Old-established methods in a new look: How HyPro speeds up reachability computations for hybrid systems

Stefan Schupp Erika Ábrahám

RWTH Aachen University, Germany

FLoC/ADHS 2018, Oxford, UK

Hybrid systems – Example: Thermostat

Hybrid systems – Example: Thermostat

Example trajectory:

Hybrid systems - Example: Thermostat

Example trajectory:

Set of reachable states:

Reachability problem on hybrid automata

subclasses	derivatives	conditions	bounded	unbounded	
			reachability	reachability	
timed automata	$\dot{x}=1$	$x \sim c$	decidable	decidable	
initialized		$x \in [c_1, c_2]$			
rectangular	$\dot{x} \in [c_1, c_2]$	necessary when	decidable	decidable	
automata		\dot{x} changes			
rectangular	$\dot{x} \in [c_1, c_2]$	v C [a, a]	decidable	undecidable	
automata	$X \in [C_1, C_2]$	$x \in [c_1, c_2]$	decidable	undecidable	
linear hybrid	$\dot{x} = c$	V	decidable	undecidable	
automata I	X = C	$ extit{x} \sim extit{g}_{ extit{linear}}$	decidable	undecidable	
linear hybrid	$\dot{x} = f_{linear}$	V	undecidable	undecidable	
automata II	X — I linear	$ extit{X} \sim extit{g}_{ extit{linear}}$	undecidable	undecidable	
hybrid automata	$\dot{x} = f$	$x \sim g$	undecidable	undecidable	

Reachability problem on hybrid automata

subclasses	derivatives	conditions	bounded	unbounded
			reachability	reachability
timed automata	$\dot{x}=1$	$x \sim c$	decidable	decidable
initialized		$x \in [c_1, c_2]$		
rectangular	$\dot{x} \in [c_1, c_2]$	necessary when	decidable	decidable
automata		\dot{x} changes		
rectangular	$\dot{x} \in [c_1, c_2]$	$x \in [c_1, c_2]$	decidable	undecidable
automata	$X \in [c_1, c_2]$	$x \in [c_1, c_2]$	decidable	undecidable
linear hybrid	$\dot{x} = c$	V 0.1 (Ti)	decidable	undecidable
automata I	x = c	$ extit{X} \sim extit{g}_{ extit{linear}}$	decidable	undecidable
linear hybrid	$\dot{x} = f_{linear}$	V a L Cu	undecidable	undecidable
automata II	∧ — Tlinear	$x \sim g_{linear}$	undecidable	undecidable
hybrid automata	$\dot{x} = f$	$x \sim g$	undecidable	undecidable

Impressive tool development for hybrid systems reachability analysis

■ HSolver [Ratschan et al., HSCC 2005]

(incomplete list)

- iSAT-ODE [Eggers et al., ATVA 2008]
- KeYmaera (X) [Platzer et al., IJCAR 2008]
- PowerDEVS [Bergero et al., Simulation 2011]
- SpaceEx [Frehse et al., CAV 2011]
- S-TaLiRo [Annapureddy et al., TACAS 2011]
- Ariadne [Collins et al., ADHS 2012]
- HySon [Bouissou et al., RSP 2012]
- Flow* [Chen et al., CAV 2013]
- HyCreate [Bak et al., HSCC 2013]
- HyEQ [Sanfelice et al., HSCC 2013]
- NLTOOLBOX [Testylier et al., ATVA 2013]
- SoapBox [Hagemann et al., ARCH 2014]
- Acumen [Taha et al., IoT 2015]
- C2E2 [Duggirala et al., TACAS 2015]
- Cora [Althoff et al., ARCH 2015]
- dReach [Kong et al, TACAS 2015]
- Isabelle/HOL [Immler, TACAS 2015]
- HyLAA [Bak et al., HSCC 2017]
- HyPro/HyDRA [Schupp et al., NFM 2017]

(Rigorous/verified) simulation: Besides simulation for testing, rigorous/verified simulation can be used for (bounded) reachability analysis.

Some tools: Acumen, C2E2, HyEQ, HyLAA, HySon, S-TaLiRo, PowerDEVS

Source: http://www.acumen-language.org/

Deduction: Finding and showing invariants using theorem proving. Some tools: Ariadne, Isabelle/HOL, KeYmaera

Source: http://symbolaris.com/info/keymaera.html

Bounded model checking / interval arithmetic: System executions and requirements are encoded by logical formulas; satisfiability checking tools (SMT solvers) are used for (bounded) reachability analysis.

Some tools: dReach, HSolver, iSAT-ODE

Source: http://dreal.github.io/dReach/

Over-approximating flowpipe construction: Iterative (bounded) forward reachability analysis based on some over-approximative symbolic state set representations.

Some tools: Cora, Flow*, HyCreate, HyPro/HyDRA, NLTOOLBOX, SoapBox, SpaceEx

State set representations

Most well-known state set representations

```
boxes (hyper-rectangles) [Moore et al., 2009] oriented rectangular hulls [Stursberg et al., 2003] convex polyhedra [Ziegler, 1995] [Chen at el, 2011] template polyhedra [Sankaranarayanan et al., 2008] orthogonal polyhedra [Bournez et al., 1999] zonotopes [Girard, 2005] ellipsoids [Kurzhanski et al., 2000] support functions [Le Guernic et al., 2009] [Chen et al., 2012]
```

Some needed set operations:

intersection union projection linear transformation Minkowski sum test for membership test for emptiness

■ Halfspace: set of points x satisfying $l \cdot x \le z$

- Halfspace: set of points x satisfying $l \cdot x \le z$
- Polyhedron: an intersection of finitely many halfspaces

- Halfspace: set of points x satisfying $l \cdot x \le z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

- Halfspace: set of points x satisfying $l \cdot x \le z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

- Halfspace: set of points x satisfying $l \cdot x \le z$
- Polyhedron: an intersection of finitely many halfspaces
- Polytope: a bounded polyhedron

representation	union	intersection	Minkowski sum
${\cal V}$ -representation by vertices	easy	hard	easy
${\cal H}$ -representation by facets	hard	easy	hard

■ Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$

■ Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

over-approximates flowpipe for time $[0, \delta]$ under dynamics $\dot{x} = Ax$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

disturbance!

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

disturbance!

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

disturbance!

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

$$P_0 = conv(X_0, e^{A\delta}X_0 \oplus B_1 \oplus B_2)$$

over-approximates flowpipe for time $[0, \delta]$ under dynamics $\dot{x} = Ax + Bu$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

over-approximates flowpipe for time $[\delta, 2\delta]$ under dynamics $\dot{x} = Ax$

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

- Assume: initial set X_0 , flow $\dot{x} = Ax + Bu$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i
- The first flowpipe segment:
- Reminder matrix exponential: $e^X = \sum_{k=0}^{\infty} \frac{X^k}{k!}$
- The remaining ones:

linear transformation

Minkowski sum

intersection

linear transformation

linear transformation

linear transformation

linear transformation

Reachability analysis search tree

Reachability analysis search tree

Flow* [Chen et al., CAV 2013]

- Taylor model-based approach
- non-linear dynamic
- adaptive refinement methods

Available at https://flowstar.org/

Image: Xin Chen

Has been used in a variety of verification tasks, e.g.

- biological/medical systems (glucose control, spiking neurons, Lotka Volterra equations),
- circuits (oscillators, van der Pol circuit),
- mechanical systems (jet engine model)

HyPro [Schupp et al., NFM 2017]

A free and open-source C++ library for state set representations for the reachability analysis of hybrid systems.

Available at https://github.com/hypro/hypro.

Allows the fast implementation of specialized reachability analysis methods.

HyPro/HyDRA: Structure

HyPro/HyDRA: Structure

HyPro: State set representations

Source: Xin Chen

Main functionalities of GeometricObject

Set operations:

```
X.affineTransformation(matrix A, vector b) AX + b

X.minkowskiSum(geometricObject Y) X \oplus Y

X.intersectHalfspaces(matrix A, vector b) X \cap \{y \mid Ay \leq b\}

X.satisfiesHalfspaces(matrix A, vector b) X \cap \{y \mid Ay \leq b\} \neq \emptyset

X.unite(geometricObject Y) cl(X \cup Y)
```

Main functionalities of GeometricObject

Set operations:

```
X.affineTransformation(matrix A, vector b) AX + b X.minkowskiSum(geometricObject Y) X \oplus Y X.intersectHalfspaces(matrix A, vector b) X \cap \{y \mid Ay \leq b\} X.satisfiesHalfspaces(matrix A, vector b) X \cap \{y \mid Ay \leq b\} \neq \emptyset X.unite(geometricObject Y) cl(X \cup Y)
```

Set utility functions:

```
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions
```

HyPro/HyDRA: Structure

HyPro/HyDRA: Structure

HyPro: Linear optimization

HYPRO offers different number representations: cln::cl_RA, mpq_class, double

Obstacles:

- inexact linear optimization not suitable
- exact linear optimization expensive

→ combined application

Utility

Further utility functions:

- datastructures for e.g. hybrid automata, point, halfspace
- parser for FLOW*-based syntax
- GNUPLOT plotting interface (pdf, eps and tex)
- logging

HyPro/HyDRA: Structure

HyPro/HyDRA: Structure

HyDRA techniques

- 1 Counterexample-guided abstraction refinement
- 2 Parallelization
- **3** Sub-space computations

HyDRA techniques

- 1 Counterexample-guided abstraction refinement
- 2 Parallelization
- **3** Sub-space computations

Time step length

Discretize time horizon T into N time segments:

Time step length

Discretize time horizon T into N time segments:

Discrete successors: Aggregation & clustering

Parameters such as

- state set representation,
- \blacksquare time step size δ ,
- aggregation/clustering,
- **.** . . .

influence precision as well as computational effort.

Parameters such as

- state set representation,
- lacksquare time step size δ ,
- aggregation/clustering,
- **.** . . .

influence precision as well as computational effort.

Too precise \to might not terminate within acceptable time Too coarse \to might fail to show safety

Parameters such as

- state set representation,
- \blacksquare time step size δ ,
- aggregation/clustering,
- **.** . . .

influence precision as well as computational effort.

Too precise \to might not terminate within acceptable time Too coarse \to might fail to show safety

Idea of dynamic configurations:

Use "coarse" configurations for fast analysis.

Use more "precise" configurations to falsify spurious counterexamples.

Parameters such as

- state set representation,
- \blacksquare time step size δ ,
- aggregation/clustering,
- **.** . . .

influence precision as well as computational effort.

Too precise \to might not terminate within acceptable time Too coarse \to might fail to show safety

Idea of dynamic configurations:

Use "coarse" configurations for fast analysis.

Use more "precise" configurations to falsify spurious counterexamples.

Some tools use adaptive methods, but they are hard-wired and restricted to certain parameters.

No aggregation/clustering

Time interval:

Flowpipe:

No aggregation/clustering – reduce time step length

Time interval:

Flowpipe:

No aggregation/clustering – reduce time step length

Time interval:

Flowpipe:

No aggregation/clustering - reduce time step length

Time interval:

Flowpipe:

Dynamic search tree structure

No aggregation/clustering – reduce time step length

Time interval:

Flowpipe:

Reuse and refine transition timing information.

Example computation

Example computation

Example computation

HyDRA techniques

- 1 Counterexample-guided abstraction refinement
- 2 Parallelization
- **3** Sub-space computations

Queues: (1) non-refinement (2) refinement Tasks: node, refinement level, symbolic path

Synchronization on global queues.

Synchronization on nodes for refinements.

Use balanced local and global queues.

Use balanced local and global queues.

HyDRA techniques

- 1 Counterexample-guided abstraction refinement
- 2 Parallelization
- 3 Sub-space computations

HyPro application: Sub-space computations

- Motivation: PLC-controlled plants
- High-dimensional models

HyPro application: Sub-space computations

- Motivation: PLC-controlled plants
- High-dimensional models
- Relevant number of discrete variables
- Clocks for cycle synchronisation

HyPro application: Sub-space computations

- Motivation: PLC-controlled plants
- High-dimensional models
- Relevant number of discrete variables
- Clocks for cycle synchronisation

Idea:

- Compute reachability in sub-spaces
- Synchronise on time

3. Sub-space computations

3. Sub-space computations

Partition the variable set into syntactically independent subsets.

Representation: Boxes

Representation: Boxes

Pros and cons

- + Reduced computational effort
- + Subspace-local configurations are possible
- + Even subspace-local reachability analysis algorithms are possible
 - Additional over-approximation

Leaking tank example

Conclusion

- HyPro: open-source programming library
- Available at https://github.com/hypro/hypro
- State set representations for the implementation of hybrid systems reachability analysis algorithms
- Exact as well as inexact number representations
- Flexibility to deviate from standard methods
- HyDRA: HyPro-based reachability analysis
 - Counterexample-guided abstraction refinement
 - Parallelization
 - Sub-space computations

HyPro benchmark collection [NFM'15]

http://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/

The considered benchmark presented in Fig. 1(a) consists of two tanks. The injust in the first tank comes from two outside sources: a constant inflow source and a second source equipped with a controlled valve valve1, with flows Q_0 and Q_1 respectively. A drain placed at the bottom of tank 1 allows the figuid to flow into tank 2 with flow Q_A .

Tank 2 is itself equipped with two drains. In the first one a pump is placed to assure a constant liquid outflow Q_0 whereas the flow in the second one Q_2 is controlled by an electro-valve valve2. Both valves can take the states ChVOIT. This results consequently in four possible discrete modes for the hybrid automaton. The liquid levels in tank i is given by $x_{\rm c}$.

References

[1] J. Lygeros. Lecture notes on hybrid systems. Technical Report, 2004.

 [2] I. A. Hiskens. Stability of limit cycles in hybrid systems. In Proceedings of the 34th Hawaii International Conference on System Sciences (HICSS'01), pages 163-328, IEEE, 2001.

Figure 2: Flownine of the two-tank system

[3] A. Girard. Reachability of Uncertain Linear Systems Using Zonotopes. In Proceedings

Further challenges

- State set representation: context-sensitive approaches, non-convex representations, under-approximation
- Precision: automated dynamic error reduction
- Large uncertainties / initial sets
- Zeno behaviour
- Unbounded verification: efficient fixed-point recognition
- More expressive models: non-convex invariants, urgent transitions/locations, communication, random behaviour, hierarchical models
- Counterexamples
- Compositionality
- Standard input language, more benchmarks, competitions