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Abstract

A recent verification study [Niederer et al., Phil. Trans. Royal Soc. A, 2011] compared eleven
large-scale cardiac electro-physiology solvers on an unambiguously-defined common problem.
An unexpected amount of variation was observed between the codes, including significant
error in conduction velocity in the majority of the codes at certain spatial resolutions. In
particular, the results of the six finite element codes varied considerably, despite each us-
ing the same order of interpolation. In this present study, we compare various algorithms
for cardiac electro-physiological simulation, which allows us to fully explain the differences
between the solvers. We identify the use of mass lumping as the fundamental cause of the
largest variations—specifically, the combination of the commonly-used techniques of mass
lumping and operator splitting, which results in a slightly different form of mass lumping
to that supported by theory and leads to increased numerical error. Other variations are
explained through the manner in which the ionic current is interpolated. We also investigate
the effect of different forms of mass lumping in various types of simulation.

Keywords: numerical methods, finite element, operator splitting, mass lumping, verifica-
tion

1 Introduction

For more than half a century, computational models of cardiac electro-physiology have been
used to contribute to the study of cardiac activity, and many codes have been developed in the
last few decades which simulate cardiac electrical activity at the tissue or whole-organ level.
Up until very recently, however, there had been no attempt made to systematically compare
different codes on a common problem, in order to verify their accuracy against one another.
This was rectified in [1], in which eleven different cardiac electro-physiology codes were
used to compute the solution of a carefully-chosen and unambiguously-defined benchmark
problem. The benchmark involved determining the electrical activity within a cuboid region
of tissue using the monodomain equation, with particular choices of transversely isotropic
conductivities, cell model and parameter values. The tissue was stimulated in a region at one
corner of the mesh and node-wise activation times recorded for each of the eleven simulators.
For each code, the benchmark was solved with three choices of spatial stepsize, h = 0.01,
0.02 and 0.05cm, and three choices of timestep, ∆t = 0.005, 0.01 and 0.05ms. The results
were somewhat surprising.

Firstly, even on the finest mesh and with the smallest timestep, there was a significant
range of results between the codes. For example, the activation time of the node at the
opposite corner of the tissue to that stimulated—essentially, the time for total depolarisation
of the tissue—varied between 37.8ms and 48.7ms between the codes. Rather concerningly, it
was not possible to confidently predict the correct value of this quantity, even to the nearest
millisecond, using the combination of results of all the codes. This is particularly worrying
since this spatial resolution, 0.01cm, is smaller than that commonly accepted in cardiac
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Figure 1: Activation time across a diagonal line through a cuboidal tissue, using the bench-
mark problem, for a number of different electro-physiology solvers. This figure is reproduced
from [1], and compares a number of solvers, in contrast to the remainder of the paper, which
compares algorithms written in one solver. Red lines represent solutions using a spatial
stepsize of h = 0.01cm, green lines solutions with h = 0.02cm, and blue lines h = 0.05cm.
Code A is Chaste, Code H is Fenics, and codes A, B, C, E, F and H are finite element codes.
Codes D, G, I, J, and K use finite differences. Figure reproduced with permission.
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modelling as ‘suitably fine’. Significantly larger spatial stepsizes are employed in simulation
studies—for example, studies have used average edge-lengths of 0.03cm [2], 0.046cm [3], and
0.03–0.05cm [4]. Even a highly-detailed rabbit mesh made up of 24.2 million elements [5]
has a spatial resolution of 0.0125cm.

The second notable result was that all but two of the eleven codes displayed a very
large reduction of conduction velocity (CV) on the lowest resolution meshes, as illustrated in
Figure 1, which is reproduced from the benchmark paper [1]. Specifically, these nine codes
reported conduction velocities that were approximately 2.5-3 times slower on the 0.05cm
meshes compared to the 0.01cm meshes, i.e. errors of the order of 200% or more. Whilst
some error is naturally expected at this resolution, the magnitude of the error is large, and
the fact that two codes did not exhibit this error indicates that it can be avoided (even
without using higher-order schemes).

The eleven codes between them made use of a wide range of numerical methods. Five
codes used the finite difference method, six the finite element (FE) method. Of the FE codes,
five used operator splitting of the reaction term from the diffusion term in the monodomain
equations, while the other code employed a traditional FE discretisation. (All of these
techniques will be discussed more completely in Section 2). Three of the FE codes used
tetrahedral meshes, the other three hexahedral. All the FE codes used low-order schemes
(linear basis functions).

The two codes that did not exhibit the large conduction velocity decrease on the coarsest
meshes are Chaste [6, 7], developed in the University of Oxford, and Fenics [8], developed at
Simula, Norway. Both are FE codes. Chaste uses a traditional FE approach, whereas Fenics
uses operator splitting. The main aim of this paper is to identify the fundamental differences
in the algorithms employed by Chaste/Fenics and the other FE codes that caused the large
difference in results on the benchmark problem. This was initially very unclear, but after
some preliminary analysis we (the Chaste development team) suggested that it was mass
lumping that was causing the spurious slow-down of conduction velocity in the other finite
element codes. Mass lumping, which will be described in more detail in Section 2, involves
replacing the mass matrix, a matrix which arises in the FE discretisation of the equations,
with a diagonal matrix whose entries are the sums of the rows of the original matrix. It was
used in all four finite element codes that displayed CV slow-down. However, as we shall see,
the answer is more subtle than just ‘the use of mass lumping’.

In this paper, we compare a number of FE-based numerical algorithms for cardiac electro-
physiology. The choice of algorithms to be compared is motivated by the aim of understand-
ing the results in [1]. All the algorithms are based on a common time and space discretisation,
and are all implemented in the same code, Chaste. By comparing the results of these algo-
rithms on a set of test problems (including the benchmark problem defined in [1]), we are
able to gauge the error induced by making certain algorithmic changes, such as introducing
mass lumping. Note that we do not attempt to fully reproduce the methods employed by
the other solvers. Instead, by making small changes to a common algorithm run using a
single code, we are able to determine the impact of these different FE methods. We then
use the insight obtained to interpret the results in [1].
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We do not include any finite difference methods in our comparison. Whilst this paper
is mostly concerned with explaining the FE results in the benchmark paper [1], the link
between the finite difference and finite element results will also be discussed in Section 5.2.

Note that we will only touch upon the efficiency of different schemes in this paper. Finite
difference methods will generally be as fast or faster than FE schemes, and mass lumping
will usually lead to reduced computational costs. In particular, no linear system solve is
required when mass lumping is employed with explicit time-discretisations, which can be
a huge computational saving. This paper pertains instead to accuracy of given schemes
at given mesh resolutions. This can be used to inform simulation studies of appropriate
stepsizes based on scheme and allowable numerical error. The question of which scheme is
most efficient given accuracy constraints is outside the scope of this paper.

We begin in Section 2 where we write down the governing equations and describe the
numerical methods compared in this paper, which include operator splitting and two forms
of mass lumping: (i) full-lumping, where the lumped mass matrix is used on both the time-
derivative and reaction terms of the parabolic PDE; and (ii) half-lumping, where mass lump-
ing is used only on the time-derivative term. We shall note that operator splitting can only
correspond to full-lumping. In Section 3 we survey the use of mass lumping in the cardiac
simulation literature as well as stating a theorem which guarantees O(h2) convergence of a
half-lumped scheme. Next, in Section 4, we test various schemes on the benchmark problem,
before also investigating the isotropic and cardiac geometry cases, and looking at conver-
gence of a 1D problem. We then fully interpret the results of [1] in Section 5. We conclude
by discussing our results in Section 6.

2 Methods

2.1 Governing equations and finite element schemes

Let Ω ⊂ R
3 denote the region occupied by the cardiac tissue. In the monodomain equa-

tions [9], the transmembrane voltage, V , is governed by

χ

(

C
∂V

∂t
+ Iion(u, V )

)

−∇ · (σ∇V ) = Istim, (1a)

∂u

∂t
= f (u, V ) , (1b)

where σ is the conductivity tensor, C the capacitance across the membrane, χ the surface-
area-to-volume-ratio, and Istim a stimulus current. u are a set of cell-level variables whose
dynamical behaviour is governed by the ordinary differential equations (ODEs) given by f
and which couple back to the partial differential equation (PDE) through the ionic current
Iion.

Numerical solution of the monodomain equations has been carried out using both the
finite difference method (see [10] for a discussion) and the finite element method [11]. The FE
method has the advantage of handling derivative boundary conditions on irregular geometries
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such as the heart in a straightforward, systematic manner. In the finite difference approach
it is natural to solve cell model ODEs at the nodes. In the finite element method however,
the ionic current is technically required in the interior of elements, and one option is to use
a cell model at each quadrature point of each element. This can be prohibitively expensive,
and most finite element simulators instead use cell models at nodes.

Chaste, which is used for all simulations in this paper, uses a semi-implicit time-discretisation
where the diffusion term is treated implicitly and the reaction (ionic current) term treated
explicitly (more details are given in [12]). Although other options are used by the other ten
codes surveyed the benchmark paper [1], we are more concerned with errors as the spatial
stepsize h is varied, and since the results of all the FE codes on the benchmark problem were
highly insensitive to the chosen timesteps, we do not expect the choice of time-discretisation
to affect our results.

Let the standard piecewise-linear basis functions be ψ1, . . . , ψN , corresponding to the
nodes x1, . . . ,xN and satisfying ψj(xk) = δjk. Letting Vn = (V n

1 , . . . , V n
N ) be a vector of

the nodal values of the voltage at time tn, a standard finite element spatial discretisation of
the semi-implicit time-discretisation of (1a) is [7] (for the rest of this section we drop the
stimulus current, which would add a term to the definition of bn below which we assume is
integrated exactly):

(

χC

∆t
M + K

)

Vn+1 =
χC

∆t
MVn + bn, (2)

where Mjk =
∫

ψjψk d3x is the mass matrix, Kjk =
∫

∇ψj ·σ∇ψk d3x is the stiffness matrix,
and

bn
j = −

∫

Ω

χIion(u
n+1, V n)ψj d3x. (3)

Ionic current and state-variable interpolation

To evaluate bn numerical integration is used, and the ionic current is therefore required at
quadrature points. We have in previous work [12] evaluated two ways of doing this: (i) ionic
current interpolation (ICI), in which the nodal values of the ionic current are interpolated
linearly onto the quadrature point, or (ii) state-variable interpolation (SVI), where the state-
variables u are interpolated instead and the ionic current evaluated using this. The options
lead to the following linear systems

(

χC

∆t
M + K

)

Vn+1 = M

(

χC

∆t
Vn − χFn

)

, for ICI (4)

(

χC

∆t
M + K

)

Vn+1 = M

(

χC

∆t
Vn − χFn

)

+ cn, for SVI (5)

Here Fn is the vector of nodal ionic currents, and

cn
j = χ

∫

T

(

I ICI
ion − ISVI

ion

)

ψj d3x
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is a ‘correction term’ that involves removing, on a selection of elements, T , the linearly
interpolated ionic current (coming from the −χMFn term in (5)) and replacing it with an
ionic current computed through state-variable interpolation. This is only done on a selection
of elements (specifically elements on which the ionic current is not small, i.e. the wavefront),
to maintain efficiency—using state-variable interpolation is in general expensive. For full
details see the hybrid scheme discussed in [12]. We include SVI in this study as it was used
to produce the Chaste results in [1].

Operator splitting (OS)

The alternative approach that was taken by all the other finite element codes is reaction-
diffusion operator splitting [13], in which the PDE (1a) is broken down into a set of nodal
ODEs, C dV

dt
= −Iion(u, V ); and a diffusion (not reaction-diffusion) PDE, χC ∂V

∂t
= ∇·(σ∇V ).

These two equations are solved in series, and this can be done in a manner that, for example,
is second-order in time. This is very common in cardiac electro-physiology [14, 15, 13, 16, 17].

OS is very similar to ICI. In particular, in the case of simple (first-order) Godunov
splitting [13], with forward Euler for the ODEs and backward Euler for the PDEs, it is
formally identical to ICI (4). This can be trivially seen by writing this case as follows (using
an intermediate variable Vn+∗):

CVn+∗ = CVn − ∆tFn, (6a)
(

χC

∆t
M + K

)

Vn+1 = M

(

χC

∆t
Vn+∗

)

, (6b)

and noting that substituting (6a) in (6b) produces ICI (4). When other splitting schemes
such as second-order Strang splitting, and/or alternative ODE solvers are used, the method
will not be identical to ICI (4), but the differences will only be in the time-discretisation
part of the scheme. The method will always have, in common with ICI, a vector of nodal
values of ionic current, multiplied by the mass matrix.

Mass Lumping

Equations (4)–(6b) illustrate the manner in which the mass matrix arises in the linear sys-
tems. Mass lumping involves replacing the mass matrix M with a diagonal matrix ML

satisfying

(ML)ij =

{

∑

k Mik if i = j

0 if i 6= j

This is in fact related to using the trapezoidal rule to compute integrals, rather than say
Gaussian quadrature [18], an O(h) integration error.

When using mass lumping with ICI we can distinguish between two alternatives, which
we will refer to as full-lumping and half-lumping. For full-lumping the lumped mass matrix
is used on both the voltage and the reaction terms, whereas for half-lumping it is only used
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on the voltage terms:

(

χC

∆t
ML + K

)

Vn+1 =
χC

∆t
MLV

n − χMLF
n for full-lumping (7)

(

χC

∆t
ML + K

)

Vn+1 =
χC

∆t
MLV

n − χMFn for half-lumping (8)

Note that when mass lumping is used together with OS (lumping the two mass matrices
in (6b)), it automatically means that the lumped mass matrix has multiplied the reaction
terms. In other words, mass lumping with operator splitting necessarily means full-lumping.

2.2 Test problems

We will consider four problems when comparing the schemes:
The anisotropic benchmark - this is precisely the benchmark problem [1]. The region

is cuboid and of size 2cm by 0.7cm by 0.3cm, it has fibres defined to be parallel to the
long (2cm) direction, and transversely isotropic conductivities. The fibre conductivity is
1.334mS/cm, the cross-fibre conductivity is 0.176mS/cm, and the other parameters are χ =
1400/cm and C = 1µF/cm2. The ten Tusscher 2006 (epicardial variant) cell model [19] is
used. A cubic region of size 0.15cm at one corner of the tissue is stimulated, for 2ms at
-50000µA/cm3.

The isotropic benchmark - this is identical to the anisotropic benchmark except we
set the fibre and cross-fibres conductivities to each equal 1.334mS/cm.

1D convergence - to study convergence using more general spatial-temporal norms, we
will also run simulations on a 1D fibre. This is the benchmark definition restricted to one
dimension (the X-direction), taking the tissue to be of length 0.5cm. The stimulus needs
to be continuous to obtain expected convergence rates, so the stimulus used here increases
linearly, from -200000µA/cm3 at x = 0, to 0 at x = 0.05cm.

Realistic geometry - here we use a detailed rabbit bi-ventricular mesh [5], which is
comprised of 4.3m nodes and 24.2m elements and has an average edge-length of 0.0125cm.
Fibre directions are provided, and transversely isotropic conductivities are used. All parame-
ter values are the same as in the anisotropic benchmark. The Luo-Rudy 1991 cell model [20]
is used, and a small region at the apex of the tissue is stimulated.

3 Mass lumping in cardiac electro-physiology

The use of mass lumping in the context of the FE solution of the mono/bidomain equations
is common practice, with various authors having independently derived FE discretisations
of the mono/bidomain equations including mass lumping. The choice is often justified by
the savings in computational cost that the technique provides. However, we can find no
comprehensive analysis of the error introduced. To the best of our knowledge, Vigmond et
al. [21] and Pennacchio et al. [22] are the first works to mention the use of mass lumping
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for the FE solution of the bidomain equations. The first article chooses the parabolic-
elliptic formulation of the bidomain equations, decoupling the PDEs and uses an explicit
time discretisation on the parabolic PDE, resulting in a linear system Ax = b with A
being a mass matrix. Mass lumping then avoids the need to solve a linear system, since
a lumped mass matrix is trivially invertible. The second article chooses the parabolic-
parabolic formulation and solves both PDEs together, which leads to a linear system with a
2×2 block structure with mass matrices in the (0, 1) and (1, 0) blocks. Here, the use of mass
lumping reduces matrix bandwidth, storage requirements and, in general, the computational
cost of linear system solution algorithms involving matrix-vector products (e.g. Krylov
subspace methods), or updates based on the coefficients of the matrix (e.g. stationary
iterative methods). However, neither of these two publications analyse the error introduced,
or provide references to justify the decision to introduce the mass lumping approximation.
We believe that the justification for mass lumping in these works is implicit, and based on
classic results in FE analysis proving that the order of convergence of the FE solution of
parabolic problems is unaffected by mass lumping. Furthermore, mass lumping is often used
in several fields of scientific simulation and can be therefore considered “common practice”.

The analytical proof that mass lumping is justifiable is given in the works of Thomée
and Chen [23, 18]. Theorem 15.1 of [18] gives the following bound: for the heat equation
ut = ∇2u + f , with boundary condition u = 0 on ∂Ω and initial condition u(0, x) = u0(x)
(we assume u0 lies in the FE solution space for the purposes of stating this theorem), and
under further assumptions, the solution, uh(t), of the semi-discrete problem in which the
mass matrix multiplying the time-derivative has been lumped, satisfies

‖uh(t) − u(t)‖L2(Ω) ≤ Ch2

(

‖u0‖H2(Ω) + ‖u(t)‖H2(Ω) +

(
∫ t

0

‖ut‖
2
H2(Ω) ds

)1/2
)

(9)

where C is a constant dependent only on Ω. A similar theorem states that the error in the
H1(Ω) norm is O(h). (Here Hp(Ω) denote standard Sobolev spaces). The conclusion is that
mass lumping does not affect rates of convergence. However, this assumes that the

∫

fψj dV
terms in the FE discretisation (i.e. the terms corresponding to bn in (2)) are integrated
exactly, and therefore only applies to half-lumping.

Wendlend et al. [24] provide a comprehensive empirical survey on the use of mass lumping
for the FE solution of advection-diffusion equations. Here, the authors point out the lack of
agreement regarding the suitability of the technique and identify publications both favourable
and contrary to the use of mass lumping. They evaluate the impact of mass lumping on two
simple benchmarks of diffusion-dominated and advection-dominated transport.

To the best of our knowledge, only two papers discuss the effect of mass lumping in
cardiac electro-physiological simulations. In [25], it is stated that FE convergence accuracy
is unchanged by lumping but that errors may be increased by a constant factor, which can
be observed as wave slow-down. No precise results are presented however, and the effects of
anisotropy, or the difference between full-lumping and half-lumping, is not discussed. A very
recent paper [26] includes a study of the effect of lumping, and reaches some similar conclu-
sions to this paper. The present article differs from [26] by studying numerical convergence
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with decreasing h, and examining more test cases.

4 Results

4.1 Anisotropic benchmark

In this section, we repeat the anisotropic benchmark simulation described in Section 2.2,
with five numerical schemes:

1. SVI without mass lumping

2. ICI without mass lumping

3. Strang operator splitting (OS) without mass lumping

4. ICI with full-lumping

5. ICI with half-lumping.

The results of the schemes are given in Figure 2.
Firstly, we observe that the results for OS and ICI are almost identical, which is as

expected given the discussion on their spatial similarities. For this reason, for the remainder
of this paper we will often refer to ICI and OS together. Hence, for OS with mass lumping,
see the ICI with full-lumping results.

The results of SVI compared with ICI/OS are noticeably different, even on the finest
mesh—the final node depolarises after 42ms using SVI compared to 38ms for ICI/OS. That
ICI leads to overly large conduction velocities, even at mesh resolutions of 0.01cm, was
observed in [12], where it is discussed in detail.

The ICI with full-lumping results in Figure 2 show significantly increased activation times
(i.e. significantly decreased conduction velocities) over ICI with no lumping. Even on the
finest mesh, the activation time of the final node is noticeably larger for ICI with full-lumping.
On the coarsest mesh, the relative error in the conduction velocity is huge, of the order to
250%. Finally, consider the ICI with half-lumping results. Here, the large slow-down of CV
on the coarse meshes is not observed; in fact CV increases with coarsening.

4.2 Isotropic benchmark

Next we run the schemes on the isotropic benchmark simulation described in Section 2.2,
in order to investigate the extent to which it is small cross-fibre conductivities that causes
the large errors observed in the anisotropic benchmark. Since OS has been shown to be
virtually identical to ICI, we now consider only: SVI; ICI; ICI with full-lumping; and ICI
with half-lumping.

The results are given in Figure 3. Here the coarse mesh conduction velocity errors for
full-lumping are substantially smaller, although still significant (the activation time of the
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Figure 2: All figures except bottom right: Benchmark simulation results using various meth-
ods. Activation time across a diagonal line in the mesh, using stepsizes of: h = 0.01cm
(red), h = 0.02cm (green) and h = 0.05cm (blue). This figure should be compared with
Figure 1. Bottom right: Depolarisation time of the opposite-corner-node, against h, for:
SVI (black line), ICI (blue), operator splitting (red), ICI with full-lumping (purple), ICI
with half-lumping (dashed purple).
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final node for ICI with full-lumping on the coarsest mesh is about 49ms, compared to about
35ms for simulations on the finest mesh). The half-lumping results are again an improvement
over full-lumping, although the errors introduced are not particularly small—about half the
magnitude of the full-lumping errors.

4.3 1D spatio-temporal convergence analysis

The benchmark survey paper used a very simple metric—nodal activation times—to com-
pare results, as comparing spatio-temporal results would have required multiple international
groups providing many gigabytes of data, probably in a variety of file formats. More ap-
propriate metrics, infeasible for the benchmark paper but applicable here, are the following
spatio-temporal norms on [0, T ] × Ω:

‖uh‖L∞(0,T ;L2(Ω)) = max
t∈[0,T ]

‖uh(t)‖L2(Ω), ‖uh‖L2(0,T ;H1(Ω)) =

∫ T

0

‖uh(t)‖H1(Ω) dt. (10)

(Or more precisely, essential supremum instead of maximum in the definition of L∞(0, T ; L2(Ω)),
although these are equivalent for discrete solutions). We refer to these as L∞(L2) and L2(H1)
norms.

Since exact solutions are not available for the monodomain equation with physiological
cell models, we consider a one-dimensional analogue of the benchmark problem, as described
in Section 2.2, for which we can compare against a solution on a very fine mesh. We
also consider the heat equation with a reaction term f(x) = cos(πx) (equivalent to the
monodomain equation with non-physiological parameters and cell model), for which an exact
solution is easily computed, so that precise numerical error can be determined. In both these
experiments we let h → 0 with ∆t/h fixed.

Figure 4(a) displays the exact error in these two norms for the heat equation problem
using: (i) ICI; (ii) ICI-with-full-lumping; (iii) and ICI-with-half-lumping. In all cases O(h2)
convergence is observed in the L∞(L2) norm and O(h) convergence in the L2(H1) norm.
These are the rates predicted assuming exact integration of the reaction term, with or without
half-lumping. We see that (for this example) the approximations of ICI, and of full-lumping,
do not affect convergence rate.

The results for the 1D benchmark problem, using physiological parameter values and cell
model, are given in Figure 4(b). The results suggest that ICI, full- and half-lumping all pro-
duce nearly identical convergence results for small enough h, but that there are differences
at the higher spatial range, h ∈ [0.01, 0.05]cm. At these stepsizes, either form of lumping
introduces error in the L∞(L2) norm, and full-lumping is slightly worse than half-lumping
and ICI in the L2(H1) norm. The main point is that the spatial stepsizes used in simula-
tion studies are certainly greater than those required to obtain the assymptoptic rates of
convergence predicted for the schemes.
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Figure 3: All figures except bottom left: Isotropic version of the benchmark simulation,
using various methods. Activation time across a diagonal line in the mesh, using stepsizes of:
h = 0.01cm (red), h = 0.02cm (green) and h = 0.05cm (blue). Bottom left: Depolarisation
time of the opposite-corner-node, against h, for: SVI (black line), ICI (blue), ICI with
full-lumping (purple), ICI with half-lumping (dashed purple).
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Figure 4: Errors in different norms and using different schemes on (a) the heat equation
with reaction term f(x) = cos(πx), and (b) the monodomain equation with a physiological
cell model. The results in (a) are exact errors, the results in (b) are estimates based on
comparing against a solution on a more refined mesh. In both plots the dotted lines are
the error in the L∞(L2) norm and the solid lines are the error in the L2(H1) norm, and the
schemes are: ICI (blue); ICI with full-lumping (black); and ICI with half-lumping (purple).

4.4 Cardiac geometry

Finally, we consider ICI, ICI with full-lumping, and ICI with half-lumping on a realistic
rabbit geometry, as described in Section 2.2. On a realistic geometry with realistic fibre
orientations, errors in fibre direction CV and errors in cross-fibre CV will interact in a
complicated manner which is difficult to predict.

The results are given in Figures 5 and 6. This mesh is very fine compared to many to
have been used in simulation studies. We observe that the effect of full-lumping cannot
be neglected even on this mesh: despite the high-resolution, full-lumping very noticeably
decreases total conduction velocity. There is little difference between the results using no
lumping and half-lumping however—it is very difficult to distinguish differences in the images
in Figure 5, although there are some very small variations, in particular just behind the
wavefront.

The location of the full-lumped wave after 80ms is approximately equal to the location
of the non-lumped wave after about 74ms, so we can estimate the change in CV due to
full-lumping to be about 8% at this resolution (0.0125cm). We expect the disparities to
increase on coarser meshes.
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Figure 5: Voltage after 50ms (top row) and 80ms (bottom row) on a realistic rabbit geometry
(average edge-length is 0.0125cm), using no lumping (left); half-lumping (middle); and full-
lumping (right) (all ICI).
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Figure 6: On a fine rabbit heart mesh (average edge-length of 0.0125cm), for the 12 high-
lighted nodes in the left figure, the right figure plots the activation time versus z (distance
along the long axis), for no mass lumping (blue), half-lumping (purple) and full-lumping
(black) (all ICI)

5 Interpretation of the benchmark comparison paper [1]

5.1 FE results

We now use the results in the previous section to interpret the results in [1]. To explain the
differences between the various FE codes in the benchmark paper, compare Figures 1 and 2.

Firstly, the SVI results in Figure 2 plot the same data as the Chaste results in Figure 1
(code A). Now consider Fenics (code H in Figure 1), which used OS without mass lumping,
but would have differed in other respects to the simulations we carried out. We see that
the ICI/OS without mass lumping results (Figure 2, top right) are very closely matched to
the Fenics results in Figure 1, suggesting that the difference between the Chaste and Fenics
results can be mainly attributed to the use of SVI.

The remaining finite element codes in Figure 1 (codes B, C, E and F) all used operator
splitting and mass lumping (full-lumping), but they differed in other aspects of their schemes.
The ICI with full-lumping results in Figure 2 (which we expect to be very similar to OS with
full-lumping) are very similar to the results for these codes in Figure 1 (compare Figure 2,
middle-left, with codes B, C, E and F in Figure 1). Since we know that half-lumping does
not lead to a large slow-down of CV on coarse meshes, this is extremely strong evidence that
it is the use of full mass lumping, arising from the combination of operator splitting and
lumped mass matrices, that is the fundamental cause of the differences between these FE
codes and Chaste/Fenics.
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5.2 FE with full-lumping interpreted as finite differences

We see from Figure 1 that the four FE codes which used operator splitting with mass
lumping (full-lumping) produced very similar results to the five finite difference codes. This
is unsurprising. Consider the ICI scheme, and suppose we have a 1D regular mesh, and
that the conductivity is constant in space. It is well-known that on a regular 1D grid the
stiffness matrix arising in the FE method is tri-diagonal with entries −σ

h
, 2σ

h
, −σ

h
on each

row which corresponds to an internal node—i.e. the standard second-order finite difference
operator multiplied by −hσ. Also, the mass matrix is tri-diagonal with entries h

6
, 2h

3
, h

6
on

each (internal) row, which becomes upon lumping the identity matrix multiplied by h. The
use of full-lumping therefore converts (4) into hχC

∆t
Vn+1 + KVn+1 = hχC

∆t
Vn − hχFn, which,

alternatively stated, is

χC
V n+1

i − V n
i

∆t
− σ

V n+1
i−1 − 2V n+1

i + V n+1
i+1

h2
= −χF n

i ,

a standard finite difference approximation. The point is that full-lumping causes the reaction
term to be treated locally in the FE method (rather than being integrated), as with finite
differences. In higher dimensions, or with operator splitting, or other time-discretisations,
the FE discretisation will not be identical to this finite difference scheme, but full-lumping
will still lead to the reaction terms being treated in this localised manner, again, as with
finite differences.

Note that it follows that all comments in this paper on the accuracy of ICI with full-
lumping (in the cardiac electro-physiological setting) can also be applied to finite differences
for cardiac electro-physiology.

6 Discussion

The aim of this paper has been to explain reported differences between solutions obtained
using several cardiac electro-physiology solvers on an unambiguously-defined common prob-
lem. To do this, we have compared a selection of algorithms for cardiac electro-physiological
simulation. These were all based on a common time and space-discretisation but differed in:
(i) the manner in which the ionic current was computed—interpolation of the nodal ionic
currents onto quadrature points (ICI), which is related to operator splitting methods, versus
interpolation of cell state-variables onto quadrature points (SVI)—and (ii) how much mass
lumping is applied. The choice of algorithms studied was motivated by the aim of explain-
ing [1], and therefore there are various possibilities that have not been considered, such as
lumping only the mass matrix multiplying reaction terms, or lumping the time-derivative
mass matrices in the SVI scheme. These are left for further work.

By observing the impact of these approximations, we were able to interpret the results
of the benchmark paper. Differences between Chaste and Fenics were attributed to the use
of SVI, for which more details can be found in [12]. (Users of Chaste should be aware that
Chaste uses ICI by default, and that SVI must be turned on if it is required—release 2.2
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onwards, see documentation). For the remaining codes, which comprise both finite element
and finite difference solvers, conduction velocity decreased significantly as h increased. In
the finite element context, we have explained how mass lumping together with operator
splitting leads to effectively lumping a mass matrix which multiplies the nodal ionic currents
(full-lumping), which differs from standard mass lumping for which the reaction terms are
unaltered (half-lumping). We have shown how full-lumping introduces significant error over
no lumping or half-lumping, and have argued that this is the fundamental cause for the
decreased conduction velocities in the other FE codes. We have also explained why ICI or
operator splitting finite element schemes with full-lumping provide similar results to finite
difference schemes. In fact, the results can be interpreted in terms of the way in which
the ionic current (reaction term) is assimilated into the scheme: (i) for SVI the current
is evaluated by linear state-variable interpolation and integrated; (ii) for ICI with no or
half-lumping, or OS with no lumping, the current is (effectively) linearly interpolated and
integrated; and (iii) for ICI with full-lumping, OS with lumping, or finite differences, the
current is only used locally. All the schemes are convergent, but unfortunately, for commonly-
used mesh resolutions the differences are pronounced.

For most of the simulations in this paper, we used the ten Tusscher cell model (epicardial
variant) [19], since our test problems are directly derived from the benchmark problem de-
fined in [1]. The choice of cell model will also have an impact on numerical error—the choice
of cell model affects the steepness of the action potential, which affects the conduction veloc-
ity. The importance of the cell model and of integration of the ionic current on conduction
velocity is considered in more detail in [12]. We expect that this choice of physiological cell
model, with a relatively high upstroke velocity, will have the effect of magnifying numerical
errors. In particular, it should be noted that if Figure 1 was repeated with a simpler cell
model, such as the Fitz-Hugh-Nagumo model [27], the discrepancies between the results on
different meshes would be expected to be smaller, and similarly with the simulations in this
paper.

Theory which guarantees that mass lumping does not affect rates of convergence assumes
reaction terms in the FE discretisations are integrated exactly, and therefore only applies to
half-lumping methods. In the computational experiments in this paper, assymptotic rates
of convergence were identical for no lumping, half-lumping and full-lumping; however it was
shown that full-lumping generally leads to significantly greater errors than half-lumping for
practical values of spatial stepsize (h ∈ [0.01, 0.05]cm). In particular, full-lumping leads
to very large reductions in cross-fibre CV in anisotropic problems. Half-lumping leads to
less (although still appreciable) cross-fibre CV error. On a high-resolution rabbit mesh
with prescribed fibre directions and anisotropic conductivities, full-lumping conduction ve-
locities were about 8% smaller than those with no lumping or half-lumping. Even 0.01cm
spatial resolutions (corresponding to state-of-the-art anatomical detail in realistic geometry
meshes [5]) are not sufficiently small for the impact of these different implementation choices
to be neglected. (It is worth noting that this re-raises questions on the appropriateness of
the bidomain equations. Although it is not invalid to use fine meshes with edge-lengths
smaller than individual myocytes to obtain highly accurate solutions of the continuum equa-
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tions, at this resolution it may be more appropriate, and indeed more efficient, to solve a
non-continuum model.)

This paper has only focussed on the accuracy at particular mesh resolutions of the selected
numerical methods, we have not considered the computational cost of the schemes—certainly,
the less accurate schemes will often be significantly less expensive at given resolutions (for
example, explicit time-discretisations and FD or FE with half-lumping), and it may be that
the best choice is such a scheme on a suitably fine mesh. Overall, we conclude that numerical
scheme, mesh resolution, and acceptable numerical error ought to be considered carefully
together when simulation studies are performed.
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