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Abstract. This article presents a technique to incrementally maintain
materializations of ontological entailments. Materialization consists in
precomputing and storing a set of implicit entailments, such that frequent
and/or crucial queries to the ontology can be solved more efficiently. The
central problem that arises with materialization is its maintenance when
axioms change, viz. the process of propagating changes in explicit axioms
to the stored implicit entailments.

When considering rule-enabled ontology languages that are operational-
ized in logic databases, we can distinguish two types of changes. Changes
to the ontology will typically manifest themselves in changes to the rules
of the logic program, whereas changes to facts will typically lead to
changes in the extensions of logical predicates. The incremental main-
tenance of the latter type of changes has been studied extensively in
the deductive database context and we apply the technique proposed
in [31] for our purpose. The former type of changes has, however, not
been tackled before.

In this article we elaborate on our previous papers [34,35], which ex-
tend the approach of [31] to deal with changes in the logic program.
Our approach is not limited to a particular ontology language but can
be generally applied to arbitrary ontology languages that can be trans-
lated to Datalog programs, i.e. such as O-Telos, F-Logic [17] RDF(S), or
Description Logic Programs [36].

1 Introduction

Germane to the idea of the Semantic Web are the capabilities to assert facts
and to derive new facts from the asserted facts using the semantics specified by
an ontology. Both current building blocks of the Semantic Web, RDF [14] and
OWL [22], define how to assert facts and specify how new facts should be derived
from stated facts.

The necessary derivation of entailed information from asserted information
is usually achieved at the time clients issue queries to inference engines such
as logic databases. Situations where queries are frequent or the procedure to
derive entailed information is time consuming and complex typically lead to
low performance. Materialization can be used to increase the performance at



query time by making entailed information explicit upfront. Thereby, the re-
computation of entailed information for every single query is avoided.

Materialization has been applied successfully in many applications where
reading access to data is predominant. For example, data warehouses usually
apply materialization techniques to make online analytical processing possible.
Similarly, most Web portals maintain cached web pages to offer fast access to
dynamically generated web pages.

We conjecture that reading access to ontologies is predominant in the Se-
mantic Web and other ontology-based applications, hence materialization seems
to be a promising technique for fast processing of queries on ontologies.

Materialization is particularly promising for the currently predominant ap-
proach of aggregating distributed information into a central knowledge base (cf.
[8,15,32,21]). For example, the OntoWeb1 Semantic portal [29] employs a syndi-
cator (cf. Figure 1), which regularly visits sites specified by community members
and transfers the detected updates into a central knowledge base in a batch pro-
cess. Hence, the knowledge base remains unchanged between updates for longer
periods of time.

Fig. 1. OntoWeb Architecture

1 http://www.ontoweb.org/.

http://www.ontoweb.org/


The OntoWeb portal, however, provides answers to queries issued on the
knowledge base whenever visitors browse the portal content. This is due to the
fact that most queries are hard-coded into the definition of dynamic Web pages,
which are generated for every request. In applications such as OntoWeb, mate-
rialization turns out to be a sine qua non.2

Central to materialization approaches is the issue of maintaining a material-
ization when changes occur. This issue can be handled by simply recomputing
the whole materialization. However, as the computation of the materialization
is often complex and time consuming, it is desirable to apply more efficient
techniques in practice, i.e. to incrementally maintain a materialization.

1.1 Contribution

We present a technique for the incremental maintenance of materialized ontolo-
gies. Our technique can be applied to a wide range of ontology languages, namely
those that can be axiomatized by a set of rules3.

The challenge that has not been tackled before comes from the fact that
updates of ontology definitions are equivalent to the updates and new definitions
of rules, whereas existing maintenance techniques only address the update of
ground facts.

To cope with changing rules, our solution extends a declarative algorithm
for the incremental maintenance of views [31] that was developed in the deduc-
tive database context. We show the feasibility of our solution in a performance
evaluation.

1.2 Organization

The remainder of the article is organized as follows: Section 2 reviews how cur-
rent Web ontology languages such as RDF(S) and OWL interplay with rules.
Section 3 presents the underlying principles which are applied to achieve incre-
mental maintenance of a materialization. Section 4 recapitulates the incremental
maintenance algorithm presented in [31] , presents a novel modular rewriting al-
gorithm based on generator functions and shows how this algorithm deals with
changes to facts. Section 5 extends this algorithm to deal with changing rules as
they result from changes in the ontology. Section 6 sketches how the developed
techniques can be applied in implementations of RDF rule languages. Section 7
describes our prototypical implementation. Section 8 performs a performance
analysis and shows the benefits of our approach. Section 10 summarizes our
contribution and discusses further uses.

2 Even though in OntoWeb, due to the unavailability of the solution developed in
this article, the problem was approached by caching the Web pages through a proxy
server.

3 The underlying rule language used for our approach is Datalog with stratified nega-
tion.



2 Web ontology languages and logic databases

In the brief history of the Semantic Web, most applications, e.g. [7], have imple-
mented the logical entailment supported by ontology languages either directly
using Logic Programming techniques, e.g. [4,26], or by relying on (available)
logic databases4 [23,28]. Furthermore, a large expressive fragment of the re-
cently standardized Web Ontology Language (OWL) can be implemented in
logic databases [36].

2.1 Axiomatization of ontology languages

Systems like SilRi [7], CWM5, Euler [26], JTP6 or Triple [28] and Concept-
Base [16] implement the semantics of a particular ontology language via a static
axiomatization, i.e. a set of rules. For example, Figure 2 presents the Datalog
axiomatization of the RDF vocabulary description language (RDFS) [5]. This
axiomatization implements the semantics of RDF specified by the RDF model
theory [14] (without datatype entailments and support for stronger iff semantics
of domain and ranges). The ontology and associated data is stored in a single
ternary predicate t, i.e. the extension of t stores all triples that constitute a
particular RDF graph.

t(P,a,rdf:Property) :- t(S,P,O). rdf1
t(S,a,C) :- t(P,domain,C), t(S,P,O). rdfs2
t(O,a,C) :- t(P,range,C), t(S,P,O). rdfs3
t(S,a,Resource) :- t(S,P,O). rdfs4a
t(O,a,Resource) :- t(S,P,O). rdfs4b
t(P,subPropertyOf,R) :- t(Q,subPropertyOf,R), t(P,subPropertyOf,Q). rdfs5a
t(S,R,0) :- t(P,subPropertyOf,R), t(S,P,O). rdfs6
t(C,a,Class) :- t(C,subClassOf,Resource). rdfs7
t(A,subClassOf,C) :- t(B,subClassOf,C), t(A,subClassOf,B). rdfs8
t(S,a;B) :- t(S,a,A), t(A,subClassOf,B). rdfs9
t(X,subPropertyOf,member) :- t(X,a,ContainerMembershipProperty). rdfs10
t(X,subClassOf,Literal) :- t(X,a,Datatype). rdfs11
t(Resource,subClassOf,Y) :- t(X,domain,Y), t(rdf:type,subPropertyOf,X). rdfs12

Fig. 2. Static Datalog rules for implementing RDF(S)

4 We use the term logic database over the older term deductive databases since the
later is very closely associated with Datalog, a particular Logic Programming lan-
guage that is frequently used in logic databases. Modern logic databases such as
XSB [27] and CORAL [25] support more expressive Logic Programming languages
that include function symbols and nested expressions. Furthermore, several lectures,
e.g. http://user.it.uu.se/∼voronkorov/ddb.htm nowadays use this term.

5 http://www.w3.org/2000/10/swap/doc/cwm
6 http://ksl.stanford.edu/software/jtp/

http://user.it.uu.se/~voronkorov/ddb.htm


2.2 Dynamic rule sets

The set of rules is typically not immutable. With the advent of higher layers
of the Semantic Web stack, i.e. the rule layer, users can create their own rules.
Hence, we are facing a scenario where not only base facts can change but also
the set of rules. This requires the ability to maintain a materialization in this
situation.

Besides support for a rule layer, the ability to maintain a materialization un-
der changing rule sets is also required for approaches where the semantics of the
ontology language is not captured via a static set of rules but instead compiled
into a set of rules. Such an approach is for example required by Description Logic
Programs (DLP) [36], where OWL ontologies are translated to logic programs.

2.2.1 Semantic Web Rule layer We now briefly present some languages for
the specification of Semantic Web rules that may be compiled into the paradigm
we use. The Rule Markup Initiative7 aims to develop a canonical Web language
for rules called RuleML. RuleML covers the entire rule spectrum and spans from
derivation rules to transformation rules to reaction rules. It has a well-defined
Datalog subset, which can be enforced using XML schemas, and for which we can
employ the materialization techniques developed within this paper. The reader
may note, that materialization is not an issue for many other aspects found in
RuleML, e.g. transformation rules or reaction rules.

In parallel to the RuleML iniative, Notation3 (N3)8 has emerged as a human-
readable language for RDF/XML. Its aim is to optimize expression of data and
logic in the same language and has become a serious alternative since many sys-
tems that support inference on RDF data, e.g. cwm9, Euler (cf. http://www.
agfa.com/w3c/euler/), Jena2 (cf. http://www.hpl.hp.com/semweb/jena.htm),
support it. The rule language supported by N3 is an extension of Datalog with
existential quantifiers in rule heads. Hence, the materialization techniques de-
veloped within this paper can be applied to the subset of all N3 programs which
do not make use of existential quantification in the head.

2.2.2 Description Logic Programs (DLP) Both of the above mentioned
approaches allow the definition of rules but are not integrated with the ontology
layer in the Semantic Web architecture. Description Logic Programs [36] aim to
integrate rules with the ontology layer by compiling ontology definitions into a
logic program which can later be extended with additional rules. This approach
can deal with an expressive subset of the standardized Web ontology language
OWL (i.e. OWL without existential quantification, negation and disjunction in
rule heads).

OWL classes are represented in the logic database as unary predicates and
OWL properties is represented as binary predicates. Classes may be constructed
7 cf. http://www.ruleml.org/
8 cf. http://www.w3.org/DesignIssues/Notation3.html
9 cf. http://www.w3.org/2000/10/swap/doc/cwm

http://www.agfa.com/w3c/euler/
http://www.agfa.com/w3c/euler/
http://www.hpl.hp.com/semweb/jena.htm
http://www.ruleml.org/
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/2000/10/swap/doc/cwm


OWL Abstract Syntax Logic Database

Class (A partial D1 . . . Dn)
⋃

i∈[1,n]
ϕLP(A v Di)

Class (A complete D1 . . . Dn)
⋃

i∈[1,n]
ϕLP(A ≡ Di)

EquivalentClasses (D1 . . . Dn)
⋃

i∈[1,n]
ϕLP(D1 ≡ Di)

SubClassOf (D1D2) ϕLP(D1 v D2)

ϕLP(C ≡ D)

{
ϕLP(C v D)
ϕLP(D v C)

ϕLP(C v D) ϕR
LP(D, x):-ϕL

LP(C, x).
ϕR
LP(A, x):-B. A(x):-B.

ϕR
LP(∃R.{i}, x):-B. R(x, i):-B.

ϕR
LP(C uD, x):-B.

{
ϕR
LP(C, x):-B.

ϕR
LP(D, x):-B.

ϕR
LP(∀R.C, x):-B. ϕR

LP(C, yi):-R(x, yi), B.
H:-ϕL

LP(∃R.{i}, x), B. H:-R(x, i), B.
H:-ϕL

LP(A, x), B. H:-A(x), B.
H:-ϕL

LP((∃R.C), x), B. H:-R(x, yi), C(yi), B.
H:-ϕL

LP((C uD), x), B. H:-ϕL
LP(C, x), ϕL

LP(C, x), B.

H:-ϕL
LP((C tD), x), B.

{
H:-ϕL

LP(C, x), B.
H:-ϕL

LP(D, x), B.

Table 1. DLP representation of OWL classes in logic databases

using various constructors (cf. Table 1). The OWL T-Box may consist of class
inclusion axioms and class equivalence axioms, which are mapped to logical
implications, i.e. rules10. Similarly, the T-Box may also consist of inclusion and
equivalence axioms between properties. Properties may have inverses and may
be defined to be symmetric and transitive (cf. Table 2).

Example 1. The following example OWL fragment declares Wine to be potable
liquids who are made by Wineries:

Wine v PotableLiquid u ∀hasMaker.Winery

This will be translated to the following set of rules:

PotableLiquid(X) :- Wine(X).
Winery(Y ) :- Wine(X),hasMaker(X, Y ).

We can easily see that a change to the class and property structure of an
ontology will result in a change of the compiled rules. Again, it is necessary to
be able to maintain a materialization in case of such a change.

10 Equivalence is decomposed into two inverse inclusion axioms



OWL Abstract Syntax Logic Database

ObjectProperty (P
super(Q1) . . . super(Qn)

⋃
i∈[1,n]

{Qi(x, y):-P (x, y).}
domain(C1) C1(x):-P (x, y).

. . . . . .
domain(Cn) Cn(x):-P (x, y).
range(R1) R1(y):-P (x, y).

. . . . . .
range(Rn) Rn(y):-P (x, y).
inverseOf(Q) P (x, y):-Q(y, x).

Q(x, y):-P (y, x).
Symmetric P (x, y):-P (y, x).
Transitive P (x, z):-P (x, y), P (y, z).

)

EquivalentProperties (P1 . . . Pn)
⋃

i∈[1,n]
{P1(x, y):-Pi(x, y).Pi(x, y):-P1(x, y).}

SubPropertyOf (P Q) Q(x, y):-P (x, y).

Table 2. DLP Representation of OWL properties in logic databases

An OWL A-Box, i.e. individuals and property fillers, are represented as facts
in the logic database, where individuals i instantiating a class C and fillers (a, b)
of a property P are simple facts of the form C(i) and P (a, b).

2.3 Differentiating Between Asserted and Entailed Information

The fundamental requirement for our approach to maintenance is the ability to
distinguish entailed information from asserted information. This ability is re-
quired in order to propagate changes. The requirement also commonly arises
in many ontology-based applications [2], which often need to differentiate be-
tween asserted information and information that has been derived by making
use of TBox axioms, e.g. one could prevent users from updating entailed infor-
mation [3].

To achieve this differentiation, all TBox axioms are translated into rules
between purely intensional predicates Cidb, Pidb. ABox assertions, however, are
stored in dedicated extensional predicates Cedb, Pedb. The connection between
the intensional and the extensional database is made using simple rules that
derive the initial (asserted) extension of the intensional predicates:

Cidb(x):-Cedb(x).
Pidb(x, y):-Pedb(x, y).

3 Maintenance Principles

This section discusses how the two main kinds of updates that have been men-
tioned in the introduction of the chapter, viz. updates to facts and rules, affect



the materialization of an example knowledge base. Based on this discussion,
we identify the main assumptions that underly the approaches for incremental
maintenance presented in the subsequent sections.

As an example, we use the genealogical relationships between the different
(more prominent) members of the Bach family. The relevant subset of the ABox
is presented in Figure 3.

3.1 Updates to Facts

Since we expect that the historic data about the Bach family members in our
knowledge base is unlikely to change, we choose to materialize the closure of the
transitive ancestorOf property to speed up query processing. Figure 3 depicts an
excerpt of the family tree of the Bach family, where the left-hand side of Figure 3
depicts the asserted property fillers. The right-hand side of the Figure depicts the
transitive closure of the ancestorOf graph. We will now consider how updates,
which we consider as deletions and insertions only, will affect the materialization
(cf.lower part of Figure 3).

3.1.1 Deletions Let us assume that we have to revoke an asserted property
filler, since a historian finds out that Johann Sebastian was not the father of
Wilhelm Friedemann. Clearly, this has consequences to our materialization. For
example, Johann Ambrosius is no longer an ancestor of Wilhelm Friedemann.
However, Johannes is still an ancestor of Wilhelm Friedemann, since not only Jo-
hann Sebastian but also his cousin and first wife Maria Barbara are descendants
of Johannes.

If we maintain the materialization of the graph depicted in Figure 3 ourselves,
a natural and straightforward approach proceeds in two steps. In order to delete
links that do not hold any longer, we first mark all links that could have poten-
tially been derived using the link leading from Wilhelm Friedemann to the nodes
in the graph that possibly interact with the deleted link, viz. are also connected
with Johann Sebastian. As the second step, we check whether the deletion mark
is correct by reconsidering whether the respective link could be derived on some
other way by combining the links supported by the updated source graph. If
a mark is determined to be correct, we can delete the appropriate link in our
source graph.

This two staged principle for deletion is common to most approaches for
the incremental maintenance of materializations [12,31,13] and is applied by the
approach presented in Section 4.

3.1.2 Insertions Now assume that we assert that Johann Sebastian is the
ancestor of another Johann Christian. Clearly, we can manually derive in the
example graph that Johann Christian must be linked with the nodes that can
possibly interact with the new link, viz. are also connected with Johann Sebastian
in the updated source graph. All new links discovered in this way have to be
added to the materialization.



Fig. 3. Bach Family Tree Excerpt

3.2 Updates to Rules

A typical source of updates in Web ontologies is the change of TBox axioms,
since ontologies have to evolve with their applications and react to changing
application requirements [20,21]. Similarly, the advent of a rule layer in the
Semantic Web will lead to changing rules. In the case of DLP, both situations,
changing TBox axioms and changing rules, are actually equivalent since they
manifest both themselves as changes to the logic program LP.

Let’s assume that our TBox states that the transitive ancestorOf property is
a specialization of the inDynasty property (which is not necessarily transitive),
i.e. T = {T0, T1} (cf. Table 3). Let’s additionally assume that our ABox only con-
tains property fillers for ancestorOf, e.g. the tuples {(h, jc1), (j, h), (j, c) . . .},
where each constant is the abbreviation for the name of an individual in the



Axiom OWL DLP

T0 SubPropertyOf (ancestorOf inDynasty) inDynasty(x, y) :- ancestorOf(x, y)
T1 ObjectProperty (ancestorOf Transitive ) ancestorOf(x, y) :- ancestorOf(x, z),

ancestorOf(z, y).

Table 3. Example TBox T

Bach family tree (cf. Figure 3). Clearly, the extension of both ancestorOf and
inDynasty are equivalent in this particular knowledge base, since inDynasty
has no own property fillers.

Manipulating the TBox T by deleting axiom T0 leads to the situation that
the extension of inDynasty is empty, since the derivations supported by the
respective axiom are no longer supported.

Now assume that we add a new axiom T2 to the old T , i.e. T = T ∪ {T2},
that states that the property inDynasty is symmetric:

Axiom OWL DLP
T2 ObjectProperty (inDynasty Symmetric ) inDynasty(x, y):-inDynasty(y, x).

Apparently, the new extension of inDynasty will now contain the tuple
(jc1, c) (among others), which is derived by the combination of the existing
axioms and the new axiom.

Unlike the change of facts, we do not only have an interaction of particular
(inserted or deleted) facts with existing facts, but also the interaction of (inserted
or deleted) rules with all other rules. In particular, we can observe that we need to
consider all rules defining a predicate to determine the extension of the predicate.

The approach to maintenance presented in Section 5 will therefore recompute
the extensions of all predicates, which are redefined, i.e. are the head of changed
rules. We will, however, reuse the mechanisms of propagating the resulting fact
changes to other predicates (and possibly back to the predicate in case of cycles)
from the maintenance procedure for facts (cf. next section).

4 Maintaining Changing Facts

This section presents the maintenance of a materialization when facts change,
viz. new tuples are added or removed from the extension of a predicate.

4.1 Approach

We reuse the declarative variant [31] of the delete and re-derive (DRed) algo-
rithm proposed in [12]. DRed takes the three steps illustrated in Section 3.1 to
incrementally maintain the materialization of an intensional database predicate:



1. Overestimation of deletion: Overestimates deletions by computing all direct
consequences of a deletion.

2. Rederivation: Prunes those estimated deletions for which alternative deriva-
tions (via some other facts in the program) exist.

3. Insertion: Adds the new derivations that are consequences of insertions to
extensional predicates.

The declarative version11 of DRed maintains the materialization of a given
predicate by means of a maintenance program. The maintenance program is
rewritten from the original program using several rewriting patterns.

The goal of the rewriting is the provision of a pair of maintenance predicates
P+ and P− for every materialized predicate P , such that the extensions of P+

and P− contain the changes that are needed to maintain P after the maintenance
program is evaluated on a given set of extensional insertions P Ins and deletions
PDel.

The maintenance process is carried out as follows: First, we setup mainte-
nance, i.e. the maintenance program is created for a given source program and
the initial materialization of intensional predicates is computed.

Whenever extensional changes occur, the actual maintenance is carried out.
In this step, we first put insertions (deletions) to an extensional predicate Pedb

into the extension of the predicate P Ins
edb (PDel

edb ). We then evaluate the mainte-
nance program. For every intensional predicate Pidb, the required incremental
changes, viz. insertions and deletions, can be found in the extension of P+

idb

and P−idb. We use these changes to update the materialization of the intensional
predicate P and update Pedb with the explicit changes P Ins

edb and PDel
edb , while the

extensions of the later predicates are deleted.

4.2 Maintenance Rewritings

The maintenance of an intensional predicate P is achieved via seven maintenance
predicates :

1. P itself contains the (old) materialization.
2. PDel receives so-called deletion candidates, which are the aforementioned

overestimation of facts that ought to be deleted from the materialization.
For extensional predicates, PDel contains explicitly what should be removed
from the materialization.

3. P Ins contains the facts that ought to be inserted into the materialization.
For extensional predicates, P Ins contains the explicit insertions that were
asserted by the user.

11 The benefit of reusing the declarative version of DRed with respect to the original
(procedural) version is that it allows us to reuse generic logic databases for the
evaluation of the maintenance program. This also motivates why we did not use the
optimized version provided in [31], since the optimization requires logic databases
to evaluate the maintenance program using the supplementary magic set technique,
which is not used in all logic databases (e.g. XSB [27]).



4. PRed receives those facts that are marked for deletion but have alternative
derivations.

5. PNew describes the new state of the materialization after updates.
6. P+ receives the net insertions required to maintain the materialization of P .
7. P− receives the net deletions required to maintain the materialization of P .

New Materialization For every intensional predicate P , PNew captures the new
materialization, which is constituted of all old data that has not been deleted
(N1). Additionally, it contains re-derived data (N2) and inserted data (N3):

(N1) PNew:-P,notPDel.
(N2) PNew:-PRed.
(N3) PNew:-P Ins.
For every extensional database predicate P , we only instantiate the rules (N1

and N3) to define an auxiliary predicate PNew. PNew is used in the rewritings
for insertions and re-derivation of dependent intensional predicates.

Differentials The following differentials P+ and P− compute positive and neg-
ative deltas, i.e. the changes that are necessary to incrementally maintain the
stored materialization of an intensional predicate P :

P+:-P Ins,notP.
P−:-PDel,notP Ins,notPRed.

Deletion Candidates The deletion candidates PDel are constituted by all possible
combinations between deleted facts of a given body predicate and the remaining
body predicates. Therefore, n deletion rules are created for every rule with n
conjuncts in the body:

(Di): PDel:-R1, . . . , Ri−1, R
Del
i , Ri+1, . . . , Rn.

If Ri is an extensional predicate, RDel
i contains those facts that are explicitly

deleted from Ri. Otherwise, RDel
i contains the aforementioned overestimation.

Re-derivations The re-derivations PRed are computed by joining the new states
of all body predicates with the deletion candidates:

(R): PRed:-PDel, RNew
1 , . . . , RNew

n .

Insertions Insertions P Ins for intensional predicates P are calculated by ordinary
semi-naive rewriting, i.e. by constructing rules (Ii) that join the insertions into
a body predicate with the new materializations of all other body predicates:

(Ii): P Ins :- RNew
1 , . . . , RNew

i−1 , RIns
i , RNew

i+1 , . . . , RNew
n .

If Ri is an extensional predicate, RIns
i contains those facts that are explicitly

inserted into Ri.



4.3 Maintenance Programs

A logic program LP consists of a finite set of rules of the form H:-B1, . . . , Bn.,
where H,Bi ∈ P. We call P the set of predicates used in LP. Without loss of
generality we assume that P can be partioned into two disjoint sets of inten-
sional and extensional predicates, i.e. P = Pidb ∪ Pedb and Pidb ∩ Pedb = ∅. A
maintenance program is generated from a program LP through the application
of generator functions (cf. Table 4).

Generator Parameter Rewriting Result

Predicate

θidb P ∈ Pidb θNew
idb (P ) ∪ θIns

idb (P ) ∪ θDel
idb (P ) ∪ θRed

idb (P )
θNew

idb P ∈ Pidb {θNew
1 (P )} ∪ {θNew

2 (P )} ∪ {θNew
3 (P )}

θNew
edb P ∈ Pedb {θNew

1 (P )} ∪ {θNew
3 (P )}

θNew
1 P ∈ P P New:-P,notP Del.

θNew
2 P ∈ Pidb P New:-P Red.

θNew
3 P ∈ P P New:-P Ins.

θ+
idb P ∈ Pidb P+:-P Ins,notP.

θ−idb P ∈ Pidb P−:-P Del,notP Ins,notP Red.
θIns

idb P ∈ Pidb {∪θIns(r)|∀r ∈ rules(P )}
θDel

idb P ∈ Pidb {∪θDel(r)|∀r ∈ rules(P )}
θRed

idb P ∈ Pidb {θRed(r)|∀r ∈ rules(P )}
Rule

θ H:-B1, . . . , Bn. {θRed} ∪ θDel ∪ θIns

θRed H:-B1, . . . , Bn. HRed:-HDel, BNew
1 , . . . , BNew

n .

θDel H:-B1, . . . , Bn. {HDel:-B1, . . . , Bi−1, B
Del
i , Bi+1, . . . , Bn.}

θIns H:-B1, . . . , Bn. {HIns:-BNew
1 , . . . , BNew

i−1 , BIns
i , BNew

i+1 , . . . , BNew
n .}

Table 4. Rewriting Functions (derived from [31])

Definition 1 (Maintenance Program). A maintenance program LPM of a
logic program LP is a set of maintenance rules such that:

1. ∀P ∈ Pidb : θidb(P ) ∈ LPM

2. ∀P ∈ Pedb : θNew
edb (P ) ∈ LPM

The θidb and θNew
edb rewriting functions themselves call other rewriting func-

tions presented in Table 4. For example, the function θ : R → MR rewrites
a rule R ∈ LP into a set of maintenance rules MR by instantiating rewriting
patterns for deletion θDel, insertion θIns and rederivation θRed. By definition, θ
maps every rule with n body literals into 2 ∗ n + 1 maintenance rules.

The reader may note that the rewriting makes use of two auxiliary functions:

– head : LP → Pidb maps a rule to its rule head.



– rules : Pidb → R maps rule heads to a set of rules R, such that:

∀P ∈ Pidb : rules(P ) = {R ∈ R|head(R) = P}

Example 2 (Maintenance Rewritings). Let us return to the Bach family tree
example established in Section 3.1 and consider all edges between the different
individuals depicted in Figure 3 as fillers of the transitive property ancestorOf.

Let us consider the following logic program LP, which generated from a sim-
ple ontology containing one single (transitive) property called ancestorOf.The
second rule implements the differentiation between asserted and entailed infor-
mation, that was described in Section 2.3:

(R1) ancestorOf(x, z):-ancestorOf(x, y),ancestorOf(y, z).
(R2) ancestorOf(x, y):-ancestorOfedb(x, y).

In the following we will use the abbreviation A for ancestorOf.
Since LP includes one intensional predicate A and one extensional predicate

Aedb, the generation of the maintenance program LPM only involves to apply
θidb to A and θNew

edb to Aedb:

θNew
edb (Aedb) = {ANew

edb (x, y):-Aedb(x, y),notADel
edb (x, y). (θNew

1 (Aedb))
ANew

edb (x, y):-AIns
edb (x, y).} (θNew

3 (Aedb))

θidb(A) = {ADel(x, y):-ADel
edb (x, y). (θDel(R2))

ARed(x, y):-ADel(x, y), ANew
edb (x, y). (θRed(R2))

AIns(x, y):-AIns
edb (x, y). (θIns(R2))

ANew(x, y):-A(x, y),notADel(x, y). (θNew
1 (A))

ANew(x, y):-ARed(x, y). (θNew
2 (A))

ANew(x, y):-AIns(x, y). (θNew
3 (A))

ADel(x, z):-ADel(x, y), A(y, z). (θDel(R1))

ADel(x, z):-A(x, y), ADel(y, z). (θDel(R1))

ARed(x, z):-ADel(x, z), ANew(x, y), ANew(y, z). (θRed(R1))
AIns(x, z):-AIns(x, y), ANew(y, z). (θIns(R1))
AIns(x, z):-ANew(x, y), AIns(y, z).} (θIns(R1))

LPM = θidb(A) ∪ θNew
edb (Aedb)

The invocation of the θNew
edb generator on Aedb initiates the invocation of the

(θNew
1 (Aedb)) and (θNew

3 (Aedb)) generators and collects their results. Similarly,
the invocation of the θidb generator on A leads to the invocation of rules on A
to retrieve the rules R1, R2 and the invocation of θNew

1 , . . . , θIns(R1).

4.4 Size of Maintenance Programs

As we can see from example 2 the size of the maintenance program LPM is
substantially larger than the original program LP.



4.4.1 OWL (DLP) Maintenance Programs The structure of the rules
that are generated by translating OWL axioms into a logic program allows us
to observe that the rewriting of each OWL inclusion axiom creates the following
number of maintenance rules:

|θ(φLP(C v D))| = 3
|θ(φLP(C1 u . . . u Cn v D))| = 2 ∗ n + 1
|θ(φLP(C v D1 u . . . uDn))| = n ∗ |θ(φLP(C v Di))|
|θ(φLP(D1 t . . . tDn v E))| = n ∗ |θ(φLP(Di v E))|
|θ(φLP(C v ∀R.D))| = |θ(φLP(∃R.C v D))| = 5
OWL object property transitivity is translated to five maintenance rules

by applying θ to φLP . All other DL property axioms are translated to three
maintenance rules by applying θ to φLP . θ is applied to all atomic classes and
properties in KBDLP

0 as well as the auxiliary classes that are created by the
structural transformation which is carried out during the preprocessing step.

4.4.2 RDF(S) Maintenance Programs Since the 12 static Datalog rules
for the single predicate-based axiomatization of RDF(S) (cf. Table 2 ) contain 19
body predicates, the application of θ leads to the generation of 60 rules, namely
19 insertion rules, 19 deletion rules, 12 re-derivation rules, 5 maintenance rules
for tNew, t+ and t−, as well as 5 further rules to differentiate between entailments
and assertions.

4.5 Evaluating Maintenance Programs

[30] show that the evaluation of the maintenance rules is a sound and complete
procedure for computing the differentials between two database states when
extensional update operations occur.

During the evaluation it is necessary to access the old state of a predicate.
Bottom-up approaches to evaluation therefore require that all intensional rela-
tions involved in the computation are completely materialized.

The maintenance rules for capturing the new database state contain negated
predicates to express the algebraic set difference operation. Hence, even though
the original rules are pure Datalog (without negation), a program with negation
is generated. The rewriting transformation keeps the property of stratifiability,
since newly introduced predicates do not occur in cycles with other negations.
Hence, it is guaranteed that predicates can be partitioned into strata such that
no two predicates in one stratum depend negatively on each other, i.e. predicates
only occur negatively in rules that define predicates of a higher stratum. The
evaluation can then proceed, as usual, stratum-by-stratum starting with the
extensional predicates themselves.

Example 3 (Evaluating Maintenance Programs). The direct links between mem-
bers of the Bach family in Figure 3 constitute the extension of Aedb, where we
abbreviate the names of each individual by the first letters of their forenames:

Aedb = {(j, h), (j, c), (h, jc1), (jc1, jm), (jm, mb), (mb, wf), (js, wf), (ja, js), (c, ja)}



Using the maintenance rewriting the materialization of A changes to ANew

as follows, if AIns = (js, jc2) is inserted and ADel = (js, wf) is deleted:

AIns
edb = {(jc, jc2)}

ADel
edb = {(js, wf)}

ANew
edb = Aedb ∪AIns

edb \ADel
edb

AIns = {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)}
ADel = {(js, wf), (ja, wf), (c, wf), (j, wf)}
ARed = {(j, wf)}
ANew = (A \ADel ∪AIns ∪ARed)

= A ∪ {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)} \ {(js, wf), (ja, wf), (c, wf)}
A− = {(js, wf), (ja, wf), (c, wf)}
A+ = {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)}

Since all maintenance rules of a given predicate have to be evaluated, an ax-
iomatization of RDF(S) based on a single ternary predicate leads to complete
re-computation in case of updates. We sketch an optimization for this case in
Section 6 which should result in more efficient evaluation for the single predicate
axiomatization.

5 Maintaining Changing Rules

This section presents the maintenance of a materialization if the definition of
rules changes, i.e. rules that define a predicate are added or removed in the source
program. We introduce two simple extensions to the rewriting-based approach
presented in the previous section. Firstly, the materialization of predicates has
to be maintained in the case of changes. Secondly, the maintenance programs
have to be maintained such that additional rewritings are introduced for new
rules and irrelevant rewritings are removed for deleted rules.

5.1 Approach

We illustrated in Section 3.2 that every change in the rule set might cause
changes in the extension of an intensional predicate P , with the consequence
that the materialization of intensional predicates has to be updated. However,
unlike in the case of changing extensions, both auxiliary predicates which capture
the differences which are used to update the materialization of some predicate
P ∈ Pidb, i.e. P+ and P− have empty extensions since no actual facts change.

Obviously, we can categorize the intensional predicates that are affected by a
change in rules into two sets: (I) predicates that are directly affected, i.e. occur
in the head of changed rules and (II) predicates that are indirectly affected, i.e.
by depending on directly affected predicates through the rules in the program.

Our solution uses the existing maintenance rewriting for facts to propa-
gate updates to the indirectly affected predicates. To achieve this, the mainte-
nance computation for directly affected predicates is integrated into the mainte-



nance program by redefining the auxiliary predicates that are used to propagate
changes between predicates, i.e. PNew, P Ins and PDel.

5.2 Maintenance Rewriting

Let δ+(δ−) be the set of rules which are inserted (deleted) from the logic pro-
gram LP. The reader may recall from the previous section that the function
head : LP → Pidb maps a rule to its rule head, and the function rules : Pidb → LP
maps rule heads to rules.

Definition 2 (Directly affected predicate). An intensional predicate p ∈
Pidb is a directly affected predicate, if p ∈ {head(r)|r ∈ δ+ ∪ δ−}.

Generator Parameter Rewriting Result

Predicate

ϑ P ∈ Pidb {ϑIns
idb (P )} ∪ {ϑDel

idb (P )} ∪ {ϑNew
idb (P )}

ϑIns
idb P ∈ Pidb P Ins:-P New.

ϑDel
idb P ∈ Pidb P Del:-P.

ϑNew
idb P ∈ Pidb {ϑNew(r)|∀r ∈ rules(P )}

Rule

ϑNew H:-B1, . . . , Bn. HNew:-BNew
1 , . . . , BNew

n .

Table 5. Rewriting Functions ϑ

The rule structure of the maintenance program LPM is modified for all di-
rectly affected predicates. For these predicates all maintenance rules are substi-
tuted by maintenance rules generated using the ϑ rewriting function (cf. Table 5).
ϑ is instantiated for every directly affected predicate P and the following is done:

1. The existing rules defining PNew in the maintenance program LPM are
deleted;

2. New rules axiomatize PNew using the (new) rule set that defines P in the
updated original program. These rules are slightly adapted, such that refer-
ences to any predicate P are altered to PNew, by instantiating the following
rewriting pattern for all rules R ∈ rules(P ):

PNew:-RNew
1 , . . . , RNew

n .

The rewrite pattern simply states that the new state of the predicate P
follows directly from the combination of the new states of the predicates Ri

in the body of of all rules defining P in the changed source program.



3. All maintenance rules for calculating the insertions and deletions to P have to
be removed from the maintenance program and are replaced by the following
two static rules.

P Ins:-PNew.
PDel:-P.

The role of P Ins, PDel, PNew is exactly the same as in the rewriting for facts,
i.e. they propagate changes to dependent predicates. While P Ins propagates the
new state of a predicate as an insertion to all dependent predicates, PDel prop-
agates the old state of a predicate as a deletion to all dependent predicates.
Figure 4 shows how the information flow in the maintenance program changes
with respect to the rewriting of a rule H(x):-B(x). from the maintenance rewrit-
ing for fact changes (a) to the maintenance for rule changes (b). The arrows to
(from) nodes depict that the respective predicate possibly uses (is used by) some
other predicate in the maintenance program.

Fig. 4. Information Flow in Maintenance Programs: (a) Maintenance for Facts;
(b) Maintenance for Rules

5.3 Evaluating Maintenance Programs

The evaluation of maintenance programs is now carried out in three steps:

1. Update the maintenance rewriting LPM of LP to incorporate the set of rules
that are added (δ+) or removed (δ−).

2. Evaluate the maintenance program LPM and incrementally maintain all
materialized predicates.

3. Maintain the maintenance rewriting LPM by changing rewritings back to
the rewriting for facts.



Require:
δ+ Set of inserted rules
δ− Set of deleted rules
LPM Maintenance program

Ensure:
Updated maintenance program LPM

removeMR = ∅ // Collects maintenance rules to be removed
addMR = ∅ // Collects maintenance rules to be added
affectedPred = ∅ // Collects all affected predicates
// Add new rewriting rules for added rules
for all r ∈ (δ+ \ δ−) do

addMR = {θRed(r)}∪ addMR
p = head( r )
affectedPred = {p} ∪ affectedPred
// First rule defining a predicate ?
if p 6∈ {head(r) | r ∈ LP} then

addMR = θ+
idb(p) ∪ θ−idb(p)∪ addMR // Need new auxiliary predicates

end if
LP = LP ∪ r

end for
// Add new rewriting rules for deleted rules
for all r ∈ (δ− \ δ+) do

p = head( r )
affectedPred = p ∪ affectedPred
// Last rule defining a predicate ?
if rules(p) \ {r} = ∅ then

removeMR = θ+
idb(p) ∪ θ−idb(p) ∪ θRed

idb (p)∪ removeMR
end if
LP = LP \ r

end for
// Replace rewriting rules for affected predicates
for all p ∈ affectedPred do

addMR = ϑNew
idb (p) ∪ ϑIns

idb (p) ∪ ϑDel
idb (p)∪ addMR

removeMR = θNew
idb (p) ∪ θIns

idb (p) ∪ θDel
idb (p)∪ removeMR

end for
LPM = (LPM ∪ addMR )\ removeMR

Algorithm 5.1: Updating Rules (Pre-Evaluation Algorithm)

Step 1. Step 1 is implemented by Algorithm 5.1. This algorithm has three func-
tions. Firstly, it replaces all maintenance rewritings for directly affected predi-
cates with the new maintenance rewritings. Secondly, it alters the source pro-
gram LP such that the set of updated rules is incorporated into LP. Thirdly, it
maintains auxiliary rewriting rules, viz. generates rules for previously unknown
intensional predicates and removes those rules if an intensional predicate no
longer occurs in the source program.



Example 4 (Maintenance Rewritings for New Rule). Let us return to the main-
tenance program LPM established in Example 2 and consider that rule R3 is
inserted into LP = {R1, R2}, i.e. the new LP consists of the following rules after
the application of Algorithm 5.1:

(R1) ancestorOf(x, z):-ancestorOf(x, y),ancestorOf(y, z).
(R2) ancestorOf(x, z):-ancestorOfedb(x, y).
(R3) inDynasty(x, y):-ancestorOf(x, y).

Since δ+ = R3 and δ− = ∅ and none of the previously existing intensional
axioms is directly affected, the algorithm does not remove any rewriting rules
from the maintenance program LPM in this example. We have, however, to add
the new maintenance rules for the directly affected predicate inDynasty, which
we will abbreviate as I in the following. The algorithm augments LPM with the
rules generated by the following calls to rewriting generators (in this order):

θRed(R3) = IRed(x, y):-IDel(x, y),ancestorOfNew(x, y).
θ+

idb(I) = I+(x, y):-IIns(x, y),notI(x, y).
θ−idb(I) = I−(x, y):-IDel(x, y),notIIns(x, y),notIRed(x, y).
ϑNew(I) = INew(x, y):-ancestorOfNew(x, y).
ϑIns(I) = IIns(x, y):-INew(x, y).
ϑDel(I) = IDel(x, y):-I(x, y).

The new state of I is now directly derived from the new state of A, which is
calculated as part of the maintenance program. Hence, we can obtain the first
materialization I just by evaluating the maintenance program.

Step 2. Step 2 evaluates the maintenance program as presented in Section 4.

Step 3 Step 3 is implemented by Algorithm 5.2. It essentially only undoes our
special maintenance rewriting, i.e. it replaces the maintenance rewritings that
have been generated by Algorithm 5.1 for directly affected predicates with the
normal maintenance rewritings for facts.

Example 5 (Maintenance Rewritings for New Rule). Algorithm 5.2 would re-
move the following maintenance rules from the maintenance program LPM :

ϑNew(I) = INew(x, y):-ancestorOfNew(x, y).
ϑIns(I) = IIns(x, y):-INew(x, y).
ϑDel(I) = IDel(x, y):-I(x, y).
In parallel, the maintenance program would be extended with the rewritings

generated by the rewriting generators that create the maintenance rewriting for
facts (θNew

idb (I), θIns
idb (I) and θDel

idb (I)).

Since all maintenance rules for dealing with changes in rules are removed by
Algorithm 5.2, we obtain the same maintenance program as if we would have
completely regenerated the maintenance program for facts from the changed
source program.



Require:
δ+ Set of inserted rules
δ− Set of deleted rules
LP Original logic program
LPM Maintenance program

Ensure:
Updated logic program LP
Updated maintenance program LPM

removeMR = ∅
addMR = ∅
affectedPred = ∅
for all r ∈ (δ+ \ δ−) do

affectedPred = head(r) ∪ affectedPred
end for
for all r ∈ (δ− \ δ+) do

p = head( r )
if rules(p) 6= ∅ then

affectedPred = p ∪ affectedPred
end if

end for
for all p ∈ affectedPred do

removeMR = ϑNew
idb (p) ∪ ϑIns

idb (p) ∪ ϑDel
idb (p)∪ removeMR

addMR = θNew
idb (p) ∪ θIns

idb (p) ∪ θDel
idb (p)∪ addMR

end for
LPM = LPM ∪ addMR \ removeMR

Algorithm 5.2: Updating Rules (Post-Evaluation Algorithm)



6 Materializing RDF Rules

An alternative to using OWL TBox axioms to state that inDynasty is a sym-
metric property, is the usage of either one of the RDF-based rule languages (cf.
Section 2), e.g. Notation 3.

Notation 3 { ?x :inDynasty ?y. }
log:implies

{ ?y :inDynasty ?x. }.
Datalog T (x, inDynasty, y):-T (y, inDynasty, x).

Table 6. Datalog Translation of RDF Rule Languages

If an RDF rule system internally uses one single predicate within the rules,
however, our technique for incrementally maintaining the materialization in case
of changes is useless. The evaluation of the maintenance program then corre-
sponds to a total recomputation, since all rules defining this predicate have to
be evaluated.

In order to use our approach to materialization, more optimized data struc-
tures to represent an RDF graph have to be chosen, such that the part of the
knowledge base which takes part in the evaluation can be limited.

6.1 Selection-based Optimization

We will briefly sketch a possible optimization, which we called selection-based
optimization [35]. The optimization is based on the idea to split the extension
of the RDF graph according to split points, which are given by constants that
occur at a certain argument position of a predicate. Useful split points can be
derived from the vocabulary of an ontology or an ontology language such as RDF
Schema. In case of arbitrary graph data, a useful split point can be frequently
occurring constants, which can be easily determined using counting. The choice
of a good split point, however, clearly depends on the application of the RDF
rule base.

We can transform a Datalog program into an equivalent program that incor-
porates split points, if all references to a predicate P (in queries, facts and rules)
where a split point occurs are replaced by appropriate split predicates.

In the following, we will assume that a split point is constituted by a constant
c that is used as the i-th argument in the predicate P . To generate split predi-
cates, we then split the extension of a predicate Pedb into several edb predicates
of the form P ci

edb(V ar1, V ar2, . . . , V ari−1, c, V ari+1, V arn) to store tuples based
on equal constant values c in their i-th component.

Hence, instead of using a single extensional predicate Pedb for representing
direct RDF assertions, the extensional database is split into several P ci

edb. Again,
we can differentiate between asserted and derived information by introducing
intensional predicates (views) for each component of the extension (i.e. rules



of the form P ci:-P ci

edb).The complete predicate P can still be represented by
means of an intensional predicate, which is axiomatized by a collection of rules
that unify the individual split predicates: P:-P ci .

Example 6. Returning to the triple based axiomatization (cf. Figure 2) of the N3
example, we can transform the program by introducing a split point T inDynasty2

for the inDynasty constant (when used as second argument in the ternary
predicate T ):

– We use two extensional predicates: TRest
edb , T inDynasty2

edb to store the extension
in two disjoint sets.

– We capture the intensional predicates and integrate the splits into a complete
extension of T and rewrite the example such that split predicates are used
instead of the full predicate:

TRest(X, Y, Z) :- TRest
edb (X, Y, Z).

T inDynasty2(X, Y, Z) :- T inDynasty2
edb (X, Y, Z).

T (X, Y, Z) :- TRest(X, Y, Z).
T (X, Y, Z) :- T inDynasty2(X, Y, Z).
T inDynasty2(X, inDynasty, Y ) :- T inDynasty2(Y, inDynasty, X).

Any other rule that is inserted into the RDF rule base can be transformed
into a set of rules, which use the available split predicates.

However, the maintenance of a materialized predicate T inDynasty2 can now be
carried out by ignoring all non-relevant rules for T . Hence, the whole extension of
T can be updated via the insert and delete maintenance rules that were presented
in the previous sections, i.e. without using the complete database.

7 Implementation

The incremental maintenance of materializations is implemented in the KAON
Datalog engine12, which handles materialization on a per predicate, i.e. per class
or property, level. In case of the materialization of a predicate all changes to facts
relevant for the predicate and the rule set defining a predicate are monitored.

The maintenance process is carried out as follows. When a program is desig-
nated for materialization, all maintenance rules are generated, the maintenance
program itself is evaluated and the extension of all predicates P designated for
materialization is stored explicitly. The maintenance program is then used for
evaluation instead of the original program which is kept as auxiliary informa-
tion to track changes to rules. All rules of the original program which define
non-materialized predicates are added to the maintenance program.
12 The engine is part of the open source KAON tool suite, which can be freely down-

loaded from http://kaon.semanticweb.org/.

http://kaon.semanticweb.org/


Updates to facts are handled in a transactional manner. All individual changes
are put into the appropriate pIns

edb and pDel
edb predicates. Committing the transac-

tion automatically triggers the evaluation of the maintenance rules. After this
evaluation, the extensions of all materialized predicates P are updated by adding
the extension of P+

idb and removing the extension of P−idb. Similarly, the exten-
sion of all extensional predicates Pedb is updated by adding P Ins and removing
PDel. As a last step, the extension of P Ins and all other auxiliary predicates are
cleared for a new evaluation.

Changes in rules are carried out in the three phase process described in Sec-
tion 5: First, the new maintenance rules of rule change are generated. Then,
the maintenance program is evaluated and the extensions of materialized pred-
icates are updated as described for the change of facts. As the last step, the
maintenance rules for rule change are replaced with maintenance rules for fact
changes.

8 Evaluation

This section reports on the evaluation of our approach which was carried out
with various synthetically generated OWL ontologies that are expressible in the
DLP fragment.

8.1 Evaluation Setting

Test Assumptions. The evaluation has been carried out with changing OWL
ontologies that are operationalized in logic databases using the DLP approach.
It is assumed that all predicates are materialized. We assume that an inference
engine builds its knowledge base by aggregating data from several web sources.
Therefore bulk updates will be predominant.

Test Procedure. Each test is characterized by a certain ontology structure and
a class whose extension is read. The ontology structure has been generated for
different input parameters, resulting in ontologies of different sizes. The average
of five such invocations has been taken as the performance measure for each test.

We obtain six measures: (a) the time of query processing without material-
ization, (b) the time required to set up the materialization and the maintenance
program, (c) the time required to perform maintenance when rules are added,
(d) rules are removed, (e) facts are added, and (f) facts are removed. Finally,
(g) assesses the time of query processing with materialization.

Test Platform. We performed the tests on a laptop with Pentium IV Mobile
processor running at 2 GHz, 512 MB of RAM using the Windows XP operating
system. The implementation itself is written in Java and executed using Sun’s
JDK version 1.4.1 01.



8.2 Evaluation Scenarios

First we give an overview of the types of tests we conducted. In the following we
use D to denote the depth of the class hierarchy, NS to denote the number of
sub classes at each level in the hierarchy, NI to denote the number of instances
per class and P to denote the number of properties.

To test changes in facts, we add and remove a random percentage Change
of the facts. For rules, we add and remove a random rule. This is due to the
limitation of the underlying engine, which currently does not allow to alter rules
in a bulk manner. The test was performed for different depths of the taxonomy
D = 3, 4, 5 while the number of sub classes and the number of instances was
not altered (NS = 5; NI = 5). Test 2 and 3 made use of properties. Here, every
class had five properties, which are instantiated for every third instance of the
class (NI = 5). We carried out each test using varying Change ratios of 10% and
15% of the facts.

Test 1: Taxonomy Extended taxonomies, e.g. WordNet, currently constitute a
large portion of the ontologies that are in use. Our goal with this test is to see
how the very basic task of taking the taxonomy into account when retrieving the
extension of a class is improved. The taxonomy is constituted by a symmetric
tree of classes. We did not make use of properties, hence P = 0. The test query
involved computing the extension of one of the concepts on the first level of the
class hierarchy. This is a realistic query in systems where taxonomies are used
for navigation in document collections. Here, navigation typically starts with
top-level classes and the set of documents is displayed as the class extension.

Test 2: Database-like The goal of this test was to see how ontologies with larger
number of properties are handled. Our goal was to answer a simple conjunctive
query on top of this ontology. The DL-like query is c1 u ∃p0.c12.

Test 3: DL-like This test shows how materialization performs in DL-like on-
tologies, which contain simple class definitions. Each class in the class tree is
defined using the following axiom: ci t ∃pk.ci−1 v c (where ci denotes i-th child
of concept c). The query retrieves the extension of some random class in the
first-level of the taxonomy.

8.3 Results

Figure 5 depicts the average time13 for querying an ontology without using ma-
terialization, setting up the materialization and cost of maintenance for different
types of changes (adding and removing rules and facts). Finally, the time for an-
swering the same query using the materialization is depicted. The exact results
of the evaluation can be found in the appendix.

As we can see in the appendix, maintenance costs do not vary significantly
with the quantity of updates, therefore Figure 5 only shows the results for 10%
13 in milliseconds on a logarithmic scale



Fig. 5. Evaluation Results (Average Values for 10% change)

change. All costs are directly related to the size of the ontologies. The perfor-
mance behavior between the taxonomy and DB-like ontologies do also not alter
significantly. However, more complex rules as they are constituted by DL-like
ontologies are always more expensive to evaluate, therefore setup costs and the
cost of evaluating the maintenance rules is also higher.

We want to stress that we measured the performance of concrete tools. Al-
though algorithms implemented by a system are certainly important, the overall
performance of a system is influenced by many other factors as well, such the
quality of the implementation or the language. It is virtually impossible to ex-
clude these factors from the performance measurement. For example, our Dat-
alog engine ran out of memory with the DL-like ontology where the taxonomic
depth was five, viz. the set of rules was generated from 3950 class and 19750
property definitions, while the underlying knowledge base contained 19750 class
instantiations and 32915 property instantiations. The other ontologies of taxo-
nomic depth 5 were still handled by the engine, but due to inefficient memory
management, most of the time was not actually used for query processing but
for memory management (swapping), such that the query on the materialization
in this only showed little improvement.



8.4 Discussion

The different costs of each step in the maintenance procedure are always higher
than the costs of evaluating a single query. The question whether or not to
materialize is therefore determined by the application and the issue whether the
system can handle its typical workload, e.g. can it handle the intended number
of users if answering a single query takes almost 3 seconds ?

With materialization the cost of accessing the materialized predicates can be
neglected. However, the time for the evaluation of the maintenance rules can be
a significant bottleneck for a system especially for large knowledge-bases. For
example, in one of our test runs it took almost 16 minutes to recompute the
materialization after fact changes for the DB-like test with taxonomic depth 5.
Fortunately, materialization can be carried out in parallel to answering queries
on top of the existing materialization.

In consequence, users will have to operate on stale copies of data. Staleness
of data cannot be avoided in distributed scenarios like the Web in the first place,
and existing experiences, e.g. with outdated page ranks of a web pages in Google,
show that the quality of query answering is still good enough, if data is updated
occasionally.

9 Related Work

We can find related work in two areas: Firstly, incremental maintenance of ma-
terialized views in deductive databases. Secondly, truth maintenance systems in
the Artificial Intelligence context.

9.1 Incremental Maintenance of Materialized Views

Several algorithms have been devised for the incremental maintenance of mate-
rialized views in deductive databases. All of these approaches do not consider
changes in the set of rules and differ in the techniques used to cope with changes
in facts.

In order to cope with changing facts, [1,18] effectively compute the Herbrand
model of a stratified database after a database update. The proposed solution
of [1] uses sets of positive and negative dependencies that are maintained for all
derived facts. This leads to low space efficiency and high cost for maintaining
the dependencies. [18] derives rules (so-called meta-programs) to compute the
difference between consecutive database states for a stratified Datalog program.
Some of the generated rules are not safe, making it impossible to implement the
rules in Datalog engines. Additionally, duplicate derivations are not discarded
in the algorithm.

[12] presents the Delete and Re-Derive (DRed) algorithm, which is a pro-
cedural approach to view maintenance in Datalog with stratified negation. We
will follow their principal approach for the computation of changes, in fact their
procedural algorithm has been altered to a declarative algorithm [31] which we
will extend.



The Propagation Filtration algorithm of [13] is similar to the DRed algo-
rithm, except that changes are propagated on a ’predicate by predicate’ basis.
Hence, it computes changes in one intensional predicate due to changes in one
extensional predicate, and loops over all derived and extensional predicates to
complete the maintenance procedure. In each step of the loop, the delete, re-
derive and insert steps are executed. The algorithm ends up fragmenting com-
putation and rederiving changed and deleted facts over and over again, i.e. it is
less efficient than the DRed algorithm.

9.2 Truth Maintenance Systems (TMS)

Truth maintenance 14 is an area of AI concerned with revising sets of beliefs and
maintaining the truth in a reasoning system when new information alters existing
information. A representation of beliefs and their dependencies is used to achieve
the retraction of beliefs and to identify contradictions. For example, justification-
based TMS [9] uses a graph data structure where nodes are augmented with two
fields indicating their belief status and supporting justification. When the belief
status is changed, dependencies are propagated through the graph.

Making TMSs more efficient was a cottage industry in the late 1980s, with
most of the attention focused on the Assumption-based TMS (ATMS) [6]. The
primary advantage of the ATMS is its ability to rapidly switch among many
different contexts, which allows a simpler propagation of fact withdrawals, but
comes at the cost of an exponential node-label updating process when facts
are added. The main disadvantage of TMS is that the set of justifications (and
nodes) grows monotonically as it is not allowed to retract a justification, but
only disable information. The fact that the set of assumptions is always in flux
introduces most of the complexity in the TMS algorithms. More recent work
(e.g. [24]) primarily tried to reduce the cost for incremental updates.

10 Conclusion

10.1 Contribution

We presented a technique for the incremental maintenance of materialized Dat-
alog programs. Our technique can therefore be applied for ontology languages
which can be axiomatized in Datalog, i.e. RDF Schema and OWL DLP15 as well
as the Datalog-fragments of Semantic Web rule languages.

We contributed a novel solution to the challenge of updating a materialization
incrementally when the rules of a Datalog program change, which has, to our
best knowledge, not been addressed in the deductive database context16.

14 also called belief revision or reason maintenance.
15 We cannot maintain function symbols other than constants, therefore our approach

can not be used for L3.
16 [11] address the maintenance of views after redefinition for the relational data model.



In order to cope with changing rules, we applied a declarative, rewriting-based
algorithm for the incremental maintenance of views [31] and introduced two
novel techniques: Firstly, we extended the rewriting to deal with changing rules.
Secondly, we introduced two algorithms for the maintenance of the rewritten
rules when the underlying source rules change.

Our solution has been completely implemented and evaluated. We reported
on our prototypical implementation and presented the results of our empirical
analysis of the costs of incremental maintenance, which shows the feasibility of
our solution.

The techniques proposed in this article are not specific to any ontology lan-
guage, but can generally be used for the incremental maintenance of materialized
Datalog programs. Due to this generic solution, future developments, e.g. for the
rule layer of the Semantic Web, are likely to benefit from our technique as well.

Materialization is certainly not a panacea to all tractability problems. For
example, one drawback is that it trades off required inferencing time against
storage space and access time. In spite of this restriction, which remains to be
assessed by more practical experience and cost models that are derived from
those experiences, we conjecture that materialization as explained in this article
will help to progress the Semantic Web and to build the large Semantic Web
engines of tomorrow.

10.2 Further Uses

We can reuse our approach for incremental maintenance of a materialization in
several other contexts:

– Integrity Constraint Checking : Incremental maintenance can also be used
as a fundamental technique in an implementation of integrity constraints
on Semantic Web data, i.e. we can incrementally check the validity of a
constraint by maintaining an empty view.

– Continuous Queries: [19] The auxiliary maintenance predicates P+ and
P− can be used as a basis for implementing continuous queries or pub-
lish/subscribe systems, which are used to monitor a flow of data. This mon-
itoring can use the extensions of P+ and P− as a basis for notification
messages that are sent to the subscribers.

– Interoperability with systems of limited inferencing capabilities: We can use
materialization to explicate data for clients that cannot entail information on
their own. In particular, we can store materializations in relational databases
which are agnostic about the semantics of the data but may be used for fast
query answering.
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A Appendix

The reader may note that OoM is an acronym for ”Out Of Memory”, i.e. the
prototypical implementation could not deal with the problem size.

Original Query D NS NI P Change Orig Average Minimum Maximum
Taxonomy 3 5 5 0 10 197 80 491
Taxonomy 4 5 5 0 10 373 290 571
Taxonomy 5 5 5 0 10 1767 1482 2463
Taxonomy 3 5 5 0 15 147 60 311
Taxonomy 4 5 5 0 15 378 280 581
Taxonomy 5 5 5 0 15 1765 1373 2464

DL-Like Ontology 3 5 5 5 10 310 170 640
DL-Like Ontology 4 5 5 5 10 2764 2523 3475
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 263 150 511
DL-Like Ontology 4 5 5 5 15 2774 2523 3515
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 152 70 341
DB-Like Conjunctive Query 4 5 5 5 10 482 310 701
DB-Like Conjunctive Query 5 5 5 5 10 2165 19963 2403
DB-Like Conjunctive Query 3 5 5 5 15 172 70 430
DB-Like Conjunctive Query 4 5 5 5 15 425 301 701
DB-Like Conjunctive Query 5 5 5 5 15 2078 1722 2374
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Setup Maintenance D NS NI P Change Average Minimum Maximum
Taxonomy 3 5 5 0 10 305 200 441
Taxonomy 4 5 5 0 10 1347 1212 1622
Taxonomy 5 5 5 0 10 18391 16694 19318
Taxonomy 3 5 5 0 15 245 141 251
Taxonomy 4 5 5 0 15 1382 1232 1683
Taxonomy 5 5 5 0 15 18293 16714 19017

DL-Like Ontology 3 5 5 5 10 355 230 531
DL-Like Ontology 4 5 5 5 10 3715 2894 4747
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 368 241 571
DL-Like Ontology 4 5 5 5 15 3720 2894 4757
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 265 151 431
DB-Like Conjunctive Query 4 5 5 5 10 1464 1322 1663
DB-Like Conjunctive Query 5 5 5 5 10 18536 16935 19999
DB-Like Conjunctive Query 3 5 5 5 15 272 160 440
DB-Like Conjunctive Query 4 5 5 5 15 1467 1352 1652
DB-Like Conjunctive Query 5 5 5 5 15 18536 16905 20019

Removing Rules D NS NI P Change Average Minimum Maximum
Taxonomy 3 5 5 0 10 1386 1292 1592
Taxonomy 4 5 5 0 10 7581 7291 8352
Taxonomy 5 5 5 0 10 494726 227747 717452
Taxonomy 3 5 5 0 15 1452 1292 1772
Taxonomy 4 5 5 0 15 7615 7330 8372
Taxonomy 5 5 5 0 15 273874 189933 386005

DL-Like Ontology 3 5 5 5 10 2979 2864 3195
DL-Like Ontology 4 5 5 5 10 52613 47128 65214
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 33128 3055 3555
DL-Like Ontology 4 5 5 5 15 61979 50944 66395
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1492 1382 1722
DB-Like Conjunctive Query 4 5 5 5 10 8011 7281 8732
DB-Like Conjunctive Query 5 5 5 5 10 517994 284389 723009
DB-Like Conjunctive Query 3 5 5 5 15 1557 1422 1783
DB-Like Conjunctive Query 4 5 5 5 15 8112 7822 8723
DB-Like Conjunctive Query 5 5 5 5 15 507760 132901 709009



Removing Facts D NS NI P Change Average Minimum Maximum
Taxonomy 3 5 5 0 10 1302 1282 1332
Taxonomy 4 5 5 0 10 7328 7281 7361
Taxonomy 5 5 5 0 10 631956 487551 759261
Taxonomy 3 5 5 0 15 1301 1291 1312
Taxonomy 4 5 5 0 15 7350 7340 7371
Taxonomy 5 5 5 0 15 542294 381628 650265

DL-Like Ontology 3 5 5 5 10 3071 2974 3184
DL-Like Ontology 4 5 5 5 10 56754 56371 57002
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 3242 3125 3355
DL-Like Ontology 4 5 5 5 15 58339 58104 58655
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1402 1392 1412
DB-Like Conjunctive Query 4 5 5 5 10 7991 7952 8022
DB-Like Conjunctive Query 5 5 5 5 10 537931 299260 787843
DB-Like Conjunctive Query 3 5 5 5 15 1409 1382 1422
DB-Like Conjunctive Query 4 5 5 5 15 7876 7841 7901
DB-Like Conjunctive Query 5 5 5 5 15 424565 292671 482925

Adding Rules D NS NI P Change Average Minimum Maximum
Taxonomy 3 5 5 0 10 1317 1252 1463
Taxonomy 4 5 5 0 10 7265 7240 7290
Taxonomy 5 5 5 0 10 559407 393666 706696
Taxonomy 3 5 5 0 15 1286 1251 1332
Taxonomy 4 5 5 0 15 7308 7291 7331
Taxonomy 5 5 5 0 15 464588 247826 611980

DL-Like Ontology 3 5 5 5 10 3009 2834 3345
DL-Like Ontology 4 5 5 5 10 51864 47047 65444
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 3307 2884 3565
DL-Like Ontology 4 5 5 5 15 61283 47528 67037
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1469 1392 1662
DB-Like Conjunctive Query 4 5 5 5 10 8051 7801 8523
DB-Like Conjunctive Query 5 5 5 5 10 400638 150226 541619
DB-Like Conjunctive Query 3 5 5 5 15 1462 1422 1552
DB-Like Conjunctive Query 4 5 5 5 15 7936 7902 7981
DB-Like Conjunctive Query 5 5 5 5 15 484394 141163 691164



Adding Facts D NS NI P Change Average Minimum Maximum
Taxonomy 3 5 5 0 10 1284 1262 1312
Taxonomy 4 5 5 0 10 7310 7270 7380
Taxonomy 5 5 5 0 10 649123 522761 781173
Taxonomy 3 5 5 0 15 1367 1282 1612
Taxonomy 4 5 5 0 15 7310 7271 7350
Taxonomy 5 5 5 0 15 648495 576319 756978

DL-Like Ontology 3 5 5 5 10 3620 3565 3685
DL-Like Ontology 4 5 5 5 10 136128 134463 137928
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 3790 3725 3895
DL-Like Ontology 4 5 5 5 15 90277 89940 90910
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1399 1392 1402
DB-Like Conjunctive Query 4 5 5 5 10 7931 7761 8012
DB-Like Conjunctive Query 5 5 5 5 10 714216 460882 878814
DB-Like Conjunctive Query 3 5 5 5 15 1434 1412 1452
DB-Like Conjunctive Query 4 5 5 5 15 8011 7891 8262
DB-Like Conjunctive Query 5 5 5 5 15 763873 482964 955724
Query on Materialization D NS NI P Change

Taxonomy 3 5 5 0 10 0
Taxonomy 4 5 5 0 10 0
Taxonomy 5 5 5 0 10 1331
Taxonomy 3 5 5 0 15 0
Taxonomy 4 5 5 0 15 0
Taxonomy 5 5 5 0 15 1252

DL-Like Ontology 3 5 5 5 10 10
DL-Like Ontology 4 5 5 5 10 0
DL-Like Ontology 5 5 5 5 10 OoM
DL-Like Ontology 3 5 5 5 15 0
DL-Like Ontology 4 5 5 5 15 0
DL-Like Ontology 5 5 5 5 15 OoM

DB-Like Conjunctive Query 3 5 5 5 10 0
DB-Like Conjunctive Query 4 5 5 5 10 0
DB-Like Conjunctive Query 5 5 5 5 10 1633
DB-Like Conjunctive Query 3 5 5 5 15 0
DB-Like Conjunctive Query 4 5 5 5 15 0
DB-Like Conjunctive Query 5 5 5 5 15 1282
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