
Structured Objects in OWL: Representation and

Reasoning

Boris Motik† Bernardo Cuenca Grau†

Ulrike Sattler‡

†Computing Laboratory,

University of Oxford, UK

‡Department of Computer Science,

University of Manchester, UK

February 11, 2008

Abstract

Applications of semantic technologies often require the represen-
tation of and reasoning with structured objects—that is, objects com-
posed of parts connected in complex ways. Although OWL is a general
and powerful language, its class descriptions and axioms cannot be used
to describe arbitrarily connected structures. An OWL representation
of structured objects can thus be underconstrained, which reduces the
inferences that can be drawn and causes performance problems in rea-
soning. To address these problems, we extend OWL with description
graphs, which allow for the description of structured objects in a simple
and precise way. To represent conditional aspects of the domain, we
also allow for SWRL-like rules over description graphs. Based on an
observation about the nature of structured objects, we ensure decid-
ability of our formalism. We also present a hypertableau-based decision
procedure, which we implemented in the HermiT reasoner. To eval-
uate its performance, we have extracted description graphs from the
GALEN and FMA ontologies, classified them successfully, and even
detected a modeling error in GALEN.

1 Introduction

Ontologies are nowadays used in many disciplines, such as biology [27],
medicine [9], geography [10], astronomy [6], and agriculture [28]. A de facto
standard for ontology modeling is the Web Ontology Language (OWL),1

1In this paper, we focus on OWL DL—the most expressive of the decidable languages
of the OWL family.

1

so most ontologies in these domains were either developed from the start
using OWL or translated into OWL from other formalisms. OWL is an
expressive language capable of supporting diverse applications. Its logical
underpinning is given by description logics (DLs), which provide OWL with
a clean model-theoretic semantics, well-understood reasoning problems, and
powerful reasoners.

Structured objects—that is, objects composed of other, possibly interre-
lated objects—pose some well-known problems to OWL and DLs [4, 1, 26].
Such objects abound, for example, in molecular biology and the clinical sci-
ences. Clinical ontologies such as GALEN [29], the Foundation Model of
Anatomy (FMA) [24], the National Cancer Institute (NCI) Thesaurus [11],
and SNOMED CT [30] are currently being used in large-scale applications.
For example, SNOMED CT is being used to annotate patients’ medical
records in the National Programme for Information Technology (NPfIT) by
the UK’s National Health Service. All of these ontologies describe structured
objects. For example, GALEN models the heart as consisting of the left and
the right ventricles, the two atria, and the valves, all of which participate in
complex relationships, such as “the two ventricles of a heart are separated
by the intraventricular septum.”

OWL can be used to describe domains consisting of an arbitrary or even
infinite number of objects, but it only allows for axioms that can connect
these objects in a certain tree-like manner. In other words, OWL enjoys (a
variant of) the tree model property [32]: if an OWL ontology has a model,
then it has a model with a tree-like (or forest-like) relational structure as
well. This property is responsible for the decidability of OWL reasoning
[32]; however, it prevents sufficiently accurate description of complex struc-
tured objects. This is because schema-level axioms in OWL cannot describe
arbitrary relational structures. Consider the previously mentioned diamond-
shaped structure involving a heart, its right and left ventricles, and a septum.
In addition to a model that corresponds to the structure in which the ob-
jects are connected as expected, each schema-level description of the heart
in OWL will also have a model where one heart has two septa, each as a part
of the left and the right ventricle, respectively. Thus, certain consequences
of the diamond-shaped structure cannot be drawn from its formulation in
OWL. For example, we cannot conclude that, if the right ventricle has a
perforated septum, the left ventricle also has a perforated septum.

To address this lack of expressive power, in Section 4 we propose an
extension of OWL for modeling structured objects using description graphs.
Such graphs consist of vertices labeled with atomic concepts and edges la-
beled with atomic roles. According to our proposed model-theoretic seman-
tics, these graphs are class-level statements that specify general patterns of
connections between objects. In addition, we allow for SWRL-like rules [12]
to enable the description of conditional statements about graphs.

2

Extending DLs with axioms that can enforce arbitrary structures eas-
ily leads to undecidability [16]. Our formalism, however, is decidable be-
cause it can represent only structured objects whose number of parts is
bounded. In practice, structured objects are usually modeled up to a cer-
tain level of granularity, which naturally determines this bound. In Section
5, we present a reasoning algorithm for the case where the OWL part is
expressed in SHIQ [14]; it should, however, be possible to extended the
algorithm to SHOIQ [13] and hence cover OWL DL. We thus obtain a
powerful, decidable, and practicable language that combines two comple-
mentary formalisms: unbounded but tree-like structures can be described
using standard OWL axioms, and the naturally bounded structured parts
can be described using arbitrarily connected description graphs and rules.

We have implemented our algorithm in the DL reasoner HermiT [21].2

The validation of our approach is currently difficult due to the lack of test
data. Thus, we have devised an algorithm that extracts description graphs
from OWL ontologies, and have applied it to GALEN and FMA. The result-
ing ontologies should be treated with caution; however, domain experts have
confirmed that substantial parts of the ontologies reflect the actual human
anatomy. Our transformation can thus be a starting point for a more com-
prehensive remodeling using description graphs. Finally, the ontologies are
sufficiently complex to allow us to estimate the practicability of reasoning.
We present the transformation algorithm in Section 6.

In Section 7, we discuss the results obtained by classifying the trans-
formed ontologies. Our transformation allowed us to discover a modeling
error in GALEN, which we take as indication that our formalism can indeed
be useful in practice. Furthermore, classification times for the transformed
ontologies are of similar orders of magnitude as for the original ontologies,
even though our formalism adds considerable expressive power to OWL.

2 Preliminaries

In this section we recapitulate some well-known definitions of description
logics and rules.

2.1 Description Logics

In order not to overload the technical presentation with details, in this paper
we present the reasoning algorithms for the DL SHIQ [14]; we believe,
however, that it is straightforward to extend our approach to the more
expressive DL SHOIQ [13] that provides the logical underpinning of OWL
DL. Furthermore, with minor modifications our approach can be used with
DLs that provide for n-ary relations such as DLR [5].

2http://web.comlab.ox.ac.uk/oucl/work/boris.motik/HermiT/

3

A SHIQ signature is a triple Σ = (NC , NR, NI) consisting of mutually
disjoint sets of atomic concepts NC , atomic roles NR, and individuals NI .
The set of roles is NR ∪ {R

− | R ∈ NR}. For R ∈ NR, let Inv(R) = R−

and Inv(R−) = R. The set of concepts is the smallest set containing ⊤ (the
top concept), ⊥ (the bottom concept), A (atomic concept), ¬C (negation),
C ⊓ D (conjunction), C ⊔ D (disjunction), ∃R.C (existential restriction),
∀R.C (universal restriction), ≥ n R.C (at-least restriction), and ≤ n R.C
(at-most restriction), for A ∈ NC , C and D concepts, R a role, and n a
nonnegative integer.

A TBox T is a finite set of role inclusions R ⊑ S for R and S roles,
transitivity axioms Trans(R) for R a role, and general concept inclusions
(GCIs) C ⊑ D for C and D concepts. Let ⊑∗

T be the reflexive transitive
closure of {R ⊑ S, Inv(R) ⊑ Inv(S) | R ⊑ S ∈ T }. A role R is transitive in
T if a role S exists such that S ⊑∗

T R, R ⊑∗
T S, and either Trans(S) ∈ T or

Trans(Inv(S)) ∈ T ; R is simple if no transitive role S exists with S ⊑∗
T R.

The following property must be satisfied for each TBox T : in each concept
≥ n R.C and ≤ n R.C occurring in T , the role R must be simple.3

An ABox A is a finite set of assertions for the form C(a) (concept as-
sertion), R(a, b) (role assertion), a ≈ b (equality assertion), and a 6≈ b
(inequality assertion), where C is a concept, R is a role, and a and b are
individuals. A SHIQ knowledge base K is a pair (T ,A).

An interpretation for K is a pair I = (△I , ·I), where △I is a nonempty
set and ·I assigns an element aI ∈ △I to each individual a, a set AI ⊆ △I

to each atomic concept A, and a relation RI ⊆ △I ×△I to each atomic role
R. The function ·I is extended to concepts and roles as shown in the upper
part of Table 1. I is a model of K, written I |= K, if it satisfies all axioms
of K as shown in the bottom part of Table 1. The basic inference problem
for SHIQ is checking satisfiability of K—that is, checking whether a model
of K exists. Other interesting inference problems, such as checking concept
subsumption or query answering, can be reduced to satisfiability checking
using well-known transformations [2].

Without loss of generality, we can assume that the ABox of each SHIQ
knowledge base K is extensionally reduced—that is, its assertions contain
only possibly negated atomic concepts and atomic roles. This is so because
we can rewrite each assertion R−(a, b) as R(b, a), and we can rewrite each
assertion C(a) where C is not a possibly negated atomic concept as AC(a)
and AC ⊑ C for AC a fresh concept. This transformation clearly preserves
satisfiability of K and is linear in the size of K.

The negation-normal form of a concept C, written nnf(C), is the concept
equivalent to C containing negations only in front of atomic concepts; ¬̇C
is an abbreviation for nnf(¬C). Each concept can be brought into negation-

3This restriction is necessary to make reasoning decidable [14].

4

Table 1: Model-Theoretic Semantics of SHIQ

Semantics of Roles and Concepts

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
⊤I = △I

⊥I = ∅
(¬C)I = △I \ CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(≤ n S.C)I = {x | ♯{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}
(≥ n S.C)I = {x | ♯{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}

Semantics of Axioms

I |= C ⊑ D if CI ⊆ DI

I |= R ⊑ S if RI ⊆ SI

I |= Trans(R) if 〈x, y〉 ∈ RI ∧ 〈y, z〉 ∈ RI → 〈x, z〉 ∈ RI

I |= C(a) if aI ∈ CI

I |= R(a, b) if 〈aI , bI〉 ∈ RI

I |= a ≈ b if aI = bI

I |= a 6≈ b if aI 6= bI

normal form in linear time using well-known transformations [2]. The DL
ALCHIQ is obtained from SHIQ by disallowing transitive roles.

2.2 Rule Extensions of DLs

The basic principles for extending DLs with rules were laid down in [16, 7,
12]. Let Σ = (NC , NR, NI) be a SHIQ signature, and let NV be a count-
ably infinite set of variables disjoint from NI . A term is an individual or a
variable. A predicate is a concept, a role, or the equality predicate ≈. Con-
cepts have arity one, and roles and ≈ have arity two. An atom over Σ has
the form P (t1, . . . , tn), where P is a predicate of arity n, and ti, 1 ≤ i ≤ n
are terms. Atoms involving the equality predicate are usually written in the
infix notation as t1 ≈ t2. A rule r is an expression of the form

B1 ∧ . . . ∧Bn → H1 ∨ . . . ∨Hm (1)

where n ≥ 0, m ≥ 0, and Bi and Hj are atoms. The set of atoms
{B1, . . . , Bn} is called the antecedent, and the set of atoms {H1, . . . ,Hm} is
called the consequent. A program P is a finite set of rules. A rule of the
form (1) with m = 0 is usually written as B1 ∧ . . . ∧Bn → ⊥ and is said to

5

Table 2: The Semantics of Rules

I, µ |= C(s) if sI,µ ∈ CI

I, µ |= R(s, t) if 〈sI,µ, tI,µ〉 ∈ RI

I, µ |= s ≈ t if sI,µ = tI,µ

I, µ |=
∧m

i=1 Ui →
∨n

j=1 Vn if I, µ |= Vj for some 1 ≤ j ≤ n whenever

I, µ |= Ui for each 1 ≤ i ≤ m

I |=
∧m

i=1 Ui →
∨n

j=1 Vn if I, µ |=
∧m

i=1 Ui →
∨n

j=1 Vn for all mappings µ

I |= P if I |= r for each rule r ∈ P

have the empty consequent. A rule is safe if each variable in the rule occurs
in some antecedent atom.

Let I = (△I , ·I) be an interpretation and µ : NV → △
I a mapping of

variables to elements of △I . Furthermore, let aI,µ = aI for an individual
a and xI,µ = µ(x) for a variable x. Satisfaction of an atom, a rule, and a
program P in I and µ is defined as shown in Table 2.

Without loss of generality, we can assume that no rule contains an atom
x ≈ s in the antecedent, since such a rule is equivalent to the one obtained by
replacing x with s. Finally, A ∧ s 6≈ t→ B is equivalent to A→ B ∨ s ≈ t
and A→ B ∨ s 6≈ t is equivalent to A ∧ s ≈ t→ B; therefore, to simplify the
presentation, we do not allow the rules to contain inequality atoms.

3 Modeling Structured Objects using Logic

To understand the limitations of modeling structured objects in OWL, let
us consider modeling the anatomy of the heart shown in Figure 1. This
example has been derived by reconstructing the intention behind the axioms
describing the heart in GALEN. We next consider possibilities for a logical
interpretation of the figure.

Figure 1 could be represented in OWL using an ABox A. ABox asser-
tions, however, represent concrete data; thus, A would represent the struc-
ture of one particular heart. In this paper, we are concerned with modeling
structured objects at the schema level—that is, we want to describe the
general structure of all hearts. We should be able to instantiate such a de-
scription many times. For example, if we say that each patient has a heart,
then, for each concrete patient, we should instantiate a different heart, each
of the structure shown in Figure 1. This clearly cannot be achieved if we
describe the structure of the heart using ABox assertions. Consequently,
GALEN, SNOMED CT, and NCI contain only schema-level axioms and no
ABox assertions.

6

Figure 1: The Structure of the Heart

We can give a logical, schema-level interpretation to Figure 1 by treating
vertices as concepts and arrows as participation constraints specifying rela-
tionships between concepts. For example, LeftSideOfHeart and AorticValve
are concepts and the arrow between them states that each left side of the
heart has an aortic valve as a structural component. Participation con-
straints can be represented using existential quantification, which can be
encoded in OWL using axioms of the form (2). Let K be a DL knowledge
base containing the following axioms.

LeftSideOfHeart ⊑ ∃hasStructuralComponent .AorticValve (2)

AorticValve ⊑ ∃hasAlphaConnection .LeftVentricle (3)

LeftSideOfHeart ⊑ ∃hasSolidDivsion .LeftVentricle (4)

Let I be an interpretation that corresponds to Figure 1 in the obvious way.
Clearly, I is a model of K, which justifies the formalization of Figure 1 by
axioms (2)–(4).

Such a schema-level representation of a heart can be put to use in many
ways. We might represent knowledge about various heart conditions; for
example, if the aortic valve suffers from aortic regurgitation (AR), then the
left ventricle suffers from left ventricular hypertrophy (LVH):

AorticValve ⊓ HasAR ⊑ ∀hasAlphaConnection .HasLVH (5)

We might expect to derive from (2)–(5) that, if the aortic valve of the left
side of the heart suffers from aortic regurgitation, then the left ventricle

7

Figure 2: An Unintended Tree Model of K

suffers from hypertrophy:

LeftSideOfHeart ⊓
∃hasStructuralComponent .(AorticValve ⊓ HasAR) ⊑
∃hasSolidDivision .HasLVH

(6)

Unfortunately, (6) does not follow from K: axioms (3) and (4) imply
the existence of two left ventricles, but no axiom in K states that these
two ventricles are necessarily the same object. Thus, an interpretation I ′

corresponding to Figure 2 is also a model of K. In I ′, even if the aortic
valve has aortic regurgitation, the second left ventricle is unaffected. Hence,
I ′ 6|= (6), so K 6|= (6) as well.

The knowledge base K is thus underconstrained: some models of K do
not correspond to the actual structure of the heart shown in Figure 1. This
discrepancy can prevent us from drawing some quite reasonable conclusions,
such as (6). Furthermore, it can also cause problems with the performance
of reasoning. For example, we might use axioms (4) and (7)–(8) to describe
the relationships between the left side of the heart, the left ventricle, and
the mitral valve.

LeftVentricle ⊑ ∃isBetaConnectionOf .MitralValve (7)

MitralValve ⊑ ∃isStructuralComponentOf .LeftSideOfHeart (8)

While admitting a model corresponding to Figure 1, these axioms do not
state that the mitral valve in (7) is a structural component of the “initial”
left side of the heart. Hence, the interpretation from Figure 3 is also a model
of these axioms. In fact, the latter model is “canonical” in the sense that it
reflects the least amount of information derivable from the axioms. In order
to disprove an entailment from these axioms, an OWL reasoner will try to
construct such a “canonical” model. In practice, such models can be highly

8

Figure 3: An Unintended Infinite Model of K

repetitive and much larger than the intended models, which, according to
our experience, is the main reason why OWL reasoners still cannot process
ontologies such as FMA and certain versions of GALEN.

To avoid such problems, we need to extend K with additional axioms
that make all models of K correspond as much as possible to the intended
conceptualization shown in Figure 1. Such axioms, however, cannot be
stated in OWL, for reasons we explain next. OWL can represent unbounded
or even infinite domains, which is appropriate in many cases. For example,
in the domain of people, we should not make any assumptions about the
number of people in the world. In other words, the domain of all people
does not exhibit a natural bound on its size. Thus, we can represent the fact
that every person has exactly two parents who are persons:

Person ⊑ ≥ 2 hasParent .Person ⊓ ≤ 2 hasParent .⊤ (9)

Reasoning with such axioms is not straightforward. A model containing
one person γ must contain two parents δ1 and δ2, each of which requires
the existence of two additional parents and so on. Effectively, we obtain a
model that is similar to the one shown in Figure 3.

To ensure termination of the model construction outlined in the previ-
ous paragraph, the structure of the axioms allowed in OWL is restricted
such that the language exhibits (a variant of) the tree model property [32]:
whenever a knowledge base K has a model, it also has a model of a certain
tree shape. The relationship between the left side of the heart, the aortic
valve, and the left ventricle in Figure 1 is, however, triangular and cannot
be represented as a tree. Hence, if we want to ensure that the ventricles
whose existence is implied by (3) and (4) are the same in every model of K,
we must leave the confines of OWL and DLs.

Certain rule formalisms can axiomatize nontree structures. For example,
the following SWRL [12] rule can be used to make the two ventricles from
Figure 2 the same:

LeftSideOfHeart(x) ∧ hasStructuralComponent (x, y) ∧
hasAlphaConnection(y, z) ∧ LeftVentricle(z) ∧
hasSolidDivsion(x,w) ∧ LeftVentricle(w)→ z ≈ w

(10)

9

This, however, has significant drawbacks. From the standpoint of model-
ing, such a solution is quite complex, as it requires the modeler to anticipate
which objects need to be made the same. The fact that the two left ven-
tricles are the same follows from the complex interaction between axioms
(2)–(4) and (10), and is thus not represented explicitly. Clearly, such a
modeling formalism is likely to be hard to use and susceptible to modeling
errors. From the standpoint of automated reasoning, the extension of OWL
with SWRL is undecidable [12], which is a significant impediment to the
adoption of SWRL in practice.

SWRL-like rules can, however, naturally express certain conditional as-
pects of structured objects. For example, if the septum has a ventricular
septal defect, then there is a blood flow from the left to the right ventricle:

IntraventricularSeptum(x) ∧ HasVSD(x) ∧
hasLayer (y1, x) ∧ LeftVentricle(y1) ∧
hasLayer (y2, x) ∧ RightVentricle(y2)→ hasBloodFlow (y1, y2)

(11)

The variables in the antecedent of this rule are connected in a non-tree-
like way, so such a rule cannot be expressed in OWL. If we, however, deal
with arbitrarily connected structures, such as the one shown in Figure 1,
non-tree-like antecedents are essential for drawing the correct inferences.

Various decidable combinations of DLs and rules cannot be used for
schema modeling. For example, the DL-safe rules [20] are syntactically
restricted such that they apply only to the explicitly named objects. Role-
safe [16] and weakly safe [23] rules also impose restrictions that prevent the
application of the rules to arbitrary elements of the domain, and similar
restrictions are also employed by various nonmonotonic rule extensions of
OWL [8, 23, 19]. While these are quite useful in query answering, they
cannot be used to derive new conclusions from the schema.

The DL SROIQ [15] and the OWL 1.1 extension of OWL DL extend
OWL with complex role inclusions of the form R1 ◦ . . . ◦Rn ⊑ S, restricted
appropriately to ensure decidability. Such axiom solve some of the problems;
however, they still cannot axiomatize arbitrary structures such as the one
in Figure 1 or express axioms such as (11).

4 The Formalism for Structured Objects

We now present an extension of OWL that addresses the problems outlined
in Section 3. In Section 4.1, we present the basic principles behind our idea,
which we then formalize in Section 4.2.

4.1 Basic Principles

The main aspect of a description of a structured object is the connection
between the object’s parts, which can naturally be represented as a graph.

10

Hence, we introduce the notion of a description graph G = (V,E, λ)—a di-
rected graph in which each vertex i ∈ V is labeled with a set of atomic
concepts λ〈i〉 and each edge 〈i, j〉 ∈ E is labeled with a set of atomic roles
λ〈i, j〉. For example, Figure 1 can be understood as a description graph that
describes the heart.

Semantically, G = (V,E, λ) should be understood as a “template” for a
fragment of a model. Let I be a model and A an atomic concept labeling
some graph vertex i ∈ V . If I contains an object γ such that γ ∈ AI , then I
must also contain an instance of G in which γ corresponds to i. For example,
if I contains an instance γ of the Heart concept, then I must contain a
relational structure corresponding to Figure 1 in which γ corresponds to the
top-most vertex.

As discussed in Section 3, extending DLs with constructs that allow
the description of arbitrarily connected structures of unbounded size easily
leads to undecidability. In practice, structured objects are usually mod-
eled up to a certain level of granularity, which naturally determines this
bound. For example, a human body consists of a certain number of organs.
These organs might be decomposed into smaller parts; however, each such
decomposition is bounded, so the entire model of human anatomy requires
a bounded number of objects. Even though the number of required objects
may be large and difficult to determine by hand, the fact that the domain is
bounded is intrinsic to the modeling problem. The reasoning algorithm pre-
sented in Section 5 uses this bound to ensure termination even on arbitrarily
connected, non-tree-like structures.

We assume that the set of atomic roles is divided into a set of atomic
tree roles NRt and a set of atomic graph roles NRg . A graph-extended DL
knowledge base is a 4-tuple K = (T , G,P,A) where T is a DL TBox, G is a
description graph, P is a set of rules, and A is an ABox. Furthermore, T is
allowed to refer only to tree roles, G and P are allowed to refer only to the
graph roles, and A is allowed to refer to both graph and tree roles.

For example, let K = (T , G,P,A) be a graph-extended DL knowledge
base with the following components. Let T contain the axioms (12)–(14).
Intuitively, axiom (12) says that each person has a parent and a heart; axiom
(13) ensures that the heart of each sufferer from aortic regurgitation is an
instance of HasAR; and axiom (14) says that, on each aortic valve suffering
from aortic regurgitation, some person is performing a surgery on it.

Person ⊑ ∃hasParent .Person ⊓ ∃hasHeart .Heart (12)

AR Sufferer ⊑ ∀hasHeart .HasAR (13)

AorticValve ⊓ HasAR ⊑ ∃performsSurgeryOn−.Person (14)

Let G correspond to Figure 1, and let P contain the rule that propagates
the HasAR concept over the structural components of the heart.

HasAR(x) ∧ hasStructuralComponent (x, y)→ HasAR(y) (15)

11

Figure 4: A Typical Model of K

Let A contain the assertions Person(a) and AR Sufferer(a).
The semantics of graph-extended knowledge bases ensures that each

model I of K is of the form shown in Figure 4. The model I consists of
two distinct parts. The tree backbone consists of objects (shown as large
squares) connected through tree roles (shown using thick lines), and it is
constructed using the standard DL axioms in T . As discussed in Section
(3), the number of persons is not naturally bounded so, if we want a decid-
able formalism, we must employ standard DL restrictions. Apart from the
tree backbone, I also contains arbitrarily connected but naturally bounded
graph instances, such as the structure of the heart of each person. Unlike in
the case of axioms (2)–(4) and Figure 2, each graph instance is necessarily
of the form as specified by G in each such model I. Note that the tree
backbone of I need not be contiguous: the bottom-most AorticValve object
av can be connected to other objects through tree roles. To summarize, for
a graph-extended knowledge base K, we can consider only models that con-
sist of graph instances, connected among themselves and with other objects
through tree roles.

Decidability of the formalism is now ensured by the separation of the
roles into tree and graph ones. The axioms in T can propagate constraints
across tree roles just like in standard DLs; however, we can adapt the block-
ing technique [14] to ensure termination of model construction. Further-
more, the rules in P can propagate constraints within a graph; however, the
size of the graph is naturally bounded, so this does not cause termination

12

problems either.
Our way of obtaining decidability is related to fusions of abstract de-

scription systems (ADSs) [3], which provide for the combination of different
modal and description logics. The component ADSs can share concepts;
however, the interaction between them through roles is restricted to ensure
decidability. Our separation of roles into graph and tree ones is similar in
spirit. Bounded structures and rules, however, cannot directly be expressed
as an ADS. In addition, we present a practical decision procedure for our
formalism.

This example also demonstrates a minor modeling problem. The inten-
tion behind axioms (13) and (15) is to mark the aortic valve of each sufferer
from aortic regurgitation with the HasAR concept. Doing this in two sep-
arate axioms seems unnatural, and the following, more compact DL axiom
can be used for this purpose:

AR Sufferer ⊑ ∀hasHeart .∀hasStrucutralComponent .
∀hasStrucutralComponent .HasAR

(16)

This is currently not possible because DL axioms are not allowed to contain
graph roles. This problem, however, can be solved by appropriate syntactic
sugar. For example, we might extend the definition of T to allow for graph
roles to occur under ∀ quantifier; then, for reasoning, we might replace each
subconcept concept ∀R.C where R is a graph role using a new name that
we axiomatize appropriately using rules. Such extensions, however, do not
change the essence of our formalism, so we do not discuss them further.

Our way of obtaining obtaining decidability is related to fusions of ab-
stract description systems (ADSs) [3], which allow one to combine different
modal and description logics. The component ADSs can share concepts;
however, the interaction between them through roles is restricted to ensure
decidability. Our separation of roles into graph and tree ones is similar in
spirit. Bounded structures and rules, however, cannot directly be expressed
as an ADS (an encoding might exist, but it is not obvious and is unlikely to
be suitable for practical usage). In addition, we present a practical decision
procedure for our formalism.

4.2 Formalization

We now present the formal definition of our formalism. We start by sepa-
rating the tree form the graph roles.

Definition 1 (Graph-Extended DL Signature). A graph-extended DL sig-
nature is a 4-tuple Σ = (NC , NRt , NRg , NI) consisting of pair-wise disjoint
sets of atomic concepts NC , atomic tree roles NRt, atomic graph roles NRg ,
and individuals NI .

13

All subsequent definitions in this paper are implicitly parameterized with
a graph-extended DL signature. Next, we formalize the notion of descrip-
tion graphs. We make the technical assumption that the vertices of the
description graph are integers, as this allows us to use vertices as indices.4

Definition 2 (Description Graph). A description graph G = (V,E, λ) is a
directed labeled graph where

• V = {1, . . . , ℓ} is a finite set of integers called vertices,

• E ⊆ V × V is a set of edges, and

• λ is a labeling function that assigns a set of atomic concepts λ〈i〉 ⊆ NC

to each vertex i ∈ V , and a set of atomic graph roles λ〈i, j〉 ⊆ NRg to
each edge 〈i, j〉 ∈ E.

For an atomic concept A, let VA = {k ∈ V | A ∈ λ〈k〉}.

Finally, we define the notion of graph-extended DL knowledge bases.
The definition of graph-regular rules ensures that each such rule can become
applicable only to objects from the same instance of the description graph
G. As discussed in the previous section, this is required for decidability of
the formalism.

Definition 3 (Graph-Extended KBs). A graph-extended DL knowledge
base is a 4-tuple K = (T , G,P,A), where different components have the fol-
lowing structure:

• T is a TBox over the signature (NC , NRt , NI) expressed in some de-
scription logic DL.

• G is a description graph.

• P is a program consisting of a finite number of graph-regular rules. A
rule r is graph-regular if it uses only atomic concepts and graph roles
and for each two variables x1 and x2 occurring in r, some antecedent
atom of r contains both x1 and x2.

• A is an extensionally-reduced ABox whose assertions can refer to all
elements in the signature (NC , NRt , NRg , NI); furthermore, in addition
to the standard ABox assertions of DL, the ABox A can contain graph
assertions of the form G(a1, . . . , aℓ), where ai ∈ NI and ℓ is the number
of vertices of the description graph G.

4For example, given a vector of variables x1, . . . , xℓ and a vertex i ∈ V , we can refer to
the variable xi.

14

Graph-regular rules can express conjunctive queries over G, so we do
not consider query answering separately. We now formalize the semantics
of description graphs.

Definition 4 (Semantics). An interpretation I = (△I , ·I) interprets a de-
scription graph G = (V,E, λ) with ℓ vertices as an ℓ-ary relation GI ⊆ (△I)ℓ.
Moreover, I satisfies G, written I |= G, if all of the following conditions hold.

• The i-key property must hold for each 1 ≤ i ≤ ℓ:

∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △
I :

〈x1, . . . , xℓ〉 ∈ GI ∧ 〈y1, . . . , yℓ〉 ∈ GI ∧ xi = yi →
∧

1≤j≤ℓ

xj = yj

• The disjointness property must hold:

∀x1, . . . , xℓ, y1, . . . , yℓ ∈ △
I :

〈x1, . . . , xℓ〉 ∈ GI ∧ 〈y1, . . . , yℓ〉 ∈ GI →
∧

1≤i<j≤n

xi 6= yj

• The A-start property must hold for each atomic concept A with VA 6= ∅:

∀x ∈ △I :
x ∈ AI → ∃x1, . . . , xℓ ∈ △

I : 〈x1, . . . , xℓ〉 ∈ GI ∧
∨

k∈VA

x = xk

• The vertex layout property must hold for each i ∈ V and A ∈ λ〈i〉:

∀x1, . . . , xℓ ∈ △
I : 〈x1, . . . , xℓ〉 ∈ GI → xi ∈ AI

• The edge layout property must hold for each 〈i, j〉 ∈ E and R ∈ λ〈i, j〉:

∀x1, . . . , xℓ ∈ △
I : 〈x1, . . . , xℓ〉 ∈ GI → 〈xi, xj〉 ∈ RI

The intuition behind this definition is as follows. Each tuple in the ℓ-ary
relation GI corresponds to one instance of the description graph G.

The i-key properties and the disjointness property ensure that no two
instances of G can share an object, which essentially captures the idea behind
natural boundedness. Consider the axiom B ⊑ A and a graph G consisting
of two vertices 1 and 2 such that λ〈1〉 = {A}, λ〈2〉 = {B}, and λ〈1, 2〉 = {R}.
Without the i-key and the disjointness properties, we could build a model I
of G where γ1 ∈ AI , 〈γ1, γ2〉 ∈ RI , and γ2 ∈ BI ; to ensure that BI ⊆ AI , we
must also set γ2 ∈ AI ; but then, we must instantiate G for γ2, which clearly
leads to a cyclic computation. The i-key and the disjointness properties
ensure that such a model I cannot exist: each object occurring in a graph
part of I occurs in exactly one tuple of GI . Since this tuple is bounded in

15

size, each graph part of I is bounded as well, which can be used to ensure
termination of model construction.

The A-start property ensures that I contains an appropriate instance of
G whenever I contains an instance γ of a concept A labeling a vertex of G.
If A labels more than one vertex of G, the A-start property “guesses” the
vertex of G that γ should be matched to. Consider, for example, a graph
containing a vertex labeled with Hand and five vertices labeled with Finger .
If some object γ is an instance of Finger , without further information we
cannot disambiguate which of the five fingers γ stands for. Therefore, we
need to make a “guess” and examine all five possibilities independently.
Note that no other property requires guessing; hence, unless we label two
vertices in G with the same concept A, the semantic properties of graphs
allow for deterministic reasoning.

Finally, the vertex and edge layout properties simply ensure that each
instance of G indeed contains the appropriate relational structure of G.

A satisfaction of a graph-extended knowledge base K = (T , G,P,A) in
an interpretation I is defined in the obvious way: I |= K iff I |= T , I |= G,
I |= P , and I |= A.

5 Reasoning with Graph-Extended KBs

We now present an algorithm for reasoning with a graph-extended knowledge
base K = (T , G,P,A) with T expressed in SHIQ. We extend the hyper-
tableau algorithm, which has been implemented in the HermiT reasoner and
has proven very effective in practice [21]: HermiT is currently the only rea-
soner that can classify the original version of GALEN—a long-standing open
problem in DL reasoning. In the following section, we present an overview
of our algorithm and, in the subsequent sections, we introduce the algorithm
formally and prove its soundness, completeness, and termination.

5.1 Algorithm Overview

Our algorithm decides satisfiability of K = (T , G,P,A). All other interest-
ing reasoning problems, such as subsumption and instance checking, can be
reduced to satisfiability checking as in standard DLs [2, Chapter 2]. Satisfia-
bility of K is checked in two main phases. The task of the preprocessing phase
is to translate T and G into a set of rules of the form (1) that are equisatis-
fiable with T and G. In the hypertableau phase, our algorithm attempts to
construct a model satisfying the rules obtained in the preprocessing phase,
the rules in P, and the ABox assertions in A.

The TBox T is preprocessed into a set of rules with Ξ(T) exactly as it
is done in [21]. To make this paper self-contained, we repeat the translation
in Section 5.2. The first preprocessing step is to remove transitivity axioms
from T . Thus, T is converted into a TBox Ω(T) that does not contain

16

transitivity axioms but is equisatisfiable with T . The next step is to convert
each concept inclusion from Ω(T) into a normalized form shown below, for
Ai, Bi, Ci, and Di atomic concepts:

⊤ ⊑
⊔

(¬)Ai ⊔
⊔

∀Ri.(¬)Bi ⊔
⊔

≥ ni Si.(¬)Ci ⊔
⊔

≤ mi Ri.(¬)Di (17)

This greatly simplifies the structure of the axioms, as the normalized axioms
do not contain implicit negations or complex nested subconcepts. Note
that concepts of the form ∃R.C are represented in the normalized form
as ≥ 1R.C. We denote the result of the normalization with ∆(T). The
final preprocessing step is to translate ∆(T) into an equivalent set of rules
Ξ(T). This is done by expanding the ∀R.C and ≥ n R.C concepts according
to the standard semantics. For example, the axiom ⊤ ⊑ ∃R.A ⊔ ∀R.¬B is
translated into the rule R(x, y)→ (∃R.A)(x) ∨B(y).

The description graph G is translated into a set of rules Ξ(G) that en-
codes the conditions of Definition 4. The i-key, disjointness, vertex, and
edge layout properties are encoded as rules in a straightforward way. To
encode the A-start property, we first extend the rule consequents to allow
for concepts of the form ∃G|k; intuitively, ∃G|k(x) is true in a model I if x
occurs in I in some instance of G at vertex k. For each concept A labeling
vertices i1, . . . , ik of G, the following rule is added to Ξ(G):

A(x)→ ∃G|i1(x) ∨ . . . ∨ ∃G|ik(x) (18)

For example, if G contains vertices 4 and 9 that are labeled with the
Ventricle concept, the following rule is added to Ξ(G):

Ventricle(x)→ ∃G|4(x) ∨ ∃G|9(x) (19)

Intuitively, each instance x of the Ventricle concept must occur in some
instance of G either at vertex 4 or vertex 9. Hence, this rule encodes the
“guessing” that we discussed in Section 4.2.

The preprocessing produces a set of rules R = Ξ(T) ∪ Ξ(G) ∪ P that is
equisatisfiable with (T , G,P). Thus, satisfiability of K = (T , G,P,A) can
be shown by proving satisfiability of (R,A), which can be done using our
hypertableau algorithm. The algorithm is presented formally in Section
5.4. It attempts to construct a representation of a model of (R,A) by
applying different inference rules to A and R, which produce new ABoxes
A1, . . . ,An. All inference rules are such that at least one resulting ABox
contains more information about a model for A and R. For example, if
A(s) ∈ A and A(x)→ B(x) ∨C(x) ∈ R, an application of the Hyp-rule to
A and R produces ABoxes A ∪ {B(s)} and A ∪ {C(s)}; intuitively, in each
model of (R,A), either B(s) or C(s) must be true as well. If≥ 1R.C(s) ∈ A,
an application of the ≥-rule produces an ABox A ∪ {R(s, t), C(t)} with t a
new individual; intuitively, in each model of A, the individual s must be

17

connected to some individual which is also an instance of C. If s ≈ t ∈ A,
an application of the ≈-rule produces an ABox in which, roughly speaking,
s is replaced with t; intuitively, if s and t denote the same object, we can
refer to that object using just one of the two names. Finally, if s 6≈ s ∈ A or
{A(s),¬A(s)} ⊆ A, then A is obviously unsatisfiable, which is detected by
the ⊥-rule. Finally, the ∃G-rule is a new rule that is similar to the ≥-rule:
if ∃G|i(s) ∈ A, this rule derives A ∪ {G(t1, . . . , ti−1, s, ti+1, . . . , tℓ)} with tj
new individuals.

It is easy to see that, on axioms (4) and (7)–(8), our algorithm would
generate a model shown in Figure 3, and would therefore not terminate. In
standard (hyper)tableau algorithms, termination is achieved using blocking:
roughly speaking, if two individuals s and s′ occur in the same concepts in
A, then s “behaves” just like s′—that is, we do not expand s any further.
Thus, to ensure decidability, we adapt the well-known pair-wise blocking
[14] to our setting. Roughly speaking, we separate the individuals in A into
named, tree, and graph individuals. The named individuals are the ones that
occur in the original graph-extended knowledge base, the tree individuals
are introduced by an application of the ≥-rules, and the graph individuals
are introduced by an application of the ∃G rule. We use this distinction
in the definition of blocking: only tree individuals can be blocked, and the
blocking individual must also be a tree individual.

5.2 Preprocessing the DL TBox into Rules

We now present the part of the preprocessing phase that translates a SHIQ
TBox T into a set of equisatisfiable rules Ξ(T).

Elimination of Transitivity Axioms. We first encode a SHIQ TBox
T into an equisatisfiable ALCHIQ knowledge base Ω(T). Roughly speak-
ing, an axiom Trans(S) is replaced with axioms ∀R.C ⊑ ∀S.(∀S.C), for each
R with S ⊑∗ R and C a “relevant” concept from T . This encoding is poly-
nomial and has been presented several times for various description [31] and
modal [25] logics. Therefore, we omit the details of the transformation and
refer the reader to [17, Section 5.2]. After this transformation, there is no
distinction between simple and complex roles, so, without loss of generality,
in the rest of this paper we treat ∃R.C as a syntactic shortcut for ≥ 1R.C.

Structural Transformation. Axioms are next brought into a certain
normalized form, defined as follows:

Definition 5. For A an atomic concept, the concepts A, ¬A, ⊤, and ⊥ are
called literal concepts. A GCI is normalized if it is of the form ⊤ ⊑

⊔n
i=1 Ci,

where each Ci is of the form B, ∀R.B, ≥ n R.B, or ≤ n R.B, and B is a
literal concept. A TBox T is normalized if all GCIs in it are normalized.

18

Table 3: The Structural Transformation

∆(T) =
⋃

C1⊑C2∈T

∆(⊤ ⊑ nnf(¬C1 ⊔ C2))

∆(⊤ ⊑ C ⊔ C′) = ∆(⊤ ⊑ C ⊔ αC′) ∪
n
⋃

i=1

∆(⊤ ⊑ ¬̇αC′ ⊔ Ci) for C′ =
nd

i=1

Ci

∆(⊤ ⊑ C ⊔ ∀R.D) = ∆(⊤ ⊑ C ⊔ ∀R.αD) ∪ ∆(⊤ ⊑ ¬̇αD ⊔ D)

∆(⊤ ⊑ C ⊔ ≥ n R.D) = ∆(⊤ ⊑ C ⊔ ≥ n R.αD) ∪ ∆(⊤ ⊑ ¬̇αD ⊔ D)

∆(⊤ ⊑ C ⊔ ≤ n R.D) = ∆(⊤ ⊑ C ⊔ ≤ n R.¬̇αD′) ∪ ∆(⊤ ⊑ ¬̇αD′ ⊔ D′) for D′ = ¬̇D

∆(β) = {β} for any other axiom β

αC =

{

QC if pos(C) = true

¬QC if pos(C) = false
where QC is a fresh atomic concept unique for C

pos(⊤) = false pos(⊥) = false

pos(A) = true pos(¬A) = false

pos(C1 ⊓ C2) = pos(C1) ∨ pos(C2) pos(C1 ⊔ C2) = pos(C1) ∨ pos(C2)
pos(∀R.C1) = pos(C1)

pos(≤ n R.C1) =

{

pos(¬̇C1) if n = 0
true otherwisepos(≥ n R.C1) = true

Note: A is an atomic concept, Ci are arbitrary concepts, C is a possibly empty
disjunction of arbitrary concepts, and D is not a literal concept. In C ⊔ C, the concept
C should be understood as any, and not just the right-most disjunct of C ⊔ C.

A TBox T can be brought into normalized form ∆(T) as follows:

Definition 6. For T an ALCHIQ TBox, ∆(T) is the TBox computed as
shown in Table 3.

Intuitively, pos(C) is used to determine whether C should be replaced
with a positive or a negative literal concept αC . If pos(C) = false, then C
can be converted into clauses with only negative literals, so we rename C by
a negative literal concept ¬QC ; otherwise, the clausification of C requires at
least one positive literal, so we rename C by a positive literal concept QC .
This prevents the introduction of new disjunctions due to normalization [21].
We now show that normalization does not affect satisfiability.

Lemma 1. A graph-extended knowledge base (T , G,P,A), where T is an
ALCHIQ TBox, is satisfiable if and only if (∆(T), G,P,A) is satisfiable;
∆(T) can be computed in polynomial time; and ∆(T) is normalized.

Proof. It is easy to see that our transformation is a syntactic variant of the
structural transformation from [22], from which the first two claims follow.
Observe that ∆ essentially rewrites each GCI into a form ⊤ ⊑

⊔n
i=1 Ci and

then keeps replacing nested subconcepts of Ci as long as the GCI is not
normalized.

Translation into Rules. We now show how to transform a normalized
TBox into an equivalent set of rules.

19

Table 4: Translation of Normalized GCIs to Rules

Ξ(T) = {
[
∧n

i=1 lhs(Ci)
]

→
[
∨n

i=1 rhs(Ci)
]

| for each ⊤ ⊑
⊔n

i=1 Ci in T }∪

{ar(R,x, y) → ar(S, x, y) | for each R ⊑ S in T }

ar(R, s, t) =

{

R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

Note: Whenever lhs(Ci) or rhs(Ci) is undefined, it is omitted in the rule.

C lhs(C) rhs(C)

A A(x)
¬A A(x)

≥ n R.A ≥ n R.A(x)
≥ n R.¬A ≥ n R.¬A(x)

∀R.A ar(R, x, yC) A(yC)
∀R.¬A ar(R, x, yC) ∧ A(yC)

≤ n R.A
∧n+1

i=1 [ar(R, x, yi
C) ∧ A(yi

C)]
∨n+1

i=1
n+1
j=i+1 yi

C ≈ y
j
C

≤ n R.¬A
∧n+1

i=1 ar(R, x, yi
C)

∨n+1
i=1 A(yi

C) ∨
∨n+1

i=1
n+1
j=i+1 yi

C ≈ y
j
C

Note: Each variable y
(i)
C is unique for C (and i), and it is different from x.

Definition 7. For a normalized ALCHIQ TBox T , the set of rules Ξ(T)
is obtained as shown in Table 4.

To simplify the inference rules presented in Section 5.4, the role atoms
in Ξ(T) involve only atomic roles. Thus, the function ar from Table 4 is
used to convert inverse role atoms R−(s, t) in Ξ(T) into atomic role atoms
R(t, s). An inverse role can occur only in concepts of the form ≥ n R−.C,
and the ar function is used when expanding such concepts to produce atoms
containing atomic roles.

We now show that translation of a TBox into rules does not affect its
satisfiability.

Lemma 2. Let T be a normalized ALCHIQ TBox. Then, I |= T if and
only if I |= Ξ(T).

Proof. The following equivalences between DLs and first-order logic are
known:

∀R.C(x) ≡ ∀y : ¬R(x, y) ∨ C(y)

≤ n R.C(x) ≡ ∀y1, . . . , yn+1 :
n+1
∨

1=i

[¬R(x, yi) ∨ ¬C(yi)] ∨
∨

1≤i<j≤n+1
yi ≈ yj

Clearly, Ξ(T) is obtained from normalized GCIs by expanding the concepts
∀R.C and ≤ n R.C according to these equivalences, and then moving all neg-
ative atoms into the antecedent and all positive atoms into the consequent
of the rule.

20

5.3 Preprocessing the Description Graph into Rules

We now present the part of the preprocessing phase that translates a de-
scription graph G into a set of graph-regular rules Ξ(G). In Definition 8 we
introduce some auxiliary notions; then, we present the actual translation in
Definition 9.

Definition 8. A graph existence concept is an expression of the form ∃G|i,
where G = (V,E, λ) is a description graph with ℓ vertices and i ∈ V . It is
interpreted in an interpretation I as follows:

(∃G|i)
I = {s | ∃t1, . . . , tℓ : 〈t1, . . . , tℓ〉 ∈ GI ∧ s = ti}

In the rest of this paper, we extend the definition of graph-regular rules
(see Definition 3) to allow for (i) graph atoms G(x1, . . . , xn) in antecedents,
and (ii) graph existence atoms ∃G|i(x) in consequents, where x(i) are vari-
ables. The semantics of such rules is defined in the obvious way.

Definition 9. Given a description graph G = (V,E, λ) with ℓ vertices, the
set Ξ(G) consists of the following rules:

1. The following rule is instantiated for each i, j ∈ V such that j 6= i:

G(x1, . . . , xℓ) ∧G(y1, . . . , yi−1, xi, yi+1, . . . , yℓ)→ xj ≈ yj;

2. The following rule is instantiated for each 1 ≤ i < j ≤ ℓ:

G(x1, . . . , xℓ) ∧G(y1, . . . , yj−1, xi, yj+1, . . . , yℓ)→ ⊥;

3. The following rule is instantiated for each atomic concept A such that
VA 6= ∅:

A(x)→
∨

k∈VA

∃G|k(x);

4. The following rule is instantiated for each i ∈ V and A ∈ λ〈i〉:

G(x1, . . . , xℓ)→ A(xi);

5. The following rule is instantiated for each 〈i, j〉 ∈ E and R ∈ λ〈i, j〉:

G(x1, . . . , xℓ)→ R(xi, xj).

By taking into account the semantics of the concepts ∃G|k from Defi-
nition 8, the rules in Ξ(G) obviously encode the conditions of Definition 4,
which implies the following lemma.

Lemma 3. Let G = (V,E, λ) be a description graph and I an interpretation.
Then, I |= G if and only if I |= Ξ(G).

21

5.4 The Hypertableau Calculus

We now present a calculus for checking satisfiability of (R,A), for R a set
of rules, G a description graph, and A an ABox. To check satisfiability of
a graph-extended DL knowledge base K = (T , G,P,A), we shall apply the
calculus to R = Ξ(T) ∪ Ξ(G) ∪ P . Our algorithm, however, can handle to
any set of rules R that satisfies certain conditions. These conditions are
more general than what is strictly necessary to handle Ξ(T) ∪ Ξ(G) ∪ P; for
example, they allow for rules such as A(x) ∧R(x, y)→ S(x, y), which can
be useful in practice.

Definition 10. A set of rules R is admissible if it can be represented as a
disjoint union of two subsets Rt and Rg satisfying the following conditions.

The set Rg can contain only graph-regular rules, and it must contain all
the rules specified in items 1 and 2 of Definition 9 for each description graph
G occurring in R and A.

Each rule r ∈ Rt must be tree-like—that is, it must be possible to separate
the variables of r into one center variable x and the set of leaf variables {yi}
such that the following conditions are satisfied, for R an atomic tree role, A
an atomic concept, and C a concept of the form ≥ n S.A or ≥ n S.¬A with
S a (not necessarily atomic) tree role:

• Each atom in the antecedent of r is of the form A(x), A(yi), R(x, yi),
or R(yi, x).

• Each atom in the consequent is of the form A(x), A(yi), C(x), C(yi),
R(x, yi), R(yi, x), or yi ≈ yj.

• Each variable yi in the rule occurs in some binary atom in the an-
tecedent.

By inspecting the types of rules generated in Definitions 7 and 9, it
is easy to see that, for an arbitrary graph-extended DL knowledge base
K = (T , G,P,A) where T is expressed in the DL SHIQ, the set of rules
R = Ξ(T) ∪ Ξ(G) ∪ P is admissible. We are now ready to formally define
our hypertableau calculus.

Definition 11. Generalized Individuals. Let T and Γ be two disjoint
countably infinite sets of tree and graph symbols. A generalized individual
is a finite string of symbols α0.α1.αn such that α0 ∈ NI , αi ∈ T ∪ Γ
for 1 ≤ i ≤ n, and αi−1 ∈ Γ implies αi 6∈ Γ. If αn ∈ NI , the individual is
named; if αn ∈ T, the individual is a tree individual; and if αn ∈ Γ, the
individual is a graph individual.

Successors and Predecessors. A generalized individual x.α is a suc-
cessor of x, predecessor is the inverse of successor, and descendant and an-
cestor are the transitive closures of successor and predecessor, respectively.

22

Graph Cluster. Generalized individuals s and t are from the same
graph clusters if either (i) s is either a named individual or a graph successor
of a named individual, and t is also either a named individual or a graph
successor of a named individual, (ii) both s and t are graph successors of
the same tree individual, or (iii) one individual is a graph successor of the
other individual.

Generalized ABox. We generalize the notion of ABoxes by allowing
them to contain generalized individuals in the assertions. Furthermore, since
≈ and 6≈ are symmetric relations, we take a ≈ b and a 6≈ b to also stand
for the assertions b ≈ a and b 6≈ a. Finally, we allow an ABox to contain
a special assertion ⊥ that is false in all interpretations. Unless otherwise
noted, all ABoxes in the rest of this paper are generalized.

Initial ABox. An ABox is said to be initial if it contains only named
individuals, it is extensionally reduced, and it is not empty.

Pairwise Anywhere Blocking. A concept is blocking-relevant if it is
of the form A, ≥ n R.A, ≥ n R.¬A, or ∃G|i, for A an atomic concept, R a
(not necessarily atomic) role, and G a description graph. The labels of an
individual and of an individual pair in an ABox A are defined as follows:

LA(s) = {C | C(s) ∈ A and C is a blocking-relevant concept}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on the
generalized individuals containing the ancestor relation—that is, if s′ is an
ancestor of s, then s′ ≺ s. By induction on ≺, we assign to each individual
s in A a status as follows:

• s is directly blocked by an individual s′ iff all of the following is true,
for t and t′ the predecessors of s and s′, respectively:

– both s and s′ are tree individuals,

– s′ is not blocked,

– s′ ≺ s,

– LA(s) = LA(s′) and LA(t) = LA(t′), and

– LA(s, t) = LA(s′, t′) and LA(t, s) = LA(t′, s′).

• s is indirectly blocked iff its predecessor is blocked.

• s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all
assertions that contain a descendant of s.

Merging. The ABox mergeA(s→ t) is obtained from pruneA(s) by re-
placing the individual s with the individual t in all assertions.

23

Clash. An ABox A contains a clash if and only if ⊥ ∈ A; otherwise, A
is clash-free.

Derivation Rules. Table 5 specifies derivation rules that, given a
clash-free ABox A and a set of rules R, derive the ABoxes 〈A1, . . . ,An〉. In
the Hyp-rule, σ is a mapping from the set of variables NV to the individuals
occurring in A, and σ(U) is obtained from U by replacing each variable x
with σ(x).

Rule Priority. The ∃G-rule is applicable only if no other rule is appli-
cable.

Derivation. A derivation for a set of admissible rules R and an initial
ABox A is a pair (T, ρ) where T is a finitely branching tree and ρ is a
function that labels the nodes of T with ABoxes such that (i) ρ(ǫ) = A for
ǫ the root of the tree, and (ii) for each node t, if one or more derivation
rules are applicable to ρ(t) and R, then t has children t1, . . . , tn such that the
ABoxes 〈ρ(t1), . . . , ρ(tn)〉 are the result of applying one applicable derivation
rule chosen by respecting the rule priority. A derivation is clash-free if it
contains a leaf node labeled with a clash-free ABox.

The main difference to the algorithm presented in [21] is the distinction
between named, tree, and graph individuals. To understand why this is im-
portant, assume that Figure 4 depicts the contents of an ABox A, generated
using a set of tree rules Rt corresponding to axioms (12)–(14) and a graph
G shown in Figure 1. The individual a is clearly named. The individual
h1 is generated by deriving ∃hasHeart .Heart(a) by (12) and then expanding
it by the ≥-rule; hence, h1 is a tree individual. All other individuals that
correspond to the structure of the heart (including av) are created by in-
stantiating G, so they are graph individuals. We say that h1 and all these
individuals are from the say graph cluster—that is, they are allowed to oc-
cur in one instance of the graph. Note that each graph cluster can contain
arbitrarily many graph individuals, but at most one tree individual which
is used to “enter” the graph.

Our calculus ensures that each application of an inference rule does not
violate the structure of an ABox outlined in the previous paragraph. The
main problem is with the ≈-rule: if we merged, say, the tree individual h2

into h1 by simply replacing h2 with h1, the upper instance of G (see Figure 1)
would contain individual h1 which is from the wrong graph cluster than as
all other individuals in the graph instance. This, however, is prevented by
pruning: before replacing h2 with h1, we prune h2, which also removes the
graph instance surrounding h2. The following lemma proves that each ABox
labeling a derivation node is indeed of the form outlined above.

Lemma 4. The following properties hold for each ABox A′ labeling a node
in a derivation for an admissible set of rules R and an initial ABox A, where
a and b are named individuals, u is a generalized individual, γi, γj ∈ Γ, and
τi, τj ∈ T.

24

Table 5: Derivation Rules of the Hypertableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ R,
2. a mapping σ : NV → NA exists such that
2.1 σ(Ui) ∈ A for each 1 ≤ i ≤ m and
2.2 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 = A∪ {⊥} if n = 0; or
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n if n > 0.

≥-rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , un such that

{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,
then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}

where t1, . . . , tn are fresh pairwise distinct tree successors of s.

∃G-rule

If 1. ∃G|i(s) ∈ A for G a description graph with ℓ vertices,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , ui−1, ui+1, . . . , uℓ such that

G(u1, . . . , ui−1, s, ui+1, . . . , uℓ) ∈ A
then A1 := A ∪ {G(t1, . . . , ti−1, s, ti+1, . . . , tℓ)} where t1, . . . , ti−1, ti+1, . . . , tℓ

are fresh pairwise distinct graph individuals from the same graph cluster as s.

≈-rule

If s ≈ t ∈ A and s 6= t

then A1 := mergeA(s → t) if t is a named individual or if s is a descendant of t; or
A1 := mergeA(t → s) otherwise.

⊥-rule

If s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A
then A1 := A ∪ {⊥}.

Note: A is a generalized ABox, R is a set of admissible rules, and NA is the set
of individuals occurring in A.

1. Each R(s, t) ∈ A′ with R a tree role is of the form R(a, b), R(u, u.τi),
or R(u.τi, u).

2. Each s ≈ t ∈ A′ is of the form u ≈ u, a ≈ b, a ≈ b.τi, u.τi ≈ u.τj ,
u ≈ u.τi.τj, u ≈ u.γi, u.γi ≈ u.γj , a ≈ b.γi, or a.γi ≈ b.γj .

3. In each graph assertion and each assertion involving a graph role, all
individuals are from the same graph cluster.

4. For each tree individual tn, a sequence(s0, t0), . . . , (sn, tn) of pairs of
individuals—called a link to root for tn of length n—exists such that
(i) s0 is a named individual, (ii) each ti is a tree successor of si,
(iii) ti−1 is from the same graph cluster as si for each 1 ≤ i ≤ n,

25

(iv) for each 0 ≤ i ≤ n, either R(si, ti) ∈ A
′ or R(ti, si) ∈ A

′ for some
tree role R.

Proof. We prove the claim by induction on the derivation depth. For the
base case, note that the ABox A contains only named individuals, so all
claims are trivially satisfied. For the induction step, assume that the claim
holds for some ABox A′ and consider an ABox A′′ obtained from A′ by an
application of a derivation rule.

An application of the Hyp-rule to a tree-like rule r can introduce an
assertion of the form R(s, t) if r contains an atom R(x, y) in the consequent.
Since r is tree-like, its antecedent contains an atom S(x, y) or S(y, x) for
S a tree role. This atom is matched to an assertion S(s, t) or S(t, s) in A′

that satisfies Property (1) by induction assumption. But then, R(s, t) also
satisfies Property (1), and so does A′′.

An application of the Hyp-rule to a tree-like rule r can introduce an
equality assertion of the form s ≈ t if the consequent of r contains an atom
y1 ≈ y2. But then, the antecedent of r contains either S(x, y1) ∧ S(x, y2)
or S(x, y1) ∧ S(y2, x). The following table summarizes the ways in which
S(x, y1) ∧ S(x, y2) can be matched to assertions in A′ and the types of equal-
ities that can be derived. The case for S(x, y1) ∧ S(y2, x) is symmetric, so
A′′ satisfies Property (2).

S(x, y1) S(x, y2) y1 ≈ y2

S(u, u.τi) S(u, u.τj) u.τi ≈ u.τj

S(u.τi, u.τi.τj) S(u.τi, u) u.τi.τj ≈ u
S(a, a.τi) S(a, b) a.τi ≈ b
S(a, b) S(a, c) b ≈ c

An application of the Hyp-rule to a graph-regular rule r can introduce a
concept assertion, a role assertion with a graph role, or an equality assertion.
By Definitions 3 and 8, each atom in the antecedent of r is either a graph,
an atomic concept, or a graph role atom. Furthermore, each two variables
occurring in r occur together in some atom A in the antecedent of r. Hence,
A is matched to an assertion in A′ that satisfies Property (3) by induction
assumption; thus, all variables of r are matched to individuals from the
same graph cluster in the inference. It is then easy to see that the resulting
assertion satisfies Properties (2) and (3).

An application of the ≥-rule can introduce an assertion of the form
R(s, ti) or R(ti, s). But then, ti is a tree successor of s, so A′′ satisfies
Property (1). If s is a graph individual, let s′ be the predecessor of s;
otherwise, let s′ = s. Then, s′ is a named or a tree individual for which
Property (4) holds, so Property (4) holds for ti as well.

An application of the ∃G-rule introduces graph assertions of the form
G(u1, . . . , ui−1, s, ui+1, . . . , uℓ), where uj are from the same graph cluster as
s. Clearly, A′′ satisfies Property (3).

26

Consider an application of the ≈-rule to an equality of the form a ≈ b.τi,
u.τi ≈ u.τj , u ≈ u.τi.τj. The following table summarizes the types of asser-
tions that can be produced by merging:

Replacing b.τi with a in . . . produces . . .

R(b, b.τi) R(b, a)
R(b.τi, b) R(a, b)
c ≈ b.τi c ≈ a

Replacing u.τj with u.τi in . . . produces . . .

R(u, u.τj) R(u, u.τi)
R(u.τj, u) R(u.τi, u)
u.τk ≈ u.τj u.τk ≈ u.τi

v ≈ v.τk.τj v ≈ v.τk.τi for u = v.τk

Replacing u.τi.τj with u in . . . produces . . .

R(u.τi, u.τi.τj) R(u.τi, u)
R(u.τi.τj, u.τi) R(u, u.τi)
u.τi.τk ≈ u.τi.τj u.τi.τk ≈ u

u.τi.τk ≈ u u ≈ u

All assertions containing a tree successor of the merged individual are re-
moved, so A′ satisfies Property (1). Furthermore, if the merged individual
occurs in a graph assertion, an assertion with a graph role, or an equal-
ity assertion containing a graph individual, by Property (3) this assertion
contains a successor of the merged individual, so it is pruned. Thus, A′′

satisfies Properties (2) and (3). Pruning removes all the successors of some
individual, so A′′ satisfies Property (4).

Consider an application of the ≈-rule to an equality of the form u ≈ u.γj,
u.γi ≈ u.γj , a ≈ b, a ≈ b.γi, a.γi ≈ b.γj . The following table summarizes the
types of assertions that can be produced by merging in the first case:

Replacing u.γj with u in . . . produces . . .

a ≈ b.γi a ≈ b for b = u
u.γk ≈ u.γj u.γk ≈ u
u ≈ u.γj u ≈ u

The remaining four types of equalities produce similar types of assertions.
This inference prunes one individual and replaces it with another one from
the same graph cluster, so A′′ satisfies Properties (1)–(3). Pruning removes
all the successors of some individual, so A′′ satisfies Property (4).

The following lemma shows that our inference rules are sound.

Lemma 5 (Soundness). Let R be an admissible set of rules and A an ABox,
and let A1, . . . ,An be obtained by applying a derivation rule to R and A. If
(R,A) is satisfiable, then (R,Ai) is satisfiable for some 1 ≤ i ≤ n.

27

Proof. Let I be a model of (R,A), and let us consider all possible applica-
tions of derivation rules shown in Table 5.

(Hyp-rule) Since σ(Ui) ∈ A, we have I |= σ(Ui) for all 1 ≤ i ≤ m. But
then, n > 0 and I |= σ(Vj) for some 1 ≤ j ≤ n. Since Aj = A∪ {σ(Vj)}, we
conclude that I |= (R,Aj).

(≥-rule) Since ≥ n R.C(s) ∈ A, we have I |= ≥ n R.C(s), which means
that α1, . . . , αn ∈ △

I exist such that 〈sI , αi〉 ∈ RI and αi ∈ CI for 1 ≤ i ≤ n,
and αi 6= αj for 1 ≤ i < j ≤ n. Let I ′ be obtained from I by setting tI

′

i = αi.
Clearly, I ′ |= ar(R, s, ti), I ′ |= C(ti), and I ′ |= ti 6≈ tj for i 6= j. Therefore,
we have I ′ |= (R,A1).

(∃G-rule) Since ∃G|i(s) ∈ A, we have I |= ∃G|i(s), which means that
individuals α1, . . . αℓ ∈ △

I exist such that 〈α1, . . . αℓ〉 ∈ GI and αi = s. Let
I ′ be obtained from I by setting tIj = αj for 1 ≤ j ≤ ℓ and j 6= i. Clearly,
I ′ |= (R,A1).

(≈-rule) Since s ≈ t ∈ A, we have I |= s ≈ t, so sI = tI . Pruning removes
assertions, so I is a model of the pruned ABox by monotonicity. Merging
simply replaces an individual with an individual that is interpreted in the
same way so, clearly, I |= (R,A1).

(⊥-rule) Since I |= (R,A), the precondition of the ⊥-rule cannot be sat-
isfied, so the rule cannot be applied to R and A.

The following lemma shows that our calculus is complete. Our proof
adapts the well-known unraveling technique [14].

Lemma 6 (Completeness). Let R be an admissible set of rules and A an
initial ABox. If a derivation for R and A exists in which a leaf node is
labeled with a clash-free ABox A′, then (R,A) is satisfiable.

Proof. To construct a model of (R,A), we first introduce the following defini-
tions. A path is a finite sequence of pairs of individuals p = [x0

x′
0
, . . . , xn

x′
n
] with

n ≥ 0. Let tail(p) = xn and tail′(p) = x′
n. Furthermore, let q = [p | xn+1

x′
n+1

] be

the path [x0
x′
0
, . . . , xn

x′
n
, xn+1

x′
n+1

]; we say that q is a successor of p, and p is a pre-

decessor of q. Furthermore, paths p and q are from the same graph cluster
if either (i) tail(p) is either a named individual or a graph successor of a
named individual, and tail(q) is also either a named individual or a graph
successor of a named individual, (ii) both tail(p) and tail(q) are graph indi-
viduals and p and q are successors of the same path, or (iii) one path, say
p, is a successor of the other path q and tail(p) is a graph individual. The
set of all paths P(A′) is defined inductively as follows:

• [a
a
] ∈ P(A′) if a is a named individual and it occurs in A′;

• [p | s′

s′
] ∈ P(A′) if p ∈ P(A′), and s′ is a successor of tail(p), it occurs

in an assertion of A′, and it is not blocked in A′; and

28

• [p | s
s′

] ∈ P(A′) if p ∈ P(A′), and s′ is a successor of tail(p), it occurs
in an assertion of A′, and it is directly blocked in A′ by s.

The following property, which we denote with (*), follows immediately
from the previous definition: for each blocking-relevant concept C and each
path p ∈ P(A′), the individual tail(p) is not blocked in A′, so C(tail(p)) ∈ A′

if and only if C(tail′(p)) ∈ A′.
Let I be the following interpretation, where A is an atomic concept, R

is an atomic (tree or graph) role, G is a description graph with ℓ vertices,
p(i) are paths from P(A′) and are all from the same graph cluster, and a is
a named individual.

△I = P(A′)

aI = [a
a
] if a occurs in A′

aI = bI if named individuals a = c0, c1, . . . , cn = b exist such that each
ci−1 was merged into ci in the derivation leading to A′

AI = {p | A(tail(p)) ∈ A′}

RI = {〈p1, p2〉 | R(tail(p1), tail(p2)) ∈ A
′} ∪

{〈p, [p | s
s′

]〉 | s′ is a successor of tail(p) and R(tail(p), s′) ∈ A′} ∪

{〈[p | s
s′

], p〉 | s′ is a successor of tail(p) and R(s′, tail(p)) ∈ A′}

GI = {〈p1, . . . , pℓ]〉 | G(tail(p1), . . . , tail(pℓ)) ∈ A
′}

Since A is initial, the ABox A′ contains at least one assertion, so △I is
not empty. We now show that, for each ps = [qs |

s
s′

] and pt = [qt |
t
t′
] from

△I , the following claims hold (**):

• If s′ ≈ t′ ∈ A′ and qs = qt, then ps = pt: Since the ≈-rule is not ap-
plicable to A′, we have s′ = t′, which implies ps = pt.

• If s′ 6≈ t′ ∈ A′, then ps 6= pt: Since the ⊥-rule is not applicable to
s′ 6≈ t′, we have s′ 6= t′, which implies ps 6= pt.

• If A(s′) ∈ A′, then ps ∈ AI : By (*), we have A(s) ∈ A′, so ps ∈ AI .

• If ¬A(s′) ∈ A′, then ps 6∈ AI . Since the ⊥-rule is not applicable to
¬A(s′), we have A(s′) 6∈ A′. By (*), this implies A(s) 6∈ A′, so ps 6∈ AI .

• If ≥ n R.C(s′) ∈ A′, then ps ∈ (≥ n R.C)I : Note first that R is a tree
role, since only such roles can occur in concepts of the form ≥ n R.C.
By (*), ≥ n R.C(s) ∈ A′ and s is not blocked. The ≥-rule is not
applicable to ≥ n R.C(s), so individuals u1, . . . , un exist such that
ar(R, s, ui) ∈ A

′ and C(ui) ∈ A
′ for 1 ≤ i ≤ n, and ui 6≈ uj ∈ A

′ for
1 ≤ i < j ≤ n. By property (1) of Lemma 4, the following possibilities
exist for each ui:

29

– ui can be a successor of s. If ui is directly blocked by u′
i, then let

pui
= [ps |

u′
i

ui
]; otherwise, let pui

= [ps |
ui

ui
].

– ui can be a predecessor of s. Let pui
= qs. If tail′(pui

) 6= ui, this
is because s′ is blocked, but then, by the conditions of blocking,
C(tail′(pui

)) ∈ A′ and ar(R, s′, tail′(pui
)) ∈ A′.

– ui can be neither a predecessor nor a successor of s. Then, both
s and ui are named individuals, so let pui

= [ui

ui
].

In all cases ar(R, s′, tail′(pui
)) ∈ A′, which implies 〈ps, pui

〉 ∈ RI , and
C(tail′(pui

)) ∈ A′, which implies pui
∈ CI . Consider now each pair of

paths pui
and puj

with i 6= j. If tail′(pui
) 6≈ tail′(puj

) ∈ A′, then clearly
pui
6= puj

. If tail′(pui
) 6≈ tail′(puj

) /∈ A′, this is because tail′(pui
) 6= ui,

which is possible only if s′ is directly blocked by s and ui is a prede-
cessor of s. Since s can have at most one predecessor, no uj with j 6= i
is a predecessor of s, so pui

6= puj
. Thus, ps ∈ (≥ n R.C)I .

• If ∃G|i(s
′) ∈ A′, then ps ∈ (∃G|i)

I : By (*), ∃G|i(s) ∈ A
′ and s is not

blocked. The ∃G-rule is not applicable to ∃G|i(s), so individuals uj

exist such that G(u1, . . . , ui−1, s, ui+1, . . . , uℓ) ∈ A
′. By Lemma 4, all

uj are from the same graph cluster as s. If s is a graph individual,
since it is not blocked, its tree predecessor is not blocked either; oth-
erwise, s is a nonblocked predecessor of all uj . Either way, none of the
individuals uj are blocked. But then, by the definition of I, we have
〈uI

1, . . . , u
I
ℓ 〉 ∈ (∃G|i)

I , so ps ∈ (∃G|i)
I .

Property (**) implies that I |= α′ for each assertion α′ ∈ A′ that contains
only named individuals. Consider now each assertion α ∈ A. If α 6∈ A′, then
some named individuals in α were merged into other individuals; but then,
A′ contains the assertion α′ obtained by this merging, so I |= α by the
definition of I. Hence, I |= A, and it remains to be shown that I |= R.

Consider first each tree-like rule r ∈ Rt and each mapping µ of variables
of r to objects of △I . By Definition 10, the rule is of the following form,
where Ri and Si are (not necessarily atomic) tree roles.

∧

Ai(x) ∧
∧

ar(Ri, x, yi) ∧
∧

Bi(yi)→
∨

Ci(x) ∨
∨

Di(yi) ∨
∨

ar(Si, x, yi) ∨
∨

yi ≈ yj

Let px = µ(x), pyi
= µ(yi), and s′ = tail′(px). Assume now that each atom

from the antecedent of r is true in I and µ—that is, px ∈ AI
i , pyi

∈ BI
i , and

〈px, pyi
〉 ∈ RI

i .
If s′ is not blocked, let s = s′ and ti = tail′(pyi

). By the definition of I,
we have Ai(s) ∈ A

′, Bi(ti) ∈ A
′, and ar(Ri, s, ti) ∈ A

′.
If s′ is blocked, let s = tail(px); that is, s is the individual that blocks

s′. By the definition of I, since px ∈ AI
i , we have Ai(s) ∈ A

′. If tail′(pyi
)

30

is a successor of s, let ti = tail′(pyi
); now pyi

∈ BI
i and 〈px, pyi

〉 ∈ RI
i imply

Bi(ti) ∈ A
′ and ar(Ri, s, ti) ∈ A

′. If tail′(pyi
) is not a successor of s, let ti

be the predecessor of s; this predecessor exists by the definition of block-
ing. Furthermore, pyi

∈ BI
i and 〈px, pyi

〉 ∈ RI
i imply Bi(tail

′(pyi
)) ∈ A′ and

ar(Ri, s
′, tail′(pyi

)) ∈ A′; by the definition of blocking, we have Bi(ti) ∈ A
′

and ar(Ri, s, ti) ∈ A′ as well.
Let σ be a mapping such that σ(x) = s and σ(yi) = ti. The Hyp-

rule is not applicable to r and A′, so some of the atoms from the conse-
quent of σ(r) are present in A′. Assume first that Ci(s) ∈ A

′, Di(ti) ∈ A
′,

or ar(Si, s, ti) ∈ A
′. By the definition of blocking, then Ci(tail

′(px)) ∈ A′,
Di(tail

′(pyi
)) ∈ A′, or ar(Si, tail

′(px), tail′(pyi
)) ∈ A′, respectively; by (**),

this implies px ∈ CI
i , pyi

∈ DI
i , or 〈px, py〉 ∈ SI

i ,respectively, so I, µ |= r. As-
sume now that ti ≈ tj ∈ A

′. If pyi
and pyj

are both predecessors of px, then
pyi

= pyj
so I, µ |= r. If pyi

is a predecessor and pyj
is a successor of px,

then tail′(pyj
) = tj; furthermore, since ti is not blocked, tail′(pyj

) 6= ti, which
contradicts the assumption that ti = tj . Finally, if both pyi

and pyj
are suc-

cessors of px, then pyi
= pyj

by (**), so I, µ |= r.

Consider now r ∈ Rg to be a graph-regular rule of the form

A1 ∧ . . . ∧An → B1 ∨ . . . ∨Bm

and let µ be a variable mapping such that I, µ |= Ai for 1 ≤ i ≤ n. For each
variable x, let px = µ(x) and σ(x) = tail(px). By the definition of I, none of
σ(x) is blocked, so σ(Ai) ∈ A

′. Since the Hyp-rule is not applicable to r and
A′, we have σ(Bj) ∈ A

′ for some 1 ≤ j ≤ m. But then, by the definition of
I, we have I, µ |= Bj, so I, µ |= r.

We next prove that our calculus terminates. Using the standard argu-
ment, we show that each tree individual can have exponentially many tree
predecessors. Thus, the only thing that might prevent the calculus from
terminating is a situation described after Definition 4: the calculus might
create infinitely many instances of G. The ∃G-rule, however, is applied with
the lowest priority. Thus, if we instantiate G twice, before any further appli-
cation of the ∃G-rule, either the rules from item 1 of Definition 9 will have
merged these two instances of G, or the rules from item 2 of Definition 9
will have detected a clash. Thus, these rules and the rule priority guarantee
that we never have more than two instances of G in the same graph cluster,
which can be used to prove termination.

Lemma 7 (Termination). Let R be an admissible set of rules and A an
initial ABox. Then, each derivation for R and A is finite.

Proof. We prove the claim by showing that (i) each individual can cause only
a limited number of rule applications and (ii) the number of new individuals
introduced on each path of a derivation is finite.

31

We first prove (i)—that is, that each derivation rule can be applied a
limited number of times to a fixed set of individuals on every path of every
derivation. Observe that the supply of individuals is infinite; hence, if an
individual s is pruned in some ABox in the derivation, we can assume that
s is not introduced later in the derivation. We now show that (i) holds for
each derivation rule.

• An application of the Hyp-rule to a rule r ∈ R and a mapping σ in-
troduces an assertion σ(Vi) for some atom Vi from the consequent of
r, which prevents repeated application of the Hyp-rule to the same r
and σ. Merging and pruning can remove σ(Vi) in subsequent derivation
steps, but this would also remove some individual in σ, thus preventing
the use of the same σ in future.

• An application of the ≥-rule to ≥ n R.C(s) extends the ABox with
assertions C(t1), . . . , C(tn), ar(R, s, t1), . . . , ar(R, s, tn), and ti 6≈ tj for
1 ≤ i < j ≤ n. Thus, the individuals u1, . . . , un from the precondi-
tion of the ≥-rule can be matched to t1, . . . , tn, which prevents future
applications of the ≥-rule to ≥ n R.C(s). If some tj is merged into
an individual v, then the assertions C(v), ar(R, s, v), and v 6≈ tk are
added to the ABox, so s retains a set of a neighbors which prevents
subsequent application of the ≥-rule to ≥ n R.C(s).

• An application of the ∃G-rule to ∃G|i(s) extends the ABox with an as-
sertion G(t1, . . . , ti−1, s, ti+1, . . . , tℓ). Thus, the individuals uj from the
precondition of the the ∃G-rule can be matched to tj, which prevents
future applications of the ∃G-rule to ∃G|i(s). If some tj is merged into
an individual v, then the appropriate graph assertion is added to the
ABox that prevents subsequent application of the ∃G-rule to ∃G|i(s).

• The ≈-rule is never applied twice to the same assertion s ≈ t since
either s or t is removed from the ABox.

• If the ⊥-rule is applied, then the resulting ABox labels a leaf of the
derivation.

Next we prove (ii)—that is, that the total number of individuals intro-
duced on a derivation path is finite.

Let c be the number of concepts and r the number of atomic roles that
occur in R and A. For an individual s and its predecessor t, the number
of different labels LA(s) and LA(t) is 2c, and the number of different labels
LA(s, t) and LA(t, s) is 2r. Hence, if there are more than δ = 22c+2r + 1 such
pairs of individuals, at least two pairs have the same labels; we denote this
observation with (*). By Lemma 4, each tree individual u has a link to root
of some length n. Since the ordering ≺ used in the definition of blocking
contains the predecessor relationship and because of (*), u is blocked if

32

n = δ. Since ≥- and ∃G-rules are not applied to blocked individuals, each
individual u in A′ has at most δ tree predecessors; since each tree individual
has at most one graph predecessor, u can have at most 2δ predecessors.
Furthermore, the number of the applications of the ≥-rule to each individual
with k predecessors is bounded by (i), which limits the overall number of
tree individuals with k + 1 predecessors introduced in a derivation.

To complete the proof, we show that, for each tree individual s, the
number of graph individuals occurring in A′ that are from the same graph
cluster as s is bounded. The set of rules R is admissible, so it contains all
the rules from items 1 and 2 of Definition 9. Furthermore, the Hyp-, ⊥-,
and ≈-rules are applied with higher priority than the ∃G-rule. Therefore,
whenever an ABox A′ in a derivation contains graph assertions G(t1, . . . , tℓ)
and G(t′1, . . . , t

′
ℓ) such that ti = t′j , the applications of the Hyp-, ⊥-, and

≈-rule will either derive ⊥ or will merge one graph assertion into the other.
Thus, whenever the ∃G-rule is applicable to some assertion ∃G|i(t) with t
from the same graph cluster as s, the ABox A′ contains at most one instance
of G containing t. The ∃G-rule can be applied to each of the vertices in that
instance, so the number of graph individuals from the same graph cluster
as s is at most ℓ2. Similar reasoning applies if s is a named individual.
But then, exactly as in the previous paragraph, we conclude that the total
number of graph individuals is bounded.

The total number of individuals introduced in a derivation is bounded,
and the number of applications of derivation rules to each individual is
bounded as well, which gives us a bound on the maximum length in a deriva-
tion. Since each derivation is finitely branching, it is finite as well.

The following theorem follows immediately from Lemmas 1, 2, 3, 5, 6,
and 7.

Theorem 1. Let K = (T , G,P,A) be a graph-extended DL knowledge base
where T is a SHIQ TBox and A is an initial ABox; furthermore, let
R = Ξ(T) ∪ Ξ(G) ∪ P.

• If K is satisfiable, then each derivation for R and A is clash-free.

• If a clash-free derivation for R and A exists, then K is satisfiable.

• Each derivation for R and A is finite.

6 Transforming OWL Ontologies into Graphs

The evaluation of the adequacy of our approach is rather difficult due to lack
of adequate test data. Furthermore, remodeling existing ontologies using a
new modeling paradigm may require considerable effort. In order to both
obtain test data for our reasoner and make the adoption of our approach in

33

practice easier, we have developed an algorithm that automatically trans-
forms a TBox T into a graph-extended knowledge base K. For example, our
algorithm can automatically construct the graph shown in Figure 1 from
the axioms such as (2)–(4). Clearly, the resulting graph-extended knowledge
base can only be taken as a rough approximation; however, it can be used
as a starting point for a more comprehensive remodeling of T into a proper
graph-extended knowledge base. We applied our algorithm to GALEN and
FMA, and domain experts have assured us that the resulting description
graph correctly reflects many aspects of human anatomy.

In Section 6.1 we describe the intuition behind our algorithm and present
the algorithm’s pseudo-code. Then, in Section 6.2 we discuss the results we
got by applying the algorithm to GALEN and FMA.

6.1 The Transformation Algorithm

Our transformation of a TBox T1 into a graph-extended knowledge base
K = (T , G,P,A) is based on two assumptions.

The first assumption is that only some concepts and roles from T1 are
relevant for G. For example, the Heart concept is clearly relevant to the
description graph of human anatomy; in contrast, the Disease concept is
not relevant because it does not represent the structure of a human body.
Similarly, the hasStructuralComponent role clearly belongs to the graph,
while the hasAge role does not.

Our second assumption is that each concept relevant to G should be
represented by one vertex in G, and that edges in G can be decoded from
axioms of the form A ⊑ ∃R.B. Our assumption is that, by writing axioms
such as (2)–(4), modelers actually wanted to say “the aortic valve has an
alpha connection to the left ventricle, and the left side of heart has the same
left ventricle as a solid division.”

We use these two assumptions in the core part of our algorithm, which
is parameterized with a DL TBox T1, a set of relevant concepts NCg , and
a set of relevant roles NRg . The latter set actually defines the set of graph
roles, and all other roles are considered to be tree roles. Our algorithm first
computes ∆(T1) and thus normalizes the input TBox; as in Section 5, this
has the benefit of making all negations explicit. Then, the algorothm creates
a vertex i in V for each concept A ∈ NCg and sets λ〈i〉 = {A}. Then, it
processes each axiom α ∈ T1 as follows:

• If α is of the form A ⊑ ∃R.B where {A,B} ⊆ NCg and R ∈ NRg ,
then, for i and j vertices such that λ〈i〉 = {A} and λ〈j〉 = {B}, the
algorithm adds the edge 〈i, j〉 to E and extends λ such that R ∈ λ〈i, j〉.

• If α does not contain a role from NRg , the algorithm simply copies α
to the resulting TBox T .

34

• If α contains only roles from NRg and no existential quantifier, the
algorithm translates α into a graph-regular rule and adds it to P.

• If α is not of the above form, then either it involves a graph and a tree
role simultaneously, or it is of the form A ⊑ ∃R.B but some of A, B,
or R are not relevant for the graph. Such an axiom either invalidates
the syntactic restrictions of our formalism or it does not have a natural
interpretation; hence, our algorithm simply ignores such an axiom α.

Our translation cannot correctly handle axioms of the form A ⊑ ≥ n R.B
with n ≥ 2. Intuitively, such axioms might be handled by creating n vertices
in G, labeling all of them with B, and then connecting the vertex of A with
all the vertices of B using the role R. The situation, however, is not so
simple if, in addition, we also have the axiom B ⊑ ≥ m R.A. It is now not
clear which vertices of the description graph labeled with A to “reuse” to
satisfy this axiom. Therefore, we decided to ignore such axioms. This is
partly justified by the fact that GALEN and FMA—our main sources of
inspiration and test data—do not contain ≥ n R.B concepts with n ≥ 2. In
human anatomy, different objects of the domain are naturally given different
names. For example, instead of an axiom

Heart ⊑ ≥ 2 hasStructuralComponent .SideOfHeart , (20)

GALEN introduces explicit names for the left and the right side of the heart:

Heart ⊑ ∃hasStructuralComponent .LeftSideOfHeart (21)

Heart ⊑ ∃hasStructuralComponent .RightSideOfHeart (22)

On ontologies with at-least restrictions, our algorithm simply treats each
≥ n R.B as ∃R.B. It is natural to use number restrictions for modeling
symmetric organs such as the kidney. On such an ontology, our algorithm
produces a description graph containing just one copy of the object, and the
graph can then be corrected by the modeler.

Determining the sets NCg and NRg manually is not easy. According
to our experience with GALEN and FMA, a good strategy is to manually
identify a set of roles N ′

Rg
that naturally belong to the graph, and then to

take NRg as the closure of N ′
Rg

w.r.t. the explicit role inclusions from T1.
Then, we take NCg as the set of all concepts A and B occurring in an axiom
A ⊑ ∃R.B ∈ T1 such that R ∈ NRg . Intuitively, if A and B are connected
by a role that should be included into the graph, then it is likely that A and
B should be included into the graph as well.

This idea, however, requires some refinement. For example, GALEN
contains the following axioms:

LeftVentricle ⊑ Ventricle (23)

35

RightVentricle ⊑ Ventricle (24)

Let us assume that NCg contains the concepts Ventricle, LeftVentricle, and
RightVentricle. The core transformation then generates a description graph
G containing three different vertices, each labeled with one of these concepts.
It is, however, counterintuitive for G to contain a Ventricle vertex: no ven-
tricle as such exists on its own; rather, each concrete ventricle is either the
left of the right ventricle. In fact, such a description graph G is unsatisfiable.
Assume that an object x as instance of LeftVentricle; due to (23), x is also
an instance of Ventricle. To satisfy the A-start property for LeftVentricle, x
must correspond to the i-th vertex of some instance of G; similarly, to satisfy
the A-start property for Ventricle, x must also correspond to the j-th vertex
of some instance of G. Finally, because LeftVentricle and Ventricle label
different vertices of G, we have i 6= j, which then invalidates the disjointness
property of Definition 4. The concept Ventricle is thus an abstract concept :
it is not meant to be instantiated directly, but only through a subclass. Such
concepts clearly do not belong into a description graph. Hence, after com-
puting NCg as described in the previous paragraph, our algorithm classifies
the input TBox T1 using standard DL reasoning; then, it removes from NCg

all concepts that are not leaves in the resulting classification. Intuitively, if
A is not a leaf concept in the classification of T1, then A is likely to be an
abstract concept, so it should not be added to G.

The pseudo-code of the transformation is shown in Algorithm 1. The
algorithm is given a DL TBox T1 and a set of graph roles N ′

Rg
. For the

same reasons as in Section 5, the algorithm first normalizes the input TBox
axioms (line 2). Then, it closes the set N ′

Rg
according to the explicitly

specified role inclusion relationships in T1 (line 3). Next, it computes the
set NCg as outlined in the previous paragraphs (lines 4–9). The main part
of the algorithm then processes all the TBox axioms as explained previously
(lines 10–27). Finally, the algorithm outputs the resulting graph-extended
knowledge base K (line 28). The transformation tool implementing this
algorithm can be downloaded from HermiT’s Web page.

6.2 Applying the Transformation to GALEN and FMA

We applied the algorithm from Section 6.1 to the original version of GALEN;
furthermore, FMA is a very large ontology, so we have applied our algorithm
to a fragment of FMA that describes the heart. Both ontologies can be
downloaded from HermiT’s Web page. Table 6 summarizes information
about the original and the transformed ontologies.

Our transformation clearly leads to a change in the semantics of the
ontology, and some information is lost in the process. Many parts of the
resulting description graph, however, correspond with the intuitive descrip-

36

Algorithm 1 The Transformation Algorithm

1: procedure ToGraphExtendedKB(T1, N
′
Rg

)

2: T ′ ← ∆(T1) ⊲ Normalize T1
3: NRg ← {S | ∃R ∈ N ′

Rg
such that S ⊑∗

T1
R}

4: NCg ← ∅
5: for each ⊤ ⊑ ¬A ⊔ ∃R.B ∈ T ′ where R ∈ NRg do

6: NCg ← {A,B}
7: end for

8: compute the subsumption hierarchy H(T1)
9: remove from NCg all nonleaf concepts from H(T1)

10: V ← ∅, E ← ∅, λ← ∅, T ← ∅, P ← ∅
11: for each α ∈ T ′ do

12: if α = ⊤ ⊑ ¬A ⊔ ∃R.B with {A,B} ⊆ NCg and R ∈ NRg then

13: let i be the vertex of V such that A ∈ λ〈i〉
14: if no such i exists then

15: i← 1 + |V |, V ← V ∪ {i}, λ〈i〉 ← {A}
16: end if

17: let j be the vertex of V such that B ∈ λ〈j〉
18: if no such j exists then

19: j ← 1 + |V |, V ← V ∪ {j}, λ〈j〉 ← {B}
20: end if

21: E ← E ∪ {〈i, j〉}, λ〈i, j〉 ← λ〈i, j〉 ∪ {R}
22: else if α does not contain a role from NRg then

23: T ← T ∪ {α}
24: else if α contains only roles from NRg and no ∃R.B then

25: P ← P ∪ Ξ(α)
26: end if

27: end for

28: return K = (T , G = (V,E),P, ∅)
29: end procedure

tions of the anatomy of the body. For example, the graph shown in Figure 1
has been extracted from the transformed ontology.

7 Evaluation and Discussion

To evaluate our approach, we have classified the original ontologies using
HermiT, transformed them using the algorithm from Section 6 into graph-
extended KBs, and classified the resulting KBs using the reasoning algorithm
presented in Section 5. We now present the performance results and discuss
the classification results.

37

Table 6: Information about Test Ontologies

GALEN FMA

Total number of concepts: 2748 430
Total number of roles: 413 38
Total number of GCIs: 6962 3479

GCIs discarded in the transformation: 320 328
With both a tree and a graph role: 74 0
With existentials on abstract concepts: 246 328

Translated GCIs: 6642 3151
Into the description graph: 680 2966
Into rules over the graph: 155 1
Into the DL TBox: 5807 184

With existentials on tree roles: 1741 16
With universals on tree roles: 952 0
Involving concept names only: 3114 168

Vertices in the description graph: 325 342
Edges in the description graph: 667 1076

7.1 Performance Results

We performed the experiments using a standard laptop with 1 GB of RAM.
The classification of the original version of GALEN and the fragment of
FMA took 129 s and 57 s, respectively; furthermore, the classification of
the transformed ontologies took 781 s and 6 s, respectively.

The increase in the classification time for GALEN is partly due to the fact
that our implementation of the reasoning algorithm in Section 5 is still very
prototypical. In the case of FMA, the classification times are substantially
lower because most of the original ontology is translated into the graph, so
the generated models are much smaller.

Our performance results show that, even with a very prototypical imple-
mentation, we can process complex ontologies, which we take as indication
that our approach is practically feasible.

7.2 Changes in the Semantics

The transformed ontologies are more constrained than the original ones, so
we expect to obtain new entailments.

In the case of GALEN, we discovered a concept that is satisfiable in the
original version of the ontology, but is unsatisfiable in the transformed on-
tology, which revealed a modeling error in GALEN. The problem occurs in
the representation of the patella—a bone that is connected to certain ten-

38

dons through two retinacula; the retinacula are represented using the con-
cepts LateralPatellaRetinaculum and MedialPatellaRetinaculum . GALEN
describes the relationship between the patella and the retinacula as follows:

LateralPatellaRetinaculum ≡ ∃hasOtherEndAt .Patella ⊓ (. . .) (25)

MedialPatellaRetinaculum ≡ ∃hasOtherEndAt .Patella ⊓ (. . .) (26)

hasOtherEndAt ≡ isAtOtherEndOf − (27)

⊤ ⊑ ≤ 1 isAtOtherEndOf (28)

According to these axioms, each patella is connected to both the lateral and
the medial retinacula, but due to functionality of isAtOtherEndOf , the two
must be the same objects. Intuitively, this is an undesirable consequence,
since the two retunaculae are in reality different objects; in other words,
isAtOtherEndOf should probably not have been declared functional. Since
GALEN is underconstrained, this does not cause the inconsistency of either
concept, so this error has not been detected so far. The description graph
produced by our transformation, however, contains one node for the patella
and one for each retinaculum; furthermore, both retinacula are connected
through isAtOtherEndOf to the same patella. Since isAtOtherEndOf is
functional, the retinacula should be the same, which invalidates the dis-
jointness property for the graph (see Definition 4) and makes Patella unsat-
isfiable.

In the case of FMA, we did not obtain any new subsumption relation-
ships. This is due to the fact that most of the subsumption relationships in
FMA are represented explicitly as axioms of the form A ⊑ B where A and
B are atomic concepts. For example, the fact that the heart is an organ is
represented explicitly with the axiom Heart ⊑ Organ , and it is not derived
from the structure of the heart; clearly, such inferences are performed in the
same way on both tree-like and nontree structures.

As explained in Section 6, our algorithm discards some axioms from the
ontology. We compared the class hierarchies of the original and the graph-
extended versions of GALEN. In total, 361 subsumption relationships were
lost, such as Femur ⊑ BodySpace (the femur is a body space), and

InteratrialSeptum ⊑ TwoAndAHalfDimensionalStructure

(the interatrial septum of the heart is a structure with two and a half dimen-
sions). All these entailments involve an abstract concept, so their loss is not
surprising since the transformation algorithm discards GCIs that involve an
abstract concept and an existential on a graph role. No information about
concrete concepts has been lost, though.

In contrast, in the case of FMA we did not lose any subsumption rela-
tionships. As explained before, the reason is that the structural information
in FMA largely does not influence subsumption.

39

7.3 Discussion

Our experience with GALEN and the discussions we had with the authors
of GALEN lead us to conclude that our formalism represents the anatomical
structures in the human body in a way that is closer to the modelers’ in-
tention than the original OWL axioms.5 The fact that we found a modeling
error in GALEN leads us to believe that our formalism and its semantics
are based on “reasonable” assumptions.

Furthermore, capturing the semantics of abstract concepts and axioms
involving them properly is likely to be the most important open problem. We
briefly discuss possibilities for addressing it. Consider the following axiom
in GALEN that is eliminated by the transformation algorithm because both
AtrioventricularValve and Ventricle are abstract concepts:

AtrioventricularValve ⊑ ∃hasAlphaConnection .Ventricle (29)

Since both concepts in (29) are abstract, this axiom does not say anything
about the structure of the concrete objects (i.e., the objects that are likely
to be included into a description graph). Thus, one might expect the actual
relationship between valves and ventricles to be described for the concrete
subclasses of AtrioventricularValve and Ventricle. Axiom (29) can then be
interpreted as a check which makes sure that this abstract relationship is
concretized at a lower level. In [18], a formalism has been presented that
might be useful for this purpose. Another possibility is to interpret Ventricle
disjunctively over its subclasses: each valve is connected to either left or the
right ventricle, but we do not know which. Currently, it is not clear which
interpretation is appropriate; in fact, the proper interpretation of abstract
concepts is made more difficult by the fact that whether a concept is abstract
or concrete depends on the level of granularity.

8 Conclusion

We have extended OWL with description graphs, which can be used to de-
scribe structured objects—that is, objects consisting of parts connected in
a complex, arbitrary way. We also allow for arbitrary SWRL-like rules over
description graphs. Unlike most existing combinations of DLs and rules in
which rules can be used only for query answering [16, 20, 23, 8, 19], our rules
also fully participate in schema reasoning. Based on an observation that
many structured objects exhibit a natural bound on their size, we derived a
hypertableau reasoning algorithm for our formalism, which we implemented
in the HermiT reasoner. To obtain suitable test data, we extracted descrip-
tion graphs out of GALEN and FMA medical terminologies. We successfully
classified the resulting ontologies and even detected a modeling error.

5Thanks to Alan Rector and Sebastian Brandt.

40

We see three open problems for future research. First, graph-extended
KBs should provide for several and not just one description graph, as this
would allow breaking up a large graph into several more manageable parts.
The main challenge is to identify an appropriate paradigm for specifying
relationships between different description graphs. Second, an adequate
semantics for modeling abstract concepts at different levels of granularity
is needed. Third, to allow for a wider users’ community, we would need to
extend ontology editors such as Protégé with description graphs.

Acknowledgments

We than Alan Rector and Sebastian Brandt for providing us with invaluable
comments from the users’ perspective.

References

[1] A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-whole relations
in object-centered systems: An overview. Data Knowledge & Engineer-
ing, 20(3):347–383, 1996.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, 2nd edition,
August 2007.

[3] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of Description
Logics and Abstract Description Systems. Journal of Artificial Intelli-
gence Research, 16:1–58, 2002.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. Structured Ob-
jects: Modeling and Reasoning. In T. W. Ling, A. O. Mendelzon,
and L. Vieille, editors, Proc. of the 4th Int. Conf. on Deductive and
Object-Oriented Databases (DOOD ’95), volume 1013 of LNCS, pages
229–246, Singapore, December 4–7 1995. Springer.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decid-
ability of Query Containment under Constraints. In Proc. of the
17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS ’98), pages 149–158, Seattle, WA, USA, June
1–3 1998. ACM Press.

[6] S. Derriere, A. Richard, and A. Preite-Martinez. An Ontology of As-
tronomical Object Types for the Virtual Observatory. In Proc. of the
26th meeting of the IAU: Virtual Observatory in Action: New Science,

41

New Technology, and Next Generation Facilities, pages 17–18, Prague,
Czech Republic, August 21–22 2006.

[7] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrat-
ing Datalog and Description Logics. Journal of Intelligent Information
Systems, 10(3):227–252, 1998.

[8] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
Answer Set Programming with Description Logics for the Semantic
Web. In D. Dubois, C. A. Welty, and M.-A. Williams, editors, Proc. of
the 9th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2004), pages 141–151, Whistler, Canada, June 2–5,
2004 2004. AAAI Press.

[9] C. Golbreich, S. Zhang, and O. Bodenreider. The Foundational Model
of Anatomy in OWL: Experience and Perspectives. Journal of Web
Semantics, 4(3):181–195, 2006.

[10] J. Goodwin. Experiences of using OWL at the Ordnance Survey. In
Proc. of the OWL: Expreiences and Directions Workshop (OWLED
2005), volume 188 of CEUR WS Proceedings, Galway, Ireland, Novem-
ber 11–12 2005.

[11] F. W. Hartel, S. de Coronado, R. Dionne, G. Fragoso, and J. Golbeck.
Modeling a description logic vocabulary for cancer research. Journal of
Biomedical Informatics, 38(2):114–129, 2005.

[12] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules
Language. In Proc. of the 13th Int. World Wide Web Conference
(WWW 2004), pages 723–731, New York, NY, USA, May 17–22 2004.
ACM Press.

[13] I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), pages 448–453, Edinburgh, UK, July 30–August 5 2005. Morgan
Kaufmann Publishers.

[14] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very
Expressive Description Logics. Logic Journal of the IGPL, 8(3):239–
263, 2000.

[15] O. Kutz, I. Horrocks, and U. Sattler. The Even More Irresistible
SROIQ. In P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proc.
of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 68–78, Lake District, UK, June 2–5
2006. AAAI Press.

42

[16] A. Y. Levy and M.-C. Rousset. Combining Horn Rules and Description
Logics in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[17] B. Motik. Reasoning in Description Logics using Resolution and De-
ductive Databases. PhD thesis, Univesität Karlsruhe, Germany, 2006.

[18] B. Motik, I. Horrocks, and U. Sattler. Bridging the Gap Between
OWL and Relational Databases. In Proc. of the 16th International
World Wide Web Conference (WWW 2007), pages 807–816, Banff, AB,
Canada, May 8–12 2007. ACM Press.

[19] B. Motik and R. Rosati. A Faithful Integration of Description Logics
with Logic Programming. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), pages 477–482, Hyderabad, India,
January 6–12 2007. Morgan Kaufmann Publishers.

[20] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL
with Rules. Journal of Web Semantics, 3(1):41–60, 2005.

[21] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning in De-
scription Logics using Hypertableaux. In F. Pfenning, editor, Proc. of
the 21st Conference on Automated Deduction (CADE-21), volume 4603
of LNAI, pages 67–83, Bremen, Germany, July 17–20 2007. Springer.

[22] D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form
Translation. Journal of Symbolic Logic and Computation, 2(3):293–304,
1986.

[23] R. Rosati. DL + log: A Tight Integration of Description Logics and
Disjunctive Datalog. In P. Doherty, J. Mylopoulos, and C. A. Welty,
editors, Proc. of the 10th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2006), pages 68–78, Lake District,
UK, June 2–5 2006. AAAI Press.

[24] C. Rosse and J. V. L. Mejino. A reference ontology for biomedical in-
formatics: the Foundational Model of Anatomy. Journal of Biomedical
Informatics, 36:478–500, 2003.

[25] R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms
into the First-Order Translation of Modal Formulae. In F. Baader,
editor, Proc. of the 19th Int. Conf. on Automated Deduction (CADE-
19), volume 2741 of LNAI, pages 412–426, Miami Beach, FL, USA,
July 28–August 2 2003. Springer.

[26] J. Seidenberg and A. L. Rector. Representing Transitive Propagation
in OWL. In D. W. Embley, A. Olivé, and S. Ram, editors, Proc. of
the 25th Int. Conf. on Conceptual Modeling (ER 2006), volume 4215 of
LNCS, pages 255–266, Tucson, AZ, USA, November 6–9 2006. Springer.

43

[27] A. Sidhu, T. Dillon, E. Chang, and B. Singh Sidhu. Protein Ontology
Development using OWL. In Proc. of the OWL: Expreiences and Direc-
tions Workshop (OWLED 2005), volume 188 of CEUR WS Proceedings,
Galway, Ireland, November 11–12 2005.

[28] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz.
Reengineering Thesauri for New Applications: The AGROVOC Exam-
ple. Journal of Digital Information, 4(4), 2004.

[29] W.D. Solomon, A. Roberts, J. E. Rogers, C. J. Wroe C.J., and A. L.
Rector. Having our cake and eating it too: How the GALEN Inter-
mediate Representation reconciles internal complexity with users’ re-
quirements for appropriateness and simplicity. In Proc. of the Annual
Fall Symposium of American Medical Informatics Association, pages
819–823, Los Angeles, CA, USA, November 4–8 2000.

[30] K. A Spackman. SNOMED RT and SNOMEDCT. Promise of an in-
ternational clinical terminology. M.D. Computing, 17(6):29, 2000.

[31] S. Tobies. Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH Aachen, Germany,
2001.

[32] M. Y. Vardi. Why Is Modal Logic So Robustly Decidable? In N. Im-
merman and P. Kolaitis, editors, Proc. of a DIMACS Workshop on
Descriptive Complexity and Finite Models, volume 31 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, pages
149–184, Princeton University, USA, January 14–17 1996. American
Mathematical Society.

44

