
Optimized Reasoning in Description Logics

using Hypertableaux

Boris Motik, Rob Shearer, and Ian Horrocks

University of Manchester, UK

Abstract. We present a novel reasoning calculus for Description Logics
(DLs)—knowledge representation formalisms with applications in areas
such as the Semantic Web. In order to reduce the nondeterminism due
to general inclusion axioms, we base our calculus on hypertableau and
hyperresolution calculi, which we extend with a blocking condition to en-
sure termination. To prevent the calculus from generating large models,
we introduce “anywhere” pairwise blocking. Our preliminary implementa-
tion shows significant performance improvements on several well-known
ontologies. To the best of our knowledge, our reasoner is currently the
only one that can classify the original version of the GALEN terminology.

1 Introduction

Description Logics (DLs) [2]—knowledge representation formalisms with well-
understood formal properties—have been applied to numerous problems in com-
puter science. A central component of most DL applications is an efficient and
scalable reasoner. Modern reasoners, such as Pellet [15], FaCT++ [21], and
RACER [8], are typically based on tableau calculi [2, Chapter 2]. These calculi
demonstrate (un)satisfiability of a knowledge base K via a constructive search
for an abstraction of a model of K. Numerous optimizations have been developed
in an effort to reduce the size of the search space [2, Chapter 9].

Despite major advances in recent years, ontologies are still encountered in
practice that cannot be handled by existing reasoners. This is mainly because
many different models might need to be examined, and each model might be
very large [2, Chapter 3]. The former problem is due to or-branching: given a
disjunctive assertion C ⊔ D(s), a tableau algorithm nondeterministically guesses
that either C(s) or D(s) holds. To show unsatisfiability of K, every possible guess
must lead to a contradiction: if assuming C(s) leads to a contradiction, the al-
gorithm must backtrack and assume D(s). This can clearly result in exponential
behavior. General concept inclusions (GCIs)—axioms of the form C ⊑ D—are
the main source of disjunctions: to ensure that C ⊑ D holds, a tableau algo-
rithm adds a disjunction ¬C ⊔ D(s) to each individual s in the model. Various
absorption optimizations [2, Chapter 9][11, 20] reduce the high degree of nonde-
terminism in such a procedure; however, they often fail to eliminate all sources of
nondeterminism. This may be the case even for ontologies that can be translated
into Horn clauses (such as GALEN, NCI, and SNOMED), for which reasoning
without any nondeterminism should be possible in principle.

The size of the model being constructed is determined by and-branching—
the expansion of a model due to existential quantifiers. Apart from memory
consumption problems, and-branching can increase or-branching by increasing
the number of individuals to which GCIs are applied.

In this paper, we present a reasoning calculus that addresses both sources
of complexity. We focus on the DL SHIQ; however, our calculus should be
applicable to most DLs with known tableau algorithms. A SHIQ knowledge
base is first preprocessed into DL-clauses—universally quantified implications
containing DL concepts and roles as predicates. The main inference rule for
DL-clauses is hyperresolution: an atom from the head of a DL clause is derived
only if all atoms from the clause body have been derived. On Horn clauses, this
calculus is deterministic, which eliminates all or-branching. This is in contrast
with existing DL tableau calculi, which often behave nondeterministically on
Horn problems. Our algorithm can thus be viewed as a hybrid of resolution and
tableau, and is related to the hypertableau [3] and hyperresolution [17] calculi.

Hyperresolution decides many first-order fragments (see, e.g., [6, 5] for an
overview). Unlike most of these fragments, SHIQ allows for cyclic GCIs of the
form C ⊑ ∃R.C, on which hyperresolution can generate infinite paths of succes-
sors. Therefore, to ensure termination, we use the pairwise blocking technique
from [10] to detect cyclic computations. Due to hyper-inferences, the soundness
and correctness proofs from [10] do not carry over to our calculus. In fact, certain
simpler blocking conditions for weaker DLs cannot be applied in a straightfor-
ward manner in our setting. To limit and-branching, we extend the blocking
condition from [10] to anywhere pairwise blocking: an individual can be blocked
by an individual that is not necessarily an ancestor. This significantly reduces
the sizes of the constructed models. Anywhere blocking has already been used
with subset blocking [1]; however, to the best of our knowledge, it has neither
been used with the more sophisticated pairwise blocking nor tested in practice.

We have implemented our calculus in a new reasoner. Even with a relatively
näıve implementation, our reasoner outperforms existing reasoners on several
real-world ontologies. For example, the deterministic treatment of GCIs signif-
icantly reduces the classification time for the NCI ontology. Furthermore, the
pairwise anywhere blocking strategy seems to be very effective in limiting model
sizes. To the best of our knowledge, our reasoner is currently the only one that
can classify the original version of the GALEN terminology.

2 Preliminaries

The DL SHIQ is defined as follows. For NR a set of atomic roles, the set of
roles is NR ∪ {R− | R ∈ NR}. For R ∈ NR, let Inv(R) = R− and Inv(R−) = R.
An RBox R is a finite set of role inclusion axioms R ⊑ S and transitivity axioms
Trans(R), where R and S are roles. Let ⊑∗ be the reflexive transitive closure of
{R ⊑ S, Inv(R) ⊑ Inv(S) | R ⊑ S ∈ R}. A role R is transitive in R if a role S
exists such that S ⊑∗ R, R ⊑∗ S, and either Trans(S) ∈ R or Trans(Inv(S)) ∈ R;
R is simple if no transitive role S exists with S ⊑∗ R.

Table 1. Model-Theoretic Semantics of SHIQ

Semantics of Roles and Concepts Semantics of Axioms

⊤I = △I ⊥I = ∅
(¬C)I = △I \ CI (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}

(C ⊓ D)I = CI ∩ DI (C ⊔ D)I = CI ∪ DI

(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(≤ n S.C)I = {x | ♯{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}
(≥ n S.C)I = {x | ♯{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}

C ⊑ D ⇒ CI ⊆ DI

R ⊑ S ⇒ RI ⊆ SI

Trans(R) ⇒ (RI)+ ⊆ RI

C(a) ⇒ aI ∈ CI

R(a, b) ⇒ 〈aI , bI〉 ∈ RI

a ≈ b ⇒ aI = bI

a 6≈ b ⇒ aI 6= bI

Note: ♯N is the number of elements in N , and R+ is the transitive closure of R.

For a set of atomic concepts NC , the set of concepts is the smallest set
containing ⊤, ⊥, A, ¬C, C ⊓ D, C ⊔ D, ∃R.C, ∀R.C, ≥ n S.C, and ≤ n S.C,
for A ∈ NC , C and D concepts, R a role, S a simple role, and n a nonnegative
integer. A TBox T is a finite set of general concept inclusions (GCIs) C ⊑ D.

For a set of individuals NI , an ABox A is a finite set of assertions C(a),
R(a, b), and (in)equalities a ≈ b and a 6≈ b, where C is a concept, R is a role,
and a and b are individuals. A SHIQ knowledge base K is a triple (R, T ,A).

An interpretation for K is a tuple I = (△I , ·I), where △I is a nonempty set,
and ·I assigns an element aI ∈ △I to each individual a, a set AI ⊆ △I to each
atomic concept A, and a relation RI ⊆ △I × △I to each atomic role R. The
function ·I is extended to concepts and roles as shown in the left-hand side of
Table 1. I is a model of K, written I |= K, if it satisfies all axioms of K as shown
in the right-hand side of Table 1. The basic inference problem for SHIQ is
checking satisfiability of K—that is, checking whether a model of K exists.

The negation-normal form of a concept C, written nnf(C), is the concept
equivalent to C containing negations only in front of atomic concepts; ¬̇C is an
abbreviation for nnf(¬C). |K| is the size of K with numbers coded in unary. The
DL ALCHIQ is obtained from SHIQ by disallowing transitive roles.

3 Algorithm Overview

To see how GCIs can increase or-branching and thus cause performance prob-
lems, consider the following knowledge base K1:

T1 = {∃R.A ⊑ A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)}

(1)

To satisfy the GCI, a tableau algorithm derives (∀R.¬A ⊔ A)(ai), 0 ≤ i ≤ n and
(∀R.¬A ⊔ A)(bj), 1 ≤ j ≤ n. Assuming that ai are processed before bj , the al-
gorithm derives ∀R.¬A(ai), 0 ≤ i ≤ n and ¬A(bi), 1 ≤ i ≤ n, after which it de-
rives ∀R.¬A(bi), 1 ≤ i ≤ n − 1 and ¬A(ai), 1 ≤ i ≤ n. The ABox now contains
a contradiction on an, so the algorithm flips its guess on bn−1 to A(bn−1). This
generates a contradiction on bn−1, so the algorithm backtracks from all guesses
for bi. Next, the guess on an is changed to A(an) and the work for all bi is re-
peated. This also leads to a contradiction, so the algorithm must revise its guess

for an−1; but then, two guesses are again possible for an. In general, after revis-
ing a guess for ai, all possibilities for aj , i < j ≤ n, must be reexamined, which
results in exponential behavior. Note that none of the standard backtracking op-
timizations [2, Chapter 9] help us avoid this problem. Namely, the problem arises
because the order in which the individuals are processed makes the guesses on ai

independent from the guesses on aj , i 6= j. It is difficult to estimate in advance
which order is optimal; in fact, the processing order is typically determined by
implementation side-effects (such as the data structures used to store K).

The GCI ∃R.A ⊑ A is not inherently nondeterministic: it is equivalent to
the Horn clause ∀x, y : [R(x, y) ∧ A(y) → A(x)]. By hyperresolution, we derive
the facts A(bn), A(an−1), . . . , A(a0), and eventually we derive a contradiction on
a0. These inferences are deterministic, so we can conclude that K1 is unsatis-
fiable without any backtracking. This example suggests that the way tableau
algorithms handle GCIs can be “unnecessarily” nondeterministic.

Absorption [2, Chapter 9] reduces the nondeterminism introduced by GCIs.
If possible, it rewrites GCIs as B ⊑ C with B an atomic concept; then, during
reasoning, it derives C(s) only if the ABox contains B(s). This localizes the
applicability of the rewritten GCIs. Absorption has been extended to binary ab-
sorption [11], which rewrites a GCI to B1 ⊓ B2 ⊑ C, and to role absorption [20],
which rewrites a GCI to ∃R.⊤ ⊑ C. Note, however, that the axiom ∃R.A ⊑ A
cannot be absorbed directly. It can be absorbed if it is rewritten as A ⊑ ∀R−.A.
In practice, it is often unclear in advance which combination of transformation
and absorption techniques will yield the best results. Therefore, implemented
absorption algorithms are guided primarily by heuristics.

Our algorithm can be seen as a generalization of absorption. It first trans-
lates GCIs into DL-clauses—universally quantified implications of the form
∧

Ui →
∨

Vj , where Ui are of the form R(x, y) or A(x), and Vj are of the form
R(x, y), A(x), ∃R.C(x), ≥ n R.C(x), or x ≈ y. DL-clauses are used in hyperres-
olution inferences, which derive some Vj , but only if all Ui are matched to asser-
tions in the ABox. This calculus is quite different from the standard DL tableau
calculi. For example, it has no choose-rule for qualified number restrictions [19],
and it can handle implications such as R(x, y) → B(x) ∨ A(y) (obtained from
∃R.¬A ⊑ B) that contain several universally quantified variables.

It is easy to see that and-branching can cause the introduction of infinitely
many new individuals. Consider the following (satisfiable) knowledge base:

T2 =

{

A1 ⊑ ≥ 2 S.A2, . . . , An−1 ⊑ ≥ 2 S.An, An ⊑ A1,
Ai ⊑ (B1 ⊔ C1) ⊓ . . . ⊓ (Bm ⊔ Cm) for 1 ≤ i ≤ n

}

A2 = {A1(a)}(2)

To check satisfiability of K2, a tableau algorithm builds a binary tree with each
node labeled with some Ai and an element of Π = {B1, C1} × . . . × {Bm, Cm}.
A näıve algorithm would try to construct an infinite tree, so tableau algorithms
employ blocking [10]: if a node a is labeled with the same concepts as some
ancestor a′ of a, then the existential quantifiers for a are not expanded. This en-
sures termination; however, the number of elements in Π is exponential, so, with
“unlucky” guesses, the tree can be exponential in depth and doubly exponential

in total. In the best case, the algorithm can, for example, choose Bj rather than
Cj for each 1 ≤ j ≤ m. It then constructs a polynomially deep binary tree and
thus runs in exponential time.

To curb and-branching, we extend pairwise blocking [10] to anywhere pair-
wise blocking, in which an individual can be blocked not only by an ancestor,
but by any individual satisfying certain ordering requirements. This reduces the
worst-case complexity of the tableau algorithm by an exponential factor; for
example, on K2, after we exhaust all members of Π , all subsequently created
individuals will be blocked. Such blocking can sometimes also improve the best-
case complexity; for example, on K2, our algorithm can create a polynomial path
and then use the individuals from that path to block their siblings.

We explain the remaining two aspects of our algorithm. First, the ∀+-rule
traditionally used to deal with transitive roles does not work in our setting, since
we represent concepts of the form ∀R.C as DL-clauses. Therefore, we encode
transitivity axioms using GCIs in a preprocessing step. Second, to avoid an
exponential blowup in the transformation of GCIs to DL-clauses, we apply the
well-known structural transformation [16]. We take special care, however, to
maximize the likelihood that the result can be translated into Horn DL-clauses.
For example, given ⊤ ⊑ ∀R.(C ⊔ ∀S.¬D), if we replace ∀S.¬D with an atomic
concept Q, we obtain the axioms (3), of which the first one does not give us a
Horn DL-clause. If, however, we replace ∀S.¬D with ¬Q′, we obtain the axioms
(4), which can both be translated into Horn DL-clauses.

⊤ ⊑ ∀R.(C ⊔ Q) R(x, y) → C(y) ∨ Q(y)
Q ⊑ ∀S.¬D Q(x) ∧ S(x, y) ∧ D(y) → ⊥

(3)

⊤ ⊑ ∀R.(C ⊔ ¬Q′) R(x, y) ∧ Q′(y) → C(y)
¬Q′ ⊑ ∀S.¬D S(x, y) ∧ D(y) → Q′(x)

(4)

In Section 4.1, we present a version of the structural transformation that replaces
a complex concept with either a positive or negative atomic concept, depend-
ing on the polarity of the concept being replaced. We thus bring GCIs into a
normalized form in which no complex concept occurs under implicit negations;
then, we translate such GCIs into DL-clauses.

4 The Satisfiability Checking Algorithm

4.1 Preprocessing

Elimination of Transitivity Axioms. We first encode a SHIQ knowledge
base K into an equisatisfiable ALCHIQ knowledge base Ω(K). Roughly speak-
ing, an axiom Trans(S) is replaced with axioms ∀R.C ⊑ ∀S.(∀S.C), for each R
with S ⊑∗ R and C a “relevant” concept from K. This encoding is polynomial
and has been presented several times for various description [19] and modal [18]
logics. Therefore, we omit the details of the transformation and refer the reader
to [14, Section 5.2]. After this transformation, there is no distinction between
simple and complex roles, so, without loss of generality, in the rest of this paper
we treat ∃R.C as a syntactic shortcut for ≥ 1 R.C.

Table 2. The Functions Used in the Structural Transformation

∆(K) = {⊤(ι)} ∪
⋃

α∈R∪A ∆(α) ∪
⋃

C1⊑C2∈T ∆(⊤ ⊑ nnf(¬C1 ⊔ C2))

∆(⊤ ⊑ C ⊔ C′) = ∆(⊤ ⊑ C ⊔ αC′) ∪
⋃n

i=1 ∆(αC′ ⊑ Ci) for C′ =
dn

i=1 Ci

∆(⊤ ⊑ C ⊔ ∀R.D) = ∆(⊤ ⊑ C ⊔ ∀R.αD) ∪ ∆(αD ⊑ D)
∆(⊤ ⊑ C ⊔ ≥ n R.D) = ∆(⊤ ⊑ C ⊔ ≥ n R.αD) ∪ ∆(αD ⊑ D)
∆(⊤ ⊑ C ⊔ ≤ n R.D) = ∆(⊤ ⊑ C ⊔ ≤ n R.¬̇αD′) ∪ ∆(αD′ ⊑ D′) for D′ = ¬̇D

∆(D(a)) = {αD(a)} ∪ ∆(αD ⊑ D)
∆(R−(a, b)) = {R(b, a)}

∆(β) = {β} for any other axiom β

αC =

{

QC if pos(C) = true

¬QC if pos(C) = false
where QC is a fresh atomic concept unique for C

pos(⊤) = false pos(⊥) = false

pos(A) = true pos(¬A) = false

pos(C1 ⊓ C2) = pos(C1) ∨ pos(C2) pos(C1 ⊔ C2) = pos(C1) ∨ pos(C2)
pos(∀R.C1) = pos(C1)

pos(≤ n R.C1) =

{

pos(¬̇C1) if n = 0
true otherwisepos(≥ n R.C1) = true

Note: A is an atomic concept, Ci are arbitrary concepts, C is a possibly empty
disjunction of arbitrary concepts, D is not a literal concept, and ι is a fresh individual.

Structural Transformation. GCIs are next brought into a certain normalized
form, defined as follows:

Definition 1. For A an atomic concept, the concepts A, ¬A, ⊤, and ⊥ are
called literal concepts. A GCI is normalized if it is of the form ⊤ ⊑

⊔n

i=1
Ci,

where each Ci is of the form B, ∀R.B, ≥ n R.B, or ≤ n R.B, and B is a literal
concept. A TBox T is normalized if all GCIs in it are normalized. An ABox A is
normalized if (i) each concept assertion in A is of the form B(s) or ≥ n R.B(s),
for B a literal concept, (ii) each role assertion in A contains only atomic roles,
and (iii) A contains at least one assertion. A knowledge base K is normalized
if T and A are normalized.

A knowledge base K can be brought into normalized form ∆(K) as follows:

Definition 2. For K an ALCHIQ knowledge base, ∆(K) is the knowledge base
computed as shown in Table 2.

The difference between the well-known structural transformation [16] and
Definition 2 is as follows. Assume that we need to rename a nonatomic subcon-
cept D of C. If pos(D) = false, then D can be converted into clauses with only
negative literals, so we rename D by a negative literal concept ¬QD; otherwise,
the clausification of D requires at least one positive literal, so we rename D by a
positive literal concept QD. In this way, the renaming of D in C does not change
the number of positive literals in the clausal representation of C, so renaming
preserves Horn-ness. Furthermore, for a Horn-SHIQ knowledge base K [12], the

knowledge base ∆(K) is guaranteed also to be a Horn-SHIQ knowledge base
that can be translated into Horn DL-clauses.

Lemma 1. An ALCHIQ knowledge base K is satisfiable if and only if ∆(K) is
satisfiable; ∆(K) can be computed in polynomial time; and ∆(K) is normalized.

Proof. It is easy to see that our transformation is a syntactic variant of the
structural transformation from [16], from which the first two claims follow. Ob-
serve that ∆ essentially rewrites each GCI into a form ⊤ ⊑

⊔n
i=1

Ci and then
keeps replacing nested subconcepts of Ci as long as the GCI is not normalized.
Furthermore, it adds ⊤(ι) to the ABox so that it is not empty, and it replaces
all inverse role assertions with equivalent assertions on the atomic roles. ⊓⊔

Translation into DL-Clauses. We next define the notion of DL-clauses:

Definition 3. Let NV be a set of variables disjoint from NI . An atom is an
expression of the form C(s), R(s, t), or s ≈ t, for s and t individuals or variables,
C a concept, and R a role. A DL-clause is an expression of the form

U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn(5)

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The conjunction U1 ∧ ... ∧ Um is
called the antecedent, and the disjunction V1 ∨ ... ∨ Vn is called the consequent.

Let I = (△I , ·I) be an interpretation and µ : NV → △I a variable mapping.
Let aI,µ = aI for an individual a and xI,µ = µ(x) for a variable x. Satisfaction of
an atom, DL-clause, and a set of DL-clauses N in I and µ is defined as follows:

I, µ |= C(s) if sI,µ ∈ CI

I, µ |= R(s, t) if 〈sI,µ, tI,µ〉 ∈ RI

I, µ |= s ≈ t if sI,µ = tI,µ

I, µ |=
∧m

i=1
Ui →

∨n

j=1
Vj if I, µ |= Vj for some 1 ≤ j ≤ n whenever

I, µ |= Ui for each 1 ≤ i ≤ m

I |=
∧m

i=1
Ui →

∨n

j=1
Vj if I, µ |=

∧m

i=1
Ui →

∨n

j=1
Vj for all mappings µ

I |= N if I |= r for each DL-clause r ∈ N

In the rest of this paper, we assume that each atom s ≈ t (s 6≈ t) also stands
for the symmetric atom t ≈ s (t 6≈ s). Furthermore, we allow ABoxes to contain
the assertion ⊥, which is false in all interpretations. Finally, we denote the empty
consequents of DL-clauses with ⊥. We now show how to transform a normalized
ALCHIQ knowledge base into a set of DL-clauses.

Definition 4. For a normalized ALCHIQ knowledge base K = (R, T ,A), the
set of DL-clauses Ξ(K) is obtained as shown in Table 3.

To simplify the Hyp-rule in Section 4.2, the role atoms in A and Ξ(K)
involve only atomic roles. Thus, the function ar from Table 3 is used to convert
inverse role atoms R−(s, t) in Ξ(K) into atomic role atoms R(t, s). An inverse
role can occur only in concepts of the form ≥ n R−.C, so the ≥-rule (defined in
Section 4.2) also uses ar to generate atoms with atomic roles.

Table 3. Translation of Normalized GCIs to DL-Clauses

Ξ(K) = {
[
∧n

i=1 lhs(Ci)
]

→
[
∨n

i=1 rhs(Ci)
]

| for each ⊤ ⊑
⊔n

i=1 Ci in T }∪

{ar(R,x, y) → ar(S, x, y) | for each R ⊑ S in R}

ar(R, s, t) =

{

R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

Note: Whenever lhs(Ci) or rhs(Ci) is undefined, it is omitted in the DL-clause.

C lhs(C) rhs(C)

A A(x)
¬A A(x)

≥ n R.A ≥ n R.A(x)
≥ n R.¬A ≥ n R.¬A(x)
∀R.A ar(R,x, yC) A(yC)
∀R.¬A ar(R,x, yC) ∧ A(yC)

≤ n R.A
∧n+1

i=1 [ar(R, x, yi
C) ∧ A(yi

C)]
∨n+1

i=1
n+1
j=i+1 yi

C ≈ y
j
C

≤ n R.¬A
∧n+1

i=1 ar(R,x, yi
C)

∨n+1
i=1 A(yi

C) ∨
∨n+1

i=1
n+1
j=i+1 yi

C ≈ y
j
C

Note: Each variable y
(i)
C is unique for C (and i), and it is different from x.

Lemma 2. Let K be a normalized ALCHIQ knowledge base. Then, I |= K if
and only if I |= Ξ(K) and I |= A.

Proof. The following equivalences between DLs and first-order logic are known:

∀R.C(x) ≡ ∀y : ¬R(x, y) ∨ C(y)

≤ n R.C(x) ≡ ∀y1, . . . , yn+1 :
∨n+1

i=1
[¬R(x, yi) ∨ ¬C(yi)] ∨

∨n+1

i=1

n+1

j=i+1 yi ≈ yj

Clearly, Ξ(K) is obtained from normalized GCIs by expanding the concepts
∀R.C and ≤ n R.C according to these equivalences, and then moving all negative
atoms into the antecedent and all positive atoms into the consequent. ⊓⊔

4.2 The Hypertableau Calculus for DL-Clauses

We now present our hypertableau calculus for deciding satisfiability of A ∪ Ξ(K).

Definition 5. Unnamed Individuals. For a set of named individuals NI , the
set of all individuals NX is inductively defined as NI ⊆ NX and, if x ∈ NX,
then x.i ∈ NX for each integer i. The individuals in NX \ NI are unnamed. An
individual x.i is a successor of x, and x is a predecessor of x.i; descendant and
ancestor are the transitive closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. A concept is blocking-relevant if it is of
the form A, ≥ n R.A, or ≥ n R.¬A, for A an atomic concept. The label of an
individual s and of an individual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = {C | C(s) ∈ A and C is a blocking-relevant concept}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NX

containing the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s.
By induction on ≺, we assign to each individual s in A a status as follows:

– s is directly blocked by an individual s′ iff both s and s′ are unnamed, s′ is
not blocked, s′ ≺ s, LA(s) = LA(s′), LA(t) = LA(t′), LA(s, t) = LA(s′, t′),
and LA(t, s) = LA(t′, s′), for t and t′ the predecessors of s and s′, resp.

– s is indirectly blocked iff its predecessor is blocked.
– s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
of the form R(t, t.i), R(t.i, t), C(t.i), u ≈ t.i, and u 6≈ t.i, where t is either s or
some descendant of s, i is an integer, and u is an arbitrary individual.

Merging. The ABox mergeA(s → t) is obtained from pruneA(s) by replacing
the individual s with the individual t in all assertions.

Derivation Rules. Table 4 specifies derivation rules that, given an ABox A
and a set of DL-clauses Ξ(K), derive the ABoxes A1, . . . ,An. In the Hyp-rule,
σ is a mapping from NV to the individuals occurring in A, and σ(U) is the atom
obtained from U by replacing each variable x with σ(x).

Derivation. For a normalized ALCHIQ knowledge base K = (R, T ,A), a
derivation is a pair (T, λ) where T is a finitely branching tree and λ is a function
that labels the nodes of T with ABoxes such that (i) λ(ǫ) = A for ǫ the root of
the tree, and (ii) for each node t, if one or more derivation rules are applicable
to λ(t) and Ξ(K), then t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are
the result of applying one (arbitrarily chosen) applicable rule to λ(t) and Ξ(K).

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.

In [10], the successor relation is encoded using role arcs, which point only
from predecessors to successors. Since our ABoxes contain only atomic roles,
role arcs can point in both directions, so we encode the successor relation in
the individuals. The ordering ≺ ensures that there are no cyclic blocks, so all
successors of nonblocked individuals have been constructed. Ancestor pairwise
blocking from [10] is obtained if ≺ is exactly the descendant relation.

Pruning prevents infinite loops of merge-create rule applications—the so-
called “yo-yo” effect. Consider the following example:

A3 = {A(a), ∃R.⊤(a), R(a, b), R(a, a)}
Ξ(K3) = {R(x, y1) ∧ R(x, y2) → y1 ≈ y2, A(x) ∧ R(x, y) → ∃R.⊤(y)}

(6)

By the second DL-clause, we derive ∃R.⊤(b), which we expand to R(b, b.1). But
then, by the first DL-clause, we derive b ≈ a. Hence, we merge b into a, and
obtain A′

3 = {A(a), ∃R.⊤(a), R(a, b.1), R(a, a)}. The ABox A′
3 is isomorphic to

A3, so we can repeat the whole process, which clearly leads to nontermination.
To remedy this, we remove all assertions that involve successors of b before
merging b into a; we thus obtain A′′

3 = {A(a), R(a, a), ∃R.⊤(a)}, after which the
algorithm terminates. Intuitively, merging ensures that no individual “inherits”
successors through merging. In [10], the successors are not physically removed,

Table 4. Derivation Rules of the Tableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ Ξ(K),
2. a mapping σ : NV → NA exists, for NA the set of individuals in A,
3. σ(Ui) ∈ A for each 1 ≤ i ≤ m,
4. σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then if n = 0, then A1 = A∪ {⊥},
otherwise Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n.

≥-rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , un such that

{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,
then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti 6≈ tj | 1 ≤ i < j ≤ n}

where t1, . . . , tn are fresh pairwise distinct successors of s.

≈-rule
If 1. s ≈ t ∈ A and

2. s 6= t

then A1 := mergeA(s → t) if t is named or if s is a descendant of t,
A1 := mergeA(t → s) otherwise.

⊥-rule
If 1. s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A and

2. ⊥ 6∈ A
then A1 := A ∪ {⊥}.

but are marked as “not present” by setting their edge labels to ∅. This has
exactly the same effect as pruning.

We next prove that our calculus is sound, complete, and terminating.

Lemma 3 (Soundness). Let A be an ABox and Ξ(K) a set of DL-clauses such
that A ∪ Ξ(K) is satisfiable, and let A1, . . . ,An be obtained by applying a deriva-
tion rule to A and Ξ(K). Then, Ai ∪ Ξ(K) is satisfiable for some 1 ≤ i ≤ m.

Proof. Let I be a model of A ∪ Ξ(K), and let us consider all derivation rules.
(Hyp-rule) Since σ(Ui) ∈ A, we have I |= σ(Ui) for all 1 ≤ i ≤ m. But then,

I |= σ(Vj) for some 1 ≤ j ≤ n. Since Aj = A ∪ {σ(Vj)}, we have I |= Aj ∪ Ξ(K).
(≥-rule) Since ≥ n R.C(s) ∈ A, we have I |= ≥ n R.C(s), which means that

α1, . . . , αn ∈ △I exist such that 〈sI , αi〉 ∈ RI and αi ∈ CI for 1 ≤ i ≤ n, and
αi 6= αj for 1 ≤ i < j ≤ n. Let I ′ be obtained from I by setting tI

′

i = αi. Clearly,
I ′ |= ar(R, s, ti), I ′ |= C(ti), and I ′ |= ti 6≈ tj for i 6= j, so I ′ |= A1 ∪ Ξ(K).

(≈-rule) Since s ≈ t ∈ A, we have I |= s ≈ t, so sI = tI . Pruning removes
assertions, so I is a model of the pruned ABox by monotonicity. Merging simply
replaces an individual with a synonym, so, clearly, I |= A1 ∪ Ξ(K).

(⊥-rule) This rule is never applicable if A ∪ Ξ(K) is satisfiable. ⊓⊔

The following corollary follows immediately from Lemma 3:

Corollary 1. Each derivation for a satisfiable normalized ALCHIQ knowledge
base K contains a path such that λ(t) is clash-free for each node t on the path.

Lemma 4 (Completeness). If a derivation for a normalized ALCHIQ knowl-
edge base K = (R, T ,A) contains a leaf node labeled with a clash-free ABox A′,
then A∪ Ξ(K) is satisfiable.

Proof. We first prove the claim (*): for each ABox A′ occurring in a derivation
for K, (i) for each R(s, t) ∈ A′, t is a predecessor or a successor of s, or both s and
t are named individuals, and (ii) for each s ≈ t ∈ A′, s = t, or s and t are both
named, or t is a successor of a named individual and s is a named individual,
or t and s have a common predecessor, or t is a successor of a successor of s.
The proof is by a simple induction on the application of the derivation rules.
Initially, A contains only named individuals. An application of the ≥-rule clearly
preserves (*). For the ≈-rule, (*) holds because A′ satisfies (ii) and merging never
replaces an individual with a descendant. Finally, let us consider the Hyp-rule.
By Definition 4, each DL-clause from Ξ(K) is of the form (7), for Ai and Bi

atomic concepts, Ri atomic roles, and Ci and Di blocking-relevant concepts:
∧

Ai(x) ∧
∧

ar(Ri, x, yi) ∧
∧

Bi(yi) →
∨

Ci(x) ∨
∨

Di(yi) ∨
∨

yi ≈ yj(7)

For each yi ≈ yj , the antecedent contains ar(R, x, yi)∧ ar(R, x, yj). Since A′ sat-
isfies (i), each σ(yi) is either a successor or a predecessor of σ(x) and, if σ(yi) is
a named individual, then all σ(yj) are either named individuals or successors of
named individuals. Thus, each A′

i obtained by the Hyp-rule satisfies (*).
We now construct a model of Ξ(K) ∪ A. A path is a finite sequences of pairs of

individuals p = [x0

x′

0

, . . . , xn

x′

n
]. Let tail(p) = xn, tail′(p) = x′

n, and q = [p | xn+1

x′

n+1

] be

the path [x0

x′

0

, . . . , xn

x′

n
, xn+1

x′

n+1

]; we say that q is a successor of p, and p is a predecessor

of q. The set of all paths P(A′) is defined inductively as follows: (i) [a
a
] ∈ P(A′)

for each named individual a in A′; (ii) [p | s′

s′
] ∈ P(A′) if p ∈ P(A′), s′ is a

successor of tail(p) in A′, and s′ is not blocked; and (iii) [p | s
s′

] ∈ P(A′) if
p ∈ P(A′), s′ is a successor of tail(p) in A′, and s′ is directly blocked by s. For
each blocking-relevant concept C and each path p ∈ P(A′), by the definition of
blocking, C(tail(p)) ∈ A′ iff C(tail′(p)) ∈ A′; furthermore, tail(p) is not blocked.
We denote these two properties by (**). Let I be the following interpretation:

△I = P(A′)
aI = [a

a
] for each named individual a in A′

aI = bI if individuals a = c0, c1, . . . , cn = b exist such that ci−1 was merged
into ci in the derivation leading to A′

AI = {p | A(tail(p)) ∈ A′}
RI = {〈[a

a
], [b

b
]〉 | a and b are named individuals and R(a, b) ∈ A′} ∪

{〈p, [p | s
s′

]〉 | s′ is a successor of tail(p) and R(tail(p), s′) ∈ A′} ∪
{〈[p | s

s′
], p〉 | s′ is a successor of tail(p) and R(s′, tail(p)) ∈ A′}

The ABox A′ is normalized, so △I is not empty. We now show that, for each
ps = [qs | s

s′
] and pt = [qt |

t
t′

] from △I , the following claims hold (***):

– If s′ ≈ t′ ∈ A′, then s′ = t′: Obvious, as the ≈-rule is not applicable to A′.
– If s′ 6≈ t′ ∈ A′, then ps 6= pt: Since ⊥ 6∈ A′ and the ⊥-rule is not applicable

to s′ 6≈ t′, we have s′ 6= t′, which implies the claim.
– If A(s′) ∈ A′, then ps ∈ AI : By (**), we have A(s) ∈ A′, so ps ∈ AI .
– If ¬A(s′) ∈ A′, then ps 6∈ AI . Since ⊥ 6∈ A′ and the ⊥-rule is not applicable

to ¬A(s′), we have A(s′) 6∈ A′. By (**), this implies A(s) 6∈ A′, so ps 6∈ AI .

– If ≥ n R.C(s′) ∈ A′, then ps ∈ (≥ n R.C)I : By (**), ≥ n R.C(s) ∈ A′ and
s is not blocked. The ≥-rule is not applicable to ≥ n R.C(s), so individuals
u1, . . . , un exist such that ar(R, s, ui) ∈ A′ and C(ui) ∈ A′ for 1 ≤ i ≤ n, and
ui 6≈ uj ∈ A′ for 1 ≤ i < j ≤ n. By (*), these possibilities exist for each ui:

• ui is a successor of s. If ui is directly blocked by u′
i, let pui

= [ps | u′

i

ui
];

otherwise, let pui
= [ps | ui

ui
].

• ui is a predecessor of s. Let pui
= qs. If tail′(pui

) 6= ui, this is because
s′ is blocked, but then, by the conditions of blocking, C(tail′(pui

)) ∈ A′

and ar(R, s′, tail′(pui
)) ∈ A′.

• ui is neither a predecessor nor a successor of s. Then, both s and ui are
named individuals, so let pui

= [ui

ui
].

In all cases, we have ar(R, s′, tail′(pui
)) ∈ A′, which implies 〈ps, pui

〉 ∈ RI ,
and C(tail′(pui

)) ∈ A′, which implies pui
∈ CI . Consider now each pair

of paths pui
and puj

with i 6= j. If tail′(pui
) 6≈ tail′(puj

) ∈ A′, then clearly
pui

6= puj
. If tail′(pui

) 6≈ tail′(puj
) /∈ A′, this is because tail′(pui

) 6= ui, which
is possible only if s′ is directly blocked by s and ui is a predecessor of s.
Since s can have at most one predecessor, no uj with j 6= i is a predecessor
of s, so pui

6= puj
. Thus, we conclude that ps ∈ (≥ n R.C)I .

Clearly, (***) implies that I |= α′ for each assertion α′ ∈ A′ that contains
only named individuals. Consider now each α ∈ A. If α 6∈ A′, then some named
individuals in α were merged into other individuals; but then, A′ contains the
assertion α′ obtained by this merging, so I |= α by the definition of I.

It remains to be shown that I |= Ξ(K). Consider each DL-clause r ∈ Ξ(K)
of the form (7) and each variable mapping µ. Let px = µ(x), pyi

= µ(yi), and
s′ = tail′(px). Assume now that each atom from the antecedent of r is true in I
and µ—that is, px ∈ AI

i , pyi
∈ BI

i , and 〈px, pyi
〉 ∈ RI .

If s′ is not blocked, let s = s′ and ti = tail′(pyi
). By the definition of I, we

have Ai(s) ∈ A′, Bi(ti) ∈ A′, and ar(Ri, s, ti) ∈ A′.
If s′ is blocked, let s = tail(px); that is, s is the individual that blocks s′. By

the definition of I, since px ∈ AI
i , we have Ai(s) ∈ A′. If tail′(pyi

) is a successor
of s, let ti = tail′(pyi

); now pyi
∈ BI

i and 〈px, pyi
〉 ∈ RI

i imply Bi(ti) ∈ A′ and
ar(Ri, s, ti) ∈ A′. If tail′(pyi

) is not a successor of s, let ti be the predecessor of
s; this predecessor exists by the definition of blocking. Furthermore, pyi

∈ BI
i

and 〈px, pyi
〉 ∈ RI

i imply Bi(tail
′(pyi

)) ∈ A′ and ar(Ri, s
′, tail′(pyi

)) ∈ A′; by the
definition of blocking, we have Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′ as well.

Let σ be a mapping such that σ(x) = s and σ(yi) = ti. The Hyp-rule is not
applicable to A′, so some of the atoms from the consequent of σ(r) must be
present in A′. Assume first that Ci(s) ∈ A′ or Di(ti) ∈ A′. By the definition of
blocking, Ci(tail

′(px)) ∈ A′ or Di(tail
′(pyi

)) ∈ A′, respectively; by (***), this im-
plies px ∈ CI

i or pyi
∈ DI

i , respectively. Assume now that ti ≈ tj ∈ A′. By (***),
we have ti = tj . If pyi

and pyj
are both successors of px, then ti = tail′(pyi

) and
tj = tail′(pyj

), so ti = tj implies pyi
= pyj

. If pyi
and pyj

are both predecessors
of px, we have pyi

= pyj
since px can have at most one predecessor. Finally, let

us assume that pyi
is a predecessor of px, which is a predecessor of pyj

. Then,

tail′(pyj
) = tj ; furthermore, since ti is not blocked, we have tail′(pyj

) 6= ti, which
contradicts the assumption that ti = tj . ⊓⊔

If ≺ coincides with the descendant relationship, the termination proof is
analogous to [10, Lemma 3], so we present here only the intuition. Consider
any ABox A in the derivation. There are at most exponentially many different
tuples 〈LA(s),LA(s, t),LA(t, s),LA(t)〉, so an individual can have at most ex-
ponentially many nonblocked ancestors. Thus, A can be viewed as a tree with
exponential depth and a linear branching factor, so the number of nonblocked in-
dividuals is at most doubly exponential. When an individual s becomes blocked,
at most double exponentially many nonblocked descendants of s can become
indirectly blocked, so |A| is at most doubly exponential in |K|. Due to pruning,
the ≥-rule can be applied to an individual at most |K| times. We construct the
derivation nondeterministically, so our algorithm runs in 2NExpTime.

If ≺ is total, the number of nonblocked individuals in A is exponential. Anal-
ogously to the previous case, we can conclude that the number of individuals is
at most exponential, so our algorithm runs in NExpTime. The DL SHIQ is
ExpTime-complete [2], so our algorithm is not worst-case optimal. Worst-case
optimal tableau algorithms for fragments of SHIQ have been presented in [7, 4].
These algorithms use caching, which is related to anywhere blocking; however,
to obtain the desired complexity result, they use cuts and are thus unlikely to
be practical. Furthermore, we are not aware of any practical implementation of
these calculi. On Horn-SHIQ [12] knowledge bases, however, our algorithm is
deterministic, so it runs in ExpTime. It is known that Horn-SHIQ is ExpTime-
hard [13], so our algorithm gives a worst-case optimal decision procedure.

Lemma 5 (Termination, [10]). For a normalized ALCHIQ knowledge base
K, every derivation from K is finite.

Lemmas 1, 4, 5, and Corollary 1 immediately imply our main theorem:

Theorem 1. A SHIQ knowledge base K is satisfiable if and only if each deriva-
tion from K′ = ∆(Ω(K)) contains a leaf node t such that λ(t) is clash-free; fur-
thermore, the construction of each such derivation terminates.

4.3 Applying the Algorithm to Other DLs

For DLs with inverse roles but without number restrictions, traditional tableau
algorithms can use simpler equality blocking [9]: an unnamed individual s is
blocked by an individual s′ in A iff s′ ≺ s and LA(s) = LA(s′). Such blocking
must be applied with care in our setting. Consider the knowledge base (8), on
which our algorithm produces the ABox (10).

K4 = {C ⊑ ∃R.D, D ⊑ ∃S−.C, ⊤ ⊑ ∀R.⊥ ⊔ ∀S.⊥, C(a)}(8)

Ξ(K4) = {C(x) → ∃R.D(x), D(x) → ∃S−.C(x), R(x, y1) ∧ S(x, y2) → ⊥}(9)

A4 =

{

C(a),
R(a, a.1),

D(a.1),
S(a.1.1, a.1),

C(a.1.1),
∃R.D(a), ∃S−.C(a.1), ∃R.D(a.1.1)

}

(10)

The individual a.1.1 is directly blocked by a, so the algorithm terminates; an
expansion of ∃R.D(a.1.1), however, would reveal that K is unsatisfiable. The
problem arises because the DL-clause R(x, y1) ∧ S(x, y2) → ⊥ contains two role
atoms, which allows it to examine both the successors and the predecessor of
x. Equality blocking, however, does not ensure that both predecessors and suc-
cessors of x have been fully built. We can correct this problem by requiring the
normalized GCIs to contain at most one ∀R.C concept. For example, if we re-
place our DL-clause with R(x, y1) → Q(x) and Q(x) ∧ S(x, y2) → ⊥, then the
first DL-clause additionally derives Q(a), so a.1.1 is not blocked.

For DLs without inverse roles, tableau algorithms typically use subset blocking
[1]: an unnamed individual s is blocked by s′ in A iff s′ ≺ s and LA(s) ⊆ LA(s′).
Subset blocking is not applicable in our setting. Consider the knowledge base
(11), on which our algorithm produces the ABox (13):

K5 = {C ⊑ ∃R.C, C ⊑ ∃S.D, ∃S.D ⊑ E, ∃R.E ⊑ ⊥, C(a)}(11)

Ξ(K5) =

{

C(x) → ∃R.C(x), C(x) → ∃S.D(x),
S(x, y) ∧ D(y) → E(x), R(x, y) ∧ E(y) → ⊥

}

(12)

A5 =

{

C(a), ∃S.D(a), S(a, a.1), D(a.1), E(a),
∃R.C(a), R(a, a.2), C(a.2), ∃R.C(a.2), ∃S.D(a.2)

}

(13)

Now a.2 is directly blocked by a. If, however, we expanded ∃S.D(a.2) into
S(a.2, a.2.1) and D(a.2.1), we can derive E(a.2); together with R(a, a.2) and
the last DL-clause from Ξ(K5), we get a contradiction. Even without inverse
roles, DL-clauses can propagate information from successors to predecessors.

5 Implementation

Based on the calculus from Section 4, we have implemented a prototype DL
reasoner.1 Currently, it can only handle Horn DL-clauses—our main goal was
to show that significant performance improvements can be gained by exploiting
the deterministic nature of many ontologies.

To classify a knowledge base K, we run our algorithm on Ki = K ∪ {Ci(ai)}
for each concept Ci, obtaining an ABox Ai. If D(ai) ∈ Ai and D(ai) was derived
without making any nondeterministic choices, then K |= Ci ⊑ D. Since our test
ontologies are translated to Horn DL-clauses on which our algorithm is determin-
istic, D(ai) ∈ Ai iff K |= Ci ⊑ D. Thus, we can classify K with a linear number
of calls to our algorithm. This optimization is also applicable in standard tableau
calculi; the nondeterministic handling of GCIs, however, diminishes its value.

We also employ the following optimization: when applying the calculus to
Ki, we use the nonblocked individuals from Γi as potential blockers, where Γi

is the union of all satisfiable ABoxes Aj for j < i. Namely, assume that we
run our algorithm on K′

i = K ∪ {Ci(ai)} ∪ Γi, where ai is fresh. In SHIQ, ai

cannot interact with Γi; furthermore Γi is satisfiable, so K |= Ci ⊑ D iff our

1 http://www.cs.man.ac.uk/~bmotik/HermiT/

Table 5. Results of Performance Evaluation

Ontology HT HT-anc Pellet FaCT++ Racer

NCI 8 s 9 s 44 min 32 s 36 s
GALEN original 44 s — — — —

GALEN simplified 7 s 104 s — 859 s —

algorithm derives D(ai) from K′
i. Thus, due to anywhere blocking, we can use

the nonblocked individuals from Γi as blockers without affecting the correctness
of our algorithm. This optimization is applicable even if nondeterministic choices
were made in deriving Aj , it is easy to implement, and, like caching [2, Chapter
9], it greatly reduces the time needed to classify an ontology since it prevents
the computation of the same subtrees in different runs.

Table 5 shows the times that our reasoner, Pellet 1.3, FaCT++ 1.1.4, and
Racer 1.9.0 take to classify our test ontologies. To isolate the improvements
due to each of the two innovations of our algorithm, we evaluated our system
with anywhere blocking (denoted as HT), as well as with ancestor blocking [10]
(denoted as HT-anc). All ontologies are available from our reasoner’s Web page.

NCI is a relatively large (about 23000 atomic concepts) but simple ontology.
FaCT++ and RACER can classify NCI in a short time mainly due to an opti-
mization which eliminates many unnecessary tests, and the fact that all axioms
in NCI are definitional so they are handled efficiently by absorption. We con-
jecture that Pellet is slower by two orders of magnitude because it does not use
these optimizations, so it must deal with disjunctions.

GALEN has often been used as a benchmark for DL reasoning. The original
version of GALEN contains about 2700 atomic concepts and many GCIs similar
to (2). Most GCIs cannot be absorbed without any residual nondeterminism.
Thus, the ontology is hard because it requires the generation of large models with
many nondeterministic choices. Hence, GALEN has been simplified by removing
273 axioms, and this simplified version of GALEN has commonly been used
for performance testing. As Table 5 shows, only HT can classify the original
version of GALEN. In particular, anywhere blocking prevents our reasoner from
generating the same fragments of a model in different branches.

6 Conclusion

In this paper, we presented a novel reasoning algorithm for DLs that com-
bines hyper-inferences to reduce the nondeterminism due to GCIs with anywhere
blocking to reduce the sizes of generated models. In future, we shall extend our
reasoner to handle disjunction and conduct a more comprehensive performance
evaluation. Furthermore, we shall investigate the possibilities of optimizing the
blocking condition and heuristically guiding the model construction to further
reduce the sizes of the models created. Finally, we shall try to extend our ap-
proach to the DLs SHOIQ and SROIQ, which provide the logical underpinning
of the Semantic Web ontology languages.

References

1. F. Baader, M. Buchheit, and B. Hollunder. Cardinality Restrictions on Concepts.
Artificial Intelligence, 88(1–2):195–213, 1996.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

3. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. JELIA

’96, pages 1–17, Évora, Portugal, September 30–October 3 1996.
4. F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artificial Intelligence,

124(1):87–138, 2000.
5. C. Fermüller, T. Tammet, N. Zamov, and A. Leitsch. Resolution Methods for the

Decision Problem, volume 679 of LNAI. Springer, 1993.
6. C. G. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution Decision

Procedures. In A. Robinson and A. Voronkov, editors, Handbook of Automated

Reasoning, volume II, chapter 25, pages 1791–1849. Elsevier Science, 2001.
7. R. P. Goré and L. Nguyen. EXPTIME Tableaux with Global Caching for Descrip-

tion Logics with Transitive Roles, Inverse Roles and Role Hierarchies. In Proc.

TABLEAUX 2007, Aix en Provence, France, July 3–6 2007. Springer. To appear.
8. V. Haarslev and R. Möller. RACER System Description. In Proc. IJCAR 2001,

pages 701–706, Siena, Italy, June 18–23 2001.
9. I. Horrocks and U. Sattler. A Description Logic with Transitive and Inverse Roles

and Role Hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.
10. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Descrip-

tion Logic SHIQ. In Proc. CADE-17, pages 482–496, Pittsburgh, USA, 2000.
11. A. K. Hudek and G. Weddell. Binary Absorption in Tableaux-Based Reasoning

for Description Logics. In Proc. DL 2006, Windermere, UK, May 30-June 1 2006.
12. U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very

Expressive Description Logics. In Proc. IJCAI 2005, pages 466–471, Edinburgh,
UK, July 30–August 5 2005.

13. M. Krötzsch, S. Rudolph, and P. Hitzler. Complexity Boundaries for Horn De-
scription Logics. In Proc. AAAI 2007, Vancouver, BC, Canada, July 22-26 2007.
AAAI Press. To appear.

14. B. Motik. Reasoning in Description Logics using Resolution and Deductive

Databases. PhD thesis, Univesität Karlsruhe, Germany, 2006.
15. B. Parsia and E. Sirin. Pellet: An OWL-DL Reasoner. Poster, In Proc. ISWC

2004, Hiroshima, Japan, November 7–11, 2004.
16. D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Transla-

tion. Journal of Symbolic Logic and Computation, 2(3):293–304, 1986.
17. A. Robinson. Automatic Deduction with Hyper-Resolution. Int. Journal of Com-

puter Mathematics, 1:227–234, 1965.
18. R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the

First-Order Translation of Modal Formulae. In Proc. CADE-19, pages 412–426,
Miami Beach, FL, USA, July 28–August 2 2003.

19. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. PhD thesis, RWTH Aachen, Germany, 2001.
20. D. Tsarkov and I. Horrocks. Efficient Reasoning with Range and Domain Con-

straints. In Proc. DL 2004, Whistler, BC, Canada, June 6–8 2004.
21. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-

scription. In Proc. IJCAR 2006, pages 292–297, Seattle, WA, USA, 2006.

