
KAON SERVER - A Semantic Web Management System

Raphael Volz
Institute AIFB

University of Karlsruhe
Karlsruhe, Germany

volz@fzi.de

Daniel Oberle
Institute AIFB

University of Karlsruhe
Karlsruhe, Germany

oberle@aifb.uni-karlsruhe.de

Steffen Staab
Institute AIFB

University of Karlsruhe
Karlsruhe, Germany

staab@ontoprise.de

Boris Motik
WIM
FZI

Karlsruhe, Germany

motik@fzi.de

ABSTRACT
The growing use of ontologies in applications creates the need for
an infrastructure that allows developers to more easily combine dif-
ferent software modules like ontology stores, editors, or inference
engines towards comprehensive ontology-based solutions. We call
such an infrastructure Ontology Software Environment. The papers
discusses requirements and design issues of such an Ontology Soft-
ware Environment. In particular, we present this discussion in light
of the ontology and (meta)data standards that exist in the Seman-
tic Web and present our corresponding implementation, the KAON
SERVER.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering

General Terms
KAON Server

Keywords
Semantic Web, Ontology infrastructure

1. INTRODUCTION
Ontologies are increasingly being applied in complex applica-

tions, e.g. for Knowledge Management, E-Commerce, eLearning,
or information integration. In such systems ontologies serve var-
ious needs, like storage or exchange of data corresponding to an
ontology, ontology-based reasoning or ontology-based navigation.
Building a complex ontology-based system, one may not rely on a
single software module to deliver all these different services. The
developer of such a system would rather want to easily combine dif-
ferent — preferably existing — software modules. So far, however,
such integration of ontology-based modules had to be done ad-hoc,
generating an one-off endeavour, with little possibilities for re-use
and future extensibility of individual modules or the overall system.

This paper is about an infrastructure that facilitates plug’n’play
engineering of ontology-based modules and, thus, the development

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.xxx.

and maintenance of comprehensive ontology-based systems, an in-
frastructure which we call anOntology Software Environment. The
Ontology Software Environment facilitates re-use of existing on-
tology stores, editors, and inference engines. It provides the basic
technical infrastructure to coordinate the information flow between
such modules, to define dependencies, to broadcast events between
different modules and to transform between ontology-based data
formats.

Each application area, like E-Commerce or eLearning, uses its
own, usually proprietary, ontology language and format. In the fol-
lowing we limit ourselves to the languages defined in the Semantic
Web - an augmentation of the current WWW that adds machine un-
derstandable content to web resources by ontological descriptions.
The ontology languages are currently becoming de jure standards
specified by the World Wide Web Consortium (W3C) and thus will
be of importance in the future.

The paper is structured as follows: First, we provide a brief
overview about the Semantic Web in Section 2 and motivate the
need for an Ontology Software Environment via a common usage
scenario in Section 3. We derive requirements for such a system
in Section 4. Sections 5 and 6 describe the design decisions that
we can derive from important requirements, namely extensibility
and lookup. The conceptual architecture is then provided in Sec-
tion 7. Section 8 presents the KAON SERVER, a particular Ontol-
ogy Software Environment for the Semantic Web which has been
implemented. Before we conclude related work is discussed in Sec-
tion 9.

Transactions

Rollback

Evolution

Monitoring

Inferencing

Versioning

Verification

Modify

...

Access

Transactions

Rollback

Evolution

Monitoring

Inferencing

Versioning

Verification

Modify

...

Access

Figure 1: Static and dynamic aspects of the Semantic Web layer
cake.

2. THE SEMANTIC WEB
The Semantic Web augments the current WWW by adding ma-

chine understandable content to web resources. Such contents are
called metadata whose semantics can be specified by making use of
ontologies. Ontologies play a key-role in the Semantic Web as they
provide consensual and formal conceptualizations of a particular
domain, enabling knowledge sharing and reuse.

Figure 1 shows both the static and dynamic parts of the Semantic
Web layers. On the static side, Unicode, the URI and namespaces
(NS) syntax and XML are used as a basis. XML’s role is limited
to that of a syntax carrier for any kind of data exchange. XML
Schema defines simple data types like string, date or integer.

The Resource Description Framework (RDF) may be used to
make simple assertions about web resources or any other entity that
can be named. A simple assertion is a statement that an entity has a
property with a particular value, for example, that this paper has a
title property with value ”An extensible ontology software environ-
ment”. RDF Schema extends RDF with the concepts of class and
property hierarchies that enable the creation of simple ontologies.

The Ontology layer features OWL (Ontology Web Language)
which is a family of richer ontology languages that intend to re-
place RDF Schema. The Logic, Proof and Trust layers aren’t stan-
dardized yet.

The dynamic aspects apply to data across all layers. It is obvious
that there have to be means for access and modification of Semantic
Web data. Apparently, transactions and rollbacks of Semantic Web
data operations should also be possible and meet the well-known
ACID (atomicity, consistency, independence, durability) properties
known from DBMS. Evolution and versioning of ontologies are
also an important aspect, as domain formalizations usually have to
cope with change [13]. Like in all distributed environments, mon-
itoring of data operations is needed, in particular for confidential
data. Finally, reasoning engines are to be applied for the deduction
of implicit information as well as for semantic validation.

Rule-based

system

DL

reasoner

RDF Store

XML

Processor

Ontology Editor
Person

Male Female

Person

birthdate

xsi:dateTime

Portal

Person Male Female

hasUncle(X,Z) <- hasParent(X,Y), hasBrother(Y,Z)

Information chain

Figure 2: Motivating scenario

3. A MOTIVATING SCENARIO
This Section motivates the needs for the cooperation and integra-

tion of different software modules by a scenario depicted in Fig-
ure 2. The reader may note that some real-world problems have
been abstracted away for the sake of simplicity.

Imagine a simple genealogy application. Apparently, the domain
description, viz. the ontology, will include concepts like Person
and make a distinction between Male and Female. There are sev-
eral relations between Persons, e.g. hasParent or hasSister. This
domain description can be easily expressed with standard descrip-
tion logic ontologies. However, many important facts that could
be inferred automatically have to be added explicitly. A rule-based

system is needed to capture such facts automatically. Persons will
have properties that require structured data types, such as dates of
birth, which should be syntactically validated. Such an ontology
could serve as the conceptual backbone for the information base
of a genealogy portal. It would simplify the data maintenance and
offer machine understandability. To implement the system, all the
required modules, i.e. a rule-based inference engine, a DL reasoner,
a XML Schema data type verifier, would have to be combined by
the client applications themselves. While this is a doable effort,
possibilities for re-use and future extensibility hardly exist.

The demands on an Ontology Software Environment from appli-
cations is to hook up to all the software modules and to offer man-
agement of data flow between them. This also involves propagation
of updates and rollback behavior, if any module in the information
chain breaks. In principle, an Ontology Software Environment re-
sponds to this need by bringing all the modules into one generic
infrastructure. In the following Section, we will discuss require-
ments for this system.

4. REQUIREMENTS
Before we derive requirements from the scenario in Section 3,

we introduce the term of aSemantic Web Management System (SW-
MS), which is a particular type of Ontology Software Environ-
ment, especially designed for aiding the development of Semantic
Web applications. Certain web communities may have dedicated
Semantic Web Management Systems that feature all the software
modules needed in that particular community. E.g., the bioinfor-
matics community may have its ontologies hosted by a SWMS,
accessible to all its portals and application developers.

Basically, the scenario establishes four groups of requirements.
Clients may want to connect remotely to the SWMS and must be
properly authorized. Hence, it is obvious that in a distributed sys-
tem like the Semantic Web there is the need for connectivity and
security.

On the other hand, a SWMS should respond to the static aspects
of the Semantic Web layer cake. In particular it should offer sup-
port for all its languages. A desirable property is also to provide the
ability to translate between the different languages, thereby increas-
ing interoperability between existing software modules that mostly
focus on one language only.

The dynamic aspects result in another group of requirements,
viz. finding, accessing and storing of data, consistency, concur-
rency, durability and reasoning.

Finally, the system is expected to facilitate a plug’n’play infras-
tructure in order to be extensible. The last group of requirements
therefore deals with flexible handling of modules. In the following
paragraphs we will elaborate on the requirements in more detail.

Connectivity and Security
• Connectivity:A Semantic Web Management System should

enable loose coupling, allowing access through standard web
protocols, as well as close coupling by embedding it into
other applications. In other words, a client should be able
to use the system locally and connect to it remotely via web
services, for instance.

• Security:Guaranteeing information security means protect-
ing information against unauthorized disclosure, transfer, mod-
ification, or destruction, whether accidental or intentional.
To realize it, any operation should only be accessible by prop-
erly authorized clients. Proper identity must be reliably es-
tablished by employing authentication techniques. Confiden-
tial data must be encrypted for network communication and

persistent storage. Finally, means for monitoring (logging)
of confidential operations should be present.

Semantic Web Languages

• Language support:A trivial requirement is the support of all
the Semantic Web’s ontology and metadata standards. The
SWMS has to provide support for current SW standards such
as RDF, RDFS and OWL while being flexible enough to sup-
port future languages which will result from the specification
of the logic, proof and trust layers.

• Semantic Interoperability:We use the term semantic inter-
operability in the sense of translating between different on-
tology languages with different semantics. At the moment,
several ontology languages populate the Semantic Web. Be-
sides proprietary ones, we already mentioned RDFS, OWL
Lite, OWL DL and OWL Full before. Usually, ontology
editors and stores focus on one particular language and are
not able to work with others. Hence, a Semantic Web Man-
agement System should allow to translate between different
languages and semantics. An RDFS editor may not be able
to load an OWL Full ontology for example. It is clear, that
most often a translation cannot be achieved without loss of
information.

• Ontology Mapping: In contrast to Semantic Interoperabil-
ity, mapping deals with translating between different ontolo-
gies of the same language. Certain communities usually have
their own ontology and could use Ontology Mapping to ease
data exchange.

Dynamic Data

• Ontology Storage:Typically Semantic Web applications like
editors or portals have to access and finally store ontological
data. In addition, development of domain ontologies often
builds on other ontologies as starting point. Examples are
Wordnet or top-level ontologies for the Semantic Web [11].
Hence, the SWMS could store ontologies and offer them to
applications.

• Consistency:Consistency of information is a requirement
in any application. Each update of a consistent ontology
must result in an ontology that is also consistent. In order to
achieve that goal, precise rules must be defined for ontology
evolution. Modules updating ontologies must implement and
adhere to these rules. Also, all updates to the ontology must
be done within transactions assuring the common properties
of atomicity, consistency, isolation and durability (ACID).

• Durability: Like consistency, durability is a requirement that
holds in any data-intense application area. It may be accom-
plished by reusing existing database technology.

• Concurrency:It must be possible to concurrently access and
modify Semantic Web data. This may be achieved using
transactional processing, where objects can be modified at
most by one transaction at the time.

• Reasoning: Reasoning engines are central components of
Semantic Web applications and can be used for several tasks
like semantic validation and deduction of implicit informa-
tion. A SWMS should provide access to such engines, which
can deliver the reasoning services required.

Flexibility

• Extensibility:The need for extensibility applies to most soft-
ware systems. Principles of software engineering try to avoid
system changes when additional functionality is needed in
the future. Hence, extensibility is also desirable for a SWMS.
In addition, a SWMS has to cope with the multitude of lay-
ers and data models in the Semantic Web that lead to a mul-
titude of software modules, e.g. XML parsers or validators
that support the XML Schema datatypes, RDF stores, tools
that map relational databases to RDFS ontologies, ontology
stores and OWL reasoners. Therefore, extensibility regard-
ing new data APIs and corresponding software modules is an
important requirement for such a system. First, several data
APIs will follow in the future to support each layer and lead-
ing to new software modules that might have to be integrated.
Second, particular applications may demand proprietary be-
havior. This requires that given solutions can be reused and
extended with custom features.

• Lookup of software modules:For a client, there should be the
possibility to state precisely what it wants to work with, e.g.
an RDF store that holds a certain RDF model and allows for
transactions. Hence, means for intelligent lookup of software
modules are required. Based on a semantic description of the
search target, the system should be able to discover what a
client is looking for.

• Dependencies:The system should allow to express depen-
dencies between different software modules. For instance,
this could be the setting up of event listeners between mod-
ules. Another example is the management of dependencies
like ”module A is needed for module B”.

In the following sections 5 to 7, we develop an architecture that
is a result from the requirements put forward in this Section. After
that we present the implementation details of our Semantic Web
Management System called KAON SERVER.

5. COMPONENT MANAGEMENT
Due to the requirement of extensibility, the Microkernel pattern

is the fundamental paradigma of our design. The Microkernel pat-
tern allows to adapt to changing system requirements. It sepa-
rates a minimal functional core from extended functionality and
application-specific parts. The Microkernel itself serves as a socket
for plugging in these extensions and coordinates the collaboration
of extensions [4].

In our setting, the Microkernel’s minimal functionality must take
the form of simple management operations, i.e. starting, initial-
izing, monitoring, combining and stopping of software modules.
This approach requires software modules to be uniform so that they
can be treated equally by the kernel. Hence, in order to use the
Microkernel, all extensions have to be brought into a certain form.
We paraphrase this process asmaking existing software deployable,
i.e. bringing existing software into the particular infrastructure of
the Semantic Web Management System, that means wrapping it so
that it can be operated by the Microkernel. In our terminology, a
software module becomes adeployed componentby this process.

Hence, we refer to the process of registering, possibly initializing
and starting a component asdeployment.

Apart from the cost of making existing software deployable, an-
other drawback of this approach is that performance will suffer
slightly in comparison to stand alone use, as a request has to pass
through the kernel first (and possibly the network). A client that

wants to make use of a deployed component’s functionality talks to
the Microkernel, which in turn passes requests on to the providers
of functionality.

On the other hand, the Microkernel architecture offers several
benefits. By making existing functionality, like RDF stores, in-
ference engines etc., deployable, one is able to treat everything
equally. As a result, we are able to deploy and undeploy com-
ponents ad lib, reconfigure, monitor and possibly distribute them
dynamically. Proxy components can be developed for software that
cannot be made deployable for whatever reasons. Throughout the
paper, we will show further advantages, among them

• easy realization of security, auditing, trust etc. as interceptors
(further discussed in Section 7)

• enabling a client to perform a lookup for the component it is
in need of (cf. Section 6)

• incorporation of information quality in a uniform way along
the registry (cf. Section 9)

• definition of dependencies between components (cf. Sec-
tion 7)

• instrumentation of object trading techniques to provide clients
with references to components they want to use (cf. Sec-
tion 6)

6. DESCRIPTION OF COMPONENTS
This Section presents our support for the requirement ”lookup

of software modules” stated in Section 4. A client typically wants
to find the components, which provides the functionality needed at
hand. Therefore a dedicated component, calledregistryis required,
which stores descriptions of all deployed components, and allows
to query this information. Application developers can distinguish
between several types of components:

Component All software entities which can be deployed to the
kernel.

System Component A component that provides a part of the func-
tionality of the Semantic Web Management System itself,
e.g. the registry or a connector.

Functional Component Component that typcially is of interest
to the client and provides specific functionality. Typically,
ontology-related software modules become functional com-
ponents by making them deployable, e.g. RDF stores.

External Service An external service cannot be deployed directly
as it may be programmed in a different language, live on a
different computing platform, etc.

Proxy Component Special type of functional component that man-
ages the communication to an external service. Examples are
proxy components for inference engines, like FaCT [5].

Each component can haveattributes like the interface it imple-
ments, its name, connection parameters as well as several other
low-level properties. Besides, we can expressassociationsbetween
components, which can be put in action to support dependency
management and event notification systems. This allows us to ex-
press that an ontology store component can rely on an RDF store
for actual storage. The definitions above contained ataxonomy,
e.g. it was stated that ”functional component” is a specialization of
”component” etc.

Entity

Object

Component

Functional Component System Component

...

RDF Store
Ontology

Store Proxy Component

RDF Server Engineering Server Registry SOAP Connector ...

......

subconcept

instantiation

Figure 3: Management ontology

Thus, it is obvious to formalize taxonomy, attributes and associ-
ations in a management ontology as outlined in Figure 3 and Ta-
ble 61. The ontology formally defines which attributes a certain
component may possess and categorizes components into a taxon-
omy. Hence, it can be considered as conceptual agreement and con-
sensual understanding of the management world between a client
and the SWMS. In the end, concrete and specific functional compo-
nents, for example KAON’s RDF Server or the Engineering Server
(cf. subsection 8.5) would be instantiations of corresponding con-
cepts.

Concept Property Range
Component Name String

Interface String
... ...
receivesEvent Component
sendsEvent Component
dependsOn Component
... ...

Table 1: Attributes and associations of Component

The support to important requirements, viz. extensibility and
lookup of software components establishes the basis for the archi-
tecture of the SWMS. The next Section gives a brief overview about
the conceptual architecture of our implementation.

7. CONCEPTUAL ARCHITECTURE
When a client first connects to the SWMS it will typically per-

form a lookupfor some functional components it wants to interact
with. The system will try to locate a deployed functional compo-
nent in the registry that fulfills to the user query.

The lookup phase is followed byusageof the component. Here,
the client can seamlessly work with the located functional compo-
nent. Similar to CORBA, a surrogate for the functional component
on the client side is responsible the communication over the net-
work. The counterpart to that surrogate on the SWMS side is a
connector component. It maps requests to the kernel’s methods.
All requests finally pass the management kernel which routes them
to the actual functional component. In between, the properness
of a request can be checked by security interceptors that may deal
with authentication, authorization or auditing. Finally, the response
passes the kernel again and finds its way to the client via the con-
nector.

After this brief procedural overview, the following paragraphs
will explain the architecture depicted in Figure 4. Note that in prin-

1The table shows some exemplary properties of the concept ”Com-
ponent”. We use the term property as generalization for attribute
and association. An attribute’s range always is a string, whereas
associations relate concepts.

ciple, there will be only three types of software entities: compo-
nents, interceptors and the kernel.

Authentication

Web

System Component

Interceptor

Local RMI Web Service

Authorization Auditing Trust

X
M

L
P

ro
c
e
s
s
o
r

R
D

F
S

to
re

O
n
to

lo
g
y

S
to

re

In
fe

re
n
c
e

E
n
g
in

e

Kernel

E
x
te

rn
a
l
S

e
rv

ic
e

Registry
Dependency

Management

O
th

e
r

Functional Component

...

Connectors

Security

Management

Core

Functional

Components

Frontend

Figure 4: KAON SERVER Architecture

Connectors
A connector handles network communication with the system via
some networking protocol. On the client side, surrogates for func-
tional components are possible that relieve the application devel-
oper of the communication details. Besides having the option to
connect locally, further connectors are possible to offer remote con-
nection: e.g. via Java’s Remote Method Invocation (RMI) proto-
col. Another example embodied in our implementation is a Web-
frontend that renders the system interface into a HTML user inter-
face and allows to interact with the system via the HTTP protocol.

Management Core
The Microkernel described in Section 5 is provided by the manage-
ment kernel and deals with the discovery, allocation and loading of
components, that are eventually able to execute a request. The reg-
istry hierarchically categorizes the descriptions of the components.
It thus simplifies the lookup of a functional component for a client
(cf. Section 6). As the name suggests, dependency management
allows to express and manage relations between components. Be-
sides enforcing classical dependencies, e.g. that a component may
not be undeployed if others still rely on it, this also offers a ba-
sis for implementing event listeners, which allow messaging as an
additional form of inter-component communication.

Security
Security is realized by several interceptors which guarantee that
operations offered by functional components (including data up-
date and query operations) in the SWMS are only available to ap-
propriately authenticated and authorized clients. Each component
can be registered along several interceptors which act in front and
check incoming requests. Sharing generic functionality such as se-
curity, logging, or concurrency control lessens the work required to
develop individual component implementations when realized via
interceptors.

Functional Components
The software modules, e.g. XML processor, RDF store, ontology
store etc., reside within the management kernel as functional com-
ponents (cf. Section 5). In combination with the registry, the kernel
can start functional components dynamically on client requests. Ta-
ble 7 shows how the requirements established in Section 4 are sup-
ported by the architecture. Note that some requirements are even-
tually implemented by concrete functional components. Leaving
those requirements aside in the conceptual architecture, e.g. lan-
guage standards, increases the generality of the architecture, i.e.
we could make almost any existing software deployable and use
the system in any domain, not just in the Semantic Web. In the
following Section we discuss a particular implementation, KAON
SERVER, that realizes functional components specific for the Se-
mantic Web.

Requirement\ Design Element C
on

ne
ct

or
s

K
er

ne
l

R
eg

is
tr

y

In
te

rc
ep

to
rs

D
ep

.
M

an
’t

F
un

c.
C

om
p.

Connectivity ×
Security × ×
Language Support ×
Semantic Interoperability ×
Ontology Mapping ×
Ontology Storage ×
Consistency ×
Concurrency × ×
Durability ×
Reasoning ×
Extensibility × ×
Lookup ×
Dependencies ×

Table 2: Architectural support of requirements

8. IMPLEMENTATION
Our Karlsruhe Ontology and Semantic Web Tool suite (KAON,

cf. http://kaon.semanticweb.org) provides a multitude of software
modules especially designed for the Semantic Web. Among them
are a persistent RDF store, an ontology store which is both opti-
mized for concurrent engineering and direct access, ontology edi-
tors and many more. The tool suite relies on Java and open tech-
nologies throughout the implementation. KAON is a joint effort by
the Institute AIFB, University of Karlsruhe as well as the Research
Center for Information Technologies (FZI). KAON is a result of
the efforts of several EU-funded research projects and implements
requirements imposed by industry projects.

This Section presents the KAON SERVER which brings all those
so far disjoint software modules plus optionally third party modules
in a uniform infrastructure. KAON SERVER can thus be consid-
ered as a particular type of Semantic Web Management System
optimized for and part of the KAON Tool suite. It follows the con-
ceptual architecture presented in Section 7. The development of
the KAON SERVER is carried out in the context of the EU IST
funded WonderWeb2 where it serves as main organizational unit
and infrastructure kernel.

8.1 Kernel
2EU IST 2001-33052, http://wonderweb.semanticweb.org

In the case of the KAON SERVER, we use the Java Management
Extensions (JMX3) as it is an open standard and currently the state-
of-the-art for component management.

Java Management Extensions represent a universal, open tech-
nology for management and monitoring. Basically, JMX defines
interfaces of managed beans, orMBeansfor short, which are Java
objects that represent JMX manageable resources. MBeans con-
ceptually follow the JavaBeans components model, thus provid-
ing a direct mapping between JavaBeans components and manage-
ability. MBeans are hosted by anMBeanServerwhich provides
the services allowing their manipulation. All management opera-
tions performed on the MBeans are done through interfaces on the
MBeanServer. Thus, in our setting, the MBeanServer realizes the
Microkernel and components are realized by MBeans.

Apart from the interceptors, all functionality takes the form of
MBeans, be it a software module which a client wants to use or
functionality that realizes SWMS logic like a connector, for in-
stance. In other words, the MBeanServer is not aware of those dif-
ferences. For a Semantic Web Management System such as KAON
SERVER it is therefore important to make the difference explicit in
the registry.

8.2 Interceptors
Each MBean can be registered with an invoker and a stack of

interceptors that the request is passed through. The invoker ob-
ject is responsible for managing the interceptors and sending the
requests down the chain of interceptors towards the actual MBean.
For example, a logging interceptor could be inserted to implement
auditing of operation requests. A security interceptor could be put
in place to check that the requesting client has sufficient access
rights for the MBean or one of its attributes or operations. The in-
voker itself may additionally support the component lifecycle by
controlling the entrance to the interceptor stack. When a compo-
nent is being restarted, an invoker could block and queue incom-
ing requests until the component is once again available (or the
received requests time out), or redirect the incoming requests to
another component that is able to service the request.

8.3 Registry
We realized the registry as MBean and re-used one of the KAON

modules which have all been made deployable (cf. subsection 8.5).
The main-memory implementation of the KAON API holds the
management ontology. When a component is deployed, its descrip-
tion (usually stored in an XML file) is properly placed in the ontol-
ogy. A client can use the KAON API’s query methods to lookup
the component it is in need of.

8.4 Dependency Management
Dependency Management is another MBean that manages rela-

tions between any other MBeans. An example would be the regis-
tration of an event listener between two MBeans.

8.5 Data APIs
The functionality described so far, i.e. the JMX Microkernel, the

interceptors, the registry and the dependency management could
be used in any domain not just the Semantic Web. In the remaining
subsections we want to highlight the specialties which make the
KAON SERVER suited for the Semantic Web.

First, there is our KAON Tool suite which has been made de-
ployable. Furthermore, we envision a functional component that
enables semantic interoperability of Semantic Web ontologies as
well as an ontology repository. Several external services (inference
3http://java.sun.com/products/JavaManagement/

engines in particular) are also deployable, as we have developed
proxy components for them. All of them are discussed in the fol-
lowing subsections and, besides the KAON tools, can be considered
as outlook.

Two Semantic Web Data APIs for updates and queries are de-
fined in the KAON framework - an RDF API and an ontological
interface called KAON API. An OWL interface will follow in the
future. The different tools implement those APIs in different ways
like depicted in Figure 5 and will become functional components.
They are discussed in subsection 8.6.

RDF API. The RDF API consists of interfaces for the transac-
tional manipulation of RDF models with the possibility of modu-
larization, a streaming-mode RDF parser and an RDF serializer for
writing RDF models. The API features the object oriented pen-
dants to the entities defined in [7] as interfaces. A so-called RDF
model consists of a set of statements. In turn, each statement is
represented as a triple (subject, predicate, object) with the elements
either being resources or literals. The corresponding interfaces fea-
ture methods for querying and updating those entities, respectively.

Ontology API.Our ontological API, also known as KAON API,
currently realizes the ontology language described in [9]. We have
integrated means for ontology evolution and a transaction mecha-
nism. The interfaces offer access to KAON ontologies and contain
classes such as Concept, Property and Instance. The API decouples
the ontology user from actual ontology persistence mechanisms.
There are different implementations for accessing RDF-based on-
tologies accessible through the RDF API or ontologies stored in
relational databases using the Engineering Server (cf. Figure 5).

KAON API

RDF API

Mainmemory Impl RDF Server Other Impl

Engineering
Server

Integration
Engine

Other
Impl

Figure 5: KAON API Implementations

8.6 Functional Components

RDF Mainmemory Implementation.This implementation
of the RDF API is primarily useful for accessing in-memory RDF
models. That means, an RDF model is loaded into memory from an
XML serialization on startup. After that, statements can be added,
changed and deleted, all encapsulated in a transaction if preferred.
Finally, the in-memory RDF model has to be serialized again.

RDF Server.The RDF Server is an implementation of the RDF
API that enables persistent storage and management of RDF mod-
els. This solution relies on a physical structure that corresponds
to the RDF model. Data is represented using four tables, one rep-
resents models and the other one represents statements contained
in the model. The RDF Server uses a relational DBMS and relies
on the JBoss Application Server4 that handles the communication
between client and DBMS.

KAON API on RDF API.As depicted in Figure 5, implemen-
tations of the ontological KAON API may use implementations of
the RDF API.

4http://www.jboss.org

Engineering Server.A separate implementation of the KAON
API can be used for ontology engineering. This implementation
provides efficient implementation of operations that are common
during ontology engineering, such as concept adding and removal
by applying transactions. A storage structure that is based on stor-
ing information on a metamodel level is applied here. A fixed set
of relations is used, which corresponds to the structure of the used
ontology language. Then individual concepts and properties are
represented via tuples in the appropriate relation created for the re-
spective meta-model element. This structure was not chosen before
by any other RDF database, however it appears to be ideal for on-
tology engineering, where the number of instances (all represented
in one table) is rather small, but the number of classes and proper-
ties dominate. Here, creation and deletion of classes and properties
can be realized within transactional boundaries.

Ontology Repository.One optional component we envision
is a Ontology Repository, allowing access and reuse of ontologies
that are used throughout the Semantic Web, such as WordNet for
example. Within the Wonderweb project several of them have been
developed [11].

Semantic Interoperability.In the more distant future we plan
to include a component that allows Semantic Interoperability be-
tween different types of ontology languages as a response to the re-
quirement put forward in Section 4. In the introduction, we already
mentioned RDFS, OWL Lite, OWL DL and OWL Full. Besides,
there are older formats, like DAML+OIL and also proprietary ones
like KAON ontologies [9]. This component should allow the load-
ing of KAON ontologies in other editors, like OILEd [2], for in-
stance. It is clear that such an ontology transformation is a costly
task, i.e. information will probably be lost as the semantic expres-
siveness of the respective ontology languages differ.

8.7 External Services
The definitions in Section 6 already clarified that external ser-

vices live outside the KAON SERVER. So-called proxy compo-
nents have to be developed that are deployed and take care of the
communication. Thus, from a client perspective, an external ser-
vice cannot be distinguished from an actual functional component.
At the moment we are adapting several inference engines: Sesame
[6], Ontobroker [12] as well as a proxy component for description
logic classifiers that conform to the DIG interface5, like FaCT [5].

9. RELATED WORK
We consider two distinct topic areas as related work. One topic

area is the work done for RDF data management systems. The
other is middleware.

9.1 RDF data management systems
All of the following data management systems focus on RDF

language only. Hence, they are not build with the aspect of exten-
sibility in mind and provide more specialized components than our
implementation does. Hence, they offer more extensive functional-
ity wrt. RDF.

Sesame [6] is a scalable, modular, architecture for persistent
storage and querying of RDF and RDF Schema.Sesame supports
two query languages (RQL and RDQL), and can use main mem-
ory or PostgreSQL, MySQL and Oracle 9i databases for storage.
The Sesame system has been successfully deployed as a functional
component for RDF support in KAON SERVER.

5Description Logic Implementation Group, http://dl.kr.org/dig/

RDFSuite [1] is a suite of tools for RDF management provided
by the ICS-Forth institute, Greece. Among those tools is RDF
Schema specific Database (RSSDB) that allows to query RDF us-
ing the RQL query language. The implementation of the system
exploits the PostgreSQL object-relational DBMS. It uses a storage
scheme that has been optimized for querying instances of RDFS-
based ontologies. The database content itself can only be updated
in a batch manner (dropping a database and uploading a file), hence
it cannot cope with transactional updates, such as the KAON RDF
SERVER.

Developed by the Hewlett-Packard Research, UK, Jena [8] is
a collection of Semantic Web tools including a persistent storage
component, a RDF query language (RDQL) and a DAML+OIL
API. For persistence, the Berkley DB embedded database or any
JDBC-compliant database may be used. Jena abstracts from stor-
age in a similar way as the KAON APIs. However, no transactional
updating facilities are provided.

9.2 Middleware
Much research on middleware recently circles around so-called

service oriented architectures (SOA)6, which are similar to our
architecture, since functionality is broken into components - so-
called Web Services - and their localization is realized via a cen-
tralized replicating registry (UDDI)7. However, here all compo-
nents are stand-alone processes and are not manageable by a cen-
tralized kernel. The statements for SOAs also holds for previ-
ously proposed distributed object architectures with registries such
as CORBA Trading Services [3] or JINI8.

Several of today’s application servers share our design of con-
structing a server instance via separately manageable components,
e.g. the HP-AS9 or JBoss10. However, they do not allow to manage
the relations between components and their dependencies, as well
as dynamic instantiation of deployed components due to client re-
quests - rather all components have to be started explicitly via con-
figuration files or a management interface.

10. CONCLUSION
We have presented the requirements for an Ontology Software

Environment and the design of a Semantic Web Management Sys-
tem. Our prototype implementation - the KAON SERVER - has
already illustrated its utility in the WonderWeb project. Individual
components of the system are successfully used within the several
other projects both in academia and industry.

In the future, we will address two research aspects: First, we en-
vision to incorporate information quality criteria into the registry.
Users will then be able to query information based on criteria like
”fitness for use”, ”meets information consumers needs”, or ”previ-
ous user satisfaction” [10]. We will also support aggregated quality
values, which can be composed of multiple criteria. Second, we
plan to implement dedicated components that allow to inter-operate
between different Semantic Web languages. For example, a dedi-
cated component may be able to explicate all implicit facts in an
ontology base for RDF clients.

6http://archive.devx.com/xml/articles/sm100901/sidebar1.asp
7http://www.uddi.org/
8http://www.jini.org
9http://www.bluestone.com

10http://www.jboss.org

11. REFERENCES
[1] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and

K. Tolle. The ics-forth rdfsuite: Managing voluminous rdf
description bases. In2nd International Workshop on the Semantic
Web (SemWeb’01), in conjunction with Tenth International World
Wide Web Conference (WWW10), Hongkong, May 1, 2001, pages
1–13, 2001.

[2] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: a
reasonable ontology editor for the semantic web. InProc. of the Joint
German Austrian Conference on AI, number 2174 in Lecture Notes
In Artificial Intelligence, pages 396-408. Springer, 2001.

[3] Juergen Boldt. Corbaservices specification, 3 1997.
[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter

Sommerlad, and Michael Stal.Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns, volume 1. John Wiley
and Son Ltd, 1996.

[5] I. Horrocks. The fact system. InAutomated Reasoning with Analytic
Tableaux and Related Methods: International Conference
Tableaux’98. Springer, 1998.

[6] Frank van Harmelen Jeen Broekstra, Arjohn Kampman. Sesame: A
generic architecture for storing and querying rdf and rdf schema. In
Proceedings International Semantic Web Conference 2002. Springer,
2002.

[7] O. Lassila and R. Swick. Resource description framework (rdf)
model and syntax specification.

[8] Brian McBride. Jena: Implementing the rdf model and syntax
specification. InProceedings of the Second International Workshop
on the Semantic Web - SemWeb’2001, Hongkong, China, May 1,
2001, 2001.

[9] B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach
for building semantics-driven enterprise applications. InProceedings
of the First International Conference on Ontologies, Databases and
Application of Semantics (ODBASE-2002), November 2002.

[10] Felix Naumann.Quality-driven query answering for integrated
information systems, volume 2261 ofLecture Notes in Computer
Science. Springer, 02 2002.

[11] Gangemi A. Guarino N. Oltramari, A. and C. Masolo. Dolce: a
descriptive ontology for linguistic and cognitive engineering
(preliminary report).

[12] Dieter Fensel Rudi Studer Stefan Decker, Michael Erdmann.
Ontobroker: Ontology based access to distributed and
semi-structured information. InDS-8, pages 351–369, 1999.

[13] L. Stojanovic, N. Stojanovic, and S. Handschuh. Evolution of
metadata in ontology-based knowledge management systems. In1st
German Workshop on Experience Management: Sharing
Experiences about the Sharing of Experience, Berlin, March7-8,
2002, Proceedings, 2002.

