Introduction
Ontologies are currently used for conceptual modeling in a
wide range of applications. The Web Ontology Language
(OWL) is a commonly used ontology language, the for-
mal underpinning of which is provided by description lo-
gics (DLs) (Baaderet al. 2007). Most DLs are fragments
of first-order logic that describe a domain usingconcepts
(unary predicates),roles (binary predicates), andindividu-
als (constants). DL axioms are organized into the schema
(TBox) component that contains universal knowledge about
the domain, and the data (ABox) component that contains
facts. We assume the reader to be familiar with the syntax
and semantics of standard DLs (Baaderet al. 2007).

Ontologies often describestructured objects, which con-
sist of many parts connected in complex ways. This is
particularly the case in ontologies used in the clinical sci-
ences, such as FMA (Rosse & Mejino 2003), GALEN (Rec-
tor, Nowlan, & Glowinski 1993), and SNOMED (Spackman
2000). For example, FMA models the human hand as con-
sisting of the fingers, the palm, various bones, blood vessels,
and so on, all of which are highly interconnected. The re-
presentation of such objects poses well-known problems to
DLs, as DLs usually have a variant of thetree model pro-
perty(Vardi 1996): each satisfiable DL knowledge base has
a tree-like model. Thus, DLs cannot faithfully represent ob-
jects with nontree structures since they cannot enforce the
existence of only non-tree-like models.
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To address this problem, in our previous work we have
proposed an extension of DLs withdescription graphs
(Motik, Grau, & Sattler 2008), which can describe complex
relations between objects in a direct and intuitive way. We
have also shown that nontrivial ontologies can be semiauto-
matically remodeled as a DL KB extended with a descrip-
tion graph. To be able to focus on the core aspects of such
an extension, however, we have made a number of simpli-
fying assumptions: a knowledge base can contain only one
description graph; this graph can neither specialize otherax-
ioms nor be specialized itself; and the roles in the DL axioms
and the description graph must be strictly separated.

In this paper, we investigate possible ways of lifting these
restrictions. We first present a general formalism that ad-
dresses all the limitations, but which is undecidable. We
then identify a variant that allows for multiple graphs and
graph specializations, but that requires the relationships be-
tween the graphs to satisfy a particularacyclicitycondition.
For the case where the roles are separated and the DL is
SHOQ, we provide a decision procedure based on hyper-
tableau (Motik, Shearer, & Horrocks 2008). We believe that
this formalism can support a range of practical applications;
furthermore, the decision procedure can be easily extended
to SHOIQ and thus cover all of OWL DL. Lifting the res-
triction on role separation, however, leads to undecidabil-
ity if the DL provides for number restrictions (i.e., count-
ing). For such cases, our algorithm can be modified to detect
the inferences that can lead to nontermination and thus help
users avoid “dangerous” knowledge bases.

Problems with Modeling Complex Structures
Consider the problem of modeling the skeleton of the hu-
man hand, shown in Figure 1a. The carpal bones form the
base of the hand. The central part of the hand consists of the
metacarpal bones, one leading to each finger. The fingers
consist of phalanges: the proximal phalanges are connected
to the metacarpal bones, and all fingers apart from the thumb
contain a middle phalanx located between the proximal and
the distal phalanx. This structure can be conceptualized as
shown in Figures 1b–1e. Our goal is to describe this struc-
ture at theschema level, and thus obtain a “template” that
can be instantiated for each particular hand. Thus, as dis-
cussed in our previous work, our description should be part
of the TBox and not of the ABox.



(a) Anatomy of the Hand (b) Model of the Hand (Ghand )

(c) Model of a Finger (Gfinger ) (d) Model of the Thumb (Gthumb) (e) Model of the Index Finger (Gindex finger )

Figure 1: The Anatomy of the Hand and its Models

Statements such as “the palm is a part of the hand” are
typically represented in ontologies using DL axioms such as
Hand ⊑ ∃part .Palm . We have discussed in depth the limi-
tations of such a style of modeling in our previous work. In
short, most DLs enjoy a variant of the tree model property
(Vardi 1996). Thus, as well as having a model that corre-
sponds to the intended structure, DL axioms of the men-
tioned form also have an unintended model obtained by un-
raveling the intended structure into an infinite tree. This can
prevent us from drawing conclusions that depend on the non-
tree connections in the structure; for example, if the thumb
has a broken distal phalanx, then we should conclude that the
phalanx adjacent to the proximal phalanx is broken (since
this is the same broken phalanx). Furthermore, the unin-
tended tree models can be large, which causes performance
problems for reasoners that try to construct them.

Non-tree-like structures can be axiomatized using various
extensions of DLs with rules (Levy & Rousset 1998); how-
ever, the schema-level integration of DLs with rules is unde-
cidable even for basic DLs. The DLSROIQ (Kutz, Hor-
rocks, & Sattler 2006) provides for complex role inclusions
that can axiomatize a particular class of nontree structures;
however, they cannot describe arbitrarily shaped structures.

In our previous work (Motik, Grau, & Sattler 2008), we
have proposed to describe complex structures usingdescrip-

tion graphs, whose vertices and edges are labeled by con-
cepts and roles, respectively. For example, Figure 1d is a
description graph showing that each thumb has a proximal
and a distal phalanx that are attached to each other.1 De-
scription graphs and DLs complement each other in expres-
sive power: the former can be used to represent the structure
of arbitrarily connected objects that are naturally bounded
in size, whereas the latter can model possibly unbounded
but tree-like structures. For example, up to a certain levelof
granularity, a human body can be decomposed into a finite
number of subparts, the total number of which is naturally
bounded by the decomposition; hence, we can represent the
body using a description graph. In contrast, the statement
that each person has two parents who are persons does not
impose a natural bound on the number of people; hence, we
can represent such relationships using DLs, provided the re-
lationships are tree-shaped. To represent conditional aspects
of the domain, we also allow for arbitrary first-order rules
over the graph; for example, we can state that, if a bone
in the hand is fractured, then the hand is fractured as well.
This existing formalism, however, employs several simpli-
fying assumptions that can limit its applicability.

1The roleattached to is symmetric, so we do not orient the
edges labeled with it.



First, each knowledge base can contain only a single de-
scription graph. In our example, we would need to represent
the hand and its fingers in a single graph, which might result
in a description graph that is cluttered with detail and diffi-
cult to manage. In an extreme case, we would need to model
the entire body as a single graph, which would clearly be
cumbersome. Furthermore, reasoning with one monolithic
graph can adversely affect the performance of reasoning as
the reasoner must always consider the graph in its entirety.

Second, structured objects cannot be modeled at differ-
ent levels of abstraction, which is often needed in practice.
For example, we would like to describe the abstract struc-
ture common to all fingers as shown in Figure 1c, and then
specialize the general structure for, say, the index finger and
introduce the middle phalanx as shown in Figure 1e.

Third, our formalism requires the roles to be separated
into tree and graph ones: the former can be used only in the
DL axioms, whereas the latter can be used only in the graph
and the rules. This requires users to decide in advance which
parts of the domain will be modeled using graphs and which
using DLs, and it prevents them from using the same role to
represent both bounded and unbounded parts of the domain.

A Formalism for Complex Structures
We now present an extension of our previous work that ad-
dresses all three drawbacks outlined in the previous section.
Let DL be a general DL language defined over a set of
atomic conceptsNC , a set ofatomic rolesNR, and a set
of named individualsNI . The set ofliteral conceptsNL

is defined asNL = NC ∪ {¬A | A ∈ NC}. A TBoxT is a
finite set of axioms expressed inDL.

We start by extending the notion of a description graph.
Definition 1 (Description Graph). An ℓ-ary description
graphG = (V, E, λ, M) is a directed labeled graph where
(i) V = {1, . . . , ℓ} is a set ofℓ vertices, (ii ) E ⊆ V × V is
a set ofedges, (iii ) λ is a labeling function that assigns a
set of literal conceptsλ〈i〉 ⊆ NL to each vertexi ∈ V and
a set of atomic rolesλ〈i, j〉 ⊆ NR to each edge〈i, j〉 ∈ E,
and (iv) M ⊆ NC is a set ofmain conceptsfor G. For A
an atomic concept,VA is the set of vertices that containA
in their label; that is,VA = {k ∈ V | A ∈ λ〈k〉}.

We define the vertices ofG to be integers so that we can
use them as indices. The main difference from the definition
in our previous work is in the notion of a main concept. In
Figure 1, main concepts are framed with rounded rectangles.
Thus, the main concepts for the description graph in Figure
1b areHand andPalm , meaning that this graph defines the
structure of the hand and the palm. Intuitively, an instance
of a main concept implies the existence of a graph instance.
Definition 2 (Rule). Let NV be a set ofvariablesdisjoint
fromNI . Anatomis an expression of the formP (t1, . . . , tk),
whereti ∈ NI ∪ NV and (i) P is an atomic concept and
k = 1, or (ii ) P is an atomic role andk = 2, or (iii ) P is
the equality predicate≈ andk = 2, or (iv) P is an ℓ-ary
graphG andk = ℓ. An atom of the form≈(s, t) is written
ass ≈ t. A rule is an expression of the form(1), whereBi

andHj arebodyandheadatoms, respectively.

B1 ∧ . . . ∧ Bn → H1 ∨ . . . ∨ Hm(1)

W.l.o.g. we assume that the body does not contain≈. Vari-
ablesx andy are directly connectedin a rule r if they both
occur in a body atom ofr, and connectedis the transitive
closure of directly connected. A ruler is connectedif each
pair of variablesx andy occurring inr is connected inr.

Next, we introduce graph specializations to represent, for
example, the fact that the graph for the thumb specializes the
graph for the finger—that is,Gfinger ⊳ Gthumb .

Definition 3 (Graph Specialization). A graph specializa-
tion has the formG1 ⊳ G2, for G1 = (V1, E1, λ1, M1) and
G2 = (V2, E2, λ2, M2) description graphs withV1 ⊆ V2.

Next, we introduce axioms that allow us to properly con-
nect graph instances. For example,Ghand contains the ver-
tices 3 and 4 that represent the thumb and its proximal pha-
lanx, which correspond to the vertices 1 and 3 ofGthumb .
We can specify this correspondence using agraph alignment
of the formGhand [3, 4] ↔ Gthumb [1, 3]. Intuitively, this en-
sures that it is not possible forGhand andGthumb to share
the thumb without sharing the proximal phalanx as well.

Definition 4 (Graph Alignment). A graph alignmenthas the
form G1[u1, . . . , un] ↔ G2[w1, . . . wn], whereG1 andG2

are description graphs with sets of verticesV1 andV2, res-
pectively, andui ∈ V1 andwi ∈ V2 for 1 ≤ i ≤ n.

Finally, we define GBoxes and graph-extended KBs.

Definition 5 (Formalism). A graph box(GBox) is a tuple
G = (GG,GS ,GA) where GG, GS , and GA are finite sets
of description graphs, graph specializations overGG, and
graph alignments overGG, respectively. An ABox is a finite
set of assertionsC(a), R(a1, a2), a1 ≈ a2, a1 6≈ a2, and
G(a1, . . . , aℓ) (graph assertion), whereC ∈ NL, R ∈ NR,
G ∈ GG, anda(i) ∈ NI . A graph-extended knowledge base
is a 4-tupleK = (T ,P ,G,A) whereT is a TBox,P is a
program consisting of a finite number of connected rules,G
is a GBox, andA is an ABox.

Next, we define the semantics of the formalism.

Definition 6 (Semantics). An interpretationI = (△I , ·I)
consists of a nonempty interpretation domain△I and an in-
terpretation function·I that assigns to each atomic concept
A, atomic roleR, and ℓ-ary description graphG the sets
AI ⊆ △I , RI ⊆ △I ×△I , andGI ⊆ (△I)ℓ, respectively.

We assume thatDL defines a suitable notion of satisfac-
tion of a TBoxT in I, written I |= T . Satisfaction of an
ABoxA in I, written I |= A, is defined as usual. Satis-
faction of a ruler in I, written I |= r, is defined by treat-
ing r as a universally quantified material implication. Sat-
isfaction of a description graph, graph specialization, and
graph alignment is defined in Table 1. A knowledge base
K = (T ,P ,G,A) is satisfied inI, written I |= K, if all its
components are satisfied inI.

Thus, eachℓ-ary graphG is interpreted as anℓ-ary rela-
tion GI in which each tuple corresponds to an instance of
G. The key and disjointness properties ensure that no two
distinct instances ofG can share a vertex; for example, no
two distinct instances ofGhand can share the vertex that rep-
resents the thumb. This assumption is required for decida-
bility, and it seems reasonable in practical cases. The start



Table 1: Interpretation of GBox Elements

I |= G for G = (V, E, λ, M) anℓ-ary graph if

Key property:
∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧
〈y1, . . . , yℓ〉 ∈ GI ∧

∨

1≤i≤ℓ

xi = yi →
∧

1≤j≤ℓ

xj = yj

Disjointness property:
∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧
〈y1, . . . , yℓ〉 ∈ GI →

∧

1≤i<j≤ℓ

xi 6= yj

Start property: for each atomic conceptA ∈ M ,
∀x ∈ △I : x ∈ AI →
∃x1, . . . , xℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI ∧

∨

k∈VA

x = xk

Layout property:
∀x1, . . . , xℓ ∈ △I : 〈x1, . . . , xℓ〉 ∈ GI →∧

i∈V, B∈λ〈i〉

xi ∈ BI ∧
∧

〈i,j〉∈E, R∈λ〈i,j〉

〈xi, xj〉 ∈ RI

I |= G1 ⊳ G2 for Gi anℓi-ary description graph if

∀x1, . . . , xℓ2 ∈ △I : 〈x1, . . . , xℓ1 , . . . , xℓ2〉 ∈ GI
2 →

〈x1, . . . , xℓ1〉 ∈ GI
1

I |= G1[u1, . . . , un] ↔ G2[w1, . . . wn] for Gi anℓi-ary
description graph if, for each1 ≤ i ≤ n,

∀x1, . . . , xℓ1 , y1, . . . , xℓ2 ∈ △I : 〈x1, . . . , xℓ1〉 ∈ GI
1 ∧

〈y1, . . . , yℓ2〉 ∈ GI
2 ∧ xui

= ywi
→

∧

1≤j≤n

xuj
= ywj

property ensures that each instance of a main conceptA of
G occurs in an instance ofG. For example, sinceHand is a
main concept forGhand , each instance ofHand must occur
as vertex 1 in an instance ofGhand . Similarly, vertex 3 of
Ghand is labeled withThumb, which is the main concept
of Gthumb ; hence, each vertex 3 in an instance ofGhand is
also a vertex 1 in an instance ofGthumb (but not the other
way around). The disjunction in the start property handles
the case when a main concept labels multiple vertices. For
example, if we were to describe the hand and the five fingers
in a single graph without a distinction between the five fin-
gers, then, given an instance of aFinger , we would have to
guess which of the five fingers we are dealing with. Finally,
the layout property ensures that each instance ofG is labeled
and connected as specified in the definition ofG.

Graph specializations are interpreted as inclusions over
the graph relations; for example,Gfinger ⊳ Gindex finger

means that each instance of an index finger is also an in-
stance of a finger. The two graphs share all the vertices of
the more general graph, and the more specific graph can in-
troduce additional vertices. This is not essential for our de-
cidability results, but it simplifies the technical treatment.

Finally, graph alignments state that, whenever two graphs
share some vertex from the specified list, then they share all
other vertices from the list as well. For example, the align-
mentGhand [3, 4] ↔ Gthumb [1, 3] states that, if instances of
Ghand andGthumb share vertices 3 and 1, respectively, then
they must also share vertices 4 and 3, respectively.

Note that our semantics of description graphs corresponds
to implications of the form “if graph, then structure.” In cer-
tain applications, however, the converse implication might
be important in order to recognize graph instances in a struc-
ture; we call such inferencesgraph recognition. We do not
explicitly support graph recognition because implications of
the form “if structure, then graph” can be encoded in rules.

Decidability of Reasoning
The main reasoning problem for graph-extended KBs is sa-
tisfiability checking, as concept subsumption and instance
checking can be reduced to satisfiability as usual. This prob-
lem is clearly undecidable: the combination of simple DLs
with unrestricted Horn rules is already undecidable (Levy &
Rousset 1998). Proposition 1 shows that, even without rules,
the interaction between graphs and DL axioms leads to un-
decidability. The proposition can be proved in a simpler way
and withT in ALCF ; however, the presented proof can be
easily extended to acyclic GBoxes, defined shortly.

Proposition 1. Checking satisfiability ofK = (T , ∅,G, ∅)
with T in ALCIF andG = (GG, ∅, ∅) is undecidable.

Proof. Let Kgrid be the following graph-extended KB.
The GBox G contains the graphsGi = (Vi, Ei, λi, Mi),
1 ≤ i ≤ 4, defined as follows. EachGi contains nine ver-
ticesVi = {1, 2, 3, 4, 5, 6, 7, 8, 9} and the following labeled
edges, where an edge between verticesi andj labeled with

an atomic roleR is represented asi
R
−→ j:

1
H
−→ 2 2

H
−→ 3 4

H
−→ 5 5

H
−→ 6 7

H
−→ 8 8

H
−→ 9

1
V
−→ 4 4

V
−→ 7 2

V
−→ 5 5

V
−→ 8 3

V
−→ 6 6

V
−→ 9

The labels of the following vertices of eachGi are not
empty, and all other vertices are labeled with∅:

λi〈2〉 = {Ai} λi〈4〉 = {Bi} λi〈3〉 = {Ci} λi〈7〉 = {Di}

Finally,Mi = {Ai, Bi}. TheALCIF TBox T contains the
following axioms:

⊤ ⊑ ≤ 1 H ⊤ ⊑ ≤ 1 H− ⊤ ⊑ ≤ 1 V ⊤ ⊑ ≤ 1 V −

C1 ⊑ ∃H.A2 C2 ⊑ ∃H.A1 C3 ⊑ ∃H.A4 C4 ⊑ ∃H.A3

D1 ⊑ ∃V.B3 D2 ⊑ ∃V.B4 D3 ⊑ ∃V.B1 D4 ⊑ ∃V.B2

⊤ ⊑ ∃R.A1

Kgrid axiomatizes the existence of an infinite grid where
horizontal and vertical links are represented using the roles
H andV , respectively. By the last axiom inT , the exten-
sion ofA1 is not empty, so an instance ofG1 exists in which
vertices 3 and 7 is labeled withC1 andD1, respectively. By
C1 ⊑ ∃H.A2, vertex 3 ofG1 is connected with an instance
of A2, so an instance ofG2 exists. Thus, vertex 3 ofG1 is
connected to vertex 2 ofG2 by H . Furthermore, vertex 1 of
G2 is also connected to vertex 2 ofG2 by H so, sinceH is
inverse-functional, vertex 1 ofG2 must be the same as ver-
tex 3 ofG1. But then, sinceV is functional, vertices 6 and 9
of G1 must be the same as vertices 4 and 7 ofG2, respecti-
vely. Thus, instances ofG1 andG2 are aligned into adjacent
fragments of a grid. By applying the same argument induc-
tively in the horizontal and vertical directions, one can see
that the grid extends indefinitely in both directions.



For each instance of the undecidable DOMINO TILING
problem (Börger, Grädel, & Gurevich 1996),Kgrid can
straightforwardly be extended with axioms that exactly en-
code the tiling of the grid, which implies our claim.

Proposition 2 shows that, even without a DL TBox, the
interaction between graphs and rules leads to undecidability.
Proposition 2. Checking satisfiability ofK = (∅,P ,G, ∅)
with P a Horn program andG = (GG, ∅, ∅) is undecidable.

Proof (Sketch).(Levy & Rousset 1998) have proved unde-
cidability of the extension of a DL with rules by using a DL
axiom to axiomatize the existence of an infiniteR-chain and
then encoding the HALTING problem using rules. LetG be
a GBox containing the following description graphs:

G1 :
V1 = {1, 2} M1 = {A1}

1
R
−→ 2λ1〈1〉 = {A1} λ1〈2〉 = {A2}

G2 :
V2 = {1, 2} M2 = {A2}

1
R
−→ 2λ2〈1〉 = {A2} λ2〈2〉 = {A1}

If either A1 or A2 is not empty,G implies the existence of
an infiniteR-chain, which allows us to adapt the encoding
by (Levy & Rousset 1998) with minor changes.

We next explore ways of ensuring decidability. As the
proof of Proposition 1 suggests, undecidability arises be-
cause, due to number restrictions, the structures whose ex-
istence is implied by DL axioms can interact with the struc-
tures whose existence is implied by description graphs. Def-
inition 7 provides a way to restrict this interaction.

Definition 7 (Role-Separated KBs). A graph-extended KB
K = (T ,G,P ,A) is role separatedif the set of atomic roles
NR can be split into disjoint subsetsNRt

andNRg
of tree

and graph roles, respectively, such that description graphs
in G and rules inP refer only to graph roles, and axioms in
T refer only to tree roles.

In a role-separated knowledge baseK, the structures con-
structed using graphs and DLs are strictly separated. There-
fore, if K is satisfiable, it has a model consisting of atree
backboneandgraph instances: the former is a tree-shaped
structure that is axiomatized using DL axioms, whereas the
latter are arbitrarily connected fragments embedded into the
backbone (Motik, Grau, & Sattler 2008).

Proposition 2 suggests that undecidability is also partly
due to the fact that the GBox alone can axiomatize existence
of an unbounded sequence of graphs. As we observed in our
previous work, however, structured objects often exhibit a
natural bound on their size. For example, the hand can be
decomposed in a finite number of parts, each of which can
be further finitely decomposed into subparts. Effectively,we
obtain a hierarchy of parts, the leaves of which determine
the total number of objects that we need to represent. This
intuition suggests the following definition.
Definition 8 (Acyclic GBox). A GBoxG = (GG,GS ,GA)
is acyclic if a strict (i.e., an irreflexive and transitive, but
not necessarily total) order≺ on GG exists such that, for
eachG = (V, E, λ, M) and G′ = (V ′, E′, λ′, M ′) in GG,
if G 6� G′, then, for eachA ∈ M ′ and ⊳∗ the reflexive–
transitive closure of⊳ in GS ,

• if G′
⊳∗ G, then¬A ∈ λ〈i〉 for eachi ∈ V \ V ′;

• if G′ 6⊳∗ G, then¬A ∈ λ〈i〉 for eachi ∈ V .

Intuitively, G1 ≺ G2 means thatG2 is subordinate to
G1. In our example, we would haveGhand ≺ Gfinger and
Ghand ≺ Gthumb , since the structures of the finger and the
thumb are subordinate to the structure of a hand, respecti-
vely. We would also haveGfinger ≺ Gthumb , since a finger
is more general than the thumb. The conditions in Definition
8 state that, ifG2 is subordinate toG1, then the existence of
G2 cannot imply the existence ofG1. For example, since the
thumb is subordinate to the hand, no vertex in an instance of
Gthumb should ever become labeled with a main concept of
Ghand and thus imply a cycle.

Adding¬Hand and¬Palm to all vertices ofGthumb can
be tedious and impractical. The problem can be addressed
in practice by letting users specify the graph hierarchy≺ in
an ontology editor, which would then generate the required
negative assertions automatically.

The proof of Proposition 1 holds even ifG is made acyclic
by adding¬Ai and¬Bi, 1 ≤ i ≤ 4 to each vertex of a graph
Gj with j 6= i. This suggests that the interaction between
number restrictions and graphs is a fundamental problem.
Therefore, in the following section we present a reasoning
algorithm for acyclic role-separated graph-extended KBs.

We also show that, ifDL does not allow for number
restrictions and transitivity, our algorithm provides a deci-
sion procedure forrule separatedKBs (c.f. Definition 9), in
whichT andG can share roles, provided thatG is acyclic.

Definition 9 (Rule-Separated KBs). A graph-extended KB
K = (T ,G,P ,A) is rule separatedif the set of atomic roles
NR can be split into disjoint subsetsNRDL

andNRr
of DL-

rolesand rule roles, respectively, such thatT refers only to
DL-roles, andP refers only to rule roles.

Finally, if no weakening ofDL is acceptable, our algo-
rithm can be used as a semidecision procedure. Moreover,
the algorithm can notify the user when it detects an inter-
action between the tree backbone and graph instances, thus
signalling that no termination guarantee can be given.

Reasoning Algorithm
In our previous work, we have presented a satisfiability
checking algorithm for graph-extended KBs with a single
description graph and withDL beingSHIQ. The DL un-
derpinning OWL, however, isSHOIQ—an extension of
SHIQ with singleton concepts callednominals. The hyper-
tableau algorithm forSHOIQ without description graphs
(Motik, Shearer, & Horrocks 2008) is technically involved.
Therefore, we focus here on the case whenDL is SHOQ,
as this allows us to discuss the novel aspects due to multiple
graphs and nominals without overloading the presentation
with technical detail. This algorithm can be easily extended
to SHOIQ by combining the mentioned existing results.

Role-Separated Acyclic KBs
Let K = (T ,P ,G,A) be a role-separated graph-extended
KB in whichT is expressed inSHOQ andG is acyclic. Our
algorithm first preprocessesT into a set of rulesΞT (T ) and



an ABoxΞA(T ). This step can be seen as an application of
the structural transformation (Plaisted & Greenbaum 1986)
adapted to DLs, where complex concepts are replaced with
fresh atomic ones, followed by the translation of certain con-
cepts into first-order logic. Due to lack of space, we leave
the technical details to (Motik, Shearer, & Horrocks 2008,
Section 4.1). In the rest of this paper, we assume that, for
each named individuala ∈ NI , the set of atomic concepts
NC contains a distinctnominal guard conceptOa. These
concepts are used internally by our algorithm and are not
allowed to occur in any input knowledge bases. The prepro-
cessing produces HT-rules, which have the following form.

Definition 10 (HT-Rule). AnHT-rulehas the form(2) where
Ri, Si, andTi are atomic roles,Ai andBi are atomic con-
cepts,Oai

are nominal guard concepts,Ci andDi are either
atomic but not nominal guard concepts or they are of the
form≥ n R.A or ≥ n R.¬A for A an atomic but not a no-
minal guard concept, and eachyi andyai

in the consequent
occurs in an atom in the antecedent.

∧
Ai(x) ∧

∧
Ri(x, yi) ∧

∧
Bi(yi) ∧

∧
Oai

(yai
) →∨

Ci(x) ∨
∨

Di(yi) ∨
∨

Si(x, yi) ∨
∨

Ti(x, yai
) ∨∨

x ≈ yai
∨

∨
yi ≈ yaj

∨
∨

yi ≈ yj

(2)

The atoms of the formx ≈ yai
andyi ≈ yaj

stem from
nominals; for example,C ⊑ {a} is translated into a rule
C(x) ∧ Oa(ya) → x ≈ ya and an assertionOa(a); such a
translation ensures that the rules do not contain individu-
als. The atomsyi ≈ yj stem from the translation of number
restrictions; for example,⊤ ⊑ ≤ 1 R.⊤ is translated into
R(x, y1) ∧ R(x, y2) → y1 ≈ y2. In the rest of this paper,
we use∃R.C as an abbreviation for≥ 1 R.C.

Our algorithm takes a set of rulesR, a GBoxG, and an
ABox A, and it decides satisfiability of(R,G,A). Defi-
nition 11 specifies the conditions onR andG that ensure
termination of the algorithm. It is straightforward to see that
the set of rulesR = ΞT (T ) ∪ P is admissible.

Definition 11 (Admissibility). A set of rulesR and a GBox
G are admissibleif G is acyclic, the set of atomic rolesNR

can be split into disjoint subsets oftree rolesNRt
andgraph

rolesNRg
, andR can be split into disjoint subsetsRt and

Rg of treeand graphrules such that (i) eachr ∈ Rt is an
HT-rule in which all roles are tree roles, (ii ) eachr ∈ Rg

is connected and all roles in it are graph roles, and (iii ) all
roles in each graph inG are graph roles.

We next describe the main aspects of our algorithm by
means of an example. LetK1 = (T1,P1,G1,A1) be the
graph-extended KB whereT1 = {C ⊑ ∃R.A, B ⊑ {b}},
P1 = ∅, A1 = {C(a)}, andG1 contains the following de-
scription graphG1:

G1 :
V1 = {1, 2, 3} M1 = {A}

λ1〈1〉 = {A} λ1〈2〉 = {B} λ1〈3〉 = {C}

1
S
−→ 2 2

T
−→ 3 1

U
−→ 3

Preprocessing produces the ABoxΞA(T1) = {Ob(b)} and
the following set of rulesΞT (T1):

C(x) → (∃R.A)(x)(3)

B(x) ∧ Ob(yb) → x ≈ yb(4)

LetR1 = ΞT (T1) andA1
1 = ΞA(T1) ∪ A1. It is easy to see

thatR1 andG1 are admissible:R is the only tree role;S, T ,
andU are the graph roles; and the rules inR1 are HT-rules.
Note thata andb are named individuals.

The hypertableau algorithm consists of derivation rules
shown in Table 2. By successively applying these rules to
R1, G1, andA1

1, the algorithm tries to construct an abstrac-
tion of a model of(R1,G1,A1

1).
The Hyp-rule tries to match all atoms from the body or

a rule to assertions in an ABox; if this is successful, an as-
sertion from the rule’s head is then derived nondeterministi-
cally. Thus, givenC(a) and (3), theHyp-rule derives

A2
1 = A1

1 ∪ {∃R.A(a)}.(5)

To satisfy the assertion∃R.A(a), the∃-rule introduces a
fresh individuals; sinceR is a tree role,s is called atree
successorof a. To keep track of the successor relation, our
algorithm represents individuals as finite strings; thus,s is
represented asa.τ1 whereτ1 is a tree symbol. Thus, the
application of the∃-rule derives

A3
1 = A2

1 ∪ {R(a, a.τ1), A(a.τ1)}.(6)

A is a main concept ofG1, so the assertionA(a.τ1) must
occur in an instance ofG1 at vertex 1. Thus, theG∃-rule
derives the ABoxA4

1.

A4
1 = A3

1 ∪ {G1(a.τ1, a.τ1.γ1, a.τ1.γ2)}(7)

Here, a.τ1.γ1 and a.τ1.γ2 are freshgraph successorsof
a.τ1 where γ1 and γ2 are graph symbols. The GL-rule
then connects all the vertices in the instance ofG1. For
brevity, we do not show all the derived assertions; however,
note that they includeB(a.τ1.γ1) and C(a.τ1.γ2). Thus,
the same inferences can be repeated: theHyp-rule derives
∃R.A(a.τ1.γ2), the ∃-rule derivesR(a.τ1.γ2, a.τ1.γ2.τ1)
andA(a.τ1.γ2.τ1), theG∃-rule derives the graph assertion
G1(a.τ1.γ2.τ1, a.τ1.γ2.τ1.γ1, a.τ1.γ2.τ1.γ2), and theGL-
rule connects the vertices. LetA5

1 be the resulting ABox.
Clearly, unrestricted application of the∃- and G∃-rule

would result in a nonterminating algorithm. To ensure ter-
mination, our algorithm appliesblockingin the same say as
the standard tableau algorithms. Roughly speaking,a.τ1 and
a.τ1.γ2.τ1 occur inA5

1 in the same concepts, so the former
individual blocks the latter—that is, the∃- andG∃-rule are
not applied to (the successors of) the blocked individual.

A tree individual (e.g.,a.τ1) and all of its graph succes-
sors (e.g.,a.τ1.γ1 anda.τ1.γ2) are said to form acluster;
furthermore, all named individuals (e.g.,a and b) and all
of their graph successors (e.g.,a.γ1, a.γ2, b.γ1, andb.γ2)
form a single cluster as well. The ABoxA5

1 can thus be
seen as consisting of tree fragments with embedded clus-
ters, where each graph assertion contains individuals from
the same cluster. This property, formalized in Lemma 1, is
a direct consequence of the separation of roles between the
TBox and the GBox, and it holds the key to proving termi-
nation. Intuitively, the size of the tree part of each ABox
is bounded due to blocking, and the size of each cluster is
bounded due to acyclicity of the GBox; since the total num-
ber of individuals is bounded, the number applications of
each derivation rule is bounded as well.



Table 2: Derivation Rules of the Hypertableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ R,
2. a mappingσ : NV → NA exists such that
2.1σ(x) is not indirectly blocked for eachx ∈ NV ,
2.2σ(Ui) ∈ A for each1 ≤ i ≤ m, and
2.3σ(Vj) 6∈ A for each1 ≤ j ≤ n,

then A1 = A∪ {⊥} if n = 0; and
Aj := A∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≈-rule

If s ≈ t ∈ A ands 6= t
then A1 := mergeA(s → t) if t is a named

individual or if s is a descendant oft; and
A1 := mergeA(t → s) otherwise.

G⊥-rule

If 1. {G(s1, . . . , sℓ), G(t1, . . . , tℓ)} ⊆ A, and
2. si = tj for somei 6= j

then A1 := A∪ {⊥}.
G⊳ -rule

If 1. G1 ⊳ G2 ∈ GS ,
2. G2(s1, . . . , sℓ2) ∈ A, and
3. G1(s1, . . . , sℓ1) 6∈ A

then A1 := A∪ {G1(s1, . . . , sℓ1)}.
G↔-rule

If 1. G1[u1, . . . , un] ↔ G2[w1, . . . wn] ∈ GA,
2. {G1(s1, . . . , sℓ1), G2(t1, . . . , tℓ2)} ⊆ A,
3. sui = twi for some1 ≤ i ≤ n, and
4. {suj ≈ twj | 1 ≤ j ≤ n} 6⊆ A

then A1 := A∪ {suj ≈ twj | 1 ≤ j ≤ n}.

≥-rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked inA, and
3. there are no individualsu1, . . . , un such that

{R(s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,
thenA1 := A∪ {R(s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}

wheret1, . . . , tn are fresh pairwise distinct tree successors ofs.
⊥-rule

If s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A
thenA1 := A∪ {⊥}.

G≈-rule

If 1. {G(s1, . . . , sℓ), G(t1, . . . , tℓ)} ⊆ A, and
2. si = ti for some1 ≤ i ≤ ℓ
3. {sj ≈ tj | 1 ≤ j ≤ ℓ} 6⊆ A

thenA1 := A∪ {sj ≈ tj | 1 ≤ j ≤ ℓ}.
G∃-rule

If 1. A(s) ∈ A such thatA ∈ M for someG = (V, E,λ, M) ∈ GG,
2. s is not blocked inA, and
3. for eachvi ∈ VA, no individualsu1, . . . , uℓ exists such that

G(u1, . . . , uℓ) ∈ A anduvi = s
then givenVA of the form{v1, . . . , vn}, for each1 ≤ i ≤ n derive

Ai := A ∪ {G(t1, . . . , tℓ)} wheretvi = s and all other
tk are fresh graph individuals from the same cluster ass.

GL-rule

If 1. G(s1, . . . , sℓ) ∈ A with G = (V, E, λ,M), and
2. {A(si) | A ∈ λ〈i〉} ∪ {R(si, sj) | R ∈ λ〈i, j〉} 6⊆ A

thenA1 := A∪ {A(si) | A ∈ λ〈i〉} ∪ {R(si, sj) | R ∈ λ〈i, j〉}.

Note: ℓ(i) is the arity ofG(i), A is a generalized ABox, andNA is the set of individuals occurring inA.

Nominals, however, introduce a slight complication. Con-
sider again the ABoxA5

1: from B(a.τ1.γ1), Ob(b), and
(4), the Hyp-rule derivesa.τ1.γ1 ≈ b. The ≈-rule then
prunesa.τ1.γ1 (i.e., it removes all graph and tree succes-
sors ofa.τ1.γ1) and replaces it withb; pruning is neces-
sary to avoid the so-called “yo-yo” problem (Baader & Sat-
tler 2001). The resulting ABox thus contains the graph
assertionG1(a.τ1, b, a.τ1.γ2), in which b is not from the
same cluster asa.τ1 anda.τ1.γ2. This is remedied through
graph cleanup: the mentioned assertion is replaced with
G1(b.γ1, b, b.γ2), whereb.γ1 andb.γ2 are fresh individuals
from the cluster ofb. The next time a graph assertion of
the formG1(s, b, t) is derived, the key property allows us to
reuse the individualsb.γ1 andb.γ2 for s andt in the cleanup.
This allows us to establish a bound on the number of indi-
viduals introduced by the cleanup and prove termination.

Definition 12 (Hypertableau Algorithm).
Generalized Individuals. Let T andΓ be countably infi-

nite sets oftreeand graph symbols, respectively, such that
T, Γ, andNI are all mutually disjoint. Ageneralized indi-
vidual is a finite string of symbolsb.α1. . . . .αn such that
n ≥ 0, b ∈ NI , αi ∈ T ∪ Γ for 1 ≤ i ≤ n, andαi ∈ Γ im-
pliesαi+1 6∈ Γ. If n ≥ 1 andαn ∈ T (resp.αn ∈ Γ), the
individual is called atree(resp.graph) individual.

Successors and Predecessors. A tree or graph individual
x.α is asuccessorof x, predecessoris the inverse of succes-

sor, anddescendantandancestorare the transitive closures
of successor and predecessor, respectively.

Cluster. Individualss and t are from the same cluster
if (i) each individual in{s, t} is either named or a graph
successor of a named individual, or (ii ) both s and t are
graph successors of the same tree individual, or (iii ) one
individual is a graph successor of the other individual.

Generalized ABox. In the rest of this paper, we allow
ABoxes to contain generalized individuals and the asser-
tion ⊥ that is false in all interpretations, and we takea ≈ b
(a 6≈ b) to also stand forb ≈ a (b 6≈ a).

Input ABox. An ABox that contains only named individ-
uals is called aninput ABox.

Single Anywhere Blocking. A concept isblocking-
relevantif it is of the formA, ≥ n R.A, or ≥ n R.¬A, for
A an atomic concept andR an atomic role. Thelabelof an
individuals in an ABoxA is defined as follows:

LA(s) = {C | C(s) ∈ A andC is blocking-relevant}

We assume that we are given some (arbitrary) strict order<
on the generalized individuals such thatt < s whenevert
is an ancestor ofs.2 By induction on<, each individuals
in A is assigned a status as follows: (i) a tree individuals
is directly blocked bya tree individualt if t is not blocked,
t < s, andLA(s) = LA(t); (ii ) s is indirectly blockedif it

2In practice, this can be the order of individual introduction.



has a predecessor that is blocked; and (iii ) s is blockedif it
is either directly or indirectly blocked.

Pruning. The result ofpruning an individual s in an
ABoxA is the ABox obtained fromA by removing all as-
sertions that contain a descendant ofs.

Graph Cleanup. LetA be an ABox containing an asser-
tion G(u1, . . . , uℓ) where someui anduj are not from the
same cluster,ui is of the forms or s.γm for γm ∈ Γ ands
a tree or named individual,uj is of the formt or t.γn for
γn ∈ Γ andt a tree or named individual, ands is a named
individual or an ancestor oft. A cleanupof uj is obtained
fromA by pruninguj and then replacing it everywhere inA
with the individualt defined as follows:

• if A containsG(v1, . . . , vℓ) such thatui = vi and vj is
from the same cluster asui, thent = vj ;

• otherwise,t is a fresh graph successor ofs.

A graph cleanupof A is obtained fromA by repeatedly
applying cleanup to individuals inA as long as possible.

Merging. The ABoxmergeA(s → t) is obtained fromA
by prunings, replacings with t in all assertions, and then
applying a graph cleanup.

Clash. An ABoxA contains aclashif ⊥ ∈ A; otherwise,
A is clash-free.

Derivation Rules. Table 2 specifiesderivation rulesthat,
given a clash-free ABoxA, a set of rulesR, and a GBoxG,
derive the ABoxes〈A1, . . . ,An〉. In theHyp-rule, σ maps
NV to the individuals inA, andσ(U) is obtained fromU by
replacing each variablex with σ(x).

Rule Precedence. TheG∃-rule is applicable to an ABox
only if the⊥-, ≈-, G⊥-, G≈-, G⊳-, and GL-rule are not
applicable to the ABox.

Derivation. A derivationfor a set of admissible rulesR,
a GBoxG, and an input ABoxA is a pair (T, ρ) whereT
is a finitely branching tree andρ labels the nodes ofT with
ABoxes such that (i) ρ(ǫ) = A for ǫ the root of the tree, and
(ii ) for each nodet, if one or more derivation rules are ap-
plicable toR, G, and ρ(t), then t has childrent1, . . . , tn
such that the ABoxes〈ρ(t1), . . . , ρ(tn)〉 are exactly the re-
sults of applying one (arbitrarily chosen, but respecting the
rule precedence) applicable derivation rule toR, G, and
ρ(t). The derivation issuccessfulif T contains a leaf node
labeled with a clash-free ABox.

To show soundness, completeness, and termination of the
hypertableau algorithm, we first prove the following lemma,
which shows that all ABoxes labeling a node in a derivation
are of a particular shape.

Lemma 1. Each ABoxA′ labeling a node in a derivation for
an admissible set of rulesR, GBoxG, and an input ABoxA
satisfies the following properties, fora andb named individ-
uals,u a generalized individual,γi, γj ∈ Γ, andτi, τj ∈ T.

1. Each R(s, t) ∈ A′ with R a tree role is of the form
R(a, b), R(u, u.τi), or R(u, a).

2. Eachs ≈ t ∈ A′ is of the formu ≈ u, a ≈ u, a.γi ≈ b.γj ,
u.τi ≈ u.τj , u ≈ u.γi, or u.γi ≈ u.γj .

3. In each G(s1, . . . , sℓ) ∈ A′ and eachU(s1, s2) ∈ A′

with U a graph role, all individualssi are from the same

cluster; in the latter case,s1 ands2 occur in some graph
assertion inA′.

4. In eachOa(s) ∈ A′ for Oa a nominal guard concept, the
individuals is named.

5. For each tree individualtn occurring in A′, we have
{R0(s0, t0), . . . , Rn(sn, tn)} ⊆ A′ such that (i) s0 is a
named individual, (ii ) eachti is a tree successor ofsi,
(iii ) for each1 ≤ i ≤ n, the individualsi is from the same
cluster asti−1, and (iv) Ri is a tree role.

Proof. The proof is by induction on rule applications. The
induction base is trivial. Assume that the claim holds for an
ABox and consider the inferences deriving someA′.

(⊥-rule) The ABoxA′ trivially satisfies Conditions 1–5.
(G⊥-,G⊳-, G↔-, G≈-, andGL-rule) These rules are al-

ways applied to individuals in the same cluster, soA′ satis-
fies Conditions 1–5.

(G∃-rule) All ti are from the same cluster ass, soA′ sat-
isfies Conditions 1–5.

(≥-rule) Theti are tree successors ofs andC is not a
nominal guard concept, soA′ satisfies Conditions 1–5.

(Hyp-rule) Consider an application of theHyp-rule to a
ruler ∈ R. No rule contains nominal guard concepts in the
consequent, soA′ satisfies Condition 4. Ifr is a graph rule, it
is connected, so all variables inr are matched to individuals
in the same cluster andA′ satisfies Conditions 1–5.

If s ≈ t is derived by instantiatingx ≈ ya or yi ≈ ya in a
tree ruler, the antecedent ofr containsOa(ya). This atom
is matched to an assertionOa(t) in which, by Condition 4,t
is named. Hence,s ≈ t satisfies Condition 2.

If s ≈ t is derived by instantiatingyi ≈ yj in a tree rule
r, the antecedent ofr contains atomsR(x, yi) andS(x, yj)
that are matched to assertionsR(u, s) andS(u, t) satisfying
Condition 1. Clearly,s ≈ t then satisfies Condition 2.

If R(s, t) is derived by instantiatingR(x, yi) in a tree
rule r, the antecedent ofr contains an atomS(x, yi) that is
matched to assertionS(s, t) satisfying Condition 1. Clearly,
R(s, t) satisfies Condition 1 as well.

If R(s, t) is derived by instantiatingR(x, yai
) in a tree

ruler, the antecedent ofr contains an atomOai
(yai

) that is
matched to an assertionOai

(t) in which, by Condition 4,t
is named. Hence,R(s, t) satisfies Condition 1.

(≈-rule) Consider the types of equalities to which the rule
can be applied. Fora.γi ≈ b.γj , u ≈ u.γi, or u.γi ≈ u.γj,
the rule simply replaces an individual with another individ-
ual from the same cluster. Foru ≈ u.γi, the rule replaces
u.γi with u. For u.τi ≈ u.τj , the rule prunes one indi-
vidual, thus removing all individuals from its cluster, and
then merges the pruned individual into the other individual.
Clearly,A′ satisfies Conditions 1–5.

If the ≈-rule is applied toa ≈ u, thenu is pruned and
merged intoa. Replacingu with a in someR(b, u) or b ≈ u
producesR(b, a) or b ≈ a, respectively, which satisfy Con-
ditions 1 or 2. Replacingu with a in G(s1, . . . , sn) where
si = u produces at first an assertion that does not satisfy
Condition 3; however, the graph cleanup then replaces each
sj with a graph individual from the same cluster asa. For
U(s1, s2) with U a graph role,s1 ands2 occur in a graph
assertion, so graph cleanup is applied tos1 and/ors2.



Theorem 1 summarizes the properties of our algorithm.

Theorem 1. For an admissible set of rulesR and GBoxG,
and an input ABoxA,

1. if (R,G,A) is satisfiable, then each derivation forR, G,
andA is successful,

2. if a successful derivation forR, G, and A exists, then
(R,G,A) is satisfiable, and

3. each derivation forR, G, andA is finite.

Proof of Claim 1.The claim follows from the following
property: if (R,G,A) is satisfiable and〈A1, . . . ,An〉 are
the result of applying a derivation rule toR, G, andA, then
(R,G,Ai) is satisfiable for some1 ≤ i ≤ n. The proof is
straightforward for all but the≈-rule, in which the graph
cleanup step is nonstandard. LetI be a model of(R,G,A)
and consider an application of the≈-rule tos ≈ t, produc-
ing an ABoxA1. Let A′ be the ABox obtained fromA by
prunings and then replacing it witht. SinceI |= s ≈ t, we
havesI = tI , so clearlyI |= A′. The ABoxA1 is obtained
from A′ by graph cleanup, which can additionally replace
some individualsui with vi. If vi is fresh, we can extend
I to obtain a model ofA1; otherwise,vi occurs inA′ in a
graph assertion for the same graph so, by the key property
from Definition 6,uI

j = vI
j for eachj. Clearly,(R,G,A1)

is satisfiable.

Proof of Claim 2.ForA′′ a clash-free ABox labeling a leaf
of a derivation forR, G, andA, let A′ be obtained from
A′′ by removing (i) all assertions that contain an indirectly
blocked individual and (ii ) all assertions that contain a di-
rectly blocked individual and a graph role or a description
graph. The ABoxA′ satisfies Lemma 1.

Let Λ be the set of all individuals inA′. We define the
function [s] on eachs ∈ Λ as follows: ifs is blocked inA′

by s′, then [s] = s′; otherwise,[s] = s. Furthermore, for
each tree individuals ∈ Λ that is blocked by a tree individ-
ual s′ and foru1, . . . , uk all graph individuals inA′ from
the same cluster ass′, we introduce fresh graph individuals
v1, . . . , vk and define[·] on them as[vi] = ui. Let Υ be the
set of all individuals introduced in this way.

We now define an interpretationI as follows, for each
atomic conceptA, tree roleR, graph roleU , and graphG:

△I = Λ ∪ Υ

sI = s for eachs ∈ △I

AI = {s | for eachs ∈ △I such thatA([s]) ∈ A′}

RI = {〈s, t〉 | for all s, t ∈ △I such thatR([s], t) ∈ A′}

U I = {〈s, t〉 | for all s, t ∈ △I such thatU([s], [t]) ∈ A′}

GI = {〈s1, . . . , sℓ〉 | for all s1, . . . , sℓ ∈ △I such that
G([s1], . . . , [sℓ]) ∈ A′}

We now show thatI |= (R,G,A′). For eachs ≈ t ∈ A′,
since the≈-rule is not applicable toA′, we haves = t, so
I |= s ≈ t. For eachs 6≈ t ∈ A′, since the⊥-rule is not ap-
plicable toA′, we haves 6= t, soI |= s 6≈ t.

Consider each≥ n R.C(s) ∈ A′. By the definition of
blocking, we have≥ n R.C([s]) ∈ A′; since the≥-rule is
not applicable toA′, individualsu1, . . . , un exists that sat-
isfy the precondition of the rule; but then, by the definition

of I, we have〈s, ui〉 ∈ RI for each1 ≤ i ≤ n anduI
i 6= uI

j

for each1 ≤ i < j ≤ n, soI |= ≥ n R.C(s).
Consider a tree ruler of the form (2) andσ a mapping

of variables to△I such thatI |= σ(Bi) for each body atom
Bi of r. Let σ′ be a mapping defined asσ′(x) = [σ(x)],
σ′(yi) = σ(yi), andσ′(yai

) = σ(yai
). By the definition of

I and the structure ofr, thenσ′(Bi) ∈ A′. Since theHyp-
rule is not applicable tor, A′, andσ′, thenσ′(Hj) ∈ A′ for
some head atomHj of r. But then, by the definition ofI
and the structure ofr, we haveI |= σ(Hj).

Consider a graph ruler of the form (1) andσ a mapping
of variables to△I such thatI |= σ(Bi) for each1 ≤ i ≤ n.
Let σ′ be a mapping defined asσ′(z) = [σ(z)] for each
variable z occurring in r. By the definition ofI, then
σ′(Bi) ∈ A′. Since theHyp-rule is not applicable tor, A′,
andσ′, thenσ′(Hj) ∈ A′ for some1 ≤ j ≤ m. But then,
by the definition ofI, we haveI |= σ(Hj). The proof thatI
satisfies conditions of Definition 6 is completely analogous
and we omit it for the sake of brevity.

If α ∈ A but α 6∈ A′, then some named individuals inα
have been merged into other named individuals, producing
an assertionα′ ∈ A′. Clearly,I can be extended to a model
of (R,G,A) by interpreting the merged individuals.

Proof of Claim 3.Let (T, ρ) be a derivation forR, G, and
A. We show that, in the course of the derivation, (1) each
derivation rule can be applied to a set of assertions only
once; (2) the number of tree ancestors of each tree individ-
ual is bounded; (3) theG∃-rule can be applied for the same
graphG to (different) assertions containing the same indi-
vidual s at most twice; (4) the number of graph individuals
introduced in each cluster is bounded; and (5) the number of
graph individuals introduced by graph cleanup is bounded.
Together, all these properties imply that (6) the number of in-
dividuals introduced in the course of a derivation is bounded.
By (6), the number of rule applications is bounded as well,
which implies our claim.

(1) This claim holds in exactly the same way as in the case
of standard (hyper)tableau algorithms: if, for some deriva-
tion nodet ∈ T , a derivation rule is applied to a subset of the
assertions ofρ(t), then the assertions are added toρ(t) that,
for each descendant nodet′ of t, prevent the reapplication of
the same derivation rule to the same assertions inρ(t′).

(2) Let c be the number of atomic concepts occurring in
R, G, andA. By Condition 5 of Lemma 1, the ancestors
of each tree individual are present inρ(t) for somet ∈ T .
Thus, if a tree individualt has more than℘ = 2c tree ances-
tors, two ancestors with the same individual label must exist,
sot is necessarily blocked inρ(t).

(3) If theG∃-rule is applied for the sameG to two asser-
tions containings, two assertions of the formG(. . . , s, . . .)
are introduced in whichs occurs at positionsi andj, and
i 6= j. But then, due to rule precedence, theG⊥-rule derives
⊥ before theG∃-rule is applied tos for the third time.

(4) Let ≺ be the order on the graphs inG that satisfies
conditions of Definition 8. Assume that, whenever it in-
troduces an individualt by an application of the rule to
an individuals and a graphG, theG∃-rule assigns a finite



string of description graphsω(t) to t such that (i) ω(t) = G
if s is a tree or named individual, and (ii ) ω(t) = ω(s).G
otherwise. By induction on the applications of theG∃-
rule, we show that the following property (‡) holds: for
each graph individualt occurring in an ABoxA′ label-
ing a derivation node,A′ contains a graph assertion of the
form Gn(u1, . . . , uℓn

) with ui = t for somei; furthermore,
for ω(t) = G1. . . . .Gn−1.Gn, we haveG1 ≺ . . . ≺ Gn−1

and, if Gn−1 6≺ Gn, then A′ contains a graph assertion
Gn(u′

1, . . . , u
′
ℓn

) such thatu′
j = t andi 6= j. Property (4)

then follows straightforwardly from (3), (‡), and the fact that
≺ is acyclic and finite.

Assume that (‡) holds for some ABoxA′, theG∃-rule is
applied to an assertionA(s) ∈ A′ and a description graph
G′ = (V ′, E′, λ′, M ′) with A ∈ M ′, and a fresh graph in-
dividual t is introduced. Ifs is a tree or named indi-
vidual, (‡) holds trivially, so assume thats is a graph
individual such thatω(s) = G1. . . . .Gn−1.Gn. By the
rule precedence, theG⊥-rule is not applicable toA′, so
s does not occur inA′ in two graph assertions involv-
ing Gn; thus, Gn−1 ≺ Gn. By (‡), a graph assertion
Gn(u1, . . . , uℓn

) ∈ A′ exists such thatui = s for some
1 ≤ i ≤ ℓn, whereGn = (Vn, En, λn, Mn). If Gn ≺ G′,
then (‡) holds trivially, so assume thatGn 6� G′. The
GL-rule is not applicable toA′, so A′ contains the lay-
out of Gn for the verticesu1, . . . , uℓn

. Since theG∃-rule
is applicable toA′, we have⊥ 6∈ A′. Since the⊥-rule is
not applicable toA′, we have¬A(s) 6∈ A′, which implies
¬A 6∈ λn〈i〉. If G′ 6⊳∗ Gn, then the second condition of Def-
inition 8 requires¬A ∈ λn〈i〉, which is a contradiction, so
assume thatG′

⊳∗ Gn. The first condition of Definition 8 and
¬A 6∈ λn〈i〉 imply 1 ≤ i ≤ ℓ′. TheG⊳-rule is not applica-
ble toA′ by the rule precedence, soG′(u1, . . . , uℓ′) ∈ A′.
But then, theG∃-rule introduces another graph assertion
G′(u′

1, . . . , u
′
ℓ′) such thatu′

j = s andj 6= i, so (‡) holds.
(5) From the proof of Lemma 1, we can see that graph

cleanup can only be applied to a set of graph assertions
Θ = {Gi(u1

i, . . . , uℓ
i)} when someuj

i is replaced with a
named individuala. The total number of individuals in each
Θ is bounded by (4), so the number of setsΘ different up
to the renaming of individuals is bounded as well. By the
first case in the definition of graph cleanup, for each differ-
entΘ, uj

i, anda, fresh graph individuals can be introduced
only once. Since the numbers of differentΘ, uj

i, anda are
bounded, the number of graph individuals introduced by the
graph cleanup is bounded as well.

(6) Because of (1), the≥-rule can be applied to each indi-
vidual at most once for each assertion≥ n R.C(s). By (1)
and (4), the number of successors ofs introduced by the≥-
andG∃-rule is bounded. By (2) the number of descendants
introduced by these rules is bounded as well.

LetK = (T ,P ,G,A) be a role-separated graph-extended
knowledge base in whichT is expressed inSHOQ andG
is acyclic. Furthermore, letΞT (T ) andΞA(T ) be the set
of rules and the ABox obtained by the preprocessing step,
R = ΞT (T ) ∪ P, andA′ = A ∪ ΞA(T ). Since preprocess-
ing does not affect satisfiability,K is equisatisfiable with
(R,G,A′). Furthermore, by inspecting the preprocessing

transformation, it is straightforward to see thatR andG are
admissible. This implies the following theorem.
Theorem 2. Checking satisfiability of a role-separated
graph-extended knowledge baseK = (T ,P ,G,A) in which
T is expressed inSHOQ andG is acyclic is decidable.

Rule-Separated Acyclic KBs
The proofs of Claims 2 and 3 of Theorem 1 crucially depend
on the fact that each ABox labeling a derivation node satis-
fies Lemma 1—that is, it is tree-shaped. Role separation is
one possible way of achieving this property; however, as we
discuss next, it can also be achieved using Definition 9.
Theorem 3. Checking satisfiability of a rule-separated
graph-extended KBK = (T ,G,P ,A) in which T is ex-
pressed inALCHO andG is acyclic is decidable.

Proof. LetR = ΞT (T ) ∪ P , and letNRDL
andNRr

be the
disjoint subsets ofNR satisfying Definition 9. SinceK is
rule-separated,R can be split into disjoint subsetsRDL and
Rr such that the rules in each of them refer only to roles
in NRDL

andNRr
, respectively. Furthermore, sinceT does

not allow for number restrictions, each rule inRDL is of the
form (2) but without atoms of the formyi ≈ yj . Clearly,K
and(R,G,A ∪ ΞA(T )) are equisatisfiable.

We now generalize Lemma 1 to the property (♮): each
ABox A′ labeling a node in a derivation forR, G, and
A∪ ΞA(T ) satisfies the following properties, fora, b ∈ NI ,
u a generalized individual,γi, γj ∈ Γ, andτi, τj ∈ T.

1. Each R(s, t) ∈ A′ with R a DL-role is of the form
R(a, b), R(u, u.τi), R(u, a), or R(s1, s2) for s1 ands2

from the same cluster.
2. Each equalitys ≈ t ∈ A′ is of the formu ≈ u, a ≈ u,

a.γi ≈ b.γj, u ≈ u.γi, or u.γi ≈ u.γj.
3. In eachG(s1, . . . sℓ) ∈ A′ andU(s1, s2) ∈ A′ with U a

rule role, allsi are from the same cluster; in the latter
case,s1 ands2 occur in a graph assertion inA′.

4. Conditions 4 and 5 hold as in Lemma 1, with the differ-
ence that eachRi in Condition 5 is a DL-role.

The proof of (♮) is analogous to the proof of Lemma 1.
One difference is that, sinceRDL does not contain atoms
of the formyi ≈ yj , the ABoxA′ cannot contain atoms of
the formu.τi ≈ u.τj; thus, the “graph part” ofA′ cannot
interact with the “tree part” ofA′ by the≈-rule. Since the
rules inRr contain only atoms with roles inNRr

, they can
be applied only to the individuals in the same cluster; hence,
each assertion derived by theHyp-rule satisfies Conditions
2 and 3 of (♮). Unlike in Lemma 1, the rules inRDL can
be applied to both the “tree” and the “graph part” ofA′, but
they still derive atoms satisfying Condition 1 of (♮).

SinceG is acyclic and (♮) holds, the claims of Theorem 1
hold forR defined as above in essentially the same way as
in Theorem 1; the only difference is in the proof of Claim 2
in the definition of the interpretation of a DL-roleR:

RI = {〈s, t〉 | for all s, t ∈ △I such thatR([s], t) ∈ A′

ands andt are not from the same graph cluster} ∪
{〈s, t〉 | for all s, t ∈ △I such thatR([s], [t]) ∈ A′

ands andt are from the same graph cluster}



Satisfiability ofK can thus be decided by applying the hy-
pertableau algorithm to(R,G,A ∪ ΞA(T )).

Rule-Separated KBs with an Expressive DL
Propositions 1 and 2 suggest that achieving decidability
might be difficult if no weakening ofDL is allowed. IfK
is rule-separated, however, the hypertableau algorithm pro-
vides a semidecision procedure. The following theorem re-
lies on the standard notion of fair derivations. Intuitively, in
a fair derivation, no application of an inference rule can be
“postponed” infinitely often. Since derivations can now be
infinite, we adjust the notion of a successful derivation.

Definition 13. A derivation(T, ρ) for R, G, andA is unfair
if a brancht1, t2, . . . ofT exists such that, for infinitely many
nodesti1 , ti2 , . . . on that branch, the same derivation rule is
applicable to the same assertions in eachρ(tij

). Fair is the
opposite of unfair.

A derivation(T, ρ) is successfulif T contains a branch
t1, t2, . . . such that eachρ(ti) is clash-free.

Theorem 4. Let K = (T ,G,P ,A) be a rule-separated
graph-extended KB withT expressed inSHOQ, and let
R = ΞT (T ) ∪ P. If K is satisfiable, then each derivation
for R, G, andA ∪ ΞA(T ) is successful. Conversely, if a fair
and successful (but not necessarily finite) derivation forR,
G, andA ∪ ΞA(T ) exists, thenK is satisfiable.

Proof. The first claim holds in exactly the same way as
Claim 1 of Theorem 1. For the second claim, assume that
a successful derivation(T, ρ) for R, G, andA ∪ ΞA(T )
exists. The main difference to the proof of Theorem 3
is that (T, ρ) is not necessarily finite. Lett1, t2, . . . be
the branch ofT such that eachρ(ti) is clash-free, and let
A′ =

⋃
i

⋂
j≥i ρ(tj). Since(T, ρ) is fair, no derivation rule

is applicable toA′. SinceK is rule-separated, each ABox
ρ(t) labeling a nodet ∈ T satisfies property (♮) from the
proof of Theorem 3; clearly, thenA′ satisfies (♮) as well. But
then, a model ofR, G, andA ∪ ΞA(T ) can be constructed
in exactly the same way as in Theorem 3.

Let K be a graph-extended KB as specified in Theorem 4
in whichG is acyclic. By Proposition 1, checking satisfiabi-
lity of K is undecidable; however, we believe that the hyper-
tableau algorithm is “likely” to terminate in practice evenif
K is satisfiable. The ABoxes generated by the algorithm sat-
isfy property (♮) from the proof of Theorem 3, which enables
the usage of blocking; thus, the algorithm can terminate even
if T is cyclic. In contrast, general first-order model-building
calculi are unlikely to terminate ifT is cyclic. Nontermi-
nation can occur only due to merging of graph individuals
from different clusters.

Conclusion and Future Work
We have presented an expressive formalism that extends
DLs with description graphs, which allow one to model ar-
bitrarily connected, and not just tree-like structures.

An open problem is to determine the computational com-
plexity of graph-extended knowledge bases. Tableau algo-
rithms generally do not provide worst-case behaviors, so

a different approach will be needed. We conjecture that
adding one description graph does not increase the complex-
ity of EXPTIME-complete DLs, but adding several descrip-
tion graphs increases the complexity to NEXPTIME. An-
other open problem is to see whether the restrictions of The-
orem 3 can be relaxed. We conjecture that the usage of in-
verse roles in Proposition 1 is strictly necessary for the un-
decidability result, and that Theorem 3 can be extended to
SHOQ. To confirm or refute these conjectures will be part
of our future work.

The main practical challenge is to evaluate the utility of
our formalism in applications. To facilitate this we will ex-
tend the remodeling algorithm from our previous work to
support multiple graphs, extend the Protégé ontology edi-
tor3 to support description graphs, and apply our formalism
and tools in practical scenarios.
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