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Abstract

Despite similarities between the Web Ontology Language (OWL)
and schema languages traditionally used in relational databases, sys-
tems based on these languages exhibit quite different behavior in prac-
tice. The schema statements in relational databases are usually inter-
preted as integrity constraints and are used to check whether the data
is structured according to the schema. OWL allows for axioms that
resemble integrity constraints; however, these axioms are interpreted
under the standard first-order semantics and not as checks. This often
leads to confusion and is inappropriate in certain data-centric applica-
tions. To explain the source of this confusion, in this paper we compare
OWL and relational databases w.r.t. their schema languages and basic
computational problems. Based on this comparison, we extend OWL
with integrity constraints that capture the intuition behind similar
statements in relational databases. We show that, if the integrity con-
straints are satisfied, they need not be considered while answering a
broad range of positive queries. Finally, we discuss several algorithms
for checking integrity constraint satisfaction, each of which is suitable
to different types of OWL knowledge bases.
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1 Introduction

The Web Ontology Language (OWL) is a W3C standard for modeling on-
tologies in the Semantic Web. The logical underpinning of OWL is provided
by description logics (DLs) [2]. OWL can be seen as an expressive schema
language; however, its axioms have a different meaning from similar state-
ments in relational databases. Ontology designers sometimes intend OWL
axioms to be read as integrity constraints (ICs)—checks that verify whether
the information explicitly present in the ontology satisfies certain conditions.
The formal semantics of OWL, however, does not interpret these axioms as
integrity constraints, so the consequences that one can draw from such on-
tologies differ from the ones that the users intuitively expect.

To understand the nature of the problem, consider an application for
managing tax returns in which each person is required to have a social
security number. In a relational database, this would be captured by an
inclusion dependency stating that a social security number exists for each
person. During database updates, such a dependency is interpreted as a
check: whenever a person is added to the database, a check is performed
to see whether that person’s social security number has been specified as
well; if not, the update is rejected. An apparently similar dependency can
be expressed in OWL using an existential restriction, but this will result
in quite a different behavior: adding a person without a social security
number to an OWL knowledge base does not raise an error, but only leads
to the inference that the person in question has some (unknown) social
security number. OWL is thus closely related to incomplete databases [43]—
databases whose data is specified only partially.1 OWL axioms, just like
dependencies in incomplete databases, do not check the integrity of the
database data; instead, they show how to extend the database with missing
information.

In fact, it is not possible to formalize database-like integrity constraints
in OWL, which has caused problems in practice. Axioms such as domain
and range constraints look like ICs, so users often expect them to behave
accordingly, which often leads to problems. On the one hand, such ax-
ioms do not check whether the data has been input correctly and, on the
other hand, they cause considerable performance overhead during reason-
ing. These problems could be addressed if OWL were extended with true
database-like integrity constraints.

There is a long research tradition in extending logic-based knowledge
representation formalisms with database-like integrity constraints. In his
seminal paper, Reiter observed that integrity constraints are not objective
sentences about the world; rather, they describe the allowed states of the

1Dependencies in incomplete databases are often called constraints in the literature.
To avoid confusion, in this paper we reserve the term “integrity constraint” for axioms
that behave as database-style checks.
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database, and are therefore of an epistemic nature [38]. Hence, most exten-
sions of DLs with integrity constraints are based on autoepistemic extensions
of DLs, such as the description logics of minimal knowledge and negation-as-
failure [16] or various nonmonotonic rule extensions of DLs [39, 32]. While
these approaches do solve the outlined problem to a certain extent, such a
solution is not in the spirit of relational databases. As we discuss in more
detail in Section 8, integrity constraints in these approaches do not affect
TBox reasoning at all, and they are applied only to ABox individuals. Such
constraints are thus very weak, as they do not say anything about the struc-
ture of the world; they only constrain the structure of ABoxes.

In relational databases, however, integrity constraints have a dual role:
on the one hand, they describe all possible worlds, and, on the other hand,
they describe the allowed states of the database [1]. Integrity constraints are
used in data reasoning tasks, such as checking the integrity of database data,
as well as in schema reasoning tasks, such as computing query subsumption.
The semantic relationship between these two roles of integrity constraints is
much clearer than in autoepistemic ICs, which simplifies modeling.

In order to make schema modeling in OWL more natural for data-centric
applications, in this paper we study the relationship between OWL and
databases. Based on our analysis, we propose an extension of OWL that
mimics the behavior of integrity constraints in relational databases, while
keeping the main benefits of OWL such as the capability to model hierar-
chical domains. The contributions of this paper are as follows.

• In Section 2, we compare OWL and relational databases w.r.t. their
schema languages, main reasoning problems, and approaches to mod-
eling integrity constraints. Furthermore, we discuss in detail the rela-
tionship between OWL and incomplete databases.

• To allow users to control the degree of incompleteness in OWL, in
Section 3 we introduce extended DL knowledge bases. The schema
part of such knowledge bases is separated into the standard TBox
that contains axioms which are interpreted as usual, and the integrity
constraint TBox that contains axioms which are interpreted as checks.
We also define an appropriate notion of IC satisfaction based on the
notion of minimal models.

• In Section 4, we show that our ICs indeed behave similarly to ICs in
relational databases: if the ICs are satisfied in an extended DL knowl-
edge base, they need not be considered while answering a broad class
of positive ABox queries. This result promises a significant perfor-
mance improvement of query answering in practice, as it allows us to
consider a subset of the TBox during query answering.
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• In Section 5, we show how to incorporate the modeling of ICs into the
general ontology modeling process, and we also discuss the types of
axiom that are likely to be designated as integrity constraints.

• In Section 6, we present an alternative characterization of IC satisfac-
tion by embedding the problem into logic programming. This provides
us with additional intuition behind the notion of IC satisfaction, and
it also lays the foundation for a practical decision procedure.

• In Section 7, we present several algorithms for checking IC satisfac-
tion in different types of knowledge bases. For knowledge bases with-
out positively occurring existential quantifiers, IC satisfaction can be
checked using existing logic programming machinery. For knowledge
bases with existential quantifiers, we embed the IC satisfaction prob-
lem into the monadic second-order logic on infinite k-ary trees SkS
[36]. We do not expect this procedure to be practical; rather, it merely
shows us that IC satisfaction is decidable, and that a more practical
procedure might exist.

• In Section 8, we discuss how our approach relates to the existing ap-
proaches for modeling integrity constraints.

We assume the reader to be familiar with the basics of OWL and DLs;
please refer to [2] for an introduction. It is well-known that the OWL DL
variant of OWL corresponds to the DL SHOIN (D). Because of that, we
refer to OWL and DLs interchangeably throughout this paper.

2 OWL vs. Relational Databases

An obvious distinction between OWL/DLs and relational databases is that
the former use open-world semantics, whereas the latter use closed-word
semantics. We argue that the two semantics actually complement each other
and that the choice of the semantics should depend on the inference problem.

2.1 Schema Language

The schema part of a DL knowledge base is typically called a TBox (termi-
nology box), and is a finite set of (possibly restricted) universally quantified
implications. For example, a TBox can state that each person has a social
security number (SSN), that a person can have at most one SSN, and that
each SSN can be assigned to at most one individual. These statements are
expressed using the following TBox axioms:

Person ⊑ ∃hasSSN .SSN (1)

Person ⊑ ≤ 1 hasSSN (2)
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SSN ⊑ ≤ 1 hasSSN − (3)

Most DLs can be seen as decidable fragments of first-order logic [8], so
axioms (1)–(3) can be translated into the following first-order formulae:

∀x : [Person(x)→ ∃y : hasSSN (x, y) ∧ SSN (y)] (4)

∀x, y1, y2 : [Person(x) ∧ hasSSN (x, y1) ∧ hasSSN (x, y2)→ y1 ≈ y2] (5)

∀x, y1, y2 : [SSN (x) ∧ hasSSN (y1, x) ∧ hasSSN (y2, x)→ y1 ≈ y2] (6)

The schema of a relational database is defined in terms of relations and
dependencies. Many types of dependencies have been considered in the
literature, such as functional, inclusion, and join dependencies. As discussed
in [1], most dependencies can be represented as first-order formulae of the
form (7), where ψ and ξ are conjunctions of function-free atoms:

∀x1, . . . , xn : [ψ(x1, . . . , xn)→ ∃y1, . . . , ym : ξ(x1, . . . , xn, y1, . . . , ym)] (7)

Although the expressivity of DLs underlying OWL and of relational de-
pendencies is clearly different, the schema languages of the two are quite
closely related. In fact, formula (4) has the form of an inclusion depen-
dency, whereas (5) and (6) correspond to key dependencies.

2.2 Interpreting the Schema

DL TBoxes and relational schemata are interpreted according to the stan-
dard first-order semantics: they distinguish the legal from the illegal rela-
tional structures—that is, the structures that satisfy all axioms from the
structures that violate some axiom. In DLs, the legal structures are called
models, whereas in relational databases they are called database instances,
but the underlying principle is the same.

There is a slight technical difference between models and database in-
stances: models can be infinite, whereas database instances are typically
required to be finite since only finite databases can be stored in practical
systems. For many classes of dependencies, whenever an infinite relational
structure satisfying the schema exists, a finite structure exists as well (this
is known as the finite model property), so the restriction to finite structures
is not really relevant. Languages such as OWL do not have the finite model
property: ontologies exists that are satisfied only in infinite models [2]. Even
though the complexity of finite model reasoning is, for numerous DLs, the
same as the complexity of reasoning w.r.t. arbitrary models, the former is
usually more involved [30, 35]. Hence, in the rest of this paper, we drop the
restriction to finite database instances and consider models and database
instances to be synonymous.
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2.3 Domains and Typing

Relational databases assign domain types to columns of relations; for exam-
ple, the second position in the hasSSN relation could be restricted to strings
of a certain form. Typing is used in practice to determine the physical lay-
out of the database. In contrast, typing is often not considered in theory
(e.g., in algorithms for checking query containment); rather, all columns are
assumed to draw their values from a common countable domain set [1].

In DLs underlying OWL, datatypes—a simplified variant of concrete do-
mains [3]—can be used to specify types of data.

In this paper, we consider neither typed relational schemata nor DL
knowledge bases with datatypes, and we interpret both in standard first-
order logic. This simplifies both formalisms significantly. For example, keys
can be straightforwardly added to untyped DLs [11], while adding keys to
DLs with datatypes is much more involved [29].

2.4 Schema Reasoning

Checking subsumption relationships between concepts has always been a
central reasoning problem for DLs. A concept C is subsumed by a concept
D w.r.t. a DL TBox T if the extension of C is included in the extension
of D in each model I of T . This inference has many uses; for example, in
ontology modeling, derived subsumption relationships can be used to detect
modeling errors. Concept subsumption has been used to optimize query
answering [19], especially when generalized to subsumption of conjunctive
queries [12, 18]. Another important TBox inference is checking concept
satisfiability—that is, determining whether a model of T exists in which a
given concept has a nonempty extension. Concepts are unsatisfiable mainly
due to modeling errors, so this inference can also be used to detect ontology
modeling errors.

Reasoning about the schema is certainly not the most prominent feature
of relational databases, yet a significant amount of research has been devoted
to it. The most important schema-related inference in databases is checking
query containment [1]: a query Q1 is contained in a query Q2 w.r.t. a schema
T if the answer to Q1 is contained in the answer to Q2 for each database
instance that satisfies T . This inference is used by database systems to
rewrite queries into equivalent ones that can be answered more efficiently.
Another useful schema reasoning problem is dependency minimization—that
is, computing a minimal schema that is equivalent to the given one.

In both DLs and relational databases, schema reasoning problems cor-
respond to checking whether some formula ϕ holds in every model (i.e.,
database instance) of T—that is, checking whether T |= ϕ. In other words,
the schema reasoning problems in both DLs and relational databases cor-
respond to entailment in a first-order theory. Since the problems are the
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same, it should not come as a surprise that the methods used to solve them
are closely related: reasoning in DLs is typically performed by tableau
algorithms [4], and the state-of-the-art reasoning technique in relational
databases is chase [1]. Apart from notational differences, the principles
underlying these two techniques are the same: they both try to construct a
model that satisfies the schema T but not the formula ϕ.

To summarize, DLs and databases treat schema reasoning problems in
the same way. Thus, DLs can be understood as expressive but decidable
(database) schema languages.

2.5 Query Answering

Apart from the schema (or TBox) part, a DL knowledge base K typically
also has a data (or ABox) part. The main inference for ABoxes is instance
checking—that is, checking whether an individual a is contained in the ex-
tension of a concept C in every model of K, commonly written as K |= C(a).
Instance checking can be generalized to answering conjunctive queries over
DL knowledge bases [12, 18], so a DL query can be viewed as a first-order
formula ϕ with free variables x1, . . . , xn. Just like schema reasoning, the
semantics of query answering in DLs is defined as first-order entailment, so
it takes into account all models of K: a tuple a1, . . . , an is an answer to
ϕ over K if K |= ϕ[a1/x1, . . . , an/xn], where the latter formula is obtained
from ϕ by replacing all free occurrences of xi with ai.

Queries in relational databases are first-order formulae (restricted in a
way to make them domain independent) [1], so they are similar to queries
in DLs. A significant difference between DLs and relational databases is,
however, the way in which queries are evaluated. Let ϕ be a first-order
formula with free variables x1, . . . , xn. A tuple a1, . . . , an is an answer to
ϕ over a database instance I if I |= ϕ[a1/x1, . . . , an/xn]. Hence, unlike in
DLs, query answering in relational databases does not consider all databases
instances that satisfy the knowledge base K; instead, it considers only the
given instance I. In other words, query answering in relational databases
is not defined as entailment, but as model checking, where the model is the
given database instance.

Although the definition of query answering in relational databases from
the previous paragraph is the most widely used one, a significant amount
of research has also been devoted to answering queries over incomplete
databases [25, 21, 43]—a problem that is particularly interesting in infor-
mation integration. An incomplete database DB is described by a set R
of incomplete extensions of the schema relations and a set S of dependen-
cies specifying how the incomplete extensions relate to the actual database
instance. Queries in incomplete databases are also (possibly restricted) first-
order formulae. In contrast to complete databases, a tuple a1, . . . , an is a
certain answer to ϕ over DB if I |= ϕ[a1/x1, . . . , an/xn] for each database
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instance I that satisfies R and S. In other words, query answering in incom-
plete databases is defined as first-order entailment just like in DLs, where
the relation extensions correspond to the DL ABox and the schema corre-
sponds to the DL TBox. Hence, from the standpoint of query answering,
DLs can be understood as incomplete databases.

2.6 Checking Satisfaction of Integrity Constraints

Integrity constraints play a central role in relational databases, where they
are used to ensure data integrity. We explain the intuition behind ICs by
means of an example. Let T be a relational schema containing the statement
(4), and let I be a database instance containing only the following fact:

Person(Peter) (8)

To check whether all data has been specified correctly, we can now ask
whether the ICs in T are satisfied for I; that is, whether I |= T . In our
example, this is not the case: integrity constraint (4) says that each database
instance must contain an SSN for each person. Since I does not contain the
SSN of Peter , the ICs in T are not satisfied.2 The database instance is fully
specified by the facts available in the database; hence, all data is assumed to
be complete. Thus, IC satisfaction checking in relational databases is based
on model checking.

In DLs, we can check whether an ABox A is consistent with a TBox
T—that is, whether a model I of both A and T exists—and thus detect
possible contradictions in A and T . This inference, however, does not pro-
vide us with a suitable basis for IC satisfaction checking. For example, let
T and A contain axiom (1) and fact (8), respectively. The knowledge base
A ∪ T is satisfiable: axiom (1) is not interpreted as a check, but it implies
that Peter has some (unknown) SSN. This clearly does not match with
our intuition behind integrity constraints. First-order satisfiability checking
verifies whether the facts in A can be extended to a relational structure
that is compatible with the schema T , thus assuming that our knowledge
about the world is incomplete. To the best of our knowledge, no description
logic currently provides an inference that matches with the intuition behind
database-like integrity constraints.

2.7 Discussion

From the standpoint of conceptual modeling, DLs provide a very expres-
sive, but still decidable language that has proven to be implementable in
practice. The open-world semantics is natural for a schema language since
a schema determines the legal database instances. In fact, when computing

2In practice, ICs are incrementally checked after database updates; these dynamic
aspects are, however, not important for this discussion.
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the subsumption relationship between concepts or queries, we do not have
a fixed instance. Therefore, we cannot interpret the schema in either OWL
or relational databases under the closed-world assumption; rather, we must
employ the open-world semantics in order to consider all instances.

Integrity constraints are mostly useful in data-centric applications—that
is, applications that focus on the management of large volumes of data. In
practice, relational databases are typically complete: any missing informa-
tion is either encoded metalogically (e.g., users often include fields such
as hasSpecifiedSSN to signal that particular data has been supplied in the
database), or it is represented by null-values (that can be given first-order
interpretation [21]). In contrast, ABoxes in DLs are closely related to incom-
plete (relational) databases. Clearly, problems may arise if certain aspects
of the information about individuals in ABoxes are expected to be com-
plete. To understand the problems that occur in such cases, consider the
following example taken from the Biopax3 ontology used for data exchange
between biological databases. This ontology defines the domain of the prop-
erty NAME to be the union of bioSource , entity , and dataSource :

∃NAME .⊤ ⊑ bioSource ⊔ entity ⊔ dataSource (9)

The intention behind this axiom is to define which objects can be named—
that is, to ensure that a name is attached only to objects of the appropriate
type. The actual data in the Biopax ontology is complete w.r.t. this integrity
constraint: each object with a name is also typed (sometimes indirectly
through the class hierarchy) to at least one of the required classes. Axiom
(9) is, however, not interpreted as an integrity constraint in OWL; rather,
this axiom says that, if some object has a name, then it can be inferred
to be either a bioSource , an entity , or a dataSource . Therefore, axiom (9)
cannot be used to check whether all data is correctly typed. Furthermore,
since axiom (9) contains a disjunction in the consequent, an OWL reasoner
processing the Biopax ontology must use reasoning-by-case, which is one of
the reasons why DL reasoning is intractable [2, Chapter 3]. Hence, axiom
(9) causes two types of problems: on the one hand, it does not exhibit
the intended behavior and, on the other hand, it introduces a performance
penalty during reasoning.

Representing incomplete information is, however, needed in many ap-
plications. Consider the following axiom stating that married people are
eligible for a tax cut:

∃marriedTo.⊤ ⊑ TaxCut (10)

To draw an inference using this axiom, we do not necessarily need to know
the name of the spouse; we only need to know that a spouse exists. Thus,

3http://www.biopax.org/
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we may state the following fact:

(∃marriedTo.Woman)(Peter) (11)

We are now able to derive that Peter is eligible for a tax cut even without
knowing the name of his spouse. Providing complete information can be un-
derstood as filling in a “Spouse name” box on a tax return, whereas provid-
ing incomplete information can be understood as just ticking the “Married”
box. The existential quantifier can be understood as a well-behaved version
of null-values that explicitly specifies the semantics of data incompleteness
[21]. Thus, DLs provide a sound and well-understood foundation for use
cases that require reasoning with incomplete information.

We would ideally be able to explicitly control “the amount of incomplete-
ness” in an ontology. Such a mechanism should allow us to explicitly state
which data must be fully specified and which can be left incomplete. This
goal can be achieved through an appropriate form of integrity constraints
that check whether all data has been specified as required. Transforming in-
appropriate and/or erroneously introduced axioms into integrity constraints
should also speed up query answering by eliminating unintended and poten-
tially complex inferences.

3 Integrity Constraints for OWL

In this section, we extend DL knowledge bases with ICs in order to overcome
the problems discussed in the previous section. Since TBoxes are first-
order formulae, it is straightforward to apply the model checking approach
described in Section 2 to DLs. In such an approach, an ABox would be
interpreted as a single model and the TBox axioms as formulae that must
be satisfied in a model, and the ICs would be satisfied if A |= T . Such
an approach is, however, not satisfactory as it requires an “all-or-nothing”
choice: the ABox is then considered to be a complete model, and TBox
axioms can only be used as checks and not to imply new facts.

To obtain a more versatile formalism, we propose a combination of in-
ferencing and model checking. The following example demonstrates the
desirable behavior of our approach. Let A1 be the following ABox:

Student(Peter) (12)

hasSSN (Peter ,nr12345 ) (13)

SSN (nr12345 ) (14)

Student(Paul) (15)

Furthermore, let T1 be the following TBox:

Student ⊑ Person (16)
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Person ⊑ ∃hasSSN .SSN (17)

Let us now assume that we choose (17) to be an integrity constraint, but
(16) to be a normal axiom. Since (16) is a normal axiom, we should derive
Person(Peter) and Person(Paul). Axiom (17) is an IC, so it should be
applied as a check. Hence, we expect the IC to be satisfied for Peter since
an SSN for Peter has been specified; furthermore, no SSN has been specified
for Paul , so we expect IC (17) to be violated for Paul .

Following this intuition, we define extended DL knowledge bases to dis-
tinguish the axioms that imply new facts (i.e., the axioms that act as “de-
ductive rules”) from the integrity constraints (i.e., the axioms that act as
checks). It is important to understand that, whether an axiom is to be
treated as an IC or not, depends mainly on the requirements and the as-
sumptions of the application and is often not inherent in a particular axiom.
In fact, given the same ontology, different applications might choose to in-
terpret different subsets of the ontology’s axioms as ICs. Thus, it might be
beneficial to keep the information about which axioms are treated as ICs
independently from the core ontology, thus allowing applications to create
application-specific views of the ontology. A discussion of such a mechanism,
however, is out of scope of this paper; here, we focus on the semantic and
computational aspects of integrity constraints.

The following definition is applicable to any DL, so we do not formally
introduce here a particular description logic; please refer to related literature
[2] for a formal definition of the DLs used in the Semantic Web. Further-
more, our definition allows ABoxes to contain only possibly negated atomic
concepts. This does not result in any loss of generality because S can be
used to introduce names for nonatomic concepts.

Definition 1. An extended DL knowledge base is a triple K = (S, C,A)
such that

• S is a finite set of standard TBox axioms,

• C is a finite set of integrity constraint TBox axioms, and

• A is a finite set of ABox facts (¬)A(a), R(a, b), a ≈ b, or a 6≈ b, for
A an atomic concept, R a role, and a and b individuals.

In the rest of this section, we explore the possible notions of IC satisfac-
tion. Several variants have already been considered in the literature.

In the consistency approach for open databases [24], ICs are satisfied
if A ∪ S is consistent with C—that is, if A ∪ S ∪ C is satisfiable. Reiter,
however, has already observed that such a treatment of ICs is too weak [38]:
C is then treated as a standard first-order theory, so, as explained in Section
2.6, ICs do not behave as checks.
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In the entailment approach for open databases [37], ICs are satisfied if
they are true in each model of A ∪ S—that is, if A ∪ S |= C. The following
example, similar to the one by Reiter [38], shows that this does not satisfy
our intuition. Let A2 contain only fact (12), let S2 = ∅, and let C2 contain
only axiom (17). The interpretation I = {Student(Peter),Person(Peter)}
is a model of A2 ∪ S2 that does not satisfy C2, which would make C2 not
satisfied for A2 ∪ S2. Intuitively, though, the fact Person(Peter) is not
implied by A2 ∪ S2, so we should not check whether Peter has an SSN at
all. We want C2 to hold only for the facts that are implied by A2 ∪ S2.

Consistency and entailment approaches were applied to closed databases
(see [40, 33] for consistency and [27] for entailment), where ICs are satisfied
if the Clark’s completion [14] of A ∪ S is consistent with (resp. it entails)
S. Such approaches, however, are applicable only to Prolog-like databases
for which Clark’s completion is defined—that is, they are not applicable to
databases containing disjunction or existential quantification [38]—and are
therefore not applicable to most description logics.

The example from the discussion of the entailment approach in open
databases suggests yet another definition of IC satisfaction: C should hold
for all first-order consequences of A ∪ S. On A2, C2, and S2 this produces
the desired behavior: Person(Peter) is not a consequence of A2 ∪ S2, so
the integrity constraint from C2 should not be checked for Peter . Consider,
however, the ABox A3 containing only the following fact:

Cat(ShereKahn) (18)

Furthermore, let S3 contain the following axiom:

Cat ⊑ Tiger ⊔ Leopard (19)

Finally, let C3 contain the following two integrity constraints:

Tiger ⊑ Carnivore (20)

Leopard ⊑ Carnivore (21)

Neither Tiger(ShereKahn) nor Leopard (ShereKahn) is a first-order conse-
quence of A3 ∪ S3, which means that the ICs in C3 are satisfied; further-
more, A3 ∪ S3 6|= Carnivore(ShereKahn). This does not satisfy our intu-
ition: in each model of A3 ∪ S3, either the fact Tiger(ShereKahn) or the
fact Leopard (ShereKahn) is true, but the fact Carnivore(ShereKahn) is not
necessarily true in either case. Hence, by treating (20)–(21) as integrity
constraints and not as standard axioms, we neither get an IC violation nor
derive the consequence Carnivore(ShereKahn).

Intuitively, integrity constraints should check whether the facts derivable
from A ∪ S ∪ C are also derivable using A ∪ S only. This notion seems to
be nicely captured by minimal models; hence, we check C only w.r.t. the
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minimal models of A ∪ S. Roughly speaking, a model I with an interpreta-
tion domain △I of a formula ϕ is minimal if each interpretation I ′ over △I

such that I ′ ( I is not a model of ϕ, where we consider an interpretation
to be equivalent to the set of positive ground facts that are true in the in-
terpretation. Consider again A2, S2, and C2. The fact Person(Peter) is not
derivable from A2 ∪ S2 in any minimal model (in fact, there is only a single
minimal model), so integrity constraint (17) is not violated. In contrast,
A3 ∪ S3 has exactly two minimal models:

I1 = {Cat(ShereKahn),Tiger(ShereKahn)}
I2 = {Cat(ShereKahn),Leopard (ShereKahn)}

These two models can be viewed as the minimal sets of derivable conse-
quences. The integrity constraint TBox C3 is not satisfied in all minimal
models (in fact, it is violated in each of them); thus, as intuitively desired,
the ICs are not satisfied. In contrast, let A4 = A3 and C4 = C3, and let S4

contain the following axiom:

Cat ⊑ (Tiger ⊓ Carnivore) ⊔ (Leopard ⊓ Carnivore) (22)

The fact Carnivore(ShereKahn) is derivable whenever we can derive either
Tiger(ShereKahn) or Leopard (ShereKahn), so the ICs should be satisfied.
Indeed, A4 ∪ S4 has the following two minimal models:

I ′1 = I1 ∪ {Carnivore(ShereKahn)}
I ′2 = I2 ∪ {Carnivore(ShereKahn)}

Both I ′1 and I ′2 satisfy C4, which matches our intuition. Also, observe that
A4 ∪ S4 |= Carnivore(ShereKahn); hence, we derive exactly the same con-
sequences, even though we treat (20)–(21) as ICs.

Minimal models have been used, with minor differences, in an extension
of DLs with circumscription [7] and in the semantics of open answer set
programs [20]. These well-known definitions, however, seem inappropriate
for the definition of IC satisfaction. Consider the following ABox A5:

Woman(Alice) (23)

Man(Bob) (24)

Furthermore, let S5 = ∅ and let C5 contain the following integrity constraint:

Woman ⊓Man ⊑ ⊥ (25)

No axiom implies that Alice and Bob are the same, so we expect them to be
different “by default”, thus making integrity constraint (25) satisfied. The
definitions from [7, 20], however, consider all interpretation domains, so let
△I = {α}. Because △I contains only one object, we must interpret both
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Alice and Bob as α. Clearly, I = {Woman(α),Man(α)} is a minimal model
of A5, and it does not satisfy C5.

This problem might be remedied by making the unique name assumption
(UNA)—that is, by requiring each constant to be interpreted as a different
individual. This, however, is rather restrictive and is not compatible with
OWL, which does not employ the UNA. Another solution is to interpret
A ∪ S in a Herbrand model (i.e., a model in which each constant is inter-
preted by itself) where ≈ is a congruence relation; then, we minimize the
interpretation of ≈ together with all the other predicates. In such a case,
the only minimal model of A5 is I ′ = {Woman(Alice),Man(Bob)} since the
extension of ≈ is empty due to minimization, so C5 is satisfied in I ′.

Unfortunately, existential quantifiers pose a whole range of problems for
integrity constraints. Let A6 contain these axioms:

HasChild(Peter) (26)

HasHappyChild (Peter) (27)

TwoChildren(Peter) (28)

Furthermore, let S6 contain these axioms:

HasChild ⊑ ∃hasChild .Child (29)

HasHappyChild ⊑ ∃hasChild .(Child ⊓ Happy) (30)

Finally, let C6 contain the following integrity constraint:

TwoChildren ⊑ ≥ 2 hasChild .Child (31)

IC (31) is satisfied in A∪ S6, which might be considered intuitive: no axiom
in S6 forces the children of Peter—the two individuals whose existence is
implied by (29) and (30)—to be the same, so we might conclude that they
are different.

Now consider the following quite similar example. Let C7 = C6, and let
A7 contain the following axioms:

HasChild(Peter) (32)

TwoChildren(Peter) (33)

Furthermore, let S7 contain the following axiom:

HasChild ⊑ ∃hasChild .Child ⊓ ∃hasChild .Child (34)

If we follow the intuition from the previous example, then C7 should be
satisfied in A7 ∪ S7: no axiom in S7 makes the two individuals introduced by
axiom (34) the same, so we can assume that these individuals are different.
In contrast, let S ′7 be a standard TBox containing only the following axiom:

HasChild ⊑ ∃hasChild .Child (35)
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Now C7 should not be satisfied in A ∪ S ′7 since (35) implies the existence of
only one child. Given that S ′7 is equivalent to S7 in first-order logic (i.e., S ′7
and S7 have the same models), this is rather unsatisfactory; furthermore,
it suggests that C7 should not be satisfied in A7 ∪ S7, since (34) can be
satisfied in models containing only one child. Recall, however, that S6 and
S7 are quite closely related: the effect of (34) with respect to Child is the
same as that of (29) and (30). Hence, if (34) should introduce only one
individual, then (29) and (30) should do so as well, which is in conflict with
our intuition that C6 should be satisfied in A6 ∪ S6.

Thus, our intuition does not give us a clear answer as to the appropriate
treatment of existential quantifiers in the standard TBox: the names of
the concepts and the structure of the axioms suggest that the existential
quantifiers in (29) and (30) should introduce different individuals, whereas
the existential quantifiers in (34) should “reuse” the same individual. These
two readings pull in opposite directions, so a choice between the two should
be based on other criteria.

The example involving S7 and S ′7 reveals an important disadvantage of
the first reading: if we require each existential quantifier to introduce a
distinct individual, then it is possible for an IC TBox C to be satisfied in
A ∪ S, but not in A ∪ S ′, even though S and S ′ are semantically equivalent.
As we have seen, C7 is satisfied in A7 ∪ S7, but not in A7 ∪ S

′
7, even though

S7 and S ′7 are equivalent. It is clearly undesirable for IC satisfaction to
depend on the syntactic structure of the standard TBox.

The introduction of distinct individuals for each existential quantifier
can be justified, however, by Skolemization [34], the well-known process of
representing existential quantifiers with new function symbols. For exam-
ple, the Skolemization of the formula ϕ = ∃y : [R(x, y) ∧C(y)] produces the
formula sk(ϕ) = R(x, f(x)) ∧ C(f(x)): the variable y is replaced by a term
f(x) with f a fresh function symbol. Skolemized formulae are usually inter-
preted in Herbrand models, whose domain consists of all ground terms built
from constants and function symbols in the formula. If a formula contains
at least one function symbol, then its Herbrand models are infinite; fur-
thermore, the models of DL axioms are forest-like (i.e., they can be viewed
as trees possibly interconnected at roots). We use these properties in our
procedure for checking IC satisfaction that we present in Section 7.

Definition 2. Let ϕ be a first-order formula and sk(ϕ) the formula obtained
by outer Skolemization of ϕ [34]. A Herbrand interpretation w.r.t. ϕ is a
Herbrand interpretation defined over the signature of sk(ϕ). A Herbrand
interpretation I w.r.t. ϕ is a model of ϕ, written I |= ϕ, if it satisfies ϕ
in the usual sense. A Herbrand model I of ϕ is minimal if I ′ 6|= ϕ for each
Herbrand interpretation I ′ w.r.t. ϕ such that I ′ ( I. We write sk(ϕ) |=MM ψ
if I |= ψ for each minimal Herbrand model I of ϕ.
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We now define the notion of IC satisfaction, which is based on a transla-
tion into first-order logic. For a set of DL axioms S, with π(S) we denote the
first-order formula with equality and counting quantifiers that is equivalent
to S. Such translations are well known for most DLs [2, 8].

Definition 3. Let K = (S, C,A) be an extended DL knowledge base. The
integrity constraint TBox C is satisfied in K if sk(π(A ∪ S)) |=MM π(C). By
an abuse of notation, we often omit π and simply write sk(A ∪ S) |=MM C.

The addition of ICs does not change the semantics of DLs or OWL: Def-
inition 3 is only concerned with the semantics of ICs, and an ordinary DL
knowledge base (T ,A) can be seen as an extended knowledge base (T , ∅,A).
For subsumption and concept satisfiability tests, we should use S ∪ C to-
gether as one common schema, just as it is the case in standard DLs. All
inference problems are defined as usual; for example, a concept C is sub-
sumed by a concept D if the extension of C is included in the extension of
D in every model of S ∪ C.

Integrity constraints become important only in combination with an
ABox A. We invite the reader to verify that, on the examples presented
thus far, Definition 3 indeed provides a semantics for ICs that follows the
principles from relational databases. In Section 4 we show that, if ICs are
satisfied, we can throw them away without losing any positive consequences;
that is, we can answer positive queries by taking into account only A and
S. This further shows that our ICs are similar to the integrity constraints
in relational databases.

We now discuss a nonobvious consequence of our semantics. Let A8 be
an ABox with only the following axioms:

Vegetarian(Ian) (36)

eats(Ian, soup) (37)

Furthermore, let S8 = ∅, and let C8 contain only the following IC:

Vegetarian ⊑ ∀eats .¬Meaty (38)

One might intuitively expect C8 not to be satisfied for A8 since the ABox
does not state ¬Meaty(soup). Contrary to our intuition, C8 is satisfied in
A8: the interpretation I containing only the facts (36) and (37) is the only
minimal Herbrand model of A8 and I |= C8. In fact, the IC (38) is equivalent
to the following IC:

Vegetarian ⊓ ∃eats .Meaty ⊑ ⊥ (39)

When written in the latter form, it can be seen that the IC should be
satisfied, since Meaty(soup) is not derivable.
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As this example illustrates, the intuitive meaning of integrity constraints
is easier to grasp if we transform them into the form C ⊑ D, where both C
and D are negation-free concepts. This is because, by Definition 3, our ICs
check only positive facts. To check negative facts, we must give them atomic
names. Let A9 = A8; furthermore, let S9 contain the following axiom:

NotMeaty ≡ ¬Meaty (40)

Finally, let C9 contain the following integrity constraint:

Vegetarian ⊑ ∀eats .NotMeaty (41)

IC (41) is now of the “positive” form C ⊑ D, so it is easier to understand the
intuition behind it: everything that is eaten by an instance of Vegetarian
should provably be NotMeaty . Now A9 ∪ S9 has the following two minimal
models, and I3 6|= C9, so C9 is not satisfied in A9 and S9:

I3 = {Vegetarian(Ian), eats(Ian , soup),Meaty(soup)}
I4 = {Vegetarian(Ian), eats(Ian , soup),NotMeaty(soup)}

If we add to A9 the fact NotMeaty(soup), then only I4 is a minimal model,
and C9 becomes satisfied as expected. Hence, it may be advisable to restrict
ICs to positive formulae in order to avoid such misunderstandings.

4 Integrity Constraints and Queries

We now present an important result about answering unions of positive con-
junctive queries in extended DL knowledge bases: if the ICs are satisfied, we
need not consider them in query answering. This suggests that our seman-
tics of IC satisfaction is reasonable: ICs are checks and, if they are satisfied,
we can disregard them without losing relevant consequences. This result is
practically important because it simplifies query answering. In Section 7 we
show that, for certain types of OWL ontologies, both checking IC satisfac-
tion and query answering can be easier than standard DL reasoning. Note
that ICs can still be useful for semantic query optimization—that is, they
can be used to reformulate a query into one that can be evaluated more
efficiently over all databases that satisfy the ICs (see, e.g., [13, 6, 22]). A
discussion of semantic query optimization is, however, beyond the scope of
this paper; our main concern here is to show that, if the ICs are satisfied,
they are redundant from the semantic point of view.

Before proceeding, we first remind the reader of the definition of unions
of conjunctive queries over DL knowledge bases [12].

Definition 4. Let x be a set of distinguished and y a set of nondistin-
guished variables. A conjunctive query Q(x,y) is a finite conjunction of
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positive atoms of the form A(t1, . . . , tm), where each ti is either a constant,
a distinguished, or a nondistinguished variable.4 A union of n conjunctive
queries is the formula U(x) =

∨n
i=1 ∃yi : Qi(x,yi). A tuple of constants c

is an answer to U(x) over a DL knowledge base K, written K |= U(c), if
π(K) |= U(x)[c/x].

We first prove an auxiliary lemma.

Lemma 1. Let ϕ be a first-order formula. If sk(ϕ) has a Herbrand model
I ′, then sk(ϕ) has a minimal Herbrand model I such that I ⊆ I ′.

Proof. The following property (*) is well-known: if a set of formulae has
a Herbrand model, then it has a minimal Herbrand model as well. Such
a model can be constructed, for example, using the model-construction
method used to show the completeness of resolution [5]. Let I ′ be a Herbrand
model of sk(ϕ), and let

S ={sk(ϕ)} ∪
{¬A | A is a ground fact over the signature of sk(ϕ) and A 6∈ I ′}.

Clearly, S is satisfied in I ′; furthermore, for each Herbrand model I ′′ of S,
we have I ′′ ⊆ I ′. Now by (*), a minimal Herbrand model I of S exists.
Clearly, I ⊆ I ′, and it is a minimal Herbrand model of sk(ϕ).

The main result of this section is captured by the following theorem:

Theorem 1. Let K = (S, C,A) be an extended DL knowledge base that
satisfies C. Then, for any union of conjunctive queries U(x) over K and any
tuple of constants c, we have A ∪ S ∪ C |= U(c) if and only if A ∪ S |= U(c).

Proof. We show the contrapositive: if K satisfies C, then S ∪A ∪ C 6|= U(c)
if and only if S ∪ A 6|= U(c). The (⇒) direction holds trivially, so we con-
sider the (⇐) direction. If S ∪A 6|= U(c), then sk(S ∪ A ∪ {¬U(c)}) is
satisfiable in a Herbrand model I ′. The formula ¬U(c) is equivalent to∧n
i=1 ∀yi : ¬Qi(c,yi). It does not contain existential quantifiers, so it is not

Skolemized: sk(S ∪ A ∪ {¬U(c)}) = sk(S ∪ A) ∪ {¬U(c)}. By Lemma 1,
a minimal Herbrand interpretation I ⊆ I ′ exists such that I |= sk(S ∪A).
Now I ′ |= ¬U(c), so I ′ |= ∀yi : ¬Qi(c,yi) for each 1 ≤ i ≤ n. Hence, for
each tuple t of the elements of the Herbrand universe, I ′ |= ¬Qi(c,yi)[t/yi].
But then, since I ⊆ I ′ and all atoms from Qi(c,yi) are positive, we have
I |= ¬Qi(c,yi)[t/yi] for each t as well, so I |= ∀yi : ¬Qi(c,yi), and there-
fore I 6|= ∃yi : Qi(c,yi). Thus, we conclude I 6|= U(c). Since the ICs are
satisfied in K, the axioms in C are satisfied in each minimal Herbrand model
of ϕ, so I |= C. Hence, we conclude that I |= S ∪ A ∪ C and I 6|= U(c).

4The predicate A can be the equality predicate ≈, an atomic concept, a role, or an
n-ary predicate in case of n-ary DLs.
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Consider, for example, the following knowledge base. Let the standard
TBox S10 contain the following axioms:

Cat ⊑ Pet (42)

∃hasPet .Pet ⊑ PetOwner (43)

Let the integrity constraint TBox C10 contain the following axiom:

CatOwner ⊑ ∃hasPet .Cat (44)

Finally, let the ABox A10 contain the following facts:

CatOwner (John) (45)

hasPet(John ,Garfield ) (46)

Cat(Garfield ) (47)

Under the standard semantics, K implies the following conclusion:

S10 ∪ C10 ∪ A10 |= PetOwner(John)

Furthermore, it is easy to see that IC (44) is satisfied in K: the only derivable
fact about CatOwner is CatOwner (John) and the ABox contains the explicit
information that John owns Garfield who is a Cat . Therefore, we do not
need axiom (44) to imply the existence of the owned cat: whenever we can
derive CatOwner(x) for some x, we can derive the information about the
cat of x as well. Hence, we can disregard (44) during query answering, and
our conclusion holds just the same:

S10 ∪ A10 |= PetOwner(John)

Note that both entailments in Theorem 1 use the standard semantics of
DLs; that is, we do not assume a closed-world semantics for query answering.
Furthermore, Theorem 1 does not guarantee preservation of negative con-
sequences; in fact, such consequences may change, as the following example
demonstrates. Let S11 = ∅, let C11 contain the integrity constraint

Cat ⊓Dog ⊑ ⊥ (48)

and letA11 contain axiom (47). Taking S11 into account, we get the following
inference:

S11 ∪ C11 ∪ A11 |= ¬Dog(Garfield )

Furthermore, integrity constraint (48) is satisfied in S11 ∪ A11; however, if
we disregard C11, we lose the above consequence:

S11 ∪ A11 6|= ¬Dog(Garfield)
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A similar example can be given for queries containing universal quantifiers.
The proof of Theorem 1 reveals why U(x) is restricted to positive atoms.

Consider a model I ′ such that I ′ |= sk(S ∪ A) and I ′ 6|= ¬A(a). For a min-
imal model I of sk(S ∪ A), it might be that A(a) ∈ I ′ \ I, so I |= ¬A(a).
Intuitively, IC satisfaction ensures that all positive atoms derivable through
ICs are derivable without ICs as well; this, however, does not necessar-
ily hold for negated atoms. This proof also reveals why the entailment of
universally quantified formulae is not preserved. Intuitively, for such formu-
lae, we should not consider only the Herbrand models of sk(S ∪A) because
they may be “too small.” For example, let A = {A(a)} and U = ∀x : A(x).
Clearly, A 6|= U , but the only Herbrand model of A is I = {A(a)} and I |= U .
The problem is that I does not take into account the individual that would
be introduced by negating and Skolemizing the query.

Theorem 1 has an important implication with respect to TBox rea-
soning. Let U1(x) and U2(x) be unions of conjunctive queries such that
π(K) |= ∀x : [U1(x)→ U2(x)]. Provided that C is satisfied in K, each an-
swer to U1(x) w.r.t. A ∪ S is also an answer to U2(x) w.r.t. A ∪ S. In other
words, we can check subsumption of unions of conjunctive as usual, by treat-
ing C ∪ S as an ordinary DL TBox; subsequently, for knowledge bases that
satisfy C, we can ignore C when answering queries, but query answers will
still satisfy the established subsumption relationships between queries.

We conclude this section with the remark that, if an extended DL knowl-
edge base K = (S, C,A) does not satisfy C, then the ICs in C cannot be
ignored during query answering. In such a case it might not actually make
sense to attempt to answer any queries over K—that is, IC satisfaction
should be taken as a prerequisite for query answering. This is similar to the
situation in relational databases systems, which typically reject database up-
dates that violate one or more integrity constraints; thus, ICs are satisfied
at all times, which is taken as a precondition for query answering.

5 Using Integrity Constraints in Practice

To clarify our ideas and provide practical guidance, we present in Figure 1
a sequence of steps that, we believe, could be followed to integrate ICs into
ontology-based applications. In the rest of this section we consider different
steps in more detail.

5.1 Modeling the Domain

The difference between ICs and standard axioms plays no role during domain
modeling; that is, the domain should be modeled as usual. For example, to
describe that each person should have a social security number, we should
simply state axiom (1), and we should not worry at this point whether
this axioms should be placed into the standard or the integrity constraint
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TBox. Since no data is available during domain modeling, the ontology is
modeled as usual. Hence, we classify the knowledge base and check concept
satisfiability using well-known tools and techniques.

5.2 Identifying Integrity Constraints

The axioms in both the standard and the integrity constraint TBox describe
the general properties of modeled domain; for example, axiom (1) states that
each person must have an SSN. In addition to describing the domain, ICs also
describe the admissible states of the knowledge base—that is, they describe
the assumptions that applications make about the data. It makes sense
to consider the application’s assumptions about the data separately from
domain modeling; hence, we should model a knowledge base first and then
subsequently identify certain axioms as integrity constraints.5 For example,
if an application requires the SSN of each person to be known explicitly,
then (1) should be moved into the integrity constraint TBox C; otherwise,
it should be kept in the standard TBox S. In the rest of this section, we
discuss three kinds of axioms that are likely to be identified as ICs.

Participation constraints involve two concepts C and D and a relation
R between them, and they state that each instance of C must participate
in one or more R-relationships with instances of D; often, they also define
the cardinality of the relationship. The general form of such constraints is
as follows, where ⊲⊳∈ {≤,≥,=} and n is a nonnegative integer:

C ⊑ ⊲⊳ nR.D (49)

Participation constraints are closely related to inclusion dependencies from
relational databases.

Axiom (1) is a typical participation constraint. Another example is the
following statement, which allows each person to have at most one spouse:

Person ⊑ ≤ 1marriedTo .Person (50)

5In practice, domain modeling might be interleaved with IC modeling; however, it is
beneficial to separate the two steps at least conceptually.

Figure 1: Using Knowledge Bases with Integrity Constraints
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To understand the difference in treating (50) as a standard axiom or as an
integrity constraint, consider the following ABox A:

Person(Peter) (51)

marriedTo(Peter ,Ann) (52)

marriedTo(Peter ,Mary) (53)

If we treat (50) as a standard TBox axiom (i.e., as part of S), then A ∪ S
is satisfiable; furthermore, due to (50), we derive Ann ≈ Mary . If, however,
we identify (50) as an integrity constraint, then the only minimal model of
A contains exactly facts (51)–(53). This is because the equality predicate
≈ is minimized as well, so Ann is different from Mary . This matches our
intuition, as there is no axiom in S that would force Ann and Mary to be the
same. Thus, Peter is married to two different people, so integrity constraint
(50) is not satisfied in A.

Typing constraints can be used to check whether objects are correctly
typed. Typical examples of such statements are domain and range restric-
tions: when interpreted as integrity constraints for a role R and a concept C,
they state that R-links can only point from or to objects that are explicitly
typed as C. Domain and range constraints are generally of the forms (54)
and (55), respectively.

∃R.⊤ ⊑ C (54)

⊤ ⊑ ∀R.C (55)

Axiom (9) is a typical example of a domain constraint. Another example
is the following axiom, which states that the marriedTo relation can point
only to instances of the Person class:

⊤ ⊑ ∀marriedTo.Person (56)

Consider an ABox A containing only fact (52). If (56) were a part of the
standard TBox S, then A ∪ S would be satisfiable; furthermore, due to (56),
we would derive Person(Ann). If we put (56) into the integrity constraint
TBox C, then the only minimal model of A contains only the fact (52). Thus,
Ann is not explicitly typed as an instance of Person, so integrity constraint
(56) is not satisfied in A.

Naming constraints can be used to check whether objects are known
by name. For example, an application for the management of tax returns
might deal with two types of people: those who have submitted a tax return
for processing, and those who are somehow related to the people from the
first group (e.g., their spouses or children). For the application to function
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properly, it might not be necessary to explicitly specify the SSN for all
people; only the SSNs for the people from the first group are of importance.
In such an application, we might use axioms (1)–(3) not as ICs, but as
elements of the standard TBox S. Furthermore, to distinguish people who
have submitted a tax return, we would introduce a concept PersonTR for
such persons and make it a subset of Person in S:

PersonTR ⊑ Person (57)

Two things should hold for each instance of PersonTR: first, we require
each such person to be explicitly known by name, and second, we require the
SSN of each such person to be known by name as well. Although ICs can
be used to check whether an individual is present in an interpretation, they
cannot distinguish named (known) from unnamed (unknown) individuals.
We can, however, solve this problem using the following “trick.” We can use
a special concept O to denote all individuals known by name and state the
following two integrity constraints:

PersonTR ⊑ O (58)

PersonTR ⊑ ∃hasSSN .(O ⊓ SSN ) (59)

Furthermore, we add the following ABox fact for each individual a occurring
in an ABox:

O(a) (60)

In any minimal model of S ∪ A, the facts of the form (60) ensure that O is
interpreted exactly as the set of all known objects. Hence, IC (58) ensures
that each individual in the extension of PersonTR is known, and IC (59)
ensures that the social security number for each such person is known as
well.

One might object that this solution is not completely model-theoretic:
it requires asserting (60) for each known individual, which is a form of
procedural preprocessing. We agree that our solution is not completely
clean in that sense; however, we believe that it is simple to understand and
implement and is therefore acceptable.

For TBox reasoning, facts of the form (60) are, by definition, not taken
into account. Instead of these facts, one might be tempted to use the fol-
lowing axiom, where ai are all individuals from the ABox:

O ≡ {a1, . . . , an} (61)

This, however, requires nominals in the DL language, which makes reasoning
more difficult [42]. Furthermore, since O occurs only in integrity constraints,
facts of the form (60) are sufficient: the minimal model semantics ensures
that O contains exactly the individuals a1, . . . , an.
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5.3 Data-Related Tasks

After the axioms from the domain model have been correctly separated into
the standard TBox S and the integrity constraint TBox C, we are ready
to add data. After appending an ABox A, we then check IC satisfaction
using Definition 2. We present algorithms that can be used for this purpose
in Section 7.6 If the ICs are satisfied, then we know that all data satisfies
the application’s assumptions. Furthermore, by Theorem 1, we can disre-
gard the integrity constraints while computing answers to unions of positive
conjunctive queries without the danger of losing some answers.

6 Characterization via Logic Programming

We now develop an alternative characterization of IC satisfaction based on
logic programming. Given an extended DL knowledge base K = (S, C,A),
we compute a (possibly disjunctive) stratified logic program that entails a
certain atom if and only if K satisfies C. We first show how to evaluate C
in a model using a stratified datalog program. This result is reminiscent of
the Lloyd-Topor transformation of complex formulae in logic programs [28].

Definition 5. For a first-order formula χ, let Eχ be an n-ary predicate
symbol uniquely associated with χ, where n is the number of the free variables
in χ. For a first-order formula ϕ, the integrity constraint program IC(ϕ) is
defined recursively as follows, for µ and sub as defined in Table 1:

IC(ϕ) = µ(ϕ) ∪
⋃

ψ∈sub(ϕ)

IC(ψ)

As one can easily see from Definition 5, the program IC(ϕ) is stratified
and nonrecursive. For a finite set of formulae T , we define IC(T ) = IC(ϕ)
where ϕ =

∧
ψ∈T ψ, and we use ET as a synonym for Eϕ.

Intuitively, the rules in IC(ϕ) encode the semantics of the propositional
connectives and the quantifiers. Thus, when IC(ϕ) is evaluated in some
model I (that contains the fact HU (a) for each element of the domain), the
predicate Eχ will contain exactly those facts Eχ(t) for which χ[t/x] is true
in I for each subformula χ of ϕ. We formalize this as follows.

Lemma 2. For a Herbrand model I, let A(I) be exactly the set of facts
containing I and a fact HU (t) for each ground term t from the universe of
I. For a first-order formula ϕ with free variables x and a tuple of ground
terms t, we have I |= ϕ[t/x] if and only if A(I) ∪ IC(ϕ) |=c Eϕ(t).

6Integrity constraints can clearly be checked incrementally, while adding facts to the
ABox. We consider this an implementation issue and do not consider it any further.
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Table 1: The Definition of the Operators µ and sub

ϕ µ(ϕ) sub(ϕ)

1 A(t1, . . . , tm) A(t1, . . . , tm)→ Eϕ(x1, . . . , xn) ∅

2 ¬ψ HU (x1) ∧ . . . ∧HU (xn) ∧ not Eψ(x1, . . . , xn)→ Eϕ(x1, . . . , xn) {ψ}

3 ψ1 ∧ ψ2 Eψ1
(y1, . . . , ym) ∧ Eψ2

(z1, . . . , zk)→ Eϕ(x1, . . . , xn) {ψ1, ψ2}

4 ψ1 ∨ ψ2
HU (x1) ∧ . . . ∧HU (xn) ∧ Eψ1

(y1, . . . , ym)→ Eϕ(x1, . . . , xn)
HU (x1) ∧ . . . ∧ HU (xn) ∧Eψ2

(z1, . . . , zk)→ Eϕ(x1, . . . , xn)
{ψ1, ψ2}

5 ∃y : ψ Eψ(y1, . . . , ym)→ Eϕ(x1, . . . , xn) {ψ}

6 ∀y : ψ HU (x1) ∧ . . . ∧HU (xn) ∧ not E∃y:¬ψ(x1, . . . , xn)→ Eϕ(x1, . . . , xn) {∃y : ¬ψ}

7 ∃≥ky : ψ
k∧
i=1

Eψ(y1, . . . , ym)[yi/y] ∧
∧

1≤i<j≤k

not yi ≈ yj → Eϕ(x1, . . . , xn) {ψ}

8 ∃≤ky : ψ HU (x1) ∧ . . . ∧HU (xn) ∧ not E∃≥k+1y:¬ψ(x1, . . . , xn)→ Eϕ(x1, . . . , xn) {∃≥k+1y : ¬ψ}

Note: x1, . . . , xn are the free variables of ϕ; y1, . . . , ym are the free variables of ψ and ψ1; and z1, . . . , zk
are the free variables of ψ2. The predicate A can be ≈. not is the stratified negation of logic programs.
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Proof. The proof is by an easy induction on the structure of ϕ. For the
induction base, if ϕ is an atomic formula, then IC(ϕ) contains a rule of
the form (1) from Table 1, and the claim is obvious. Let us now consider
the possible forms of a complex formula ϕ. For ϕ = ¬ψ, the program
IC(ϕ) contains a rule of the form (2) from Table 1, which ensures that
Eϕ(t1, . . . , tn) holds exactly if Eψ(t1, . . . , tn) does not hold. The cases for
ϕ = ψ1 ∧ ψ2 and ϕ = ψ1 ∨ ψ2 are proved in a similar way. For ϕ = ∃y : ψ,
the program IC(ϕ) contains a rule of the form (5) from Table 1. This rule
ensures that Eϕ(t1, . . . , tn) holds whenever there is some ground term s such
that Eψ(t1, . . . , s, . . . , tn) holds, which implies the claim. For ϕ = ∀y : ψ,
the program IC(ϕ) contains a rule of the form (6) which reflects the fact
that ϕ is equivalent to ϕ = ¬∃y : ¬ψ. Finally, for ∃≥ky : ψ and ∃≤ky : ψ,
the claim follows from the standard translation of counting quantifiers into
first-order logic.

Next, we show how to convert the schema S into an equivalent positive
logic program LP(S).

Definition 6. For a first-order formula ϕ, let ϕ′ be the translation of sk(ϕ)
into conjunctive normal form, and let LP(ϕ) be the logic program obtained
from ϕ′ by

• converting each clause ¬A1 ∨ . . . ∨ ¬An ∨B1 ∨ . . . ∨Bm into a rule
A1 ∧ . . . ∧An → B1 ∨ . . . ∨Bm;

• adding an atom HU (x) to the body of each rule in which the variable
x occurs in the head but not in the body;

• adding a fact HU (c) for each constant c; and

• adding the following rule for each n-ary function symbol f :

HU (x1) ∧ . . . ∧HU (xn)→ HU (f(x1, . . . , xn))

Due to the distributive laws for ∧ and ∨, LP(ϕ) can be exponential in
the size of ϕ. Here, we are interested only in the semantic properties of
LP(ϕ); we address the potential exponential blowup in Section 7.1.

We are now ready to present a characterization of IC satisfiability using
logic programming.

Theorem 2. An extended DL knowledge base K = (S, C,A) satisfies the
integrity constraints C if and only if LP(S) ∪ A ∪ IC(C) |=c EC .

Proof. For ϕ = sk(S), the formula ϕ′ in Definition 6 is obtained using stan-
dard equivalences of first-order logic, which preserve satisfiability of formulae
in any model, so the minimal Herbrand models of sk(S ∪ A) and {ϕ′} ∪ A
coincide. Furthermore, the facts and rules introduced in the third and fourth
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item of Definition 6 just enumerate the entire Herbrand universe, so each
minimal Herbrand model of {ϕ′} ∪ A corresponds exactly to a minimal Her-
brand model of LP(S) ∪ A augmented with HU (t) for each ground term t.
The rules of IC(C) contain only the predicates Eχ in their heads, and each
predicate depends only on the predicates corresponding to the subformulae
of χ. Hence, the program IC(C) is stratified, and IC(C) just extends each
minimal model I of LP(S) ∪A to a minimal model I ′ of LP(S) ∪ A ∪ IC(ψ)
by facts of the form Eχ(t), for χ a subformula of C. By Lemma 2, I ′ |= EC

if and only if I ′ |= C, which implies our claim.

Theorem 2 is significant for two reasons. On the one hand, it provides
the foundation for IC satisfaction checking in several practical cases (see
Section 7). On the other hand, it provides us with a slightly more proce-
dural intuition about the nature of integrity constraints. Rules of the form
A→ B from LP(S) do not contain negated atoms, and they can be seen as
procedural rules of the form “from A conclude B.” Thus, an extended DL
knowledge base satisfies the integrity constraints in C if these are satisfied
in each minimal set of facts derivable from S ∪ A.

7 Checking Satisfaction of Integrity Constraints

We now consider algorithms for checking whether an extended DL knowledge
base K = (S, C,A) satisfies C. The difficulty of that task is determined pri-
marily by the structure of the standard TBox S. This is because evaluating
a formula in a Herbrand model is easy regardless of the formula structure;
the difficult task is the computation of the minimal models of sk(S ∪A).
In the rest of this section, we consider different possibilities for doing so
depending on the form of S.

If S contains no functions symbols, no existential quantifiers under pos-
itive polarity, and no universal quantifiers under negative polarity, then we
can use Theorem 2: the program LP(S) ∪A ∪ IC(C) then does not contain
function symbols, so we can use any (disjunctive) datalog engine for checking
IC satisfaction. A minor difficulty is caused by the fact that LP(S) can be
exponential in size. Therefore, in Section 7.1, we show how to perform the
translation without such a blowup, and we apply this result to existential-
free knowledge bases in Section 7.2. Finally, in Section 7.3, we consider
schemata expressed in the DL ALCHI.

7.1 Structural Transformation and Minimal Models

It is well-known that the translation into conjunctive normal form, employed
in Definition 6, can incur an exponential blowup, which can be avoided
by applying the structural transformation [34] as follows. For a first-order
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formula ϕ, the result of applying the structural transformation to a single
occurrence of a subformula χ is the formula

ψ =





ϕ′ ∧ ∀x1, . . . , xn : [Q(x1, . . . , xn)→ χ] if χ occurs positively in ψ
ϕ′ ∧ ∀x1, . . . , xn : [Q(x1, . . . , xn)← χ] if χ occurs negatively in ψ
ϕ′ ∧ ∀x1, . . . , xn : [Q(x1, . . . , xn)↔ χ] if χ occurs both positively

and negatively in ψ

where x1, . . . , xn are the free variables of χ, Q is a fresh predicate, and ϕ′

is obtained from ϕ by replacing the mentioned occurrence of χ with the
atom Q(x1, . . . , xn). With “occurs positively” and “occurs negatively” we
mean that χ occurs in ψ under even and odd number of (both explicit and
implicit) negations, respectively; furthermore, χ occurs in ψ both positively
and negatively if it occurs under the equivalence symbol↔. It is well known
that this transformation preserves the satisfiability of ϕ [34].

We illustrate the above definition by means of an example. Consider the
formula

ϕ = ∀x : [A(x)→ ∃y : R(x, y) ∧ (B(y) ∨ C(y))].

To transform ϕ into conjunctive normal form, we would need to distribute
∧ over ∨, which would double the size of the formula. To prevent this,
we apply the structural transformation to the occurrence of the subformula
χ = B(y) ∨ C(y), resulting in

ψ = ∀x : [A(x)→ ∃y : R(x, y) ∧Q(y)] ∧ ∀y : [Q(y)→ B(y) ∨ C(y)].

If we apply the structural transformation to all nonatomic subformulae
of some formula, we can transform the result into conjunctive normal form
without an exponential blowup. Furthermore, the transformation is applied
at most once to each subformula of a formula, so the result can be computed
in polynomial time.

The structural transformation introduces additional symbols, so it is
not immediately clear that it preserves the minimal models. Therefore, in
the rest of this section we investigate the precise relationship between the
minimal models before and after the transformation. We use the following
notation. For an interpretation I and a set of predicates Υ, let I/Υ be the
restriction of I to the predicates in Υ, defined as follows:

I/Υ = {A(t1, . . . , tn) ∈ I | A ∈ Υ}

For a formula ϕ, let pred(ϕ) be the set of all predicates in ϕ. We will use
I/ϕ as an abbreviation for I/pred(ϕ).

Let ϕ be a formula and ψ a formula obtained from ϕ through structural
transformation. Since this transformation extends the signature of ϕ, it
is clear that ϕ is not equivalent to ψ. Ideally, we would like each minimal
model I of ϕ to have a counterpart minimal model I ′ of ψ such that I = I ′/ϕ;
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conversely, for each minimal model I ′ of ψ, we would like I ′/ϕ to be a min-
imal model of ϕ. Unfortunately, this property does not hold. For example,
the only minimal Herbrand model of ϕ1 = A ∧C ∧ [A→ B ∨ (C ∧ ¬D)] is
I = {A,C}. Applying the structural transformation to ϕ1 produces the for-
mula ψ1 = A ∧ C ∧ (A→ B ∨Q) ∧ (Q→ C ∧ ¬D) with the minimal models
I ′1 = {A,Q,C} and I ′2 = {A,B,C}. Now I ′1/ϕ1

= I , which is as expected;
however, I ′2 does not correspond to a minimal model of ϕ1.

To precisely describe the relationship between the formulae before and
after the structural transformation, we use the following definition.

Definition 7. A Herbrand interpretation I is a Υ-minimal model of a for-
mula ψ if I |= ψ and I ′ 6|= ψ for each interpretation I ′ such that I ′/Υ ( I/Υ.
Furthermore, for a formula ϕ, the interpretation I is a ϕ-minimal model of
ψ if and only if it is a pred(ϕ)-minimal model of ψ.

Thus, an Υ-minimal model is a model in which the extensions of the
predicates in Υ are minimal; the extensions of the remaining predicates
need not be minimal. As a consequence, the model I ′1 from the previous
example is pred(ϕ1)-minimal, whereas I ′2 is not.

The relationship between the models before and after the structural
transformation is described by the following theorem.

Theorem 3. Let ϕ be a first-order formula and ψ a formula obtained from
ϕ by applying the structural transformation to an occurrence of a subformula
χ. Then,

1. for each minimal Herbrand model I of ϕ, a minimal model I ′ of ψ
exists such that I = I ′/ϕ, and

2. for each ϕ-minimal Herbrand model I ′ of ψ, the interpretation I ′/ϕ is
a minimal Herbrand model of ϕ.

Proof. Let ϕ, ψ, and χ be as stated in the theorem. The following properties
are well-known [34]: (*) for each model I ′ of ψ, we have I ′/ϕ |= ϕ; and (**)
for each model I of ϕ, a model I ′′ of ψ exists such that I ′′/ϕ = I.

(Claim 1) Let I be a minimal Herbrand model of ϕ, and let I ′′ be a
Herbrand model of ψ whose existence is implied by (**). Clearly, a minimal
Herbrand model I ′ of ψ must exist such that I ⊆ I ′ ⊆ I ′′ and I ′/ϕ = I.

(Claim 2) Let I ′ be a ϕ-minimal Herbrand model of ψ. By (*), I ′/ϕ |= ϕ.
Let us assume that I ′/ϕ is not a minimal model of ϕ—that is, that an
interpretation I exists such that I ( I ′/ϕ and I |= ϕ. Then, by the first
claim, a minimal model I ′′ of ψ exists such that I ′′/ϕ = I and I ′′/ϕ ( I ′/ϕ.
Hence, I ′ is not a ϕ-minimal model of ψ.

The situation is easier for Horn formulae—disjunctions of literals with
at most one positive atom. It is well known that such formulae can have
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at most one minimal Herbrand model, so the following corollary follows
immediately from Theorem 3.

Corollary 1. Let ψ be a conjunction of Horn formulae obtained from some
formula ϕ by one or more applications of the structural transformation. If
I is a minimal model of ψ, then I/ϕ is a minimal model of ϕ.

7.2 Checking IC Satisfaction for Existential-Free KBs

In this section we consider the quite common case of existential-free extended
DL knowledge bases, which are defined as follows.

Definition 8. An extended DL knowledge base K = (S, C,A) is existential-
free if no formula in π(S) contains a function symbol, an existential quan-
tifier occurring positively, or a universal quantifier occurring negatively.

Thus, S can contain an axiom of the form ∀x : [[∃y : R(x, y)]→ C(x)],
but not an axiom of the form ∀x : [C(x)→ ∃y : R(x, y)]: in the first case,
the existential quantifier occurs on the left-hand side of the implication and
is effectively equivalent to a universal quantifier, whereas in the second case,
the existential quantifier occurs positively in the formula and it implies the
existence of individuals in a model. The integrity constraint TBox C can
contain existential quantifiers both under positive and negative polarity;
these quantifiers, however, represent requirements on the facts that must be
present in the ABox. Hence, all individuals in an existential-free knowledge
base are explicitly known by name—that is, it is not necessary to consider
unnamed individuals. We expect many data-centric applications of OWL
to fall into this category. Existential-free knowledge bases exhibit a useful
property that can be exploited in checking IC satisfaction.

Proposition 1. If K is existential-free, then LP(S) does not contain func-
tion symbols.

The restricted way in which function symbols in LP(S) are introduced
makes it is easy to see that this proposition is true—namely, they are in-
troduced only by the Skolemization of the existential quantifiers occurring
positively or universal quantifiers occurring negatively in S.

Thus, for existential-free knowledge bases, we can check IC satisfaction
using standard logic programming machinery. If the computation of LP(S)
does not incur an exponential blowup, then we do not need the structural
transformation, and we can apply Theorem 2 directly. If we apply the
structural transformation, but the program LP(S) is nondisjunctive, we can
also use Theorem 2 due to Corollary 1. The problem arises if LP(S) is
disjunctive and we apply the structural transformation: by Theorem 3, we
must then consider the Υ-minimal models of LP(S) ∪ A ∪ IC(C) where Υ is
the set of predicates before the structural transformation. Next we show
how to check Υ-minimality for propositional formulae.
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Theorem 4. Let Υ be a set of propositional symbols, ϕ a propositional
formula, and I an interpretation such that I |= ϕ. Then, I is a Υ-minimal
model of ϕ if and only if ζ(ϕ, I,Υ), defined as follows, is unsatisfiable:

ζ(ϕ, I,Υ) = ϕ ∧ neg(I,Υ) ∧ pos(I,Υ)

neg(I,Υ) =
∧

A∈Υ\I

¬A

pos(I,Υ) =
∨

A∈Υ∩I
¬A

Proof. For the (⇒) direction, assume that ζ(ϕ, I,Υ) is satisfiable in a model
I ′. Due to neg(I,Υ), if I 6|= A for A ∈ Υ, then I ′ 6|= A as well; also, due to
pos(I,Υ), there is at least one atom I |= B such that I ′ 6|= B. Hence, I ′

is a model of ϕ and I ′/Υ ( I/Υ, so I is not Υ-minimal. For the (⇐)
direction, if I is not a Υ-minimal model of ϕ, a model I ′ of ϕ exists such that
I ′/Υ ( I/Υ. Clearly, I ′ satisfies both neg(I,Υ) and pos(I,Υ), so ζ(ϕ, I,Υ)
is satisfiable.

Thus, given an existential-free knowledge base K = (S, C,A), checking
whether LP(S) ∪ A ∪ IC(C) |= EC can be performed by grounding the pro-
gram, guessing a Herbrand interpretation I for it, checking whether I is a
model of the program, checking whether I is a Υ-minimal model, and check-
ing whether I does not contain EC ; the minimality check can be performed
by checking the satisfiability of ζ(ϕ, I,Υ). Clearly, the complexity of such
an algorithm is not worse than the complexity of disjunctive logic program-
ming: it is in Πp

2 for data complexity and in coNExpTime
NPfor combined

complexity [17].
We finish this section with a note on equality. Most existing imple-

mentations of disjunctive logic programming engines support equality as a
built-in predicate that is interpreted as identity and is allowed to occur only
in rule bodies. The program LP(S), however, can contain equality in the
rule heads as well. This type of equality is traditionally not supported in
logic programming; however, it can be simulated by introducing a new pred-
icate and explicitly axiomatizing the equality properties for it. Note that
the logic program IC(C) can also contain equality, but only in rule bodies.
Hence, IC(C) cannot constrain two constants to be equal; it can only check
whether two constants have been derived to be equal. If IC(C) contains
equality but LP(S) does not, then we can simply interpret equality in IC(C)
as identity and use the built-in implementation of equality.

7.3 Checking IC Satisfaction for General KBs

We now consider the problem of checking IC satisfaction when S contains
existentials. This turns out not to be easy, mainly because the Herbrand
models of sk(S) are infinite, so we cannot represent them explicitly.
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In this section we present an algorithm for IC satisfaction checking that
can be used if S is expressed in the DL ALCHI. On the one hand, this DL
contains constructs characteristic of most DL languages, and on the other
hand, the decision procedure does not get too complex. We conjecture that
this technique can be extended to handle other constructs found in OWL,
such as number restrictions or nominals; however, the technical details would
obscure the nature of our result. We do not intend our algorithm to be used
in practice; rather, our result should be understood as evidence that checking
IC satisfaction is, in principle, possible for nontrivial DLs. Therefore, we
leave the development of a more practical procedure as well as extending it
to more expressive DLs for future work. Note that we place no restrictions
on the form of the ICs in C: they can be arbitrary first-order formulae.

To make this paper self-contained, we start with a formal definition of
the DL ALCHI. The basic components of an ALCHI knowledge base are
atomic concepts, which correspond to unary predicates, and atomic roles,
which correspond to binary predicates. A role is either an atomic role or an
inverse role R− for R an atomic role; furthermore, we define Inv(R) = R−

and Inv(R−) = R. The set of ALCHI concepts is defined inductively as the
smallest set containing the atomic concepts, ¬C (negation), C ⊓ D (con-
junction), C ⊔D (disjunction), ∃R.C (existential quantification), and ∀R.C
(universal quantification), for C and D concepts. An ALCHI knowledge
base K = (S,A) consists of a TBox S, which is a set of general concept in-
clusion axioms C ⊑ D for C and D concepts, role inclusion axioms R ⊑ S
for R and S roles, and an ABox A, which is a set of facts of the form A(a)
and R(a, b) for A an atomic concept and R an atomic role. The semantics
of K can be given by translating S into a first-order formula π(S), where
the definition of π is given in Table 2.7

We embed the problem of checking IC satisfaction into the problem of
checking satisfiability of monadic second-order formulae on infinite k-ary
trees SkS [36]. We use SkS because it allows us to encode the tree-like
structure of Herbrand models, and it provides for second-order quantification
that can be used to express the minimality criterion. SkS terms are built
as usual from first-order variables (written in lowercase letters), a constant
symbol ε, and k unary function symbols fi. For SkS terms t and s, an SkS
atom is of the form t = s orX(t), whereX is a second-order variable (written
in uppercase letters). SkS formulae are obtained from atoms in the usual
way using propositional connectives ∧, ∨, and ¬, first-order quantification
∃x and ∀x, and second-order quantification ∃X and ∀X. For the semantics
of SkS , please refer to [36]. Intuitively, first-order quantification ranges over
domain elements, whereas second-order quantification ranges over domain
subsets. The symbol = denotes true equality in SkS , and it is different from

7The operators πx, πy, πxy, and πyx are mutually recursive, and they reuse the variables
x and y for nested expressions.
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Table 2: The Semantics of ALCHI by Translation to FOL

The Translation of Roles to FOL

πxy(R) = R(x, y) πyx(R) = R(y, x)
πxy(R

−) = R(y, x) πyx(R
−) = R(x, y)

The Translation of Concepts to FOL

πx(A) = A(x) πy(A) = A(y)
πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓D) = πx(C) ∧ πx(D) πy(C ⊓D) = πy(C) ∧ πy(D)
πx(C ⊔D) = πx(C) ∨ πx(D) πy(C ⊔D) = πy(C) ∨ πy(D)
πx(∃R.C) = ∃y : πxy(R) ∧ πy(C) πy(∃R.C) = ∃x : πyx(R) ∧ πx(C)
πx(∀R.C) = ∀y : πxy(R)→ πy(C) πy(∀R.C) = ∀x : πyx(R)→ πx(C)

The Translation of Axioms to FOL

π(C ⊑ D) = ∀x : πx(C)→ πx(D)
π(R ⊑ S) = ∀x, y : πxy(R)→ πxy(S)
π(A(a)) = A(a)

π(R(a, b)) = R(a, b)
π(K) =

∧
α∈K π(α)

the symbol ≈ used so far, which denotes a congruence relation on Herbrand
models. We use P ⊆ R as an abbreviation for ∀x : P (x)→ R(x), and P ( R
as an abbreviation for P ⊆ R ∧ ¬(R ⊆ P ).

Let K = (S, C,A) be an extended DL knowledge base in which S is an
ALCHI TBox, and let ψ = sk(S ∪ A). We now show how to compute an
SkS formula SkSK that is satisfiable if and only if ψ |=MM C. The formula
ψ contains binary atoms and is therefore not an SkS formula. We proceed
as follows. First, we observe that ψ contains subformulae of the form shown
in Table 3. Next, based on the formula structure, we show that all models
of ψ are forest-like—that is, they contain binary atoms only of a certain
form. Due to their restricted form, we show that such binary atoms can
be encoded using unary atoms. Finally, since SkS provides only for one
constant ε, we encode all constants in ψ using function symbols. The result
is an SkS formula, and we simply encode the minimality condition using
second-order quantifiers.

Without loss of generality, we assume that all concepts in S are in
negation-normal form—that is, that negation occurs only in front of atomic
concepts. Then, it is easy to see that the formula ψ = sk(S ∪A) can be
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Table 3: Skolemization of Concepts in NNF

C λ(C, ·)
A A(·)
¬A ¬λ(A, ·)

C1 ⊓ C2 λ(C1, ·) ∧ λ(C2, ·)
C1 ⊔ C2 λ(C1, ·) ∨ λ(C2, ·)
∃R.C R(·, f(·)) ∧ λ(C, f(·))
∃R−.C R(f(·), ·) ∧ λ(C, f(·))
∀R.C ∀y : [R(·, y)→ λ(C, y)]
∀R−.C ∀y : [R(y, ·)→ λ(C, y)]

Note: The symbol · is a placeholder for actual terms supplied as the
second argument to λ. The function symbol f and the variable y are
fresh in each invocation of λ.

computed as follows, where λ is the operator from Table 3:

ψ = A ∧ ψ1 ∧ ψ2

ψ1 =
∧

R⊑S∈S
∀x, y : [πxy(R)→ πxy(S)]

ψ2 =
∧

C⊑D∈S
∀x : λ(NNF(¬C ⊔D), x)

We now define different types of models that we consider:

Definition 9. A Herbrand interpretation I is forest-like if it contains only
unary and binary atoms, all function symbols are at most unary, and all
binary atoms are of the form R(a, t), R(t, f(t)), or R(f(t), t), where a is
a constant and t is a term. A Herbrand interpretation I is monadic if it
contains only unary predicates and all function symbols are at most unary.

One might expect forest-like models to contain the facts of the form
R(a, b) instead of facts of the form R(a, t); we discuss the rationale behind
our definition after Definition 10. We next prove the core property of the
models of ψ.

Lemma 3. All minimal Herbrand models of the formula ψ = sk(S ∪ A) are
forest-like.

Proof. If I is a model of ψ that is not forest-like, it contains a binary atom
of the form R(s, t) that is not of the form specified in Definition 9. Let
I ′ be an interpretation obtained from I by removing all atoms of the form
S(s, t) such that S ⊑∗ R, where ⊑∗ is the reflexive-transitive closure of
{R ⊑ S, Inv(R) ⊑ Inv(S) | R ⊑ S ∈ S}. For the subformula ψ1 of ψ, it is
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Table 4: Transforming Interpretations

Forest-like Tree-like

R(t, f(t)) ↔ Rf (t)
R(f(t), t) ↔ R−

f (t)

R(a, t) ↔ Ra(t) for t not of the form f(a)

clear that I |= ψ1 if and only if I ′ |= ψ1 because, whenever we remove some
R(s, t) from I, we remove also all S(s, t) such that S ⊑∗ R. For the subfor-
mula ψ2 of ψ, we show that I |= ψ2 if and only if I ′ |= ψ2 by a straightforward
induction on the formula structure. Note that only positive binary atoms
could have a different truth value in I and I ′. All such atoms in ψ2 stem
from lines 5 and 6 of Table 3 and are thus of the form R(t, f(t)) or R(f(t), t).
Therefore, they are included in I ′ whenever they are included in I.

For each binary predicate R, function symbol f , and constant a in ψ, we
introduce the unary predicates Rf , R

−
f , and Ra in order to encode binary

atoms in a forest-like model.

Definition 10. For a forest-like Herbrand interpretation I, the monadic
encoding Ĩ is obtained by replacing each atom from the left-hand side of
Table 4 with the corresponding atom on the right-hand side. For a monadic
Herbrand interpretation I, the forest-like encoding I is obtained by replacing
each atom from the right-hand side of Table 4 with the corresponding atom
on the left-hand side.

We clarify an important point of Definition 10. To be consistent, we
might be tempted to encode R(f(t), t) as R−

f (f(t)). Similarly, we might re-
strict the forest-like interpretations only to atoms of the form R(a, b) instead
of R(a, t). But then, we would lose the one-to-one correspondence between
forest-like and monadic interpretations: “decoding” a monadic atom R−

f (a)
is not possible because there is no predecessor for a; similarly, “decoding”
an atom Ra(f(f(a))) would produce an atom R(a, f(f(a))), which would
not be tree-like. Our definitions ensure that each forest-like interpretation
can be encoded as a monadic one and vice versa. The requirement in Table
4 that t is not of the form f(a) ensures that the transformation is uniquely
defined. We now define an encoding of binary literals, which we then apply
in Theorem 5 to the standard TBox and the ICs.

Definition 11. For R a binary predicate and Σ a set of function symbols
and constants, the formula ν[R,Σ](x, y) is defined as follows, where a are
constants and f are function symbols:

ν[R,Σ](x, y) = ν1[R,Σ](x, y) ∨ ν2[R,Σ](x, y) ∨ ν3[R,Σ](x, y)

35



ν1[R,Σ](x, y) =
∨

a∈Σ

[x = a ∧Ra(y)]

ν2[R,Σ](x, y) =
∨

f∈Σ

[y = f(x) ∧Rf (x)]

ν3[R,Σ](x, y) =
∨

f∈Σ

[x = f(y) ∧R−
f (y)]

For a formula ϕ, the formula ν[ϕ,Σ] is obtained from ϕ by replacing each
atom R(s, t) with ν[R,Σ](s, t).8

Lemma 4. Let ϕ be a formula containing only unary and binary predi-
cates, Σ a set containing all constants and function symbols from ϕ, and
ξ = ν[ϕ,Σ]. Then,

• I |= ϕ implies Ĩ |= ξ for each forest-like Herbrand interpretation I, and

• J |= ξ implies J |= ϕ for each monadic Herbrand interpretation J .

Proof. For the first claim, we prove a slightly more general property: for ϕ
a formula containing only unary and binary predicates with free variables
x, ξ = ν[ϕ,Σ], and t a vector of terms, we have I |= ϕ[t/x] if and only if
Ĩ |= ξ[t/x]. The proof is by induction on the structure of ϕ. The base
case for unary atoms is trivial since I and Ĩ coincide on unary atoms. Let
ϕ = R(u, v); the formula ξ is of the form as in Definition 11. Since I is
forest-like, I |= ϕ[t/x] if and only if ϕ[t/x] is of the form R(a, t), R(t, f(t)),
or R(f(t), t). In the first case, Ĩ satisfies ν1[R,Σ](u, v); in the second case,
it satisfies ν2[R,Σ](u, v); and in the third case, it satisfies ν3[R,Σ](u, v).
The induction step for Boolean connectives and quantifiers is trivial and is
omitted for the sake of brevity. The proof of the second claim is completely
equivalent to the proof of the first one.

Our final obstacle is caused by the fact that SkS provides for only one
constant ε, while ψ can contain n different constants a1, . . . , an (w.l.o.g. we
assume that ai 6= ε), so we encode ai using function symbols.

Definition 12. Let ψ be a Skolemized formula containing the constants
a1, . . . , an and the function symbols f1, . . . , fm, respectively. For k = m+ n,
let fm+1, . . . , fk be new unary function symbols. For a formula ϕ, the for-
mula csψ(ϕ) is obtained from ϕ by replacing each constant ai with fm+i(ε).

In the rest of this section, we use ai as an abbreviation for fm+i(ε). The
number k from Definition 12 defines the number of successors of the SkS
formula we are computing. The following proposition follows trivially from
the fact that ε and fm+1, . . . , fk do not occur in ψ:

8We assume that the atoms R−(s, t) in ϕ are represented as R(t, s).
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Proposition 2. Each minimal Herbrand model I of ψ corresponds to exactly
one minimal Herbrand model I ′ of csψ(ψ) and vice versa. Furthermore, for
such I and I ′, we have I |= ϕ if and only if I ′ |= csψ(ϕ), for any formula ϕ.

To check satisfaction of ICs in K = (S, C,A), we now construct a formula
SkSK that is satisfiable if and only if sk(S ∪A) |=MM C.

Definition 13. Let K = (S, C,A) be an extended DL knowledge base. Then,
SkSK is the SkS formula defined as follows, where Pi are all the predicates
occurring in SkSα, P

′
i are all the predicates occurring in SkSα′ , and Σ con-

tains all the constants and function symbols occurring in ψ.

ψ = sk(S ∪ A)
α = csψ(ψ)
α′ is obtained by replacing each predicate P in α with a fresh predicate P ′

β = csψ(C)
SkSα = ν[α,Σ]
SkSα′ = ν[α′,Σ]
SkSβ = ν[β,Σ]
SkS( = (P ′

1 ⊆ P1 ∧ . . . ∧ P
′
n ⊆ Pn) ∧ (P ′

1 ( P1 ∨ . . . ∨ P
′
n ( Pn)

SkSMM = ∀P ′
1, . . . , P

′
n : SkS(→ ¬SkSα′

SkSK = ∀P1, . . . , Pn : [(SkSα ∧ SkSMM )→ SkSβ]

Intuitively, the outer quantifiers ∀P1, . . . , Pn in the formula SkSK fix a
valuation I of propositional symbols; the formula SkSα “evaluates” A ∪ S
in I; the formula SkSMM ensures that I is a minimal model for A ∪ S; and,
finally, the formula SkSβ “evaluates” C in I.

Theorem 5. For K = (S, C,A) an extended DL knowledge base, ψ |=MM C
if and only if SkSK is valid.

Proof. (⇒) If SkSK is not valid, a monadic interpretation I of the predicates
Pi exists such that I |= SkSα and I |= SkSMM , but I 6|= SkSβ. By Lemma 4,
I |= α and I 6|= β. We next show that I is a minimal model of α, which
implies that α 6|=MM β; by Proposition 2, we then have that ψ 6|=MM C.
Assume that I is not a minimal model of α—that is, that an interpretation
J ( I exists such that J |= α. By Lemma 3, J is forest-like. But then, J̃ ( I,
so J̃ |= SkS(; furthermore, by Lemma 4, J̃ |= SkSα′ . These two claims now
imply that I 6|= SkSMM , which is a contradiction.

(⇐) If ψ 6|=MM C, by Proposition 2, we have α 6|=MM β. But then, by
Lemma 3, a forest-like model I of α exists such that I 6|= β. By Lemma 4,
Ĩ |= SkSα and Ĩ 6|= SkSβ. To complete the proof that SkSK is not valid, we

just need to show that Ĩ |= SkSMM . Assume that the latter is not the case;
then, a monadic interpretation J exists such that J ( Ĩ and J |= SkSα′ . But
then, by Lemma 4, J |= α′ and J ( I, so I is not a minimal model of α.
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Theorem 5 shows that checking IC satisfaction is decidable for nontrivial
description logics. Unfortunately, it gives us only a nonelementary upper
complexity bound: the complexity of SkS is determined by the number of
quantifier alternations [36], which is unlimited because SkSβ can be any first-
order formula. In our future work, we shall try to derive tight complexity
bounds, as well as a more practical algorithm.

8 Related Work

The usefulness of integrity constraints was recognized early on by the knowl-
edge representation community, and KL-ONE [10] as well as many of its
successors provide a variant thereof. For example, CLASSIC [9] provides
a kind of derivation rule that can be used to axiomatize ICs. Rules and
ICs in such systems, however, typically do not have a formal underpinning.
For example, the derivation rules in CLASSIC were given only a procedu-
ral semantics that has not been tightly integrated with the core description
language.

ICs were given formal semantics in first-order databases using the con-
sistency [24] and the entailment [37] approaches, and these approaches were
also applied to closed Prolog-like databases [40, 33, 27]. Reiter conducted a
comprehensive study of the nature of ICs [38], in which he argued against
all these approaches. He observed that ICs are statements of an epistemic
nature; consequently, he proposed to capture their semantics in an extension
of first-order logics with an autoepistemic knowledge operator K that allows
an agent to reason about his own knowledge. Lifschitz presented the logic of
Minimal Knowledge and Negation-as-Failure (MKNF) which, additionally,
provides for a negation-as-failure operator not [26].

MKNF was used to obtain an expressive and decidable nonmonotonic DL
[16]. One of the motivations for this work was to provide a language capable
of expressing integrity constraints. For example, integrity constraint (1) can
be expressed using the following axiom (the modal operator A corresponds
to ¬not in MKNF):

KPerson ⊑ ∃A hasSSN .ASSN (62)

MKNF was also used to integrate DLs with logic programming [32].
Again, one of the motivations for this work was to allow for the modeling of
integrity constraints. For example, integrity constraint (1) can be expressed
by the following logic program:

KOK (x)← K hasSSN (x, y),K SSN (y) (63)

← KPerson(x),not OK (x) (64)

Although these existing approaches are motivated similarly to the ap-
proach presented in this paper, there are several important differences.
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First, rules (63)–(64) do not have any meaning during TBox reasoning;
they can only be used to check whether an ABox has the required structure.
Axiom (62) can be taken into account during TBox reasoning, but it has
a significantly different meaning from our ICs: it only interacts with other
modal axioms, but not with the standard first-order axioms. In contrast, the
integrity constraint TBox C has the standard semantics for TBox reasoning
and is applicable as usual; it is only for ABox reasoning that C is applied in
a nonstandard way (i.e., as a check). Thus, the semantics of C is both closer
to the standard first-order semantics of description logics, and it mimics
more closely the behavior of ICs in relational databases. In our proposal,
ICs have a dual role: they describe the domain, as well as the admissible
states of the ABox.

Second, the semantics of MKNF makes it difficult to express integrity
constraints on unnamed individuals. For a DL concept C, the concept KC
contains the individuals that are in C in all models of C. In most cases, KC
contains only explicitly named individuals, and not unnamed individuals
implied by existential quantifiers, because in different models one can choose
different individuals to satisfy an existential quantifier. Therefore, MKNF-
based approaches usually cannot interact with unnamed individuals, so they
cannot express the naming constraints mentioned in Section 5.2—that is,
they cannot be used to check whether all existentially implied individuals
are explicitly named.

Third, MKNF-based integrity constraints work at the level of conse-
quences and are therefore not applicable to disjunctive facts. Consider again
the ABox A3 containing axiom (18) and the standard TBox S3 containing
axiom (19). We might express integrity constraints (20)–(21) using the fol-
lowing MKNF rules:

← KTiger(x),notCarnivore(x) (65)

← KLeopard (x),notCarnivore(x) (66)

These rules are satisfied in A3 ∪ S3 because, roughly speaking, KTiger(x)
can be understood as “Tiger(x) is a consequence.” Due to disjunction in
axiom (19), neither Tiger(ShereKahn) nor Leopard (ShereKahn) is a conse-
quence of A3 ∪ S3; hence, the premise of neither rule is satisfied and the
integrity constraints are not violated.

Integrity constraints are commonly available in object-oriented deduc-
tive databases. ConceptBase9 is such a system, and it is based on the Telos
[33] language. IC satisfaction in Telos was formalized similarly as in the
consistency approach for closed databases [40]. FLORA-210 is an object-
oriented deductive database based on F-Logic [23]. F-Logic provides for
typing constraints that are formalized in logic programming; furthermore,

9http://dbis.rwth-aachen.de/CBdoc/
10http://flora.sourceforge.net/florahome.php
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general logic programming rules can be used to express arbitrary checks.
OWL-Flight [15] is an ontology langauge that also provides for typing con-
straints and formalizes them in logic programming. Furthermore, techniques
are known that can be used to check satisfaction of such integrity constraints
incrementally, after each database update [41].

The encodings of ICs using rules in these approaches are closely related
to the one given in Section 6. Just like MKNF-based integrity constraints,
however, ICs in object-oriented deductive databases only describe the al-
lowed states of the database and play no role during subsumption reasoning.
In fact, DL-style subsumption inferences have generally not been considered
in object-oriented databases, so the influence of ICs on such inferences is
irrelevant. In contrast, the ability to determine subsumption relationships
between schema elements is used in many applications of DLs and OWL, so
the role of ICs in subsumption reasoning is much more important.

A further difference is that the languages of object-oriented deductive
databases typically do not provide for existential quantification. Languages
such as F-Logic allow for function symbols, which can be used to capture
our semantics of IC satisfaction based on skolemization (see Section 3).
In such a case, however, checking IC satisfaction in these languages easily
becomes undecidable due to the presence of arbitrary rules. Decidability of
IC satisfaction plays an important role in our work, and in Section 7.3 we
identify a case for which decidability is guaranteed.

9 Conclusion

Motivated by the problems encountered in data-centric applications of OWL,
we have compared OWL and relational databases w.r.t. their approaches to
schema modeling, schema and data reasoning problems, and checking of in-
tegrity constraint satisfaction. We have seen that both databases and OWL
apply the standard first-order semantics to schema reasoning, and the dif-
ferences between the two are found mainly in data reasoning problems. In
relational databases, answering queries and IC satisfaction checking corre-
spond to model checking, whereas the only form of IC checking available
in OWL is checking satisfiability of an ABox w.r.t. a TBox—a problem
that is not concerned with the form of the data. This has caused misun-
derstandings in practice: OWL ontologies can be understood as incomplete
databases, while the databases encountered in practice are usually complete.

To control the degree of incompleteness, we have proposed the notion of
extended DL knowledge bases, in which certain TBox axioms can be des-
ignated as integrity constraints. For TBox reasoning, integrity constraints
behave just like normal TBox axioms; for ABox reasoning, however, they
are interpreted in the spirit of relational databases. We define the semantics
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of IC satisfaction such that they indeed check whether all required facts are
entailed by the given ABox and TBox.

We have also shown that, if ICs are satisfied, we can disregard them
while answering positive queries. This suggests that our semantics of IC
satisfaction is indeed reasonable, and it suggests that answering queries with
integrity constraints may be easier in practice because one needs to consider
only a subset of the TBox. Finally, we have presented an alternative charac-
terization of IC satisfaction based on logic programming, as well as several
algorithms for IC satisfaction checking.

The main theoretical challenge for our future research is to derive tight
complexity bounds for IC satisfaction checking for knowledge bases with
existentials, as well as to define practical algorithms for that case. A more
practical challenge is to apply the presented approach in applications and
validate its usefulness.

Acknowledgment

We thank the anonymous reviewer for numerous comments that have con-
tributed to the quality of this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addi-
son Wesley, 1995.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, January
2003.

[3] F. Baader and P. Hanschke. A Scheme for Integrating Concrete Do-
mains into Concept Languages. In J. Mylopoulos and R. Reiter, editors,
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI ’91),
pages 452–457, Sydney, Australia, August 24–30 1991. Morgan Kauf-
mann Publishers.

[4] F. Baader and U. Sattler. An Overview of Tableau Algorithms for
Description Logics. Studia Logica, 69:5–40, 2001.

[5] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Rea-
soning, volume I, chapter 2, pages 19–99. Elsevier Science, 2001.

41



[6] D. Beneventano, S. Bergamaschi, and C. Sartori. Description Logics for
Semantic Query Optimization in Object-Oriented Database Systems.
ACM Transactions on Database Systems, 28(1):1–50, 2003.

[7] P. Bonatti, C. Lutz, and F. Wolter. Description Logics with Circum-
scription. In P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proc.
of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 400–410, Lake District, UK, June 2–5
2006. AAAI Press.

[8] A. Borgida. On the Relative Expressiveness of Description Logics and
Predicate Logics. Artificial Intelligence, 82(1–2):353–367, 1996.

[9] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A. Resnick.
CLASSIC: a structural data model for objects. ACM SIGMOD Record,
18(2):58–67, 1989.

[10] R. J. Brachman and J. G. Schmolze. An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9(2):171–216,
1985.

[11] D. Calvanese, D. De Giacomo, and M. Lenzerini. Keys for free in
description logics. In F. Baader and U. Sattler, editors, Proc. of the
2000 Int. Workshop on Description Logic (DL 2000), volume 81 of
CEUR Workshop Proceedings, Aachen, Germany, August 17–19 2000.

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decid-
ability of Query Containment under Constraints. In Proc. of the
17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS ’98), pages 149–158, Seattle, WA, USA, June
1–3 1998. ACM Press.

[13] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-Based Approach
to Semantic Query Optimization. ACM Transactions on Database Sys-
tems, 15(2):162–207, 1990.

[14] K. Clark. Negation as Failure. In H. Gallaire, J. Minker, and J. Nicolas,
editors, Logic and Databases. Plenum Press, 1978.

[15] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL
Flight: Conceptual Modeling and Reasoning on the Semantic Web. In
Proc. of the 14th Int. World Wide Web Conference (WWW2005), pages
623–632, Chiba, Japan, May 10–14 2005. ACM.

[16] F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal
Knowledge and Negation as Failure. ACM Transactions on Computa-
tional Logic, 3(2):177–225, 2002.

42



[17] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364–418, 1997.

[18] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive Query
Answering for the Description Logic SHIQ. In Proc. of the 20th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2007), pages 399–405, In-
dia, January 6–12 2007. Morgan Kaufmann Publishers.
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